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ABSTRACT 

THE VENETIAN BLIND EFFECT:

CONTRAST DISPARITY MODULATION IN IRRADIATION STEREOSCOPY

BY

EUGENE T. FILLEY 

University of New Hampshire, September, 2004

In Experiment 1 we measured contrast disparity thresholds for the perception of 

slant in the Venetian blind effect for a square-wave carrier spatial frequency of 3.14 

c/deg and square-wave modulation spatial frequencies of 0.26, 0.39, 0.79, and 1.57 

c/deg.

In Experiment 2 we increased the spatial frequencies. We measured contrast 

disparity thresholds for the perception of slant for a square-wave carrier spatial 

frequency of 5.24 c/deg and square-wave modulation spatial frequencies of 0.33,

0.65, 1.31, and 2.62 c/deg.

In Experiment 3 we returned to the spatial frequencies of Experiment 1 but used 

sine-wave modulation. We measured contrast disparity thresholds for the perception 

of slant for a square-wave carrier spatial frequency of 3.14 c/deg and sine-wave 

modulation spatial frequencies of 0.26, 0.39, 0.79, and 1.57 c/deg.

Fourier analyses were performed on the luminance differences of left and right 

half-images at threshold, and adjusted for the contrast sensitivity function. Sum and 

difference spikes, caused by phase changes between the half-images, appeared in the 

resulting Fourier plots. One parameter, two parameter, and three parameter models 

were generated to fit the Fourier results. The models predicted thresholds moderately
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well for two out of three subjects (ETF, JMS) but performed poorly in predicting 

thresholds for the remaining subject (WWS). A systematic feature of the remaining 

errors is noted and some future directions in Venetian blind research are discussed.
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INTRODUCTION

In 1941, C. Munster reported a depth illusion, today called "the Venetian blind 

effect." The illusion occurs when binocularly viewing a vertically oriented square- 

wave grating with a neutral density filter placed before one eye (see Figure 1).

Typically, each of the light bars of the 

grating appears to be rotated about its 

own vertical axis, like a partly opened 

Venetian blind.1 With the neutral 

density filter placed over the left eye, 

each bar appears to slant so that its left 

edge is closer than its right edge. With 

the neutral density filter placed over the right eye, the sense of rotation reverses.2 

Howard and Rogers (1995a, p. 310) summarize a number of findings for the Venetian 

blind effect.

Cibis and Haber (1951) independently rediscovered the Venetian blind effect. 

They considered it to be one of a large number of "anisopic stereo-effects," distortions

1 The perceived slant in the Venetian blind effect is "multi-axis” rotation, not "single-axis" rotation. In 
multi-axis rotation about vertical axes, individual elements of the stimulus (bars, in this case) rotate or 
appear to rotate about their own independent vertical axes. In single-axis rotation, an entire stimulus 
rotates or appears to rotate around a single axis.

2 Occasionally, the dark bars may appear to rotate instead of the light bars but in the opposite 
direction, or a corrugation of alternating dark and light bars may be seen, depending on figure-ground 
organization.

Figure 1. An image suitable for producing the 
Venetian blind effect when viewed binocularly 
with a neutral density filter placed before one eye
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of visual space caused by "unequal imagery" in the eyes (p. 676).3 Cibis and Haber 

produced apparent slant in several ways — artificial pupils (unspecified diameters) 

that differed in size in the two eyes, spherical or cylindrical lenses (up to ±1.5 

diopters over one eye), retinal bleaching (about 3200 lx to the right eye for 10 

minutes), and neutral density filters (0.1 log units to 3.0 log units) placed over one

4eye.

In a series of nulling-method experiments5 using a neutral density filter in front of 

one eye, Cibis and Haber asked subjects to view binocularly two white squares (each 

with retinal angles of 2.44° x 2.44°) placed in the ffonto-parallel plane with a very 

dark background (black felt). The squares were yoked together so that subjects could 

rotate them simultaneously about their individual vertical axes. (Cibis and Haber do 

not specify the distance between the vertical axes). The subjects' task was to rotate the 

bars back into the perceived ffonto-parallel plane, nulling the apparent slant. Cibis 

and Haber then measured the actual angle of rotation of the squares away from the 

ffonto-parallel plane and calculated angular disparity for the squares.

3 Ogle (1952) objects to Cibis and Haber's use of the term "anisopia" in this context on the grounds that 
the term has a well established clinical meaning: "an anomaly in the binocular visual processes 
(including corrected refractive errors) in which a difference in magnification exists between the images 
for the two eyes." The established meaning, says Ogle, precludes the use of the term for "differences in 
the size of the dioptric images on the retinas caused by special geometrical configurations and special 
arrangements of objects in the field of view."

4 Apparent slant seen using the neutral density filters was largely independent of the luminance of the 
targets from 0.03 cd/m 2 to 111 cd/m2. Cibis and Haber did not report the adaptation state of subjects 
and did not use artificial pupils in these neutral density filter experiments.

5 "Nulling-method" experiments measure the amount of one stimulus dimension required to 
counteract the response to the same dimension of another stimulus.
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Cibis and Haber found that the sides of the squares that seemed closer to subjects 

were on the same side as the filtered eye and that apparent slant increased with filter 

density. Apparent slant increased linearly from about 5° (corresponding to 10 arc 

seconds of angular disparity) for filters of 0.1 log units, to 25° (corresponding to 45 

arc seconds of angular disparity) for filters of 1.25 log units. Filter densities greater 

than 1.0 had reduced effectiveness, until saturation was reached near 2.5 log units 

with 35° of apparent slant (corresponding to 55 arc sec of angular disparity).

Cibis and Haber proposed that the visual system determines the width of a bar 

presented to an eye by using the locations at which the edges of the bar cross a retinal 

illuminance threshold for that eye (see Figure 2a). Because the retinal illuminance 

profile of a bar has only finite slopes, reducing the retinal illuminance of the bar will 

decrease the width of the supra-threshold part of the image (the light bar area) while 

increasing the width of the sub-threshold part (the dark area around the bar), 

provided that a retinal illuminance threshold for the visual system exists somewhere 

between the fight area and dark area retinal illuminance levels. This amounts to a 

spatial duty cycle reduction for the filtered eye.6 When the two images are fused, one 

sees a rotation about the vertical axis of the bar. When several bars are viewed beside 

each other, one sees multi-axis rotation (see Figure 2b). According to Cibis and 

Haber, productions of multi-axis rotation using filters, artificial pupils, or bleaching 

all depend upon a spatial duty cycle reduction of the retinal image in one eye, 

creating an effective disparity between the two eyes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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intensity

(a) (b)
Figure 2. (a) According to Cibis and Haber (1951), placing a neutral density filter before one eye 
reduces the retinal illuminance for a bar stimulus, which reduces the width of that portion of the 
stimulus that is above threshold of retinal illuminance and increases the width of that portion of the 
stimulus that is below threshold. Together, these changes amount to a spatial duty cycle reduction, 
(b) Spatial duty cycle reduction leads to apparent multi-axis rotation.

Because supra-threshold dark bars do not provide points that cross a retinal 

illuminance threshold, Cibis and Haber's model does not predict multi-axis rotation 

for gratings with supra-threshold dark bars. Further, since their model uses a retinal 

illuminance threshold and not a contrast threshold, it does not predict multi-axis 

rotation based upon contrast disparities.7 Both of these effects were subsequently 

observed (Filley, 1998; Filley and Stine, 1998).

6 The spatial duty cycle for a square-wave grating is the ratio of the width of a light bar to the width of 
a light and dark bar taken together. A square-wave grating has a spatial duty cycle of 0.5 but a 
rectangular wave grating generally does not.

7 Cibis and Haber's model predicts multi-axis rotation for "degenerate cases" where the contrast is close 
to 1.0 and the dark bar illuminances are below threshold. Because Cibis and Haber do not specify the 
shape of the luminance profile, it is difficult to know what they might have said outside this range.
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Ogle (1962), who appears to have agreed, more or less, with Cibis and Haber's 

proposal (although he did not explicitly mention a threshold), considered the 

Venetian blind effect to be a "unique stereoscopic effect" and coined the term 

"irradiation stereoscopy" to describe it.8 The term highlights the point that in the 

Venetian blind effect a difference in the level of retinal irradiance in the two retinas 

creates a spatial duty cycle reduction in the retinal image of the filtered retina relative 

to the unfiltered retina (retinal disparities). This spatial duty cycle reduction can then 

be used to explain the effect on a geometric basis. This differs only somewhat from 

the way that stereopsis may be produced for a real Venetian blind: a difference in 

retinal viewpoints creates a spatial duty cycle reduction in the retinal image of one 

eye relative to the other, which can then can be used to explain the effect on a 

geometric basis.

Von Bekesy (1970) performed a series of nulling-method experiments to measure

50
effective angular disparity (i.e., the

change in the angular width of a bar

required to return it to the perceived

ffonto-parallel plane for various

1 2 3 4 5 6 7 8 9 10 11 12 13 14 neutral density filters placed over one

Spatial Frequency of Bars (c/deg) eye). In a pair of related experiments

Figure 3. Rotation out of the ffonto-parallel 
plane plotted as a function of spatial frequency 
for square-wave bars with retinal disparity fixed 
at 5 arc seconds. (Viewing distance = 100 cm, 
interpupil distance = 6 cm.)

chin rest and artificial pupils (size

in which subjects were fitted with a

8 "Illuminance" might be more to the point than "irradiance.
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unreported), von Bekesy used a bar luminance of 17 cd/m2 and a viewing distance of 

25 cm. One of two experiments used a bar with a retinal angle of a 0.46° (2 mm 

wide), and the other used a bar with a retinal angle of 1.38° (6 mm wide).

Von Bekesy found that bar width (0.46°, 1.38°) had little effect on the change in 

bar width required to bring the bar back into the perceived ffonto-parallel plane. In 

both experiments the effective retinal disparity increased to about 50 arc sec as 

neutral density increased to 1.25 log units. The geometry implies that for a fixed 

retinal disparity, increasing the spatial frequency of the bars increases the slant (see 

Figure 3), so the slant detection threshold might be expected to vary as an inverse 

function of the ratio of spatial frequency to retinal disparity. However, Khutoryansky 

(2000) examined this possibility for luminance disparity (Experiment 2) and contrast 

disparity (Experiment 3) and found no such spatial frequency effect on thresholds for 

square-wave gratings with spatial frequencies up to about 4 c/deg (34.5 cd/m 2 mean 

luminance, 3 mm artificial pupils, statistical power ranging from 0.53 to 0.72 for 

detecting a partial o j2 of 0.10).

Von Bekesy (1970) also conducted a series of experiments in which he presented 

to subjects a number of stimuli consisting of bars or dots with varying geometries. In 

these experiments, von Bekesy observed an interaction between stimulus geometries 

and combinations of perceived multi-axis or single-axis rotation, which could not be 

explained by irradiation effects alone. In one experiment, von Bekesy investigated the 

effects of flanking bars on the Venetian blind effect. A flanking bar is a rectangle, 

generally of some constant luminance, that is placed beside the Venetian blind 

stimulus. Von Bekesy generated a Venetian blind stimulus in which the light bar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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width was 2.5 mm, the light bar luminance was 17 cd/m 2 and the contrast was 

unspecified. (Viewing distance is not entirely clear from the paper but it seems to be 

50 cm, which would give one cycle a retinal angle of about 0.57° and a spatial 

frequency of about 1.75 c/deg.) Von Bekesy placed a high luminance flanking bar on 

one side of the Venetian blind stimulus and a low luminance flanking bar (luminance 

not reported) on the other side. This arrangement systematically altered the response 

to the Venetian blind stimulus when a neutral density filter (1.0 log units) was placed 

before one eye. Closer to the light flanking bar, the Venetian blind bars appeared to be 

progressively more slanted. Closer to the dark flanking bar, the bars appeared 

progressively less slanted. The effect was stronger at low luminance levels.9 Von 

Bekesy proposed that a combination of lateral inhibition and irradiation is needed to 

account for these results.

Fiorentmi and Maffei were influenced by the spatial frequency approach taken in 

the work of Campbell and Robson (1968), Campbell, Cooper and Enroth-Cugell 

(1969), and Blakemore and Campbell (1969). According to that approach, the visual 

system uses a number of relatively independent, limited bandwidth spatial frequency 

channels to extract visual information from the environment. Fiorentini and Maffei 

(1971) suggested that the results of one of their experiments (Experiment 3) could not 

be interpreted in terms of edge disparities but could be understood on the basis of a

9 The author tried to replicate von Bekesy’s flanking bar finding but was unable to produce results 
stable enough for systematic inquiry, though one can see the effect.
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spatial frequency approach.10 In that experiment, Fiorentmi and Maffei presented 

sine wave gratings of matched spatial frequencies but differing contrasts to each eye 

for fusing and asked subjects to adjust the slant of a rotatable rectangle to match the 

apparent slant of the fused grating image. Although the spatial frequency and mean 

luminance of the two gratings were identical, Fiorentini and Maffei reported 

apparent single-axis rotation of the entire stimulus when the contrasts differed by 0.2 

log units or more.11 Fiorentini and Maffei argue that these results cannot be 

explained in terms of edge disparities because sine-waves have no edges, regardless of 

their contrast. They propose that signals encoding the spatial frequencies of each 

image are separated into a number of spatial frequency channels and die intensities of 

the two images are compared at these spatial frequencies. When the spatial 

frequencies, mean luminance and contrast are matched, the visual system infers no 

slant but when the energy received at the fundamental frequency in one eye differs 

from the energy received at that frequency in the other eye, the visual system infers 

the presence of slant. Typically, this would happen because the fundamental 

frequencies differ between eyes but it could also be expected to happen for sine waves 

of matched spatial frequencies and mean luminances if the contrast differed between 

the eyes. The visual system would then infer single-axis rotation of the entire fused 

grating based on a contrast difference alone.

10 In one interpretation of the spatial frequency approach, the visual system performs Fourier analysis 
and synthesis on visual information. Howard and Rogers (1995) argue that this version is biologically 
implausible, except in a trivial sense (p.259).

11 In a related control experiment, Fiorentini and Maffei temporarily paralyzed the subject's lenses to 
eliminate the possibility that differential accommodation could account for their results.
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(b)

Two issues arise with Fiorentini and 

Maffei's third experiment. First, Fiorentini 

and Maffei placed circular black cardboard 

apertures around the oscilloscope screens 

used to present stimuli to subjects. The 

apertures should have produced a visible 

edge around the stimulus at the reported 

luminances, as in Figure 4a, although that 

is not reported. Such an edge could create 

an apparent single-axis rotation of the 

stimulus, as demonstrated by Stine and 

Filley (1998). When the luminance of the 

region outside the aperture is matched to 

the mean luminance of the gratings, as in 

Figure 4b, the apparent rotation may 

vanish, although a well-controlled study is
Figure 4 (a) Fiorentini and Maffei (1971)
reported apparent single axis rotation for needed to confirm this initial observation, 
dichoptically presented sine wave gratings
with matched spatial frequency and mean Second, Blake and Cormack (1979) tried 
luminance but differing contrast. The high
contrast edge created by the circular aperture j r . - , .  ,• „
might have produced apparent rotation. In (b) an<* "tiled to replicate Fiorentini and
the luminance of the region outside die
aperture is dose to the mean luminance of the Maffei's result using similar stim uli 
gratings. Apparent rotation may vanish.
Repnnted from Stine and Filley (1998). However, it should be noted that Blake and

Cormack presented stimuli for only 1 second, which could have been too short for 

apparent rotation to occur.
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Filley (1998) and Filley and Stine (1998) examined the effects of contrast 

disparity and mean luminance disparity on slant perception for dichoptically 

presented vertically oriented square-wave grating stereograms. Adaptation level was 

controlled by placing subjects in Maxwellian view with 3 mm artificial pupils and 

having them adapt to a 34.5 cd/m 2 neutral gray field for 5 minutes before each 

session, as well as for 10 seconds of interstimulus interval (ISI) between each trial. 

Each stimulus presentation lasted 5 seconds. All stereograms consisted of 4 dark bars 

and 3 light bars with a spatial frequency of 1.2 c/deg. On each trial, a standard image 

with a mean luminance of 34.5 cd/m 2 and Michelson contrast12 of 0.5 (Michelson, 

1927) was displayed to one eye, while a variable image (with contrast between 0.2 

and 0.8 and a mean luminance between 12 cd/m 2 and 57 cd/m 2, combined 

factorially) was displayed to the other eye. On each trial, selection of the eye for the 

standard image was randomized and the mean luminance or the contrast of the 

variable image was altered. Subjects were asked to indicate which side of each light 

bar (left or right) appeared closer. Filley and Stine produced a probability map 

depicting the probability that the variable stimulus side of the fused light bars would 

appear closer than the other side. They found a contrast disparity effect, a mean 

luminance disparity effect, and an interaction between the two (see Figure 5).

, maximum luminance - minimum luminanceM ichelson co n tra st =  -----------------------------------------------------------------------------------------------------
12 maximum luminance + minimum luminance

(In this document, "contrast" always refers to Michelson contrast.)
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For variable images whose contrast was below that of the standard, the variable 

image side of the light bars appeared closer at all mean luminances. For variable 

images whose contrast was greater than that of the standard, the variable image side

•  -  Contrast = .20 

- a Contrast = .35 

■ Contrast = .50

Contrast = .65
0.9 Contrast = .80

0.7

0.6
o>

0.5

0.4

0.3

0.2

0.1 HI

46 5712 23 35
Average luminance of variable image

Figure 5. The probability of perceiving the variable image side of the light bars of a square-wave 
grating stereogram as being closer than the standard image side of the light bars, plotted as a 
function of mean luminance (cd/m2) of the variable image (means for 4 subjects). Data are 
shown for five Michelson contrasts. The standard image had a mean luminance of 34.5 cd/m 2 
and a Michelson contrast of 0.5 in all cases. Data from Filley & Stine (1998).

of the light bars still appeared closer at low mean luminances. However, for high 

contrast, high mean luminance variable images, the sense of rotation switched. In 

short, the variable side looked closer, except when it was high luminance high 

contrast.

Khutoryansky (2000) Experiment 1 examined the effects of blurring the edges of 

bars in Venetian blind stimuli. Edges of a square-wave grating, normally
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approximating a step function, were replaced with a sine-wave component: a quarter 

cycle of sine-wave of known spatial frequency, creating a blurred edge. Subjects were 

placed in Maxwellian view (3 mm artificial pupil), pre-adapted to 34.5 cd/m 2 for 5 

minutes, and re-adapted to that luminance level during each subsequent ISI (8 

seconds). On each trial, subjects were presented with a stereogram for 8 seconds. In 

each stereogram a standard image was randomly placed on the left or right side, with 

a variable image on the opposite side. The spatial frequency of the sine-wave 

component (the blurred edge) was altered from trial to trial (from 1.28 c/deg to 15.4 

c/deg), while the spatial frequency of the square-wave component (i.e., the square- 

wave grating, itself) was held constant at 1.92 c/deg. The subject’s task, in a Yes-No 

paradigm, was to indicate whether or not the stimulus appeared flat. An adaptive 

psychometric procedure, called QUEST, first suggested by Watson and Pelli (1983), 

was used to measure contrast disparity threshold and mean luminance disparity 

threshold. On each trial, QUEST computes a Bayesian estimate of the most probable 

threshold, assuming a Weibull psychophysical function for log (contrast) or log 

(luminance), and uses that estimate as the stimulus intensity for the next stimulus 

presentation.

Khutoryansky observed no spatial frequency effect of the sine-wave component 

on either luminance thresholds or contrast thresholds. Khutoryansky used the results 

of Bex and Edgar (1996), which indicate the amount of shift in the perceived edge 

position caused by a change in either contrast or contrast ramp width, as well as the 

results of Morgan et al. (1984), which showed that a non-linear luminance response 

prior to a zero-crossing extraction mechanism may also lead to a shift in edge
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position, to calculate that the experiment had sufficient statistical power (0.88) to 

detect the predicted spatial frequency effects for the sine-wave component.

In Experiments 2 and 3, Khutoryansky eliminated the sine-wave component and 

varied the frequency of the square-wave grating from 0.855 c/deg to 3.85 c/deg while 

measuring contrast disparity threshold and mean luminance disparity threshold. No 

spatial frequency effect on thresholds was seen, although Howard and Rogers (1995b, 

p. 164) would lead one to expect a large fall-off in retinal disparity sensitivity in the 

range 0.5 c/deg to 2 c/deg.

In all of the above cases the gratings seen by each eye were always well above 

threshold for monocular detection, so a spatial frequency effect for slant perception in 

Venetian blind stimuli should not be imposed by monocular bandpass limitations. 

Rogers and Graham (1982) report a bandpass function for disparity sensitivity over 

the spatial frequency range from 0.1 c/deg to 1.6 c/deg (with greatest sensitivity for 

corrugations around 0.3 c/deg) when detecting surface corrugation using random dot 

stereograms. Tyler et al. (1992) examine spatial frequencies from 0.05 c/deg to 1.5 

c/deg, and report that stereo thresholds for detection of depth modulation dropped 

from a high at 0.05 c/deg to a low in the range of 0.5 c/deg to 1.5 c/deg (at temporal 

modulation frequencies around 0.1 Hz). Frisby and Mayhew (1978) report contrast 

sensitivity functions for detection of random-dot images presented binocularly, as 

well as contrast sensitivity functions for detection of depth in random-dot 

stereograms. Each shows a pronounced spatial frequency effect, with thresholds 

increasing from 2.5 c/deg to 15 c/deg, much like a monocular contrast sensitivity 

function. Given that the stereo system is responding as though it is seeing a retinal
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edge disparity in the Venetian blind effect, it is unclear what stimulus properties are 

actually being used by the stereo system. If a disparity mechanism is controlling the 

response then the Venetian blind effect might be expected to show a spatial frequency 

effect with peak sensitivity near 0.5 c/deg and with a 50% reduction in sensitivity 

near 0.1 c/deg and 2 c/deg. On the other hand, if contrast sensitivity controls 

response, then the Venetian blind effect might be expected to show a spatial frequency 

effect with peak sensitivity around 6 c/deg, like the contrast sensitivity function of 

Blakemore and Campbell (1969).

Von Bekesy (1970) and Khutoryansky (2000) studied some relevant monocular 

properties (bar width and edge blur) of Venetian blind stimuli in the search for a 

spatial frequency effect but found none. A spatial frequency effect in Venetian

blind thresholds would 

be useful in 

characterizing the 

Venetian blind effect and 

potentially useful in 

providing additional 

insight into the 

underlying physical 

mechanisms involved.

Figure 6. A stereogram containing an unmodulated carrier square- 
wave. The contrast in each grating (each half-image) is identical to 
the contrast in the other grating, and does not change when 
calculated according to segment. This stereogram has no contrast 
disparity.

Consequently, the current study examines a specifically binocular stimulus property: 

contrast disparity. Figure 6 shows a stereogram with no contrast disparity. The two 

square-wave gratings (half-images) have identical contrast, mean luminance and
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spatial frequency (and 

should appear flat when 

fused). They can be 

considered to be 

unmodulated carrier 

square-waves. Figure 7

Figure 7. A stereogram with contrast disparity modulation. The sh ow s a Similar 
contrast of the earner square-wave is modulated so that the
contrast in the left half-image has opposite phase from the contrast Stereogram but with the
in the right half-image. (The mean contrast in each half-image is
the same but the left half-image has a high contrast segment on the addition of contrast
left and a low contrast segment on the right; while the right half­
image has low contrast segment on the left and a high contrast _
segment on the right.) disparity. T he contrast

modulation in the left half-image increases the contrast in the left segment (the left

half of the left half-image in this example) and decreases the contrast in the right

segment. Just over twelve cycles of carrier and just over one cycle of modulation are

shown. The contrast modulation in the right half-image exactly reverses the pattern

of modulation seen in the left half-image. The modulation in the two half-images is

therefore in antiphase (n radians out of phase). If the unmodulated carrier contrast is

0.5 and the modulation contrast proportion is 0.25 then die resulting contrasts in

corresponding segments of the half-images will be 0.5 ± 25%, i.e., 0.625 and 0.375.

Because changes in contrast disparity occur abruptly in Figure 7, as in a square-

wave, we call this kind of modulation "square-wave contrast disparity modulation."

This kind of modulation is used in Experiments 1 and 2. In Experiment 3 we vary

contrast disparity gradually, following a sine-wave function, and call the modulation

"sine-wave contrast disparity modulation."
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When the half-images in Figure 7 are fused (uncrossed), the left segment of the 

fused image will be formed from a contrast of 0.625 from the left eye and a contrast 

of 0.375 from the right eye. As a result, the bars in the left segment of the fused image 

will seem to slant so that the right side of each light bar is closer. Meanwhile, the 

right segment of the fused image will be formed from a contrast of 0.375 from the left 

eye and a contrast of 0.625 from the right eye, so the bars in the right segment of the 

fused image will appear to slant in the opposite direction.

Fused (uncrossed) from a distance of about 57 cm, the stereogram in Figure 7 

resembles the stimulus of Experiment 1, condition 1 (carrier spatial frequency = 3.14 

c/deg and modulation spatial frequency = 0.26 c/deg), notwithstanding the 

limitations of the printed page. (Complete samples of all stimuli are shown in 

Appendices 1-3.)

In all experiments, the carrier was always a square-wave. In Experiment 1 we 

measured thresholds for the perception of slant for contrast disparity modulation of a 

3.14 c/deg carrier using square-wave modulation spatial frequencies of 0.26, 0.39, 

0.79, and 1.57 c/deg. In Experiment 2 we increased spatial frequencies. We 

measured thresholds for the perception of slant for contrast disparity modulation of a 

5.24 c/deg carrier using square-wave modulation spatial frequencies of 0.33, 0.65, 

1.31, and 2.62 c/deg. In Experiment 3 we returned to the spatial frequencies of 

Experiment 1 but used sine-wave modulation. We measured thresholds for the 

perception of slant for contrast disparity modulation of a 3.14 c/deg carrier using 

sine-wave modulation spatial frequencies of 0.26, 0.39, 0.79, and 1.57 c/deg.
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GENERAL METHOD

Subjects

Three healthy adult male subjects, ages 48, 32, and 47, identified by the initials 

ETF, JMS and WWS, respectively, participated in the experiments. Each subject had 

normal or corrected to normal vision. Although two of the subjects (ETF and WWS) 

had some age-related presbyopia, die viewing distance to the stimulus (130 cm) was 

sufficient to allow full accommodation.

Institutional Review Board clearance and informed consent were given for all 

experiments (see Appendix 16).

Apparatus

Stimuli were presented under the control of a Mathematical 4.0  program run 

on a Macintosh G4 computer (OS 9.0.4) with an Apple ColorSync Display: 24 bit, 

0.29 mm nominal dot pitch CRT (0.36 mm horizontal interpixel distance), 43.18 cm 

diagonal nominal viewable image size (40.64 cm diagonal actual viewable image 

size), Family Number M2935. A Minolta LS-110 photometer was used to calibrate 

the monitor (see Appendix 15).

Other equipment included a bite bar, 3 mm artificial pupils, masking to eliminate 

high luminance areas surrounding the 50 cd/m 2 stimulus border, baffling to prevent 

one eye from receiving the other eye’s stimulus, and an arrangement allowing 

accurate positioning of the bite bar and artificial pupils.
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Stimuli

Stimuli were stereo 

pairs of images, each pair 

viewed from a distance of 

130 cm and containing 

an alternating series of 

dark and light vertical 

bars (see Figure 8a). The 

width of a single image 

from a stereo pair (e.g., a 

left image), excluding the 

gray margins on the left 

and right sides, was 3.88° 

of retinal angle (8.8 cm). 

The height of an image of 

a stereo pair (excluding the gray margins on the top and bottom) was 1.90° of retinal 

angle (4.3 cm). Each image from a stereo pair was separated from the other image by 

1.10° of retinal angle (2.5 cm). The stereogram pairs were placed in a 50 cd/m 2 

border with an outer width of 9.55° of retinal angle (21.8 cm) and height of 5.68° of 

retinal angle (12.9 cm). Overlapping the outer edges of the border, a piece of 

cardboard with a rectangular hole cut in it covered the remaining area of the display 

(the high luminance region outside the stimulus). A divider prevented each eye from 

seeing the image displayed to the opposite eye, and allowed only uncrossed fusion.
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To facilitate fusing, a dark nonius line (luminance = 0.6 cd/m2, width = 0.03° and 

length = 1.90°) was placed above and below each stereo image.

Each stereogram comprised two geometrically identical contrast disparity 

modulated square-wave carrier images (each image with a mean luminance of 50 

cd/m 2 and a Michelson contrast of 0.5). The contrast of one carrier image (see Figure 

8b) was modulated in anti-phase (i.e., n radians out of phase) relative to that of the 

other carrier image (see Figure 8c). For example, a contrast disparity proportion of 

0.10 would increase the carrier image contrast by 10% (giving a contrast of 0.55) for a 

segment in one image, while decreasing the carrier image contrast by 10% (giving a 

contrast of 0.45) for the corresponding segment in the other image. Stimulus 

luminances ranged from 10 to 120 cd/m 2 (from about 70 td to about 850 td, 

photopic). In Experiments 1 and 2 contrast disparity was square-wave modulated (as 

shown in Appendix 1 and Appendix 2) but in Experiment 3, contrast disparity was 

sine-wave modulated (as shown in Appendix 3).

In Experiment 1, carrier spatial frequency was fixed at 3.14 c/deg, while four 

conditions of square-wave contrast disparity modulation spatial frequency were used:

0.26, 0.39, 0.79, and 1.57 c/deg (see Figure 9). In Experiment 2, carrier spatial 

frequency was fixed at 5.24 c/deg, while square-wave contrast disparity modulation 

spatial frequencies of 0.33, 0.65, 1.31, and 2.62 c/deg were used. In Experiment 3, 

carrier spatial frequency was fixed at 3.14 c/deg, while sine-wave contrast disparity 

modulation spatial frequencies of 0.26, 0.39, 0.79, and 1.57 c/deg were used.
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Task and procedure

In each experiment, the subject bit onto a bite bar and pressed a key to start the 

program that controlled the experiment. The program then displayed a stimulus to 

allow final alignment. With one eye the subject fixated the center of the 

corresponding stimulus and, without changing fixation point, aligned a pair of pins 

so as to site across their tops to the center of the image. Keeping the artificial pupil as 

dose as possible to the cornea without touching it, the subject partially dosed the 

artificial pupil and aligned it horizontally and vertically to form a clear, unoccluded, 

consistently bright image. The subject then repeated this procedure for the other eye. 

After the subject was roughly aligned in this way, the researcher completed the final 

centering of the artificial pupils by siting down the alignment pins at the subject's 

natural pupils. The alignment pins were removed, the artifidal pupils were adjusted 

to a diameter of 3 mm, and a final check was performed by both subject and 

researcher.

Upon completing all adjustments, the subjed entered his initials and the room 

lights were turned out, so that die only light remaining in the room came from the 

monitor (except for a very small amount of light from under die closed laboratory 

door). The subject then pressed a key to begin adapting to a uniform luminance of 50 

cd/m2 for 5 minutes.

After adapting the subject, the program cycled through 250 stimuli (8 sec. of 

stimulus presentation and 8 sec. of ISI used for re-adapting to 50 cd/m 2). On each 

trial an in-phase modulated image was randomly placed on the left or right side, 

while an anti-phase modulated image was placed on the opposite side. The subject’s
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task in Experiments 1-3 was to respond "Yes" if some of the bars appeared to slant 

differently from others; and otherwise to respond "No."

A stochastic approximation procedure (Robbins and Monro, 1951; Treutwein, 

1995) was used to measure contrast disparity thresholds. Stochastic approximation is 

a non-parametric adaptive procedure (non-parametric because it does not assume a 

particular distribution of thresholds for a given stimulus strength; adaptive because 

the stimulus strength on any given trial is a function of the subject's response on 

previous trials).

Equation 1 Si+1 = S, - fa, - 0) tit

Equation 2 = tifa i

Equation 1 describes how stimulus strength (contrast disparity, in our 

experiments) was varied over a sequence of trials 1 through n during measurement of 

contrast disparity threshold. SM represents stimulus strength on trial i+1. S, is 

stimulus strength on trial i. z t is the subject's response on trial i  (0 for a "No" or 1 for a 

"Yes") and 0'\% the probability of a "Yes" (always 0.5 in our experiments) toward 

which the sequence is set to converge as threshold is measured. ti,\s the step-size on 

trial i. Equation 2 describes how step-size, ti„ decreased over a sequence of trials: 

tii = t i i / 1, ti2 =  t i i / 2, ti3 = tifa3, etc.

An initial step-size, ti!t was selected prior to any trials and <f> was set to 0.5. On 

trial 1 stimulus strength, Si, was randomly selected from a range of possible strengths. 

If on trial 1 the subject responded "Yes" then z } =  l , ( z t - 0)=O.5, and S2 = Si- 0.5 ti,\

i.e., stimulus strength on trial 2 was decreased by half the step-size from trial 1. On 

the other hand, if on trial 1 the subject responded "No" then Zi -  0, fai-0) = - 0.5\ and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

S2 = S i +  0.5 St\ stimulus strength on trial 2 was increased by half the step-size from 

trial 1. Generally, if the subject responded "Yes" on trial i then stimulus strength on 

trial / +1 was decreased by half the step-size from trial i; if the subject responded 

"No" on trial i then stimulus strength on trial i+1 was increased by half the step-size 

from trial i. This process continued through all n trials of a sequence, changing Sj by 

± 6 / i on each trial, and converging toward a probability of 0.5 that the subject will 

say "Yes."

Each subject (n = 3) ran 8 sessions per experiment. Each session included 10 

sequences of 25 trials (randomly interleaved to assure independence of trials), for a 

total of 250 trials per session. Two sequences per session were dedicated to each of 

the 4 experimental conditions (giving 2 threshold measurements per condition) and 

the remaining two sequences were dedicated to catch trials.
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EXPERIMENT 1 

Introduction

Threshold functions for detection of disparity modulation as a function of spatial 

frequency in random dot stereograms have a bandpass shape, with the lowest 

thresholds in the range of 0.3 to 0.5 c/deg (Rogers & Graham, 1982; Bradshaw & 

Rogers, 1993; Ioannou et al., 1993).13 We therefore expected that if we did find a 

spatial frequency effect in Experiment 1, we would find a similar bandpass threshold 

function. Specifically, we expected to find the lowest contrast disparity thresholds for 

slant perception at a modulation spatial frequency of 0.26 c/deg or 0.39 c/deg, with 

increasing thresholds to 1.57 c/deg.

Methods

Subjects

ETF, JMS and WWS participated in Experiment 1.

Apparatus

Apparatus was as described under GENERAL METHOD.

Stimuli

Stimuli were stereograms as described under GENERAL METHOD. The 

square-wave carrier spatial frequency was fixed at 3.14 c/deg. Square-wave contrast

13 Shumer & Julesz (1984) found this same bandpass shape for disparity modulated random dot 
stereograms with no disparity pedestal, although they also found a systematic shift in bandpass toward 
lower spatial frequencies (around 0.2 c/deg) when stereograms were placed on crossed or uncrossed 
disparity pedestals.
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disparity modulation spatial frequencies in the four conditions were 0.26 c/deg, 0.39 

c/deg, 0.79 c/deg, and 1.57 c/deg (Figure 9a-d, respectively).

(c) (d)

Figure 9. Experiment 1 stimuli (not shown at actual size or luminance). The carrier is a 3.14 c/deg 
square-wave for all 4 conditions, (a) condition 1: 0.26 c/deg square-wave contrast disparity 
modulation, (b) condition 2: 0.39 c/deg square-wave contrast disparity modulation, (c) condition 3: 
0.79 c/deg square-wave contrast disparity modulation, (d) condition 4: 1.57 c/deg square-wave 
contrast disparity modulation.

Procedure

The procedure in Experiment 1 was as described under GENERAL METHOD. 

Square-wave carrier spatial frequency was fixed at 3.14 c/deg and contrast disparity 

thresholds for perception of apparent slant were measured for square-wave contrast 

disparity modulation spatial frequencies of 0.26 c/deg, 0.39 c/deg, 0.79 c/deg, and 

1.57 c/deg. Ten sequences per session were presented, interleaved in random order,
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including two sequences at each of four modulation spatial frequencies and two 

sequences of catch trials (noise).

Results

Contrast disparity thresholds for seeing slant from Experiment 1 are plotted as a 

function of spatial frequency of square-wave modulation for ETF, JMS, and WWS in 

Figure 10, Figure 11, and Figure 12, respectively. For each subject, four plots are 

shown. The first plot in each case is a log-log plot of mean thresholds for seeing slant 

for all sessions, with error bars representing standard error of the mean. The second 

plot is a log-log plot of session matched mean thresholds for seeing slant, with error 

bars representing standard error of the mean. Sessions are matched by shifting 

individual session curves to the same overall level (subtracting session means and 

adding the grand mean). Then error bars are calculated for the shifted means, which 

removes session differences in overall level, resulting in smaller error bars, and 

highlighting the plot shape. The third plot is a log-log plot of median thresholds for 

seeing slant, with error bars equal to 1.483 times the median absolute deviation /Vn, 

which is a robust estimator of the standard error of the mean for a normally 

distributed random variable. The fourth plot is a log-log plot of session matched 

median thresholds for seeing slant, with error bars equal to 1.483 times median 

absolute deviation/Vn. Again, sessions are matched by shifting individual session 

curves to the same overall level (subtracting session medians and adding the grand 

median). Because the plots were quite similar in each case, session matched median 

threshold plots are enlarged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

ETF

Figure lOa-d show results of Experiment 1 for ETF. Contrast disparity thresholds 

for seeing slant generally decreased with increasing spatial frequency of square-wave 

contrast disparity modulation. The shapes of the response curves for the four plots 

were similar. Thresholds were highest for a square-wave contrast disparity 

modulation spatial frequency of 0.39 c/deg, and decreased with increasing spatial 

frequency. A flattening or a dip in contrast disparity threshold for seeing slant can be 

seen at the lowest modulation spatial frequency (0.26 c/deg). In Figure 10a and c, 

which do not match overall levels of sessions, the error bars are large enough to 

overwhelm the apparent dip in threshold for the 0.26 c/deg threshold relative to the 

0.39 c/deg threshold, leaving a flattening. However, in Figure 10b and d, which do 

match sessions, the difference between the two points seems clearer.

JMS

Figure lla -d  show results of Experiment 1 for JMS. Once again, the four plots 

are similar to one another. Again, contrast disparity thresholds for seeing slant 

generally decreased with increasing spatial frequency of square-wave contrast 

disparity modulation and the overall threshold level is similar to that for ETF, 

although the slope is slightly less than it is for ETF. Some flattening can be seen at 

the lowest modulation spatial frequency (0.26 c/deg) but for JMS the drop is less 

pronounced than it is for ETF and the shape of the decreasing thresholds plot for 

JMS is nearly a straight line. Even after session matching, the error bars are large 

enough to overwhelm the apparent dip in threshold for the 0.26 c/deg, leaving a 

flattening.
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WWS

Figure 12a-d show results of Experiment 1 for WWS. The four plots are again 

similar to one another. As for ETF and JMS, contrast disparity thresholds for seeing 

slant generally decreased with increasing spatial frequency of square-wave contrast 

disparity modulation. The slope of the threshold plot is dose to the slope for JMS but 

the overall threshold level is higher than that for ETF or JMS. A flattening can be 

seen for WWS at the lowest modulation spatial frequency (0.26 c/deg) and again at 

the highest modulation spatial frequency (1.57 c/deg). In the session matched 

median thresholds plot the drop in threshold from 0.39 c/deg to 0.79 c/deg is slightly 

larger than those for ETF or JMS.

Discussion

Figure 13 shows session matched median thresholds for seeing slant for all three 

subjects in Experiment 1. Contrary to expectations based on Ioannou et al.(1993), 

thresholds generally decreased with increasing modulation spatial frequency. Our 

results more closely resemble monocular contrast thresholds and some may infer that 

contrast disparity modulation is tapping into monocular limits to contrast sensitivity, 

rather than into binocular limits to the detection of retinal disparities, as measured by 

random dot corrugations.
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Figure 10. ETF, Experiment 1 contrast disparity thresholds. Square-wave contrast disparity modulation 
spatial frequencies are 0.26 c/deg, 0.39 c/deg, 0.79 c/deg and 1.57 c/deg. Square-wave carrier spatial 
frequency is 3.14 c/deg. (a) mean thresholds; error bars are ± standard error of the mean, (b) session 
matched mean thresholds; error bars are ± standard error of the mean, (c) median thresholds; error bars 
are ± 1.483 median absolute deviation/Vn, (d) session matched median thresholds; error bars are ±
1.483 median absolute deviation/Vn. (n=8 for all plots).
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Figure 11. JMS, Experiment 1 contrast disparity thresholds. Square-wave contrast disparity modulation 
spatial frequencies are 0.26 c/deg, 0.39 c/deg, 0.79 c/deg and 1.57 c/deg. Square-wave carrier spatial 
frequency is 3.14 c/deg. (a) mean thresholds; error bars are ± standard error of the mean, (b) session 
matched mean thresholds; error bars are ± standard error of the mean, (c) median thresholds; error bars 
are ± 1.483 median absolute deviation/Vn, (d) session matched median thresholds; error bars are ±
1.483 median absolute deviation/Vn. (n=8 for all plots).
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Figure 12. WWS, Experiment 1 contrast disparity thresholds. Square-wave contrast disparity 
modulation spatial frequencies are 0.26 c/deg, 0.39 c/deg, 0.79 c/deg and 1.57 c/deg. Square-wave 
carrier spatial frequency is 3.14 c/deg. (a) mean thresholds; error bars are ± standard error of the mean, 
(b) session matched mean thresholds; error bars are ± standard error of the mean, (c) median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn, (d) session matched median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn. (n=8 for all plots).
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Figure 13. Experiment 1 session matched median contrast disparity thresholds plotted as a function 
of spatial frequency in c/deg for ETF (boxes), JMS (triangles), and WWS (diamonds). Error bars are 
±1.483 median absolute deviation /  Vn. Square-wave contrast disparity modulation spatial 
frequencies are 0.26 c/deg, 0.39 c/deg, 0.79 c/deg and 1.57 c/deg. Square-wave carrier spatial 
frequency is 3.14 c/deg.
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EXPERIMENT 2 

Introduction

Von Bekesy (1970) found no spatial frequency effects of luminance disparity on 

the angular disparity required to null the perception of slant in the Venetian blind 

effect. Khutoryansky (2000) looked for spatial frequency effects of luminance 

disparity and contrast disparity on thresholds for seeing slant in Venetian blind stimuli 

but found none.14 We therefore did not expect changes in the shape of the threshold 

function as we increased the spatial frequency of the square-wave carrier in 

Experiment 2. In Experiment 2 we expected that the shape of the threshold function 

would replicate that of Experiment 1 for overlapping modulation spatial frequencies, 

that thresholds would continue to drop with higher modulation spatial frequencies, 

and that no interaction between carrier spatial frequency and modulation spatial 

frequency would be found.

Methods

Subjects

ETF, JMS and WWS participated in Experiment 2.

Apparatus

Apparatus was as described under GENERAL METHOD.

14 By definition, for a non-zero contrast disparity, setting the square-wave contrast disparity 
modulation spatial frequency to zero would produce two gratings of different contrasts but having no 
changes in contrast within a single grating. At appropriate carrier spatial frequencies, such stimuli 
would resemble those o f Khutoryansky (2000), Experiment 3. In effect, Khutoryansky (2000) 
Experiment 3 varied the carrier spatial frequency, not the modulation spatial frequency.
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Stimuli

Stimuli were stereograms as described under GENERAL METHOD. The 

square-wave carrier spatial frequency was fixed at 5.24 c/deg. Square-wave contrast 

disparity modulation spatial frequencies in the four conditions were 0.33 c/deg, 0.65 

c/deg, 1.31 c/deg, and 2.62 c/deg (Figure 14a-d, respectively).
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Figure 14. Experiment 2 stimuli (not shown at actual size or luminance levels). For all conditions, the 
carrier is a 5.24 c/deg square-wave, (a) condition 1: 0.33 c/deg square-wave contrast disparity 
modulation, (b) condition 2: 0.65 c/deg square-wave contrast disparity modulation, (c) condition 3: 
1.31 c/deg square-wave contrast disparity modulation, (d) condition 4: 2.62 c/deg square-wave 
contrast disparity modulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

Procedure

The procedure in Experiment 2 was as described under GENERAL METHOD. 

Experiment 2 was basically like Experiment 1 but used a higher square-wave carrier 

spatial frequency and a higher range of square-wave contrast disparity modulation 

spatial frequencies (that partially overlapped the modulation spatial frequency range 

from Experiment 1). The square-wave carrier spatial frequency was fixed at 5.24 

c/deg and contrast disparity thresholds for perception of apparent slant were 

measured for square-wave contrast disparity modulation spatial frequencies of 0.33 

c/deg, 0.65 c/deg, 1.31 c/deg, and 2.62 c/deg. Again, ten sequences per session were 

presented, including two sequences at each of four modulation spatial frequencies 

and two sequences of catch trials.

Results

Experiment 2 contrast disparity thresholds for seeing slant for ETF, JMS and 

WWS are shown in Figure 15, Figure 16, Figure 17, respectively. As in Experiment 

1, four log-log plots are shown for each subject: mean thresholds for seeing slant, 

session matched mean thresholds, median thresholds, and session matched median 

thresholds. Error bars are as in Experiment 1 and sessions are again matched by 

shifting individual session curves to the same overall level. Session matched median 

threshold plots are enlarged.

ETF

Figure 15a-d show results for ETF in Experiment 2. Contrast disparity thresholds 

for seeing slant again decreased with increasing spatial frequency of square-wave
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contrast disparity modulation. The shapes of the response curves for the four plots 

were similar. Thresholds were highest for a square-wave contrast disparity 

modulation spatial frequency of 0.33 c/deg, and decreased monotonically with 

increasing spatial frequency, although again, some flattening in the plot can be seen 

at the lowest modulation spatial frequency. Unlike Experiment 1, the flattening is not 

enough to be seen as an actual dip in threshold level, and is not overwhelmed by 

error bars in any of the plots. The overall level is close to that of ETF Experiment 1 

but slightly higher.

JMS

Figure 16a-d plot the results for JMS in Experiment 2. Again, the four plots are 

similar to one another and they continue the trend of decreasing contrast disparity 

thresholds for seeing slant with increasing spatial frequency of square-wave 

modulation. Unlike the result for JMS in Experiment 1, no flattening is seen at the 

lowest modulation spatial frequency (0.33 c/deg). The threshold even rises slightly 

but the shape of the decreasing thresholds function for JMS in Experiment 2 is again 

fairly flat and the error bars are small. The overall level of thresholds for JMS in 

Experiment 2 is slightly lower than it was in Experiment 1.

WWS

Figure 17a-d show results for WWS in Experiment 2. The shapes of the four 

plots appear somewhat different from each other, although the error bars are large 

enough to overwhelm most of the apparent differences. The most striking difference 

in shape is seen in Figure 17a (mean thresholds). However, that difference results
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largely from the threshold for the 1.31 c/deg modulation point, which has large error 

bars. Contrast disparity thresholds for seeing slant still generally decreased with 

increasing spatial frequency of square-wave contrast disparity modulation. The 

decreasing slope of the threshold plot is close to the slope for ETF, though the overall 

threshold levels for WWS are closer to those for JMS. Instead of a flattening at the 

lowest modulation spatial frequency (as in WWS, Experiment 1), the threshold rises 

somewhat. Still, overall shape of the plot could almost be a straight decreasing line.

Discussion

Figure 18 shows session matched median thresholds for perception of slant for all 

three subjects in Experiment 2. For ETF and JMS the shape of the threshold function 

in Experiment 2 replicated the shape of the function in Experiment 1 for overlapping 

spatial frequencies. For WWS the threshold function in Experiment 2 was steeper 

and straighter than it was in Experiment 1. As in Experiment 1, thresholds for all 

subjects decreased with increasing modulation spatial frequency, resembling 

monocular contrast thresholds.
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Figure 15. ETF, Experiment 2 contrast disparity thresholds. Square-wave contrast disparity 
modulation spatial frequencies are 0.33 c/deg, 0.65 c/deg, 1.31 c/deg and 2.62 c/deg. Square-wave 
carrier spatial frequency is 5.24 c/deg. (a) mean thresholds; error bars are ± standard error of the 
mean, (b) session matched mean thresholds; error bars are ±  standard error of the mean, (c) median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn, (d) session matched median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn. (n=8 for all plots).
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Figure 16. JMS, Experiment 2 contrast disparity thresholds. Square-wave contrast disparity 
modulation spatial frequencies are 0.33 c/deg, 0.65 c/deg, 1.31 c/deg and 2.62 c/deg. Square-wave 
carrier spatial frequency is 5.24 c/deg. (a) mean thresholds; error bars are ± standard error of the 
mean, (b) session matched mean thresholds; error bars are ± standard error of the mean, (c) median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn, (d) session matched median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn. (n=8 for all plots).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

■a £ 
8 o  
c  
&

2

SB

.06

.4 .5 6  .7 A  B  1 32

8o

2

.1
SB
.06

.5  .6  .7 .6 9  1 2 34

5
§a

2

1
.09
SB

.07

.06

.5 .6 7 6  9  1 2 34

Modulation Spatial Frequency (c/deg) Modulation Spatial Frequency (c/deg) Modulation Spatial Frequency (c/deg)

(a) (b) (c)

co
■■eo
CL
e

CL

(0s
oo
covsflj3*o

.1

.09

.08

.07

.06

.4 .5 .6 .7 .8 .9 1 2 3

Modulation Spatial Frequency (c/deg)

(d)

Figure 17. WWS, Experiment 2 contrast disparity thresholds. Square-wave contrast disparity 
modulation spatial frequencies are 0.33 c/deg, 0.65 c/deg, 1.31 c/deg and 2.62 c/deg. Square-wave 
carrier spatial frequency is 5.24 c/deg. (a) mean thresholds; error bars are ± standard error of the 
mean, (b) session matched mean thresholds; error bars are ± standard error o f the mean, (c) median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn, (d) session matched median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn- (n=7 for all plots).
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Figure 18. Experiment 2 session matched median contrast disparity thresholds plotted as a function 
of spatial frequency in c/deg for ETF (boxes), JMS (triangles), and WWS (diamonds). Error bars are 
±1.483 median absolute deviation /  Vn. Square-wave contrast disparity modulation spatial 
frequencies are 0.33 c/deg, 0.65 c/deg, 1.31 c/deg and 2.62 c/deg. Square-wave carrier spatial 
frequency is 5.24 c/deg.
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EXPERIMENT 3 

Introduction

Recall that in Experiment 1 the third harmonic (0.78 c/deg) for the modulation 

square-wave of our lowest spatial frequency (0.26 c/deg) falls in the low threshold 

region of our response curve. The third harmonic therefore may be expected to 

contribute to sensitivity at the lowest spatial frequency of square-wave modulation in 

Experiment 1. In Experiment 3, we sought to test this hypothesis by using sine-wave 

modulation, instead of square-wave modulation.

Methods

Subjects

ETF, JMS and WWS participated in Experiment 3.

Apparatus

Apparatus was as described under GENERAL METHOD.

Stimuli

Stimuli were stereograms as described under GENERAL METHOD. The 

square-wave carrier spatial frequency was fixed at 3.14 c/deg. Sine-wave contrast 

disparity modulation spatial frequencies in the four conditions were 0.26 c/deg, 0.39 

c/deg, 0.79 c/deg, and 1.57 c/deg (Figure 19a-d, respectively).
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(c) (d)

Figure 19. Experiment 3 stimuli (not shown at actual size or luminance levels). For all conditions, 
the carrier is a 3.14 c/deg square-wave, (a) condition 1: 0.26 c/deg sine-wave contrast disparity 
modulation, (b) condition 2: 0.39 c/deg sine-wave contrast disparity modulation, (c) condition 3: 
0.79 c/deg sine-wave contrast disparity modulation, (d) condition 4: 1.57 c/deg sine-wave contrast 
disparity modulation.

Procedure

The procedure in Experiment 3 was as described under GENERAL METHOD. 

Experiment 3 was identical to Experiment 1, except that it used sine-wave 

modulation, instead of square-wave modulation. The square-wave carrier spatial 

frequency was again fixed at 3.14 c/deg and contrast disparity thresholds for 

perception of apparent slant were measured for sine-wave contrast disparity 

modulation spatial frequencies of 0.26 c/deg, 0.39 c/deg, 0.79 c/deg, and 1.57
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c/deg. Again, ten sequences per session were presented, including two sequences at 

each of four modulation spatial frequencies and two sequences of catch trials.

Results

Experiment 3 contrast disparity thresholds for seeing slant for ETF, JMS and 

WWS are shown in Figure 20, Figure 21, Figure 22, respectively. As in Experiments 

1 and 2, the plots show thresholds for seeing slant plotted as a function of modulation 

spatial frequency. Plots again include session matched mean thresholds, median 

thresholds, and session matched median thresholds. Session matching and error bars 

are as in previous experiments. Session matched median threshold plots are enlarged.

ETF

Figure 20a-d show the results for ETF in Experiment 3. Contrast disparity 

thresholds for seeing slant decreased with increasing spatial frequency of sine-wave 

contrast disparity modulation. The shapes of the response curves for the four plots 

were similar, and nearly a straight line. Thresholds were highest for a sine-wave 

contrast disparity modulation spatial frequency of 0.26 c/deg, and decreased 

monotonically with increasing modulation spatial frequency. The overall level is 

close to that of ETF Experiment 1 and Experiment 2 but slightly higher than both.

JMS

Figure 21a-d plot the results for JMS in Experiment 3. Again, contrast disparity 

thresholds for seeing slant were highest for a sine-wave contrast disparity modulation 

of 0.26 c/deg, and decreased monotonically with increasing modulation spatial 

frequency. The shapes of the response curves for the four plots were similar, and
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nearly a straight line. The plot closely resembles the plot of JMS in Experiment 2. 

The plot also resembles that for JMS in Experiment 1, although in Experiment 3 the 

overall level is a bit lower and the slope is slightly steeper. The plot also resembles 

that for ETF in Experiment 3, although the slope is smaller for JMS.

WWS

Figure 22a-d show results of Experiment 3 for WWS. The overall threshold level 

for WWS is higher than it is for ETF or JMS and, unlike those two subjects, WWS 

shows a decrease in threshold at a modulation spatial frequency of 0.26 c/deg. Aside 

from the 0.26 c/deg condition, contrast disparity thresholds in the session matched 

median plot (Figure 22d) appear to decrease with increasing modulation spatial 

frequency. However, the other three plots do not seem to fit this pattern.

Discussion

Figure 23 plots session matched median thresholds for seeing slant for all three 

subjects in Experiment 3. Thresholds tend to decrease with increasing modulation 

spatial frequency for two out of three subjects (ETF and JMS) but the drop is not as 

clear for the remaining subject (WWS).

In each experiment, stimulus presentations were randomly interleaved but the 

three experiments were performed sequentially, so interpreting levels between 

experiments is problematic and criterion changes could play a role.15

15 Appendix 10 plots the time series of false alarms by session for each subject. No obvious pattern 
across subjects emerges. An argument can be made that criterion changes account for overall levels for 
WWS.
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Figure 20. ETF, Experiment 3 contrast disparity thresholds. Sine-wave contrast disparity 
modulation spatial frequencies are 0.26 c/deg, 0.39 c/deg, 0.79 c/deg and 1.57 c/deg. Square-wave 
carrier spatial frequency is 3.14 c/deg. (a) mean thresholds; error bars are ± standard error of the 
mean, (b) session matched mean thresholds; error bars are ± standard error o f the mean, (c) median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn, (d) session matched median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn. (n=8 for all plots).
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Figure 21. JMS, Experiment 3 contrast disparity thresholds. Sine-wave contrast disparity 
modulation spatial frequencies are 0.26 c/deg, 0.39 c/deg, 0.79 c/deg and 1.57 c/deg. Square-wave 
carrier spatial frequency is 3.14 c/deg. (a) mean thresholds; error bars are ± standard error of the 
mean, (b) session matched mean thresholds; error bars are ± standard error o f the mean, (c) median 
thresholds; error bars tire ± 1.483 median absolute deviation/Vn, (d) session matched median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn. (n=8 for all plots).
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Figure 22. WWS, Experiment 3 contrast disparity thresholds. Sine-wave contrast disparity 
modulation spatial frequencies are 0.26 c/deg, 0.39 c/deg, 0.79 c/deg and 1.57 c/deg. Square-wave 
carrier spatial frequency is 3.14 c/deg. (a) mean thresholds; error bars are ± standard error o f the 
mean, (b) session matched mean thresholds; error bars are ±  standard error o f the mean, (c) median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn, (d) session matched median 
thresholds; error bars are ± 1.483 median absolute deviation/Vn. (n=8 for all plots).
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Figure 23. Experiment 3 session matched median contrast disparity thresholds plotted as a function 
of spatial frequency in c/deg for ETF (boxes), JMS (triangles), and WWS (diamonds). Error bars are 
±1.483 median absolute deviation /  Vn. Sine-wave contrast disparity modulation spatial frequencies 
are 0.26 c/deg, 0.39 c/deg, 0.79 c/deg and 1.57 c/deg. Square-wave carrier spatial frequency is 3.14 
c/deg.
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GENERAL DISCUSSION

The following discussion will (i) give a brief overview of the application of 

Fourier analysis to the results of the three experiments, (ii) describe three models of 

the results based on Fourier analysis and (iii) discuss some possible future directions 

for research.

In Experiments 1-3 we measured thresholds for the perception of slant in 

Venetian blind stimuli as a function of the spatial frequency of square-wave contrast 

disparity modulations and sine-wave contrast disparity modulations. The results of 

Experiments 1-3 more closely resemble monocular contrast thresholds than stereo 

disparity thresholds for the detection of depth in random dot corrugations, so initially 

it is tempting to infer that contrast disparity modulation is tapping into monocular 

limits to contrast sensitivity, not binocular limits for the detection of retinal 

disparities. The drop in threshold for ETF at a modulation spatial frequency of 0.26 

c/deg in Experiment 1 (which used square-wave modulation) relative to the 

corresponding threshold in Experiment 3 (which used sine-wave modulation) might 

then be accounted for on the basis of the presence of square-wave harmonics 

available for detection in Experiment 1 but not in Experiment 3. However, that 

approach would not be a frilly adequate way to look at the results.

The stereo system should respond specifically to the binocular aspect of stimuli, 

i.e., to disparities of some kind between the images in the two eyes. Exactly how 

those disparities should be defined is an open question. If a subject's contrast 

sensitivity function explained that subject's threshold functions in Experiments 1-3
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then a plausible way to incorporate it into a model would be to Fourier transform 

each half-image of a stereogram, adjust each resulting spectrum for the contrast 

sensitivity function, perform an inverse Fourier transform on each spectrum to return 

to the spatial domain, subtract luminances of one half-image from the other, and 

then Fourier transform the difference of luminances. (This is, in fact, equivalent to 

what we actually did.) If the contrast sensitivity function explained the contrast 

disparity thresholds in our experiments, then one might expect a subject to have 

equal power in the resulting spectra for the four conditions of an experiment. In a 

somewhat more complicated situation, if the four spectra did not have equal power, 

then one might still expect a systematic relationship across experiments. In that case, 

it should be possible to predict a subject's results in one experiment based on that 

subject's results in another. Because Experiment 3 used sine-wave contrast disparity
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Figure 24. (a) Luminance plot o f left image, (b) Luminance plot of right image, (c) Luminance plot 
of difference of luminances between left and right image

modulation instead of square-wave contrast disparity modulation, an initial guess 

might be that it would have somewhat cleaner spectra and be a good choice for 

predicting the other experiments. It turns out that the spectra of the binocular aspect 

of the stimuli in our experiments are not as simple as might be supposed. (Contrast 

disparity modulation leads to sum and difference spikes in the frequency domain.)
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The stimuli in all experiments are fairly similar, so any experiment could be used to

predict any other without altering the quality of the resulting model. Details of our

Fourier analyses and subsequent models will now be presented.

To isolate the binocular aspect of the stimulus in each case, the luminance values

in the right image were subtracted from the luminance values in the left image. (The

Nyquist sampling criterion was met in all cases to avoid aliasing.16) A discrete

Fourier transformation was performed on the resulting list of luminance differences

(Figure 24) by application of Equation 3:

Equation 3 Hr-DU-nm

Vn r=i

where uT is the r *  element (each element is a sample point and corresponds to one

pixel or 0.0159° of retinal angle) in a list of luminance differences (cd/m2) to be 

Fourier transformed, n is the total number of elements in the untransformed list (284

pixels, corresponding to 4.519° of retinal angle), bs \s the 5 th element in the

transformed list, and of course i -  V-l- This produces a frequency domain 

representation of the stimulus.

The first element in the transformed list (s = 1) is a real number representing the 

amplitude of the zero spatial frequency component of the stimulus (i.e., the mean

16 Aliasing is the appearance o f frequencies in the Fourier transformed list that are not actually present 
in the sampled signal. The Nyquist sampling theorem states that in order to avoid aliasing, "the 
sampling rate must be at least twice the frequency of the highest component in the waveform being 
sampled" (Ramirez, 1985, p. 115). In our stimuli, a pixel constitutes a sample point. Our highest 
carrier spatial frequency was 5.24 c/deg, corresponding to 12 pixels/cycle (Experiment 2). Its fifth 
harmonic (26.2 c/deg or 2.4 pixels/cycle) includes slightly more than two sample points (pixels) per 
cycle. We therefore meet the Nyquist criterion for up to the fifth harmonic of our highest spatial 
frequency.
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luminance, 50 cd/m 2). The second element in the list (5 = 2) is a complex number 

representing the phase and amplitude of the lowest spatial frequency present in the 

sample (0.2 c/deg). The last element in the list is the complex conjugate of the second 

element in the list. The third element (s = 3) is a complex number representing the 

phase and amplitude of the next higher sampled frequency (0.4 c/deg); and the 

penultimate element is the complex conjugate of the third element. Elements are 

paired off in this way, working toward the center of the list, until the highest sampled 

frequency (32 c/deg) is reached at the center (s = 143).

The spectrum list produced above was then "folded" to produce the "power 

spectrum," a plottable list of real numbers corresponding to amplitudes of sampled 

spatial frequencies, ordered from lowest spatial frequency to highest. The term 

"power spectrum" is conventional but is not quite correct because the values in it take 

the same units (cd/m2 in our case) as the untransformed list (James, 1995, p. 12). 

Nevertheless, the values are proportional to the power. Folding was accomplished by 

discarding the zero frequency element of the transformed list and then finding one 

real number (representing amplitude) per conjugate pair by application of Equation 4:

Eqoatio” 4 /.V \b,\! + \h \‘

where | b,\ is the modulus (i.e., absolute value) of the first element of the conjugate 

pair, | b2\ is the modulus of the second element of the conjugate pair, and f  is the 

resulting amplitude for that spatial frequency. The highest spatial frequency, 

occurring at the center of the unfolded list, had only a single element and so played 

the roles of both b, and b2 in Equation 4, producing an amplitude equal to y/2 times 

the actual amplitude, which was then divided by y/2.
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An adjustment for contrast sensitivity 

function was then applied to the folded 

spectrum list by multiplying it by the 

normalized contrast sensitivity function (Figure 

25) derived from data from Blakemore and 

Campbell (1969).17 An example of a Fourier 

plot for condition 1 of Experiment 1, after 

adjustment for contrast sensitivity function is 

shown in Figure 26. (Complete examples of 

stimuli, luminance plots and Fourier plots
Figure 25. Normalized contrast 
sensitivity function based on data from .
c. Blakemore and F. w. Campbell appear in Appendices 1-3.) The spatial
(1969).

frequency of the square-wave carrier is 3.14 

c/deg and the spatial frequency of the square-wave modulation is 0.26 c/deg. The

(topticte = 0.26, 0.39, 0.79,1.57, 3.14 cydeg)

- J 10

2510 15 205
Spatial Frequency (cydeg)

Figure 26. Fourier plot (adjusted for human contrast sensitivity function) of 
the difference in luminances between left and right images of a stereogram.

17 Comsweet (1970) reports a peak for the contrast sensitivity function in the range of 4 c/deg. As a 
check, we also did our calculations using Comsweet’s contrast sensitivity function but our results were 
essentially unchanged.
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(a)

0.5

0
- 0.5

-1

1
0.5

0
- 0.5

-1

ticks on the upper x-axis indicate the four spatial frequency conditions of square- 

wave modulation in Experiment 1, as well as the square-wave carrier spatial 

frequency.

Note that no spike occurs at the spatial frequency of the carrier but a spike 

appears immediately to either side. These spikes (3.4 c/deg and 2.88 c/deg) are sum

and difference spatial 

frequencies of the carrier and 

modulation, not harmonics. 

Recall from Figure 24 that, to 

isolate die binocular aspect of 

the stimulus, the luminance 

values of the right image were 

subtracted from the luminance

values of the left image and the 

resulting difference of 

luminances list was Fourier 

analyzed. An examination of 

Figure 24 shows that the image 

having a higher contrast 

switches from one image to the other (left to right or right to left) with every half 

cycle of modulation. (This applies to all conditions in all experiments.) The sum and 

difference spikes in the Fourier plot (Figure 26) are caused by the resulting 180° phase

(b)

(c)

Figure 27. (a) 10 c/deg carrier sine-wave, (b) 2 c/deg 
modulation sine-wave, (c) modulated carrier wave. Note 
that the modulation goes negative every half cycle, 
introducing into the result a 180° phase shift with every 
half cycle of the carrier.
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shift in the difference luminances, as demonstrated for a simple case in Figure 27 and 

Figure 28.

50

Q .

10

205 10 15 25
Spatial Frequency (c/deg)

(a)

10 15
Spatial Frequency (cydeg)

GO

<  10

10 15
Spatial Frequency (cydeg)

(C)

Figure 28. (a) Fourier plot 10 c/deg carrier sine-wave, (b) Fourier plot of 2 c/deg 
modulation sine-wave, (c) Fourier plot of result of modulation. In (c), sum and 
difference spikes appear at 8 c/deg and 12 c/deg.

Figure 27a-c show a 10 c/deg carrier sine-wave, a 2 c/deg modulation sine- 

wave, and the result of modulating the carrier by multiplying its amplitude by the 

amplitude of the modulation sine-wave. Figure 28a-c show the corresponding Fourier
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plots. The sum and difference frequencies seen in Figure 28c are produced by the 

180° phase shift occurring with every half-cycle of modulation in Figure 27c. Adding 

a constant offset to the modulation sine-wave to prevent it from ever going negative 

removes the 180° phase shift in the modulated waveform and eliminates sum and 

difference frequencies in the Fourier plot.18

In Figure 26, harmonics of the sum and difference spikes can be seen at three 

times their spatial frequencies, and again at five times their spatial frequencies.

(Recall that a square-wave consists of an infinite number of sinusoids: the 

fundamental at the frequency of the square-wave, a sinusoid with one third the 

amplitude of the fundamental at three times the frequency, a sinusoid with one fifth 

the amplitude of the fundamental at five times die frequency, etc.)

Fourier analyses, including adjustment for contrast sensitivity function, were 

performed on all threshold stimuli for all subjects in all experiments. (Complete 

Fourier plots for all results are shown in Appendices 4-6.) We then used the results of 

the Fourier analyses in calculating three different models: a one parameter model, a 

two parameter model, and a three parameter model.

In our one parameter model, for each subject separately, we used a subject's 

session matched median thresholds from Experiment 3 to predict that subject's 

session matched median thresholds in Experiments 1 and 2 jointly. We fixed our free 

parameter, AL3, to an arbitrary initial value for the first iteration of the model. AL3

18 Sum and difference frequencies also appear in a Fourier plot of a wave constructed from, say, 6 
cycles of sine-wave centered around a mean level of 0, followed by 6 cycles of the sine-wave shifted
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can be thought of as a horizontal line placed across a Fourier plot. We took the four 

difference of luminance Fourier plots corresponding to session matched median 

thresholds for the subject in conditions 1-4 of Experiment 3. For each of the four 

Fourier plots separately (but using the same AL3 value), we summed the amplitudes 

of all spikes that reached or exceeded AL3 to estimate the power required to see slant 

in that condition. With the stipulation that the initial value of AL3 was arbitrary, we 

now had a list of four theoretical powers required to see slant in conditions 1-4 of 

Experiment 3.

AL, and AL2 can also be thought of as horizontal lines placed across Fourier 

plots but, unlike AL3, they were not free parameters. Rather, values of AL, and AL2 

were fixed to the value of AL3 times a factor correcting for the change in overall level 

between experiments by application of Equation 5 and Equation 6:

Equation 5 E,
ALi = AL3 —

E3

Equation 6 _ „ E2
AL2 = AL3 —

E3

where Eh E2 and E3 were the means of the four session matched median thresholds 

for the subject in Experiments 1,2, and 3, respectively.

Next we took the four difference of luminance Fourier plots corresponding to 

session matched median thresholds for the subject in Experiment 1. For each of the 

four Fourier plots separately, we summed the amplitudes of all spikes that reached or 

exceeded AL, to find the power required to see slant in that condition. (If the four

180°. Sum and difference frequencies remain if the level of the wave is shifted so that the resultant 
wave does not go negative.
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powers found in Experiment 1 were perfectly predicted by those found in Experiment 

3, then they would have exactly the same four values as the powers in Experiment 3.) 

We repeated this process for Experiment 2 to predict the four powers required in that 

experiment from those in Experiment 3.

As a measure of the quality of our initial predictions, we calculated prediction 

error as a coefficient of variation of the actual thresholds divided by the predicted 

thresholds, point by point. In the one parameter model, each subject had eight ratios 

(four for Experiment 1 and four for Experiment 2) that went into a single coefficient 

of variation.19 For each subject separately, we repeated all of the above calculations 

for a range of AL3 values to determine the AL3value giving the smallest error.

In addition to the one parameter model, we produced two more very similar 

models: a two parameter model and a three parameter model. As was the case for the 

one parameter model, the two and three parameter models were calculated for each 

subject separately. The only difference of the two parameter model from the one 

parameter model was that, instead of predicting the results of Experiments 1 and 2 

together using a single AL3{as was done in the one parameter model), Experiment 1 

was predicted alone from Experiment 3, and Experiment 2 was predicted alone from 

Experiment 3. This gave two independent AL? values (one per experiment) for each 

subject in the two parameter model. Two independent prediction errors were found: 

a coefficient of variation of the actual Experiment 1 thresholds divided by the 

predicted Experiment 1 thresholds, point by point; and a coefficient of variation of
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the actual Experiment 2 thresholds divided by the predicted Experiment 2 thresholds, 

point by point.

In the three parameter model, all three A Ls  were varied independently to find 

the combination producing the lowest error for the three experiments. Thus we had 

six coefficients of variation (two for each subject, i.e., one for Experiment 1 and one 

for Experiment 2). Each coefficient of variation was based on four ratios. (Complete 

model predictions superimposed on plots of experimental results are given in 

Appendices 7-9.)

Although the models predict fairly well for two out of three subjects (ETF and 

JMS), they are not as successful at predicting the third subject (WWS). For example, 

consider the actual and predicted thresholds for WWS in Experiment 1 (Figure 50c, 

Figure 52c, and Figure 54c) and Experiment 2 (Figure 51c, Figure 53c, and Figure 

55c). In every case, the shapes of those plots for predicted and actual thresholds differ 

substantially. The condition 1 prediction is always too low, while the condition 3 

prediction is always too high. On the other hand, the predictions for ETF (Figure 50a 

through Figure 55a), and the predictions for JMS (Figure 50b through Figure 55b) are 

moderately good and tend to improve steadily from the one parameter model to the 

three parameter model. The three parameter fit for ETF Experiment 2 and the three 

parameter fit for JMS Experiment 1 are excellent. Although the fits for ETF and 

WWS are better overall, the same pattern o f predictions that are too low for 

condition 1 and too high for condition 3 can be seen in Experiment 2 (with the

19 Coefficient of variation is a relative measure of dispersion given by CV = crx j x
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exceptions of condition 3 for ETF Experiment 2 using the one parameter model, and 

conditions 1-4 for ETF Experiment 2 using the three parameter model, all of which 

are too close to call).

The systematic deviation from predictions in Experiment 2 suggests that the 

models could be adjusted to improve prediction. However, that approach should be 

considered with some skepticism because it is possible to model phenomena without 

sufficient physical insight, to reduce error without increasing the ability to predict. 

Theoretically, it may be possible to get more accurate model predictions by 

measuring a single subject's contrast sensitivity function and repeating the three 

experiments and calculations for that subject but that seems unlikely. In a deep sense, 

our models probably have not captured the right predictors and it is unclear how 

much progress could be made by tweaking the models. On the other hand, the 

systematic deviations from prediction in Experiment 2 are intriguing and such 

deviations could probably be fit with narrowly tuned spatial frequency channels at 

the appropriate spatial frequencies. (Again, caution is in order because, in some 

sense, one can fit anything.) It may be possible to perform adaptation procedures, 

analogous to those used by Blakemore & Campbell (1969), to measure the sensitivity 

and bandwidth of such putative channels.

We have tentatively ruled out some simple explanations for the results of 

Experiments 1-3. Monocular contrast sensitivity functions do not explain the results 

in a simple way. (If they did then the power levels in the difference of luminance 

Fourier plots should have had, after adjustment for contrast sensitivity function, the 

same power in conditions 1-4.)
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A number of directions could be taken. Banks (1985, p. 32) states while 

discussing how to characterize visual stimuli, "At the beginning of a search, one is far 

better off with a rough map containing most of the major landmarks, but not details, 

than with a detailed map of just one neighborhood." That advice may be apt for 

Venetian blind research, so we will now consider several possible directions for 

research.

It would be natural to follow up the current study with a study measuring 

luminance disparity modulation thresholds as a function of spatial frequency to learn 

whether or not the pattern of decreasing thresholds seen with increasing spatial 

frequency generalizes to luminance disparity modulation.

One interesting feature of the current study is the appearance of sum and 

difference spatial frequency spikes in the difference of luminance Fourier plots. To 

our knowledge, sum and difference spikes, and their production by interocular phase 

differences, have not been investigated in the context of spatial vision. If  such phase 

differences are environmentally common, one might expect the stereo system to be 

adept at their detection. This suggests the possibility of cortical stereo receptive fields 

specialized for the detection of sum and difference spikes.

Another interesting point was noted by two subjects (ETF and WWS) in 

Experiment 2. Sometimes a bar seemed to slant when they looked away from it. 

Because peripheral contrast sensitivity (a bandpass function) peaks at lower spatial 

frequencies than does foveal contrast sensitivity (Thibos et al., 1996), one might hope 

to explain this non-foveal perception of slant by reference to a low spatial frequency 

range in which peripheral contrast sensitivity exceeds foveal contrast sensitivity.
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However, that explanation can be ruled out because contrast sensitivity for any given 

spatial frequency decreases monotonically with increasing retinal eccentricity 

(Rovamo et al., 1978).

At least two further explanations for seeing slant when looking away from the 

Venetian blind stimulus could be examined. First, for retinal eccentricities from 0° to 

8°, stereoacuity from horizontal retinal disparity decreases with increasing stimulus 

eccentricity (Rawlings and Shipley, 1969). This suggests that subjects performing a 

depth discrimination task may search for and successively foveate relatively 

informative stimulus regions. However, Blakemore (1970) reported that if two stimuli 

whose relative depth is to be discriminated are placed on a depth pedestal (i.e., the 

stimuli are placed some distance beyond the subject's fixation depth) then the rate of 

decrease in stereoacuity drops. Blakemore's data imply (Krekling, 1974) that stimuli 

on a depth pedestal of 80 arc min actually have lower thresholds for horizontal retinal 

disparity at a retinal eccentricity of 5° than they do at 0°. If the visual systems of 

subjects in our experiments sometimes interpreted contrast disparity as a depth 

pedestal (where none actually exists) then this might enhance slant detection for 

images that are slighdy non-foveal. One problem for this hypothesis is that depth in 

Venetian blind stimuli is not produced in an obvious way by geometric retinal 

disparities.

A second possibility is that eye movements themselves sometimes produce a 

temporarily greater contrast sensitivity. Our Experiments 1-3 did not control or 

measure eye movements or fixation, so it is not known how much variability these 

might have contributed. Kelly (1979) measured contrast sensitivity for vertically
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oriented sine-wave gratings (about 0.2 c/deg to about 12 c/deg) drifting across the 

retina at various speeds (0°/s, 0.012°/s, 0.15°/s, 3°/s, ll° /s , and 32°/s). Drift rates 

above about 0.1°/s produced a contrast sensitivity curve of similar shape (bandpass) 

but with a peak sensitivity that shifted toward lower spatial frequencies as drift rate 

increased, so a spatial frequency that was invisible to the visual system at a slow drift 

rate became visible at a higher drift rate. If visually scanning the stimulus can 

sometimes simulate drift then eye movements might sometimes lead to slant 

perception.

However, visual scanning of static stimuli is generally performed by saccades, 

extremely rapid eye movements, during which saccadic suppression typically occurs. 

In saccadic suppression, visual sensitivity is reduced to one third of its usual level 

around the time of the saccade (Chase and Kalil, 1972). Although die mechanisms of 

saccadic suppression are not entirely understood, some of them appear to operate 

early in the visual system. Adey and Noda (1973) found suppressed cell response in 

the lateral geniculate nuclei during saccades. Matin, Clymer, and Matin (1972) 

suggested backward masking of the blurred saccadic image by the unblurred pre- 

saccadic image. Campbell and Wurtz (1978) reported forward masking of the 

saccadic image by the post-saccadic image. Typically, saccadic suppression would 

overwhelm any low spatial frequency contrast sensitivity enhancement, so 

incomplete saccadic suppression would need to occur. Although a possible non- 

foveal depth effect for the Venetian blind effect is interesting, the effect is not stable 

and may prove difficult to replicate unless eye tracking is used.
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Figure 29. (a) Experiment 1, condition 1 stereogram layout (square-wave contrast disparity 
modulation spatial frequency of 0.26 c/deg and square-wave carrier spatial frequency of 3.14 c/deg). 
To approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. 
(b) Luminance plot of left image, (c) Luminance plot o f right image, (d) Luminance plot of difference 
in luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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(e)
Figure 30. (a) Experiment 1, condition 2 stereogram layout (square-wave contrast disparity 
modulation spatial frequency o f 0.39 c/deg and square-wave carrier spatial frequency of 3.14 c/deg). 
To approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. 
(b) Luminance plot of left image, (c) Luminance plot of right image, (d) Luminance plot of difference 
in luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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(e)
Figure 31. (a) Experiment 1, condition 3 stereogram layout (square-wave contrast disparity 
modulation spatial frequency of 0.79 c/deg and square-wave carrier spatial frequency of 3.14 c/deg). 
To approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. 
(b) Luminance plot of left image, (c) Luminance plot of right image, (d) Luminance plot of difference 
in luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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(e)
Figure 32. (a) Experiment 1, condition 4 stereogram layout (square-wave contrast disparity 
modulation spatial frequency of 1.57 c/deg and square-wave carrier spatial frequency of 3.14 c/deg). 
To approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. 
(b) Luminance plot of left image, (c) Luminance plot of right image, (d) Luminance plot of difference 
in luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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Appendix 2. Exp. 2 Sample Stimuli. Luminance Plots. Fouriers
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Figure 33. (a) Experiment 2, condition 1 stereogram layout (square-wave contrast disparity 
modulation spatial frequency of 0.33 c/deg and square-wave carrier spatial frequency of 5.24 c/deg). 
To approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. 
(b) Luminance plot of left image, (c) Luminance plot o f right image, (d) Luminance plot of difference 
in luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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Figure 34. (a) Experiment 2, condition 2 stereogram layout (square-wave contrast disparity 
modulation spatial frequency o f 0.65 c/d eg  and square-wave carrier spatial frequency o f 5.24 c/deg). 
To approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. 
(b) Luminance plot of left image, (c) Luminance plot of right image, (d) Luminance plot o f difference 
in luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and CampbeU, 1969) of difference in luminances 
between left and right image.
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Figure 35. (a) Experiment 2, condition 3 stereogram layout (square-wave contrast disparity 
modulation spatial frequency o f 1.31 c/deg and square-wave carrier spatial frequency o f 5.24 c/deg). 
To approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. 
(b) Luminance plot o f left image, (c) Luminance plot of right image, (d) Luminance plot of difference 
in luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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(e)Figure 36. (a) Experiment 2, condition 4 stereogram layout (square-wave contrast disparity 
modulation spatial frequency of 2.62 c/deg and square-wave carrier spatial frequency of 5.24 c/deg). 
To approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. 
(b) Luminance plot of left image, (c) Luminance plot of right image, (d) Luminance plot of difference 
in luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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Figure 37. (a) Experiment 3, condition 1 stereogram layout (sine-wave contrast disparity modulation 
spatial frequency of 0.26 c/deg and square-wave carrier spatial frequency of 3.14 c/deg). To 
approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. (b) 
Luminance plot of left image, (c) Luminance plot of right image, (d) Luminance plot of difference in 
luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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Figure 38. (a) Experiment 3, condition 2 stereogram layout (sine-wave contrast disparity modulation 
spatial frequency o f 0.39 c/deg and square-wave carrier spatial frequency o f 3.14 c/deg). To 
approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. (b) 
Luminance plot of left image, (c) Luminance plot of right image, (d) Luminance plot of difference in 
luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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(e)
Figure 39. (a) Experiment 3, condition 3 stereogram layout (sine-wave contrast disparity modulation 
spatial frequency o f 0.79 c/deg and square-wave carrier spatial frequency o f 3.14 c/deg). To 
approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. (b) 
Luminance plot of left image, (c) Luminance plot of right image, (d) Luminance plot of difference in 
luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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Figure 40. (a) Experiment 3, condition 4 stereogram layout (sine-wave contrast disparity modulation 
spatial frequency of 1.57 c/deg and square-wave carrier spatial frequency of 3.14 c/deg). To 
approximate the spatial frequencies from the experiment, view this stereogram from about 85 cm. (b) 
Luminance plot of left image, (c) Luminance plot of right image, (d) Luminance plot of difference in 
luminances between left and right image, (e) Fourier plot (adjusted for human contrast sensitivity 
function, using data for F.W.C. from Blakemore and Campbell, 1969) of difference in luminances 
between left and right image.
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Appendix 4. Exp. 1 Fourier Plots at Threshold
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Figure 41. ETF, Experiment 1 (adjusted for human CSF, using data for F.W.C. from Blakemore and 
Campbell, 1969). Fourier plots of the difference in luminance between the image to one eye and the 
image to the other eye in a stereo pair for mean threshold stimulus. (a)-(d) represent conditions 1-4 
(square-wave modulation spatial frequencies = 0.26 c/deg, 0.39 c/deg, 0.79 c/deg, 1.57 c/deg, 
respectively).
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Figure 42. JMS, Experiment 1 (adjusted for human CSF, using data for F.W.C. from Blakemore and 
Campbell, 1969). Fourier plots of the difference in luminance between the image to one eye and the 
image to the other eye in a stereo pair for mean threshold stimulus. (a)-{d) represent conditions 1-4 
(square-wave modulation spatial frequencies = 0.26 c/deg, 0.39 c/deg, 0.79 c/deg, 1.57 c/deg, 
respectively).
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Figure 43. WWS, Experiment 1 (adjusted for human CSF, using data for F.W.C. from Blakemore 
and Campbell, 1969). Fourier plots of the difference in luminance between the image to one eye and 
the image to the other eye in a stereo pair for mean threshold stimulus. (a)-(d) represent conditions 1- 
4 (square-wave modulation spatial frequencies = 0.26 c/deg, 0.39 c/deg, 0.79 c/deg, 1.57 c/deg, 
respectively).
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Appendix 5. Exp. 2 Fourier Plots at Threshold
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Figure 44. ETF, Experiment 2 (adjusted for human CSF, using data for F.W.C. from Blakemore and 
Campbell, 1969). Fourier plots of the difference in luminance between the image to one eye and the 
image to the other eye in a stereo pair for mean threshold stimulus. (a)-(d) represent conditions 1-4 
(square-wave modulation spatial frequencies = 0.33 c/deg, 0.65 c/deg, 1.31 c/deg, 2.62 c/deg, 
respectively).
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<d>Figure 45. JMS, Experiment 2 (adjusted for human CSF, using data for F.W.C. from Blakemore and 
Campbell, 1969). Fourier plots of the difference in luminance between the image to one eye and the 
image to the other eye in a stereo pair for mean threshold stimulus. (a)-(d) represent conditions 1-4 
(square-wave modulation spatial frequencies = 0.33 c/deg, 0.65 c/deg, 1.31 c/deg, 2.62 c/deg, 
respectively).
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Figure 46. WWS, Experiment 2 (adjusted for human CSF, using data for F.W.C. from Blakemore 
and Campbell, 1969). Fourier plots of the difference in luminance between the image to one eye and 
the image to the other eye in a stereo pair for mean threshold stimulus. (a)-(d) represent conditions 1- 
4 (square-wave modulation spatial frequencies = 0.33 c/deg, 0.65 c/deg, 1.31 c/deg, 2.62 c/deg, 
respectively).
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Appendix 6. Exp. 3 Fourier Plots at Threshold
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Figure 47. ETF, Experiment 3 (adjusted for human CSF, using data for F.W.C. from Blakemore and 
Campbell, 1969). Fourier plots of the difference in luminance between the image to one eye and the 
image to the other eye in a stereo pair for mean threshold stimulus. (a)-(d) represent conditions 1-4 
(sine-wave modulation spatial frequencies = 0.26 c/deg, 0.39 c/deg, 0.79 c/deg, 1.57 c/deg, 
respectively).
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Figure 48. JMS, Experiment 3 (adjusted for human CSF, using data for F.W.C. from Blakemore and 
Campbell, 1969). Fourier plots of the difference in luminance between the image to one eye and the 
image to the other eye in a stereo pair for mean threshold stimulus. (a)-(d) represent conditions 1-4 
(sine-wave modulation spatial frequencies = 0.26 c/deg, 0.39 c/deg, 0.79 c/deg, 1.57 c/deg, 
respectively).
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Figure 49. WWS, Experiment 3 (adjusted for human CSF, using data for F.W.C. from Blakemore 
and Campbell, 1969). Fourier plots of the difference in luminance between the image to one eye and 
the image to the other eye in a stereo pair for mean threshold stimulus. (a)-(d) represent conditions 1- 
4 (sine-wave modulation spatial frequencies = 0.26 c/deg, 0.39 c/deg, 0.79 c/deg, 1.57 c/deg, 
respectively).
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Figure 50. Experiment 1 contrast 
disparity thresholds and 1- 
parameter model predictions, (a) 
ETF thresholds (boxes) and 
model predictions (diamonds), (b) 
JMS thresholds (boxes) and 
predictions (diamonds), (c)
WWS thresholds (boxes) and 
predictions (diamonds). 
(Experiment 1 square-wave 
contrast disparity modulation 
spatial frequencies are 0.26 c/deg, 
0.39 c/deg, 0.79 c/deg and 1.57 
c/deg. Square-wave carrier spatial 
frequency is 3.14 c/deg. Error 
bars are ± 1.483 median absolute 
deviation/Vn.)
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Figure 51. Experiment 2 contrast 
disparity thresholds and 1- 
parameter model predictions, (a) 
ETF thresholds (boxes) and 
model predictions (diamonds), (b) 
JMS thresholds (boxes) and 
predictions (diamonds), (c)
WWS thresholds (boxes) and 
predictions (diamonds). 
(Experiment 2 square-wave 
contrast disparity modulation 
spatial frequencies are 0.33 c/deg, 
0.65 c/deg, 1.31 c/deg and 2.62 
c/deg. Square-wave carrier spatial 
frequency is 5.24 c/deg. Error 
bars are ± 1.483 median absolute 
deviation/Vn.)
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Figure 52. Experiment 1 contrast 
disparity thresholds and 2- 
parameter model predictions, (a) 
ETF thresholds (boxes) and 
model predictions (diamonds), (b) 
JMS thresholds (boxes) and 
predictions (diamonds), (c)
WWS thresholds (boxes) and 
predictions (diamonds). 
(Experiment 1 square-wave 
contrast disparity modulation 
spatial frequencies are 0.26 c/deg, 
0.39 c/deg, 0.79 c/deg and 1.57 
c/deg. Square-wave carrier spatial 
frequency is 3.14 c/deg. Error 
bars are ± 1.483 median absolute 
deviation/Vn.)
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Figure 53. Experiment 2 contrast 
disparity thresholds and 2- 
parameter model predictions, (a) 
ETF thresholds (boxes) and 
model predictions (diamonds), (b) 
JMS thresholds (boxes) and 
predictions (diamonds), (c)
WWS thresholds (boxes) and 
predictions (diamonds). 
(Experiment 2 square-wave 
contrast disparity modulation 
spatial frequencies are 0.33 c/deg, 
0.65 c/deg, 1.31 c/deg and 2.62 
c/deg. Square-wave carrier spatial 
frequency is 5.24 c/deg. Error 
bars are ± 1.483 median absolute 
deviation/Vn.)
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Figure 54. Experiment 1 contrast 
disparity thresholds and 3- 
parameter model predictions, (a) 
ETF thresholds (boxes) and 
model predictions (diamonds), (b) 
JMS thresholds (boxes) and 
predictions (diamonds), (c)
WWS thresholds (boxes) and 
predictions (diamonds). 
(Experiment 1 square-wave 
contrast disparity modulation 
spatial frequencies are 0.26 c/deg, 
0.39 c/deg, 0.79 c/deg and 1.57 
c/deg. Square-wave carrier spatial 
frequency is 3.14 c/deg. Error 
bars are ± 1.483 median absolute 
deviation/Vn.)
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Figure 55. Experiment 2 contrast 
disparity thresholds and 3- 
parameter model predictions, (a) 
ETF thresholds (boxes) and 
model predictions (diamonds), (b) 
JMS thresholds (boxes) and 
predictions (diamonds), (c)
WWS thresholds (boxes) and 
predictions (diamonds). 
(Experiment 2 square-wave 
contrast disparity modulation 
spatial frequencies are 0.33 c/deg, 
0.65 c/deg, 1.31 c/deg and 2.62 
c/deg. Square-wave carrier spatial 
frequency is 5.24 c/deg. Error 
bars are ± 1.483 median absolute 
deviation/Vn.)
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Appendix 10. False Alarm Time Series
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Figure 56. Probability of false alarm as a 
function of experimental session. Experiments 
1, 2 and 3 are represented by sessions 1-8, 9-16, 
and 17-24, respectively, (a) ETF, (b) JMS, (c) 
W W S

A rule of thumb based on Monte 

Carlo studies states that in order to be 

reasonably sure of a probability

estimate, P, based on n trials, one 

should ensure that 

n nrin ( b , 1 -  fb) > 10 

(DeVeaux, Velleman, and Bock,

2005, p. 358). Given that each point 

in Figure 56 is based on 50 trials, the 

minimum false alarm rate for which 

we can be somewhat confident is 0.2. 

Relating this rule to threshold plots 

for Experiments 1-3, no dear pattern 

emerges across subjects. In the case of 

WWS, a somewhat plausible 

argument can be made that criterion 

changes account for the change in 

overall levels of plots (mid-range in 

Experiment 1, lowest in Experiment 

2, and highest in Experiment 3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix 11.Contrast Disparity Modulation Scheme

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.0  2 .0  3.0

Retinal Angle (deg)
1.0  2 .0  3.0

Retinal Angle (deg)

(a) (b)

1.0  2.0 3.0

Retinal Angle (deg)
1.0 2.0  3.0

Retinal Angle (deg)

(C) (d)

1.0 2.0  3.0

Retinal Angle (deg)
1.0 2.0  3.0

Retinal Angle (deg)

(e) (f>

Figure 57. Contrast disparity modulation scheme, illustrated for a modulation contrast proportion of 
0.15. (Carrier contrast and mean luminance are 0.5 and 50 cd/m2, respectively. Spatial frequencies 
are those of Experiment 1, condition 1). (a) luminance waveform of the unmodulated carrier, (b) 
luminance waveform of carrier after shifting to center around the zero level, (c) contrast disparity 
modulation waveform for a modulation contrast proportion of 0.15, (d) luminance waveform of the 
modulated carrier (i.e., the product of the unmodulated carrier and the contrast disparity modulation
waveform), (e) final luminance waveform o f the modulated carrier, after shifting to restore the mean 
luminance level, (f) corresponding final luminance waveform for the other eye. The resulting 
contrasts in the higher contrast and lower contrast segments of the final luminance waveforms are
0.575 and 0.425, respectively, which amount to a 15% increase and 15% decrease around the mean 
contrast of 0.5.
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Appendix 12. Monitor Calibration
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Cathode ray tube output (luminance) varies non-linearly with input (control 

voltage). This non-linear transfer function (see Figure 58.) is given by L = k V ,  

where L is luminance in cd/m 2, £and y are system-specific constants, and Vis the 

controlling variable. Proximally, the controlling variable at the CRT is a voltage but, 

more distally ("upstream"), the controlling variable may be a software value, such as

GrayLevel. Unless some controlling 

variable in the control stream is 

adjusted to compensate for the non­

linear transfer function, CRT 

luminances will differ systematically 

from expectations.

Gamma correction (see 

Robson, 1999) adjusts a controlling 

variable to produce a more linear 

transfer function. Prior to gamma correction, the transfer function of the system of 

interest must be characterized in terms of input and output. The resulting data are 

then logged and a least-squares regression is performed to determine irand y. At run­

time, gamma correction is accomplished using V = ( L / k f /y, where V is the corrected 

value of the controlling variable, L is the desired luminance, and irand y are the 

system-specific constants. For our experiments, the transfer function for the Apple 

ColorSync Display was characterized by determining the monitor luminance 

produced by each GrayLevel value, ranging from 0 to 1, in steps of 0.1. (The display 

was partitioned into the 9 cells of a 3x3 matrix and the mean monitor luminance at

150

0)oc(0c
'E3-J

.2 ,4 ,6 .8 1
GrayLevel

Figure 58. Luminance as a function of GrayLevel for 
Apple ColorSync Display used in Experiments 1-3. L = 
kVy, where L is luminance, V is GrayLevel, k is 
148.929 and y is 1.83579.
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each GrayLevel was based on 9 measurements, 1 per cell, using a Minolta LS-110 

photometer.) After taking the log of the data and doing the least-squares regression, it 

was found that k  =  148.929 and y  =  1.83579.

Using the above values of irand y, stimulus luminance and contrast values were 

confirmed over several days using stereograms (similar to those used in Experiment 

1) for a full range of contrast modulation values. In all cases, luminances were 

measured after at least 30 minutes of monitor warm-up time, using a Minolta LS-110 

photometer in the laboratory where Experiments 1-3 took place (a darkened room 

with no other light source, except for a very small amount of light entering under the 

only door).
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