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ABSTR A C T

MULTIPLE STEADY SOLUTIONS AND BIFURCATIONS IN THE 

SYMMETRIC DRIVEN CAVITY

by

K ahar Bin O sm an 
University of New Hampshire, May, 2004

The symmetric driven cavity with sinusoidal forcing for two- and three-dimensions is 

considered. Results are obtained via numerical computations of the Navier Stokes equations 

with constant density. The numerical integration is a splitting method, using the Crank- 

Nicholson method for linear terms and the second-order Adams-Bashforth method for the 

non-linear terms. Spatial derivatives are evaluated with finite differences, and m atrix equa­

tions are treated with SOR by lines. The results show symmetric solutions for low Reynolds 

numbers and asymmetric solutions for higher Reynolds numbers. Subcritical bifurcations 

are observed for two-dimensional flow. Unsteady flow behavior occurs at higher Reynolds 

number. Three-dimensional simulations for a cube show only one steady solution.

XIV
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Chapter 1

Introduction

The standard driven cavity problem is two dimensional flow in a rectangular geometry 

with a constant tangential velocity at the top of the cavity. This standard driven cavity 

problem has been treated many times [3] [7], and is often used as a benchmark for computer 

programs. The symmetric driven cavity is a recent variant of the driven cavity, see Farias 

and McHugh [4]. The symmetric driven cavity problem is also a flow in a rectangular 

geometry with an imposed velocity at the top, but the forcing is symmetric, resulting in 

zero average velocity across the top. Farias and McHugh [4] treated perhaps the simplest 

version of the symmetric driven cavity: sinusoidal forcing with only one period across the 

top, a two-dimensional square cavity, and a single vortex of variable magnitude for initial 

conditions.

The results of Farias and McHugh [4] show that a symmetric steady flow, shown schemat­

ically in figure 1.1(a), is the result for low Reynolds numbers and weak disturbances. How­

ever, they also found a second steady solution tha t had not been previously recognized. This 

second solution is asymmetric with respect to the vertical centerline of the cavity, despite 

the symmetry of the boundary conditions, and is shown schematically in figure 1.1(b). The 

second solution is achieved by initiating the flow with a single vortex of chosen magnitude.
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fo r c in g

streamlines

(a)

forcing

streamlines

(b)

Figure 1-1: Schematic of streamlines with symmetric forcing function showing (a) steady 

symmetric and (b) steady asymmetric flow
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The symmetric driven cavity is extended here to include sinusoidal forcing with more 

than one oscillation across the top boundary, and initial conditions with more complexity. 

The forcing is chosen to be zero at the corners of the cavity, and is given by u{x) =  sin{n'Kx), 

where 0 < a: < 1, and the integer n  is the forcing mode number. The initial conditions 

consist of a number of vortices across the chamber (Farias and McHugh used only one), 

which will be indicated by the integer, m, the initial condition mode number. Each case 

is then characterized by the mode number pair, (m ,n). For example, the (2,4) case would 

have two initial vortices and four complete oscillations in the forcing across the top. This 

example is shown schematically in 1.2. Note that the aspect ratio of the chamber, which is 

a free parameter, is ^ for the case shown in figure 1.2 .

m = 2

Figure 1-2: Schematic for the case where m =  2 and n =  4. The aspect ratio is j .

Two and three dimensional problems are considered. For the two-dimensional problem, 

the cases tha t are considered in detail are shown graphically in figure 1-5. The three 

dimensional results, which are of course much more demanding of computer resources, are 

limited to a few cases.

The results are obtained by direct numerical simulation of the incompressible Navier- 

Stokes equations. The numerical method is a finite difference method. Temporal integration 

is achieved with a time-splitting method, similar to the method of Karniadakis et al. [1].
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Validation of the computer program is achieved primarily via comparison with existing 

numerical results on the standard driven cavity and the symmetric driven cavity.

The two-dimensional simulations show tha t the overlap region where two steady solu­

tions could exist disappears for some cases, and no cases have been found when there are 

three or more steady solutions for the same Reynolds number.

The three-dimensional simulations show weakly asymmetric behavior for very low Reynolds 

number with increasing symmetry as increases. There are no three-dimensional cases 

showing more than one steady solution for the same Rg.

1.1 M otivation

The symmetric driven cavity considered here is motivated by a variety of geophysical and 

industrial flows. Two examples will be given: 1) flow in a confined body such as a lake, and 

2) flow in a papermaking machine.

The flrst example is water in a confined body, such as a lake or pond. Wind blowing 

over the surface of the water results in motion of the water throughout the lake. The motion 

of the water is responsible for a variety of patterns in the lake, as well as concentrations of 

biological nutrients and associated biological activities. These patterns are im portant to all 

environmental aspects of the lake.

The wind at a  lake surface is not uniform. A two-dimensional example is shown schemat­

ically in figure 1.3. Local topographical features and nearby trees can have a significant 

effect on the average wind speed, even resulting in air flow in direction opposite the pre­

vailing wind, as shown in figure 1.3. This flow reversal of the air would force a flow reversal 

at the surface of the lake, thereby perhaps influencing the flow thoroughout the lake. Flow 

patterns in lakes do show local concentrations of biological constituents, which could be 

related to the flow pattern  on the surface, and thereby surrounding topography. However, 

this relationship between surface forcing and flow pattern  is not completely understood, 

and in fact can be misleading, as will be shown here. Attempts to control the lake flow with 

drastic changes in the surrounding features appear to be unnecessary.
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The second example is an industrial flow concerning the manufacturing of papermaking. 

Paper is made in large quantities using high speed machinery. The process begins by forming 

pulp, which is generally 95 percent water and 5 percent wood fiber. The pulp flows through 

a slot and onto a screen where the water is drained. The remaining wood fibers are then 

pressed and dried. A schematic is shown in figure 1.4. The most im portant feature for 

making quality paper is to retain adequate mixing in the pulp as the water drains so that 

the fibers will be randomly oriented in the final paper. The mixing is commonly achieved 

inside the slot with troublesome and expensive turbulence generators.

A recent attem pt to improve mixing during the draining process used coherent stream- 

wise vortices induced at the slot. The vortices were expected to reach further from the slot 

than turbulence, and therefore enhance mixing during the later stages of draining. This 

initial attem pt showed tha t the coherent vortices can lead to streaks in the final paper, 

ruining the process. However, the choice of the pattern  of the vortices was not based on 

practical aspect of the vortex generation. It is shown here tha t the pattern  of vortices is 

critical to achieve vortices tha t will enhance mixing, rather than supressing it.

Beyond these two specific examples, the results of Farias and Mchugh [4] suggest a more 

general feature of flow in a confined region. Confined flow can be forced in variety of ways, 

including translation, rotation, or oscillation. Perhaps there is a universal feature, whatever 

the forcing. This generalization has not yet been achieved, but is supported by the work 

considered here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1-3: Schematic of non-uniform forcing tha t could occur at a lake surface.

-(r%

Figure 1-4: Schematic of papermaking machinery showing presence of vortices to enhance 

mixing of the pulp.
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Figure 1-5: Summary of cases for two-dimensional simulations
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Chapter 2

Mathematical preliminaries

2.1 Navier-Stokes equation

Consider a Newtonian flow with constant material properties, including constant density, 

governed by the Navier-Stokes and continuity equations. The Navier-Stokes equations for 

constant density flow, in vector form, are

p ( ^ ~ + v - V v ^ =  -  Vp -f pV V , (2.1)

where

V = ui + v j  + wk  (2-2)

is the velocity vector, p is the pressure, fi is dynamic viscosity, p is fluid density, and t is

time. The continuity equation for constant density is

V -n  =  0. (2.3)

Consider three-dimensional flow in a rectangle of height, H,  length, L,  and depth, D.

Dimensionless variables are defined as

V

w

p
p = pU^

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



~ y
y - j j .

(2.4)

where ?7 is a reference velocity. For the present results, U is the am plitude of the sinusoidal 

velocity on the top boundary, eg. the amplitude of the forcing. Dropping the circumflex, 

the resulting dimensionless equations are

dV . r — r ~ t    f . 9—  +  u • Vu = -V p  +  —  V u, (2.5)
iyt -^ ^ 6

where Rg is the Reynolds Number, defined as

Re =  ^ ,  (2.6)

and V is the kinematic viscosity.

In component form for Cartesian coordinates, these equations are

du du 1 du 1 du _  dp 1 / d^u 1 d^u 1 d ^ u \
dt ^ d x  dy dz d x ^  Rg 7  ̂dy"  ̂ di^z J

dv dv 1 dv 1 dv dp i f  d^v 1 d^v 1
dt ^ d x  7 ^ 9 j/ X ^  dz dy  ^  Rg 7  ̂dy“̂ d'^z j

dw dw  1 dw 1 dw dp i f  d^w 1 d^w 1 d ^ w \  .
dt ^  dx dy X ^  dz  Rg \  dx'^ 7  ̂ dy'^ Â  d"^z j

with

+  1 * ^  =  0 (2.8)
dx y  dy X dz

where 7  =  x  ^ ~  T-

The boundary conditions are the no-penetration condition, v ■ n  = 0, where n is a unit

vector normal to the boundary, and the no-slip condition, v ■ r ,  where r  is a unit vector

tangent to the boundary. On the sides and bottom  of the cavity, this results in a zero

velocity vector, v = 0. On the top, the normal velocity is zero, w — 0. For two dimensional

cases, the tangential velocity is the imposed sinusoidal velocity;

u(x) = sin (nTTx) (2.9)

at =  1, where 0 < 2; < 1. In three dimensions, two components are imposed on the top of

the cavity.

9
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2.2 Num erical solution techniques

2.2.1 T em poral in tegration  and sp littin g

The temporal integration of the Navier-Stokes system is achieved using a semi-implicit

splitting method, similar to the method of Karniadakis et. al [1] and others. The Navier-

Stokes equations can be expressed as

~  + N{v) = - V p + ^ ^ L { v ) ,  (2.10)

where L  is the linear viscous term and N- is the non-linear advective term:

L{v) =  V V , (2.11)

N{ v ) = ^ v - V v .  (2.12)

Now integrate over one time step, At:

r k̂+i df) r k̂+i rtk+i r k̂+i 1 ^

/  + / N{v)dt — — j Vpdt  + / — L{v)dt, (2.13)
Jtk Jtk Jtk die

where k is the time step. The first term is easily evaluated without approximation,

(2.14)
Ju at

The semi-implicit method treats linear terms implicitly for stability, and nonlinear terms 

explicitly for efficiency. Explicit evaluation of the nonlinear terms is achieved with the 

second-order Adams-Bashforth method:

rtk+i
/ N{v)dt

Jtk
At .  (2.15)

This explicit treatm ent of the nonlinear terms avoids sampling N  at the leading time step, 

whicli would result in nonlinear algebraic equations, requiring further iteration. The pres­

sure term is treated by reversing the order of integration and differentiation, then introduc­

ing time-averaged pressure:

f^'‘̂ \ p d t  = v \  [^'‘̂ 'pdt  =Vp'^+^At.  (2.16)
J ■'J tk

10
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Implicit treatm ent of the the linear viscous terms is achieved with the second-order Crank- 

Nicholson method:
ftk + l
/ L{v)dt 

Jtk
At . (2.17)

The combined difference equation is now

A t  =  +
2R,

+  v V At. (2.18)

In addition to (2.18), the continuity equation is imposed at the leading time step:

V • =  0. (2.19)

Equations (2.18) could be treated directly, after a spatial approximation, except for the 

presence of pressure. Another equation is needed for pressure, and the only remaining 

equation is the continuity equation, which does not contain pressure. The approach to this 

difficulty is to use splitting.

Splitting means tha t (2.18) is integrated numerically in three stages for each time step, 

each stage addressing the nonlinear term, the pressure term, and the viscous term indepen­

dently. Two intermediate velocity fields, v and v, are introduced in order to achieve this. 

The three stages are

V — V — At,

2Re
At.

(2 .20)

(2 .21 )

(2 .22)

Note tha t summing these three equations eliminates v and u, producing exactly the original 

discrete equation in (2.18), hence there is no further approximation with this aspect of 

splitting.

In order to process the second step, the average pressure, p, must be determined. The 

pressure is not needed for the first step, and therefore p can be determined after v. A Poisson 

equation for pressure is used to obtain pressure, keeping in mind tha t the continuity equation 

must still be enforced.

11
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To obtain the Poisson’s equation for pressure, take the divergence of (2.18) and use the 

continuity equation to obtain

=  (2.23)

where the nonlinear terms are neglected. Karniadakis [1] has shown tha t the nonlinear terms 

do not contribute significantly to the pressure with this splitting method. The nonlinear 

terms can be included without affecting other stages of the method, but have not for the 

results given below. Note that for this splitting method, the divergence of the intermediate 

stages is not zero, and the divergence of the velocity field at the end of a time step is only 

approximately zero. Retaining the V ■ v term in (2.23) is im portant for correcting the error 

in the continuity equation at the next time step arising from the previous time step.

All variables require boundary conditions, including u, v, and p. The boundary

conditions on are the natural boundary conditions, which must be enforced at the final 

stage of the splitting method. Boundary conditions on v and v can be chosen to enhance 

the numerical aspects of the method. Past experience has shown tha t the first two stages 

of splitting are primarily inviscid components of motion, and therefore, only the normal 

boundary condition is enforced. Hence,

a ■ n = V ■ n — 0 (2.24)

on all boundaries. The final stage of splitting must meet the final boundary conditions, 

therefore,

=  0 (2.25)

on all boundaries, except the top, where the chosen driving velocity is imposed as the 

tangential velocity.

The remaining boundary conditions are the pressure boundary conditions. There are no 

natural boundary conditions on the pressure; the value of pressure at the boundary depends 

on the velocity field in the neighborhood of the boundary. Pressure boundary conditions 

must be approximated from the governing equations. Take the normal component of (2.18)

12
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to get

n ■ Vp‘

—n ■

'^2r /

A t

At . (2.26)

For an impermeable box, (2.26) becomes

n ■ Vp'■fc+i =  n
2R,

At. (2.27)

The viscous terms on the right-hand-side of (2.27) are generally not zero, and their eval­

uation is problematic, since they contain a term at the leading order. However, for large 

Reynolds number, they are also small, and could be neglected, leaving

n ■ =  0. (2.28)

Karniadakis [1] recommends higher order boundary conditions for a better approxima­

tion of the viscous terms, especially for low Reynolds Number flow. One approach is to 

evaluate the viscous terms in the pressure boundary conditions with an explicit method, 

keeping everything else the same. This technique results in an instability. In general, the 

system is sensitive to the treatm ent of the viscous terms in the pressure boundary conditions.

2.2.2 H igh  order pressure boundary con d ition s

A successful method for higher order pressure boundary conditions is obtained by rearrang­

ing the viscous linear terms in the pressure boundary condition, as in Karniadakis [1]. Note 

that the governing equation for pressure remains unchanged; only the boundary condition 

is affected. Also note tha t the nonlinear terms in the pressure boundary condition are still 

neglected.

Using a  vector identity, the viscous terms can be expressed as

V V -  V (V -F ) -  V X (V X F). (2.29)

13
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Again, take the normal component of (2.18) for the pressure boundary conditions. Evaluate 

the first term  on the right-hand-side of the (2.29) implicitly using Crank-Nicolson, and 

evaluate the second term  explicitly using Adams-Bashforth:

1
n

2R,

—n

V(V • n^+^) +  V (V  ■ V*)

3V X (V X # )  -  V X (V X (2.30)

The term V(V  • n^+^) is zero due to the continuity equation. The final form of the boundary 

condition is

ip ik+ i 1
n ■V(V • # )

2R

-n
2R,

3V X (V X n*̂ ) -  V X (V X n^-^) (2.31)

As previously mentioned, the divergence of v is only approximately zero at the end of a time 

step, hence V • is not zero and is retained. Note tha t the viscous terms in the governing 

equations are still treated as in (2 .22).

Numerical experiments for Reynolds numbers as low as unity show no significant im­

provement with the higher order method. Figure 2-1 compares results obtained using (2.28) 

to those obtained using (2.31) for the traditional driven cavity. The higher-order method 

has little effect, therefore, for efficiency, the boundary conditions in (2.28) are used.

2.2.3 S p atia l d iscretiza tio n  and oth er deta ils

The spatial operators are evaluated with second-order finite differences. For example, the 

two-dimensional Lapacian operator with 7  =  1 is

— ^ 2 iV i+ 1 ,3  A  ■1'  ^ *J+ 1  +
k + l (2.32)

where h is the gridsize, assumed uniform in all directions. Boundary conditions are evaluated 

with second-order one-sided difference expressions.

The resulting systems of equations are solved using the successive over relaxation (SOR) 

method by lines [2]. SOR by lines is more efficient for the splitting method, compared to

14
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a direct method. This is mostly due to the fact that SOR by lines eliminates the need to 

control the average pressure, which accounts for much of the computing time for a direct 

method. This feature is related to the fact that members of the null space of the discreet 

pressure operator are automatically subtracted by the end of an interation.

SOR by lines is performed here in the row-by-row manner, bu t can be performed column- 

by-column just as easily. The row-by-row method means that each row of gridpoints in the 

physical domain is treated successively. Solution values at neighboring rows are taken from a 

previous iteration, which reduces the matrix to a tri-diagonal form. The tridiagonal matrix 

is then solved efficiently using the Thomas algorithm. For example, consider SOR by lines 

applied to (2.22). Rearranging (2.22) yields

+  h. (2.33)

Employing the second order central difference discretization scheme for the second term on 

the left hand side of (2.33) will yield an equation for each gridpoint tha t has five unknowns 

for the two-dimensional case, or seven unknowns for the three-dimensional case. However, 

once values of v from gridpoints on a different row are determined from previous iterations, 

there are only three unknowns. This procedure is depicted for the two-dimensional case in 

figure 2-2 .

Once all the unknowns in a particular row or column are determined, the values must be 

’relaxed.’ Relaxation is achieved by introducing a weighting factor to improve convergence. 

The general form of the relaxation method used here is

(2.34)

where q is the iteration index. The constant u  is the weighting factor. For this method, 

the weighting factor tha t converged the fastest was found to be 1.2. Once the values are 

relaxed, the next row or column can be treated successively until all the rows or columns are 

completed. This will end the first iteration for the entire grid. The procedure is repeated 

until residuals are within a specified tolerance. It is found tha t the required number of 

iterations is less than seven for all cases.

15
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Chapter 3

Validation

3.1 Two dim ensional case

Validation of the algorithm and software is achieved primarily by comparison with previously 

published results for the traditional driven cavity. The traditional driven cavity is two- 

dimensional flow in a square cavity. The flow is driven at the top with a constant tangential 

velocity. This flow has been considered many times using many dilferent methods. It is often 

a standard benchmark for computational fluid dynamics programs, as here. The results of 

Ghia [3] are most often used for this purpose.

The flow in the traditional driven cavity is initially at rest, and the forcing is imposed 

at the first time step. The flow is then allowed to reach steady state. Two methods were 

considered to determine the point in the simulation when the steady state is reached. One 

method is to track a measure of the total kinetic energy of the flow, defined as

Q + w'^), (3.1)
iz= l

where N  is the to tal number of grid points. Computations are term inated when the change 

in Q falls below a chosen tolerance, usually 10“ ®.

The other method to identify the steady state is to track the maximum velocity difference 

through the domain. The largest difference between u (or v and re) for the current time 

step is compared to the previous time step. Again, computations are term inated when the 

largest value falls below a chosen criterion. Tolerances between 1 x lO“ ® and 1 x 10“ ® are 

typically used, depending on the time step increment or the value of Rg. In general, higher

17
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Re requires a smaller tolerance. This latter method is generally used for the results of this 

analysis. The tolerance is set to 1 x 10“  ̂ for all velocities and pressure.

Steady results for the current simulations are directly compared to the results of Ghia 

[3] in figure 3-1 for a Reynolds number of 100. Figure 3-l(a) shows a profile of the hor­

izontal velocity along the vertical center of the square, and figure 3-1 (b) shows a profile 

of the vertical velocity along the horizontal center, for both Ghia and the current results. 

The resolution for the current results is 65 x 65. Note that at this modest resolution, the 

two profiles are virtually identical. Figure 3-2 shows the same comparison for the higher 

Reynolds number of 1000, for the still modest resolution of 129 x 129. At this Reynolds 

number, slight differences between the two computations can be seen at the points of max­

imum velocity. This difference can be made arbitrarily small by increasing resolution, by 

decreasing the time step, by increasing the order of the manner in which the nonlinear terms 

are treated, or all of the above.

Further comparison between the results of Ghia [3] and the present results are given in 

figure 3-3. Also included in figure 3-3 are the results of Bruneau and Jouron [7]. The figure 

is a comparison of the computed position of the extrema of velocities, both horizontal and 

vertical components. Figure 3-3 shows that the present results agree well with these previous 

results. Note tha t the position of minimum velocity is often taken to be the location of the 

center of the vortex tha t is created in the driven cavity, which is considered an important 

test of any numerical technique.

A final comparison is given in table 3.1, which compares the computed position of the 

primary vortex to Ghia’s result for Reynolds numbers of 100 and 1000.

The resolution for the Re = 100 case is 65 x 65, while the resolution for Re =  1000 

case is 129 x 129. In fact, for Re = 100, a resolution of 33 x 33 is sufficient to produce 

accurate results. However, a resolution of 65 x 65 is generally used as the minimum for all 

calculations.
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Table 3.1: Location of primary vortex

Method Re X y

Ghia 100 0.6172 0.7344

1000 0.5438 0.5625

present results 100 0.6122 0.7331

1000 0.5411 0.5613

3.2 Three dimensional case

A three dimensional version of the driven cavity has been previously considered by Iwatsu, 

et al [6], Bravo [5], and others. The forcing was uniform at the lid, and the flow was initiated 

from rest. A schematic of this case is shown in figure 3.4.

The three-dimensional traditional driven cavity shown in figure 3.1 has been treated 

here for the purpose of validation of the three-dimensional computer program. Both aspect 

ratios are chosen to be unity (thus the geometry is a cube), and the Reynolds number is 

100 or 400. The resolution for this simulation varies from 33 x 33 x 33 to 65 x 65 x 65. It 

is found tha t for low Re, 33 x 33 x 33 is sufficient to obtain accurate results.

Figures 3-5 and 3-6 show several velocity profiles for the present results, and corre­

sponding data for the previous results. Again, the agreement is excellent, demonstrating 

the accuracy of the computational techniques and programs.
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Figure 3-4; The three dimensional driven cavity
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Chapter 4

Two-Dimensional Results

4.1 Param eters

Non-dimensionalization of the governing equations shows tha t there are two basic param­

eters for the two-dimensional case; the Reynolds number, i?g =  and the aspect ratio, 

7  =  ^ .  Only two values of the aspect ratio are treated here, 1 and 5 . The Reynolds number 

is the bifurcation parameter, and many values of Re will be treated for each configuration, 

depending on the circumstance.

The initial conditions for the simulations play an im portant role in the present results. 

The magnitude of the initial conditions must be characterized in some manner. Symmetry 

of the initial conditions was found previously to be an im portant factor in the final state 

(Farias and McHugh [4]), and a symmetry parameter was used to characterize both the 

magnitude of the initial conditions and the final steady state. The symmetry param eter is 

useful here as well, and is defined to be

u{t) ^  f  \u\dy, (4.1)
Jo

taken along the vertical centerline of the chamber. The integral will vanish if the flow is 

perfectly symmetric about the vertical centerline.

Note tha t u is not an ideal indicator of symmetry and must be used with caution. For 

example, a symmetric initial condition of any magnitude will have a zero value of u, hence, 

u is not a useful measure for symmetric flows. Also, it is possible to have asymmetric 

motion tha t is increasing in magnitude, but has a decreasing value of u. This was true for
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the results of Farias and McHugh [4]. Despite these shortcomings, u is the most convenient 

measure for this study.

4.2 Boundary conditions

The flow is forced by imposing a tangential velocity at the top of the domain. The traditional 

driven cavity [3] has a constant velocity across the top of the cavity, U = 1. The symmetric 

driven cavity of Farias and McHugh [4] has a sinusoidal variation across the top of the 

cavity with a single period of oscillation, given by u{x) — sin27rx and 0 < a: < 1. The 

forcing profile of Farias and McHugh [4] is generalized here to include more cycles, and is 

now given by

u(x) — sin(mrx), (4.2)

where the wavenumber, n, is chosen to be a positive integer. This choice for n  allows more 

cycles in the forcing, yet still has the feature of zero velocity at the top corners of the 

domain. This feature is appealing in that the no-slip condition at the sidewall results in a 

continuous velocity field. If the forcing is not zero at the endpoints of the top, the velocity 

field at the corners would be discontinuous.

Note tha t the average velocity due to the above forcing is

/  sm{mrx)dx. (4.3)
Jo

The integral is zero when n  is even. In addition to a zero average velocity, the forcing 

velocity is antisymmetric about the vertical centerline of the domain when n  is even. These 

two features make even values of n  important and interesting.

4.3 Initial conditions

The flow is initiated from rest for some cases, and initiated with a prescribed flow for other 

cases, the goal being to determine all possible steady flow patterns. The prescribed flow 

could be chosen from an unlimited selection, and practical considerations force a choice 

from a small set.
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The initial conditions tha t are employed in the present results are a spanwise pattern 

of vortices. The number of spanwise vortices is indicated by m. A schematic of the various 

cases is shown in figure 4-1. Note tha t the {m,n)  =  (1,2) case is the symmetric driven 

cavity of Farias and McHugh [4]. Many other possibilities exist for initial conditions, and 

it remains to be seen whether other choices will induce new and different steady flows.

The initial conditions vary from m ~  0 to m =  64. Note tha t m =  0 indicates that the 

flow starts from rest. The spanwise pattern of vortices tha t are used as initial conditions 

for m /  0 are created using the same driven cavity simulation, performed with different 

parameter values. The value of n (the forcing mode) is set equal to the desired value for 

m (the initial condition mode), the simulation starts from rest and is allowed to reach 

steady state. The Reynolds number for all initial conditions was chosen to be 100. The 

magnitude of the initial condition is adjusted by direct multiplication of all variables by a 

fixed constant. The resulting velocity field is used to initiate a simulation with a different 

value of n. Consider for example the (m, n) =  (1,2) case with a Reynolds number of 1000 

that was considered by Farias and McHugh [4]. The initial conditions for this case are 

created by starting a simulation from rest with n =  1 and = 100. The steady results 

are then used to initiate a simulation with n =  2 , now setting Re — 1000, and the flow is 

allowed to evolve naturally.

4.4 Traditional driven cavity

Before treating the case of sinusoidal forcing, consider again the constant forcing, as in 

the traditional driven cavity of Ghia [3]. The traditional driven cavity has the constant 

forcing (f7 =  1 at the top), a square cavity (7 =  1), and is started from rest. The results of 

Farias and McHugh [4] suggest that perhaps there are other steady solutions, besides the 

one determined by Ghia [3], and tha t these may be found with a strategic choice of initial 

conditions. This possibility is investigated here for the square cavity, and for a rectanguler 

cavity with 7  =  |-

The traditional driven cavity, with 7  =  1 and starting from rest, is treated in the previous
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chapter, and the results were shown to match previous results. Figure 4-2 (a) to (c) show 

the streamlines for this case for Re  of 100, 400, and 1000. Note tha t the streamlines are 

determined from the velocity field by first calculating vorticity, defined to be the curl of the 

velocity, which in two-dimensions is

where ry is the vorticity. The vorticity is then used to determine the stream function using 

the equation

=  rj, (4.5)

where -tp is the streamfunction. Streamlines are then determined by finding contours of the 

streamfunction. All streamlines shown in this chapter are determined in this manner. Note 

that and the other derivatives in (4.4) and (4.5) are approximated with the same finite 

difference methods discussed in chapter 3.

The traditional driven cavity flow is treated again, now starting with a disturbance of 

chosen magnitude to determine the existence of other steady flows. The initial conditions 

were a row of vortices as described before. The initial condition mode numbers of 2, 3, 

4, 6, and 8 were considered. The Reynolds numbers were again chosen to be 100, 400, 

and 1000. The magnitude of the initial condition for m =  3 ranges over 0 < u < 0.18. 

The magnitude of the initial conditions for even values of m  was changed with the same 

multiplicative constants as the m =  3 case, even though initial values of u are zero. The 

results of the simulations show that the flow for all m  with any initial magnitude are the 

same; the initial disturbance experiences a period of adjustment, finally converging on same 

steady flow pattern  as the traditional driven cavity. No other steady solution has been 

found for this case. Note that there may still be another steady nonlinear solution, but can 

only be reached with an as yet undetermined disturbance.

In a further attem pt to induce a possible second solution, the traditional driven cavity 

was allowed to reach steady state, and then the sense of the forcing was suddenly changed, 

such that the direction of forcing was in the opposite direction. The flow was then allowed
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to evolve to steady state again. The results still show only one steady solution; the same 

flow as found by Ghia [3] and others. It seems unlikely that there is a second solution for 

this case.

Further simulations considered the traditional driven cavity problem with a different 

aspect ratio, 7 = 5 , using the same range of m  and u as above. Figure 4-3 shows the 

resulting streamlines for the steady flow case when started from rest. Once again, a second 

steady solution has not appeared. All the simulations with different m  and u evolve to the 

same final steady flow as the flow that is started from rest.

Some comments will now be made concerning the 7  =  5 case, for future discussion. 

Note in figure 4-3 tha t the center of the primary vortex is no longer near the center of the 

cavity, but is shifted to the right, in the same direction of forcing. The forcing seems to 

‘drive’ the vortex toward the right wall, almost to the point where the vortex will fit in the 

right half of the domain, and approximately mimic the behavior of the cavity with 7  =  1. 

Note tha t the vortex center is shifted upward from the 7  =  1 case.

The value of V'max has also increased for the 7 = 5  case. The parameter, tpmax, is 

another variable typically used to validate numerical methods. Table 4.1 gives a quantitative 

comparison between the 7  =  1 and 7 = 5  cases.

Table 4.1: Location of primary vortex

Method Re '4^m ax X y

7  =  1

100

400

1000

0.1010

0.1129

0.1129

0.6122

0.5528

0.5411

0.7331

0.5995

0.5613

i' 2

100

400

1000

0.1218

0.1271

0.1365

0.6977

0.6899

0.6591

0.6592

0.5891

0.5736
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4.5 R esults w ith a square cavity

The symmetric driven cavity is now considered in a square cavity, 'y — ^  — 1. Forcing 

mode numbers, n, of 2, 3, 4, 6 , and 8 are considered in detail in this section. Several higher 

mode numbers are considered in the next section. The results show tha t the bifurcation 

sequence for each forcing mode number is significantly different. Each forcing mode number 

will be discussed sequentially, followed by some general remarks.

4.5.1  n  =  1

The n =  1 case in a square cavity is very similar to the traditional driven cavity, the only 

difference being tha t the forcing here is sinusoidal with a half period across the top, while 

the tradition driven cavity is constant across the top. The simulations for this case show 

that there is only one steady flow pattern for all initial conditions considered, and this 

resulting steady flow is very similar to the traditional driven cavity discussed above. No 

second solution has been found for this case.

4.5 .2  n  =  2

The n =  2 case is the same case considered by Farias and McHugh [4]. Note tha t they only 

used initial conditions with m =  0 or m =  1; they did not consider higher m, and they took 

Rf. to be less than 3000. As discussed above, Farias and McHugh found two steady solutions 

for the n — 2 case; a symmetric and an asymmetric solution. The same case is considered 

here for several reasons; 1) further validation of the computational methods, 2) to extend 

the highest Reynolds number considered Farias and McHugh, thereby finding the largest 

Reynolds number where an asymmetric steady solution may exist, and 3) to determine any 

other steady solutions tha t may exist but were not previously found.

The results are shown in figure 4-4. Figure 4-4(a) shows the locus of values of u for 

the asymmetric steady solutions. Also shown in figure 4-4(a) are the results of Farias and 

McHugh, which clearly agree with the present results. Furthermore, although not shown in 

the figure, all the features of the bifurcation diagram of Farias and McHugh are reproduced

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with the present methods.

Note in 4-4(a) tha t the asymmetric steady solution exists for Reynolds number up to 

approximately 3700. Simulations for a Reynolds number of 3800 shows oscillating flow; 

steady flow no longer exists. Reynolds numbers as high as 4500 were considered, always 

resulting in unsteady flow. The flow pattern, however, does not show any remarkable 

changes as the Reynolds number is increased in subsequent cases up to 4500. Figure 4-4(c) 

and 4-4(d) show the resulting flow patterns for the unsteady flow for two different Reynolds 

numbers at the same time in the simulation.

Figure 4-4(b) shows a time history of u for the unsteady case with two Reynolds numbers. 

Time histories of u are widely used throughout this study to indicate the behavior of the 

flow. Figure 4-4(b) shows tha t the flow for Rg = 3800 evolves into a periodic pattern. 

However, the flow for Rg = 4500 is not periodic. It appears therefore tha t at least one more 

bifurcation has occured in this interval. The current focus is on steady flows with different 

forcing; unsteady bifurcations are beyond the present scope, and are not pursued in depth 

here.

The simulations with higher values of m  do not result in any new steady or unsteady 

solutions. All simulations converge to either the symmetric or asymmetric solution. In fact, 

as will be shown, no case has been found when there are more than  two steady solutions 

for the same param eter values and forcing pattern.

4 .5 .3  n  =  4

The n =  4 case has two complete periods of forcing across the top of the cavity, and would 

be expected to drive a steady symmetric flow with four vortices across the cavity, at least for 

low Reynolds number. This symmetric steady flow is found to exist, and the flow pattern 

is shown in 4-5(a) for a Reynolds number of 600. Note that the simulation for the flow in 

4-5(a) is started from rest (m =  0). Also note that the flow pattern  is symmetric about the 

cavity centerline, however, the four vortices are not all equal. The flow is dominated by two 

vortices, and the streamlines pattern  appears to mimic the n =  2 case, except near the top
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of the cavity.

As the Reynolds number is increased beyond 670, an asymmetric steady flow also exists, 

analogous to the n = 2 case. The second steady flow can only be achieved if the flow is 

initiated with a sufficiently strong asymmetric motion. The flow pattern  for this asymmetric 

flow is shown in figure 4-5(b). The locus of values of u for the asymmetric steady flows is 

shown in 4-6(a). The dashed line in figure 4-6(a) distinguishes the two possibilities; initial 

conditions with u above the dashed line will evolve to the asymmetric solution, while those 

below the dashed line will evolve to the symmetric solution. Note tha t a value of u on the 

dashed line corresponds to an initial value, rather than a final steady value. Time histories 

of u shown in 4-6 (c) show two examples at the same Reynolds number; one converges to a 

symmetric solution, and the other to an asymmetric solution, the only difference being the 

magnitude of the initial condition. Note that the dashed line in 4-6(a) applies to asymmetric 

disturbances only. Symmetric disturbances, m =  2,4,8, only result in symmetric steady 

flows.

Simulations starting from rest with Reynolds number greater than  1350 evolve into a 

steady flow, but it is the asymmetric steady flow. The symmetric steady flow no longer 

exists beyond i?e > 1350. The time histories in 4-6(d) demonstrate this fact by comparing 

three different initial conditions; they all converge on the same asymmetric steady solution. 

These results indicate a different scenario than the n  =  2 case of Farias and McHugh [4]. 

There is no Reynolds number for the n =  2 case where the flow initiated from rest will 

evolve into an asymmetric steady motion; instead, simulations for higher started from 

rest evolve into an unsteady solution.

Note tha t for the present n =  4 case, simulations starting from rest also evolve into 

an unsteady solution, but only for Reynolds number larger than 3800, where no steady 

solutions exist.

The streamline patterns for the asymmetric solution in 4-5 (b) has a much different 

character than for the symmetric solution, shown in 4-5(a). The lower region of the cavity 

for the asymmetric flow is dominated by a single large vortex, occupying the entire width of
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the cavity. The spatial oscillation of the forcing is not reflected in the ‘bottom  flow’. This 

is an example of a system where complicated surface forcing can result in much simpler 

motion in most of the domain.

Flow in the unsteady case is shown for one time value in figure 4-5(c). This flow can be 

characterized as an oscillating pendulum-like motion of the vortices.

4.5 .4  n  =  6

For low Reynolds number, all m  result in the same final steady solution, shown in figure 

4-7(a). The streamline pattern  in figure 4-7(a) is symmetric, and shows six distinct vortices, 

as expected. Note however that the vortices are not identical.

The behavior as Reynold number is increased is somewhat different than the ra =  4 case. 

There is a value of Rg of approximately 440 which separates the symmetric steady solution 

from asymmetric behavior. Beyond this critical Rg, a steady asymmetric flow exists, but the 

steady symmetric flow does not exist. No overlap region was found where both symmetric 

and asymmetric solutions can exist, as shown in figure 4-8(a). Now, whatever the initial 

condition, if Rg is larger than 440, all initial conditions, including symmetric ones, and 

starting from rest, converge to the same asymmetric solution.

The n =  2 and n  =  4 case clearly show a symmetry breaking subcritical bifurcation 

pattern. The present n =  6 case is symmetry breaking, but apparently not subcritical. 

This subcritical feature depends on the overlap interval of Reynolds number, where the 

symmetric and asymmetric steady solutions can both exist. Although no overlap region 

was found, it may exist for a very small interval of Reynolds number, but could not be 

determined given available computer resources.

The flow pattern  for this asymmetric flow is shown in figure 4-7(b) and 4-7(c). There 

are still six distinct vortices, but it is no longer true that the vortices are isolated; there are 

clearly streamlines shared by vortices, and larger scale vortex motion in the lower part of 

the domain.

As Reynold number is increased beyond a value of approximately 900, the only solution
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is unsteady flow; steady motion is no longer possible. Figure 4-8(b) shows a time history of 

u with Re of 1000. The motion is clearly unsteady, and appears to be settling to a periodic 

behavior with very complicated structure. Also shown in figure 4-8(b) are time histories 

of u for a steady symmetric and steady asymmetric case. An example of the streamline 

pattern for the unsteady flow is given in figure 4-7(d).

4.5 .5  n  =  8

The results for the n =  8 case are qualitatively the same as the n =  6 case. There is a low 

Reynolds number range, 0 < Re < 500, where the only steady solution is symmetric, an 

intermediate range, 500 < Re < 1150, where the only steady solution is asymmetric and 

finally a higher Reynolds number range where the solution is always unsteady. There is no 

overlap region that could be found between the steady symmetric and asymmetric intervals, 

hence this bifurcation does not appear to be subcritical. Time histories of u shown in figure 

4-10 illuminate this behavior.

Figure 4-9 shows the streamlines for this case. Again, there are clearly eight distinct 

vortices for the steady symmetric case, each of which consist of closed streamlines. The 

asymmetric steady case does not have closed streamlines, and has the large scale vortex 

motion in the center of the cavity.

4.6 R esults w ith a rectangular cavity

Now consider the symmetric driven cavity with a rectangular shape using 7 = 5 - Again, 

the results depend on the forcing pattern, and will be discussed sequentially. The n =  1 

case was found to match the traditional driven cavity with 7 = 5 , discussed previously, and 

will not be discussed further.

4.6.1 n =  2

This case is the same as the case of Farias and McHugh [4] except for the aspect ratio. The 

bifurcation diagram for this case is shown in figure 4-11 (a). For low Reynolds numbers.
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the only solution is a steady symmetric flow. An asymmetric flow appears at a Reynolds 

number of approximately 2885, and two steady solutions are possible for 2885 < Rg < 3900. 

Above Re of 3900, the asymmetric steady solution no longer exists. Simulations initiated 

with a strong initial condition will exhibit an unsteady behavior.

The symmetric steady solution exists up to a Reynolds number of 8900. Simulations 

initiated from rest, or initiated with very weak initial flow, will evolve into the symmetric 

steady motion. Simulations started from rest with Reynolds numbers above 8900 will evolve 

into an unsteady solution. This is the same behavior as the case of Farias and McHugh [4] 

except that the asymmetric steady flow terminates at a lower Rg than  the symmetric flow.

The symmetric flow pattern is shown in figure 4-12(a). The asymmetric pattern is 

shown in 4-12(b). Note tha t the asymmetric pattern has the right-hand vortex intact, 

while the left-hand vortex is segmented into what appears to be several smaller vortices. 

This pattern  persists until the Reynolds number reaches approximately 3900. Beyond this 

value, the steady asymmetric solution is no longer obtained. The flow becomes unsteady, 

although the same basic pattern  of flow is observed. A much higher Reynolds number, Rg 

of 9900, also results in an unsteady flow, with the streamline pattern, at times, closer to 

the symmetric solution, as shown in 4-12(d).

4.6 .2  n  =  4

The n =  4 case with 7  — 5 is of particular interest. One half of the domain is nearly the 

same as the previous work of Farias and McHugh [4], the only difference being the free 

boundary tha t the half domain would feel at the centerline. One might speculate tha t this 

case would allow the same two solutions found by Farias and McHugh in each half of the 

cavity, and an additional steady flow involving the entire domain. Hence this case seems 

like the best possibility for a third steady solution. However, the simulations show only two 

solutions, as before. Furthermore, the bifurcation pattern  has a very unexpected behavior.

The bifurcation diagram is shown in figure 4-13(a). There is again a symmetric steady 

solution for low Reynolds numbers. As the Reynolds number is increased, two intervals of
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asymmetric flows appear. One interval is approximately 2450 < Re < 2750, and the other 

is approximately 3900 < Rg < 4200. W ithin both of these intervals, a symmetric and an 

asymmetric solution can exist, depending on initial conditions. The dashed lines in 4-15(a) 

indicate the basin of attraction for these two possible solutions.

Between these two intervals, all simulations, including those started from rest, do not 

converge on a steady solution, but instead appear to oscillate in a nonperiodic manner. A 

time history of u for this case is shown in 4-15(c). A variety of simulations were performed 

in this intermediate region between the steady solutions, trying to achieve a steady flow 

of any type. In all cases, the flow did not converge to a steady result. The simulations 

are limited to a finite duration, and it is possible that very long simulations would finally 

become steady, although this seems unlikely.

The streamline pattern  for the symmetric steady flow is shown in figure 4-14(a). The 

streamline pattern  for the asymmetric steady flow is shown in figure 4-14(b) for the first 

interval and figure 4-13(c) for the second interval. Note tha t there is no dramatic change in 

the flow pattern  between the two intervals. The vortices for the symmetric solution fill the 

height of the cavity, while the vortices for the asymmetric solutions do not. The streamline 

pattern for the two intervals of unsteady flow are shown in figure 4-13(d) and (e) and show 

a similar transition.

4 .6 .3  n  =  6

The bifurcation behavior for the n =  6 case mimics the behavior of the ra =  6 case for a 

square cavity. A symmetric steady flow exists for low Reynolds numbers, up to approxi­

mately 1800. Beyond this value, the symmetric steady solution does not exist. Instead, 

an asymmetric steady solution exists. The asymmetric steady solution results even when 

the flow is initiated from rest, or with a symmetric disturbance. There is no overlap re­

gion where two steady solutions are possible, as before. The asymmetric steady flow region 

terminates at a Reynolds number around 8400, beyond which all cases are unsteady.

The bifurcation diagram is shown in figure 4-15, along with time histories of u. Stream-
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line patterns are shown in figure 4-16. The streamline patterns show a fundamental change 

from the symmetric solution to the asymmetric solution, as in the n  =  4 case, only more 

dramatic. The vortices for the symmetric solution extend the entire depth of the cavity. 

The vortices for the asymmetric solution are clearly a pattern  of vortices where each vortex 

has approximately round streamlines, and individual vortices do not have a length scale 

that is related to the size of the cavity.

4 .6 .4  n  =  8

The n =  8 case shows the symmetric steady pattern for Reynolds numbers up to approx­

imately 700. However, no second steady pattern appears. All simulations for Reynolds 

numbers greater than  700 are unsteady.

Time histories of u shown in figure 4-17 indicate tha t the unsteady solution for moderate 

Reynolds numbers. Re = 750 for example, result in a periodic solution, implying that 

the system has undergone a Hopf bifurcation. Streamline patterns for both the steady 

symmetric flow and the unsteady periodic flow are shown in figure 4-17.

4.7 Higher forcing m ode numbers

Forcing with higher mode numbers is now considered for a few cases. This part of the study 

is motivated by geophysical flows, such as flow in lakes and other confined bodies. The air 

motion on the lake surface may be quite complicated, even turbulent. It seems possible, 

based on the work already discussed, for a complicated flow with a very small length scale 

to drive a large scale motion in the lake. This may happen even if the net velocity on the 

surface is zero.

The simulations are considered with n of 16, 32, and 64, with both the square cavity, 

7  =  1, and the rectangular cavity, 7 =  |-  All cases show the same basic bifurcation behavior. 

There is a region of low Reynolds number where only a steady symmetric solution exists. 

Then an intermediate region where only a steady asymmetric solution exists. There is no 

overlap between these two intervals of Reynolds number. Finally, unsteady flow results
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for all initial conditions. The critical Reynolds numbers that denote the endpoints of the 

intervals depend strongly on n. For example, the square cavity with n — G4 did not 

experience unsteady motion until a Reynolds number of 15000, approximately, which is 

considerably larger than  any case with smaller n. Table 4.2 lists the critical Reynolds 

numbers for all cases considered in this section. Figure 4-18 is the graphical representation 

of the results.

An example of the streamline patterns for the symmetric and the asymmetric flow for 

each case are shown in figures 4-19 to 4-24. Note tha t for the high mode number cases 

considered here, with a short length scale for the forcing oscillation, tha t the strong forcing 

effect does not penetrate the domain very far. The flow throughout the rest of the domain 

in all cases is quite simple, compared to the forcing region, and is composed of one or two 

vortical regions. Note in particular figure 4-22 for n — 16. The large scale flow for this case 

has a remarkable similarity to the traditional driven cavity flow in the rectangular geometry, 

discussed earlier; a single vortex displaced to one side. It seems tha t it is indeed possible 

for a complicated forcing to cause a large scale current.

Table 4.2: Range of Rg for asymmetric solution at higher forcing functions

Forcing function Range of Rg (7 == 1) Range of Rg (7 =  | )

16irx 750 - 3050 600 - 1125

3 2 t t x 2350 - 7300 1575 - 3900

QAttx 6800 - 15000 5000 - 9200

4 .8  D is c u s s io n

The existence of two steady solutions begs for an explanation. It is difficult to provide a 

complete explanation at this stage. However, the combined results do offer one possibility. 

In particular, consider the n =  6 case with 7  =  5 - The symmetric steady flow shows six

39

Reproduced witti permission of ttie copyrigtit owner. Furttier reproduction protiibited wittiout permission.



vortices whose streamlines are distorted so that all six vortices fit into the cavity and occupy 

approximately the same territory. The asymmetric flow shows tha t the vortices no longer 

fit the boundary, and they have approximately round streamlines.

This result suggests tha t the vortices tend to form patterns where each vortex has 

round streamlines. The vortices conform to the boundary only at low Reynolds numbers, 

where there is not sufficient momentum for the flow to shake the constraint imposed by the 

boundary. Hence, the steady solutions may composed of 1) boundary fitted vortices, and 

2) free vortices. The more complicated unsteady flows may result when these two cases are 

in direct competition.
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Figure 4-1: Schematic of the various combinations of forcing and initial flow
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(a) R e =  100

(b) Re= 400 (c) Re= 1000

Figure 4-2; Streamlines for the traditional driven cavity with 7  =  1
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(a) R e =  100

:v
. -a

(b) R e =  400

(c) Re= 1000

Figure 4-3: Streamlines for the traditional driven cavity with 7 = 5
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Figure 4-4: Results with 7  =  1 and n =  2: (a) locus of values for u for steady flow, (b) 

time histories of u for different Re for unsteady flow, (c) streamlines for the unsteady flow, 

Re = 3700, and (d) streamlines for the unsteady flow. Re =  4500
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(a) (b )

(c)

Figure 4-5; Results with 7 = 1  and n =  4: (a) streamlines for the steady symmetric solution, 

Rf, — 600, (b) streamlines for the steady asymmetric solution. Re = 700, and (c) streamlines 

for the unsteady flow, Re =  3000
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Figure 4-6; Results with 7  =  1 and n = 4, (a) locus of values u for steady flow, (b) time 

histories of u, (c) time histories of u for Re — 1000 starting with different vortex magnitudes, 

m =  1, and (d) time histories of u for Rg =  1500 with different initial mode number
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(a) (b )

(c) (d)

Figure 4-7; Results with 7  =  1 and n =  6: (a) streamlines for the symmetric solution, 

Rg =  400, (b) streamlines for the asymmetric solution, Rg =  500, (c) streamlines for the 

asymmetric solution, Rg =  900, and (d) streamlines for the unsteady flow, Rg = 1000
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Figure 4-8: Results with 7 = 1  and n — 6: (a) loci of values of u for steady flow (b) time 

histories of u for different Re and m =  1
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(a) (b)

(c) (d )

Figure 4-9: Results with 7  =  1 and n =  8 (a) streamlines for the symmetric solution, 

Re =  400, (b) streamlines for the asymmetric solution, Re — 600, (c) streamlines for the 

asymmetric solution, Rg =  1150, and (d) streamlines for the unsteady flow, Rg =  1500
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Figure 4-10: Results with 7  =  1 and n =  8 : (a) loci of values for u for steady solution, (b) 

time histories of u for different Re, m  =  1, and (c) time histories of u for various initial 

conditions, Re =  1000
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Figure 4-11: Results with 7  =  5 and n =  2: (a) loci of values of u for steady flow, (b) time 

histories of u for several Re showing a symmetric, an asymmetric and an unsteady case, 

and (c) time histories of u starting from rest near critical Rg.
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Figure 4-12: Results with 1 \  and n = 2\ (a) streamlines for the symmetric solution,

Rg = 2850, (b) streamlines for the asymmetric solution, Rg = 2885, (c) streamlines for the 

unsteady flow, Rg = 4100, and (d) streamlines for the unsteady flow, Rg =  9900
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Figure 4-13: Results with 7  =  5 and n =  4: (a) loci of values of u for steady flow, (b) time 

histories of u for different Re, m. = 1, and (c)-(d) time histories of u near critical Re
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Figure 4-14: Results with 7 = 5  and n =  4: (a) streamlines for the symmetric solution, 

Re=  2400, (b) streamlines for the asymmetric solution, Re=  2750, (c) streamlines for the 

asymmetric solution, Re=  4200, (d) streamlines for the unsteady flow, Rg— 2800, and (e) 

streamlines for the unsteady flow, Rg= 4300
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(a) (b)

(c)

Figure 4-15: Results with 7 = 5  and n =  6: (a) loci of values of u for steady solutions, (b) 

time histories of u for different Re, m  = 1, and (c) time histories of n with different initial

mode number, Re — 3000
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Figure 4-16: Results with 7  =  5 and n =  6: (a) streamlines for the symmetric solution, 

Re=  1800, (b) streamlines for the asymmetric solution, i?e= 3000, (c) streamlines for the 

asymmetric solution, Re=  7000, and (d) streamlines for the unsteady flow, Re=  8500
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Figure 4-17: Results with 7  =  5 and n = 8: (a) time histories of u near critical Re, m  = 1, 

(b) streamlines for the symmetric solution, Re =  700, and (c) streamlines for the unsteady 

flow. Re =  750
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Figure 4-18: Loci of values of u for steady solutions for higher forcing modes: line a - n 

16, line b - n  =  32 and line c - n =  64
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(a) (b)

Figure 4-19: Results witH 7  =  1 and n =  16: (a) streamlines for the symmetric solution, 

Re =  700, and (b) streamlines for the asymmetric solution. Re = 1000

(a) (b)

Figure 4-20: Results with 7  =  1 and n =  32: (a) streamlines for the symmetric solution. 

Re =  2700, an d  (b) s tr e a m lin e s  for th e  a sy m m e tr ic  so lu t io n , R^ =  2800
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(a ) (b )

Figure 4-21; Results with 7  =  1 and n =  64: (a) streamlines for the symmetric solution, 

i?e =  6700, and (b) streamlines for the asymmetric solution, Rf, — 8000

7 .'/

!

; ;■■■'  /  /
........■ '

(a ) (b )

Figure 4-22: Results with 7 = 5  and n =  16: (a) streamlines for the symmetric solution, 

i?e =  575, and (b) streamlines for the asymmetric solution, i?g =  800
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1

(a) (b )

Figure 4-23: Results with 7 = 5  and n  =  32: (a) streamlines for the symmetric solution, 

Re =  1400, and (b) streamlines for the asymmetric solution. Re =  1500

(a) (b )

Figure 4-24: Results with 7  =  ^ and n — 64: (a) streamlines for the symmetric solution. 

Re — 4000, and (b) streamlines for the asymmetric solution, Rg =  6000
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Chapter 5

Three-dimensional results

5.1 Prelim inaries

Now consider the driven cavity in a three-dimensional rectangular prism. The forcing is 

again on the top of the cavity {z = 1), and has the added complexity tha t the direction 

may vary with position across the top. The initial conditions also may be significantly more 

complicated. Two types of forcing are considered; symmetric unidirectional forcing shown 

schematically in figure 5-1 (a), and bidirectional forcing shown in figure 5-1(b).

The purpose of the symmetric unidirectional forcing is for comparison with the previ­

ously discussed two-dimensional simulations. The three-dimensional case shown in figure 

5-1 (a) would be expected to mimic the two-dimensional case with n — 2. Note tha t attention 

is restricted to the n — 2 case for the three-dimensional simulations.

Bidirectional forcing does not have a two-dimensional analog. The particular choice 

for bidirectional forcing shown in figure 5-1 (b) has the interesting feature tha t the average 

velocity in any direction is zero, and the average first moment of the velocity about the 

center of the lid is zero. The zero average velocity implies tha t the forcing should not result 

in a single vortex, where the axis of the vortex in the x — z plane. The zero first moment 

implies tha t the forcing is not expected to drive a vortex whose axis is parallel to the y 

direction. Of particular interest with the bidirectional forcing is the ability of the system 

to maintain a circulation whose primary motion is parallel to the x  — z  plane, despite the 

fact that the forcing is chosen to avoid this motion.

The basic parameters are the Reynolds number, Rg = ^ ,  and two aspect ratios, ^  

and A =  ^ .  Both aspect ratios are chosen to be unity. In addition to these basic parameters,
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the initial conditions must again be characterized in some manner. Two types of initial 

conditions are treated; The steady flow generated by unidirectional forcing on the top 

of the cavity (top forcing), shown in figure 5-2(a), and the steady flow generated by the 

unidirectional forcing of the side of the cavity (side forcing), shown in figure 5-2(b). The 

simulations tha t developed the initial conditions used a Reynolds number of 100, and a 

forcing mode number of unity. The magnitude of the initial conditions and asymmetrical 

behavior of the steady solutions are measured again with u, now defined as a line integral 

along the centerline of the cavity, perpendicular to the forcing plane.

5.2 R esults w ith sym m etric unidirectional forcing

The symmetric unidirectional forcing is treated in the simulations starting from rest, and 

starting with both types of initial conditions in subsequent trials. The Reynolds number 

and the strength of the initial conditions was incremented in subsequent runs to attem pt to 

induce a mode of motion analogous to the asymmetric steady flow in the two-dimensional 

case. Both aspect ratios were fixed at unity. However, for all cases considered, only one 

steady motion appeared. A three-dimensional analog of the asymmetric solution could not 

be found.

This result is surprising. The three dimensional case with symmetric unidirectional 

forcing is similar to the two dimensional case with n — 2. The only significant difference 

is the presence of endwalls. The two-dimensional cavity may be considered to be a three 

dimensional cavity whose third direction is infinite. The present three-dimensional cavity 

with aspect ratio of unity has the endwalls quite close. The close endwalls may supress the 

second steady solution.

A promising direction for further study is to consider larger values of A, effectively mov­

ing the endwalls further apart. Incrementing A will eventually produce three-dimensional 

results tha t match the two-dimensional results. Unfortunately, this process also requires 

a linear increase in resolution. The three-dimensional results in the cube are already near 

the limit of the available computational resources, and hence this procedure could not be
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pursued at this time.

Contour plots of w, v and w for a low Reynolds number case (Rg =  2) are shown in 

figures 5-3 through 5-8. It can be seen in figures 5-3 through 5-8 tha t the flow is not 

symmetric about the centerline of the cavity for any slice along the 2; axis, despite the 

fact that the forcing is symmetric for such a slice. A perpendicular slice shown in 5-3(d), 

taken aX x  — 0.5 and as shown in figure 5-3 shows the presence of a weak but distinct 

primary vortex. It seems tha t the close proximity of the endwalls allows a weak tertiary 

flow to exist, balancing a pressure gradient that develops along the endwall. Note that the 

asymmetry is weak, and this steady flow is considered analogous to the symmetric flow of 

the two-dimensional simulations, not the asymmetric flow.

Note tha t figures 5-3 through 5-8 also show tha t the forcing develops primary vortices 

tha t only penetrate approximately one-third of the depth at the cavity center. These 

primary vortices then drive two secondary vortices, rotating in the opposite direction, in 

the bottom two-thirds of the cavity. A view from the top, figure 5-4(c) shows that this 

vortex motion is confined to a quadrant pattern.

Figures 5-9 through 5-14 show contour plots of u, v and w for a higher Reynolds number 

{Re =  100). It is apparent in figure 5-9(c) that the flow pattern looks closer to a symmetric 

pattern than the lower Reynolds number case, shown in figure 5-3(c). A tertiary flow 

still exists, as shown in the slice at a; =  0.5 in figure 5-9(d), but this tertiary flow is now 

comprised of a nearly symmetric but much more complex motion than the low Reynolds 

number case in figure 5-3(d).

The view from the top, figure 5-10(c) shows tha t this motion has a much different 

pattern than the lower Reynolds number case, shown in figure 5-4(c). The motion now 

has a diagonal pattern. It is difficult to say whether this change in pattern  is a sudden 

bifurcation to a new mode of steady motion, or a gradual change in the flow pattern. The 

value of u for the final steady states over a range of Reynolds numbers is shown in figure 

5-21(a), along with history of u for various initial conditions, 5-21(b). This figure does not 

show a sudden transition to a new state, implying that the change in pattern  is merely a
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gradual change in flow pattern.

Figures 5-15 through 5-20 show contour plots of u, v and w for a Reynolds number of 

1000. Note in figure 5-15(c) that the primary vortices are confined to a region very near 

the top, and larger counterrotating secondary vortices form near the bottom. However, 

the contour pattern  in figure 5-15(c) is clearly symmetric, and this flow is still considered 

analogous to the symmetric two-dimensional mode. Also appearing in the flow is smaller 

scale motion, evident in figure 5-15(a) and (b) near the upper corners. Figure 5-16(c) shows 

tha t the diagonal aspect of the motion is still present, but has become more complicated. 

Figures 5-19 and 5-20 show that the flow is only marginally resolved, and wiggles in the 

solution have appeared.

5.3 R esults w ith bidirectional forcing

Reynolds numbers of 10,100, and 1000 are considered. The results are shown in figures 5-22 

through 5-24 for of 10, figures 5-25 through 5-27 for Re of 100, and figures 5-28 through 

5-30 for Re of 1000. Note again that wiggles appear in the solution for Rg of 1000, implying 

a need for increased resolution.

The steady flows shown in the figures is the only steady flow tha t appeared in the 

simulations for all initial conditions. At no time did a second steady flow appear. The 

figures show the same type of motion as the previous case, including a primary set of 

vortices near the top, with weaker secondary counterrotating vortices beneath. A strong 

asymmetric flow occupying the entire domain does not appear.
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(a)

(b)

Figure 5-1: (a) Symmetric forcing function (b) Bidirectional forcing function
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Figure 5-2: (a) and (b) Initial conditions for 3D case
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(a) z  =  0.1 (b) z =  0.9

(c) z =  0.5 (d) X =  0.5

Figure 5-3: Horizontal velocity contour u for symmetric forcing, Re = 2.
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Figure 5-4: Horizontal velocity contour u for symmetric forcing, Re  =  2.
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(c) 2  =  0.5 (d) X =  0.5

Figure 5-5: Vertical velocity contour v for symmetric forcing, Re  =  2.
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Figure 5-6: Vertical velocity contour v for symmetric forcing, Re = 2.
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(a) z  =: 0.1 (b) =  0.9

omois 0.00023

(c) 2  =  0.5 (d) X  =  0.5

Figure 5-7: Transverse velocity contour w for symmetric forcing, Re  =  2.
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(c) y  =  0.5 (d) diagonal

Figure 5-8: Transverse velocity contour w for symmetric forcing, Re =  2.
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Figure 5-9: Horizontal velocity contour u for symmetric forcing, Re  =  100.
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Figure 5-10; Horizontal velocity contour u for symmetric forcing, Re = 100.
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Figure 5-11: Vertical velocity contour v for symmetric forcing, Re  =  100.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) y  -  0.1 (b) y = 0.9

(c) y  =  0.5 (d) diagonal

Figure 5-12: Vertical velocity contour v for symmetric forcing, Re — 100.
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(a) z =  0.1 (b) z =  0.9

(c) z =  0.5 (d) X =  0.5

Figure 5-13: Transverse velocity contour w for symmetric forcing, Re — 100.
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Figure 5-14: Transverse velocity contour w for symmetric forcing, Re = 100.
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Figure 5-15: Horizontal velocity contour u for symmetric forcing, Re  =  1000.
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Figure 5-16: Horizontal velocity contour u for symmetric forcing, Re  =  1000.
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(a) z  — 0.1 (b) 2 =  0.9

(c) 2  =  0.5 (d) X — 0.5

Figure 5-17: Vertical velocity contour v for symmetric forcing, Re  =  1000.
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Figure 5-18; Vertical velocity contour v for symmetric forcing, Re = 1000.
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Figure 5-19: Transverse velocity contour w for symmetric forcing, Re = 1000.
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Figure 5-20: Transverse velocity contour w for symmetric forcing, Re = 1000.
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Figure 5-21: 3D symmetric forcing function (a) Steady state solution (b) Time history of n 

for various initial conditions, Rg =  100
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(a) y  =  0.1 (b) y  =  0.5

(c) y  =  0.9 (d) z  =  0.5

(e) X  — 0.5 (f) diagonal

Figure 5-22: Horizontal velocity contour u for bi-directional forcing function, Re — 10.
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(a) y  =  0.1 (b) y  =  0.5
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(c) y  =  0.9 (d) z =  0.5

(e) ® =  0.5 (f) diagonal

Figure 5-23: Vertical velocity contour v for bi-directional forcing function, Re = 10.
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Figure 5-24: Transverse velocity contour w for bi-directional forcing function, Re  =  10.
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(a) y  =  0.1 (b) y  -  0.5

(c) y  =  0.9 (d)  ̂ =  0.5

(e) X  =  0.5 (f) diagonal

Figure 5-25: Horizontal velocity contour u for bi-directional forcing function, Re  =  100.
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(e) X =  0.5 (f) diagonal

Figure 5-26; Vertical velocity contour v for bi-directional forcing function, Re = 100.
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(a) y  =  0.1 (b) y = 0.5

(c) y -  0.9 (d) 2 =  0.5

(e) X =  0.5 (f) diagonal

Figure 5*27: Transverse velocity contour w for bi-directional forcing function, Re  =  100.
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Figure 5-28: Horizontal velocity contour u for bi-directional forcing function, Re  =  1000.
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(a) y  =  0.1 (b) y = 0.5

(c) y  =  0.9 (d) 2 =  0.5

(e) X — 0.5 (f) diagonal

Figure 5-29: Vertical velocity contour v for bi-directional forcing function, Re  =  1000.
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Figure 5-30: Transverse velocity contour w for bi-directional forcing function, Re = 1000.
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Chapter 6

Conclusions

6.1 Discussion

It.is readily apparent in chapter 4 that as the forcing mode number, n, increases, the forcing 

becomes more local to the top. The resulting flow has a strong component near the top, 

resulting in a boundary layer flow that is different from the flow in the bottom  part of the 

cavity. The boundary layer flow has a horizontal length scale tha t matches the horizontal 

length scale of the forcing. However, the length scale of the flow in the bottom of the 

chamber is different. The bottom  flow behavior seems to be unrelated to the length scale of 

the forcing. This is most readily apparent by comparing the streamlines pattern  n =  1 and 

n = 16, cases for 7  =  |  (see figure 4-3 and 4-22(b)). The flow in the bottom  of the chamber 

for these two cases is nearly the same, while the top forcing is dramatically different. The 

scale of this bottom  flow appears to be related only to the size, and presumably the shape, 

of the chamber. All cases consistently point to this conclusion.

Despite the simple geometry of the driven cavity, this conclusion provides insight into 

the behavior of flow in the surface driven lakes, discussed in the introduction. Based on the 

results of the simulations, the global flow in the bottom region of a  lake may be independent 

of the complicated forcing on the surface. The presence of a topographical feature near 

the edge of the lake may not have any significant influence on the global lake flow. Drastic 

changes in the surrounding topography are not guaranteed to change the overall flow pattern 

significantly. Furthermore, the flow lake patterns in the bottom  region do not reflect the 

flow at the surface.
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Another feature of the simulations is that the magnitude of the forcing is important, 

and can be chosen to be weak, leading to steady symmetric behaviour, or strong, leading 

to unsteady behavior. This fact is true for any pattern  of vortices. In the papermaking 

application, this result implies that a complicated pattern of vortices may not be necessary 

to induce mixing, bu t the magnitude of the vortices must be large to avoid a steady vortex 

in the draining process, leading to streaks in the final product.

The Reynolds numbers considered in the simulations are quite small. Strictly speak­

ing, these Reynolds numbers only apply to very slow experiments, very small experiments, 

or very viscous fluids. For example, a Reynolds number of 1000 would correspond to a 

square cavity of 10 centimeters with an imposed velocity of only 1 cm per second. Such 

an experiment is easily achieved in a laboratory experiment, bu t Reynolds numbers in geo­

physical flow and many industrial flows are many orders of magnitude larger. For these 

large Reynolds number flows, the direct effect of viscosity becomes unim portant. However, 

damping is still present due to the creation of turbulence. The results here suggest that 

similar results exist for these large Reynolds number flows, where the effect of viscosity 

has been replaced with the effect of turbulence. However, the precise behavior of higher 

Reynolds number flow remains to be determined.

6.2 Specific conclusions

The following general conclusions may be drawn:

1. The traditional driven cavity with 7  =  1 and 7  =  5 , for all initial conditions, yield 

only one steady flow patterns.

2. Steady symmetric flow patterns are present in all two dimensional cases with 

symmetric forcing.

3. Steady asymmetric flow patterns are also present in all two-dimensional cases except 

for the case of u(x)  =  sin (Svrx) for 7  =  5 .
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4. Steady asymmetric flow patterns exhibit a large scale flow in the bottom  of the 

domain.

5. In general, higher Reynolds numbers yield unsteady solutions. Although for most 

cases, this phenomenon is observed at very high Reynolds numbers, unsteady 

behavior can be observed at Reynolds numbers as low as 900.

6 . Three dimensional symmetric flow forcing yields no asymmetric flow pattern  for 

Reynolds number up to 1000 in a cube. Flow begins with weak asymmetry and 

slowly evolves to more symmetric flow behavior.

7. Bidirectional forcing function show symmetric flow behavior for Reynolds number up 

to 1000 in a cube.
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