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ABSTRACT

OCEAN COLOR MODELING: 

PARAMETERIZATION AND INTERPRETATION

by

Hui Feng

University of New Hampshire, September, 2004

The ocean color as observed near the water surface is determined mainly by 

dissolved and particulate substances, known as “optically-active constituents,” in the 

upper water column. The goal o f ocean color modeling is to interpret an ocean color 

spectrum quantitatively to estimate the suite o f optically-active constituents near the 

surface. In recent years, ocean color modeling efforts have been centering upon three 

major optically-active constituents: chlorophyll concentration, colored dissolved organic 

matter, and scattering particulates. Many challenges are still being faced in this arena. 

This thesis generally addresses and deals with some critical issues in ocean color 

modeling.

In chapter one, an extensive literature survey on ocean color modeling is given. A 

general ocean color model is presented to identify critical candidate uncertainty sources 

in modeling the ocean color. The goal for this thesis study is then defined as well as some 

specific objectives. Finally, a general overview o f the dissertation is portrayed, defining 

each o f the follow-up chapters to target some relevant objectives.

xii
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In chapter two, a general approach is presented to quantify constituent 

concentration retrieval errors induced by uncertainties in inherent optical property (IOP) 

submodels o f a semi-analytical forward model. Chlorophyll concentrations are retrieved 

by inverting a forward model with nonlinear IOPs. The study demonstrates how 

uncertainties in individual IOP submodels influence the accuracy of the chlorophyll 

concentration retrieval at different chlorophyll concentration levels. The important 

finding for this study shows that precise knowledge of spectral shapes of IOP submodels 

is critical for accurate chlorophyll retrieval, suggesting an improvement in retrieval 

accuracy requires precise spectral IOP measurements.

In chapter three, three distinct inversion techniques, namely, nonlinear 

optimization (NLO), principal component analysis (PCA) and artificial neural network 

(ANN) are compared to assess their inversion performances to retrieve optically-active 

constituents for a complex non-linear bio-optical system simulated by a semi-analytical 

ocean color model. A well-designed simulation scheme was implemented to simulate 

waters of different bio-optical complexity, and then the three inversion methods were 

applied to these simulated datasets for performance evaluation.

In chapter four, an approach is presented for optimally parameterizing an 

irradiance reflectance model on the basis o f a bio-optical dataset made at 45 stations in 

the Tokyo Bay and nearby regions between 1982 and 1984. The measured reflectance 

spectra exhibit high variability in their spectral shapes and defy precise modeling with a 

single forward model. Thus, we proposed a parameterization scheme by which an 

unsupervised classification is first applied to the irradiance reflectance spectra, leading to 

three spectrally-distinct optical water types, and a reflectance model is then

xiii

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



parameterized for the individual optical water types. The model validation exhibits that 

the accuracy was significantly improved in parameterizing the reflectance model for 

classified waters as compared to non classified waters in the forward problem, but the 

improvement in the inverse problem (retrieval accuracy) was not significant.

In the last chapter, a concise thesis summary is given to conclude the major findings 

from chapters 2-4. A discussion focuses upon the significance o f this thesis research and 

suggests the continuation o f this research afterwards. We believe that the 

parameterization scheme demonstrated in chapter 4 is very promising because it 

possesses its observational evidence and theoretical basis. It adapts to an objective 

requirement for retrieval algorithm switching in the global inversion application. 

However, more work is necessary for a solid validation to this new parameterization 

scheme. In particular, we need a large bio-optical database for rigorous ocean color 

model parameterization.

xiv
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Chapter 1 Introduction

Abstract

In this chapter, an extensive literature survey on ocean color modeling is given. A 

general ocean color model is presented to identify critical candidate uncertainty sources 

in modeling the ocean color, and then the goal as well as some specific objectives for this 

thesis study are defined. Finally, a general overview of the dissertation is portrayed, 

defining the relevant objectives o f each of the following chapters.

1.1 Background

Ocean color observed just above the water surface depends greatly upon the 

interactions o f incident light with optically active constituents in the upper water column. 

Optical processes (i.e. absorption and scattering) within the water column vary with 

constituents, and thus affect observed ocean color. As a result, there exists an implicit 

relationship o f an ocean color signal to in-water constituents, a potential avenue to the 

remote detection of constituent concentrations by ocean color measurements. How do we 

interpret an ocean color quantitatively to derive a suite of in-water constituent 

concentrations that affect the color? This is the primary and direct objective of ocean 

color remote sensing.

Modeling techniques for optically-active constituent retrievals from ocean color 

data have evolved from empirical (data-based) towards analytical (model-based) 

algorithms for the last few decades. During the early days of ocean color remote sensing, 

empirical algorithms were adopted to retrieve constituent concentrations from remotely-

1
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sensed ocean color data. A classically successful case was the Coastal Zone Color 

Scanner (CZCS) chlorophyll algorithm (Gordon and Morel, 1983). The CZCS algorithm 

worked well for optically simple oceanic waters whose optical properties are determined 

predominantly by phytoplankton and their associated substances in the surface water 

column. The optical properties of water influenced only by phytoplankton are defined as 

Case 1 waters (Morel et al. 1977). All other waters are considered Case 2 waters, 

including coastal, estuarine and inland waters whose optical properties are influenced by 

substances such as suspended sediments and colored dissolved organic matter (CDOM, 

also called yellow substance or gelbstoff) in addition to phytoplankton (IOCCG Report 3, 

2000).

In studies of coastal and estuarine waters, phytoplankton are not the only 

substance of interest. Suspended sediment and CDOM concentrations are important 

measures o f water quality to be detected. Scientists in different fields tend to be interested 

in different variables for their own studies. For example, the distribution and 

transportation o f suspended sediment are primary concerns of coastal engineers and 

geologists (Stumpf and Pennock, 1989). The spatial distribution of CDOM or suspended 

sediment in estuarine and coastal regions may be used as a potential tracer for the spatial 

variation o f river plumes (Vodack et al. 1997; Salisbury et al. 2004).

Even though empirical CZCS-like chlorophyll algorithms do not work well for 

Case 2 waters, empirical retrieval algorithms for Case 2 waters o f interest have been 

developed on the basis of concurrent measurements of the remotely-sensed signals and 

constituent concentrations (Klemas et al.\91A). For such empirical Case-2 algorithms, a 

statistical regression between some constituent concentration and measured ocean color

2

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



signal(s) is usually established as a prediction model for this concentration. As known, 

such empirical algorithms are not based on physical principles, and can not be applied 

universally. Moreover, an empirical retrieval algorithm usually focuses on retrieving one 

single constituent concentration by using a few channels of spectral information.

In Case 2 waters, variations in water color are controlled by more than one 

optically active constituent which vary in a complex way. Suspended matter affects both 

backscattering and absorption over a wide spectral range from the blue to near infrared 

bands, and their effect depends on their physical properties such as size distribution and 

composition (Bricaud and Morel, 1986). CDOM changes water color by absorbing light 

primarily in the blue-green spectral region (Bricaud et al. 1981). O f course, 

phytoplankton are also a significant constituent affecting water color by both absorption 

and backscattering. To establish a physically-based model relating the ocean color signal 

to individual constituent concentrations, the absorption and backscattering from all the 

optically active constituents must be considered simultaneously. Due to the spectral 

complexity of Case 2 waters, more spectral bands may be necessary for identifying these 

constituents. With the appearance of the new generation of satellite ocean color sensors, 

such as SeaWiFS (Sea-viewing Wide Field-of-View Sensor) and MODIS (Moderate 

Resolution Imaging Spectroradiometer) with more spectral bands and better radiometric 

sensitivity than CZCS, ocean color remote sensing has become more capable of 

monitoring coastal and estuarine waters quantitatively.

In recent years, attention has been turned to studies of both the optical properties 

and retrieval algorithms of constituents in estuarine and coastal (Case 2) waters. Many 

efforts have been made to develop model-based analytical inversion algorithms for

3
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retrieving properties o f more than one constituent for either Case 1 or Case 2 waters (Lee 

et al. 1994; Roesler and Perry, 1995; Hoge et al. 1996; Garver and Siegel, 1997; 

Krawczyk et al. 1995 and 1997; Doerffer and Schiller, 1999; Schiller and Doerffer, 1999). 

A class o f models, called semi-analytical, has evolved essentially based upon both a 

physical model and in situ bio-optical data used to parameterize the physical model.

Robust physically-based relationships were developed from precise radiative 

transfer simulations during the 1970s and 1980s (Gordon et al. 1975, 1988; Kirk, 1981; 

Jerome et al. 1988). These relationships relate apparent optical properties (AOPs) to 

inherent optical properties (IOPs) and lay a physical foundation for interpreting ocean 

color signals quantitatively.1 Developing a semi-analytical inversion algorithm generally 

involves two primary steps: 1) parameterize a forward ocean color model with in situ bio- 

optical measurements, and 2) invert the model given an observed ocean color spectrum to 

retrieve a set o f optically-active constituent concentrations.

For the parameterization, a suite o f IOP submodels, which may be termed bio- 

optical models, is established to account for how optically active constituents affect IOPs. 

Forward model parameters are a quantitative linkage between IOPs and optically active 

constituent concentrations. An extensive dataset of in situ bio-optical measurements is 

usually necessary for a model parameterization procedure. A parameterized forward 

ocean color model can be used to describe the light environment in terms o f constituent 

concentrations (the so-called forward problem) or inverted to retrieve optically-active 

constituent concentrations in terms of the ocean color signal (the inverse problem). Next, 

an ocean color model is presented in a general way in order to address some essential 

issues related to the goal and specific objectives of this thesis work.

1 Detailed definitions o f AOPs and IOPs are provided in the Appendix.

4
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1.2 General Considerations

Without losing generality, a forward  ocean color model may be simplified as

L(X) = f{C,®(X)) (1.1)

where L(A.) is an ocean color measurement at wavelength X (e.g. water-leaving radiance, 

remote sensing reflectance, or a quantity derived from them), remotely sensed either at 

the sensor altitude or just above the sea surface. Throughout this thesis work, L(A,) refers 

to an ocean color signal observed at the sea surface, or as derived from a remotely sensed 

signal after atmospheric correction. The symbol /  denotes a forward semi-analytical 

ocean color model (or a function) relating L(A.) to the constituent concentration vector C 

to be retrieved, and ©(A.) is a model parameter vector. The vector C commonly consists 

of three optically-active constituents, representing the concentration of chlorophyll, 

CDOM, and suspended matter concentrations.

For a purely empirical model, the model parameter vector 0 (1 ) provides a direct 

linkage between the ocean color signal L(A.) and the concentrations C  in terms of a 

statistically derived relationship. There is usually no physical meaning behind such a 

parameter vector 0(A). For a semi-analytical model, 0(A) not only is a mathematical 

bridge between L(A) and C, but also describes the physical relationships between the 

IOPs (i.e. absorption and backscattering) and constituent concentrations. The 

corresponding inverse model may be generalized by

C = f'\L (X ),® (X ))  (1.2)

Note that the symbol /  indicates an inversion, which might either be an explicit 

expression, as in the case o f a model that is linear with respect to constituent

5
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concentrations (e.g., Hoge and Lyon, 1996), or denote an inversion technique for the case 

in which a direct inversion of Eq. (1.1) does not exist. Figure 1.1 generally shows the 

main elements for ocean color modeling in both the forward and inverse directions.

For the inverse problem represented in Eq.(1.2), there are generally four potential 

candidate sources of error in retrieving the constituent concentration vector C. The first is 

the model /  itself which links an apparent optical property, L(L), to inherent optical 

properties. Exact analytical solutions to radiative transfer equations are highly complex 

(Zaneveld, 1995), and are not amenable to inverse solutions. Almost all forward models 

are approximations to more complex equations. The second source o f error is the inherent 

variability in constituent-specific IOPs. The IOP submodels defined by the model 

parameter vector 0(L) only approximate the real constituent-specific IOPs, and thus the 

inherent uncertainties of forward model parameterization may influence the model-based 

inversion for retrieving C. The third source of error is from errors in the measurements of 

L(L) caused by sensor calibration, atmospheric correction, etc., which affect accuracy of 

the concentration retrievals. The fourth source of error may be the inversion scheme 

itself, In many cases, f x can not be written explicitly, but can be approximated using 

some advanced statistical techniques, such as nonlinear optimization, principal 

component analysis or artificial neural network techniques. In this thesis work, the effect 

of the second and third error sources on concentration retrievals has been characterized 

quantitatively (Chapter 2). The fourth source is addressed and discussed in detail in 

Chapter 3.

6
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bb(X-): backscattering

Optically-Active Constituents
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Modeling Keys:

Figure 1.1. Main elements and their relationships among these elements in ocean 

color modeling.
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1.3 Forward ocean color model

1.3.1 Reflectance model: the relationship between AOPs and IOPs

Given the radiance distribution incident on the sea surface, the exact solution of 

the radiative transfer equation (RTE, see Appendix) is the best description of a forward 

model for a given set of IOPs. However, there is no exact analytical forward solution to 

the RTE for real oceanic waters, and hence one has to depend on numerical solutions 

(Gordon, 1994). There are various advanced numerical solutions to the RTE such as 

Monte Carlo (Gordon, 1994), Invariant Imbedding (Mobley, 1994), and Discrete 

Ordinates (Jin and Stamnes, 1994) techniques. The results from Monte Carlo simulations 

by many studies (Gordon et al. 1975, 1988; Kirk, 1981, 1984; Jerome et al. 1988) have 

shown that remote sensing reflectance Rrs(A.) or irradiance reflectance R (l), near the 

surface can be expressed as a function of absorption and backscattering coefficients, a(X) 

and bb(A,). In the arena of ocean color remote sensing, a well-accepted analytical 

reflectance model by Gordon et al. (1975, 1988) is

R(X) = 1  r.n 
n

bb (T)
(1.3)

a(A) + bb (T)

and a similar model exists for the remote-sensing reflectance, Rrs(A.). The corresponding 

expansion coefficients can be found in their papers.

The additivity principle (Gordon, 1994) can be applicable to all associated 

optically-active constituent IOPs so that a(^) and bb(X) become

a(?i) = a wW  + X a i W .  (1.4)
i

b b(^) = b bw(^) + X b bi(^ ). (1.5)
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where aw(k) and bbW(A.) are the absorption and backscattering coefficients of pure sea 

water, and aj(l) and bbi(A.) are the absorption and backscattering coefficients of the ith 

optically-active constituent in the sea water, respectively.

1.3.2 Constituent IOP parameterization: bio-optical models

The reflectance model presented in Eqs. (1.3-1.5) is related to the ith optically- 

active constituent concentration Q  through a subset of the model parameters in ®(X) 

defining the constituent-associated IOP submodels of aj(X) and bbi(A,). In fact, a model 

parameterization is an attempt to estimate these parameters in 0(A.) using in situ bio- 

optical measurements.

Conventionally, IOP submodels were usually expressed in terms of constant 

constituent-specific IOP coefficients. For example, the absorption coefficient for the ith 

constituent could be written as a;(X) =aj (X) Ci where the specific absorption coefficient

th *for the i constituent aj (X) was considered constant. Relatively recently, some IOP 

submodels have been modeled as nonlinear relationships between the constituent 

concentration Q  and its IOPs. In effect, aj*(X) varies with constituent concentration Cj.

It is also well accepted that some model parameters may not be applied 

universally. Parameters in the IOP submodels may vary in space and time due to intrinsic 

variations in optically active constituents. Therefore, IOP submodels may need 

parameterizing where regional in situ bio-optical measurements are available. Some 

published and well-accepted constituent IOP submodels are reviewed briefly in the 

following sections.

9
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Constituent absorption parameterization

Previous studies have shown that the primary absorbing constituents in sea water 

include the sea water itself, phytoplankton pigments, particulates (detritus and inorganic 

matter) and CDOM. Their contributions are described as follows:

a(A) = a w(A) + a p(A) + a g(A) (1.6)

and the absorption o f particulates, ap(A), can be partitioned further as

ap(X) = af (X) + ad(X) (1.7)

where the subscripts refer to water (w), particles (p), CDOM (g), phytoplankton (tp), and 

detritus (d). The absorption of pure sea water, aw(A), is known and constant (Pope and 

Fry, 1997).

Based on the models by Bricaud et al. (1995, 1998), a^(A) and ap(X) can be 

parameterized as functions of chlorophyll concentration Chi:

a ,  (A.) = a ;(^ )C h l = A c(A)ChlBcW (1.8)

and

ap (X) = a* (X)Chl = A„(X)ChlB>'M (1.9)

The models o f a^A) and ap(A) are both nonlinear with respect to Chi, and were developed 

on the basis on a large data set o f 1166 samples (Bricaud et al. 1998). Note that total 

particulate absorption, ap(A), includes the contributions from both phytoplankton 

pigments and detritus. Bricaud et al. (1998) pointed out the following limitations: 1) Both 

models are applicable to Case 1 waters only and may be not valid outside the range of 

chlorophyll concentration from 0.02 to 25 mg/m3; 2) In spite o f the large data set, the 

models are not universal because some special oceanic waters were not explored (e.g. 

polar waters); 3) The specific coefficients a*9(A) and a*p(A) vary by more than one order

10
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of magnitude whereas Chi varies by three orders of magnitudes (0.02 to 25 mg/m ). Such 

variations may have an impact on both the forward and inverse problems once they are 

implemented in a semi-analytical reflectance model.

The absorption coefficients of detrital particles and CDOM are aa(A.) and ag(A,), 

respectively. Their spectral shapes are very similar, exponentially decreasing with 

increasing wavelength (Roesler et al. 1989; Carder et al. 1991), and thus they are often 

modeled together as one term agd(X), with a spectral slope Sg(j:

a gd (^) ~ a gd (^0 ) exP(- Sgd (X -  XQ)) (1.10)

The factor Sgd has a mean value of 0.0145 nm"1 (Roesler et al. 1989). The value of the

absorption coefficient at a reference wavelength Xo, agd(A,o), is often used as a surrogate

variable for CDOM concentration.

Constituent Backscattering Parameterization;

The backscattering coefficient, b^X), another key IOP in modeling ocean color, is 

generally modeled by

b b (X) = b bw (X) + b bp (X) (1.11)

where the backscattering coefficient of the sea water, bbw(A-) is well known. The total 

particle backscattering coefficient, bbP(A,), can be partitioned further into two components 

associated with organic (cp) and inorganic (s) particles (Sathyendranath et al. 1989).

bbp (M = bb(p (X) + bbs (A.) (1.12)

Theory (Bricaud and Morel, 1986; Morel and Prieur, 1977) predicts that bbp(7.) can be 

represented by a spectral power-law model:

b bp(>.) = b bp(>.0) ( ^ ) 0- (1.13)

11
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where the exponent np has a range from 0 to 2 according to Mie theory and varies with 

the size distribution and composition (i.e. refraction index) o f the particulate matter 

(Bricaud and Morel, 1986). In situ measurements show that the exponent np varies in the 

range o f 0.7-1.1 for surface waters (Maffione and Dana, 1996, 1997).

A specific parameterization scheme of bbp(X) by Chi was proposed by Gordon et 

al. (1988) in the form of

b bp(?i) = b 0A b(?OChlBb(X) (1.14)

This expression involves two variables, b0 and Chi, being used to describe variations in 

the total particle backscattering. The variable b0 is associated with variability in total 

particle scattering which was found empirically to be a function of chlorophyll given by 

bp(550) = boChlO-62 where bo ranges from 0.12 to 0.45 with a mean of 0.32 (Gordon et 

al., 1988). The particle backscattering probability bbp(A,)/bp(A,) is dependent on both 

wavelength and Chi, and is parameterized as a power-law function of chlorophyll with 

assumptions regarding the spectral dependence at low and high Chi levels. Ab(k) and

Bb(A,) were obtained by linear fits on log-log plots.

If a one-component model (Eq. 1.11) does not represent the total backscattering 

hbp(A-) well for more optically-complex waters, a two-component backscattering model 

(Eq. 1.12) may be necessary. Sathyendranath et al. (1989) proposed a two-component 

particle backscattering model in which bbp(^) was partitioned into two independent 

components bbq>( )̂ and bbs(A,). The contribution by phytoplankton, bb<p(X), is modeled in 

the same form as that in Eq. (1.14). The other component, bbs(X), contributed from non- 

chlorophyllous particles, is expressed as

12
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bbs( l )  = bbs(5 5 0 ) ( ± p ” (1.15)

Theoretical studies (Morel and Bricaud, 1981) suggested that bbS(550) is proportional to 

non-chlorophyllous particle concentration (mineral suspended sediment concentration 

SSC). Some other studies (Tassan, 1994; Krawczyk et al. 1995, 1997) parameterized 

bt,s(550) in the form of

bbs(550) = b*bs(550)[SSC] (1.16)

where the specific backscattering coefficient, b bs(550) for non-chlorophyllous particles, 

was assumed to be constant.

1.4 Quantitative interpretation of ocean color: the inverse problem

Interpreting an ocean color spectrum quantitatively is an inverse problem. How do 

we use the ocean color observation to obtain a set of constituent concentrations? The 

essential problem to be solved is: given a measured ocean color spectrum L(X) along with 

a parameterized ocean color model, estimate constituent concentrations that result in the

particular color spectrum. If E q .(l.l) is nonlinear, its inversion denoted by / 1 in Eq.(1.2) 

is an approach or a technique rather than an exact analytical formula. To date, there exist 

three main types of model-based inversion techniques being applied widely to ocean 

color interpretation using all spectral signals. They are non-linear optimization (NLO), 

principal component analysis (PCA), and artificial neural network (ANN) inversions.

1.5 Overview of the dissertation

In this dissertation, the goal is to have an overall understanding in developing a 

semi-analytical ocean color model for solving the inverse problem. Several aspects in 

quantitatively modeling an ocean color spectrum are explored by means of both in situ

13
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data analysis and model simulation. The dissertation is presented in the context of three 

self-contained papers, chapters 2-4, with each chapter having one or two specific 

objectives associated with the overall goal stated above. Thus, each chapter contains its 

own abstract, methods, results, discussion, and conclusions sections, and references. 

Some overlap and redundancy among the chapters is expected because o f this format of 

the dissertation.

In chapter 2, a simulation approach was used to quantify retrieval errors in 

chlorophyll concentrations induced by uncertainties in IOP submodel parameterizations. 

A radiance model configured with a three-component IOP system is inverted using a non

linear optimization inversion technique. I demonstrate quantitatively how uncertainty in 

the individual IOP submodel parameterization influences the accuracy o f the chlorophyll 

concentration retrieval at different chlorophyll concentration levels. In general, this 

approach is applicable for any semi-analytical ocean color model to quantify retrieval 

errors caused by uncertainties from IOP model parameterization. The results in this 

chapter were presented at the 4th Pacific Ocean Remote sensing Conference in Qingdao, 

China in 1998, and later published in the Journal o f  Advanced Marine Science and 

Technology Society (Feng et al. 1998).

In Chapter 3, an objective comparison of the three widely-used inversion 

algorithms (i.e. NLO, PCA and NN) is presented. The objective for that research is to 

assess their strength and weakness for different optical water types. Based on a compiled 

dataset of bio-optical measurements from various sources, reflectance spectra were 

classified to identify optically different water types using a classification scheme (Moore 

et al. 2001). For each of the identified water types, forward radiance models configured

14
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with three-component IOP submodels were parameterized and used to generate simulated 

datasets. The reflectance signals were inverted with the three inversion algorithms. The 

PCA and ANN techniques, unlike NLO, usually depend on a model-simulated ocean 

color dataset to find a statistical inversion function, a relation that is used to derive 

optically-active concentrations from ocean color. The results in this chapter were 

originally presented at the Ocean Optics XV conference in Monaco, France in 2000. It is 

going to be submitted to the Journal of Applied Optics.

In Chapter 4, an optimal scheme to parameterize a spectral reflectance model in 

terms o f bio-optical measurements is demonstrated. This parameterization scheme was 

realized first by a comprehensive bio-optical data set obtained at 45 stations in Tokyo 

Bay and nearby region between 1982 and 1984 (Kishino et al. 1984). Specifically, a 

forward model was parameterized using the whole dataset, and then parameterized using 

three subsets of the data. The subsets were determined by applying a classification 

routine (Moore et al. 2001) to the reflectance spectra to identify optically-distinct water 

types. The results have shown that this approach could significantly improve the 

performance of the forward model. In comparing inversion results, we found that this 

approach was not significantly different from that o f the single parameterized model. The 

results in this chapter were originally presented at the AGU/ASLO meeting in San Diego, 

USA, in 1988. It is going to be submitted to the Journal o f Remote Sensing of 

Environment.

In Chapter 5, a brief summary of the thesis is given with the focus on the 

significance of the thesis, and further work is proposed.

15
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Appendix: Definitions of optical properties of water

Preisendorfer (1961) first proposed that the optical properties of seawater can be

divided into two classes: the inherent optical properties (IOPs) and apparent optical 

properties (AOPs). This Appendix presents the fundamental terms used in this thesis 

with some discussions. The context is based mainly on the papers by Morel and Smith 

(1982) and Jerlov (1976). Note that all the physical terms presented in the following are 

spectral quantities, meaning they are functions of wavelengths (with the dimension of a 

derivative with respect to wavelength). The water depth (z) dependence o f optical 

properties in the water is often there, but is ignored in any mathematical expression 

throughout this thesis under the assumption that we are considering surface water unless 

explicitly specified 

Basic Radiative Quantities

Radiant Energy Q: in units of J (joule)

Radiant Flux d>: the rate o f transport o f radiant energy in units o f watt (W=J/sec)

® = ' i r  (A1)at

Radiant Intensity I: the radiant flux emitted by a point source in a small cone 

containing a given direction, divided by that element of solid angle dQ, in units o f W sr'1

d<f>
(A2)

Radiance L(0,(p): the radiant flux per solid angle per unit projected area incident 

in a given direction (0,cp), in units of W sr_1m'2.

d 2<&
L(0,cp) = — —  (A3)

dAdD.
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where dQ  is a solid angle in units of steradian (sr); dA  is area (m2) subtending the solid 

angle dQ.; and angles 0 and tp are the zenith angle and the azimuthal angle, respectively. 

A radiance distribution, the complete set o f radiance values in all directions at a point, 

gives a complete geometrical structure o f the light field. The radiance is the fundamental 

measure relevant to ocean color remote sensing since a sensor measuring the radiative 

energy from the sea is viewing the sea surface as a “light” source.

Apparent Optical Properties

Apparent optical properties are those properties that depend both on the medium 

(the IOPs) and on the structure of the incident light field. Obviously, radiance is the most 

fundamental apparent optical property since all the other AOPs can be derived essentially 

from it.

Irradiance E: the radiant flux from all directions incident on a small element of a 

surface containing the point under consideration, divided by the area of that element, in 

units of W n f2.

E = —  (A4)
dA

Downwellins Irradiance Ej: the radiant flux incident on a small element of the 

upper face (i.e. facing zenith) o f a horizontal surface containing the point under 

consideration, divided by the area of that element, in units of W m'2. Ej can be defined as 

an integral of the radiance in a spherical coordinate system by

2;t rc/2
E d = f [L(0, (p)cos0 sin0 dQ d(.p (A5)

<p= o e=o

Upwellins Irradiance Eu: the radiant flux incident on a small element of the lower 

face (i.e. facing nadir) of a horizontal surface containing the point under consideration,

17
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'J

divided by the area of that element, in units o f W m ' .  Similarly, Eu can be defined as an 

integral o f the radiance by

2it n

E u = |  JL(0, cp)cos0 sin0 dQ dtp (A6)
(p=0 0=7i/2

Vertical Attenuation Coefficients Kx (m '1): vertical gradient o f the natural

logarithm of a radiative quantity X.

K = d  ln(X(z)) =  1 dX(z)
dz X(z) dz

where z is depth; X(z) stands for Ed, Eu, or any other radiative quantity, which varies with 

depth z. X(z) can be written as :

-  )Kxdz
X (z )  = X ( z 0) -e  zo (A8)

Irradiance Reflectance R: the ratio o f the upwelling to the downwelling irradiance 

(dimensionless)

R = | s -  (A9)
d

Downwelling and upwelling irradiance have been the most commonly measured 

quantities in optical oceanography. R is usually estimated by directly measuring Ed and 

Eu.

Remote Sensins Reflectance Rrs: the ratio of the upwelling radiance (simulating 

the geometric acceptance of a sensor) to the downwelling irradiance (sr'1)

R r s =  7 ^  =  77 (A 10)
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The Radiative Transfer Equation (RTE)

The inherent and apparent optical properties of water are related by RTE that may 

be written by

dL(z, 0, <p) cqs Q = _ cL^  ^  + L* Â1
dz

where z is the vertical coordinate, positive downward, and L=L(z,0,(p) is the radiance at

i|(
depth z from the direction (0,cp).0 and tp are the zenith and azimuth angle, respectively. L 

is the so-called source function or path function defined by

L* = jj3( 0,(p,6 ,(p ) • L (z ,0  ,<p )d fl 
4 n

(A12)where dQd is a small solid angle in the direction (0 ’,(p’), and P(0,tp, 0\cp’) is 

the volume scattering function for light scattered with the direction (0,(p) from the 

direction (0 ’,cp’)-

Exact analytical solutions to the RTE are impossible for most oceanic waters 

(Gordon, 1994). Therefore, one must rely on numerical solutions as approximation. There 

are many numerical methods for solving the RTE, such as invariant imbedding 

(Mobley, 1994), discrete ordinates (Jin and Stamnes, 1994), and Monte Carlo (Gordon, 

1975,1988). Mobley et al. (1993) gave a comparison of those numerical solutions to the 

RTE.
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C hapter 2 The Effect of Uncertainty in Inherent Optical 

Property Parameterization on Chlorophyll Retrieval from

Ocean Color Spectra: A Simulation Study (Published in Journal of 

Advanced Marine Science and Technology Society, 4(2), 265-274, 1998 by Hui Feng, 

Janet W. Campbell, and Timothy S. Moore)

Abstract

A general approach is presented to quantify retrieval errors in in-water constituent 

concentrations induced by uncertainty in inherent optical property (IOP) submodel 

parameterization. Chlorophyll concentrations are retrieved by inverting a radiance model 

with nonlinear IOP submodels. We demonstrate quantitatively how uncertainty in the 

IOP submodel parameterization influences the accuracy o f the chlorophyll concentration 

retrieval at different chlorophyll concentration levels. Two complete sets of simulations 

were designed and conducted. These represent two extreme cases between which “real” 

cases are expected to occur. The simulations show that precise knowledge of spectral 

shapes o f IOP submodels is important in chlorophyll retrieval.

2.1  Background

One o f the primary objectives in ocean color remote sensing is to determine in

water constituent concentrations. Oceanic constituents of interest include phytoplankton 

chlorophyll, colored dissolved organic matter (CDOM), and suspended sediments. 

Techniques for constituent retrieval have evolved from empirical (data-based) towards
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analytical (model-based) algorithms for the last two decades. Analytical algorithms 

usually resort to an inversion technique applied to a parameterized ocean color model. 

Currently, several such inversion techniques have been proposed for ocean color 

applications. Hoge and Lyon (1996) applied a semi-analytical radiance model (Gordon et 

al. 1988) with IOP submodels to the retrieval of three in-water variables using three 

CZCS spectral bands. For each constituent under consideration, its IOP was modeled as 

the product o f the IOP at a reference wavelength multiplied by a spectral shape function. 

The spectral shape functions were fixed and independent o f in-water constituent 

concentrations. Thus, the IOPs at reference wavelengths could be retrieved by a linear 

system inversion. Garver and Siegel (1997) presented an inverse model to retrieve 

chlorophyll concentrations using six SeaWiFS spectral bands. In their model, the 

chlorophyll-specific absorption coefficient was a nonlinear function of the chlorophyll 

concentration, and thus a non-linear optimization technique was needed to invert their 

model. Campbell et al. (1997) used a radiance model configured with nonlinear IOPs to 

retrieve chlorophyll concentration, CDOM absorption, and a variable associated with 

total particle backscattering. Their model can be inverted using a nonlinear inversion 

method. The model configurations and inversion techniques essentially differ in the three 

models mentioned above. For any inverse model, it is necessary to quantify the potential 

sources of uncertainty in an inverse solution. Hoge and Lyon (1996) showed that their 

inverse solution is very sensitive to variability in model parameters. The goal of this work 

is to quantitatively characterize retrieval errors resulting from IOP parameterization 

uncertainties for the model of Campbell et al. (1997) using normalized water-leaving 

radiances in the first five SeaWiFS bands (412, 443, 490, 510, and 550 nm). We focus
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strictly on chlorophyll retrieval errors in this paper.

2.2 Methodology 

General Consideration

Without losing generality, a forward ocean color model may be expressed as

L(X) = A c m ) )  (2.1)

where L(X) is an ocean color measurement at wavelength X (e.g. water-leaving radiance 

or remote sensing reflectance), and /  is a model configuration (or function) relating L(X.) 

to the in-water concentration vector C to be retrieved through a model parameter vector 

@(X,). Parameters in the vector 0(X) related to IOPs depend on the constituent-specific 

IOP submodels being used. In the case of the chlorophyll-specific absorption coefficient, 

for example, the models of Carder et al. (1991) and Bricaud et al. (1995) had different 

parameters. Carder et al. (1991) used a hyperbolic tangent function with four model 

parameters to describe chlorophyll-specific absorption, while Bricaud et al. (1995) used a 

power function of chlorophyll concentration with two parameters to describe variation in 

chlorophyll-specific absorption.

The retrieval o f vector C based on Eq. (2.1) can be written by

C  = / ' W ) , © M )  (2.2)

where /  represents an inversion of the model / .  The symbol /  ' might either be an 

explicit expression, as in the case of a model that is linear with respect to the in-water 

concentrations (e.g., Hoge and Lyon, 1996), or denote an inversion technique if the 

inversion of equation (2.1) does not yield an explicit solution.
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Generally speaking, there exist four potential candidate sources o f error in 

retrieving the concentration vector C. The first is the model f  itself which links an 

apparent optical property, L(A), to inherent optical properties. Exact solutions to radiative 

transfer equations are highly complex (Zaneveld, 1995), and are not amenable to inverse 

solutions. Almost all forward models are approximations to more complex equations. 

The second source of error is the inherent variability in constituent-specific IOPs. The 

IOP submodels and their associated model parameter vector 0(A) only approximate the 

actual constituent-specific IOPs. This work mainly attempts to quantify the retrieval 

errors caused by IOP model uncertainty. A third source of error might be the inversion 

scheme itself although this can generally be controlled by setting convergence criteria. 

Finally, errors in the measurements of L(A) caused by sensor calibration, atmospheric 

correction, etc., can affect accuracy of the retrievals. In this paper, we consider only the 

errors resulting from the parameterization o f constituent-specific IOP submodels. 

Analysis o f other error sources will be the subject of future work.

Radiance Model

Normalized water-leaving radiance is related to remote sensing reflectance Rrs(Z.) 

by the relationship based on (Gordon et al. 1988)

nL (A) = (2.3)
l - r Q R rs(T)

Where Fo is the extraterresstrial solar irradiance (Gregg and Carder, 1990); and the term 

M =(l-p)(l-p’)/«2 where p (-0.021) is the Fresnel reflectivity of the sea surface at normal 

incidence, p’ (-0.043) is the Fresnel reflection albedo of the sea surface for irradiance 

from the sun and sky; n (-1.32) is the index of refraction of water; r (-0.48) is the water-
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air reflectance for totally diffuse upwelling irradiance; Q is the ratio of the upwelling 

irradiance to upwelling radiance. Q ranges between 3.14 and 5, and is taken as 4. The 

values o f M, F0 and rQ are listed in Table 2.1.

Based on Monte Carlo simulations o f Gordon el al. (1975), R^A) is directly 

related to IOPs by

R^A) = 0.0949 X(A) + 0.0794 X(A)2 (2.4)

where

X(A) = ------------  (2.5)
a(A) + b b(2)

The absorption coefficient is modeled by a(A) = aw(A.) + a^A) + agd(A) and the 

backscattering coefficient as bb(A) = bbw(A) +bbp(A), where subscripts w, <|), g, d, and p 

refer to pure seawater, phytoplankton, CDOM (“gelbstoff’ ), detritus, and particles, 

respectively. The absorption of detritus decreases exponentially with increasing 

wavelength in a manner similar to that of CDOM (Carder et al. 1991). For simplification, 

we combine these into one single term, agd(A) = agd(375) exp[-S(A-375)]. The absorption 

coefficient of CDOM and detritus at 375 nm, agd(375), is used as a measure o f the CDOM 

and detritus concentration. The spectral shape parameter for CDOM and detritus 

absorption, S, usually varies between 0.011 and 0.021 with a mean of 0.0145 (Bukata et 

al. 1995).

The phytoplankton absorption coefficient a^A) = A c (A)-ChlBc^  is based on 

the model by Bricaud et al. (1995). This model gives the chlorophyll-specific absorption 

coefficient, a ^ A ) , as a function of the chlorophyll concentration, Chi, and is based on
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about 800 globally distributed observations o f absorption spectra and chlorophyll 

concentration. The model used for our analysis involves two spectral parameters, A C(X) 

and BC(X) = BC*(X) + 1, where Ac(l) and BC*(X) are tabulated in Bricaud et al. (1995).

The particle backscattering submodel is bbP(A,) = bo • Ab(A,)-ChlBb^ a n d  is

based on the parameterization scheme of Gordon et al. (1988). This expression involves 

two independent variables, bo and Chi, being used to describe variations in particle 

backscattering. The variable bo is associated with variability in total particle scattering 

which was found empirically to vary with chlorophyll concentration such that bp(550) = 

n
bo ' Ch l  ' . All spectral dependence was assigned to the particle backscattering

probability, bbP(X)/bp(X), parameterized as a power-law function of chlorophyll (Gordon 

et al. 1988), and its parameters, Ab(X) and Bb*(A,) were obtained by linear fits on log-log 

plots. The exponent in the particle backscattering coefficient submodel was, thus, Bb(A,) = 

Bb*(A,) + 0.62. Variation in particle backscattering is associated with the properties of 

particles, such as their size distribution and composition (i.e. refraction index).

The model parameter vector, 0(X) = [S, AC(X), Bc(>„), Ab(A.), Bb(A,)], fully defines 

the IOP submodels for each wavelength. Constant model parameters used in the inversion 

algorithm are given in Table 2.1. The in-water constituent concentration vector defined in 

this model is C=  [agd(375), Chi, bo].

Inversion method

Given a measured radiance, LW(A,), and assumed values for r, M, F0 and Q (Table 

2.1), Eq. 2.3 can be solved for R,.S(A,), and given Rrs(A.), equation (2.4) can then be solved 

for X(X). Thus, a value o f X(X) is derived from the measured radiance, LW(X). A non-
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linear optimization technique is then required to solve equation 2.5 for the constituent 

vector, C. The Gauss-Newton algorithm was selected for this purpose. This algorithm is 

now widely used in ocean color inversion models ( Bukata et al. 1995; Roesler and Perry, 

1995; Garver and Siegel, 1997; Feng et al. 1998). Its theoretical basis is documented in 

detail by Press et al. (1992). Bukata et al. (1995) gave an excellent review o f its potential 

applications in ocean color interpretation.

Simulations

Uncertainties in the three constituent-specific IOP parameterizations (i.e. 

a^(k) and bhp(X) were simulated as follows:

S’ = S + 5S (2.6a)

log(a;(X)) = lo g (a ^ ))+  8 ^ )  (2.6b)

log(bbp’(X)) = log(bbp(A,)) + 8bp(X) (2.6c)

where 8S, 8^(1), and 8bp(X) were normally distributed pseudo-random errors with zero

means, and standard deviations equal to 0.0015, 0.04, and 0.04, respectively. These 

values represent 10% RMS errors in the corresponding IOP submodels. Two complete 

sets of simulations were designed and carried out: one in which IOP errors were 

spectrally uncorrelated (i.e. S^^j) ... S ^ j ) ,  and 8bp(A,5) were all statistically

independent), and the other in which 8^(1,) = ... = 8())(X5), and Sbp(A.,) = ... = 8bp(A,5), but 

where 8^(7,;) and Sbp(X.i) were uncorrelated. We refer to these as “Independent Error” and

“Correlated Error” simulations, respectively. Figure 2.1 demonstrates the distinction

between the two simulations. Although neither assumption is realistic, clearly real cases 

are bounded between these two extremes. Later, we discuss the implication of this.
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To determine whether retrieval accuracy is dependent on the chlorophyll

-3
concentration, simulations were conducted for three cases representing low (0.1 mg m ),

-3 -3
medium (1.0 mg m ) and high (10.0 mg m ) chlorophyll levels. For each chlorophyll 

level, we simulated a random sample of 200 agd(375) and b0 values. The distribution of 

agd(375) depended on Chi as follows

log agd(375) = 0.47909 log(Chl) -  0.75657+ 8ag (2.7)

where 8ae was normally distributed with a zero mean and a standard deviation o f 0.1649.
©

This relationship was derived from in situ measurements of Chi and agd(375). The 

distribution of b0 was assumed to be normal with a mean of 0.3 and a standard deviation 

of 0.07, and b0 was independent o f agd(375).

For each chlorophyll level, the following steps were taken:

Step One: The radiance model was run in the forward direction and forced by the 

ensemble o f 200 in-water concentration vectors, C=[agd(375), Chi, b0], using IOP models 

with the constant parameter vector shown in Table II. 1 to generate a set o f 200 LW(A.) 

vectors. Each LW(A.) spectrum was then inverted to obtain the concentration vector C ' 

which was then compared with C. The purpose of this step was to estimate errors due to 

the inversion method itself, since the IOPs were assumed to be exact (i.e. with no errors).

Step Two: The radiance model was run forward again with a perturbed IOP 

model (or models) as defined by equations (2.6-2.7) to produce another simulated data set 

of 200 L’w(^) spectra, and these spectra were then inverted to obtain C ’ as in Step One. 

Strategically, each IOP was perturbed separately to isolate the impact of individual IOP
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models on concentration retrievals, and then errors were added to all three IOP models to 

determine their combined effect.

Step Three: Differences between vectors C’ and C were used to define retrieval 

errors caused by uncertainties in IOP model parameterization. The RMS errors in both 

Chi and log(Chl) were used as measures of error. Specifically, from the sample o f 200 

retrievals, we calculated simple difference errors: A = Chi’ -  Chi, and log difference 

errors Al0g = log Chi’ -  log Chi, which are related to relative errors. For each type of 

errors, two statistics were obtained: the mean error, M and Mi0g, and the mean-square 

error, MSE and MSEiog.

Steps Two and Three were repeated 100 times, each time with a new random set 

of IOP perturbations applied individually and then simultaneously. The statistics on M, 

Miog, MSE and MSE|0g were accumulated. The root-mean-square errors, RMSE and 

RMSEiog were then computed as the square roots o f MSE and MSEiog. Thus, resulting 

statistics were actually based on N = 20,000 random retrieval errors (100 simulations, 

each with an ensemble of 200 C vectors).

2.3 Results and Discussion 

Effect of Inversion Scheme (Step One)

We found no errors resulting from the inversion scheme in Step One. That is, the 

inversion algorithm was able to retrieve each of the 200 C  vectors to an arbitrary level of 

accuracy controlled by the convergence criteria.
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Effect of IOP Uncertainties (Steps Two and Three)

Results from all the simulations are shown in Table 2.2, and percent RMS errors 

are compared in Figure 2.2. In all simulations, the “Correlated Error” retrievals had much 

less error than the “Independent Error” retrievals. This was not surprising since 

“Correlated Error” perturbations result in shifts of the IOP spectra upward or downward 

without changing their spectral shapes. The resulting radiance spectra also tend to vary 

with minimal changes in spectral shape, and thus band ratios, for example, remain stable. 

In the “Independent Error” case, however, spectral shapes were altered significantly, and 

this resulted in much larger errors in the chlorophyll retrievals.

“Correlated Error” perturbations applied only to bbp(X) produced no errors in 

chlorophyll retrievals. In examining the corresponding retrievals o f agd(375) and b0 (not 

shown here), we found that only the b0 retrievals had errors, and in fact its errors were 

precisely equal to the perturbation Sbp(A,). The effect o f a nonspectrally varying (i.e., 

correlated error) perturbation in bbp(A.) is equivalent to a perturbation in b0. In Step One 

we found that perturbations in agd(375) and b0 did not affect our ability to retrieve Chi, in 

the absence of other IOP perturbations. This result is quite significant, because in the case 

of “Independent Errors” the bbp(A.) uncertainty was the largest source of error among the

three IOP submodels when they were perturbed separately (Figure 2.2, Table2.2). This 

suggests that the accuracy in chlorophyll retrievals can be improved significantly i f  the 

spectral shape o f  the particle backscattering coefficient is known, whereas the absolute 

level o f  bbp(A) (whether shifted upward or downward) does not affect chlorophyll 

retrievals.
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The effect of uncertainty in agd(A) and a^A) depended on the chlorophyll level, 

with a general tendency that a^A) became more critical as Chi increased. Comparing 

low-chlorophyll (Table 2.2a) and medium-chlorophyll results (Table 2.2b), we see that 

errors tended to be proportional to the chlorophyll level. For example, in the 

“Independent Error” case, the combined M ranged from 10% to 12%, and the RMSE was 

between 63% and 70% of the chlorophyll level. The tendency for errors to be 

proportional to Chi is also indicated by the consistency in Mi0g and RMSEfog between 

Tables 2.2a and 2.2b, since the log-difference Al0g reflects a “relative” error.

In the high-chlorophyll “Independent Error” case (Table 2.2c), the combined 

RMSE represented only a 48% error, but the RMSEfog increased from 0.30 to 0.42 

between medium and high chlorophyll cases. Further examination of the retrievals

-3
revealed a number of anomalously low chlorophll retrievals (< 1 mg m ) when the true

-3
chlorophyll was high (10 mg m ).

IOP model errors from in situ measurements

As mentioned earlier, neither o f the two extreme cases we have simulated is 

realistic. However, we believe that highly correlated errors in individual IOP spectral 

models are closer to reality than independent errors. To test our speculation, we 

computed error correlation matrices for the two IOP submodels (i.e., a<j,(A) and bbp(A)). In 

the case of the phytoplankton absorption model, we were able to use the in situ data 

which Bricaud et al. (1995) used to parameterize their model. We do not have in situ 

backscattering coefficient measurements to test backscattering IOP parameterization. 

Instead, we assumed that the model (equations 2.3-2.5) is precise, and thus we were able
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to calculate bbP(X) from measured reflectance and total absorption spectra. From these, 

we estimated the spectral correlation matrix o f bbP(A,) errors.

•  Phytoplankton absorption model

Using the original measurements of Bricaud et al. (1995), a(|)meas(A,), we found that

spectral errors, defined 5(|)(X.)=log(a(j)meas(?c)) -lo g (A c(A.)ChlBc(^)) is highly correlated. The 

spectral correlation matrix o f the 5<j)(A.) errors is shown in Table 2.3a. Correlation 

coefficients are >0.8 for the first four SeaWiFS bands, but relatively low (around 0.5) for 

the last band.

• Particle backscattering model

Using the bbp(A.) spectra calculated from measured reflectance and total absorption

spectra, we modeled particle backscattering as bbp(A.) =A(A,)Chl®(^) , where Chi is 

chlorophyll concentration, and A(A.) and B(X) are spectral parameters. Based on about 

100 in situ measurements of reflectance and absorption spectra as well as chlorophyll 

concentrations from Tokyo Bay (Kishino et al. 1985) and the Gulf of Maine regions, the

spectral errors 5bp(X)= log(bbpmeas(A,)) -  log(A (X )C hlB (^)) were estimated. The spectral 

correlation matrix of the 5bp(A,) errors is shown in Table 2.3b. Correlation coefficients 

ranged between 0.79 and 0.99 among all the first five SeaWiFS bands.

2.4 Summary

A general approach is presented for assessing retrieval errors of in-water 

concentrations. The simulations focus on demonstrating how retrieval errors in 

chlorophyll concentration are affected by uncertainties o f inherent optical property (IOP)
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submodels in an underlying radiance model. Two complete sets of simulations conducted 

represent two extreme cases between which “real” cases are expected to occur. The 

results from “Correlated Errors” and “Independent Errors” are significantly different. The 

most significant finding in this work is the improvement in retrieval accuracy that 

resulted from “Correlated Errors” compared with “Independent Errors.” The analyses of 

spectral correlations among IOP submodel errors from in situ measurements suggest that 

the “Correlated Errors” case is more realistic. Although the inherent variability in IOPs 

cannot be controlled, we believe it is important to model their spectral shape as 

accurately as possible. Knowledge of the spectral shape is critical, particularly in the case 

o f the particle backscattering coefficient. Shifts in the IOP spectra upward or downward 

had little effect on chlorophyll retrieval accuracy, whereas random independent 

perturbations to the spectral IOP values resulted in very large errors (RMSE values as 

high as 70%).
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Table 2.1. Model parameters assumed to be constant in inverting the radiance model. Parameters are listed in 
column 1, units in column 2, and values for each spectral band in columns 3-7.

Parameter Units 412nm 443nm 490nm 510nm 555nm
rQ(X) None 1.92 1.92 1.92 1.92 1.92
M(k) None 0.5375 0.5373 0.5398 0.5390 0.5390
F0(X) Mw/cm2/pm 171.7 189.2 194.4 187.5 185.9
AC(X) m 1 0.0313 0.0393 0.0274 0.0180 0.0071
BC(X) None 0.7270 0.6600 0.6390 0.7400 0.9660
Ab(X) r n 1 0.0111 0.0100 0.0104 0.0108 0.0109
Bh(X) None 0.2390 0.2250 0.2850 0.3190 0.3620

S nm '1 0.0145 0.0145 0.0145 0.0145 0.0145
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Table 2.2. Error statistics: M, RMSE, Miog, and RMSEiog after perturbing each IOP 
submodel separately, and after perturbing all three IOP submodels simultaneously 
(“Combined”) for spectrally-Independent Error case (flat font) and spectrally-Correlated

-3
Error case (bold font). The units of M and RMSE are mg Chi m and the units of Mi0g 
and RMSEiog are decades of log base 10. These statistics are based on 20,000 
simulations.

Table 2.2a. Case of low chlorophyll (Chi = 0.1 mg m 3).________________ ___________
Submodel M RMSE Miog RM SEbg

0.0029/0.0029 0.0276/0.0276 -0.0022/ -0.0022 0.1137/0.1137
0.0014/0.0009 0.0206/0.0119 -0.0027/ 0.0011 0.0887/0.0505

bbDW 0.0059/0.0000 0.0500/0.0000 -0.0273/ 0.0000 0.2317/0.0000
Combined 0.0102/0.0039 0.0629/0.0301 -0.0330/-0.0011 0.2817/0.1250

-3
Table 2,2b. Case of medium chlorophyll (Chi = 1.0 mg m ).

Submodel M RMSE Miog RMSEiog

aed(^) 0.0239/0.0239 0.2581/0.2581 -0.0032/-0.0032 0.1094/0.1094

a*(X) 0.0128/0.0118 0.2081/0.1387 -0.0038/ 0.0011 0.0906/ 0.0589

K M 0.0828/0.0000 0.5768/0.0000 -0,0273/0.0000 0.2543/ 0.0000
Combined 0.1207/0.0356 0.6991/0.2938 -0.0352/-0.0022 0.3022/ 0.1254

Table 2.2c. Case of high chlorophyll (Chi -  10 mg m 3).
Submodel M RMSE Miog RMSEiog

-0.1680/-0.1680 0.7008/0.7008 -0.0087/-0.0087 0.0378/0.0378
-0.4090/-0.1744 2.5222/0.8445 -0.0384/-0.0094 0.1552/0.0414

b j* -) -1.0078/ 0.0108 4.0424/0.0158 -0.1208/0.0005 0.3474/0.0007
Combined -1.0772/-0.2949 4.7737/1.2029 -0.1549/-0.0174 0.4244/0.0697
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Table 2.3a. Correlation matrix of error, 8(()(^)=log(a(t)meas(A,)) -  lo g (A c(A,)ChlBc(^)). 
(based on the data from Bricaud et al. 1995). The matrix is symmetric so the left lower is 
ignored.

412nm 443nm 490nm 510nm 550nm
412nm 1.00 0.90 0.81 0.86 0.51
443nm 1.00 0.93 0.89 0.46
490nm 1.00 0.91 0.57
510nm 1.00 0.75
550nm 1.00

Table 2.3b. Correlation matrix o f error, SbP(A,)=log(bbPmeas(A,)) -  log(A(A.)ChlB(^)) 
(based on 101 observations). The matrix is symmetric so the left lower is ignored.

412nm 443nm 490nm 510nm 550nm
412nm 1.00 0.93 0.87 0.84 0.79
443nm 1.00 0.97 0.96 0.92
490nm 1.00 0.99 0.96
510nm 1.00 0.98
550nm 1.00
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Figure 2.1. Plots o f  IOP spectra demonstrating the distinction between two assumptions: the Independent Error (IE) case 

assumes that random errors among 5 spectral values are statistically independent, whereas the Correlated Errors (CE) case 

assumes that the random errors among 5 spectral values are equal, (a) is for bbp(A.) model, and (b) is for a<j,(A,).

42



|  Independent Errors I Correlated Errors

CHU0.1 mg m

I  1 1

CHL=1.0 mg m

(a)

(b)

70

60

50

40

30

20

10

CHL=10 mgrrf

■  I I

a9d on|y aPhon|V bbPon|y combined

(c)

Figure-. RMS errors (%) in CHL retrievals from 10% RMS errors in IOP submodels

Figure 2.2. RMS errors (%) in chlorophyll retrievals resulting from 10% RMS errors in 

IOP submodels.
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C hapter 3 A comparison of inversion techniques for semi-

analytical ocean color models (to be submitted to Applied Optics by Hui 

Feng, Mark D. Dowel, Janet W. Campbell, and Timothy S. Moore )

Abstract

Three fundamentally different inversion techniques, nonlinear optimization 

(NLO), principal component analysis (PCA) and artificial neural network (ANN), are 

compared to test their skills to retrieve optically-active constituents given spectral 

radiance data simulated by a commonly used, semi-analytical ocean color model. A 

simulation scheme was implemented to simulate spectral radiances from ocean waters of 

different bio-optical complexities. The three inversion methods were applied to these 

simulated datasets, with and without noise, and their performance evaluated.

The NLO inversion method has the advantage that it is directly related to a 

forward ocean color model, but its inverse solution is highly sensitive to noise, faces non

convergence issues, and its computational load is substantially high. The PCA inversion 

algorithm assumes a linear relationship between optically-active constituents (logarithm- 

transformed) and ocean color spectral signals. Within limited ranges and with low values 

o f optically-active constituents, our simulations show that such a linear assumption is an 

excellent approximation to the nonlinear problem, giving it comparable inversion 

performance with the other two methods. The ANN inversion method exhibits its 

powerfulness in solving a complex nonlinear ocean color inverse problem. ANN 

overcomes most o f the weaknesses and disadvantages of the other two methods. The
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ANN method trained with realistic input data retrieves the constituents from noise-free 

data with nearly the same accuracy as the NLO method, and yet is less sensitive to noise.

3.1 Introduction

Quantitative detection o f ocean surface bio-optical properties from ocean color 

observations is critical for various marine environmental studies. Thus, for years, 

attention has been paid to interpreting an ocean color spectrum to retrieve optically-active 

constituents in the upper water column. Inversion techniques have evolved from 

empirical (data-based) towards semi-analytical (model-based) bio-optical algorithms. The 

inverse problem to be solved can be stated in general as follows: Given an observed 

ocean color spectrum L(X) and bio-optical model/

L W - X W ) )  (3-1)

estimate a set o f optically-active constituent concentrations that lead to the observed 

spectrum. In Eq. (3 .1 ) , /  denotes a semi-analytical forward bio-optical model relating 

L(X) to the optically active constituent vector C to be retrieved through a model 

parameter vector 0(A,). The inversion of Eq. (3.1) m aybe generalized by

c  = f ' m m m  m

Due to the non-linearity o f the forward model f  it is generally not possible to find an 

analytical inverse solution, and thus, in this paper, f ' indicates an inversion method. 

Parameters in 0(X) are related to constituent-specific inherent optical properties (IOPs, 

absorption and backscattering properties). The determination o f 0(/\.) (model 

parameterization) requires in situ measurements o f constituent-specific IOPs along with 

the relevant constituent concentrations and the radiance spectrum L(X). It is generally
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well recognized that no bio-optical model will be capable of being applied universally to 

all optical water types, because constituent-specific IOPs are often distinct from one 

water type to another. Specifically, the model parameter vector 0(A,) is not applicable 

universally. The best-known example is the difference between so-called Case 1 and 

Case 2 water types (Morel et al. 1977).

In general, there exist four sources o f error in retrieving the concentrations in the 

vector C. The first is the forward model /  itself because almost all forward models are 

approximations to more complex radiative transfer equations. The second is the inherent 

variability in constituent-specific IOPs. Parameterized IOP submodels described by the 

vector 0(7.) only approximate realistic constituent-specific IOPs. Feng et al. (1998) 

presented a general approach to characterize the effect o f such uncertainty on the retrieval 

of chlorophyll concentration. The third is the inversion methods themselves, and fourth 

are errors in the measurement o f L(A,) induced by errors in the sensor calibration, 

atmospheric correction, and other environmental effects. In this paper, we assess the 

inversion errors induced by the last two sources mentioned.

To date, three major inversion techniques have been applied to retrieve optically- 

active constituents from ocean color data. They are non-linear optimization (NLO), 

principal component analysis (PCA), and artificial neural network (ANN) methods. The 

approach o f NLO inversion algorithms, such as the Gauss-Newton and Levenberg- 

Marquart, is to iteratively adjust the optically-active constituent vector C being retrieved 

to a convergent value at which a forward-modeled ocean color spectrum matches a 

measured spectrum with an overall minimum error for a given criterion. The application 

o f NLO techniques to ocean color inverse problem began in the middle 1970s. Jain and
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Miller (1976) first applied a NLO algorithm to airborne ocean color data to estimate two 

bio-optical in-water variables, chlorophyll concentration and the scattering coefficient at 

a reference wavelength under a simple two-flow radiative transfer model. During the 

1980s and 1990s, Bukada and his coworkers (1985, 1991, 1995) did some pioneering 

studies in applying the NLO technique to quantitatively interpret in situ spectral 

measurements for retrieving optically-active constituents in Lake Ontario. Since the 

1990s, NLO inversion methods have become more widely applied to both surface-based 

in situ (Roesler and Perry, 1995; Garver and Siegel, 1997) and satellite-based (Doerffer 

and Fischer, 1994; Frette et al. 1998; Moore et al. 2001) ocean color data to retrieve 

constituent concentrations.

PCA is a statistical method for signature extraction. For multi-spectral or hyper- 

spectral ocean color data, PCA is capable o f extracting a small number of principal 

components (PCs) that account for most o f the variance in the original ocean color data. 

A few variance-dominant PCs are retained, rather than the original ocean color spectra, 

so as to keep all significant information and filter out noise. In the 1970s, attempts were 

made to apply PCA directly to in situ ocean color data to extract a few dominant PCs, and 

then those extracted PCs were interpreted (Mueller 1976; Grew, 1977; Gower et al, 

1984). These early efforts focused upon finding empirical inversion models off l between 

PCs’ loadings and measured optically-active constituent concentrations. Later on, 

scientists (Fischer et al. 1986; Satheyendranath et al. 1989) realized that in situ measured 

data were usually too limited to cover a wide range o f constituent concentrations and 

applications were also limited. Thus, they turned to forward model-simulated bio-optical 

datasets over a wider range o f constituents o f interest to find such empirical inverse
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models. More recently, Krawczyk et al. (1995, 1999) developed a well-formulated PCA 

inversion algorithm to establish an approximated inverse relationship directly relating the 

ocean color spectrum L(X) to constituent concentrations C. This PCA inversion algorithm 

has been applied to MOS (the Modular Optoelectronic Scanner) ocean color data to 

retrieve in-water constituents (Hetscher et al. 2004).

The artificial neural network (ANN) technique is a powerful tool for estimating an 

inverse transfer function, / ' ,  particularly for the case where the forward function /  is 

highly nonlinear. The application o f ANN techniques to constituent retrievals from ocean 

color data began quite recently. Keiner and Brown (1999) successfully developed a 

simply-constructed ANN to retrieve chlorophyll concentrations using the SeaWiFS Bio- 

optical Algorithm MiniWorkshop (SeaBAM) spectral reflectance data for training. They 

have shown that the ANN inversion for chlorophyll retrieval is more accurate than 

traditional spectral ratio algorithms. In recent years, the ANN inversion technique has 

been applied to model-simulated ocean color data to train ANNs for retrieving constituent 

concentrations (Schiller and Doerffer, 1999; Doerffer and Schiller, 1999; Gross et al. 

2000; Zhang et al. 2003) for both Case 1 and Case 2 waters.

It has recently been proposed ( IOCCG Report 3, 2000) that there be an objective 

comparison of different inversion techniques to identify the strengths and weaknesses of 

the individual techniques. In this paper, the three inversion techniques listed above have 

been applied to several model-simulated ocean color data sets generated by a set of 

parameterized forward models representing different optical water types with distinct bio- 

optical properties. The model simulation focuses on the first 5 SeaWiFS wavelengths 

(412, 443, 490, 510, and 550nm). The goal is to explore the fundamental distinctions

48

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



among the three inversion techniques, to assess their sensitivity to noise contained in 

ocean color data, and to determine how the optical complexity o f the water affects the 

algorithm performance.

We first describe a semi-analytical bio-optical model and its parameterization 

briefly. Next, the simulation strategy is described showing how the forward model is run 

to generate simulated datasets, and then follows the comparison results o f inversion 

performance. Finally, discussion and conclusion are presented. In Appendix A, the 

fundamental framework for each inversion method is given in more detail.

3.2 Methods 

Forward bio-optical model

Normalized water-leaving radiance (Gordon et al. 1988) is related to remote 

sensing reflectance Rrs(A.) just beneath the water surface by the relationship

L wn(A.)= MF°Rrs(X) (3.3)
l - r Q R re(A.)

where M is a factor accounting for losses at the air-sea interface; F0  is the downwelling 

solar irradiance; r is the diffuse reflectance o f the water-air interface (from beneath), and 

Q is the ratio o f upwelling irradiance to upwelling radiance. These parameters are 

considered spectral constants and listed in Table 3.1

Following Gordon et al. (1988), the remote-sensing reflectance R^A.) is related to 

the IOPs by

Rrs(A.) = 0.0949 X(X)  + 0.0794 X(X)  (3.4)

where
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X(X) = — ----
b b(X) + a (k)

(3.5)

The total absorption a(X) and backscattering bb(7.) coefficients are decomposed as a three- 

component IOP system by a(X) = aw(X) + a^X) + agd(X) and bb( /)  = bhw(k) +bbp(/) , 

respectively, where subscripts w, ((), g, d, and p refer to pure water, phytoplankton, 

gelbstoff (i.e. CDOM), detritus, and particles, respectively. The absorption for CDOM 

and detritus are combined as one single component due to their spectral similarity. The 

three IOP components are further modeled as follows

Eqs.(3.6-3.8) are based on the IOP submodels proposed by Bricaud et al (1995), Carder et 

al. (1991), and Lee et al. (1994), respectively. In this forward model setup, the model 

parameter vector is ®(L) = [Ac(X), Bc(X), S, Y] that fully defines the IOP submodels. The 

constituent concentration vector C  to be inverted is [Chi, agd(440), bbP(555)], where the 

optical properties, agd(440) and bbp(555), act as surrogates for concentrations.

Model parameterization

A bio-optical database o f in situ measurements from 1367 stations was compiled 

for the model parameterization. The measurements were made globally and collected 

from different sources (Moore et al. 2001). The database includes remote sensing 

reflectance spectra Rrs(A.), total, CDOM and phytoplankton absorption coefficient spectra, 

and chlorophyll concentration [Chi],

a ^ A ^ C h l B c M (3.6)

agdW = agd(4 4 0) exp(-S(X-440)) 

bbp(^) = bbp(555) (555/A) Y

(3.7)

(3.8)
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In order to generate model-simulated datasets that represent distinct optical water 

types, a cluster classification algorithm (Moore et al., 2001) was first applied to the 1367 

measured Rrs(7,) spectra, consequently leading to six optically-distinct water types. For 

each optical water type, IOP submodels formulated according to Eqs.(3.6-3.8) were 

parameterized using corresponding in situ measured data, each with its own model 

parameter vector ®(X) (Dowell et al. 2000). For simplification, we are presenting the 

results from four o f the six optical waters in this paper (Figure 3.1). They may be 

described as oligotrophic (typel), eutrophic (type 2), absorption-dominated (type 3) and 

scattering-dominated (type 4). In effect, the cluster classification resulted in a sorting of 

in-water constituent concentrations. The derived model parameters o f these four optical 

water types are given in Table 3.1, and statistics calculated from the in situ 

measurements, ranges, means, standard deviations, correlation matrixes o f the three 

constituents ([ Chi, bbP(555), agd(440)]) in a 10-base logarithmic scale and a linear scale 

are given in Table 3.2a and Table 3.2b, respectively.

Inversion techniques hv semi-analvtical ocean color model

A description for the three inversion algorithms is detailed in the Appendix. A 

fundamental distinction o f the NLO technique from the PCA and ANN techniques is that 

NLO is not dependent directly on model-simulated dataset to find a statistical inversion 

fu n c tio n /\ NLO algorithms complete their inversions on each ocean color spectrum by 

an iterative procedure such that the forward modeled spectrum matches the observed 

spectrum given a minimization criterion to retrieve optically-active concentrations. In this 

sense, the NLO inversion algorithm can be considered more analytical (physically-based)
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than the two other inversion techniques. By contrast, PCA and ANN techniques find 

statistical inversion functions / '  based on a model-simulated training dataset and then 

complete their inversions using the estimated inversion function /* . The procedure for 

finding the inversion function f x is called “training” or “learning.” In this sense, PCA and 

ANN are more empirical (data-based).

In this work, three steps were taken for completing the PCA and ANN inversions: 

Step 1: generate two independent simulated datasets, called training and testing datasets, 

by running the forward model /(©(A.) ,C). Step 2 : complete a PCA/ANN training to 

determine weights and offsets defined in Eq. (A2) for PCA and weights and biases 

defined in Eq. (A3) for ANN. Step 3: complete the inversions using a testing dataset and 

evaluate performance. For the NLO inversions, only Steps 1 and 3 are taken with the 

testing dataset. The same testing datasets were used for all three methods, and the same 

training sets were used for the PCA and ANN methods.

Simulations

The inversion functions f x to be found for the PCA and ANN methods are 

dependent upon simulated training datasets whose statistical properties might have some 

influence on the functions o f /* . It is common practice to assume uniform or normally 

distributed variables and independent constituent concentrations in the vector C used for 

running forward model simulations. In this study, a concerted effort was made to 

simulate constituent input datasets that are as realistic as possible in terms of their 

individual distributions, and the covariance among constituents.
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Campbell (1995) has shown that many bio-optical variables in the marine 

environment can be described as log-normally distributed. We assumed that the 

constituent vector C follows a three-dimensional lognormal distribution with a mean 

vector and covariance matrix calculated from in situ measurements for each optical water 

type (Tables 3.2a-b). Specifically, an ensemble o f N vectors o f log-transformed 

constituents c = {log(Chl), log(bbP(555)), log(agd(440))} was simulated by the following 

calculation (Dowell et al. 2000):

Ci= m c+yu Ui + y 2[U 2  +  Y3 i £ ^ 3  i = l,...,N  (3.9)

where m c is the mean vector, and {U ^ Ui, U3} are the three eigenvectors o f the 

covariance matrix calculated from in situ log-transformed constituent data for each 

optical type; {yn, 7 2 1 , 7 3 *} are three independent normally distributed random variables

with zero mean and standard deviation equal to 1 realized by a computerized pseudo

random number generator.

The correlations among the constituents have been included in these simulations 

to avoid combinations that are highly unlikely to occur in a realistic marine environment. 

In preliminary work, not reported here, we did run simulations with uncorrelated input 

variables, but the performance results were much worse for all three methods compared 

with the results shown here. We believe that it is necessary for semi-analytical inverse 

modeling practices to include realistic covariance structures among optically-active 

constituents so that true assessments o f performance can be made.

For each optical water type described above, a set of simulated vectors C = [Chi, 

agd(440), bbp(555)] with the ensemble size o f N=10,000 was first generated and then used 

to obtain simulated ocean color signals, i.e. Lwn(A,), by running the forward model
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through Eqs. (3.3-3.7). To consider the effect o f noise on inversions, noise-contained 

L'wn(^) signals were generated by adding 5% spectrally-independent random errors to 

noise-free signals Lwn(A.) to simulate noisy ocean color signals. In addition, we generated 

a second independent dataset o f 10,000 samples which was used for training the PCA and 

ANN methods. Both the noise-free and noise-contained simulated ocean color spectra 

were then inverted by the three inversion techniques under consideration to obtain

retrieved vectors C  that were then compared with the “true” C vectors for inversion 

performance assessments.

Statistical measures of inversion performance

To compare the inversion performance of the three methods, three error measures 

were adopted. They are the root mean square error (RMSE) defined by

S {log i0[Cj] -  loSlo[Cj]>-RMSE (3.10)

the mean error (bias) defined by

ZOogiotCjl-log^Cj]} (3.11)

*y * ,1
and one minus the squared correlation coefficient ( 1  -  r )  where Cj and Cj refer to the j 

retrieved and “true” constituent, respectively.
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3.3 Results

3.3.1 Simulated and real constituent distributions

The means o f the three constituent-related terms generally increase from type 1 to 

type 4 (Figure 3.2, Tables 3.2a-b). The exception is that the mean o f agd(440) for type 3, 

the absorption-dominated Case 2 water type, is slightly higher than that o f type 4. The 

variances o f the three constituent terms for types 2 and 3 are much higher than the others. 

The in situ measurements clearly show that there exist co-variation among the three 

components, but the degree o f correlation is type-specific. It has been well accepted that 

the correlation among the three optically active constituents can be regarded as a 

significant indicator o f the bio-optical complexity o f the waters. As expected, the 

correlation levels among the constituents are generally higher in water types 1 and 2  

(Case 1 waters) than those for types 3 and 4. There is almost no correlation between 

chlorophyll concentration and bbp(555) for type 4, strongly suggesting there is a 

significantly independent non-algal particulate component contributing to the particle 

backscattering. Likewise, chlorophyll and agd(440) for type 4 are nearly uncorrelated, 

indicating the origins o f absorbing agents (CDOM or detritus) are different from the 

phytoplankton.

The simulated log-normal constituent concentration distributions o f [Chi], 

[bbP(555)], and [agd(440)] are shown in Figure 3.3, where they are compared with the 

distributions in the in situ data. The correlations among the three simulated variables are 

demonstrated in Figure 3.4. The means, variances and covariances o f the simulated 

constituent concentrations mimic those of the in situ measurements, although their ranges 

are slightly different (Figures 3.3 and 3.4).
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3.3.2 Inversion performance comparison

The statistical results of inversion performance measures are shown graphically in 

Figures 3.5 and 3.6. Table 3.3 gives the details o f the statistical measures o f inversion 

performance.

Inversion performance for noise-free signals

The inversion performance with respect to noise-free ocean color signals (blue 

bars in Figure 3.5) measures the inherent ability o f the three inversion methods to solve 

the complex nonlinear bio-optical inverse problem with which we are dealing. The NLO 

inversion method had arbitrarily small retrieval errors for the three constituent retrievals 

for all four water types. The ANN method had nearly the same result, clearly indicating 

that both inversion methods are capable o f retrieving the constituent concentrations from 

noise-free ocean color signals and are inherently “perfect” for modeling the inverse 

problem of the semi-analytical bio-optical model. In contrast, the concentration retrievals 

by the PCA method had large errors, and thus are inherently unable to solve the inverse 

problem even for noise-free ocean color signals. Thus for the PCA inversion algorithm, 

the underlying assumption of a linear relationship between the ocean color signals and 

the log-transformed concentrations is inherently incorrect.

Inversion performance for sisnals containing noise

The inversion performance diminished significantly for the NLO and ANN 

methods when a 5% noise was added to the signal (red bars in Figure 3.5). In the 

presence o f noise, these two methods were not much better (and sometimes worse) than
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the PCA method. The ANN inversion performed better than the other two methods in 

nearly every situation.

The effect o f  water type on inversion performance

In general, the inversion performance for all three methods is best for type 1, and 

degrades towards type 4 which had the worst inversion performance. This is more 

apparent in the 1-r2 criterion than in RMSE measures (Figure 4.6). The inversion 

performance for the PCA method apparently depends more upon the range of the 

optically-active constituent concentrations to be retrieved than upon the actual level. For 

instance, PCA inversions perform very well for type 1 in which the ranges o f the three 

concentrations are small and least energetic. For this water type, its performance is 

comparable with those o f the other two methods, and actually gives a better retrieval 

accuracy than NLO. For types 2 and 3, the PCA inversion performance was significantly 

worse than the others. Presumably this is because type 2 and type 3 exhibit much wider 

concentration ranges, indicating the inability o f the linear PCA inversion to deal with 

such a large range of concentrations.

For type 4, all three inversion methods apparently found difficulty in solving the 

inverse problem to retrieve the constituent concentrations with a good performance. This 

point is most noticeable from the 1-r2 values seen in Figure 3.6. The values o f r2 are 

significantly lower in type 4 waters compared with those of the other three types.

Information content (sisnal) vs. noise

Even for the best skilled inversion method, performance will depend largely on 

the presence and level of the signals o f optically-active constituents contained in ocean 

color data. For realistic (noisy) ocean color data, noise apparently masks the signals and
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thus affects inversion performances. In fact, the effect o f noise contamination differs in 

the three constituent retrievals. Among the three optically-active constituents to be 

retrieved, [Chi, bbP(555), agd(440)], our simulations consistently show that the best 

performance is for the retrieved bbP(555), and the worst is for the retrieved [Chi], The 

simulated signals representing chlorophyll concentration are relatively weak and thus are 

most significantly affected by noise, while signals from bbP(555) are strong and least 

affected.

3.4 Discussion and Conclusion

In the present study, we evaluated the ability of three fundamentally-distinct 

inverse methods (NLO, PCA, and ANN) to retrieve optically active constituents from 

simulated ocean color data. A complex non-linear bio-optical system was simulated by 

semi-analytical ocean color models with three-component IOPs related to three optically- 

active constituents. A simulation scheme was implemented to simulate waters o f different 

bio-optical complexities and to see how differently the inversion methods perform with 

respect to optical water type. Independent datasets were generated to train the PCA and 

ANN algorithms. We then applied the three inverse methods to simulated testing datasets 

to objectively compare their inversion performance. Among the three inversion methods, 

this study shows that they have distinct weaknesses and strengths.

The advantage of the NLO inversion method is that it directly seeks a match 

between an observed ocean color spectrum and a forward-modeled spectrum (based on 

underlying physical principles). Once a solution is found successfully, we can say that the 

forward model being used is able to interpret the measured ocean color. Our simulations 

show that the NLO method itself is “perfect” in interpreting noise-free data. In addition,
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its implementation is relatively easy. Ongoing improvements or modifications o f the 

forward model can be implemented and easily tested since no training is necessary. 

Therefore, the NLO method is a good tool for validating a forward model from an inverse 

point of view. However, finding the “true” solution is not easy in practice because there 

are various errors contained in the ocean color data (noisy data). Our simulation shows 

that NLO inversions are very sensitive to noise, particularly for highly complex water 

types where the bio-optical property signal is low relative to the noise. The minimized 

cost function in Eq.(Al) represents just a minimum error spectrum between a forward 

modeled y((A,), C) and measured L(A,) spectra. If noise contained in L(A.) significantly 

contaminates the signals representing C  to be retrieved, then (1) a non-convergent failure 

may occur, or (2 ) a solution may converge to a local minimum “noise-contaminated” 

solution that is quite different from the true solution. Therefore, the NLO method faces a 

serious issue that its inverse solution is not stable. Table 3.4 gives the number o f non- 

convergent cases and the CPU time for inverting 10,000 simulated spectra for all the 

types. With the increasing complexity of the bio-optical environment, NLO required 

more time for completing its inversion (busy in searching) and leads to more non- 

convergent failures. A better selection o f initial values might improve this situation. In 

this study, we simply selected the type-specific mean o f C as an initial guess. In practice, 

other smarter selections have been proposed, such as using empirical algorithms to create 

the first guess to improve its inversion performance. Another major weakness for NLO is 

that its computational load is substantially high (Table 3.4), and thus it becomes 

unrealistic as an operational algorithm. We admit that more advanced NLO-like 

algorithms such as the genetic algorithm (Zhan et al., 2003) may overcome some o f the
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weaknesses mentioned. The GA claims itself superior to conventional NLO algorithms in 

the sense o f finding global minima, but the topic is beyond this study. At any rate, more 

efficient inversion algorithms, such as PCA and ANN methods, are needed in terms of 

improving both computation speed and solution stability.

As shown in this simulation study, the most significant weakness for the PCA 

inversion method is its assumption o f an underlying linear relationship between optically- 

active constituents in C and the ocean color spectral signals. This assumption is 

inherently false, although a logarithmic transformation applied to the elements o f C likely 

has accounted for some nonlinear behavior. However, for cases with a limited range of 

variability and lower values o f the optically-active constituents, the linear assumption is 

an excellent approximation. This was demonstrated with the type 1 results in which PCA 

inversions gave a comparable performance with the other two, and was even superior to 

the NLO method. A notable advantage of the PCA method is that its inversions are much 

less sensitive to noise. The reason may lie in the PCA’s ability to suppress the effect of 

noise by neglecting some principal components with low information content. In 

addition, the PCA inversion has no convergence issues as exist with the NLO method, 

and its computation load is very low in both training and its applications.

In this simulation study, the ANN inversion method exhibited its powerfulness in 

dealing with the complex nonlinear ocean color inversion problem to retrieve the three 

in-water constituents. Among the three inversion methods under scrutiny, it should be the 

first option for solving ocean color inverse problem in many respects. As shown, the 

ANN inversion method overcomes most o f the weaknesses and disadvantages which the 

other two methods possess, but possesses advantages the other do not have. ANN is
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inherently capable o f inverting noise-free ocean color signals to retrieve concentrations as 

perfectly as NLO. It is less sensitive to noise than NLO. Its inversion solution is very 

stable and fast. Some attention must be paid to the ANN inversion method during its 

implementation and applications. It is important to remember that the ANN inversion 

algorithm is data-dependent (quite empirical) although the usage o f semi-analytical 

forward models for simulations makes it hold more direct physical meaning in 

comparison to an ANN algorithm trained strictly with measured data.
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Appendix: A brief description of the three inversion algorithms

A.I. Non-Linear Optimization (NLO)

Given a measured ocean color spectrum L(A,j) at a set o f discrete wavelengths as 

well as a parameterized forward model minimize a so-called cost function:

M

O(C) = |][L(>.j) - / ( C , 0 a j)]! (A.l)
j

by adjusting the inversed constituent concentration vector C iteratively to a convergent 

value Cc so that the forward-modeled ocean color spectmm f lC c,® (\)) represents the

measured color L(k) with an overall minimum error spectrum where j= l..M ( number of

spectral bands) for this case. The Gauss-Newton NLO algorithm was selected in this 

work (Garver and Seigel, 1997; Feng et al., 1998; Moore et al., 2001).

A.2. Principal Component Analysis (PCA)

The fundamental assumption for the PCA inversion algorithm by Krawczyk et al.( 

1997, 1999) is that any constituent concentration to be inverted is represented by a linear 

combination o f the spectral signals of an ocean color measurement, that is

M

lo g .o C C .^ lX L j+ r , (A.2)
j=l

/V
where Ct is the estimate o f the i (=1,2,3 for this study) constituent concentration; Ky is 

the weight o f the j th (=1..M where M=5 for this study ) spectral band for the ith 

concentration; L, is ocean color signal at the j th band; Tj is the offset for the ith 

concentration. Note that in this algorithm a log-transformed logio(C), rather than original 

C, was applied to concentration component to account for the “notorious” non-linear
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behaviors between the optically-active constituents and the ocean color spectral signals. 

Eq. (A.2) is essentially a multiple linear regression model. In applying a simulated (or 

measured) bio-optical dataset to Eq.(A.2), the weights and offsets for each constituent 

can be obtained in terms o f the least square principle along with PCA essence, including 

to compute the dimensionality o f the spectral data and to suppress noise in the spectral 

signals by ignoring some principle components with low signal contents.

A. 3. Artificial Neural Network (ANN)

The most commonly-used neural network architecture, called feed-forward 

multiplayer perceptron (MPL), was chosen for this study. The neural network consists o f 

a system of fully-interconnected nodes under an architecture that is organized by layers 

with an input layer, an output layer and one or more hidden layers between input and 

output layers (Krasnopolsky, 1995 and Nabney, 2001). Each layer consists of a number 

of nodes. The input layer has as many nodes as the number o f inputs (=M) and brings 

ocean color signals to be processed into a NN system. The output layer has as many 

nodes as the number o f outputs (=number o f constituents to be inverted). The number of 

hidden layers and the number o f nodes in hidden layer(s) needs to be given in advance to 

construct an ANN architecture. In the layers (except the first input layer), each node is 

composed o f two parts: a linear summation function and a nonlinear function. The linear 

portion of a node is a weighted combination o f its inputs. If  a node has N inputs 

(k = l.. ..N), the linear part is to transform input Lk to a linear combination Yj at node i as 

the form of
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Y - f w ^ + B *  (A3)
k=l

where Wki is the weight which associates input node k  with node i, Bj is the bias 

associated with node i. In the hidden layer that right follows the input layer, N = M( # of 

spectral bands). In any following layer, N is # o f nodes o f its parent layer. Once Yj is 

formed in a layer, a nonlinear so-called activation function g  is applied to generate an 

output Cj at node i, given by Q  = g(Yj). The hyperbolic tangent sigmoid function was 

selected for transfer function g. In the output layer, C, is the concentration to be inverted 

(i=1...3).

The Levenberg-Marquardt optimization algorithm was applied for a so-called 

back-propagation training. An ANN training actually is to minimize mean square error 

between the data used for the training and ANN outputs by iteratively adjusting the 

weights and biases. To properly select an architecture o f the ANN used, there has been no 

theory that shows the best architecture. For this application, an empirical testing was 

completed by using six two-hidden-layer architectures with the noise-contained data of 

Type 1 to evaluate their performance (Figure A l). The architecture #3 (bold ) was finally 

selected. The chosen AAN consists the input layer with 5 nodes (number o f spectral 

bands), two hidden layers with 7 nodes in the first and 5 nodes in the second, and the 

output layer contained 3 nodes (number o f constituent concentrations to be inverted). The 

Neural Network algorithm available in MATLAB (Mathworks, 1998) was adopted for 

the implementation of the proposed NN inversion.
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Figure A .l. The overall training errors against epochs for testing ANN 
performance using six two-hidden-layer architectures with the noise- 
contained data for the optical type 1. The numbers o f neurons in the first 
and second hidden layers for the 6 tested architectures are shown in the 
legend. The architecture #3 (bold) was finally selected.
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Table 3.1. Parameters o f IOP submodels in Eqs. (6-8) for the four optical water types. 
Parameters are listed in column 1, units in column 2, and values for each spectral band in 
columns 3-8.

Parameters Units 412nm 443nm 490nm 510nm 555nm
ROM None 1.92 1.92 1.92 1.92 1.92
M(7.) None 0.5375 0.5373 0.5398 0.5390 0.5390
Fo(X) Mw/cm2/|im 171.7 189.2 194.4 187.5 185.9

Type 1

Ac(X) rrf1 0.0313 0.0393 0.0274 0.0180 0.0071

B c( l ) None 0.717 0.6599 0.639 0.740 0.966

Y m'1 2
S nm'1 0.018

Type 2

Ac(X) m* 0.0272 0.0385 0.036 0.0109 0.0036

Bc(^) None 0.699 0.608 0.518 0.818 0.952

Y m l 2
S nm'1 0.016

Type 3

Ac(X-) m 1 0.023 0.0464 0.035 0.0104 0.0047

Bc(A.) None 0.7442 0.558 0.543 0.831 0.963
Y m 1 1
S nm‘* 0.014

Type 4

Ac(A) m'1 ........ " 0.0256 0.0433 0.033 0.01168 0.00452

Bc(X) None 0.718 0.567 0.569 0.800 0.97118

Y m 1 0.5

S nm’1 0.011
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Table 3.2a. The type-specific statistics ( ranges(min,max), means, standard deviations, 
correlation matrixes) o f the three constituent concentrations [Chi, bbP(555),agd(440)] in a 
10-base logarithmic scale for the four water types in terms of the insitu measurements.

Chi bbp(555) agd(440) Chi bbp(555) agd(440)

Type 1 Type 2

Min -1.4202 -2.8233 -2.4020 -1.2596 -2.8032 -1.9771

Max -0.2757 -1.9995 -1.1295 1.6871 -1.4646 -0.2899

Mean -0.8797 -2.4766 -1.6838 0.0088 -2.1218 -0.9678

Std 0.1994 0.1215 0.1900 0.5137 0.3095 0.3386

Correlation
matrix

Chi 1 0.6799 0.5517 1 0.8009 0.6927

bbp(555) 1 0.9086 1 0.9386

agd(440) 1 1

Type 3 Type 4

Min -1.2441 -2.8920 -1.9009 -0.4277 -1.8413 -0.9973

Max 1.5873 -1.4205 0.1542 1.5495 -1.0364 -0.1428

Mean 0.3765 -2.0888 -0.6579 0.6960 -1.4594 -0.5982

Std 0.5322 0.3014 0.3778 0.5051 0.1631 0.1832

Correlation
matrix

Chi 1 0.7665 0.5847 1 0.3999 -0.0221

bbp(555) 1 0.8933 1 0.7046

agd(440) 1 1
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Table 3.2b. The type-specific statistics (ranges(min,max), means, standard deviations, 
correlation matrixes) o f the three constituent concentrations [Chi, bbP(555),agd(440)] in a 
linear scale for the four water types in terms of the in situ measurements.

Chi bbp(555) agd(440) Chi bbp(555) agd(440)

Type 1 Type 2

Min 0.0380 0.0015 0.0040 0.0550 0.0016 0.0105

Max 0.5300 0.0010 0.0742 48.65 0.0343 0.5130

Mean 0.1459 0.0035 0.0228 2.1139 0.0096 0.1400

Std 0.0670 0.0010 0.0105 4.0294 0.0071 0.0998

Correlation
matrix

Chi 1 0.7057 0.5866 1 0.5571 0.3149

bbp(555) 1 0.9255 1 0.9224

agd(440) 1 1

Type 3 Type 4

Min 0.0570 0.0013 0.0126 0.3735 0.0144 0.1006

Max 38.66 0.0380 1.4263 35.44 0.0920 0.7198

Mean 4.7809 0.0102 0.3119 8.6579 0.0371 0.2762

Std 6.4796 0.0069 0.2762 8.6617 0.0136 0.1278

Correlation
matrix

Chi 1 0.4671 0.1618 1 0.1942 -0.1991

bbp(555) 1 0.8301 1 0.7390

agd(440) 1 1
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Table 3.3. Statistical performance measures o f the three inversion methods for the four

water types. Units are decodes o f logarithm.

RMSE Bias r2 RMSE Bias r2

Type 1 noise-free noise-contained

NLO Chi: 0.000 0.000 1.00 0.282 -0.041 0.34
bbp555: 0.000 0.000 1.00 0.035 0.000 0.92
agd440: 0.000 0.000 1.00 0.053 -0.004 0.93

PCA Chi: 0.089 0.000 0.80 0.133 0.002 0.55
bbp555: 0.013 0.000 0.99 0.029 0.000 0.94
agd440: 0.022 0.001 0.99 0.043 0.000 0.95

ANN Chi: 0.001 0.000 1.00 0.123 0.004 0.62
bbp555: 0.010 0.000 0.99 0.023 0.000 0.96
agd440: 0.006 0.000 1.00 0.038 -0.001 0.96

Type 2

NLO Chi: 0.000 0.000 1.00 0.258 -0.017 0.80
bbp555: 0.000 0.000 1.00 0.096 0.005 0.92
agd440: 0.000 0.000 1.00 0.088 0.006 0.94

PCA Chi: 0.167 0.003 0.89 0.270 0.003 0.72
bbp555: 0.109 0.003 0.88 0.129 0.003 0.83
agd440: 0.118 0.004 0.89 0.130 0.004 0.86

ANN Chi: 0.005 0.000 1.00 0.203 -0.000 0.84
bbp555: 0.003 0.000 1.00 0.082 -0.001 0.93
agd440: 0.004 0.000 1.00 0.077 -0.001 0.95

Type 3

NLO Chi: 0.000 0.000 1.00 0.221 -0.002 0.83
bbp555: 0.000 0.000 1.00 0.115 -0.003 0.85
agd440: 0.000 0.000 1.00 0.106 -0.002 0.92

PCA Chi: 0.246 0.005 0.79 0.281 0.005 0.78
bbp555: 0.177 0.000 0.66 0.186 0.000 0.63
agd440: 0.183 0.002 0.77 0.188 -0.003 0.76

ANN Chi: 0.011 0.000 1.00 0.175 -0.002 0.89
bbp555: 0.006 0.000 1.00 0.104 0.000 0.88
agd440: 0.008 0.000 1.00 0.097 0.000 0.94

Type 4

NLO Chi: 0.000 0.000 1.00 0.250 -0.002 0.77
bbp555: 0.000 0.000 1.00 0.150 0.011 0.52
agd440: 0.000 0.000 1.00 0.163 0.011 0.55

PCA Chi: 0.208 0.002 0.83 0.238 0.002 0.78
bbp555: 0.010 0.000 0.63 0.125 0.000 0.42
agd440: 0.008 0.000 0.83 0.125 0.001 0.54

ANN Chi: 0.004 0.000 1.00 0.162 -0.001 0.90
bbp555: 0.003 0.000 1.00 0.099 0.000 0.63
agd440: 0.004 0.000 1.00 0.109 0.000 0.64
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Table 3.4. Number o f convergence and CPU time for inverting 10,000 simulated spectra 

using the Gauss-Newton NLO algorithm.

Number o f convergences CPU time in seconds
Case A Case B Case A Case B

Type 1 9905 9789 85.7 92.0
Type 2 9639 9456 120.6 216.6
Type 3 9332 8866 224.0 279.3
Type 4 9256 9186 208.4 118.3
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Figure 3.1. The type-specific mean remote sensing reflectance spectra along with the 

corresponding measured spectra for the four water types.
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Figure 3.2. Scatter plots o f [Chl] vs. [bbP(555)] ( top panel) and [Chl] vs. [agd(440)]

(lower panel) for four optical water types using in-situ optically-active constituent 

concentrations. The regression lines are also shown.
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Figure 3.3. Simulated optically-active constituent distributions (3D lognormal 

assumption ) for the four optical water types. The red lines overlaid represents the 

corresponding distributions o f the in-situ datasets.

76

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



0

1

o>
■3

•4 0■2 2

&O)o

1

0

D>
O)

■2

■3
■4 •2 0

0
log(chl) log(bbp(555)

-2
-3 -2 -1 0 

log(ag<1(440)

-2 0 2 
log(chl) log(bbp(555)

- 2 - 1 0  1 
l°9(agd(440)

-2 0 2 
log(chl)

o 

-1 

r2

-3 

-4

-2
l°g(bbp<555)

-2 -1 0 
l09<agd(440)

......

....

-2 0 2 
log(chl)

1

0

•2

■3
■4 •2 0

3

2

2 1 
a ,

f  0 
-1 

-2

l°9(bbp(555)
- 2 - 1 0  1 

l°9(agCj(440)

Figure 3.4. Scatter/density plots o f the simulated in-water constituent concentrations 

used for forward model simulations for Case A for the four optical water types, showing 

the correlation levels among the three constituent concentrations [Chl, bbp(555), and 

agd(440)].
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Figure 3.5. Inversion performance plots o f root mean square error (RMSE) for all the 

four optical water types and three inversion methods. The horizontal dash line represents 

the 50% relative error level.
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Chapter 4 Modeling spectral reflectance of optically complex 
waters using i n  s i t u  bio-optical measurements in Tokyo bay (to

be submitted to Remote Sensing of Environment by Hui Feng, Janet W. Campbell, Mark 
Dowell and Timothy S. Moore)

Abstract

This study presents an approach for optimally parameterizing a reflectance model. 

A parameterization scheme is realized based on a comprehensive bio-optical data set, 

including subsurface downwelling and upwelling irradiance spectra, absorption spectra of 

particle and dissolved substances, as well as chlorophyll and total suspended matter 

concentrations at 45 stations near Tokyo Bay between 1982 and 1984. The irradiance 

reflectance model is implemented with three-component inherent optical property (IOP) 

submodels.

In this parameterization scheme, an unsupervised classification was applied in the 

hyper-spectral space of reflectance, leading to three spectrally-distinct optical water 

types. The reflectance model was parameterized for the entire dataset, and then 

parameterized for each o f the water types. The three sets of type-specific model 

parameters, which define corresponding IOP submodels, are believed to accommodate 

differences in the optical properties of the in-water constituents. The parameterized 

reflectance model was evaluated by both reconstructing measured reflectance spectra and 

solving for the non-linear inverse problem to retrieve in-water constituent concentrations. 

The model accuracy was significantly improved in the forward direction for classified 

waters over that of non-classified waters, but no significant improvement was achieved in 

the retrieval accuracy (inverse direction). A larger dataset with greater resolution of 

constituent IOPs would likely improve the modeling results.
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4.1 Introduction

Optically active constituents in the upper ocean significantly affect an ocean color 

spectrum (radiance or reflectance) measured at the surface of the water. How do we 

interpret an ocean color spectrum quantitatively to derive the concentrations of these 

constituents? Techniques for constituent retrieval have evolved from empirical (data- 

based) towards analytical (model-based) algorithms over the last decade. Today’s semi- 

analytical algorithms (Lee et al., 1994; Roesler and Perry, 1995; Garver and Seigel, 1997; 

Maritorena et al., 2002; Chomko et al., 2003; Chami and Robiliard, 2002) are based on 

well-established relationships between apparent optical properties (e.g., radiance or 

reflectance) and inherent optical properties (absorption and scattering). The relationships 

between the IOPs and the constituent concentrations are empirically derived, and thus 

these algorithms are said to be “semi-analytical.”

Empirical algorithms (Gordon and Morel, 1983) often focus only on retrieving a 

single constituent concentration, whereas semi-analytical algorithms are capable of 

retrieving three or more in-water constituents simultaneously. For semi-analytical 

algorithms, an inversion technique is usually applied to a parameterized ocean color 

model whose parameters have been predetermined from in situ bio-optical measurements. 

Precise radiative transfer calculations (Gordon et al., 1975 and 1988; Kirk, 1984) have 

provided a solid physical and analytical basis for quantitatively interpreting a measured 

ocean color spectrum as a function o f the IOPs, that is, absorption and backscattering 

coefficients. The constituent-specific IOPs can be related to constituent concentrations 

through corresponding IOP submodels.
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Morel and Prieur (1977) pointed out that a successful reconstruction of 

reflectance spectra (direct problem) is a necessary condition for solving the 

corresponding inverse problem. In other words, only if  a parameterized reflectance model 

can reconstruct measured reflectance spectra to a satisfactory accuracy will it be possible 

to invert it precisely for retrieving in-water constituents. However, this condition is 

necessary but not sufficient. An ideal ocean color model must be optimal for both direct 

(describing the light environment in terms of in-water constituent concentrations) and 

inverse (retrieving constituents from an ocean color spectrum) solutions.

For the past decade, considerable progress has been made towards understanding 

the relationship between absorption coefficients and chlorophyll concentration (Garver et 

al., 1994; Bricaud et al., 1995 and 1998; Reynolds et al., 2001). In these studies, the 

absorption o f living phytoplankton and total particulate matter are modeled with a 

chlorophyll-dependent parameterization scheme that accounts for the non-linearity of 

absorption with chlorophyll. However, the residual errors in modeling phytoplankton and 

particulate absorption are large when a single model is applied to the global dataset 

(Bricaud et al. 1998). It is suggested that more detailed models may be needed to 

describe spatial and temporal variations in the size and structure of phytoplankton species 

and other particulate matter.

In coastal and estuarine waters, in-water constituents, such as suspended inorganic 

particles and colored dissolved organic matter (CDOM), become optically significant 

along with phytoplankton in affecting the optical properties. For the CDOM absorption 

spectrum, a Spectral “slope” parameter, S, is often used to describe the spectral shape of 

the CDOM absorption coefficient. It has been reported that S varies within a very large
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range from about 0.004 to 0.032m'1 in surface waters (Bricaud et al., 1981; Carder et al., 

1989; Yodacek et al., 1997; Kowalczuk, 1999; Salisbury et al., 2004). These studies have 

shown that S varies spatially and sometimes temporally, also suggesting that a single 

spectral model o f CDOM absorption may not be adequate to describe its variability if 

applied to a large geographical domain. Compared with absorption measurements, 

backscattering measurements of suspended particulate matter have been much less 

studied mainly due to the limitation of commercial instrumentation. Until recently, few 

measurements o f backscattering by suspended matter have been reported (Whitlock et al. 

1980; Galie and Murtha, 1992; Bukada et al., 1995; Maffione and Dana, 1997). For 

backscattering measurements from different oceanic, coastal and inland waters, Bukata et 

al. (1995) indicated that backscattering has significant locality and seasonality.

Optical properties vary for two primary reasons: variations in the concentrations of 

constituents in the water, and variations in the materials themselves, e.g., variations in the 

size and refractive index o f particles. An ocean color model parameterized for one set of 

optically active constituents should be able to describe optical variability due to varying 

concentrations of those constituents. Such a model could then be inverted successfully to 

retrieve the concentrations. But the same model might prove unsuccessful if  applied to 

an ocean color spectrum from waters having different constituents.

In all, special consideration must be given to develop a modeling strategy to apply 

a parameterized ocean color models properly to different water environments. In this 

work, we demonstrate an optimal approach to model spectral reflectance based on an in 

situ bio-optical dataset measured near Tokyo Bay from different seasons. The 

performance o f the parameterization scheme was evaluated by both reconstructing
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reflectance spectra and solving the inverse problem to retrieve in-water component 

concentrations.

4.2 Methods

4.2.1 Data

The bio-optical dataset used for this study was obtained from 45 stations in Tokyo 

Bay and nearby regions from 5 cruise surveys in different seasons between 1982 and 

1984 (Kishino et al. 1984; Kishino, 1994). The measurement sites ranged in depth from 

1000m in clear open-ocean waters to less than 5m deep in very turbid coastal waters. The 

Secchi disk depth records, compared with corresponding physical depths, indicate that 

bottom reflection effects need not be considered in the ocean color modeling.

The dataset used consisted of

• subsurface irradiance reflectance spectra calculated as the ratio o f upwelling to 

downwelling irradiance measured just below the surface,

• total absorption and CDOM absorption coefficients, and

• total suspended matter [TSM] and chlorophyll-a [CHL] concentrations.

Absorption measurements were made between 350 nm and 750nm at a 5-nm spectral 

resolution. Underwater upwelling and downwelling irradiances (and hence irradiance 

reflectance) were measured between 362nm and 762nm with a 2-nm resolution, and 

subsequently converted to a 5nm spectral resolution by linear interpolation. This work 

focused only on the spectral range between 400nm and 700nm. The CDOM absorption 

coefficient at 375nm, ay3 7 5 , was used as a surrogate for CDOM concentration.
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4.2.2 Models

Reflectance model

An irradiance reflectance model by Gordon et al. (1975) for deep waters

b „ 0 ,j)
R ( M  = I n

2

L
k=0

(4.1)
_a(A,,j) + bb(A.,j)

was used where R(7,,j), bb(A.j) and a(I,j) are irradiance reflectance just beneath the 

surface, backscattering and absorption coefficients, respectively, measured at wavelength 

X and at site j; is a set of expansion coefficients where for solar angle <=~20° (referred

to as sun case), jo =0.0001, y/ =0.3244, and j 2 =0.1425; and for solar angle =>~30°

(referred to as sky case), yo =0.0003, y; =0.3687, and y2 =0.1802;

In-water bio-optical models

In general, IOPs can be expressed by

a(X,j) = a w (A,) + Ia .(A ,,j)
1 (4.2a)

bb(A,,j) = bbw(X.) + Z b bi(A,,j) (4.2b)
i

where aw(A,,j) and bbw( I j )  are absorption and backscattering coefficients for seawater; 

and ai(X j )  and bbi(A.,j) are the absorption and backscattering coefficients for the ith 

optically-active constituent.

After various trial plots were made of constituent-dependent a(X,j) and bb(A,,j) 

against constituent concentrations, the spectral absorption and backscattering coefficients 

in Eqs.(4.2a) and (4.2b) were finally modeled as
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a(A, j) = a w (A,) + a* (A)[CHL] + a y 3 7 5  exp[-S(A -  375)] 

t>b (K  j) = b bw (A) + b bp (A)[TSM] (4.3b)

(4.3a)

where the values of aw(A) and bbw(A) were taken from Pope et al. (1997), and a p (A) and

b bp(A) are the constituent-specific absorption and backscattering coefficients defined for

particles and total suspended matter by:

a^(A) = A c(A)[CHL]Bc ^  

b;p(A) = A b(A)[TSM]Bb ^ (4.5)

(4.4)

The third term in Eq(4.3a) is the CDOM absorption coefficient. The spectral shape 

parameter, S(j), was determined from each measured CDOM absorption spectrum, and 

the average S was used as the model parameter. The second term is the absorption for all 

particles, including phytoplankton, detritus, and all other particles, fitted using a 

logarithmic regression at each wavelength □ (Bricaud et al., 1995, 1998) between the 

particle absorption (obtained by subtracting the absorption contributions from CDOM 

and sea water from the total absorption) and the chlorophyll concentration [CHL],

The second term in Eq. (4.3b) is the backscattering coefficient for the total 

particles, bbp(A). Given measured a(A,j) and R(A,j), the total backscattering coefficient 

spectrum, bb(A,j), was calculated by solving Eq.(4.1) for this term (Gordon et al. 1975), 

and then the water backscattering, bbw(A), was subtracted to obtain the “measured” bbp(A) 

spectrum. The bbp(A) model was then parameterized as a function of [TSM] using a 

logarithmic regression at each wavelength A.
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4.2.3 Parameterization and evaluation

A set of model parameters was first derived from all the measurements, and then 

an unsupervised classification was completed in the spectral space o f measured irradiance 

reflectance, leading to three spectrally distinct water types. The IOP parameterization 

procedure was then repeated for each of the three water types. The first model 

parameterization using all the stations will be referred to as the “non-classified” model, 

and the three type-specific model parameterizations as the “classified model.”

To evaluate model performance, two different aspects were considered. For the 

direct problem, a parameterized model should be capable of reconstructing measured 

reflectance to a satisfactory accuracy. For the inverse problem, the model needs to be 

inverted to retrieve in-water constituent concentrations well. Normally, a model is 

parameterized with a subset of available data, and later tested using an independent 

subset of the data. Due to the limited number of measurements (only 45 sites) in this 

work, there was no independent test dataset available. An alternative method, called the 

Leave-One-Out Method (LOOM) (Fukurage, 1990) was adopted for validation.

The LOOM is described here briefly. For an ensemble with N samples, one 

sample is excluded, and the remaining N -l samples (called parameterization dataset) are 

used for model parameterization. The parameterized model is then tested using the 

excluded sample. This operation is repeated N times to test all N samples. Test statistics 

are based on a sample of size N consisting of the N observations and the N model- 

predictions parameterized with the remaining N -l samples. Because each sample in the 

testing dataset is excluded from the dataset used for the parameterization procedure, the 

parameterization dataset is independent of the testing dataset. This method utilizes a
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limited dataset effectively so that all N samples are tested and N -l samples are used for 

the parameterization.

This method was used in both direct and inverse directions to evaluate the 

models’ performance. For the direct problem, N sets of the model parameters were 

calculated using N parameterization datasets, each with N -l samples. For each excluded 

station, the spectra o f a(X), bb(T) and R(A.) were reconstructed using the measured in

water constituent concentrations for that station, and these were then compared with 

corresponding measured spectra. For the inverse problem, a nonlinear optimization 

algorithm, the Gauss-Newton method (Garver and Siegel, 1997; Feng et al. 1998), was 

applied to each excluded reflectance spectrum to derive estimates of the constituent 

concentrations. The nonlinear optimization minimizes the residual error between the 

measured R(A,) and modeled R(A.) with the model parameters derived from the 

corresponding parameterization dataset. The derived constituent concentrations were be 

compared with the measured ones to evaluate the performance o f the inverse model.

4.2.4 Error analysis: performance measures

At site j and wavelength X, let

denote the difference between a modeled variable Xj(A.)and measured variable xj(A-). 

The following statistical measures were used for evaluating model performance. The 

mean error (or bias) defined by

A

D J(X) = x j ( X ) - x j (X) (4.6)

A

(4.7)
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the standard deviation of the error defined by

^ E ( D j ( A ) - M ( \ ) ) 2 , (4.8)

and the root-mean-square error defined by

RMSE(^) = V s2 (T) + M 2 (T) . (4.9)

In addition, the correlation coefficient between measured and modeled variables was also 

used to reveal the degree of correspondence of the two.

4.3 Results

4.3.1 Constituent concentrations

Tokyo Bay may be considered moderately eutrophic according to the criteria of 

eutrophic status in an aquatic ecosystem (Bukata et al., 1995). Its chlorophyll

concentrations [CHL] are high, showing considerably large variations with a mean value

of about 5 mg/m and a standard deviation of 6.3 mg/m . Most o f the observations are

3 3 »below 10 mg/m , but an extreme value of 35 mg/m was measured. Concentrations of 

CDOM were very high with high variations as well. The absorption coefficient for 

CDOMs at 375nm, ay3 7 5 , varied between 0.2 and 0.5 m '1. The total suspended matter 

concentrations [TSM] were relatively low with a mean of 1.6 g/m3 and a standard 

deviation value of 1.25 g/m3 (Table 4.1).

All three optically-active components (i.e. [CHL], [TSM], and ay3 7 5 ) covary 

moderately with positive correlation. In particular, the covariance between [TSM] and 

[CHL] suggests that biologically-generated particles are a significant component o f the 

total suspended matter.
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4.3.2 Non-classified waters

Originally, all 45 measurements were used to parameterize the reflectance model 

and then reflectance spectra were reconstructed using the measured constituents and the 

derived model parameters. The correlation coefficient spectra between measured and 

reconstructed absorption, backscattering and reflectance are shown in Figure 4.1(a). Both 

modeled backscattering and absorption coefficients were correlated quite well with 

corresponding measured ones. The former was higher than 0.6, and the latter was higher 

than 0.8 at all wavelengths. However, the correlation between measured and modeled 

reflectances was not satisfactory, particularly in the middle spectral region. The error 

plots for the modeled a(X), bbp(A.) and R(A,) (Figure 4.1(b)-(d)) showed that the spectral 

shape of the R(A.) errors mimics that of bbP(X) with the highest RMSE errors in the middle 

spectral region. The estimates of R(A.) were also somewhat biased in the middle spectral 

region. This result suggested that the variability in backscattering was not described well 

by a single model o f bbP(X).

4.3.3 Classified waters

An unsupervised classification algorithm (Moore et al., 2001) was then applied to 

the spectral space of reflectance to classify the waters. This resulted in the identification 

of three optical water types. The concentration ranges for the three water types (Figure

4.2) indicate that water types 1, 2 and 3 correspond, respectively, to moderate, high, and 

low concentrations o f all three in-water concentrations. In essence, the classification led 

to a sorting of the stations relative to the concentrations of optically-active constituents. 

The measured R(A-), a(A-), bbp(A.) for the three types are shown in Figures (4.3), (4.4) and 

(4.5), respectively.
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For type 1. the irradiance reflectance peaks around 500-580nm with a relatively 

wide spectral domain (Figure 4.3). A second maximum appears at 685 nm where the 

chlorophyll fluorescence emission occurs. The values o f [CHL], [TSM] and ay 3 7 5  are all 

moderate. This water type exhibits the highest reflectance values among the three types. 

For type 2. the reflectance amplitudes are generally lower than those o f type 1 (Figure

4.3), with the peaks shifting towards 560-580nm. The corresponding absorption plots 

(Figure 4.4) indicate that strong absorption from CDOM and phytoplankton in this water 

type significantly affect the spectral characteristics of reflectance in the spectral region 

below 530nm. Above 530nm, the effect o f absorption agents diminishes, and particle 

backscattering (Figure 4.5) along with water absorption takes more responsibility for the 

reflectance properties. For type 3. the overall reflectance levels (Figure 4.3) are 

considerably lower than those of the other two types. The exception is that its reflectance 

spectra are relatively higher in the range below 480nm where CDOM and chlorophyll 

absorptions usually play a significant role. Due to the low concentrations o f CDOM and 

chlorophyll in this water type, the reflectance spectra are affected mainly by sea water 

and detritus, and are thus relatively high in the spectral region below 480nm.

4.3.4 Modeled IOP spectra

For the three water types, three sets of IOP model parameters i.e. AC(L), BC(L), 

Ab(X), Bb(L), and S, were estimated. All the IOP spectra can be predicted using these 

parameters in accordance with equations (4.3-4.5). In this section, a comparison of these 

parameters and predicted IOP spectra among different types is presented.
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CDOM absorption spectra

The mean and standard deviation of the spectral shape factor S for CDOM 

absorption were 0.0147 and 0.0024, respectively, based on the 45 stations. There was no 

significant difference of S factors among the three water types.

Particle backscattering spectra

The specific backscattering coefficient for particles was modeled as a nonlinear 

power-law function o f the total suspended matter [TSM] given by equation (4.5). The 

Ab(A.) parameter spectrum describes the amplitude, and Bb(A) ^  0 indicates a nonlinear 

relationship between particle backscattering and [TSM]. This implies that the particle- 

specific backscattering coefficient changes at different [TSM] concentrations. Bb(A) = 0 

would mean that the amount o f backscattering per unit [TSM] is constant. Results are 

shown in Figure 4.6(a-b).

Ab(A.) spectra are significantly different in the three water types over most of the 

spectral range. The values in Ab(A) decrease in order from type 1 to 3 at all wavelengths 

in Figure 4.6(a). For types 1 and 2, Ab(A) peaks in the spectral region between 480nm and 

580nm, consistent with those in reflectance. For type 3, Ab(A) values generally decrease 

with increasing wavelength.

Negative values in Bb(A) for all three water types indicate that an increase in 

[TSM] leads to a decrease in bbP (A,). Below about 600nm, no significant differences in 

Bb(A) can be seen in Figure 4.6(b), whereas above 600nm, the distinction can be seen 

among the three water types. A general spectral pattern is that Bb(A) increases from 

450nm to 600m for all three water types, and then above 600nm, type 3 remains the 

“most nonlinear” (i.e., is more negative) while the type 2 Bb(A) gets close to zero.
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The bbP*(X) and bbp(A-) spectra derived using the mean [TSM] values o f the three 

water types are plotted in Figure 4.7. The spectral patterns o f backscattering for types 1 

and 2 are very similar, having the same spectral pattern as those o f chlorophyll-bearing 

particles (Bukata et al., 1995). Backscattering per unit [TSM] (i.e. bbp*(^)) is higher for 

type 1 than for type 2 even though the mean [TSM] for type 2 is higher. This may be due 

to the fact phytoplankton-associated particles are the dominant component in the total 

suspended matter [TSM], The spectral pattern of backscattering for type 3 resembles that 

for inorganic particles which is commonly modeled with a power-law decay with 

wavelength (Galie and Murtha, 1992; Bukada et al., 1995).

A possible explanation for the non-linear change of bbP with [TSM] is that the 

particle size distribution or the index o f refraction o f particles changed with 

concentrations. According to Mie scattering theory, both o f them would influence 

backscattering properties significantly.

Particle absorption spectra

The particle-specific absorption coefficient spectrum was modeled in accordance 

with equation (4.4). Like the backscattering model, the wavelength-dependent parameters

AC(L) and BC(L) describe the amplitude and nonlinear relationship between a p(L) and

[CHL], respectively. A general spectral pattern of AC(L) for the three types (Figure 4.6(c)) 

is that a spectral increase is observed particularly from 600nm to 400nm, due to the 

contribution o f the absorption from phytoplankton and organic particles, such as detritus. 

The difference in the amplitude value AC(X) between types 1 and 2 is probably not 

significant, whereas the amplitude for type 3 is lower than those o f the other two models. 

The difference within the red absorption band is slight among the three types. Negative
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values in BC(A.) for all the three types indicate a general trend o f the a p(A.) values

decreasing with increasing [CHL]. The general spectral patterns of BC(A.) parameters are

very similar for all three types (Figure 4.6(d)).

♦
The spectra of ap (A.) and a p(A) estimated using mean [CHL] values o f the three

types are shown in Figure 4.7. The spectral patterns o f all the water types are similar, 

generally in agreement with previously published work (Bricaud et al. 1998). Again due 

to the absorption contribution from detritus and other organic particles, the spectral 

increase in absorption below 550nm is noted. For types 1 and 3, the amount of absorption 

per unit [CHL] is of the same magnitude although they have different mean [CHL] levels 

o f 2.96 and 1.22 mg/m3, respectively. For type 2 waters, with the highest chlorophyll

concentrations, the specific a* (A,) spectrum is more like that of large, highly packaged

phytoplankton (Bricaud et al., 1995) with lower amplitudes than the other two.

4.3.5 Modeling performance

Forward direction

Using the type-dependent model parameters, the reflectance spectra were 

reconstructed for all 45 measurement stations. A composite plot comparing the 

reconstructed reflectance spectra with measured reflectance spectra for all the stations is 

shown in Figure 4.8. For most of the stations, there was good agreement between 

reconstructed (modeled) and measured reflectance. In some of the stations, however, 

errors were still high.
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The modeling performance was quantitatively evaluated using both the 

correlation coefficients and error spectra between modeled and measured R(A-), a(A,), and 

bbp(X). Compared with Figure 4.1(a) (from non-classified waters), Figure 4.9(a) 

(classified waters) shows that the correlation coefficient levels in modeling R(X) for this 

parameterization scheme are above 0.6 at all wavelengths, and thus significantly 

improved after the classification. Figure 4.7(b-d) show that the overall improvement in 

accuracy of modeling reflectance R(A.) is mainly attributed to the improvement in 

modeling bbp(X) by classifying the waters. The estimates o f R(A, , a(A,), and bbp(A,) are 

almost unbiased in all the spectral regions (Figure 4.9(b-d)).

Inverse direction

The nonlinear optimization algorithm was applied to the reflectance spectrum 

from each station, and the derived concentrations were then compared with the measured 

concentrations to assess the performance of the inverse model. Table 2 gives the overall 

evaluation statistics for the inverse problem, where the bold font indicates an 

improvement after classification. According to Table 2, the accuracy was the highest in 

predicting total suspended matter concentrations, but there was no improvement in the 

predictive capability of [TSM] by using classified-water models. The CDOM absorption 

(i.e., ay3 7 5) was predicted with the worst success among the three concentrations. Using 

classified-water models, the RMS and bias errors were significantly lowered, indicating 

an improved capability in predicting ay 3 7 5  using classified-water models. The chlorophyll 

concentrations were predicted with a moderate accuracy. Using the classified-water 

models, the chlorophyll retrievals were slightly improved over the non-classified-water 

models.
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On another aspect, without using classified-water models six negative values of 

ay 3 7 5  were retrieved, all belonging to water type 3. Such negative values are physically 

meaningless (and were not included in the error analysis). After using the classified-water 

models, only four negative values were predicted. In this sense, the classification of 

waters resulted in an improvement for the inverse model.

4.4 Discussion

The poor performance of the model parameterization in the forward direction 

using all 45 stations suggested the requirement to improve the accuracy of the IOP 

submodels. To achieve improved accuracy in modeling reflectance spectra, one way 

would be to resolve more constituents. For instance, the particulate backscattering 

coefficient might be modeled with two (or more) components to account for scattering by 

organic and inorganic suspended matter, instead of using only the one-component model 

we used in this work. Particulate absorption could also be modeled with more component 

submodels. Two-component (organic and inorganic) IOP submodels should be able to 

describe optical variability more precisely and thus improve the model accuracy. But this 

requires a more comprehensive bio-optical dataset in which the concentrations of organic 

and inorganic particles are measured separately. Due to the limitations of the dataset 

being used, an optical classification o f waters was adopted in an effort to improve the 

accuracy o f the model parameterization. The results from using type-related models 

indicated an improvement in the forward modeling o f IOPs and reflectance (Figures 4.1 

and 4.9).
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In our opinion, the classification strategy is objective and practical for remote 

sensing applications because it needs only reflectance (or radiance) spectral information 

without the need of any in situ information, such as IOPs and concentrations. Reflectance 

or radiance spectra are derived directly from ocean color remote sensing measurements 

after atmosphere correction. In a real application, we are able to use remotely sensed 

reflectance spectra to identify which water type a pixel in an image belongs to based on 

some statistical recognition method, and then look up a proper bio-optical algorithm 

available for that water type from a multiple-algorithm database. Such a database may 

include a variety of optical-type-specific (spectrally-distinct) models that have been pre

parameterized with in situ bio-optical measurements taken over a region or globally. In a 

recent paper, Moore et al. (2001) demonstrated a robust fuzzy logic approach to select 

and blend water-type specific bio-optical algorithms.

The classified-water model parameterization scheme did achieve an improvement 

in reflectance model accuracy, particularly in the forward direction, but there were 

significant errors remaining for the inverse problem. A close look at a station with 

significant underestimation in [CHL] helps explain this result. Three different reflectance 

spectra are plotted in Figure 4.10. The measured spectrum (red-solid ) is dramatically 

different from the forward-predicted spectrum (black-dash-dot) that was derived using 

measured constituent concentrations in the model. The “NLO-inversed” spectrum (blue 

dash) shows the “best fit” spectrum derived from the non-linear optimization algorithm. 

This algorithm was applied to the measured reflectance spectrum to obtain the “retrieved” 

concentrations shown on this figure. If the NLO routine were applied to the forward- 

predicted spectrum, it would retrieve the measured values exactly. But due to inaccuracy

97

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



in the forward model, a high uncertainty exists in the concentration retrievals. It is 

evident that the uncertainty in parameterizing IOP submodels (the forward reflectance 

model) can propagate to concentration retrievals with a high uncertainty. In other words, 

the uncertainty in forward modeling results in the inverse model (algorithm) having very 

large errors.

4.5 Conclusions

In this work, an approach is presented to parameterize an irradiance reflectance 

model in terms of IOP submodels that are non-linear functions o f associated constituent 

concentrations. An unsupervised classification applied to the spectral space o f reflectance 

resulted in three spectrally-distinct water types with distinct constituent concentrations. 

Three type-dependent models were parameterized on the basis o f different constituent- 

dependent IOP submodels. The parameterization scheme was evaluated by both 

reconstructing measured reflectance spectra and by solving the non-linear inverse 

problem to retrieve constituent concentrations. The modeling performance in 

reconstructing reflectance spectra (forward problem) was higher for classified-water 

models than for non-classified water models. However, there was no improvement in the 

inverse problem of retrieving constituent concentrations from an observed reflectance 

spectrum.

It is believed that the approach of first classifying waters based on reflectance 

spectra and then parameterizing models for the different optical water types is still a valid 

strategy. This allows one to use relatively simple models (as described in section 4.2.2) 

to describe optical variability within a homogeneous water type. Differences between
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water types may be due to differences in the nature of the materials in the water, which 

would call for a different parameterization. For example, the water types may differ with 

respect to phytoplankton populations, the source of the CDOM and hence differences in 

the spectral slope parameter, and different mineral particles or suspended sediments. The 

disappointing results from this study are in part due to the lack of information about the 

constituents in the water, and the small sample size. A more thorough evaluation o f this 

parameterization scheme would require a large comprehensive bio-optical database with 

detailed information about the nature o f the particles and dissolved materials affecting the 

water color.
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Table 4.1. Basic statistics of in-water constituent concentrations in Tokyo Bay, 

including chlorophyll a ([CHL] in mg/m3), total suspended matter ([TSM] in g/m3), and 

colored dissolved organic matter (CDOM) absorption at 375nm (ay 3 7 5  in m '1).

m ax m in m ean Std

Tokyo Bay (total 45 stations)

[CHL] 34.480 0.2500 5.0982 6.2971
[TSM] 6.4000 0.1000 1.6142 1.2480
ay375 1.0229 0.0553 0.3545 0.2179

Type 1 (16 stations)

[CHL] 7.3800 1.0600 2.9588 1.9523
[TSM] 2.8000 0.2900 1.4694 0.7869
%375 0.7084 0.1568 0.3216 0.1457

Type 2 (18 stations)

[CHL] 34.480 1.5300 9.3694 8.0906
[TSM] 6.4000 0.6700 2.3939 1.4296
ay375 1.0229 0.2218 0.5104 0.2184

Type 3 (11 stations)

[CHL] 2.9600 0.2500 1.2209 0.8842
[TSM] 1.0000 0.1000 0.5491 0.2727
ay375 0.2246 0.0553 0.1471 0.0576
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Table 4.2. Statistics o f retrieval errors for constituent concentrations [CHL] (mg/m3), 

[TSM] (mg/1) and ay3 75 (in m '1). The leave-one-out method (LOOM) was used so that 

the data being retrieved are independent from the data used to parameterize the models. 

Bold font indicates an improvement o f the classified-water model over the non-classified 

model.

For classified waters

M S RMSE r

[CHL] -1.0553 4.6760 4.7936 0.7137
[TSM] 0.0377 0.8315 0.8324 0.8187
% 375 0.2469 0.7600 0.7991 0.6838

For non-classified waters

M S RMSE r

[CHL] -1.7169 4.5852 4.8961 0.7543
[TSM] 0.0133 0.7736 0.7737 0.7914
a y375 0.4558 1.0583 1.1522 0.7063
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Figure 4.1. Performance measures for the model parameterized with all the data, (a) 

Correlation coefficient spectra between modeled and measured reflectance (solid line), 

non-water absorption (a-aw = apy, dashdot line), and backscattering (dashed line). Bias, 

Std, and RMSE errors for modeled (b) R(A,), (c) a(A,), and (d) bbp(A,).
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Figure 4.2. Box plots of the detailed concentration ranges of chlorophyll [CHL] (Upper), 

total suspended matter [TSM] (middle), and CDOM absorption coefficient at 375nm, 

ay3 7 5  (lower) for all 45 stations, and for type 1, type 2, and type 3 stations. Open circles 

and star signs are for maximum and minimum, respectively. The boxes indicate the 

variation ranges defined by one standard deviation, and lines in the boxes indicates the 

mean values.
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Figure 4.3. Measured irradiance reflectance spectra for the three water types as 

indicated. Dash lines are the in situ observations, and bolded solid red lines are the mean 

spectra.
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Figure 4.4. Measured absorption spectra for the three water types as indicated. Dash 

lines are the in situ observations, and bolded solid red lines are the mean spectra. Note 

that different vertical scales are used in the individual panels.
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Figure 4.5. “Measured” backscattering spectra for the three water types derived by 

solving equation 4.1 for the backscattering coefficient. Dash lines are the in situ 

observations, and bolded solid red lines are the mean spectra. Note that different vertical 

scales are used in the individual panels.
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Figure 4.6. Averages of the parameter spectra: (a) Ab(L); 0>) Bb(A.), (c) AC(A,), and (d) 

BC(L) for three water types. Solid lines stand for type 1; dotted lines stand for type 2; 

dash dotted lines stand for type 3). Note that these are the average spectra derived from 

the N parameter sets by leaving one station out (see LOOM method in text).
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Figure 4.7. Examples of IOP spectra calculated from the means of [TSM] and [CHL] for 

each type: (a) Particle-specific backscattering spectra, (b) particle backscattering spectra, 

(c) particle-specific absorption spectra, and (d) particle absorption spectra.
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Figure 4.8. Comparison of measured reflectance spectra (solid curves) with reconstructed 

spectra (dashed curves) for stations in all three water types.
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Figure 4.9. Performance measures for the models parameterized after classifying the 

stations into 3 water types, (a) Correlation coefficient spectra between modeled and 

measured reflectance (solid line), non-water absorption (a-aw -  apy, dashdot line), and 

backscattering (dashed line). Bias, Std, and RMSE errors for modeled (b) R(k), (c) a(A,), 

and (d) bbp(k).
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Figure 4.10. Comparison of the measured (red-solid) reflectance spectrum for a type-2 

water station with the forward-predicted spectrum (black-dash-dot), and the “best fit” 

(blue-dash) irradiance reflectance corresponding to the retrieved constituent 

concentrations. The measured and retrieved concentrations are also listed. The forward- 

predicted spectrum was obtained by using the measured concentrations in the type-2

model.
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C hapter 5 Summary, significance and future research 

5.1 Thesis summary

For almost three decades, ocean color remote sensing has entered in a stage 

aiming to model more bio-optically complex coastal or Case 2 waters from simple open 

oceanic or Case 1 water. It is not just because the quantitative interpretation o f Case 1 

waters has been in a mature operational phase so that more attentions have shifted to 

Case 2 waters, but there also have existed scientific desires to grasp more synoptic 

marine bio-geo-chemical products from space for various applications in the 

oceanographic, environmental and ecological researches. Ocean color modeling efforts 

are centering on to precisely estimate three major optically-active constituents from 

ocean color measurements. Many challenges are being faced in this arena. This 

dissertation generally addresses some critical issues to be studied in view of the inverse 

problem.

In chapter two, a general simulation approach was proposed to demonstrate how 

to quantitatively characterize in-water optically-active constituent retrieval errors induced 

by uncertainties in individual parameterized IOP submodels. Significant finding in this 

part of study is that precise knowledge of spectral shapes of IOP submodels configured in 

a semi-analytical forward model is critical for precise constituent concentration retrievals, 

pointing to one o f the potential avenues of improvement for the next generation ocean 

color inverse algorithms.

Having recognizing the “notorious” non-linearity o f the ocean color forward 

model, various statistical inversion techniques have been proposed and applied for 

solving the ocean color inverse problem to retrieve optically-active constituents. In
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chapter three, three fimctionally-distinct inversion techniques including nonlinear 

optimization (NLO), principal component analysis (PCA) and artificial neural network 

(ANN) were compared to test their math skills and to assess their inversion performance 

to retrieve optically-active constituents for a complex non-linear bio-optical system 

simulated by a semi-analytical ocean color model. In order to simulate different bio- 

optical complexities o f waters from Case 1 to Case 2, a well-designed simulation scheme 

was implemented, and then the three inversion methods were applied to these simulated 

datasets for performance evaluation. The advantage o f NLO is that its inversion lies 

directly on a forward ocean color model, and holds a “clear” physical meaning. On the 

side of disadvantage, its inverse solution is not stable and its computational load is high. 

The PCA inversion algorithm is based on the assumption that the linear combination 

between constituent components (logarithm-transformed) and ocean color spectral 

signals. Within a limited ranges and with lower values of optically-active constituents, 

our simulations show that such the linear assumption is an excellent approximation to the 

nonlinear problem, giving a comparable inversion performance with the other two 

methods. In addition, PCA possesses the capacity o f suppressing the effect o f noise on 

inversions. ANN exhibits its powerfulness in solving the complex nonlinear ocean color 

inverse problem. ANN generally overcomes most o f the weaknesses and disadvantages 

the other two methods possess.

Finally (chapter four), an approach is presented for optimally parameterizing an 

irradiance reflectance model configured with a three-component IOP submodels by using 

a dataset of bio-optical measurements made at 45 stations in the Tokyo Bay and nearby 

regions in different seasons between 1982 and 1984. The measured irradiance reflectance
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spectra show they are seasonally and spatially highly variable in their spectral pattern. An 

initial parameterization attempt based on all the 45 measurements to find a single 

parameterized model showed a quite poor performance in reconstructing reflectance 

spectra (forward problem), suggesting that a single parameterized forward model cannot 

represent the highly varying bio-optical environment. Therefore, we proposed a new 

parameterization scheme by which an unsupervised classification was first applied to the 

spectral space o f irradiance reflectance, leading to three spectrally-distinct water types 

that clearly vary from Case 1 to Case 2. In effect, the application o f this classification to 

reflectance spectra leads to a sorting of in-water concentrations arranged in order o f the 

mean values and variations o f in-water optically-active constituents. The reflectance 

model was then parameterized for individual classified optical water types. As a result, 

three sets of the type-specific model IOP parameters were derived, showing that they are 

significantly type-specific. The model validation exhibits that the accuracy was 

significantly improved in parameterizing the reflectance model for classified ( type- 

specific ) waters over for non classified waters for the forward problem (i.e. 

reconstructing the measured reflectance spectra), but the accuracy improvement for 

constituent retrieval (inverse problem) was not significant.

5.2. ^niflcance and future research

For the newly proposed parameterization scheme, we intend to hypothesize that 

parameterizing classified type-specific models can acquire a better performance than 

parameterizing a single model in sense o f both forward and inverse problems. A more 

scientific significance implied in the hypothesis is that spectrally-distinct optical water
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types identified by ocean color (radiance or reflectance) measurements are associated 

very likely with distinct marine bio-optical environments.

In fact, this hypothesis possesses its observational evidence and theoretical basis. 

For bio-optically complex Case 2 waters, their inherent optical properties and hence 

forward models vary spatially and temporally because properties in optically-active 

constituents, such as physical and chemical properties of phytoplankton species and 

inorganic particulate substances (composition and size distribution), vary regionally and 

seasonally. To directly classify ocean color measurements (radiance or reflectance) is 

expected in effect to identify IOPs variations to some degree so that a type-specific 

forward model is adequately used to the IOPs for that type. Our experiment by using the 

Tokyo Bay bio-optical dataset for this newly-proposed parameterization has shown its 

significant success in the forward problem, i.e. reconstruction of the measured reflectance 

spectra although no significant improvement in the corresponding inverse problem solved 

by a NLO algorithm was slightly discouraging. One possible reason is due to be the NLO 

inversion method itself as shown in chapter three that NLO inversion performance is very 

sensitive to noise. Second, the limited dataset may not reach statistically significant 

conclusion for the inverse problem yet.

We believe that this parameterization scheme is very promising. As known, the 

challenge for Case 2 waters lies in no universal forward model available for solving their 

inverse problem. Consequently, one has to depend on various local algorithms. Many 

applications by using locally developed algorithms have been reported, but most of them 

focus only on a very local or limited region as a demonstration for algorithm 

development validation. Even if  many local algorithms have been developed and ready
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for use, a “proper” or “objective” algorithm selection is still a difficulty, for instance, for 

a real global application. What is the criterion for an algorithm switch?

Our proposed parameterization scheme attempts to jump the hurdle. It first 

identifies spectrally-distinct water types based on in-situ measured reflectance spectra, 

and then parameterizes them to derive type-specific forward models. Once optically 

type-specific algorithms are developed, a robust fuzzy logic method (Moore et al., 2001) 

can be used to objectively select proper algorithms and statistically blend algorithm- 

retrieved in-water concentrations by comparing the similarity o f a remotely-sensed 

reflectance spectrum to the type-specific reflectance spectra on which the forward models 

are based. However, more work is really required to test the new parameterization 

scheme. Particularly, we need a large bio-optical database for a solid validation.
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