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ABSTRACT
MULTIPLE STEADY SOLUTIONS AND BIFURCATIONS IN THE
SYMMETRIC DRIVEN CAVITY
by

Kahar Bin Osman
University of New Hampshire, May, 2004

The symmetric driven cavity with sinusoidal forcing for two- and three-dimensions is
considered. Results are obtained via numerical computations of the Navier Stokes equations
with constant density. The numerical integration is a splitting method, using the Crank-
Nicholson method for linear terms and the second-order Adams-Bashforth method for the
non-linear terms. Spatial derivatives are evaluated with finite differences, and matrix equa-
tions are treated with SOR by lines. The results show symmetric solutions for low Reynolds
numbers and asymmetric solutions for higher Reynolds numbers. Subcritical bifurcations
are observed for two-dimensional flow. Unsteady flow behavior occurs at higher Reynolds

number. Three-dimensional simulations for a cube show only one steady solution.

xiv
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Chapter 1

Introduction

The standard driven cavity problem is two dimensional flow in a rectangular geometry
with a constant tangential velocity at the top of thé cavity. This standard driven cavity
problem has been treated many times [3] [7], and is often used as a benchmark for computer
programs. The symmetric driven cavity is a recent variant of the driven cavity, see Farias
and McHugh [4]. The symmetric driven cavity problem is also a flow in a rectangular
geometry with an imposedlvelocity at the top, but the forcing is symmetric, resulting in
zero average velocity across the top. Farias and McHugh [4] treated perhaps the simplest

~ version of the symmetric driven cavity: sinusoidal forcing with only one period across the
top, a two-dimensional square cavity, and a single vortex of variable magnitude for initial
conditions.

The results of Farias and McHugh [4] show that a symmetric steady flow, shown schemat-
ically in figure 1.1(a), is the result for low Reynolds numbers and weak disturbances. How-
ever, they also found a second steady solution that had not been previously recognized. This
second solution is asymmetric with respect to the vertical centerline of the cavity, despite
the symmetry of the boundary conditions, and is shown schematically in figure 11(b) The

second solution is achieved by initiating the flow with a single vortex of chosen magnitude.
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Figure 1-1: Schematic of streamlines with symmetric forcing function showing (a) steady

symmetric and (b) steady asymmetric flow
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The symmetric driven cavity is extended here to include sinusoidal forcing with more
than one oscillation across the top boundary, and initial conditions with more complexity.
The forcing is chosen to be zero at the corners of the cavity, and is given by u(z) = sin(nnz),
where 0 < z < 1, and the integer n is the forcing mode number. The initial conditions
consist of a number of vortices across the chamber (Farias and McHugh used only one),
which will be indicated by the integer, m, the initial condition mode number. Each case
is then characterized by the mode number pair, (m,n). For example, the (2,4) case would
have two initial vortices and four complete oscillations in the forcing across the top. This
example is shown schematically in 1.2. Note that the aspect ratio of the chamber, which is

a free parameter, is  for the case shown in figure 1.2.
p 5 g

Figure 1-2: Schematic for the case where m = 2 and n = 4. The aspect ratio is %—

Two and three dimensional probléms are considered. For the two-dimensional problem,
the cases that are considered in detail are shown graphically in figure 1-5. The three
dimensional results, which are of course much more demanding of computer resources, are
limited to a few cases.

- The results are obtained by direct numerical simulation of the incompressible Navier-
Stokes equations. The numerical method is a finite difference method. Temporal integration

is achieved with a time-splitting method, similar to the method of Karniadakis et al. [1].
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Validation of the computer program is achieved 'primarily via comparison with existing
numerical results on the standard driven cavity and the symmetric driven cavity.

The two-dimensional simulations show that the overlap region where two steady solu-
tions could exist disappearé for some cases, and no cases have been found when there are
three or more steady solutions for the same Reynolds number.

The three-dimensional simulations show weakly asymmetric behavior for very low Reynolds
number with increasing symmetry as R, increases. There are no three-dimensional cases

showing more than one steady solution for the same R,.

1.1 Motivation

The symmetric driven cavity considered here is motivated by a variety of geophysical and
industria,i flows. Two examples will be given: 1) flow in a confined body such as a lake, and
2) flow in a papermaking machine.

The first example is water in a confined body, such as a lake or pond. Wind blowing
over the surface of the water results in motion of the water throughout the lake. The motion
of the water is responsible for a variety of patterns in the lake, as well as concentrations of
biological nutrients and associated biological activities. These patterns are important to all
environmental aspects of the lake.

The wind at a lake surface is not uniform. A two-dimensional example is shown schemat-
ically in figure 1.3. Local topographical features and nearby trees can have a significant
effect on the average wind speed, even resulting in air flow in direction opposite the pre-
vailing wind, as shown in figure 1.3. This flow reversal of the air would force a flow reversal
at the surface of the lake, thereby perhaps influencing the flow thoroughout the lake. Flow
patterns in lakes do show local concentrations of biological constituents, which could be
related to the flow pattern on the surface, and thereby surrounding topography. However,
this relationship between surface forcing and flow pattern is not completely understood,
and in fact can be misleading, as will be shown here. Attempts to control the lake flow with

drastic changes in the surrounding features appear to be unnecessary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The second example is an industrial flow concerning the manufacturing of papermaking.
Paper is made in large quantities using high speed machinery. The process begins by forming
pulp, which is generally 95 percent water and 5 percent wood fiber. The pulp flows through
a slot and onto a screen where the water is drained. The remaining wood fibers are then
pressed and dried. A schematic is shown in figure 1.4. The most important feature for
making quality paper is to retain adequate mixing in the pulp as the water drains so that
the fibers will be randomly oriented in the final paper. The mixing is commonly achieved
inside the slot with troublesome and expensive turbulence generators.

A recent attempt to improve mixing during the draining process used coherent stream-
wise vortices induced at the slot. The vortices were expected to reach further froﬁ the slot
than turbulence, and therefore enhance mixing during the later stages of draining. This
initial attempt showed tha;t the coherent vortices can lead to streaks in the final paper,
ruining the process. -However, the choice of the pattern of the vortices was not based on
practical aspect of the vortex generation. It is shown here that the pattern of vortices is
critical to achieve vortices that will enhance mixing, rather than supressing it.

Beyond these two specific examples, the results of Farias and Mchugh [4] suggest a more
general feature of flow in a confined region. Confined flow can be forced in variety of ways,
including translation, rotation, or oscillation. Perhaps there is a universal feature, whatever
the forcing. This generalization has not yet been achieved, but is supported by the work

considered here.
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Figure 1-3: Schematic of non-uniform forcing that could occur at a lake surface.

AN T |~

Figure 1-4: Schematic of papermaking machinery showing presence of vortices to enhance

mixing of the pulp.
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Figure 1-5: Summary of cases for two-dimensional simulations
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Chapter 2
Mathematical preliminaries

2.1 Navier-Stokes equation

Consider a Newtonian flow with constant material properties, including constant density,
governed by the Navier-Stokes and continuity equations. The Navier-Stokes equations for

constant density flow, in vector form, are

a"}
p ((—9%’ + 7 va) = —Vp+ uV?, (2.1)

where

7= ui +vj + wk (2.2)

is the velocity vector, p is the pressure, x is dynamic viscosity, p is fluid density, and ¢ is

time. The continuity equation for constant density is
V-g=0. (2.3)

Consider three-dimensional flow in a rectangle of height, H, length, L, and depth, D.

Dimensionless variables are defined as

a_u
=2,
)
=z
ool
=%
5= P
pU?
.
=2,
8
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- z
where U is a reference velocity. For the present results, U is the amplitude of the sinusoidal

velocity on the top boundary, eg. the amplitude of the forcing. Dropping the circumflex,

the resulting dimensionless equations are

ov ., o, 1 o,
E"F’U'V’U— VP+EVU’ (2.5)

where R, is the Reynolds Number, defined as

R, = —, (2.6)
and v is the kinematic viscosity.

In component form for Cartesian coordinates, these equations are

3u+ ou l Qg 1 Ou Qg_) 1 (82u 1 9%u 132u>

o Yt ey TN T ar TR\ T2 T o

ov ov 1 ov 1 Ov op 1 (6211 1 0% 1821))

5 Y Ty T8 T oy TR \o2 T e T o

a_w._|_ _QZ_U_F.l_U?.Q_U__}_l %—_?_‘2_}__1_ Qzﬂ+i§?_1£+_}_6_2w_ (27)
ot oz v Oy A8z T "9z " R, \ 022 v Oy? N2 9%z '
with
ou 10v 10w
b‘;’*‘,‘y—a—y‘l‘x—a;—o (28)

where v = % and A =

=S

The boundary conditions are the no-penetration condition, ¥ - i = 0, where 7 is a unit
vector normal to the boundary, and the no-slip condition, ¥’ - ¥, where 7 is a unit vector
tangent to the boundary. On the sides and bottom of the cavity, this results in a zero

velocity vector, U = 0. On the top, the normal velocity is zero, w = 0. For two dimensional

cases, the tangential velocity is the imposed sinusoidal velocity:

u(z) = sin (n7z) ' (2.9)

at z =1, where 0 < z < 1. In three dimensions, two components are imposed on the top of

the cavity.
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2.2 Numerical solution techniques

2.2.1 Temporal integration and splitting

The temporal integration of the Navier-Stokes system is achieved using a semi-implicit
splitting method, similar to the method of Karniadakis et. al [1] and others. The Navier-

Stokes equations can be expressed as

v =, 1 >,
En + N(@) =-Vp+ EL(U), (2.10)

where L is the linear viscous term and N.is the non-linear advective term:

L(?) = V3, (2.11)
N(@) =7 V7. (2.12)
Now integrate over one time step, At:
1 97 tet1 tht1 1 1
/ Doy [T Rt =~ Vpdt + / Y L @), (2.13)
ik ot tr i tg Re

where k is the time step. The first term is easily evaluated without approximation,

bt 7
/ 10Uy g (2.14)
t, Ot

The semi-implicit method treats linear terms implicitly for stability, and nonlinear terms
explicitly for efficiency. Explicit evaluation of the nonlinear terms is achieved with the
second-order Adams-Bashforth method:

/t:k+1]\7(17)dt - [gﬁ(ak) - %1\7(6’“‘1) At. (2.15)
This explicit treatment of the nonlinear terms avoids sampling N at the leading time step,
which would result in nonlinear algebraic equations, requiring further iteration. The pres-
sure term is treated by reversing the order of integration and differentiation, then introduc-
ing time-averaged pressure:

t t
 Vpdt = v[ / k+1pdt] = VpFAL. (2.16)
tr tr

10
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Implicit treatment of the the linear viscous terms is achieved with the second-order Crank-

Nicholson method:

t -
/ T L(5)dt =

ty

[vza’““ + v2ﬁk] At. (2.17)

DN =

The combined difference equation is now

P gt [-?iﬁ(ak) -

5 N(U’“‘l)}At = -Vp*TAL + L [v%’”l + V2% | At (2.18)

1
2 2R,

In addition to (2.18), the continuity equation is imposed at the leading time step:
V. gttt =0, ' (2.19)

Equations (2.18) could be treated directly, after a spatial approximation, except for the
presence of pressure. Another equation is needed for pressure, and_the only remaining
equation is the continuity equation, which does not contain pressure. The approach to this
difficulty is to use splitting.

Splitting means that (2.18) is integrated numerically in three stages for each time step,
each stage addressing the nonlinear term, the pressure term, and the viscous term indepen-
dently. Two intermediate velocity fields, # and 13)', are introduced in order to achieve this.

The three stages are

v—F = [gﬁ(a’“) - %]\7(6’““1)} At, (2.20)
-5 = —vptiAg, (2.21)
FH g = L [V"’ﬁ’““ + V"’ﬁ’“] At. (2.22)

Note that summing these three equations eliminates # and {:)', producing exactly the original
discrete equation in (2.18), hence there is no further approximation with this aspect of
splitting.

In order to process the second step, the average pressure, p, must be determined. The
pressure is not needed for the first step, and therefore p can be determined after 5. A Poisson
equation for pressure is used to obtain pressure, keeping in mind that the continuity equation

must still be enforced.

11 -
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To obtain the Poisson’s equation for pressure, take the divergence of (2.18) and use the

continuity equation to obtain

2 k41 _ o . i ’
VTt =V (At)’ (2.23)

where the nonlinear terms are neglected. Karniadakis [1] has shown that the nonlinear terms
dolnot contribute significantly to the pressure with this splitting method. The nonlinear
terms can be included without affecting other stages of the method, but have not for the
results given below. Note that for this splitting method, the divergence of the intermediate
‘stages is not zero, and the divergence of the velocity field at the end of a time step is only
approximately zero. Retairﬁng the V- ¥ term in (2.23) is important for correcting the error
in the continuity equation at the next time step arising from the previous time step.

All variables require boundary conditions, including #*+1, 1:)', 15)', and p. The boundary

conditions on 7*t1

are the natural boundary conditions, which must be enforced at the final
stage of the splitting method. Boundary conditions on # and ¥ can be chosen to enhance
the numerical aspects of the method. Past experience has shown that the first two stages

of splitting are primarily inviscid components of motion, and therefore, only the normal

boundary condition is enforced. Hence,

Sy

U7 =

R=0 | (2.24)

on all boundaries. The final stage of splitting must meet the final boundary conditions,
therefore,

=0 (2.25)

on all boundaries, except the top, where the chosen driving velocity is imposed as the
tangential velocity.

The remaining boundary conditions are the pressure boundary conditions. There are no
natural boundary conditions on the pressure; the value of pressure at the boundary depends
on the velocity field in the neighborhood of the boundary. Pressure boundary conditions

must be approximated from the governing equations. Take the normal component of (2.18)

12
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to get

1 -
T [v%’cﬂ + VZU’“] At. (2.26)
€
For an impermeable box, (2.26) becomes
1
7-vprtt = 7. S [\7217’““ + vzfa’“] At. (2.27)
€

The viscous terms on the right-hand-side of (2.27) are generally not zero, and their eval-
uation is problematic, since they contain a term at the leading order. However, for large

Reynolds number, they are also small, and could be neglected, leaving
- vphtt = 0. (2.28)

Karniadakis 1] recommends higher order boundary conditions for a better approxima-
tion of the viscous terms, especially for low Reynolds Number flow. One approach is to
evaluate the viscous terms in the pressure boundary conditions with an explicit niethod,
keeping everything else the same. This technique results in an instability. In general, the

system is sensitive to the treatment of the viscous terms in the pressure boundary conditions.

2.2.2 High order pressure boundary conditions

A successful method for higher order pressure boundary conditions is obtained by rearrang-
ing the viscous linear terms in the pressure boundary condition, as in Karniadakis [1]. Note
that the governing equation for pressure remains unchanged; only the boundary condition
is affected. Also note that the nonlinear terms in the pressure boundary condition are still
neglected.

Using a vector identity, the viscous terms can be expressed as

Vi =V(V-7) -V x (V x ). (2.29)

13
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Again, take the normal component of (2.18) for the pressure boundary conditions. Evaluate
the first term on the right-hand-side of the (2.29) implicitly using Crank-Nicolson, and

evaluate the second term explicitly using Adams-Bashforth:

7.Vt = A 2;{ [V(v ) £ V(Y- 5*)]
(4
7 - 211% [3v x (V x 7)) =V x (V x 17'“—1)]. (2.30)

The term V(V-5%*1) is zero due to the continuity equation. The final form of the boundary

condition is

— L1
e

1
—71 - —— 13V x (V x &) = V x (V x #*71)|. (2.31)
2R,

As previously mentioned, the divergence of ¥ is only approximately zero at the end of a time
step, hence V - 7% is not zero and is retained. Note that the viscous terms in the governing
equations are still treated as in (2.22).

Numerical experiments for Reynolds numbers as low as unity show no significant im-
provement with the higher order method. Figure 2-1 compares results obtained using (2.28) .
to those obtained using (2.31) for the traditional driven cavity. The higher-order method

has little effect, therefore, for efficiency, the boundary conditions in (2.28) are used.

2.2.3 Spatial discretization and other details

The spatial operators are evaluated with second-order finite differences. For example, the

two-dimensional Lapacian operator with v =1 is

Vi = Ei(viﬂ,j + Fie1j + Tij1 + Tijo1 — 4935) ! (2.32)

where h is the gridsize, assumed uniform in all directions. Boundary conditions are evaluated
with second-order one-sided difference expressions.
The resulting systems of equations are solved using the successive over relaxation (SOR)

method by lines [2]. SOR by lines is more efficient for the splitting method, compared to

14
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a direct method. This is mostly due to the fact that SOR by lines eliminates the need to
control the average pressure, which accounts for much of the computing time for a direct
method. This feature is related to the fact that members of the null space of the discreet
pressure operator are automatically subtracted by the end of an interation.

SOR by lines is performed here in the row-by-row manner, but can be performed column-
by-column just as easily. The row-by-row method means that each row of gridpoints in the
physical domain is treated successively. Solution values at neighboring rows are taken from a
previous iteration, which reduces the matrix to a tri-diagonal form. The tridiagonal matrix
is then solved efficiently using the Thomas algorithm. For example, consider SOR by lines

applied to (2.22). Rearranging (2.22) yields

—k+1 2 2k+1 2
v - 5 ) VU = —2 ) Vi -+

(2.33)

Sy

Employing the second order central difference discretization scheme for the second term on
the left hand side of (2.33) will yield an equation for each gridpoint that has five unknowns
for the two-dimensional case, or seven unknowns for the three-dimensional case. However,
once values of ¥ from gridpoints on a different row are determined from previous iterations,
there are only three unknowns. This procedure is depicted for the two-dimensional case in
figure 2-2.

Once all the unknowns in a particular row or column are determined, the values must be
relaxed.” Relaxation is achieved by introducing a weighting factor to improve convergence.

The general form of the relaxation method used here is

P = 7 4 w(@ — 99), (2.34)

where ¢ is the iteration index. The constant w is the weighting factor. For this method,
the weighting factor that converged the fastest was found to be 1.2. Once the values are
relaxed, the next row or column can be treated successively until all the rows or columns are
completed. This will end the first iteration for the entire grid. The procedure is repeated
until residuals are within a specified tolerance. It is found that the required number of

iterations is less than seven for all cases.

15
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Chapter 3

Validation

3.1 Two dimensional case

Validation of the algorithm and software is achieved primarily by comparison with previously
published results for the traditional driven cavity. The traditional driven cavity is two-
dimensional ﬂéw in a square cavity. The flow is driven at the top with a constant tangential
velocity. This flow has been considered many times using many different methods. It is often
a standard benchmark for computational fluid dynamics programs, as here. The results of
Ghia [3] are most often used for this purpose..

Thg flow in the traditional driven cavity is initially at rest, and the forcing is imposed
at the first time step. The flow is then allowed to reach steady state. Two methods were
considered to determine the point in the simulation when the steady state is reached. One

method is to track a measure of the total kinetic energy of the flow, defined as
N
Q 22(u2+v2+w2), (3.1)
i=1
where N is the total number of grid points. Computations are terminated when the change
in @ falls below a chosen tolerance, usually 107¢.
The other method to identify the steady state is to track the rﬁaximum velocity difference
through the domain. The largest difference between u (or v and w) for the current time
step is compared to the previous time step. Again, computations are terminated whgn the

largest value falls below a chosen criterion. Tolerances between 1 X 107 and 1 x 1078 are

typically used, depending on the time step increment or the value of R.. In general, higher
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R, requires a smaller tolerance. This latter method is generally used for the results of this
analysis. The tolerance is set to 1 x 10~7 for all velocities and pressure.

Steady results for the current simulations are directly compared to the results of Ghia
[3] in figure 3-1 for a Reynolds number of 100. Figure 3-1(a) shows a profile of the hor-
izontal velocity along the vertical center of the square, and figure 3-1(b) shows a profile
of the vertical velocity along the horizontal center, for both Ghia and the current results.
The resolution for the current results is 65 x 65. Note that at this modest resolution, the
two profiles aré virtually identical. Figure 3-2 shows the same comparison for the higher
Reynolds number of 1000, for the still modest resolution of 129 x 129. At this Reynolds
number, slight differences between the two computations can be seen at the points of max-
imum velocity. This difference can be made arbitrarﬂy small by increasing resolution, by
decreasing the time step, by increasing the order of the manner in which the nonlinear terms
are treated, or éll of the abbve.

Further comparison between the results of Ghia [3] and the present results are given in
figure 3-3. Also included in figure 3-3 are the results of Bruneau and Jouron [7]. The figure
is a comparison of the computed position of the extrema of velocities, both horizontal and
vertical components. Figure 3-3 shows that the present results agree well with these previous
results. Note that the position of minimum velocity is often taken to be the location of the
center of the vortex that is created in the driven cavity, which is considered an important
test of any numerical technique.

A final comparison is given in table 3.1, which compares the computed position of the
primary vortex to Ghia’s result for Reynolds numbers of 100 and 1000.

The resolution for the R. = 100 case is 65 x 65, while the resolution for R, = 1000
case is 129 x 129. In fact, for R, = 100, a resolution of 33 x 33 is sufficient to produce
accurate results. However, a resolution of 65 x 65 is generally used as the minimum for all

calculations.

18
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Table 3.1: Location of primary vortex

Method Re x Y

Ghia 100 | 0.6172 | 0.7344
1000 | 0.5438 | 0.5625

present results | 100 | 0.6122 | 0.7331
1000 | 0.5411 | 0.5613

3.2 Three dimensional case

A three dimensional version of the driven cavity has been previously considered by Iwatsu,
et al [6], Bravo [5], and others. The forcing was uniform at the lid, and the flow was initiated
from rest. A schematic of this case is shown in figure 3.4.

The three-dimensional traditional driven cavity shown in figure 3.1 has been treated
here for the purpose of validation of the three-dimensional computer program. Both aspect
ratios are chosen to be unity (thus the geometry is a cube), and the Reynolds number is
100 or 400. The resolution for this simulation varies from 33 x 33 x 33 to 65 x 65 x 65. It
is found that for low R., 33 x 33 x 33 is sufficient to obtain accurate results.

Figures 3-5 and 3-6 show several velocity profiles for the present results, and corre-

sponding data for the previous results. Again, the agreement is excellent, demonstrating

the accuracy of the computational techniques and programs.
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Figure 3-4: The three dimensional driven cavity
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Chapter 4

Two-Dimensional Results

4.1 Parameters

Non-dimensionalization of the governing equations shows that there are two basic param-

QVL, and the aspect ratio,

eters for the two-dimensional case; the Reynolds number, R, =
v = % Ounly two values of the aspect ratio are treated here, 1 and % The Reynolds number
is the bifurcation parameter, and many values of R, will be treated for each configuration,
depending on the circumstance.

“The initial conditions for the simulations play an important role in the present results.
The magnitude of the initial conditions must be characterized in some manner. Symmetry
of the initial conditions was found previously to be an important factor in the final state
(Farias and McHugh [4]), and a symmetry parameter was used to characterize both the

magnitude of the initial conditions and the final steady state. The symmetry parameter is

useful here as well, and is defined to be

u(t) = [ fuldy, (41)

taken along the vertical centerline of the chamber. The integral will vanish if the flow is
perfectly symmetric about the vertical centerline.

Note that u is not an ideal indicator of symmetry and must be used with caution. For
example, a symmetric initial condition of any magnitude will have a zero value of u, hence,
u is not a useful measure for symmetric flows. Also, it is possible to have asymmetric

motion that is increasing in magnitude, but has a decreasing value of u. This was true for
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the results of Farias and McHugh [4]. Despite these shortcomings, u is the most convenient

measure for this study.

4.2 Boundary conditions

The flow is forced by imposing a tangential velocity at the top of the domain. The traditional
driven cavity [3] has a constant velocity across the top of the cavity, U = 1. The symmetric
driven cavity of Farias and McHugh [4] has a sinusoidal variation across the top of the
cavity with a single period of oscillation, given by u(z) = sin27z and 0 < z < 1. The
forcing profile of Farias and McHugh [4] is generalized here to include more cycles, and is
now given by

u(z) = sin(nnz), (4.2)
where the wavenumber, n, is chosen to be a positive integer. This choice for n allows more
cycles in the forcing, yet still has the feature of zero velocity at the top corners of the
domain. This feature is appealing in that the no-slip condition at the sidewall results in a
continuous velocity field. If the forcing is not zero at the endpoints of the top, the velocity
field at the corners would be discontinuous. \

Note that the average velocity due to the above forcing is

/1 sin(nmz)dx. o (4.3)
0

The integral is zero when n is even. In addition to a zero average velocity, the forcing
velocity is antisymmetric about the vertical centerline of the domain when n is even. These

two features make even values of n important and interesting.

4.3 Initial conditions

The flow is initiated from rest for some cases, and initiated with a prescribed flow for other
cases, the goal being to determine all possible steady flow patterns. The prescribed flow
could be chosen from an unlimited selection, and practical considerations force a choice

from a small set.
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The initial conditions that are employed in the present results are a spanwise pattern
of vortices. The number of spanwise vort’ices is indicated by m. A schem.atic of the various
cases is shown in figure 4-1. Note that the (m,n) = (1,2) case is the symmetric driven
cavity of Farias and McHugh [4]. Many other possibilities exist for initial conditions, and
it remains to be seen whether other choices will induce new ’and different steady flows.

The initial conditions vary from m = 0 to m = 64. Note that n = 0 indicates that the
flow starts from rest. The spanwise pattern of vortices that are used as initial conditions
for m # 0 are created using the same driven cavity simulation, performed with different
parameter values. The value of n (the forcing mode) is set equal to the desired value for
m (the initial conditioﬁ mode), the simulation starts from rest and is allowed to reach
steady state. The Reynolds number for all initial conditions was chosen to be 100. The
magnitude of the initial condition is adjusted by direct multiplication of all variables by a
fixed constant. The resulting velocity field is uséd to initiate a simulation with a different
value of n. Consider for example the (m,n) = (1,2) case with a Reynolds number of 1000
that was considered by Farias and McHugh [4]. The initial conditions for this case are
created by starting a simulation from rest with n = 1 and R, = 100. The steady results
are then used to initiate a simulation with n = 2, now setting R, = 1000, a,nvd the flow is

allowed to evolve naturally.

4.4 'Traditional driven cavity

Before treating the case of sinusoidal forcing, consider again the constant forcing, as in
the traditional driven cavity of Ghia [3]. The traditional driven cavity has the constant
forci.ng (U =1 at the top), a square cavity (v = 1), and is started from rest. The resulis of
Farias and McHugh [4] suggest that perhaps there are other steady solutions, besides the
one determined by Ghia [3], and that these may be found with a strategic choice of initial
conditions. This possibility is investigated here for the square cavity, and for a rectanguler
cavity with v = %

The traditional driven cavity, withy = 1 and starting from rest, is treated in the previous
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chapter, and the results were shown to match previous results. Figure 4-2 (a) to (c) show
the streamlines for this case for Re of 100, 400, and 1000. Note that the streamlines are
determined from the velocity field by first calculating vorticity, defined to be the curl of the

velocity, which in two-dimensions is

v Ou
=— - — 4.4
where 7 is the vorticity. The vorticity is then used to determine the stream function using

the equation
Vi =, (4.5)

where 1) is the streamfunction. Streamlines are then determined by finding contours of the
streamfunction. All streamlines shown in this chapter are determined in this manner. Note
that V2 and the other derivatives in (4.4) and (4.5) are approximated with the same finite
difference methods discussed in chapter 3.

The traditional driven cavity flow is treated again, now starting with a disturbance of
chosen magnitude to determine the existence of other steady flows. The initial conditions
were a row of vortices as described before. The initial condition mode numbers of 2, 3,
4, 6, and 8 were considered. The Reynolds numbers were again chosen to be 100, 400,
and 1000. The magnitude of the initial condition for m = 3 ranges over 0 < u < 0.18.
The magnitude of the initial conditions for even values of m was changed with the same
multiplicative constants as the m = 3 case, even though initial values of u are zero. The
results of the simulations show that the flow for all m with any initial magnitude are the
same; the initial disturbance experiences a period of adjustment, finally converging on same
steady flow pattern as the traditional driveﬁ cavity. No other steady solution has been
found for this case. Note that there may still be another steady nonlinear solution, but can
only be reached with an as yet undetermined disturbance.

In a further attempt to induce a possible second solution, the traditional driven cavity
was allowed to reach steady state, and then the sense of the forcing was suddenly changed,

such that the direction of forcing was in the opposite direction. The flow was then allowed
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to evolve to steady state again. The results still show only one steady solution; the same
flow as found by Ghia [3] and others. It seems unlikely that there is a second solution for
this case.

Further simulations considered the traditional driven cavity problem with a different

"aspect ratio, y = %, using the same range of m and u as above. Figure 4-3 shows the
resulting streamlines for the steady flow case when started from rest. Once again, a second
steady solution has not appeared. All the simulations with different m and u evolve to the
same final steady flow as the flow that is started from rest.

Some comments will now be made concerning the v = % case, for future discussion.
Note in figure 4-3 that the center of the primary vortex is no longer near the center of the
cavity, but is shifted to the right, in the same direction of forcing. The forcing seems to
‘drive’ the vortex toward the right wall, almost to the point where the vortex &ill fit in the
right half of the domain, and approximately mimic the behavior of the cavity with v = 1.
Note that the vortex center is shifted upward from the v =1 case.

The value of 1,4, has also increased for the v = % case. The parameter, ¥4, i8

another variable typically used to validate numerical methods. Table 4.1 gives a quantitative

comparison between the vy =1 and v = % cases.

Table 4.1: Location of primary vortex

Method | Re Vmar | T Y

100 | 0.1010 | 0.6122 | 0.7331
vy=1 400 | 0.1129 | 0.5528 | 0.5995

1000 | 0.1129 | 0.5411 | 0.5613

100 | 0.1218 | 0.6977 | 0.6592

400 | 0.1271 | 0.6899 | 0.5891

2
It
DOf=

1000 | 0.1365 | 0.6591 | 0.5736
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4.5 Results with a square cavity

The symmetric driven cavity is now considered in a square cavity, v = «FLL = 1. Forcing
mode numbers, n, of 2, 3, 4, 6, and 8 are considered in detail in this section. Several higher
mode numbers are considered in the next section. The results show that the bifurcation
sequence for each forcing mode number is significantly different. Each forcing mode number

will be discussed sequentially, followed by some general remarks.

45.1 n=1

The n = 1 case in a square cavity is very similar to the traditional driven cavity, the only
difference being that the forciné here i‘s sinusoidal with a half period across the top, while
the tradition driven cavity is constant across the top. The simulations for this case show
that there is only one steady flow pattern for all initial conditions considered, and this
resulting steady flow is very similar to the traditional driven cavity discussed above. No

second solution has been found for this case.

452 n =2

The n = 2 case is the same case considered by Farias and McHugh [4]. Note that they only
used ihitial conditions withm =0 orm =1, they did not consider higher m, and they took
R, to be less than 3000. As discussed above, Farias and McHugh found two steady solutions
for the n = 2 case; a symmetric and an asymmetric solution. The same case is considered
here for several reasons; 1) further validation of the computational methods, 2) to extend
the highest Reynolds number considered Farias and McHugh, thereby finding the largest
Reynolds number where an asymmetric steady solution may exist, and 3) to determine any
other steady solutions that may exist but Were not previously found.

The results are shown in figure 4-4. Figure 4-4(a) shows the locus of values of u for
the asymmetric steady solutions. Also shown in figure 4-4(a) are the results of Farias and
McHugh, which clearly agree with the present results. Furthermore, although not shown in

the figure, all the features of the bifurcation diagram of Farias and McHugh are reproduced
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with the present methods.

Note in 4-4(a) that the asymmetric steady solution exists for Reynolds number up to
approximately 3700. Simulations for a Reynolds number of 3800 shows oscillating flow;
steady flow no longer exists. Reynolds numbers as high as 4500 were considered, always
resulting in unsteady flow. The flow pattern, however, does not show any remarkable
changes as the Reynolds number is increased in subsequent cases up to 4500. Figure 4-4(c)
and 4-4(d) show the resulting flow patterns for the unsteady flow for two different Reynolds
numbers at the same time in the simulation.

Figure 4-4(b) shows a time history of u for the unsteady case with two Reynolds numbers.
Time histories of u are widely used throughout this study to indicate the behavior of the
flow. Figure 4-4(b) shows that the flow for R, = 3800 evolves into a periodic pattern.
However, the flow for R, = 4500 is not periodic. It appears therefore that at least one more
bifurcation has occured in this interval. The current focus is on steady flows with different
forcing; unsteady bifurcations are beyond the present scope, and are not pursued in depth
here.

The simulations with higher values of m do not result in any new steady or unsteady
solutions. All simulations converge to either the symmetric or asymmetric solution. In fact,
as will be shown, no case has been found when there are more than two steady solutions

for the same parameter values and forcing pattern.

453 n=4

The n = 4 case has two complete periods of forcing across the top of the cavity, and would
be expected to drive a steady symmetric flow with four vortices across the cavity, at least for
low Reynolds number. This symmetric steady ﬂow' is found to exist, and the flow pattern
is shown in 4-5(a) for a Reynolds number of 600. Note that the simulation fox; the flow in
4-5(a) is started from rest (m = 0). Also note that the flow pattern is symmetric about the
cavity centerline, however, the four vortices are not all equal. The flow is dominated by two

vortices, and the streamlines pattern appears to mimic the n = 2 case, except near the top
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of the cavity.

As the Reynolds number is increased beyond 670, an asymmetric steady flow also exists,
analogous to the n = 2 case. The second steady flow can only be achieved if the flow is
initiated with a sufficiently strong asymmetric motion. The flow pattern for this asymmetric
flow is shown in figure 4-5(b). The locus of values of u for the asymmetric steady flows is
shown in 4-6(a). The dashed line in figure 4-6(a) distfnguishes the two possibilities; initial
_conditions with u above the dashed line will evolve to the asymmetric solution, while those
below the dashed line will evolve to the symmetric solution. Note that a value of u on the
dashed line corresponds to an initial value, rather than a final steady value. Time histories
of u shown in 4-6(c) show two examples at the same Reynolds number; one converges to a
symmetric solution, and the other to an asymmetric solution, the only difference being the
magnitude of the initial condition. Note that the dashed line in 4-6(a) applies to asymmetric
disturbances only. Symmetric disturbances, m = 2,4, 8, only result in symmetric steady
flows.

Simulations starting from rest with Reynolds number greater than 1350 evolve into a
steady flow, but it is the asymmetric steady flow. The symmetric steady flow no longer
exists beyond R, > 1350. The time histories in 4-6(d) demonstrate this fact by comparing
three different initial conditions; they all converge on the same asymmetric steady solution.
These results indicate a different scenario than the n = 2 case of Farias and McHugh [4].
There is no Reynolds number for the n = 2 case where the flow initiated from rest will
evolve into an asymmetric steady motion; instead, simulations for higher R, started from
rest evolve into an unsteady solution.

the that for the present n = 4 case, simulations starting from rest also evolve into
an unsteady solution, but only for Reynolds number larger than 3800, where no steady
solutions exist. |

The streamline patterns for the asymmetric solution in 4-5(b) has a much different
character than for the symmetric solution, shown in 4-5(a). The lower region of the cavity

for the asymmetric flow is dominated by a single large vortex, occupying the entire width of
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the cavity. The spatial oscillation of the forcing is not reflected in the ‘bottom flow’. This
is an example of a system where complicated surface forcing can result in much simpler
motion in most of the domain.

Flow in the unsteady case is shown for one time value in figure 4-5(c). This flow can be

characterized as an oscillating pendulum-like motion of the vortices.

454 n=6

For low Reynolds number, all m result in the same final steady solution, shown in figure
4-7(a). The streamline pattern in figure 4-7(a) is symmetric, and shows six distinct vortices,
as expected. Note however that the vortices are not identical.

The behavior as Reynold number is increased is somewhat different than the n = 4 case.
There is a value of R, of approximately 440 which separates the symmetric steady solution
from asymmetric behavior. Beyond this critical R,, a steady asymmetric flow exists, but the
steady symmetric flow does not exist. No overlap region was found where both symmetric
and asymmetric solutions can exist, as shown in figure 4-8(a). Now, whatever the initial
condition, if R, is larger than 440, all initial conditions, including symmetric ones, and
starting from rest, converge to the same asymmetric solution.

The n = 2 and n = 4 case clearly show a symmetry breéking subcritical bifurcation
pattern. The present n = 6 case is symmetry breaking, but apparently not subcritical.
This subcritical feature depehds on the overlap interval of Reynolds nurhber, where the
symmetric and asymmetric steady solufions can both exist. Although no overlap region
was found, it may exist for a very small interval of Reynolds.number, but could not be
determined given available computer resources.

The flow pattern for this asymmetric flow is shown in figure 4-7(b) and 4-7(c). There
are still six distinct vortices, but it is no longer true that the vortices are isolated; there are
clearly streamlines shared by vortices, and larger scale vortex motion in the lower part of
the domain.

As Reynold number is increased beyond a value of approximately 900, the only solution
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is unsteady flow; steady motion is no longer possible. Figure 4-8(b) shows a time history of
u with R, of 1000. The motion is clearly unsteady, and appears to be settling to a periodic
behavior with very complicated structure. Also shown in figure 4-8(b) are time histories
of u for a steady symmetric and steady asymmetric case. An example of the streamline

pattern for the unsteady flow is given in figure 4-7(d).

455 n=28

The results for the n = 8 case are qualitatively the same as the n = 6 case. There is a low
Reynolds number range, 0 < R, < 500, where the only steady solution is symmetric, an
intermediate range, 500 < R, < 1150, where the only steady solution is asymmetric and
finally a higher Reynolds number range where the solution is always unsteady. There is no
overlap region that could be found between the steady symmetric and asymmetric intervals,
hence this bifurcation does not appear to be subcritical. Time histories of 4 shown in figure
4-10 illuminate this behavior.

Figure 4-9 shows the streamlines for this case. Again, there are clearly eight distinct
vortices for the steady symmetric case, each of which consist of closed streamlines. The
asymmetric steady case does not have closed streamlines, and has the large scale vortex

motion in the center of the cavity.

4.6 Results with a rectangular cavity

Now consider the symmetric driven cavity with a rectangular shape using v = % Again,

the results depend on the forcing pattern, and will be discussed sequentially. The n =1
case was found to match the traditional driven cavity with v = %, discussed previously, and

will not be discussed further.

4.6.1 n=2

This case is the same as the case of Farias and McHugh [4] except for the aspect ratio. The

bifurcation diagram for this case is shown in figure 4-11(a). For low Reynolds numbers,
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the only solution is a steady symmetric flow. An asymmetric flow appears at a Reynolds
number of approximately 2885, and two steady solutions are possible for 2885 < R, < 3900.
Above R, of 3900, the asymmetric steady solution no longer exists. Simulations initiated
with a strong initial condition will exhibit an unsteady behavior.

The symmetric steady solution exists up to a Reynolds number of 8900. Simulations
initiated from rest, or initiated with very weak initial flow, will evolve into the symmetric
steady motion. Simulations étarted from rest with Reynolds numbers above 8900 will evolve
into an unsteady solution. This is the same behavior as the case of Farias and McHugh [4]
except that the asymmetric steady flow terminates at a lower R, than the symmetric flow.

The symmetric flow pattern is shown in figure 4-12(a). The asymmetric pattern is
shown in 4-12(b). Note that the asymmetric pattern has the right-hand vortex intact,
while the left-hand vortex is segmented into what appears to be several smaller vortices.
This pattern persists until the Reynolds number reaches approximately 3900. Beyoﬁd this
value, the steady asymmetric solution is no longer obtained. The flow becomes unsteady,
although the same basic pattern of flow is observed. A much higher Reynolds number, R,
of 9900, also results in an unsteady flow, with the streamline pattern, at times, closer to

the symmetric solution, as shown in 4-12(d).

4.6.2 n=414

The n = 4 case with v = % is of particular interest. One half of the domain is nearly the
same as the previous work of Farias and McHugh [4], the only difference being the free
boundary that the half domain would feel at the centerline. One might speculate that this
case would allow the same two solutions found by Farias and McHugh in each half of the
cavity, and an additional steady flow involving the entire domain. Hence this case seems
like the best possibility for a third steady solution. Héwever, the simulations show only two
solutions, as before. Furthermore, the bifurcation pattern has a very unexpecfed behavior.

The bifurcation diagram is shown in figure 4-13(a). There is again a symmetric steady

solution for low Reynolds numbers. As the Reynolds number is increased, two intervals of
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asymmetric flows appear. One interval is approximately 2450 < R, < 2750, and the other
is approximately 3900 < R, < 4200. Within both of these intervals, a symmetric and an
asymmetric solution can exist, depending on initial conditions. The dashed lines in 4-15(a)
indicate the bésin of attraction for these two possible solutions. |

Between these two intervals, all simulations, including those started from rest, do not
converge on a steady solution, but instead appear to oscillate in a nonperiodic manner. A
time history of  for this case is shown in 4-15(c). A variety of simulations were performed
in this intermediate region between the steady solutions, trying to achieve a steady flow
of any type. In all cases, the flow did not converge to a steady result. The simulations
are limited to a finite duration, and it is possible that very long simulations would finally
become steady, although this seems unlikely.

The streamline pattern for the symmetric steady flow is shown in figure 4-14(a). The
streamline pattern for the asymmetric steady flow is shown in figure 4-14(b) for the first
interval and figure 4-13(c) for the second interval. Note that there is no dramatic change in
the flow pattern between the two intervals. The vortices for the symmetric solution fill the
height of the cavity, while the vortices for the asymmetric solutions do not. The streamline
pattern for the two intervals of unsteady flow are shown in figure 4-13(d) and (e) and show

a similar transition.

463 n=2©6

The bifurcation behavior for the n = 6 case mimics the behavior of the n = 6 case for a
square cavity. A symmetric steady flow exists for low Reynolds numbers, up to approxi-
mately 1800. Beyond this value, the symmetric steady solution does not exist. Instead,
an asymmetric steady solution exists. The asymmetric steady soluﬁion results even‘when
the flow is initiated from rest, or with a symmetric disturbance. There is no overlap re-
gion where two steady solutions are possible, as before. The asymmetric steady flow region
terminates at a Reynolds number around 8400, beyond which all cases are unsteady.

The bifurcation diagram is shown in figure 4-15, along with time histories of u. Stream-
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line patterns are shown in figure 4-16. The streamline patterns show a fundamental 'cha,nge
from the symmetric solution to the asymmetric solution, as in the n = 4 case, only more
dramatic. The vortices for 'the symmetric solution extend the entire depth of the cavity.
The vortices for the asymmetric solution are clearly a pattern of vortices where each vortex
has approximately round streamlines, and individual vortices do not have a length scale

that is related to the size of the cavity.

464 n=28

The n = 8 case shows the symmetric steady pattern for Reynolds numbers up to approx-
imately 700. However, no second steady pattern appears. All simulations for Reynolds
numbers greater than 700 are unsteady.

Time histories of u shown in figure 4-17 indicate that the unsteady solution for moderate
Reynolds numbers, R, = 750 for example, result in a periodic solution, implying that
the system has undergone a Hopf bifurcation. Streamline patterns for both the steady

symmetric flow and the unsteady periodic flow are shown in figure 4-17.

4.7 Higher forcing mode numbers

Forcing with higher mode numbers is now considered for a few cases. This part of the study
is motivated by geophysical flows, such as flow in lakes and other conﬁhed bodies. The air
motion on the lake surface may be quite complicated, even turbulent. It seems possible,
based on the work already discussed, for a complicated flow with a very small length scale
to drive a large scale motion in the lake. This may happen even if the net velocity on the
surface is zero.

The simulations are considered with n of 16, 32, and 64, with both the square cavity,
~ = 1, and the rectangular cavity, v = % All cases show the same basic bifurcation behavior.
Theré is a region of low Reynolds number where only a steady symmetric solution exists.
Then an intermediate region where only a steady asymmetric solution exists. Thére is no

overlap between these two intervals of Reynolds number. Finally, unsteady flow results
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for all initial conditions. The critical Reynolds numbers that denote the endpoints of the
intervals depend strongly on n. For example, the sqﬁare cavity with n = 64 did not

- experience unsteady motion until a Reynolds number of 15000, approximately, which is
considerably larger than any case with smaller n. Table 4.2 lists the critical Reynolds
numbers for all cases considered in this section. Figure 4-18 is the graphical representation
of the results.

An example of the streamline patterns for the symmetric and the asymmetric flow for
each case are shown in figures 4-19 to 4-24. Note that ‘for the high mode number cases
considered here, with a short length scale for the forcing oscillation, that the strong forcing
effect does not penetrate the domain very far. The flow throughout the rest of the domain
in all cases is quite simple, compared to the forcing region, and is composed of one or two
vortical regions. Note in particular figure 4-22 for n = 16. The large scale flow for this case
has a remarkable similarity to the traditional driven cavity flow in the rectangular geometry,
discussed earlier; a single vortex displaced to one side. It seems that it is indeed possible

for a complicated forcing to cause a large scale current.

Table 4.2: Range of R, for asymmetric solution at higher forcing functions

Forcing function | Range of R, (y = 1) | Range of R, (v = 3)

167z 750 - 3050 600 - 1125
327z 2350 - 7300 1575 - 3900
64nx 6800 - 15000 5000 - 9200

4.8 Discussion

The existence of two steady solutions begs for an explanation. It is difficult to provide a

complete explanation at this stage. However, the combined results do offer one possibility.

In particular, consider the n = 6 case with v = % The symmetric steady flow shows six
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vortices whose streamlines are distorted so that all six vortices vﬁt into the cavity and occupy
approximately the same territory. The asymmetric flow shows that the vortices no longer
fit the boundary, and they have approximately round streamlines.

This result suggests that the vortices tend to form patterns where eaéh vortex has
round streamlines. The vortices conform to the boundary only at low Reynolds numbers,
where there is not sufficient momentum for the flow ﬁo shake the constraint imposed by the
boundary. Hence, the steady solutions may composed of 1) boundary fitted vortices, and
2) free vortices. The more complicated unsteady flows may result when these two cases are

in direct competition.
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Figure 4-1: Schematic of the various combinations of forcing and initial flow
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(a) Re= 100

2008y

(b) R.= 400 (c) Re= 1000

Figure 4-2: Streamlines for the traditional driven cavity with y = 1
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(a) Ro= 100

(b) Re= 400

.

(¢) Re= 1000

Figure 4-3: Streamlines for the traditional driven cavity with vy = %
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Figure 4-4: Results with vy = 1 and n = 2: (a) locus of values for u for steady flow, (b)
time histories of u for different R, for unsteady flow, (c) streamlines for the unsteady flow,

R. = 3700, and (d) streamlines for the unsteady flow, R, = 4500
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Figure 4-5: Results with v = 1 and n = 4: (a) streamlines for the steady symmetric solution,
R, = 600, (b) streamlines for the steady asymmetric solution, R, = 700, and (c) streamlines

for the unsteady flow, R, = 3000
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Figure 4-6: Results with 7y = 1 and n = 4. (a) locus of values u for steady flow, (b) time

histories of u, (c) time histories of u for R, = 1000 starting with different vortex magnitudes,

m = 1, and (d) time histories of u for R, = 1500 with different initial mode number
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Figure 4-7: Results with v = 1 and n = 6: (a) streamlines for the symmetric solution,
R. = 400, (b) streamlines for the asymmetric solution, R, = 500, (c) streamlines for the

asymmetric solution, R, = 900, and (d) streamlines for the unsteady flow, R, = 1000
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Figure 4-8: Results with v = 1 and n = 6: (a) loci of values of u for steady flow (b) time

histories of u for different R, and m = 1
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Figure 4-9: Results with vy = 1 and n = 8 (a) streamlines for the symmetric solution,
R. = 400, (b) streamlines for the asymmetric solution, R, = 600, (c) streamlines for the

asymmetric solution, R, = 1150, and (d) streamlines for the unsteady flow, R, = 1500
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Figure 4-10: Results with v = 1 and n = 8: (a) loci of values for u for steady solution, (b)
time histories of u for different R., m = 1, and (c) time histories of u for various initial

conditions, R, = 1000
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Figure 4-11: Results with ¥ = 5 and n = 2: (a) loci of values of u for steady flow, (b) time
histories of u for several R, showing a symmetric, an asymmetric and an unsteady case,

and (c) time histories of u starting from rest near critical R,.
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Figure 4-12: Results with v = % and n = 2: (a) streamlines for the symmetric solution,
R, = 2850, (b) streamlines for the asymmetric solution, R, = 2885, (c) streamlines for the

unsteady flow, R, = 4100, and (d) streamlines for the unsteady flow, R, = 9900
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Figure 4-13: Results with v = % and n = 4: (a) loci of values of u for steady flow, (b) time

histories of u for different R,, m = 1, and (c)-(d) time histories of u near critical Re
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Figure 4-14: Results with v = %— and n = 4: (a) streamlines for the symmetric solution,
R.= 2400, (b) streamlines for the asymmetric solution, Re= 2750, (c) streamlines for the
asymmetric solution, R.= 4200, (d) streamlines for the unsteady flow, R.= 2800, and (e)

streamlines for the unsteady flow, R.= 4300
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Figure 4-15: Results with v = 1 and n = 6: (a) loci of values of u for steady solutions, (b)

time histories of u for different Re, m = 1, and (c¢) time histories of u with different initial

mode number, R, = 3000
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Figure 4-16: Results with v = %— and n = 6: (a) streamlines for the symmetric solution,
R.= 1800, (b) streamlines for the asymmetric solution, Re= 3000, (c) streamlines for the

asymmetric solution, R.= 7000, and (d) streamlines for the unsteady flow, R.= 8500
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Figure 4-17: Results withy = § and n = 8: (a) time histories of u near critical R, m = 1,
(b) streamlines for the symmetric solution, R, = 700, and (c) streamlines for the unsteady

flow, R, = 750
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(a) (b)

Figure 4-19: Results with v = 1 and n = 16: (a) streamlines for the symmetric solution,

R, = 700, and (b) streamlines for the asymmetric solution, R, = 1000

(a) (b)

Figure 4-20: Results with v = 1 and n = 32: (a) streamlines for the symmetric solution,

R, = 2700, and (b) streamlines for the asymmetric solution, R, = 2800
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Figure 4-21: Results with v = 1 and n = 64: (a) streamlines for the symmetric solution,

R, = 6700, and (b) streamlines for the asymmetric solution, R, = 8000

(a) (b)

Figure 4-22: Results with v = 1 and n = 16: (a) streamlines for the symmetric solution,

R, = 575, and (b) streamlines for the asymmetric solution, R, = 800
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~ Figure 4-23: Results with v = % and n = 32: (a) streamlines for the symmetric solution,

R, = 1400, and (b) streamlines for the asymmetric solution, R, = 1500

N e

(a) v (b)

Figure 4-24: Results with v = § and n = 64: (a) streamlines for the symmetric solution,

R, = 4000, and (b) streamlines for the asymmetric solution, R, = 6000
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Chapter 5

Three-dimensional results

5.1 Preliminaries

Now consider the driven cavity in a three-dimensional rectangular prism. The forcing is
again on the top of the cavity (z = 1), and has the added complexity that the direction
may vary with position across the top. The initial conditions also may be significantly more
complicated. Two types of forcing are considered; symmetric unidirectional forcing shown
schematically in figure 5-1(a), and bidirectional forcing shown in figure 5-1(b).

The purpose of the symmetric unidirectional forcing is for comparison with the previ-
ously discussed two-dimensional simulations. The three-dimensional case shown in figure
5-1(a) would be expected to mimic the two-dimensional case with n = 2. Note that attention
is restricted to the n = 2 case for the three-dimensional simulations.

Bidirectional forcing does not have a two-dimensional analog. The particular choice
for bidirectional forcing shown in figure 5-1(b) has the interesting feature that the average
velocity in any direction is zero, and the avera,ge‘ first moment of the velocity about the
center of the lid is zero. The zero average velocity implies that the forcing should not result
in a single vortex, where the axis of the vortex in the z — 2 plane. The zero first moment
implies that the forcing is not expected to drive a vortex whose axis is parallel to the y
direction. Of particular interest with the bidirectional forcing is the ability of the system
to maintain a circulation whose primary motion is parallel to the  — z plane, despite the
fact that the forcing is chosen to avoid this motion.

The basic parameters are the Reynolds number, R, = yV_L’ and two aspect ratios, v = %

and A = %. Both aspect ratios are chosen to be unity. In addition to these basic parameters,
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the initial conditions must again be characterized in some manner. Two types of initial
conditions are treated; The steady flow generated by unidirectional forcing on the top
of the cavity (top forcing), shown in figure 5-2(a), and the steady flow generated by the
unidirectional forcing of the side of the cavity (side forcing), shown in figure 5-2(b). The
simulations that developed the initial conditions used a Reynolds number of 100, and a -
forcing mode number of unity. The magnitude of the initial conditions and asymmetrical
behavior of the steady solutions are measured again with u, now defined as a line integral

along the centerline of the cavity, perpendicular to the forcing plane.

5.2 Results with symmetric unidirectional forcing

The symmetric unidirectional forcing is treated in the simulations starting from rest, and
starting with both types of initial conditions in subsequent trials. The Reynolds number
and the strength of the initial conditions was incremented in subsequent runs to attempt to
induce a mode of motion analogous to the asymmetric steady flow in the two-dimensional
case. Both aspect ratios were fixed at unity. However, for all cases considered, only one
steady motion appeared. A three-dimensional analog of the asymmetric solution could not
be found.

This result is surprising. The three dimensional case with symmetric unidirectional
forcing is similar to the two dimensional case with n = 2. The only significant difference
is the presence of endwalls. The two-dimensional cavity may be considered to be a three
dimensional cavity whose third direction is infinite. The present three-dimensional cavity
With aspect ratio of unity has the endwalls quite close. The close endwalls may supress the
second steady solution.

A promising direction for further study is to consider larger values of A, effectively mov-
ing the endwalls further apart. Incrementing A will eventually produce three-dimensional
results that match the two-dimenéional results. Unfortunately, this process also requires
a linear increase in resolution. The three-dimensional results in the cube are already near

the limit of the available computational resources, and hence this procedure could not be
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pursued at this time.

Contour plots of u, v and w for a low Reynolds number case (R, = 2) are shown in
figures 5-3 through 5-8. It can be seen in figures 5-3 through 5-8 that the flow is not
symmetric about‘ the centerline of the cavity for any slice along the z axis, despite the
fact that the forcing is symmetric for such a slice. A perpendicular slice shown in 5-3(d),
taken at z = 0.5 and as shown in figure 5-3 shows the presence of a weak but distinct
primary vortex. It seems that the close proximity of the endwalls allows a weak tertiary
flow to exist, balancing a pressure gradient that develops along the endwall. Note that the
asymmetry is weak, and this steady flow is considered analogous to the symmetric flow of
the two-dimensional simulations, not the asymmetric flow.

Note that figures 5-3 through 5-8 also show that the forcing develops primary vortices
that only penetrate approximately one-third of the depth at the cavity center. These
primary vortices then drive two secondary vortices, rotating in the opposite direction, in
the bottom two-thirds of the cavity. A view from the top, figure 5-4(c) shows that this
vortex motion is confined to a quadrant pattern.

“Figures 5-9 through 5-14 show contour plots of u, v and w for a higher Reynolds number
(Re = 100). It is apparent in figure 5-9(c) that the flow pattern looks closer to a symmetric
pattern than the lower Reynolds number case, shown in figure 5-3(c). A tertiary flow
still exists, as shown in the slice at z = 0.5 in figure 5-9(d), but this tertiary flow is now -
comprised of a nearly symmetric but much more complex motion than the low Reynolds
number case in figure 5-3(d).

The view from the top, figure 5-10(c) shows that this motion has a much different
pattern than the lower Reynolds number case, shown in figure 5-4(c). The motion now
has a diagonal patte-rn. It is difficult to say whether this change in pattern is a sudden
bifurcation to a new mode of steady motion, or a gradual change in the flow pattern. The
value of u for the final steady states over a range of Reynolds numbers is shown in figure
5-21(&), along with history of u for various initial conditions, 5-21(b). This figure does not

show a sudden transition to a new state, implying that the change in pattern is merely a
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gradual change in flow pattern.

Figures 5-15 through 5-20 show contour plots of u, v and w for a Reynolds number of
1000. Note in figure 5-15(c) that the primary vortices are confined to a region very near
the top, and larger counterrotating secondary vortices form near the bottom. However,
the contour pattern in figure 5-15(c) is clearly symmetric, and this flow is still considered
analogous to the symmetric two-dimensional mode. Also appearing in the flow is smaller
scale motion, evident in figure 5-15(a) and (b) near the upper corners. Figure 5-16(c) shows
that the diagonal aspect of the motion is still present, but has become more complicated.
Figures 5-19 and 5-20 show that the flow is only marginally resolved, and wiggles in the

solution have appeared.

5.3 Results with bidirectional forcing

Reynolds numbers of 10,100, and 1000 are considered. The results are shown in figures 5-22
through 5-24 for R, of 10, figures 5-25 through 5-27 for R, of 100, and figures 5-28 through
5-30 for R, of 1000. Note again that wiggles appear in the solution for R, of 1000, implying
a need for increased resolution.

The steady flows shown in the figures is the only steady flow that appeared in the
simulations for all initial conditions. At no time did a second steady flow appear. The
figures show the same type of motion as the previous case, including a primary set of
vortices near the top, with weaker secondary counterrotating vortices beneath. A strong

asymmetric flow occupying the entire domain does not appear.
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(b)

Figure 5-1: (a) Symmetric forcing function (b) Bidirectional forcing function
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Figure 5-2: (a) and (b) Initial conditions for 3D case
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Figure 5-3: Horizontal velocity contour u for symmetric forcing, Re = 2.
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Figure 5-4: Horizontal velocity contour u for symmetric forcing, Re = 2.
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Figure 5-5: Vertical velocity contour v for symmetric forcing, Re = 2.
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Figure 5-6: Vertical velocity contour v for symmetric forcing, Re = 2.
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Figure 5-7: Transverse velocity contour w for symmetric forcing, Re = 2.
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Figure 5-8: Transverse velocity contour w for symmetric forcing, Re = 2.
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Figure 5-9: Horizontal velocity contour u for symmetric forcing, Re = 100.
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Figure 5-10: Horizontal velocity contour u for symmetric forcing, Re = 100.
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Figure 5-11: Vertical velocity contour v for symmetric forcing, Re = 100.
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Figure 5-12: Vertical velocity contour v for symmetric forcing, Re = 100.
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Figure 5-13: Transverse velocity contour w for symmetric forcing, Re = 100.
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Figure 5-14: Transverse velocity contour w for symmetric forcing, Re = 100.
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Figure 5-15: Horizontal velocity contour u for symmetric forcing, Re = 1000.
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Figure 5-16: Horizontal velocity contour u for symmetric forcing, Re = 1000.
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Figure 5-17: Vertical velocity contour v for symmetric forcing, Re = 1000.
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Figure 5-18: Vertical velocity contour v for symmetric forcing, Re = 1000.
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Figure 5-19: Transverse velocity contour w for symmetric forcing, Re = 1000.
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Figure 5-20: Transverse velocity contour w for symmetric forcing, Re = 1000.
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Figure 5-21: 3D symmetric forcing function (a) Steady state solution (b) Time history of u

for various initial conditions, R, = 100
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Figure 5-22: Horizontal velocity contour u for bi-directional forcing function, Re = 10.
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Figure 5-23: Vertical velocity contour v for bi-directional forcing function, Re = 10.
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Figure 5-24: Transverse velocity contour w for bi-directional forcing function, Re = 10.
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Figure 5-25: Horizontal velocity contour u for bi-directional forcing function, Re = 100.
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Figure 5-26: Vertical velocity contour v for bi-directional forcing function, Re = 100.
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Figure 5-27: Transverse velocity contour w for bi-directional forcing function, Re = 100.
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Figure 5-28: Horizontal velocity contour u for bi-directional forcing function, Re = 1000.
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Figure 5-29: Vertical velocity contour v for bi-directional forcing function, Re = 1000.
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Chapter 6
Conclusions

6.1 Discussion

It.is readily apparent in chapter 4 that as the forcing mode number, n, increases, the forcing
becomes more local to the top. The resulting flow has a strong component near the top,
resulting in a boundary layer flow that is different from the flow in the bottom part of the
cavity. The boundary layer flow has a horizontal length scale that matches the horizontal
length scale of the forcing. However, the length scale of the flow in the bot‘tom of the
chamber is different. The bottom flow behavior seems to be unrelated to the length scale of
the forcing. This is most readily apparent by comparing the streamlines pattern n = 1 and
n = 16, cases for y = % (see figure 4-3 and 4—22(‘b)). The flow in the bottom of the chamber
for these two cases is nearly the same, while the top forcing is dramatically different. The
scale of this bottom flow appears to be related only to the size, and presumably the shape,
of the chamber. All cases consistently point to this conclusion.

Despite the simple geometry of the driven cavity, this conclusion provides insight into
the behavior of flow in the surface driven lakes, discussed in the introduction. Based on the
results of the simulations, the global flow in the bottom region of a lake may be independent
of the complicated forcing on the surface. The presence of a topographical feature near
the edge of the lake may not have any significant influence on the global lake flow. Drastic
changes in the surrounding topography are not guaranteed to change the overall flow pattern
significantly. Furthermore, the flow lake patterns in the bottom region do not reflect the

flow at the surface.
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Another feature of the simulations is that the magnitude of the forcing is important,
and can be chosen to be weak, leading to steady symmetric behaviour, or strong, leading
to unsteady behavior. This fact is true for any pattern of vortices. In the papermaking
application, this result implies that a complicated pattern of vortices may not be necessary
to induce mixing, but the magnitude of the vortices must be large to avoid a steady vortex
in the draining process, leading to streaks in the final product.

The Reynolds numbers considered in the simulations are quite small. Strictly speak-
ing, these Reynolds numbers only apply to very slow experiments, very small experiments,
or very viscous fluids. For example, a Reynolds number of 1000 would correspond to a
square cavity of 10 centimeters with an imposed velocity of only 1 cm per second. Such
an experiment is easily achieved in a laboratory éxperiment, but Reynolds numbers in geo-
physical flow and many industrial flows are many orders of magnitude larger. For these
large Reynolds number flows, the direct effect of viscosity becomes unimportant. However,
damping is still present due to the creation of turbulence. The results here suggest that
similar results exist for these large Reynolds number flows, where the effect of viscosity
has been replaced with the effect of turbulence. However, the precise behavior of higher

Reynolds number flow remains to be determined.

6.2 Specific conclusions

The following general conclusions may be drawn:

1. The traditional driven cavity withy=1and v = %, for all initial conditions, yield

only one steady flow patterns.

2. Steady symmetric flow patterns are present in all two dimensional cases with

symmetric forcing.

3. Steady asymmetric flow patterns are also present in all two-dimensional cases except

for the case of u(x) = sin (8mz) for vy = 3.
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4. Steady asymmetric flow patterns exhibit a large scale flow in the bottom of the

domain.

5. In general, higher Reynolds numbers yield unsteady solutions. Although for most
cases, this phenomenon is observed at very high Reynolds numbers, unsteady

behavior can be observed at Reynolds numbers as low as 900.

6. Three dimensional symmetric flow forcing yields no asymmetric flow pattern for
Reynolds number up to 1000 in a cube. Flow begins with weak asymmetry and

slowly evolves to more symmetric flow behavior.

7. Bidirectional forcing function show symmetric flow behavior for Reynolds number up

to 1000 in a cube.
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