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ABSTRACT

THE ROLE OF FRONTAL CORTICAL-BASAL GANGLIA CIRCUITS IN 

SIMPLE AND SEQUENTIAL VISUOMOTOR LEARNING.

by

Kathleen R. Bailey 

University of New Hampshire, September, 2004 

Imaging, recording and lesioning studies implicate the basal ganglia and 

anatomically related regions of frontal cortex in visuomotor learning. Two 

experiments were conducted to elucidate the role of frontal cortex and striatum in 

visuomotor learning. Several tasks were used to characterize motor function 

including: a visuomotor reaction time (VSRT) task, measuring response speed and 

accuracy to luminance cues; simple stimulus-response (S-R) learning, measuring 

VSRT improvements when cues occurred in consistent locations over several 

trials; and a serial reaction time (SRT) task measuring motor sequence learning. 

SRT learning was characterized by incremental changes in reaction time (RT) 

when trained with the same sequence across daily sessions and by abrupt RT 

changes when switched to random sequence sessions.

In experiment 1, rats with excitotoxic lesions in primary (M1) or secondary (M2) 

motor cortex, primary and secondary (M1M2) motor cortices, medial prefrontal 

cortex (mPF) or sham surgery were tested on these tasks. Cortical lesions slowed 

RT in the VSRT task but did not impair short- or long-term simple S-R learning. 

Cortical lesions increased RTs for the initial response of a 5-response sequence in 

the SRT task that was exacerbated when performing repeated (learned)

ix
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sequences. All groups demonstrated visuomotor sequence learning including 

incremental changes in RTs for later responses in learned sequences that 

reversed abruptly when switched to random sequences.

Rats in experiment 2 were given lesions in dorsolateral striatum, dorsomedial 

striatum, complete dorsal striatum, ventral striatum and sham surgery. Rats with 

ventral striatal lesions were unimpaired on any visuomotor task demonstrating 

shorter RTs than controls on most measures. Dorsomedial striatal lesions 

significantly impaired all VSRT performance measures. Striatal lesions had no 

effect on short or long-term simple S-R learning. Lesions involving dorsomedial 

striatum disrupted initiation of motor sequences in the SRT task. This impairment 

was exaggerated when performing well-learned sequences. Striatal lesions did not 

disrupt the incremental RT changes of later responses in the sequence indicative 

of motor learning. Results suggest that cortico-striatal circuits are involved in 

initiating learned motor sequences consistent with a role in motor planning. These 

circuits do not appear essential for acquisition or execution of learned visuomotor 

sequences.

x
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INTRODUCTION

The acquisition of knowledge occurs through two distinct processes of learning 

and memory; declarative and procedural. Declarative learning and memory 

involves the encoding and conscious recall of facts and explicit events whereas 

procedural learning and memory is characterized by changes in behavior resulting 

from direct experience without reliance on conscious recall (Ackermann, Daurn, 

Schugens, & Grodd, 1996; Graybeil, 1998; Salmon & Butters, 1995). There is 

convergent evidence from research with clinical populations, healthy human 

subjects, non-human primates and other species, suggesting that these processes 

are supported by distinct circuits within the brain.

Research with specific clinical populations has demonstrated preserved 

learning and memory performance on tasks designed to target declarative 

processes while these same populations show impaired performance on 

procedural memory tasks. Alzheimer’s and Korsakoff’s patients suffer profound 

amnesia demonstrating severe impairments in tasks requiring explicit recall of 

previously learned information (e.g. word lists) yet maintain intact performance on 

the serial reaction time (SRT) task designed to assess implicit learning and 

memory performance (Nissen & Bullemer, 1987; Nissen, Willingham & Hartman, 

1989). Classic SRT learning involves pressing buttons on a keypad that 

correspond spatially to stimuli presented on a monitor. Subjects are not informed 

that during some sessions the series of stimuli will occur in a repeating (10-12 

element) sequence. Subjects suffering from Parkinson’s (PD) or Huntington’s (HD)

1
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2

disease, neurodegenerative disorders characterized by compromised basal 

ganglia function, display severe performance deficits on the SRT task with 

relatively preserved function on tasks requiring explicit recall (Dominey & 

Jeannerod, 1997; Knowlton, 2002).

The declarative learning and memory deficits associated with global amnesia 

characteristic of Wernike-Korsakoff syndrome and Alzheimer’s disease can result 

from damage to the hippocampal formation, including adjacent cortices and 

projections from the basal forebrain, the diencephalon including the 

mammillothalamic tract, mediodorsal nucleus and the intralaminar nuclei, or from 

frontal lobe degeneration (Amaral, 1987, Mair, 1994; Zola-Morgan & Squire, 1993). 

In contrast, procedural learning and memory seems dependent on the intact 

functioning of the basal ganglia and associated cortical inputs and outputs 

(Graybeil, 1998; Mishkin, Malamut & Bachevalier, 1984; Salmon & Butters, 1995, 

Packard & Knowlton, 2002).

The caudate and putamen serve as the input structures for the basal ganglia 

receiving their primary input, organized in a topographical manner, from the 

cerebral cortex, such that the integrity of the medial/lateral, dorsal/ventral 

organization is essentially maintained. Alexander, DeLong and Strick (1986) 

specified five, parallel circuits originating in specific areas of frontal cortex, 

projecting through distinct regions of the basal ganglia to the thalamus, with 

primary projections back to their cortical areas of origin. They suggest that 

connectivity between these brain regions provides closed and open pathways for 

communication in each circuit. The closed portion begins in a specific cortical area,
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projects to a specific region within the basal ganglia, on through pallidum and 

substantia nigra which in turn send projections to specific thalamic nuclei and 

finally back to the area of cortical origin. Alexander et al. (1986) propose that these 

basal ganglia circuits account for functional segregation through projections that 

ultimately target the cortical region of origin as well as accommodating functional 

integration by receiving inputs from multiple cortical areas in addition to the 

targeted cortical area of the return loop. The anatomical organization of these 

circuits could facilitate the integration of sensory and motor information critical for 

visuomotor learning.

Analogous cortico-striatal-thalamocortical circuits have been identified in 

primates and rodents. The primate ‘motor circuit’ involves the putamen, which 

receives afferent input from several cortical areas including primary motor, 

somatosensory, premotor and supplementary motor areas (SMA). Projections 

from putamen target ventrolateral globus pallidus then on to the ventrolateral 

thalamic nuclei and then back to the supplementary motor area of cortex 

(Alexander et al., 1986). The motor circuit in the rat involves the dorsolateral 

caudate/putamen (dIC/Pu) complex which receives inputs from the primary (M1) 

and secondary (M2) motor cortices then projects primarily to the entopeduncular 

nucleus (analogous to primate globus pallidus internal, GPi) less substantially to 

substantia nigra pars reticulata (SNr) on through ventroanterior/ ventrolateral 

(VA/VL) and lateral ventromedial (IVM) thalamic nuclei terminating in areas M1,

M2 and parietal somatosensory cortices. The primate ‘limbic circuit’ involves the 

ventromedial region of the caudate, receiving input from lateral orbitofrontal
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cortex then projecting to dorsomedial GPi and SNr then to the medial 

ventroanterior and mediodorsal thalamic nuclei each sending efferents to the 

cortical area of origin. The rat ‘limbic circuit’ includes inputs from medial orbital 

(MO), infralimbic (IL), prelimbic (PrL), agranular insular (Al), and ventral anterior 

cingulate (AC) cortices to ventral striatum, in addition, this region of striatum 

receives projections from other limbic associated structures (e.g. hippocampus 

and amygdala). Projections from ventral striatum target ventral pallidum which 

sends efferents to mediodorsal thalamus. Thalamocortical projections from this 

region demarcate the rat prefrontal cortex. The primate ‘association circuit’ 

includes central regions of caudate and putamen, receiving inputs from prefrontal 

cortical regions, which project to GPi and SNr on to VA and MD thalamic nuclei 

terminating in broad projections to frontal cortex. In the rat this circuit includes the 

inputs from medial prefrontal cortex (mPFC) to dorsomedial C/Pu (dmC/Pu) then 

projections to entopeduncular nucleus and SNr, then on to lateral and medial 

segments of the MD, the VA/VL and IVM, termination sites in cortex include the 

dorsomedial prefrontal cortex (Joel & Wiener, 1994).

The distinction between hippocampal based mnemonic processing and 

learning and memory processes demonstrated through improved skill performance 

is well established (Graybeil, 1998; Gabrieli, 1998; Salmon & Butters, 1995). It 

remains unclear, however, what brain regions are involved in complex skill 

acquisition, refinement, maintenance and expression. Several lines of research 

have attempted to elucidate the contribution of specific brain regions within these 

circuits on tasks associated with procedural learning with conflicting results.
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Positron emission tomography (PET) and functional magnetic resonance imaging 

(fMRI) studies with humans show an increase in regional cerebral blood flow 

(rCBF) in the putamen when complicated sequential finger movements have been 

learned (Seitz, Roland, Bohm, Greitz & Stone-Elander, 1990; Seitz & Roland, 

1992; Ungerleider, Doyon, & Kami, 2002), while other research suggests that the 

putamen is equally active during acquisition of a novel finger sequence and when 

the sequence is well-learned (Jenkins, Brooks, Nixon, Frackowiak, & Passingham, 

1994). Scanning of subjects engaged in rotor pursuit, another measure of 

visuomotor learning, showed a significant increase in relative CBF in the basal 

ganglia during motor execution but not during motor learning (Grafton, Mazziotta, 

Prest, Friston, Frackowiak, & Phelps 1992). It is unclear based on these findings 

what role the basal ganglia play in motor learning.

Clinical populations with degenerative disorders (PD and HD) affecting 

basal ganglia structures provide conflicting results on the involvement of these 

sub-cortical structures in visuomotor learning as well. It was demonstrated in two 

studies examining groups of individuals with basal ganglia dysfunction that 

aspects of general motor performance were disrupted, but subjects with basal 

ganglia lesions demonstrated normal motor sequence learning (Exner, Weniger,

& Irle, 2001, Exner, Koschack, & Irle, 2002). In contrast, Willingham & Koroshetz 

(1993) demonstrated impaired SRT task performance with HD subjects. Yet, 

these subjects were able to demonstrate normal RT improvement across 

sessions when performing a random series of key presses incompatibly mapped 

to the visual cue (one position to the right of the visual cue). This suggests that
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loss of dopaminergic input in to the putamen, in PD subjects affects motor skill 

learning when it involves performing a repeating sequence of visually guided, 

finger presses. However, caudate degeneration in HD subjects does not disrupt 

the ability to improve motor skill performance when finger presses are 

randomized and spatial responses are rule directed instead of under strict visual 

guidance. Another study from the same lab evaluated the ability of HD and PD 

patients to utilize advance information (a cue that signaled the position of an 

upcoming stimulus) to improve RT performance. Results from that study 

demonstrate improvements in RT similar to controls (Willingham, Koroshetz, 

Treadell, & Bennett, 1995). The authors suggest that advanced information could 

improve response speed by facilitating motor preparation, orienting attention to 

the target location or a combination of the two processes.

Other research with subjects suffering HD associated basal ganglia 

dysfunction, demonstrated impaired acquisition of an SRT task learned through 

trial and error (Brown, Redondo-Verge, Chacon, Lucas, & Channon, 2001). In 

contrast, when learning involved the incidental acquisition of the motor sequence 

using the standard SRT design HD subjects were unimpaired. Trial and error 

learning encourages active exploration of each response and the use of working 

memory to maintain a representation of elements within the sequence relative to 

other response elements, eventually leading to an awareness of the sequence. 

HD subjects with caudate degeneration are impaired on this measure suggesting 

that the caudate region and its cortical connections may be more involved with 

the intentional learning of visuomotor sequences.
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A factor that complicates assessing cognitive deficits, in HD and PD 

populations, with tasks that involve motor responding is the persistent motor 

difficulties that characterize the disorders. Dissociating bradyphrenia from 

bradykinesia is particularly valuable in gaining a more complete understanding of 

the role of the corticostriatal system in cognitive aspects of motor learning. Smith, 

Seibert, McDowall, & Abernathy (2001) tested PD patients on a variation of the 

SRT task designed to mitigate motor deficits associated with PD by assessing 

response choices verbally. In this version of the task PD subjects were 

unimpaired on SRT learning. Another study designed to evaluate cognitive 

slowing independent of motor slowing required PD subjects to mentally 

manipulate, in a serial fashion, a visually presented stimulus on a target grid. 

Once subjects had determined the new location of the stimulus on the visual grid 

they provided a verbal response. Investigators varied the presentation speed of 

the instructions used for manipulating the location of the stimulus. As speed of 

presentation increased performance accuracy dropped for both control and PD 

groups. When the groups were matched in performance at the slowest 

presentation speed, however, performance accuracy declined significantly more 

for the PD group than for controls as stimulus presentation speed increased. This 

indicates an additional impairment in cognitive processing that is dissociable from 

deficits in motor task performance (Sawamoto, Honda, Hanakawa, Fukuyama, & 

Shibasaki, 2002).

Often tasks measuring declarative and procedural performance utilize very 

different paradigms making direct comparison and interpretation of performance
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complex. Recently, Willingham, Salidas, & Gabrielli (2002) mitigated this issue 

when they examined the behavioral performance and neural activity associated 

with declarative and procedural learning of the same motor response. Subjects 

performed identical repeating sequences of finger presses. In one condition the 

subjects were aware of the repeating sequence and in another condition the 

identical sequence was presented with an unexpected stimulus characteristic.

The authors used two circles of different colors appearing in one of four locations 

on a monitor to instruct participants to expect a repeating or random sequence of 

locations. Red circles occurred in a specific sequential order while black circles 

indicated that the order was random. Prior to being scanned subjects responded 

to a repeating sequence of red circle locations (explicit-overt condition) and a 

series of black circle locations. The subjects were unaware that some of the 

black circles occurred in a second repeating sequence of locations (implicit 

condition) while others occurred at random locations (random condition). When 

scanning began subjects were also presented with the original red repeating 

sequence of locations however the circles now appeared black (explicit-covert 

condition) indicating to the subject that the order was random. The subjects were 

utilizing the same motor processes to perform the sequence but in one condition 

they had explicit knowledge of the sequence while in the other they did not. Mean 

RT scores for the subjects indicated that explicit-overt, explicit-covert and implicit 

conditions were all significantly faster than the random condition. In addition, 

performance in the explicit-overt condition was significantly faster than explicit- 

covert and implicit conditions which were not significantly different from each
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other. Scanning results indicated that the neural networks activated when RTs 

improve through procedural learning are also active when the sequence has 

been learned explicitly. These areas include (contralateral to the performing 

hand) left Brodmann’s area, left inferior parietal cortex and the right putamen. 

Additional areas are active in the explicit-overt condition including the prefrontal 

cortex. The high degree of overlap in neural activation suggested that 

performance of this visuomotor task incorporated the same neural circuitry 

involved in procedural learning whether the initial learning process was incidental 

or guided by explicit knowledge.

It has been argued that improvements in RT characteristic of motor skill 

learning involves two distinct stages: a fast learning phase typically occurring 

within one training session in a time course of minutes and a second consolidation 

stage that develops in a latent fashion over several hours without additional 

training. This gradual improvement then continues over additional training sessions 

(Kami, Meyer, Rey-Hipolito, Jezzard, Adams, Turner, & Ungerleider, 1998).

Keele (1968) described the process underlying this learning as the formation of 

a motor program; a collection of muscle commands, coordinated prior to the 

execution of the movement sequence and implemented without external feedback. 

The author went on to suggest that preprogramming a series of predictable 

movements would decrease attentional demands and facilitate response speed (as 

cited in Marsden, 1984). Marsden (1984) extended this basic premise suggesting 

that the ability to combine singular motor movements into a complex sequence of 

motor activity involves a series of steps including; preparing the motor program,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

selecting independent motor elements, organizing these into subunits, 

appropriately sequencing the subunits and then initiating the series of motor plans. 

Once the response objective is achieved the motor program is terminated. Support 

for this view is demonstrated by RT improvements of normal subjects completing 

the SRT task. Each individual motor element predicts the subsequent movement 

necessary to progress the response sequence. The repeated linking of the same 

sequential motor elements encourages the formation of a motor plan. Behavioral 

evidence of this process, improvement in the RT for completing the sequence of 

motor responses, may indicate a reduction in the time required to complete some 

or all of the specific movements within the sequence.

One possible explanation for the performance improvements over time 

involves the anatomical organization of the corticostriatal system. Graybeil (1998) 

suggests that the massive convergence of cortical neurons on striatal projection 

neurons, on the order of 10,000 to 1, reflects a convergence of information 

involving sensorimotor associations. In addition each cortical neuron can synapse 

on multiple striatal projection neurons allowing for divergence of information as 

well. The majority of striatal neurons demonstrate context specific, response 

characteristics. They respond only to certain movement sequences or 

remembered stimuli. The activity of tonically active interneurons (TAN’s) in the 

striatum may underlie the gradual learning and subsequent chunking of motor 

subunits into a learned S-R association.

In recording studies with monkeys Aosaki, Kimura, and Graybeil (1995) found 

that as a behavioral response was learned there was a gradual increase in the
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number of interneurons firing. A specific response to a previously neutral stimulus 

initially incorporated a small number of interneurons representing a transient S-R 

association. As the specific S-R association was repeatedly experienced, 

additional interneurons were recruited. These newly recruited interneurons 

demonstrated the firing characteristics of the established interneurons associated 

with the gradually learned S-R behavior. TANs influence the striatal projection 

neurons converging in pallidum (principal outflow of the basal ganglia). Continued 

experience with the S-R association produced a shift in striatal neural activity. 

Specifically, some striatal neurons displayed a temporal shift in their firing pattern 

corresponding to an earlier point in the behavioral trial. This anticipatory firing was 

suggested to coincide with a well-learned task (as cited in Graybeil, 1998).

Recording studies with non-human primates provide support for this view. 

Changes in neuronal firing in the caudate and rostral putamen (association areas) 

correspond to the trial and error acquisition of early stage visuomotor sequence 

learning. While increases in neural firing in more caudal regions of the putamen 

(sensorimotor areas) coincide with later stages when the visuomotor sequence is 

well learned (Miyachi, Hikosaka, & Lu, 2002). Reversible inactivation of these 

same areas on an identical task provided further support for these conclusions. 

Miyachi et al. (1997) temporarily inactivated the anterior striatum or posterior 

putamen and produced impairment in the acquisition of a new motor sequence and 

execution of a well-learned sequence, respectively. To summarize, the authors 

suggested that as a sequence becomes well-learned each two-response motor 

unit was consolidated or chunked into a longer ten-response (hyperset) sequence.
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Monkeys began to anticipate successive responses facilitating response speed for 

well-learned sequences. If the order of the two-response elements within the ten- 

response sequence was altered from the original well learned hyperset sequence, 

response speed resembled that for new hypersets. If this same reordering is done 

during the early learning stage of a new hyperset performance is unaffected (as 

cited in Hikosaka, Nakahara, Rand, Sakai, Lu, Nakamura, Miyachi & Doya, 1999).

Anatomically related areas of frontal cortex have also been implicated in 

processes of S-R visuomotor sequence learning. Monkeys trained to perform 

visuomotor sequence tasks then given muscimol injections (GABA agonist) into 

the presupplementary motor area (pre-SMA) demonstrated increased performance 

errors for new sequences while errors for well-learned sequence sets remained 

stable. Muscimol injections into the supplementary motor area (SMA) produced a 

milder level of impairment (Nakamura, Sakai, & Hikosaka, 1999). Single unit 

recording studies demonstrate increased activity in the pre-SMA cells of monkeys 

performing previously trained motor response sequences. These cells displayed 

preferential firing when a current motor sequence plan was discarded for a new 

motor sequence (Hikosaka, Nakamura, Sakai, & Nakahara, 2002). Other research 

has implicated the premotor area in planning motor responses. Monkeys trained to 

perform a visually guided ready-set-go task displayed increased activity in 

premotor neurons after the signal cue and prior to the intended movement 

suggesting involvement in motor preparation (Weinrich & Wise, 1982). Using 

another instructed-delay task, Crammond & Kalaska (2000) observed similar 

increases in activity of premotor neurons prior to responding.
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In humans, trial and error learning of a button press sequence activated the 

pre-SMA only during the initial visuomotor association pre-SMA activity decreased 

with continued practice of the repeating sequence (Sakai, Hikosaka, Miyachi, 

Sasaki, Fujimaki, & Putz, 1999). Unilateral damage to the SMA in one patient 

resulted in impaired SRT performance and mirror reversed tracking contralateral to 

the lesion (Ackermann et al., 1996).

Functional magnetic resonance imaging (fMRI) studies implicate the 

dorsolateral prefrontal cortex (dIPFC) in addition to the pre-SMA in early stages of 

motor skill learning. When a sequence becomes well-trained neural activity shifts 

from the dIPFC and pre-SMA to parietal areas of cortex (Hikosaka, Miyashita, 

Miyachi, Sakai, & Lu, 1998). Changes in the extent of activation were also noted in 

primary motor cortex with extended practice of a finger opposition sequence (Kami 

et al., 1998). Transcranial magnetic stimulation studies also support a role for 

dIPFC in motor skill learning. Using three variations of the SRT task researchers 

demonstrated that transcranial magnetic stimulation of the dIPFC impaired 

acquisition of motor response learning when the response was associated with a 

location cue. If the response was cued by color alone, or a color / location 

combination cue, motor responding was unimpaired (Robertson, Tormos, Maeda, 

& Pascual-Leone, 2001).

Assessment of sequential motor skill learning in rodents has focused on the 

contribution of the striatum in different maze tasks. DeCoteau & Kesner (2000) 

tested sequence learning in explicit and implicit versions of an eight-arm radial 

maze. Explicit training required rats to make a series of arm entries based on a
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repeating fixed sequence that had been acquired through trial and error.

Awareness of the sequence was demonstrated by increased accuracy of orienting 

responses at closed maze gates across trials. Implicit training involved arm entries 

guided by gates opening as rats approached the center hub indicating the next 

arm entry. The sequence repeated on each trial. Procedural learning was 

demonstrated by decreased latency to reach the reinforcement in each 

subsequent arm. Rats were trained on one version of the task pre- or post- 

surgically to evaluate acquisition and retention. Rats with medial C/Pu lesions were 

unable to acquire the implicit version when trained post-surgically but were able to 

perform at the level of controls when the task was trained pre-surgically. Lateral 

C/Pu lesions did not affect acquisition or retention of the procedural task. Both 

groups demonstrated spared performance of the explicit version of the task.

Results suggest that for acquisition of a sequence of spatial responses in rodents 

intact functioning of the medial C/Pu is necessary.

In another procedural learning task Jog, Kubota, Connolly, Hillegart & Graybeil 

(1999) trained rats to perform in a T-maze and then recorded from ensembles of 

sensorimotor (dIC/Pu) striatal neurons throughout the acquisition and overtraining 

phases. They identified a distinct shift in the pattern of neural activity as the task 

became well-learned. The shift involved increased neural activity coinciding to start 

and goal related behavioral events while neural activity associated with 

intermediate behavioral events decreased across sessions. The authors proposed 

that sensorimotor striatum may form an action template of a well-learned sequence 

of sensorimotor associations. When the initial sensorimotor elements occur it
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triggers the entire sequence of responses associated with achieving the goal as a 

unit.

To further elucidate the role of specific striatal subdivisions in visuospatial 

learning and memory Mair, Koch, Newman, Howard, & Burk (2002) compared the 

effects of excitotoxic lesions of striatum on a visuospatial reaction time (VSRT) 

task involving stimulus guided responding with performance on a delayed match to 

sample lever task that required memory for spatial information from the previous 

trial to guide current responding. A double dissociation for the effects of 

dorsolateral and ventral lesions was observed across the two tasks. Dorsolateral 

lesions increased response latency on stimulus guided responding without 

affecting accuracy or general motor performance while ventral lesions impaired 

performance guided by spatial information retained in working memory. 

Dorsomedial striatal lesions impaired accuracy on the delayed matching task and 

produced a non significant trend of slower choice RT and increased errors on 

VSRT performance. This pattern of impairments suggests that the limbic circuit 

including ventral striatum is important for responding based on information retained 

in working memory while lesions of dorsolateral striatum affected motor 

performance only when a choice of response locations was involved.

The evidence from clinical literature, scanning and lesion studies implicates 

the basal ganglia in the gradual improvements in RT performance associated with 

sequential visuomotor learning. Functional differences have been elucidated 

between ventral (limbic) and dorsal (sensorimotor and association) areas of 

striatum on tasks measuring RT in visuospatial responding and sequential
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visuomotor learning and memory. Anatomical connections maintain some level of 

functional segregation for the frontal cortical projections to striatum and the return 

loops through thalamus. This suggests that the frontal cortex may be another 

region mediating sequential visuomotor learning.

Human studies involving SRT task performance have shown impairments in 

long-term visuomotor learning for patients with Parkinson’s disease (Jackson, 

Jackson, Harrison, Henderson, & Kennard, 1995; Dominey, & Jeannerod, 1997; 

Westwater, McDowall, Siegert, Mossman, & Abernethy, 1998; Knowlton, 2002) 

and Huntington’s disease (Knopman & Nissen, 1991; Willingham, & Koroshetz, 

1993; Brown, et al., 2001) degenerative diseases of the basal ganglia but not for 

focal lesions of the basal ganglia unless cortical dysfunction was also evident 

(Exner, et al., 2002). SRT task performance has been found to be impaired by 

prefrontal cortex (Beldarrain, Gafman, Ruiz de Velasco, Pascual-Leone, Garcia- 

Monco, 2002) and motor cortex lesions (Ackermann, et al., 1996). Functional 

imaging studies have also implicated the cortex (Hikosaka et al., 1998; Kami et al., 

1998; Robertson et al., 2001; Sakai et al., 1999) and striatum (Doyon, Owen, 

Petrides, Sziklas, & Evans 1996; Rauch, Whalen, Savage, Curran, Kendrick, et al., 

1997) in the short- and long-term performance changes demonstrated in sequence 

learning. This evidence suggests a role for frontal cortex in sequential motor 

learning but the specific contribution of different cortical areas has not been 

established.

This study examined the effect of excitotoxic lesions of functionally discrete 

regions of frontal cortex and striatum on short- and long-term simple and
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sequential visuomotor learning. Lesion studies with rats have established a 

functional dissociation between ventral and dorsal regions of striatum with 

additional evidence that segregation of function may distinguish dorsomedial and 

dorsolateral regions (Decoteau & Kesner, 2000; Mair et al, 2002). Similar 

functional specificity has been identified in the frontal cortex of the rat (Bailey & 

Mair, 2004; Pasetti, Chudasama, Robbins, 2002; Muir et al., 1996) with support for 

this view based on anatomical projections to functionally discrete areas of striatum.

Only one previous study has examined sequential visumotor learning in 

rodents with a task that is similar to the human SRT task. Christie & Dalymple- 

Alford (2004) assessed visuomotor sequence learning using a nose poke chamber 

with four response locations. Rats responded to sequences of lit ports for 

intracranial self stimulation reinforcement. Rats with dorsal C/Pu lesions showed 

learning on short (4) response sequences but failed to demonstrate learning on 

longer (8 and 12) response sequences.

Subjects performing the human SRT task respond to a series of individually 

presented cues on a computer monitor. The position of each cue corresponds to a 

spatially aligned key on the keyboard. Typical sessions involve a random 

sequence of 100 cues or a repeating sequence of 10 cues repeated 10 times in a 

session. Subjects are not informed about the repeating nature of some sessions. 

Each repeating session starts at a different point in the sequence making it difficult 

for subjects to detect a start or end point for the repeating 10 elements. A random 

session is followed by a block of repeating sessions (5) and a final random 

session. General task performance is assessed based on changes in the mean RT
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of the entire 10 element sequence in the initial and final random sessions. 

Sequence learning is measured as the change in mean overall RT to complete the 

10 response sequence on the final repeat session with the subsequent random 

session. In addition, the change in mean overall RT to complete the 10-response 

sequence is compared across the repeating sessions as another measure of 

sequence learning.

We have developed a rat analogue of the SRT task that examines the classic 

measures of motor sequence learning: general task performance (improvement 

from one random session to the next), and sequence specific learning (improved 

RTs across repeating sessions and increased RTs when switched from a 

repeating sequence session to a random sequence) using overall RT to complete 

the sequences of responses. Rats were trained to respond to one of five nose- 

poke ports indicated by a luminance cue. A sequence consisted of five serially 

presented luminance cues. Response at a cued port extinguished the light in that 

port and triggered illumination in the next port in the sequence. Response to the 

fifth port in the sequence resulted in the delivery of water (2 - 0.1ml pulses) 

reinforcement. Rats had previous S-R training responding to light cues presented 

at random ports for water reinforcement. Each session consisted of 60 five- 

response trials. Reaction time for each response was recorded. Rats completed 

five training sessions to become familiar with the FR-5 reinforcement schedule. 

Rats completed three blocks of sessions. A block consisted of a random session 

followed by 5 repeating sessions.
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A unique feature of the task design was that performance of each sequence 

was marked by discrete start and endpoints. This provided a means for identifying 

the initial response of the sequence from later elements. One of the hallmark 

features of PD is akinesia, difficulty initiating voluntary movement. Packard & 

Knowlton (2002) suggested that the motor difficulties inherent in basal ganglia 

dysfunction may overwhelm any demonstration of motor sequence learning. The 

ability to dissociate RTs specific to the first response of a learned response from 

RTs reflecting execution of the remaining response elements may identify deficits 

in initiating a motor plan distinct from motor learning.

In addition to the behavioral measures listed above we also used measures 

that tracked changes across each response. The first measure compared median 

RT to complete all five responses in a random sequence to the median RT for the 

entire 5-response sequence in a repeat sequence session. This measure is similar 

to the assessment measures of human performance in the SRT task. In addition, 

changes in the median RT for each response across sessions was also examined 

to elucidate the impact of these changes on the changes observed in the RT for 

the overall sequence.

It was predicted that different patterns of RT responding would be revealed for 

random and repeating sessions based on the adaptive benefit of developing a 

sequence specific motor program. Specifically in repeat sequence sessions, to the 

extent that rats made use of a motor program responding would be facilitated. It is 

expected that initiating a motor program consisting of several response elements 

would increase the RT for the initial response element or elements compared to
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initiating a single motor element. Chunking of subsequent motor elements into a 

cohesive response unit would result in a reduction in RT for later motor elements. 

Random sequence sessions would not encourage development of a specific motor 

plan because prior response locations could not predict future response locations. 

To the extent that initiating a series of five motor responses involves additional 

motor planning than initiating a single response then RTs for the initial response 

element or elements should increase for sessions in which 5 response sequences 

are trained (whether random or repeating). To the extent that a specific learned 

sequence increases demands on motor planning the RT for initial elements should 

be greater for repeated than random sequences.

Short-term learning, a rapid change in RT performance indicative of motor 

sequence learning was assessed by comparing median RT performance across 

blocks of trials in the initial random and repeat sequence sessions. If the targeted 

lesion areas of frontal cortex or striatum were critical for the short-term learning 

anticipated in visuomotor sequence learning then impairment of this measure was 

expected. The effect of these lesions on long-term learning was assessed by 

comparing changes in median RTs across repeating sequence sessions and 

subsequent increases in median RTs when switched to random sequence 

sessions.

Other research has demonstrated that visuomotor sequence learning is robust 

after a gap in training or after interposing a random sequence session (Nissen & 

Bullemer, 1987; Exner et al., 2002). The effect of targeted lesions of frontal cortex 

and basal ganglia on this characteristic of visuomotor sequence performance was
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also examined by comparing two repeating sequence sessions separated by a 

random session. Another factor of interest was the extent to which the pattern of 

RT performance for a learned motor response sequence (e.g. increased RT for 

initial elements combined with improved RT for later elements) was sequence 

specific. A sequence specific motor program would predict that switching to a 

random sequence or a new repeating five-response sequence would disrupt 

performance. Comparing the final session of the original sequence with the 

subsequent random session (R3) and the new repeat sequence (B1) that followed 

addressed these measures.

In experiment 1, the effect of lesions in regions of frontal cortex (mPF, M1, M2 

and combined M1M2) projecting to areas of interest in striatum on the acquisition 

of simple S-R learning and sequence learning was examined. Clinical and imaging 

studies suggest that RT improvement characteristic of motor skill learning, in 

human subjects, occurs within the initial training session. Rapid acquisition 

suggests involvement of executive processes (i.e. attention, working memory, and 

chunking of motor elements) typically associated with cortical function. We 

expected large motor cortex lesions to disrupt speed of responding in a general 

manner across all tasks without affecting the ability to learn the simple S-R motor 

task but possibly impairing the sequential ordering of responses. Premotor cortex 

has been implicated in the acquisition of sequential visuomotor responding and 

chunking of repeating sequential motor elements (Nakamura et al., 1999; Hikosaka 

et al. 2002). We expected M2 lesions to affect the early acquisition and more 

gradual improvement characteristic of simple and sequential visuomotor learning.
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Lesions of mPF have been shown to affect tasks requiring working memory and 

VSRT performance (Porter, Burk, & Mair, 2000; Burk & Mair, 2001; Bailey & Mair, 

2004). To the extent that these processes are important in simple S-R learning and 

sequence learning we expected performance on these tasks to be disrupted.

Experiment 2 tested the effect of striatal lesions on the acquisition and 

expression of simple S-R learning and sequential visuomotor learning. It was 

expected based on cortical connections and previous findings that ventral lesions 

would not affect simple S-R learning or sequential visuomotor learning. Lesions of 

dorsolateral caudate putamen were expected to disrupt response speed similar to 

lesions in anatomically connected regions of motor cortex. The effect of lesions to 

this area on the gradual improvement seen in RT during sequential learning was 

also tested. Dorsomedial caudate putamen lesions were expected to disrupt VSRT 

performance and motor sequence learning. Ventral lesions were not expected to 

disrupt VSRT motor performance or motor sequence learning.
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EXPERIMENT 1: FRONTAL CORTEX LESIONS

Methods

Subjects

For this experiment subjects consisted of 40 male Long Evans rats (Charles 

River Laboratories) eight weeks of age at the onset of behavioral training. 

Subjects were caged singly in a temperature regulated and 12 hour light / dark 

cycle (lights on 7:00 a.m. to 7:00 p.m.) controlled vivarium. Behavioral training 

occurred during the light cycle. During training rats were allowed ad libitum food 

and 30 minutes of water per day at the conclusion of the light cycle. Rats not 

scheduled for training on a particular day were given one hour of water. All 

handling and maintenance procedures for the rats complied with guidelines 

established by the University of New Hampshire’s Animal Care and Use 

Committee.

Equipment

All training and behavioral testing was carried out in operant chambers (Env 

007, Med Assoc., Georgia, V T .) equipped with a five port nose poke response 

wall (Env 115A) at one end and a runway alley with a retractable lever (Env 

215A) directly opposite the response wall. Each response port was equipped 

with an infrared nose poke detector, 6.4 mm diameter yellow stimulus light 

mounted flush on the back wall, and a milled basin in the base of the port for 

dispensing two 0.1 ml pulses of water (solenoid valve - The Lee Company, 

Essex, CT.) as reinforcement. Mounted in the center of the opposite wall was a
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clear polycarbonate covered arm 43L x 17H x 8W cm with a photocell located 

where the arm opens into the chamber. Each chamber was equipped with a 

whisper fan (IMC Magnetics Corp., model no. 4715FS-12T-B20) which served 

the dual function of ventilation and white noise. The experimental chamber was 

contained in a sound insulated, plywood box connected via an interface to a 

remote computer that activated the training programs and recorded response 

data.

Presurqical Behavioral Training

Rats were trained on a standard 5 choice visuospatial reaction task (VSRT) 

in three stages. Rats were initially shaped to a lighted port for reinforcement by 

placing them in the chamber with lights on in all the ports. When they made a 

response (nose poke) into a lighted port, reinforcement (two 0.1 ml. pulses of 

water) was delivered in that port and the light extinguished indicating subsequent 

responses to that port would not receive reinforcement. After receiving water at 

all five ports the lever extended from the opposite wall. The rat pressed the lever 

to initiate the next trial. Each session consisted of 10 trials. After 10 sessions the 

lever was moved to the end of the arm for an additional 5 sessions requiring the 

rat traverse the length of the arm to initiate each trial.

Stage two of the training, consisted often sessions, beginning with a lever 

press illuminating all five port lights. As the rat crossed the photocell at the 

chamber end of the arm four of the lights extinguished while one, selected at 

random by the computer, remained on for the duration of the 3 second response 

window. If the rat responded to the illuminated port (S+) within three seconds it
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received reinforcement, if it failed to respond the light extinguished and the trial 

was recorded as an omission. The final stage of training was identical to stage 

two except that the duration of the light cue (.05, .11, .26, .58, 1.33, 3.0 s) varied 

randomly on each trial. Each session consisted of 96 trials. Rats were required to 

achieve criterion performance levels across three consecutive sessions of 70% 

correct responses averaged across stimulus durations. Once reaching criterion 

they were matched for performance in 8 blocks (five per block) and randomly 

assigned to the four treatment conditions (M1/M2, complete M1, complete M2, 

mPF) or sham controls.

Surgical Procedure

Anesthesia was administered via an intramuscular injection of ketamine (85 

mg / kg) and xylazine (8.5 mg / kg). Rats were positioned in a Kopf stereotaxic 

instrument (Tujunga, CA) with the incisor bar set 3.3mm below the interaural 

plane. Aseptic surgical procedures were followed for opening the skull.

Cortical lesions were produced by infusing 0.1 pi N-methyl-D-aspartate 

(NMDA; 100 mM in phosphate buffer, pH = 7.4) with a 26 gauge cannula using a 

Kopf 5000 microinjection unit at the desired locations (locations in mm, AP 

coordinates relative to bregma, DV coordinates relative to dura). The cannula 

was left at each site for 60s following each injection to allow for diffusion at the 

site. Stereotdxic coordinates for each lesion are listed in Table 1. Sham surgery 

on controls involved the same preliminary surgical procedures as the lesion 

groups without opening the skull.
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Post Surgical Testing

Each group was retrained on stage 2 VSRT (long duration stimulus cue) until 

achieving 95% correct responding across three consecutive sessions or 

completion of 10 total sessions. Rats were then tested for 10 sessions on the 

standard VSRT task. Results provided a measure of the lesion effects relative to 

each group on response accuracy and response speed unique to each treatment 

group.

Upon completion of VSRT training rats began simple S-R learning. Animals 

responded to the same port for seven consecutive trials. Response opportunities 

were initiated with a lever press. Crossing the arm photocell caused one 

randomly selected light to illuminate for 0.05s then extinguish. A response to the 

port within 3.0s received reinforcement. Responses to non-illuminated ports were 

recorded as errors. Responses outside the 3.0s response window constituted 

omissions. The stimulus duration for responses 1, 3, 5 and 7 was .05s. For 

responses 2, 4 and 6 the stimulus light remained on for 3.0s. Simple S-R learning 

was measured as increased accuracy across the 0.05s stimulus presentations. 

Reaction time was analyzed to determine if behavioral performance on this 

measure changed as a consequence of changes in response accuracy.

Any group that had demonstrated impaired accuracy at the briefest VSRT 

stimulus duration would have had difficulty detecting the cue on the brief trials of 

the short-term simple S-R learning task. We analyzed the VSRT accuracy data 

and found no significant [One way ANOVA F (4, 35) = 1.186, p = .3338] difference 

in accuracy performance between the lesion groups and sham controls at the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

briefest stimulus duration. Therefore there was no adjustment in stimulus duration 

necessary to equate baseline performance levels.

Following short-term simple S-R learning rats were trained on two sessions 

of the long-term simple S-R task. Each session consisted of 50 trials in which the 

cued port was randomly selected on each trial. Testing involved one random port 

session followed by five sessions of 50 trials in which the same port was cued on 

each trial. The final session was a 50 trial session of randomly cued ports. Each 

single-port response in this task involved all of the same demands on motor 

execution as the initial response in the rat-SRT task. A difference in median RT 

comparing random port responses to a port that repeated on every trial would 

indicate a benefit for the ability to predict future responses guided by previous 

experience.

Upon completion of the long-term simple S-R training rats were acclimated to 

the reinforcement schedule (fixed ratio-5) of the rat-SRT task. In the initial 

session rats were presented a random sequence of five ports, indicated by a 

luminance cue that remained on until the ariimal responded to the port causing it 

to extinguish and the light in the next port in the sequence to illuminate. Animals 

received reinforcement (2 - 0.1ml pulses of water) when the photocell recorded a 

break at the fifth port in the sequence. Sessions consisted of 60 (5-response) 

trials. Animals initiated each trial with a lever press. When performance stabilized 

(5 sessions) each animal completed one additional session used as a baseline 

measure of RT. Then animals began testing on the repeat sequence sessions. 

These were identical to the random sessions except that the five serial
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responses repeated on every trial and across sessions (e.g. port 3-1-3-5-3). The 

spacing of the response ports in the repeat sequences was equalized to assure 

that faster RTs were not an artifact of shorter distances between successive 

response locations. The average distance between successive random port 

responses was determined to be ~ 1.8 ports this guided the spacing of the repeat 

response sequence. Rats completed five sessions of the repeating sequence. 

Two blocks of this pattern of sessions, one random sequence, five repeating 

sequences were run followed by a third block with a different five session 

repeating sequence to determine whether changes observed in performance 

were sequence specific or reflected a general pattern of responding to a learned 

sequence. We assessed both short- and long-term visuomotor sequence 

learning as well as general improvements in motor response performance. In 

addition we examined individual response elements of random and repeating 

sequence responding to evaluate anticipated differences in the pattern of 

response speed that developed when a response location is predictable versus 

when response location is random.

Behavioral Performance Measures

The effect of frontal cortical lesions on the speed and accuracy of responding 

to a briefly presented visual stimulus was tested in the visuospatial reaction time 

(VSRT) task. Responses were characterized as correct, errors of omission, or 

errors of comission. Accuracy was calculated as correct responses / correct + 

errors of comission. General motor speed performance was assessed as the 

time it took the animal to traverse the runway arm after pressing the lever.
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Choice response speed was defined as the time elapsed between the photocell 

break at the chamber entrance triggering the cued port until the photocell at that 

port recorded a nose poke.

Short-term simple S-R learning measured the ability of an animal to benefit 

from the presentation of stimuli in a consistent location for several consecutive 

trials. Stimulus duration alternated between .05s and 3.0s over seven 

presentations at one port location beginning and ending with .05s durations. 

Previous research has demonstrated that response accuracy to the .05s duration 

when presented at random locations is at chance. If lesions of frontal cortex disrupt 

learning to orient to a stimulus at a repeating location or disrupt visual perception 

of the brief cue performance would be impaired. Tests were conducted on the 

accuracy (correct responses /corrects + errors of commission) and reaction time 

for the brief ,05s stimulus duration presentations.

Long-term simple S-R learning measured the change in reaction time of an 

animal required to respond to a single (3.0s) cued port on each trial within a 

session when demands on attention were minimal. Animals completed one 

session in which the response port changed randomly on each trial followed by five 

sessions of the response port remaining in the same port location for the session 

and a final random session. The motor demands of this reaction time measure 

were identical to the initial response of the sequence learning task and provided a 

comparison of initiating a single response versus a sequence of motor response 

elements.
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The rat-SRT task measured short- and long-term sequence learning. 

Visuomotor sequence learning was assessed through changes in RT on several 

measures. The first measure compared median RT for the entire random 

sequence of motor responses to the median RT for the entire repeating sequence 

of responses. Long-term visuomotor learning was measured as the change in RT 

across repeating sequence sessions. Research involving clinical populations 

consistently report these measures as characteristic of motor sequence learning.

In addition to demonstrating a measurable decrease in RT across repeating 

sequence sessions it was expected that different patterns of RT responding would 

be revealed for random and repeating sessions. Specifically in repeated sessions, 

continued practice with the sequence would encourage the development of a 

motor program linking (chunking) the individual response elements into an efficient 

response unit facilitating performance. Initiating the motor program of several 

response elements was expected to impede RTs for the initial response element or 

elements. Chunking of subsequent motor elements into a cohesive response 

sequence was expected to reduce the RT for later response elements. Performing 

a random series of five responses that changed on every trial would not generate a 

specific motor program as prior response locations would not be indicators for 

subsequent response locations. It was expected however that initiating a sequence 

of five random motor responses would involve motor planning. Therefore, slowing 

in the initial element was also expected for random sequences compared to 

initiating a single response. In addition, the inability to plan future response 

locations based on prior responses would prevent chunking. Slowing across later
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elements of the random sequence compared to the repeating sequence was 

predicted.

To the extent that visuomotor sequence learning is robust it was predicted that 

RT improvements demonstrated in repeating sequence sessions would not be 

disrupted by interposing a testing session of random sequences. By contrast to the 

extent that RT improvements seen in the later response elements reflected a 

sequence specific motor plan it was predicted that switching to a novel response 

sequence would disrupt RT performance, in particular the efficient execution of 

later response elements. The slowing in RT performance for final elements of the 

novel sequence would indicate that the performance benefit of a sequence specific 

motor plan does not generalize to a novel sequence of motor responses.

Short-term motor sequence learning is argued to involve executive processes 

typically associated with frontal cortical function. To determine if short-term 

learning was demonstrated in visuomotor sequence learning RT data from the 

initial random and repeating sequence sessions was divided into blocks of trials 

and examined for signs of RT change consistent with short-term learning.

It was predicted that the complexity of the motor planning needed to initiate a 

series of five motor responses would be greater than the motor planning for a 

single motor response. Increased planning would be reflected in longer reaction 

time for initial responses of a five-response sequence than for initiating a single 

response. In addition, a learned sequence repeating on every trial required a 

specific complex motor plan whereas random five response sequences generated
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a general motor plan to make five consecutive responses without a specific plan 

(Table 2).

Histological Procedure

At the completion of all behavioral testing rats were sacrificed. Subjects 

received anesthesia (100 mg / kg ketamine with 10 mg / kg xylazine) through an 

intramuscular injection followed by transcardiac perfusion of physiological saline 

then 5% (vol / vol) buffered formalin. The brain was removed and submerged in a 

(10% glycerin / 4% buffered formalin) solution followed by 72 hours in 20% 

glycerin / 4% neutral buffered formalin. Frozen tissue was sectioned in the 

coronal plane. Every fifth, 30 pm slice, was mounted and stained with thionin. 

Slides were examined under a light microscope to confirm the location and extent 

of lesion damage.

Results: Experiment 1

Histological Analyses

Infusions of NMDA in cortex produced characteristic neuron loss and glial 

cell influx in all target sites. NMDA infusions targeted, bilaterally, at M1 were 

accurately located in all cases and in most cases damaged all of M1 as 

delineated in Paxinos & Watson (1998). Two animals had lesions that extended 

anterior more than intended damaging M2. The largest of the M1 lesions 

extended from +4.25 mm to 0.5 mm relative to bregma. Typical M1 lesions 

extended from 3.5 mm to -  0.1 mm relative to bregma (Figure 1).

M2 lesions consistently damaged the region medial to M1 although a few 

cases were asymmetrical with some unintended sparing of M2 at the most
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anterior infusion (+ 4.2 mm) site. The AP extent of the largest lesion was + 4.60 

mm to + 0.7 mm anterior to bregma. Most lesions were limited to M2, some 

evidence of M2 sparing occurred at the most anterior coordinate. One animal 

experienced some unilateral damage to M1 as well. A representative lesion of 

M2 extended from + 4.5 mm to +1.05 mm anterior to bregma (Figure 1).

Lesions involving both primary (M1) and secondary motor cortex (M2) 

typically reflected extensive tissue loss and glial cell congregation at the 

perimeter of the lesion. The AP range of the largest M1 M2 lesion extended from 

+ 4.75 mm to + 0.7 mm relative to bregma. Typical M1M2 lesions extended from 

+ 4.0 mm to + 0.4 mm anterior to bregma and were confined to the M1 and M2 

regions (Figure 1).

mPF lesions targeted prelimbic (PrL) and cingulate cortices areas 1 and 2 

(Cg1 and Cg2, respectively). Damage included neuron loss, tissue loss and 

gliosis. Lesions in a few animals extended into anterior regions of M2 sparing 

posterior sections of Cg1 and Cg2. The most extensive mPF lesion ranged from 

+ 4.3 mm to + 0.1 mm relative to bregma, with more typical AP ranges of +3.7 

mm to + 0.35 mm measured from bregma (Figure 1).

Visuospatial Reaction Time (VSRT)

Two measures of VSRT performance were compared across the treatment 

levels. Response accuracy scores improved for all groups as stimulus duration 

increased (Figure 2) This finding was confirmed in a split plot factorial [SPF5.6 

treatment (M1, M2, M1&M2, mPF, control) x stimulus duration (0.05. 0.11, 0.26, 

0.58, 1.33, 3.0s)] ANOVA (Kirk, 1995 p.515). Results indicated no main effect of
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treatment p >.1, a significant main effect of stimulus duration [Greenhouse- 

Geisser adjusted F (3, 82) = 1296.01, p < .0001] and no interaction [F (20,175) = 

.94, p = .531].

Preliminary examination of the reaction time data for all behavioral tasks 

indicated heterogeneity of variance. Median RTs were calculated for each 

session or block within a session to minimize variability. Conservative post hoc 

testing and Greenhouse-Geisser adjusted degrees of freedom for sphericity 

violations were used where convention dictated.

Groups with lesions involving M2 (M1M2 and M2) had slower choice reaction 

time at all stimulus durations. Characteristic of all groups was an improvement in 

reaction time as stimulus duration increased (Figure 3). A SPF5.6 (treatment x 

stimulus duration) ANOVA (Kirk, 1995 p. 515) using correct responses only 

supported these findings. Results showed a main effect of treatment F (4, 35) = 

3.269, p = .022, significant effect of stimulus duration [Greenhouse-Geisser 

adjusted F (2, 67) = 139.24, p < :0001 and a significant interaction [Greenhouse- 

Geisser adjusted F (8, 67) = 2.682, p = .014. One-way ANOVAs performed at 

each stimulus duration with corresponding post hoc testing (Games-Howell a  = 

.05) identified the M2 group as significantly slower responding to cued ports 

compared to controls except at the briefest (0.05s) duration (Kirk, 1995 p 147). At 

the brief duration the M1M2 group was significantly slower than controls.

The groups did not differ on runway reaction time (Figure 4). A one-way 

ANOVA comparing median RT indicated no significant differences (F(4, 35) = 

.912, p = .468) among the treatment levels. These results indicate that lesions of
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mPF and motor cortex lesions do not impair VSRT accuracy or runway RT. All 

lesions slowed responding when a choice was required between alternate spatial 

locations to guide correct responding.

Short-Term Simple S-R learning

Animals were tested on their ability to improve accuracy performance to a 

brief stimulus cue presented in a consistent location. All groups were highly 

accurate and showed little change in accuracy performance responding to the 

3.0s stimulus duration and these findings will not be included in further 

discussion. All groups demonstrated improved accuracy scores across the four 

(0.05s) brief stimulus cue presentations (Figure 5). The analysis [SPF5.4 

treatment x stimulus presentation (4 levels: responses 1,3,5,  7)] yielded no 

effect of treatment [F (4, 35) = 1.889, p = .134] and no interaction with stimulus 

presentation [F(12,105) = .840, p = .609] (Kirk, 1995 p. 515). The main effect of 

stimulus presentation was significant [Greenhouse-Geisser adjusted F (2, 48) = 

70.635, p < .0001].

The reaction time for all groups was unaffected by improved accuracy 

performance. A SPF5.4 (treatment x stimulus presentation) ANOVA confirmed 

this interpretation (Kirk, 1995 p. 515). Results indicated no significant main 

effects [F (4, 35) = 1.870, p = .138 and F (3, 105) = 1.208, p = .310, respectively] 

or interaction (F(12, 105) = .709, p = .739). These results indicate that lesions of 

motor cortex and medial prefrontal cortex do not disrupt the ability to improve 

response accuracy to a brief visual cue occurring in a consistent location. 

Long-Term Simple S-R learning
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Comparisons of group reaction time when responding to a single randomly 

selected port or a single port repeated on every trial indicated that all groups 

responded faster to a single repeated port location, than to an unpredictable, 

randomly occurring port location (Figure 6). Data were analyzed in a SPF5.2 

[treatment x session type (random or repeat)] ANOVA (Kirk, 1995 p. 515).

Results indicated no main effect of treatment F (4, 35) = 2,621, p = .0761 and no 

interaction (F < 1.0). The main effect of session was significant F (1, 35) =

14.945, p = .0005.

Sequential Visuomotor Learning

The effect of cortical lesions on sequence learning was assessed using the 

behavioral measures previously described. Seven animals (two in each of the 

following groups control, M2, and mPF and one M1M2 animal) missed running 

the final repeating sequence session in block two of the original A sequence.

Data from the session immediately prior to the missed session were used to 

replace the missing data points. RT performance on the entire five-response 

repeat session (A10) was compared with RT performance for the subsequent 

random (R3) session. Reaction time to complete five responses of the learned 

repeat sequence was significantly faster than the time to complete five responses 

of the random sequence (Figures 7 & 8, graph 1). Analysis [SPF5.25 (treatment x 

sequence type x response) ANOVA (Kirk, 1995 p. 553)] of the median RTs for 

the five-response repeat (A10) and random sequence (R3) sessions confirmed 

no significant effect of treatment [F (4, 35) = 2.093, p = .1017]. Significant main 

effects of sequence type [F (1, 35) = 21.411, p <.0001] and response [F (4, 140)
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= 22.567, p < .0001]. Two-way interactions, treatment x response and response x 

sequence type were also significant [F (16, 140) = 1.917, p = .0234 and F (4,

140) = 31.426, p < .0001, respectively]. The lack of a significant three-way 

interaction suggested that the differences in response RTs depending on which 

sequence was performed was similar for all groups.

The treatment x response interaction reflected increased RTs for lesion 

groups on the first response in a sequence of responses compared to controls. 

This increase was exacerbated for learned sequences. One-way ANOVAs at 

each response, collapsed on the sequence type (random / repeat), indicated that 

the treatment effect approached significance for response 1 only [F (4, 35) = 

2.403, p = .0683]. The response x sequence type interaction reflected different 

RT patterns of responding for the two sequence types. Specifically for later 

responses (3-5) of the repeating sequence RTs were faster than for later 

responses of the random session. All lesion groups demonstrated slowing in the 

initial responses of the repeating sequence sessions compared to the random 

sequence sessions (Figure 8). The two way interaction response x sequence 

type was examined in one-way ANOVAs for response across the two sequence 

types showed significantly faster RTs on response 1 & 2 for the random session 

[F (1, 39) = 6.913, p = .0122; F (1, 39) = 4.627, p = .0377, respectively] while 

responses 3-5 were significantly faster on the repeat sequence (A) session [F (1, 

39) = 58.168, p < .0001; F(1, 39) = 43.365, p < .0001; and F (1, 39) = 184. 958, p 

< .0001, correspondingly). The analyses of individual responses in the
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sequences provides convincing evidence for learning; faster RTs for later 

elements of learned sequences.

Changes in RTs within the first repeating session were identified as short­

term learning improvements. Trials from the first random and repeat sequence 

session were divided into five blocks of 12 trials. Plotting the median RTs for 

each block indicated that across the blocks of the first random sequence session, 

all groups showed slowing in the first response across blocks of the session and 

slowing in the final response as well. For repeating sessions all groups 

demonstrated slowing across blocks for responses 1 and 2 while improving RTs 

for response 5.

A SPF5.255 (treatment x sequence type x response x block) ANOVA (Kirk 

1995 p. 562) supported these findings. All main effects were significant as were 

the two-way interactions sequence type x response and response x block and 

the three-way interaction sequence type x response x block (Table 3). Separate 

SPF5.55 (treatment x response x block) ANOVAs (Kirk, 1995, p. 553) were run to 

gain insight into the source of the three-way interaction. For the repeated 

sequence session all main effects were significant [treatment F (4, 35) = 3.20, p 

= .024; response Greenhouse-Geisser adjusted F (2, 70) = 19.435, p < .0001; 

and block Greenhouse-Geisser adjusted F (3, 77) = 6.045, p = .003] but there 

were no treatment x within factor interactions. Post hoc testing (Games-Howell a  

= .05; Kirk, 1995 p. 147) confirmed that the M1M2 and M2 groups were slow 

responding to the cued series of ports compared to controls (Figure 9).
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The two-way interaction response x block was also significant [F (5, 143) = 

15.246, p < .001]. One-way ANOVAs for response across the levels of block 

identified the source of the interaction as significant changes across blocks for 

responses 1 [F (4, 156) = 15.035, p < .0001, 2 [F (4,156) = 9.487, p < .0001] and 

5 [F (4,156) = 29.983, p < .0001. Response 3 and 4 showed no significant 

change [Fs < 1.0].

The SPF5.55 (treatment x response x block) ANOVA (Kirk, 1995 p. 553) for 

the random sequence session showed no treatment main effect [F (4, 35) = 

1.782, p = .155]. Within subject main effects of response [Greenhouse-Geisser 

adjusted F (2, 51) = 52.529, p < .0001] and block [F (4, 140) = 3.082, p = .018] 

and the two-way interaction response x block [Greenhouse-Geisser adjusted F 

(9, 309) = 3.002, p = .002] were all significant. One-way ANOVAs for response 

across the levels of block indicated that the interaction resulted from significant 

changes across the blocks of the session for response 1 [F (4, 156) = 5.883, p = 

.0002] and 5 [F (4, 156) = 2.882, p = .0245] only. Both responses slowed 

considerably across the blocks of the session (Figure 10). Responses 2, 3 and 4 

did not change distinctly across the blocks with (ps > .05).

Graphs plotting the change in RT for each response across the blocks of the 

initial random and repeating sequence session highlight the unique pattern of 

RTs characteristic of increasingly predictable motor responses linked to 

repeating response locations and RTs that reflect random motor elements 

generated by random unpredictable response locations (Compare Figures 9 & 

10). Short-term learning (within session) results support and extend the findings
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illustrated by the long-term learning (between sessions) results. In both short- 

and long-term learning RTs for the initial response in a series of responses 

(random or repeat) increased with practice while RTs for the later responses in 

particular the final response slowed in random sequences and improved in 

repeat sequences.

Long-term learning was measured by improvement in RTs across the A1-10 

repeating sequence sessions. Examination of RTs for each response indicated 

that all groups experienced an increase in RT for responses 1 and 2 in the initial 

sessions before stabilizing or improving in later sessions. In contrast later 

response elements, particularly response five, showed consistent improvement in 

RT across sessions demonstrating the incremental improvement associated with 

long-term visuomotor learning. These findings were supported in a SPF5.105 

(treatment x session x response) ANOVA (Kirk, 1995 p. 562). All main effects of 

treatment [F (4, 35) = 2.648, p = .0496], session [Greenhouse-Geisser adjusted F 

(6, 206) = 39.894, p < .0001] and response [Greenhouse-Geisser adjusted F (2, 

55) = 38.748, p < .0001] were significant as was the two-way interaction session 

x response [Greenhouse-Geisser adjusted F (11, 373) = 5.726, p < .0001]. Post 

hoc testing (Games-Howell a  = .05) identified M1M2 and M2 as significantly 

slower responding to a cued port compared to controls. One-way ANOVAs 

examining each response confirmed that there was a significant effect of session 

on all responses (ps < .0001) and no treatment x session interaction (ps > .36).

In addition, for the first response there was a marginally significant [F (4, 35) =
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2.634, p = .0505] effect of treatment. All lesion groups were markedly slower on 

the first response element than the control group (Figure 8).

Comparing performance in sessions A5 and A6 showed little effect of 

interposing training with a random sequence session. Retention of the learned 

sequence is most noticeably reflected in the unchanging RTs for responses 3, 4 

and 5 across the two sessions (Figure 8, graph 1). This demonstrates that effects 

of learning are maintained over 48 hours even when rats are trained to perform 

different sequences in the interim.

To the extent that memory for sequence specific information improved 

reaction time it was predicted that the introduction of a novel sequence would 

disrupt visuomotor sequence learning. Rats displayed a disruption in sequence 

learning when switched from the original sequence to a new five response 

sequence location (Figure 8). A SPF5.25 [treatment x session (sequence A- 

session 10 vs. sequence B-session 1) x response ANOVA (Kirk, 1995 p. 553) 

supported this finding. Results indicated significant main effects of treatment [F 

(4, 35) = 3.665, p = .014], session [F (1, 35) = 54.761, p = .0001] and response 

[Greenhouse-Geisser adjusted F (2, 62) = 30.758]. Post hoc testing (Games- 

Howell a  = .05; Kirk, 1995 p. 147) indicated that RT for the M1M2 and M2 were 

significantly slower than controls. The two-way interactions response x treatment 

[Greenhouse-Geisser adjusted F (8, 62) = 2.515, p = .024] and session x 

response [Greenhouse-Geisser adjusted F (2, 69) = 24.221, p < .0001] were also 

significant. One-way ANOVAs at each response collapsed on the treatment 

factor indicated that there was no effect on response one switching from a well
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learned 5 response sequence to a novel sequence [F (1, 39) < 1] but significant 

effect for responses 2-5. Response two was faster for all groups in the novel 

sequence than the well learned sequence but the most dramatic change was 

demonstrated in the final three elements of the novel sequence. All groups were 

significantly [all ps < .0001] slower on the final three elements of the new five 

response sequence than the well learned sequence. This provides convincing 

evidence that the benefit in RT performance associated with learning a sequence 

of motor responses is demonstrated by improvements in later responses in the 

motor sequence.

Response initiation, characterized as the reaction time for the initial response 

in a sequence was predicted to be affected by demands on motor planning; with 

longer RTs for sequences than for single responses and for repeated sequences 

than random sequences. The results were consistent with these predictions 

(Figure 11). A SPF 5.22 [treatment x response type (single response vs. initial 

response of a 5 response sequence) x session type (random or repeat)] ANOVA 

showed a main effect of treatment [F (4, 35) = 3.277, p = .022], response type [F 

(1, 35) = 35.131, p < .0001], and session type [F (1, 35) = 15.879, p < .0001], 

Post hoc testing (Games-Howell a  =.05; Kirk, 1995 p. 147) indicated that M1M2 

and M2 were significantly slower than controls in speed of responding. The two- 

way interaction response type x session type was also significant [F (1, 35) = 

33.935, p < .0001]. One-way ANOVAs examining response type across the 

levels of session type indicated that RTs to initiate a repeated series of 

responses were significantly slower for all groups [F (1, 35) = 25.721, p < .0001]
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than RTs to initiate a random sequence of responses. In addition, RTs to initiate 

random series of responses were significantly longer [F (1, 39) = 14.929, p = 

.0004] than RTs to make a single response to a randomly cued port. These 

results are consistent with the idea that the complexity of the information 

contained in a motor plan directing a series of movements affects the time to 

begin the first response.
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EXPERIMENT 2: STRIATAL LESIONS

Methods

Subjects

Subjects consisted of 43, male Long Evans rats (North Carolina) ~ seven 

weeks of age at the onset of behavioral training. Housing and handling protocol 

were identical to experiment 1.

Equipment

All equipment was identical to the equipment used in experiment 1. 

Pre-surqical Behavioral Training

Training followed the same schedule and tasks as described previously. As 

in the first experiment once animals reached criterion on the standard VSRT task 

(accuracy levels > than 70% averaged across all stimulus durations) they were 

randomly assigned to one of five treatment conditions (dorsomedial C/Pu, 

dorsolateral C/Pu, ventral C/Pu, large dorsal C/Pu, and sham surgery controls) 

using a block randomization process.

Surgical procedure

General surgical protocol was identical to that described in Experiment 1 

infusing the same neurotoxin concentration and volume at the following 

stereotaxic coordinates to produce lesions in striatum. Anterior-posterior (AP) 

locations for all lesions were relative to bregma, dorsal-ventral (DV) coordinates 

were relative to the interaural line (IA) and medial-lateral sites relative to midline. 

Each group consisted of 8 randomly assigned animals. Three additional animals

44
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were added to the large dorsal C/Pu lesion group after losing one animal during 

post surgical recovery. See Table 4 for the stereotaxic coordinates for each 

lesion site.

Sham surgery on the controls involved the same preliminary surgical 

procedures as the lesion subjects without drilling the skull. Rats were monitored 

(post-surgical healing, weight, hydration, and species typical behavior) during the 

two week recovery period and then put on water restriction to begin post surgical 

testing.

Post-Surgical Behavioral Testing

Behavioral testing followed the same schedule as experiment 1 except for 

the following: some rats in the large dorsal C/Pu lesion group revisited stage-one 

VSRT training after demonstrating a high percentage of omissions during initial 

stage-two training. After completion of simple S-R learning animals completed 

the sequential learning task before completing the single response reaction task. 

The behavioral measures, used to test response accuracy, reaction time, simple 

S-R learning, and visuomotor sequence learning were identical to experiment 1. 

Histological Procedures

At the culmination of the study rats were killed using identical procedures as 

experiment 1. Brains were fixed in the same manner and sectioned coronally, 

stained with thionin, and examined under a light microscope for verification of 

lesion damage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Results: Experiment 2

Histological Analyses

NMDA lesions were characterized by glial cell proliferation neuronal loss and 

collapse of tissue resulting in ventricular enlargement. Bilateral lesions of the 

dorsal striatum affected the target areas in all rats. The data for three animals 

that were unable to perform any of the behavioral tasks was not included in any 

analyses, although their pathology was not unusual. Pathology of the remaining 

eight animals involved extensive gliosis and significant tissue collapse in dorsal 

striatum. In the largest lesions the AP extent was from + 2.45 mm to b 1.30 mm 

relative to bregma. Typical AP lesion extent was + 2.0 mm to -1.0 mm from 

bregma (Figure 12).

Bilateral dorsomedial lesions affected the target region in all cases. One 

animal’s data excluded from analyses as an outlier did not exhibit unusual 

pathology. Larger lesions in this group extended from + 1.85 mm to -  0.7 mm 

relative to bregma. Representative lesions with more restricted AP ranges 

extended from + 1.40 mm to -1.0 mm from bregma. Gliosis and tissue loss was 

primarily confined to medial C/Pu leaving dorsolateral and ventral regions intact 

(Figure 12).

Dorsolateral lesions were made bilaterally in all animals. NMDA infusion in 

lateral C/Pu target sites spared dorsomedial and ventral regions producing 

neuron loss and gliosis within the immediate dorsolateral area. The maximum AP 

extent of the largest dorsolateral lesion was + 1.25 mm to -  1.45 mm with more 

typical AP ranges of + 1.70 mm to -  0.55 mm (Figure 12).
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Lesions of ventral striatum consistently damaged the shell and core regions 

of nucleus accumbens. Infrequently some unintended damage occurred in 

ventral pallidum and dorsomedial C/Pu near the cannula tracks. The greatest AP 

extent of the ventral lesion was + 3.10 mm to -  0.65 mm with a more typical 

lesion range of + 2.55 mm to + 0.10 mm. Lesion damage involved neuron loss 

and increased glial cell concentration in the accumbens (Figure 12).

Visuospatial Reaction Time (VSRT)

Rats were tested post surgically on 10 sessions of the five-choice VSRT 

task. Rats with large dorsal C/Pu lesions were unable to respond consistently to 

the short stimulus durations and within the 3.0s response window. They were 

therefore eliminated from this analysis. The remaining groups were compared on 

accuracy and reaction time performance (Table 2). Preliminary examination of 

the reaction time data indicated heterogeneity of variance between the groups 

across the multiple tasks to be analyzed. Median RTs were calculated and used 

in statistical tests to reduce the variability of the reaction time data.

Response accuracy for each group improved as stimulus duration increased. 

This result was confirmed in a SPF4.6 treatment (medial, lateral, ventral, and 

control) x stimulus duration (.05s, .11s, .26s, .58s, 1.33s, and 3.0s) ANOVA (Kirk, 

1995 p. 515). The main effect for treatment [F (3, 26) = 9.301, p = .0002], 

stimulus duration [Greenhouse-Geisser adjusted F (3, 68) = 857.77, p < .0001] 

and the interaction [F (8, 68) = 3.589, p = .002] were all statistically significant. 

One-way ANOVAs at each stimulus duration indicated that there were no 

differences in response accuracy between lesion groups and controls at the brief
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(.05s and .11s) or long (3.0s) stimulus durations ps > .05. However at all 

remaining durations, (Games - Howell a  =.05) post hoc analyses identified the 

medial group as significantly less accurate than the control group (Figure 13).

Examining choice reaction time indicated that as stimulus duration increased 

reaction time improved for all treatment levels. In addition, the dorsomedial lesion 

group was slower to respond to cued ports than controls (Figure 14). These 

results were supported in a SPF4.6 (treatment x stimulus duration) ANOVA (Kirk, 

1995 p. 515). The main effects of treatment [F (3, 26) = 5.560, p = .004] and 

stimulus duration [Greenhouse-Geisser adjusted F (2, 52) = 79.422, p < .0001] 

were both significant. The interaction was not F < 1.0. Post hoc testing (Games - 

Howell a  =.05) did not identify any group as significantly different in response 

time from controls.

The dorsomedial group was also slower than controls traversing the runway 

(Figure 15). A one-way ANOVA yielded a significant treatment effect F (3, 26) = 

6.548, p = .002. Post hoc (Games - Howell a =.05) testing confirmed that the 

dorsomedial lesion group was considerably slower than controls traveling the 

length of the runway arm. In summary, this measure of visuospatial responding 

indicates that lesions involving dorsomedial striatum impair response accuracy to 

illuminated ports. At brief durations this deficit is mitigated by a floor effect. In 

addition, these lesions also impair general motor RT and RT when a choice 

among alternating response locations is required.
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Short-Term Simple S-R Learning

All groups were highly accurate and showed little change across trials 

responding to the 3.0s stimuli, thus these data were not further analyzed. 

Accuracy performance for the brief stimulus cue was examined using a SPF4.4 

(treatment x stimulus presentation) ANOVA (Kirk, 1995 p. 515). There were 

significant treatment [F (3, 26) = 3.253, p = .038], and stimulus presentation main 

effects [Greenhouse-Geisser adjusted F (2, 38) = 34.533, p < .0001] with no 

interaction F < 1.0. Post hoc testing (Games - Howell a = .05) indicated that 

accuracy scores of the dorsomedial C/Pu group were significantly poorer than all 

other groups. The lack of an interaction is consistent with the similar 

improvement in accuracy performance observed for all groups (Figure 16).

The dorsomedial group was consistently slower to respond to the cued port 

across brief stimulus presentations. A SPF4.4 (treatment x stimulus presentation) 

ANOVA (Kirk, 1995 p. 515) supported this finding (Figure 17). There was a 

significant main effect of treatment [F (3, 26) = 3.188, p = .040], and no effect of 

stimulus presentation or the interaction [p values >.2]. The dorsomedial group 

demonstrated the slowest RT although post hoc testing (Games-Howell a  = .05) 

did not indicate significant group differences. On this measure of simple S-R 

learning all groups demonstrated similar improvements in response accuracy 

across the presentations of a brief stimulus cue.

Long-Term Simple S-R Learning

Rats with large dorsal striatal lesions were able to complete this task and 

thus were included in the analysis. Rats in the medial and M & L lesion groups
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tended to respond more slowly (Figure 18). A 5.2 treatment (M & L, medial, 

lateral, ventral and control) x session (random or repeat port) ANOVA (Kirk, 1995 

p. 515) demonstrated a main effect of treatment [F (4, 32) = 14.247, p < .0001]. 

Post hoc testing (Games - Howell a  = .05) showed that the M & L group 

responded significantly slower to the cued port than the control, lateral and 

ventral groups. The main effect of session was significant [F (1, 32) = 4.892, p = 

.034] as was the session x treatment interaction [F (4, 32) 2.730, p = .046]. 

Sequential Visuomotor Learning

All groups took more time to complete repeat than random sequence trials. 

This trend was exacerbated by dorsomedial C/Pu lesions (Figure 19). These 

trends were confirmed in a SPF5.25 (treatment x sequence type x response) 

ANOVA (Kirk, 1995 p. 553) of the median RTs for the five-response repeat (A10) 

and random sequence (R3) sessions (Table 5). The main effect of treatment and 

response were significant [F (4, 33) = 9.754, and F (4, 132) = 28.683, ps < .0001] 

as were all two-way interactions response x treatment, sequence type x 

treatment, and response x sequence type [F (16, 132) = 3.151, p = .0001; F (4, 

33) = 3.352, p = .0208; and F (4, 132) = 11.431, p < .0001, respectively]. The 

three-way interaction (response x sequence type x treatment) was also 

significant [F (16,132) = 2.929, p = .0004]. Separate two-way ANOVAs (SPF 5.2 

treatment x sequence type) at each response indicated interaction effects for 

responses 1 and 2 [F (4, 33) = 3.364, p = .0205 and F (4, 33) = 3.129, p = .0275]. 

One-way ANOVA’s indicated that the control group [F (1, 7) = 16. 748, p = .0046] 

showed significantly faster RTs for the initial response of the random sequence.
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Rats with large dorsal striatal lesions were also markedly faster performing the 

first response of a random sequence [F (1,7) = 5.285, p = .0551 compared to the 

first response of a repeat sequence. For response 2, One-way ANOVA’s did not 

indicate significant effects of treatment although the large dorsal striatal group 

demonstrated a slowing trend for repeat sessions that approached significance 

(p = .0978). Responses 3 - 5  showed significant main effects of treatment and for 

responses 3 & 5 sequence type but no treatment interactions. Examination of the 

means indicates that, for all groups, response 3 and 5 are faster in repeat 

sessions than random sessions. In summary, all groups showed an increase in 

RT for the initial response of a learned repeating sequence and a decrease in RT 

for the fifth response in repeating sequences. Rats with lesions involving 

dorsomedial striatum demonstrated greater absolute RT deficits when initiating 

the first elements of a repeating sequence compared to all other groups and to 

random sequence sessions (Figures 20 & 21).

Short-term visuomotor sequence learning was examined across blocks of 

trials in the initial random and repeat sequence sessions. The slow motor 

responding of the large dorsal striatal lesion group resulted in completion of 

approximately 15-25 trials per session, therefore their data were not included in 

the analysis. Examination of RTs across blocks indicated that within the initial 

repeating session RTs for responses 1 and 2 increased across successive 

blocks (Figure 22). In contrast, for responses 3-5 RTs decreased across the 

blocks. A different response pattern was generated across the blocks of a 

random sequence. RTs for response one increased steadily across the blocks.
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All other responses showed no major change in RT across the blocks of the 

random session (Figure 23). A SPF4.255 (treatment x session x response x 

block) ANOVA (Kirk, 1995 p. 562) indicated this difference in response RTs for 

the separate sequence types (Table 7). The four way interaction was significant 

[Greenhouse-Geisser adjusted F (20,166) = 2.125, p = .006] as was the three- 

way interaction session x response x block [Greenhouse-Geisser adjusted F (7, 

166) = 4.418, p < .0001].

These effects were further analyzed in separate SPF4.55 ANOVAs (Kirk, 

1995 p. 553). Results for repeating sessions indicated no main effect of group [F 

(3, 26) = 2.633, p = .071] but the two-way interaction of response x block [F (5, 

129) = 11.562, p < .0001] was statistically significant (Table 8). The significant 

three-way interaction response x block x group [F (15, 129) = 3.032, p < .0001] 

reflected a significant group x block interaction for response one only [F (12, 104) 

= 4.547, p < .0001]. The medial group demonstrated a dramatic increase in RT 

for the final block of response 1. For all other responses group x block did not 

interact indicating that the main difference between the dorsomedial group and 

other groups was the increased cost to initiate the repeating sequence. This 

effect was most striking at the end of the session when the sequence was most 

familiar (Figure 22). The increasing RT trend in the first response was uniform 

across all groups including controls supporting a performance cost when a 

learned sequence of motor responses was generated.

An analysis of the RT block data for the random sequence session confirmed 

the development across blocks of the response pattern characteristic of random
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sequence sessions (Figure 23). The results of a SPF4.55 (treatment x response 

x block) ANOVA (Kirk, 1995 p. 553) indicated a significant main effect of 

treatment [F (3, 26) = 4.424, p = .012] response [Greenhouse-Geisser adjusted F 

(2, 35) = 37.106), p < .0001] and a response x block interaction [Greenhouse- 

Geisser adjusted F (6,152) = 3.487, p = .003]. Post hoc testing (Games - Howell 

a  = .05) did not identify any significant differences among the groups. The 

response x block interaction was explained in separate SPF5.5 ANOVAs at each 

response (Kirk, 1995 p. 515). The effect of block was only significant for the first 

response. Examination of the mean table indicated an increasing trend across 

the blocks of response one. There is no significant effect of block on the 

remaining responses in the random sequence comparing graphs of each 

sequence type across blocks highlights the gradual shift from very similar 

response patterns in the initial block of the two sessions to a distinct response 

pattern indicative of the random vs. repeat sequence. Consistent across the two 

response patterns is an increase in RT for the first response across the blocks of 

the session.

Long-term visuomotor sequence learning was demonstrated by all groups in 

the gradual improvement in RT for the final element of the repeat sequence and 

by comparison with random sequences. An analysis [SPF5.105 (treatment x 

session x response) ANOVA (Kirk, 1995 p. 553)] of all repeating sessions of the 

A sequence showed significant main effects of treatment [F (4, 33) = 11.209, p < 

.0001], and response [F (6, 48) = 41.195, p < .0001]. The effect of session was 

not significant [Greenhouse-Geisser adjusted F (4, 130) = 2.272, p = .066]. All
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two-way interactions were significant with Greenhouse-Geisser adjusted Fs (ps < 

.035). The three-way interaction was not significant [Greenhouse-Geisser 

adjusted F (25, 207) = 1.494, p = .069] (Table 6). This nearly significant 

interaction may reflect the greater impairment of the dorsomedial lesion groups 

initiating a repeating sequence. This impairment increased across the sessions in 

the first repeating block before peaking in the second block and showing some 

reduction in RT. All other groups showed a smaller increase in RT across the 

sessions in the first block (Figures 20 & 21).

Retention of a learned sequential motor response should result in stable or 

improved RTs when the learned sequence is again tested. Comparison of the RT 

of each response from session A5 to A6, between which a random testing 

session occurred, indicated that RTs for most responses remained relatively 

stable across the two sessions for all groups consistent with retention of 

visuomotor sequence learning.

Memory for sequence specific information has been demonstrated to 

improve reaction time especially for the later elements of the motor program. To 

the extent that RT improvement was sequence specific and not general mastery 

of the response task, then switching to a novel motor sequence was expected to 

impair RTs for later response elements compared to the original sequence. 

Comparison of response RTs for the final learned sequence session (A10) and 

the initial session of a novel sequence (B1) confirmed this result (Figures 20 & 

21). Responses 3-5 show increased RTs after switching to the novel motor 

sequence. A SPF5.25 (treatment x session x response) ANOVA (Kirk, 1995 p.
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553) examining the shift to the novel sequence indicated significant main effects 

of treatment and response [F (4, 33) = 7.40, and F (3, 68) = 22.080, ps < .0001, 

respectively]. The two-way interactions (treatment x response and response x 

session) were also statistically significant [Greenhouse-Geisser adjusted Fs (9, 

68) = 2.748, p = .011 and F (3, 75) = 7.299 p = .001, respectively]. Post hoc 

testing (Games - Howell a  .05) confirmed that complete dorsal striatal lesions 

slowed RT responding to a series of cued ports.

Examining the mean of each response across sessions indicated that the 

response x session interaction reflected an obvious improvement in mean RT for 

responses 1 and 2 of the new sequence and a marked slowing in RT for the 

remaining elements of the new sequence (Figures 20 & 21). Failure of the three- 

way interaction to reach significance confirmed that this pattern was similar 

among all groups. These findings indicate that the savings in RT demonstrated in 

the final elements of a well-learned sequence of visuomotor responses does not 

transfer to a novel visuomotor response sequence. In addition the cost (slower 

RTs) to initiate a well-learned motor plan is greater than the cost to initiate a 

novel motor plan. These findings supported previously reported effects 

comparing the final learned sequence session (A10) with the random session 

that followed (R3); faster RTs for the initial elements when switched to the 

random sequence and slower RTs for later elements.

Motor initiation was examined by comparing single port response RTs in the 

long-term simple S-R task to the initial RTs of five response sequences. To the 

extent that more complex motor planning is necessary to respond to a series of
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ports than to a single port we expected the initial RT of the series of responses to 

be impaired. All groups demonstrated slower RTs beginning a repeat sequence 

than for initiating a random sequence. In addition, all groups demonstrated 

slower RTs for response 1 of the random sequence sessions than for the single 

response repeat session (Figure 24). The SPF5.22 [treatment x response type 

(single response / sequence learning) x session (random / repeat)] ANOVA 

conducted on the RT data supported these conclusions (Kirk, 1995 p. 553). All 

main effects and interactions were significant (Table 9). Previous analysis on the 

single response dataset demonstrated that, although all groups had marginally 

slower RTs on single repeating port trials than on single random port trials this 

difference was not statistically significant. One-way ANOVAs for each group 

across random and repeating sequence sessions indicated that all groups, 

excluding the dorsolateral lesion group, were significantly slower on the first 

response of a repeating sequence [significant ps < .0393]. In addition, all groups 

were significantly slower [all ps <.05] for response 1 of the random sequence 

session than for the single response repeat session.

Discussion

Effects of Frontal Cortical Lesions

Cortical lesions had significant effects on the RT but not the accuracy of 

choice responses in the VSRT task. In general, when cues were brief, all groups 

demonstrated poorer performance. Although cortical lesion groups tended to be 

less accurate than controls at shorter stimulus durations these differences were 

not statistically significant. Runway RT was unaffected by cortical lesions. This
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suggests that the increase observed for choice RT was not the result of a general 

motor impairment. Runway RT began when the rat depressed the lever and 

concluded when the photocell at the chamber end of the arm was crossed.

Choice RT began from the time the arm photocell was crossed until the photocell 

at the illuminated port was broken. Both responses were initiated by the rat’s 

behavior and involved similar travel distances. Choice responding required rats 

to modify responses on every trial based upon the location of the luminance cue. 

Thus the effects of the cortical lesions are consistent with a specific impairment 

in sensory-guided responding. Although all groups exhibited a similar pattern of 

impairment, post hoc testing showed that only the M2 group was significantly 

slower than controls.

Previous findings in our lab have shown that lesions of mPF or M2 cortex 

affect response accuracy for shorter duration stimuli and increase choice RT 

(Burk & Mair, 2001; Bailey & Mair, 2004). In the present study there were non­

significant trends toward impairment in accuracy and significant effects on choice 

RT consistent with these findings. The more limited effects of lesions may reflect 

the smaller sizes of the lesions in the present study.

Short-term simple S-R learning tested the ability of rats to learn the location 

of a reinforcer held constant for seven consecutive trials. Lesions of frontal cortex 

did not affect the rate at which accuracy improved for the brief luminance cues 

presented on trials 1, 3, 5, and 7. There was no effect on RT for any group. Thus, 

none of the cortical lesions affected the ability of rats to take advantage of short­

term consistencies in stimulus location. There were non-significant trends for all
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lesion groups to respond more slowly than controls consistent with results for the 

VSRT task. The analyses of short-term S-R learning showed improvement in 

accuracy in relatively few trials.

Long-term S-R learning was measured by comparing RTs for responses to 

3.0s luminance cues when the location of the reinforced port varied randomly to 

when it remained constant at one location for 5 sessions. All groups 

demonstrated significantly faster RTs when the location of the port remained 

constant. Although rats with lesions of frontal cortex tended to have longer RTs 

for both types of session, they resembled controls in the extent to which they 

benefited when the location of the reinforced port was held constant. Thus frontal 

lesions did not appear to affect either of these measures of short- or long-term 

simple S-R learning.

Stimulus-guided motor responding presupposes a series of neuronal events 

linking the stimulus cue and an appropriate response needed to achieve the 

objective. These events have been termed motor planning or motor 

programming. Marsden (1984) describes motor planning as a process of 

selecting and ordering smaller motor sub-plans; that precedes the initiation and 

then the execution of the action occasioned by the plan. Convergent evidence 

from single unit recording and pharmacological manipulation studies with 

monkeys; lesion experiments with rodents; and human brain imaging studies 

have implicated the mPF and pre-motor regions in the preparation of motor 

responses (Sakai et al., 1999; Nakamura et al. 1999; Crammond & Kalaska,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

2000; Weinrich & Wise, 1982; Averbeck, Chaffee, Crowe, & Georgopoulos, 2002; 

Jenkins et al., 1994; Delatour & Gisquet-Verrier, 2001)

To the extent that visually-guided responding depends upon motor planning, 

the findings of Henry & Rogers (1960) suggest that response latency for 

movement initiation increases as the number of movements performed increased 

(as cited in Sternberg, Monsell, Knoll, & Wright, 1978). Similarly, Sternberg et al. 

(1978) found that the latency initiating the first of a series of typing keystrokes 

increased linearly as the number of letters in the sequence increased. They 

termed this the sequence length effect. Sternberg argued that this effect reflected 

an increase in motor planning necessary to efficiently perform the series of 

responses.

In keeping with this premise, a sequence of nose pokes would generate a 

more complex motor plan than a single nose-poke. Similarly, as more information 

is encoded into a motor plan (e.g. a series of fixed response locations in a 

specific order) the plan should become increasingly complex. Long-term simple 

S-R learning showed that lesions of frontal cortex had no effect on the latency to 

initiate single port response. All groups were responded significantly faster on 

repeating than random port trials. Responding faster for repeating trials is 

consistent with the idea that predictability of response location improves 

response speed. It is inconsistent with the notion that creating a more complex 

motor plan, including information about response location, impedes response 

initiation. An alternative interpretation is that the random port task requires 

scanning ports for a luminance cue, increasing latency even of the simple motor
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plan while more efficient orienting of attention in trials that cue the same port 

could reduce response latency of a more complex motor plan.

The results of the sequence learning tasks are consistent with Sternberg’s 

hypothesis. All lesion groups took longer moving from the arm photocell to the 

port indicated by a signal light, when well practiced in responding to that light, as 

the first of a sequence of five rather than as a single port response (as in VSRT 

or in long-term simple S-R learning). The increase in initial responding was 

exacerbated in repeated sequence learning when rats performed the same 

sequence on every trial (Fig. 11). This increase seems paradoxical when 

considered in terms of motor learning. Practice responding to the same port at 

the start of every sequence should serve to decrease RT. However, learning the 

specific sequence that will be executed should increase the amount of 

information that must be processed at the motor-planning stage. Thus the 

increase in completing the first element of a repeating sequence seems in 

keeping with increased demands on motor planning. By this argument, the 

relatively constant RT of controls initiating single or multi-port responses can be 

taken as evidence of a relatively intact capacity for motor planning that is not 

taxed by the demands of the 5-port response sequence.

Differences in delay to reinforcement provide an alternative explanation for 

the increase in RT initiating the 5-port response sequence. For single port 

response tasks (VSRT, simple S-R learning) rats received reinforcement 

immediately after making a single port response. Although the initial response in 

sequence learning tasks was comparable in other aspects, reinforcement was
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not delivered until after the last (fifth) response in the sequence was completed. 

Spence (1956) argued that delay of reinforcement adversely affects learning 

response reinforcer associations by allowing intervening behavior to become 

associated with the reinforcer. Renner (1963) and Sgro et al. (1967) found that 

rats traversed an alley more slowly if the food reward was delayed 3 -  30s.

Logan & Spanier (1970) found a smaller effect on performance when water was 

the primary reinforcer (c.f. MacKintosh, 1974).

The present sequence learning tasks differed in important ways from the 

tasks in which increased delay to reinforcement was associated with increased 

RT. The initial nose pokes were followed immediately by consistent stimulus 

events (the port light turning off and the light in the next port turning on) that may 

have served as a secondary or conditioned reinforcer predicting the primary 

reinforcer. Further, the interval between the initial nose poke and the primary 

reinforcer was bridged by a series of nose pokes, each of which were followed by 

the same potential secondary reinforcer. Thus the present task involved a 

consistent chain of responses linked to the primary reinforcer that would have 

provided little opportunity for other intervening behaviors to become associated 

with the primary reinforcer.

Lesions of mPF and motor cortex slowed initiation of a series of responses, 

yet on the final four responses of each sequence, performance of the lesion 

groups was comparable to controls. This is important for several reasons. First, 

normal RT performance for later responses in the sequence suggests that, 

latency to initiate the first response is not indicative of a general deficit in
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voluntary motor function, motivation for reinforcement, or a perceptual 

impairment. Second, all groups exhibited consistent improvement in RT for later 

responses in repeated sequences both within (Figure 9) and between (Figure 8) 

sessions. Improved RT for later sequence elements was a unique characteristic 

of learned sequences. Responses 3 -  5 of random sequence sessions slow 

consistently with each successive response whereas responses 3 - 5 of repeat 

sequence sessions are faster than the RTs of the initial two responses (Fig 8). 

Improvement in meeting the general demands of the task was evidenced by 

faster RTs for all responses in both sequence types across sessions; however 

this effect had greater impact on later responses of repeat sequences. This 

suggests that sequence specific learning, consistent with executing a learned 

motor sequence was unaffected by cortical lesions.

Comparison With Previous Experimental Research

There is a paucity of comparative literature examining the effect of frontal 

cortical lesions on motor sequence learning in rats. However, several studies 

have explored the effects of cortical lesions on accuracy of responding and motor 

preparation in reaction time tasks. Convergent evidence from our lab and others 

indicate that large, excitotoxic mPF lesions impair response accuracy on VSRT 

type tasks, especially when luminance cue durations are brief (Burk & Mair,

2001; Bailey & Mair, 2004; Passetti et al., 2002; Muir, Everitt & Robbins, 1996). 

Muir et al. (1996) characterized the accuracy deficit associated with mPF 

damage as a disruption of attentional processes and the response latency deficit 

associated with motor cortex lesions in their study as an impairment of decisional
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processes. Trends towards accuracy and RT deficits in the VSRT and short-term 

simple S-R tasks of the current study are consistent with a role for mPF in 

attentional processing.

In a study examining motor planning, rats with complete mPF lesions and 

lesions limited to ventral mPF (prelimbic-infralimbic) exhibited disrupted motor 

readiness in a reaction time task (Risterucci, Terramorsi, Nieoullon, & Amalric, 

2003). Another study found that unilateral lesions of AGm (M2) increased SRT 

response latency bilaterally (Brown, Bowman & Robbins, 1991). Findings from 

the present study support a role for mPF and motor cortex in increased response 

latency particularly for lesions involving M2.

The role of the prefrontal and motor cortices on motor sequence acquisition 

and retention has been extensively studied in monkeys and humans using 

versions of a (2 x 5) trial and error sequential button pressing task described 

earlier. Recording and reversible inactivation studies with monkeys, and 

scanning studies on humans, have consistently identified the presupplementary 

motor area (pre-SMA) and its projection areas in striatum as critical for 

performing new motor sequences (Nakamura et al. 1999; Sakai et al. 1999; 

Hikosaka et al. 1999, 2002 for reviews). Activity in the supplementary motor area 

(SMA) and its projection areas in striatum have been associated with 

performance of new and well-learned button press sequences (Ackermann et al., 

1996; and see Hikosaka et al. 1999, 2002 for reviews). In the rat, M2 (AGm) has 

been identified as containing areas, analogous to the primate SMA, premotor 

cortex, and frontal eye fields, although these are not well differentiated within M2
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(McGeorge & Faull, 1989). In the current sequence learning task lesions of M2 

did not disrupt acquisition or execution of a new motor response sequence, 

however, it did increase RT for the initial motor response of new (random) and 

learned sequences suggesting a disruption in planning or activating the learned 

response sequence.

Examining the cognitive demands presumed to maintain performance on trial 

and error sequence learning and incidental SRT motor sequence learning tasks 

may explain the inconsistent results. Trial and error ( 2 x 5  hyperset task) 

learning involves working memory processes and sustained attention to maintain 

each of the correct pairs of responses on line while working out subsequent 

response pairs. This process should encourage forming motor sub-programs that 

would be subject to ongoing modification as movement errors are corrected and 

appropriate responses remembered. Early response pairs would be combined 

with later pairs until the final motor plan was determined (Sakai, Kitaguchi, & 

Hikosaka, 2003). To the extent that monitoring prior response information and 

incorporating new response information depends upon pre-SMA functioning then 

learning new sequences would be expected to be disrupted. Some support for 

this view comes from another study of human motor sequence learning. Subjects 

performing long continuous sequences of finger presses (12-element sequence) 

were found to subdivide the sequence into ‘chunks” or smaller sub-sequences. 

Disrupting pre-SMA activity using repetitive transcranial magnetic stimulation 

(rTMS) produced RT slowing when each sub-sequence was initiated, but not 

when performing the 1st response of the overall sequence (Kennerley, Sakai, &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

Rushworth, 2003). The (2 x 5) trial and error learning task naturally divides the 

ten-element sequence into 5 sub-sequences. Pre-SMA activity appears to 

correlate with initiating and monitoring the order of response pairs. In contrast, in 

the present SRT task rats complete a short sequence of visually guided 

responses. Training the sequence as a relatively short five-response series may 

not be conducive to subdividing the sequence into sub-sequences. This would 

suggest that, in rats, intact mPF and motor cortical functioning is important for 

initiating a sequence of visually-guided motor responses especially when the 

sequence is well-learned. The ability to form a motor plan and execute the 

sequence once initiated seems independent of these cortical regions.

The Effect of Ventral. Dorsomedial. Dorsolateral or Complete Dorsal Striatal 

Lesions on Visuomotor Performance

The present study confirmed previous research suggesting a role for dorsal 

striatum in stimulus-guided motor responding (Brasted et al., 1998; Mair et al. 

2002). Large dorsal, dorsomedial and to a lesser extent dorsolateral C/Pu lesions 

increased RTs for all tasks (VSRT, short-term simple S-R, long-term simple S-R, 

and sequence tasks). Paradoxically, the ventral lesion group exhibited shorter 

RTs than controls for most of these tasks. Dorsomedial lesions also produced 

deficits in stimulus-guided response accuracy (VSRT and short-term simple S-R 

tasks). Interestingly, reduced accuracy for rats with dorsomedial lesions did not 

translate into an impairment learning the new S-R association indicated by 

improved accuracy in simple short-term S-R learning.
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Two factors are important to point out about the present S-R learning tasks. 

First, rats were well trained on the primary S-R strategy; respond to the lighted 

port, prior to surgery. Therefore, unlike other S-R learning tasks which require 

learning a new S-R strategy; for instance, respond only to lit maze arms for 

reinforcement (McDonald & White, 1993) this task required rats to apply a well- 

established strategy while learning to respond to a specific location reinforced on 

immediately preceding trials. Learning-set paradigms share a common feature 

with this S-R learning task specifically; animals maintain a basic expectation 

about task events (associability of a class of stimuli with reinforcement) and map 

them onto novel stimuli. In this task the basic expectation is that the luminance 

cue signifies the S+ port; this is mapped onto a port location that is modified 

based on response history. Acquisition of the new contingency may reflect 

contributions of mPF cortex in orienting attention towards the response location 

more consistently, or an ability to anticipate the alternating nature of the stimulus 

duration which could enhance detection of brief (.05) luminance cues. Although 

dorsal striatum may be essential for learning certain S-R strategies, like 

associating a previously neutral class of stimuli with a specific response, spared 

performance of all lesion groups on this simple S-R task demonstrates an ability 

to modify responding based on learned associations (location of recently 

reinforced responses).

The basal ganglia have been implicated in motor sequence learning 

although it remains unclear what specific aspects of the process are striatal 

dependent. We tested the effect of basal ganglia lesions on motor sequence
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learning in the rat-SRT task. In accordance with experiment 1 results, all groups 

failed to demonstrate motor sequence learning when overall RT for random and 

repeating sequences was compared. Groups failed to demonstrate the 

characteristic increase in RTs when switched from a learned sequence to a 

random sequence. In fact, rats with lesions involving dorsomedial striatum 

demonstrated faster RTs completing random sequences (Fig. 20). These 

preliminary findings appear to confirm previous reports that in rats dorsal C/Pu is 

critical for motor sequence learning (Christie & Dalrymple- Alford, 2004;

DeCoteau & Kesner, 2000).

Further examination of separate response RTs, for both sequence types, 

revealed the same unique RT pattern development of random and repeat 

sequences found in experiment 1 (compare figures 8 and 22). A sequence of five 

responses produced increased RTs for the first response of the sequence 

(compared to initiating a single response) and an even larger increase when the 

response initiated a learned sequence. This pattern was evident across blocks in 

the initial session (figures 23 and 24) and across sessions (figures 20 and 21). 

Rats from all groups demonstrated faster RTs for the final response of repeat 

sequence sessions compared to the final response of random sequence 

sessions.

Particularly surprising was the performance of rats with lesions compromising 

the entire dorsal caudoputamen. Although dramatically slowed in their RT to the 

ports; rats with combined dorsal medial and lateral lesions exhibited response 

patterns similar to controls for the final four responses of random and learned
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sequences. Dorsomedial lesions produced an intermediate level of slowing but 

again the response pattern for the two sequence types was comparable to 

control rats. These results provide evidence that rats with lesions of the 

caudoputamen are able to demonstrate reaction time improvements, across 

sessions of repeating sequences of motor responses, consistent with motor 

sequence learning.

Examination of individual response RTs also elucidated the impact of 

generating the first response of a learned sequence on the increase seen in the 

time to perform the overall sequence. This is particularly evident in the groups 

with dorsomedial C/Pu damage, where the increase in RT performing the entire 

learned sequence was almost entirely explained by the latency for the first 

response (figure 21). This suggests that rats with dorsomedial C/Pu damage, 

display impaired motor speed evidenced by consistently slower RT performance 

for all responses; however the greatest effect appears to involve a disruption in 

initiating a learned sequence of motor responses. In contrast, when initiating 

single-port responses, (long-term simple S-R learning) although rats with lesions 

involving dorsomedial C/Pu were slower than controls initiating the response this 

did not increase if the response location was predictable (same port on every 

trial). This suggest that it is not the repetitious nature of the response location 

that increases initiation time but rather the complexity of the motor events to 

follow that slows the first response of the series.

Accuracy of responding to a luminance cue is a factor that could affect 

response speed. In the current study cortical lesions had no effect on response
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accuracy; but rats with dorsomedial C/Pu lesions demonstrated accuracy deficits 

in the VSRT and short-term simple S-R tasks. These were significant even at 

long (3.0s) durations. It is reasonable to expect that this would also affect RT to a 

cued port in the sequence task. It would not be expected to differentially slow the 

first response of a 5-poke series. It would also not be expected to slow the initial 

response to a predictable port (learned sequence) more than the initial response 

to an unpredictable port (random sequence). In fact, when the duration of the 

luminance cue was fixed (3.0s), as it was in long-term simple S-R (random) 

sessions, rats with lesions involving dorsomedial C/Pu responded at 90 % 

accuracy. When location was also fixed as in the long-term simple S-R (repeat) 

sessions accuracy was greater than 99 %. This would suggest that the accuracy 

deficits demonstrated by rats with dorsomedial lesions in VSRT may reflect a 

deficit involving divided attention (efficient monitoring of all five ports) and cue 

detection. Learned sequence sessions presented a fixed series of response 

locations in conjunction with a stable cue duration which should have minimized 

response accuracy deficits mitigating effects on response latency.

Comparison With Previous Experimental Research

Several studies have confirmed a role for the basal ganglia in reaction time 

performance. Brown & Robbins (1989) found that medial C/Pu lesions in rats 

increased latency to initiate nose poke responses in a visual reaction time task 

without affecting motor execution, while lateral lesions created an ipsilateral 

response bias without affecting response initiation or execution. Brasted et al. 

(1998) demonstrated that complete unilateral striatal lesions produced deficits
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initiating contralateral responses that did not significantly slow response 

execution in a nine-hole SRT chamber. Prior research in our lab indicated that 

rats with dorsolateral C/Pu lesions and, to a lesser extent, dorsomedial lesions 

are impaired making visually guided responses in a 7-hole nose poke chamber 

(Mair et al., 2002). Findings from the present study are consistent with these 

results. Lesions involving dorsomedial C/Pu impaired VSRT response accuracy 

and increased choice RT. Dorsolateral lesions produce an intermediate level of 

accuracy and choice RT deficits.

DeCoteau & Kesner (2000) assessed the effect of caudoputamen lesions on 

motor sequence learning through a succession of maze arm entries acquired 

through “procedural” or “declarative” training. Rats with medial C/Pu lesion failed 

to exhibit learning (measured as a reduction in arm-entry response latency) the 

procedural version of this task but were able to retain and perform the task if 

trained prior to surgical lesions. In addition, medial C/Pu lesions had no effect on 

acquisition or retention of the declarative version of the task. Lateral C/Pu lesions 

had no effect on acquisition or retention of either task version.

The maze SRT task used by DeCoteau & Kesner (2000) shares some 

features with the rat-SRT task in the current study but also differs in fundamental 

ways. Both tasks use sequences that contain distinctive start and end points. The 

maze task reinforces (food reward) each arm of the 6 consecutive arm entries in 

a trial, whereas this rat-SRT task reinforces only the final (5th) response of the 

sequence, promoting a continuous sequence of associated motor responses 

uninterrupted by reinforcement factors. Decoteau & Kesner’s (2000) rats
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completed two trials per day whereas the rats in the current study completed 60 - 

5 response trials per day. Extensive practice is one feature consistently 

associated with the incremental improvements demonstrated in motor sequence 

learning (Mishkin & Petrie, 1984; Marsden, 1984). Thus the training process 

utilized by DeCoteau & Kesner (2000) may not have been effective in 

encouraging a motor learning process.

The failure of rats with medial C/Pu lesions to demonstrate sequence 

learning in the maze task does not contradict the present findings. Similar to 

DeCoteau and Kesner’s (2000) results, rats with lesions involving medial C/Pu in 

the current study were unable to demonstrate motor sequence learning when 

measured by the overall RT for the entire sequence, the measure used in the rat 

maze task and in human SRT performance. Results from the present study also 

indicated that rats failed to show increased overall RTs when switched from a 

repeat session to a random session. Thus it is possible that the response speed 

measure used in the maze task (sum of all responses in the sequence) was 

insensitive to the learning that might have occurred.

A very recent study incorporating visually-guided nose poke sequences in an 

SRT type task has also demonstrated impaired motor sequence learning in rats 

with dorsal C/Pu lesions (Christie & Dalrymple-Alford, 2004). The authors utilized 

a 4-hole, nose-poke response chamber and trained rats to perform a range of 

nose-pokes (4, 8 or 12 responses) in random or repeating sequences. They used 

RT (summed across all responses in the sequence) and error rate as the 

behavioral measures. Sequence learning was assessed by comparing RT for the
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final 10 blocks of repeating trials with the RT for the first ten blocks of random 

trials. Although these tasks share some obvious characteristics (nose-poke 

response to a light cue, prior S-R training, sequential performance of responses) 

there are important differences between them.

Rats in the Christie & Dalrymple-Alford (2004) study were tested for short­

term, but not long-term learning. Rats were trained in three massed sessions 

(one for each sequence length) equated for overall number of nose pokes. This 

resulted in 645 4-response (322 8-response and 215 12-response) fixed 

sequence trials immediately followed by 60 4-response (30 8-response and 20 

12-response) random sequence trials. Therefore each session involved 2820 

continuous responses. In the current study each 5-response trial had a discrete 

start and end point. Rats performed 60 5-response sequence trials per session, 

for multiple daily sessions. Prior research with humans suggests that when 

completing long continuous sequences of finger presses there is a tendency to 

break the sequence into smaller sub-sequences (Sakai, Kitaguchi, & Hikosaka, 

2003; Kennerley et al, 2003). Rats with dorsomedial C/Pu lesions in the Christie 

& Dalrymple-Alford (2004) study were able to demonstrate sequence specific 

learning on the 4-response sequence (similar to our findings on the 5 response 

sequence) but not the 8- or 12- response sequences. If rats spontaneously chunk 

long sequences of responses into two or more sub-sequence, latency to initiate 

each learned sub-sequence could account for the failure to show motor learning 

(faster RTs on repeating compared to random sequences). Thus rats in the 

Christie & Dalrymple-Alford (2004) study were only tested for short-term learning,
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and the RT measure did not separate time to initiate and execute the sequence 

of responses.

Another important factor to consider is the measure used to define sequence 

learning; interference effects or the increase in RT when switching to a random 

sequence from a well trained repeating sequence. It has been well established in 

clinical and experimental literature that one characteristic of basal ganglia 

dysfunction is bradykinesia. When using reaction time as the primary indicator of 

motor learning a failure to improve RT may indicate impairment in motor learning, 

however it may also reflect an inability, because of underlying motor speed 

deficits, to demonstrate sufficient improvement in RT to be consistent with 

learning. Findings from the present experiments suggest that systematic changes 

(increased RTs for initial elements and improved RTs for later elements) may 

obscure evidence of motor learning when RTs are combined for the entire 

sequence. Finally, Christie & Dalrymple-Alford’s (2004) results exclude the initial 

60 trials of each session (warm-up trials). Therefore their RT analysis leaves out 

the RT improvements in the initial blocks of trials. This may have had more 

impact on the results for the dorsal striatal group given their general motor 

slowing compared to intact rats.

The role of the striatum in sequence learning has also been examined with 

non-human primates performing a (2 x 5) trial and error sequence task. Single 

unit recording in the striatum identified neurons in the associative striatum 

(dorsomedial C/Pu in rats) that fired selectively when performing new sequences, 

neurons in the sensorimotor striatum (dorsolateral C/Pu in rats) that fire
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preferentially for learned sequences and a third type of neuron, more prevalent in 

sensorimotor striatum that was non-selective, increasing activity when new or 

learned sequences were performed (Miyachi et al., 2002). Although rats with 

compromised dorsomedial C/Pu function were severely delayed in beginning a 

learned sequence especially in the initial sessions they were able to demonstrate 

improved RTs for later responses in the sequence consistent with motor learning. 

Impaired performance in the (2 x 5) task may require initiating several sub­

sequence motor plans (Sakai et al., 2003). Findings from the present study 

suggest that dorsomedial striatum would play a critical role in initiating sub­

sequences and thus might account for the observed deficits.

The Role of Frontal Cortical - Basal Ganglia Circuits in Motor Sequence Learning 

Motor learning is characterized by incremental improvements in reaction time 

and response accuracy. The SRT task assesses motor sequence learning in 

several ways; incremental changes in RT within and between sessions and as 

abrupt changes in RT when switched to a random sequence or a different 

repeating sequence of responses. Neuropsychological studies have identified 

motor sequences learning deficits in clinical populations including those with 

basal gjanglia dysfunction (Helmuth, Mayr, & Daum, 2000; Jackson, Jackson, 

Harrison, Henderson, & Kennard, 1994), cerebellar lesions (Shin & Ivry, 2003) 

focal thalamic lesions (Exner et al., 2001), pre-SMA damage (Ackermann et al., 

1996; Exner et al., 2002) and prefrontal dysfunction (Beldarrain et al., 2002). 

Other research has specifically implicated the contribution of anatomically linked
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cortico-striatal circuits in motor sequence learning (see Hikosaka et al, 1999 for a 

review).

Marsden (1984) contends that performing a sequence of motor responses 

involves several stages. A motor plan is first developed by selecting and ordering 

smaller sub plans. This is then followed by the initiation and then execution of the 

motor plan to achieve an objective. Several researchers have experimentally 

dissociated movement initiation from execution (Brasted et al., 1998; Brown & 

Robbins, 1989). The present rat-SRT paradigm was designed to isolate 

individual response RTs in an attempt to understand how the improvements in 

RT performance, indicative of motor skill learning evolve. Designing a task with 

distinct start and endpoints provided an opportunity to measure changes in 

initiating the first response of a sequence from executing subsequent elements in 

the series.

Response initiation measured from the time a rat entered the chamber from 

the arm (onset of the luminance cue) until the photo beam was broken at the first 

illuminated port on the far side of the chamber. Motor learning was inferred from 

improvements in response time. Execution was reflected in the RTs for each of 

the remaining nose pokes in the sequence. Motor learning specific to a learned 

sequence was demonstrated through improved RTs on later responses in 

repeated sequences. Motor learning associated with practice performing 5-poke 

sequences unrelated to sequence-specific information was demonstrated by 

patterns of responding during training with random sequences. Consistent with 

Sternberg’s (1978) premise that sequence length increases latency, the time to
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initiate responses increased when rats performed a series of 5 nose pokes and 

increased even more when the response began a well-learned sequence.

There are factors that may have contributed to the ability of rats with cortical 

and striatal lesions in the present study to demonstrate visuomotor learning. We 

utilized a short sequence length to test visuomotor sequence learning. Rats with 

dorsal striatal lesions demonstrated spared motor learning in a similar SRT task, 

when sequences of 4 responses were tested, but failed to show learning at 

longer (8 & 12 response) sequences (Christie & Dalrymple-Alford, 2004). It could 

be that testing rats on longer sequences would have resulted in impaired motor 

learning. Another factor that could have mitigated visuomotor learning deficits 

was the duration of training. Rats in this study were trained extensively in the 

sequence learning task. Motor sequence learning is exhibited as incremental 

improvements in RT occurring after practice with a particular task. To the extent 

that lesions of dorsal striatum and cortex slow the acquisition of motor learning, 

long-term training may serve to mitigate learning deficits. This interpretation 

seems inconsistent however with the incremental changes in RT performance 

demonstrated within the first session and across initial sessions of the repeating 

sequence in our study.

Nissen & Bullemer’s (1987) original SRT presents a 10 or 12 element 

repeating sequence in a continuous flow of 100-120 responses. Normal subjects 

demonstrate overall RT improvements for the sequence with repeated practice 

and demonstrate disrupted performance when switched to a random sequence. 

These changes have been considered classic indicators of motor sequence
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learning. Consistent with these RT changes, detailed examination of individual 

responses in our study indicated that improvements in RTs for later responses in 

the sequence are consistent with existing evidence that motor learning improves 

reaction time (Nissen & Bullemer, 1987; Sakai et al., 2002; Robertson et al 2001; 

Helmuth et al., 2000; Honda et al., 1998; Jackson et al., 1994; Christie & 

Dalrympl-Alford, 2004). However, this fine-grained analysis also demonstrates 

increased RTs for the initial response. Thus there appears to be both a cost and 

a benefit for RTs associated with repeated performance of a motor sequence. 

These results suggest that the effects of basal ganglia disease on RT measures 

of motor sequence learning may reflect deficits in motor planning (or response 

initiation) rather than in learning processes.

Results form experiments 1 and 2 suggest several characteristics of motor 

sequence learning. Performing a sequence of motor responses produced distinct 

patterns of responding depending on whether the responses occured in a 

random or repeated order. Repeated sequences were characterized by slower 

RTs for initial elements and faster RTs for final elements (compared to random 

sequences). These consistent changes developed incrementally both within the 

initial session (short-term learning) and between sessions (long-term learning). 

Once a sequence of motor responses was well-learned the RT improvements 

indicative of motor learning (improved RT for later elements) were reversed 

abruptly when switched to a random sequence or to a new repeated sequence.

Results from the current study indicate that lesions involving M2 and mPF 

regions of cortex and anatomically related areas of dorsomedial C/Pu affect
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initiation but not acquisition or execution of learned sequences. These findings 

are consistent with clinical and experimental evidence that point to a critical role 

for striatum and frontal cortex in motor planning (Graybeil, 1998; Hikosaka, et al.

1999; Crammond & Kalaska, 2000; Doyon et al, 1996). Results from this study 

are inconsistent with clinical and experimental literatures that suggest a 

significant role for these cortico-striatal circuits in visuomotor sequence learning 

(see Hikosaka et al. 1999, Packard & Knowlton 2002 for review). The present 

findings support the idea that cortico-striatal circuits participate in initiation of 

learned sequences of visuomotor responses, however, they suggest that other 

neural circuits mediate the acquisition and the central representation of 

movements reflected in the execution of the sequence once initiated. This last 

point is consistent with evidence implicating parietal cortex and cortico-cerebellar 

circuits in these processes (Nixon & Passingham, 2000; Seidler, Purushotham, 

Kim, Ugurbil, Willingham, & Ashe, 2002; Lu, Hikosaka, & Miyachi, 1998; Doyon, 

Song, Kami, Lalonde, Adams, & Ungerleider, 2002).

SRT tasks that present a continuous repeating response cycle have no 

defined start or endpoint and thus prevent distinguishing response initiation and 

execution. They thus confound the cost to initiate the sequential response with 

the RT benefits of later elements apparent in the present study. Utilizing an SRT 

design that isolates component processes of motor sequence learning (e.g. 

motor planning, initiation and execution) may provide a more useful measure for 

distinguishing the specific contribution of cortico-striatal circuits to visuomotor 

sequence learning.
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Table 1.

Cortical injection sites (0.1 |jl of 100mM NMDA)

Lesion AP ML DV

M1 +3.2 2.6, 3.5, 4.4 1.3
+2.2 2.4, 3.4 1.3
+1.2 2.4 1.3
+0.2 1.8 1.3

M2 +4.2 1.4, 2.5, 3.6 1.3
+3.2 1.2 1.3
+2.2 1.0 1.3
+1.2 1.0 1.3

M1M2 +3.7 1.8, 2.8, 3.8 1.3
+2.7 1.8, 2.8, 3.8 1.3
+1.7 1.8, 2.8, 3.8 1.3
+0.7 1.2, 2.2 1.3

mPF +3.7 0.8 2.5, 3.5
+2.7 0.8 2.3, 3.3
+1.7 0.8 2.5
+0.7 0.8 2.3

Coordinates were measured in millimeters with AP relative to bregma, ML sites bilateral of 
midline and DV measurements located below the surface of cortex.
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Table 2.

Experiments 1 & 2: Summary Table of Experimental Tasks and Performance 
Measures

Behavioral Task Performance Measures
VSRT- 
measure of 
visuospatial 
responding

Accuracy % correct responses / % correct + errors of 
commission compared across six 
luminance cue durations

Choice RT RT from crossing the arm photocell beam 
to the photocell break at the cued response 
port

Runway RT RT from depressing the lever to crossing 
the arm photocell beam.

Simple S-R Learning- 
assesses the ability 
to utilize consistency 
in response location 
to improve accuracy

Accuracy % correct (calculated as above) compared 
across four 0.05 luminance cue 
presentations

RT RT from crossing the arm photocell beam 
to the photocell break at the (0.05s) cued 
response port.

Single response RT- 
a measure of RT to 
initiate a single motor 
response

RT RT from crossing the arm photocell beam 
to the photocell break at the (3.0s) cued 
response port.

Visuomotor 
Sequence Learning -  
a measure of motor 
skill learning 
demonstrated 
through improved RT 
completing a 
repeated series of 
visuomotor 
responses

RTfor
entire
sequence

RT from crossing the arm photocell beam 
to the completion of the fifth response at 
the cued port

RT pattern Comparing RT of responses 1-5 for 
random and repeating sequences sessions

Long-term Comparing RT for responses 1-5 across all 
sessions of the same repeating sequence

Short term Comparing RT for response 1-5 across 
blocks of trials in the initial random and 
repeat sequence sessions

Sequence
specific
learning

Comparing changes in RT for responses 1- 
5 between original sequence session (A10) 
and a subsequent random session (R3) 
and when switched to a novel sequence 
session (B1)

Motor
initiation

RT comparison of initiating a single 
response and the initial response in a five 
response sequence
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Table 3.

Experiment 1: SPF5.255 (treatment x session x response x block) ANOVA
Summary Table Examining Short-term Visuomotor Sequence Learning

Source Mean square Df F P

Treatment 519.263 4 2.798* .041

Error (treatment) 185.560 35

Session 246.753 1 4.997* .032

Session x treatment 104.528 4 2.117 .099

Error (session) 49.377 35

Response 8693.16 •2 38.258**** <.0001

Response x treatment 426.778 •7 1.878 .097

Error (response) 227.227 •5 6

Block 129.064 •3 7.683**** <.0001

Block x treatment 23.683 10 .827 .598

Error (block) 28.648 •83

Session x response 338.536 •3 6.620** .001

Session x response x treatme 358.071 11 .692 .731

Error (session x response) 51.135 • 00 CO

Session x block 11.565 4 1.799 .132

Session x block x treatment 11.565 16 .772 .715

Error (session x block) 14.978 • 113

Response x block 331.028 •6 12.052**** <.0001

Response x block x treatment 7.667 64 .836 .812

Error (response x block) 27.466 • 187

Session x response x block 141.163 8 8 421**** < .0001
Session x response x block x 
treatment 7.992 64 1.047 .384

Error (session x response x 
block) 16.763 256

Note. Bullet • indicates Greenhouse-Geisser adjusted df 
*p < .05. **p < .01. ***p < .001. ****p < .0001.
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Table 4.
Experiment 2: Striatal injection sites (0.1 pi of 100 mM NMDA)

Lesion AP ML DV

dorsolateral +1.7 3.0 4.0, 4.8, 5.6
+1.0 3.4 4.0, 4.8, 5.6
+0.3 3.8 3.4, 4.5, 5.6
-0.4 4.2 3.4, 4.2, 5.0

dorsomedial +1.7 2.0 4.0, 5.0, 6.0
+1.0 2.2 4.0, 5.0, 6.0
+0.3 2.4 3.0, 4.5, 6.0
-0.4 2.6 4.0, 5.0, 6.0

dorsal striatum +1.7 2.0 4.0, 5.0, 6.0
3.0 4.0, 4.8, 5.6

+1.0 2.2 4.0, 5.0, 6.0
3.4 4.0, 4.8, 5.6

+0.3 2.4 3.0, 4.5, 6.0
3.8 3.4, 4.5, 5.6

-0.4 2.6 4.0, 5.0, 6.0
4.2 3.4, 4.2, 5.0

ventral +2.7 1.0, 2.0 3.0
+1.7 1.0, 2.0 2.0, 3.0
+0.7 1.0, 2.0 1.8, 2.8

Coordinates were measured in millimeters with AP relative to bregma, ML sites bilateral of 
midline and DV located relative to the interaural line.
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Table 5.

Experiment 2: SPF5.25 (treatment x sequence type x response) ANOVA
Summary Table Examining Changes in RT Patterns for Random (R3) and
Repeat (A10) Sequence Sessions

Source Mean square df F P

Treatment 92.983 4 9.754**** < .0001

Error (treatment) 9.533 33

Sequence Type 5.304 1 2.900 = .098

Sequence type x treatment 6.131 4 3.352* = .021

Error (sequence type) 1.829 33

Response 107.353 •1 28.683*** < .0001

Response x treatment 11.793 •7 3.151** = .005

Error (response) 239.361

•a-CO•

Sequence Type x Response 29.007 •2 11.431**** < .0001
Sequence Type x Response x 
Treatment 7.432 •8 2.929** = .007

Error (sequence type x response) 2,538 •66

Note. Bullet • indicates Greenhouse-Geisser adjusted df 
*p < .05. **p < .01. ***p < .001. ****p < .0001
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Table 6.

Experiment 2: SPF5.105 (treatment x session x response) ANOVA Summary 
Table for Long-term Visuomotor Sequence Learning

Source Mean square Df F P

Treatment 74307.297 4 11.209*** < .0001

Error (treatment) 6629.180 33

Session 1139.000 •4 2.272 = .066

Session x treatment 1220.678 •16 2.435** = .003

Error (session) 501.332 •131

Response 150646.980 •2 41.195 < .0001

Response x treatment 14458.698 •6 3.954** = .003

Error (response) 3656.902 •48

Session x Response 2093.949 •7 2.289* = .035

Session x Response x Treatment 1366.570 •25 1.494 .069

Error (session x response) 914.893 •207

Note. Bullet • indicates Greenhouse-Geisser adjusted df 
*p < .05. **p<.01. ***p<.001. ****p<.0001
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Table 7.

Experiment 2: SPF5.255 (treatment x session x response x block) ANOVA Summary
Table Examining Short-term Visuomotor Sequence Learning

Source Mean square df F P

Treatment 2716.746 3 3.800* = .022

Error (treatment) 714.927 26

Session 549.251 1 3.088 = .091

Session x treatment 155.617 3 .875 = .467

Error (session) 177.853 26

Response 20006.056 •2 35.847**** < .0001

Response x treatment 277.840 12 .498 = .912

Error (response) 558.097 •44

Block 246.550 •3 4.127* = .013

Block x treatment 124.006 •8 2.076 = .052

Error (block) 59.742 • O
) 00

Session x response 1059.052 •3 6.404** = .001

Session x response x treatme 106.688 12 .938 .512

Error (session x response) 165.371 •7 2

Session x block 182.829 •4 3.991** = .009

Session x block x treatment 61.646 12 1.687 = .080

Error (session x block) 45.808 •8 3

Response x block 912.921 •7 12.032**** < .0001

Response x block x treatment 166.840 •19 2.199** =.005

Error (response x block) 75.873 • 158

Session x response x block 295.840 •7 4.418**** < .0001
Session x response x block x 
treatment 142.292

oCM• 2.125** = .006

Error (session x response x 
block) 66.966 •166

Note. Bullet • indicates Greenhouse-Geisser adjusted df 
*p < .05. **p < .01. ***p < .001. ****p < .0001.
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Table 8.

Experiment 2
SPF5.55 (treatment x response x block) ANOVA Summary Table Examining 
Short-term Visuomotor Sequence Learning for the Initial Repeat Session

Source Mean square df F P

Treatment 1584.382 3 2.633 = .071

Error (treatment) 601.645 26

Response 9513.279 •3 21.643**** < .0001

Response x treatment 352.784 12 .803 .647

Error (response) 439.563 • cn 00

Block 480.578 •3 6.814** = .001

Block x treatment 196.699 •8 2.789* = .011

Error (block) 70.525 •6 7

Response x block 1255.689 • 5 11.562**** < .0001

Response x block x treatment 329.256 •15 3.032**** < .0001

Error (response x block) 108.607 • 129

Note. Bullet • indicates Greenhouse-Geisser adjusted df 
*p < .05. **p < .01. ***p < .001. ****p < .0001.
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Table 9. Experiment 2

SPF5.22 (treatment x session type x response type) ANOVA Summary Table
for Initiation of a Single Motor Response vs. the Initial Response in a 5-
Response Sequence.

Source Mean square df F P

Treatment 5215.79 4 9.687**** < .0001

Error (treatment) 538.43 33

Session type (single vs. seq.) 1581.71 1 18.935**** < .0001

Session type x treatment 246.13 4 2.946* = .035

Error (session) 83.53 33

Response type (ran. vs. rep.) 1824.69 1 20.632**** < .0001

Response type x treatment 331.89 4 3.753* = .013

Error (response) 88.44 33

Session type x response type 16937.63 1 50.718**** < .0001

Session x response x treatme 1911.68 4 5.724** = .001

Error (session x response) 333.96 33

Note. Bullet • indicates Greenhouse-Geisser adjusted df 
*p < .05. **p<.01. ***p<.001. ****p<.0001
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Figure 1. Photomicrographs of representative medial prefrontal (mPF) 
cortex, primary motor (M1) cortex, secondary motor (M2) cortex and 
combined primary and secondary motor cortices (M1M2) lesions with 
arrows indicating cortical damage in the region of interest.
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Figure 2. Effects of cortical lesions on mean percent correct (with SEM) in 
the visuospatial reaction time task. Cortical lesions had no significant 
effect on accuracy performance.

0.11 0.26 0.58 1.33
Stimulus duration (s)

■ Control

□ M1

□ M1M2

□ M2
■ mPFC

Figure 3. Effects of cortical lesions on choice response time (median ± 
SEM) for luminance cues of varying durations in the visuospatial reaction 
time task. All groups demonstrated slowing across durations compared to 
controls. For the M2 group this was statistically significant.
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Figure 4: Effects of cortical lesions on response time (median + SEM) 
traversing the runway arm in the visuospatial reaction time (VSRT) task. 
Cortical lesions did not significantly affect runway response time.
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Figure 5. Effects of cortical lesions on mean percent correct (with SEM) 
performance across brief (0.05) luminance cue trials in the short -  term simple 
stimulus-response (S-R) task. Cortical lesions had no significant effect on 
accuracy improvement compared to performance of controls.
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Figure 6. Effects of cortical lesions on response time (median ± SEM) in the 
long -  term simple stimulus -  response task (responding to a randomly cued 
port on every trial versus responding to the same cued port on every trial). 
Cortical lesions had no significant effect on performance.
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Figure 7. Effects of cortical lesions on response time (median ± SEM) 
performing a 5 response sequence in a random or repeating order. Cortical 
lesions significantly slowed the time to complete the first response of a 
sequence. This effect was exacerbated when performing a repeating (learned) 
sequence. Cortical lesions did not affect improvement in the later elements of 
repeating sequences consistent with motor learning.
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Figure 8. Effects of cortical lesions on response (median ± SEM) in the serial 
reaction time (SRT) task across sessions. Cortical lesions significantly 
impaired the time to initiate a sequence of responses but had no effect on 
motor learning demonstrated through faster response times on later 
response in the sequence. Graph 1 illustrates overall median time to 
complete random and repeat sequences. Graphs 2 - 6  reflect the response 
times completing each response within the random and repeat sequences.
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Figure 9. Effects of cortical lesions on response time (median ± SEM) for each 
response across 5 blocks (12 trials) within the initial repeat sequence session. 
All lesions significantly slowed response time for the first response but did 
not affect later responses
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Figure 10. Effects of cortical lesions on response time (median ± SEM) for 
each response across 5 blocks (12 trials) within the initial random sequence 
session. All lesions increased response time to complete the first response 
but had no significant effect on later responses in the sequence
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Figure 11. Effects of cortical lesions on response time (median ± SEM) 
initiating a single random or repeating port response (long -  term simple 
stimulus response (S-R) task) compared to the identical motor response when 
it was the first response in a 5-response (random or repeating) sequence. All 
cortical lesions significantly slowed response time for the first response in a 
sequence. This effect was exaggerated for repeating (learned) sequences.
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Figure 12. Photomicrographs of representative striatal lesions including: a 
combined dorsomedial and dorsolateral (M &L) lesion, lesions limited to 
dorsomedial, dorsolateral, and ventral striatum. Arrows indicate damage to 
the striatal regions of interest.
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Figure 13. Effects of striatal lesions on mean percent correct (with SEM) in 
the visuospatial reaction time (VSRT) task. Dorsomedial lesions 
significantly impaired response accuracy at mid-range (0.26, 0.58, and 
1.33s) stimulus durations.
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Figure 14. Effects of striatal lesions on choice response time (median ± 
SEM) for luminance cues of varying durations in the visuospatial reaction 
time (VSRT) task. Rats with dorsomedial lesions were slower responding to 
cued ports than controls. Dorsolateral lesions produced an intermediate 
level of impairment.
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Figure 15. Effects of striatal lesions on response time (median + SEM) 
traversing the runway arm in the visuospatial reaction (VSRT) time task. 
Dorsomedial lesions significantly slowed runway response time.
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Figure 16. Effects of striatal lesions on mean percent correct performance 
(with SEM) across brief (0.05) luminance cue trials in the short -  term simple 
stimulus-response (S-R) task. Striatal lesions had no significant effect on 
accuracy improvement compared to control group performance.
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Figure 17. Effects of striatal lesion on short-term simple stimulus -  response 
(S-R) response time performance (median ± SEM). Dorsomedial lesions 
significantly slowed response time. Dorsolateral lesions produced an 
intermediate level of slowing that was not significant.
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Figure 18. Effects of striatal lesions on response time (median ± SEM) in the 
long -  term simple stimulus -  response (S-R) task (responding to a randomly 
cued port on every trial versus responding to the same cued port on every 
trial). Complete dorsal striatal (M & L) lesions significantly slowed response 
time to the cued port across conditions. Dorsomedial lesions produced an 
intermediate level of slowing that was not significant.
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Figure 19. Effects of striatal lesions on response time (median ± SEM) 
performing a 5 response sequence in a random or repeating order. Complete 
dorsal striatal (M & L) lesions significantly slowed the time to complete the 
first response of a sequence. This effect was exacerbated when performing a 
repeating (learned) sequence. Striatal lesions did not affect the response time 
improvement of later elements in repeating sequences consistent with motor 
learning.
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Figure 20. Effects of dorsolateral and ventral striatal lesions, across 
sessions, on response time (median ± SEM)) in the serial reaction time (SRT) 
task. Dorsolateral and ventral striatal lesions had no significant effects on 
SRT performance. Graph 1 illustrates overall median time to complete 
random and repeat sequences. Graphs 2 - 6  reflect the time to complete 
each response within random and repeat sequences.
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Figure 21. Effects of complete dorsal (M & L) and dorsomedial striatal 
lesions, across sessions, on response time (median ± SEM) in the serial 
reaction time (SRT) task. M & L  lesions significantly slowed response time to 
initiate a sequence of 5 responses that was exaggerated when performing a 
repeating (learned) sequence. Dorsomedial lesions produced an 
intermediate level of impairment that was not significant. Lesions had no 
effect on motor learning. Graph 1 illustrates overall median time to complete 
random and repeat sequences. Graphs 2 - 6  reflect the time to complete 
each response within random and repeat sequences.
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Figure 22. Effects of striatal lesions on response time (median ± SEM) for each 
response across 5 blocks (12 trials) within the initial repeat sequence session. 
Dorsomedial lesions significantly increased response time for the first 
response across the blocks of the session compared to controls
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Figure 23. Effects of striatal lesions on response time (median ± SEM) for each 
response across 5 blocks (12 trials) within the initial random sequence 
session. All groups demonstrated a significant increasing in response times 
across the blocks for response 1 only.
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Figure 24. Effects of striatal lesions on response time (median ± SEM) 
initiating a single random or repeating port response (long -  term simple 
stimulus response (S-R) task) compared to the identical motor response when 
it was the first response in a 5-response (random or repeating) sequence. 
Complete dorsal lesions significantly slowed response time for the first 
response in a sequence. This effect was exaggerated for repeating (learned) 
sequences.
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