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ABSTRACT

FREE PRODUCTS OF OPERATOR SPACES AND
FREE MARKOV PROCESS

by
Mingchu Gao
University of New Hampshire, May 2004

Certain (reduced) free product is introduced in the framework of operator
spaces. Under the construction, the free product of preduals of von Neumann
algebras agrees with the predual of the free product of von Neumann algebras.
This answers a question asked by Effros affirmatively. An example is presented to
show that the C*-algebra reduced free product of two C*-algebras may be contrac-
tively isomorphic to a proper subspace of the operator space reduced free product
of the two C*-algebras.

Free Markov processes are also investigated in Voiculescu’s free probability the-
ory. This highly non-commutative notion generalizes that of free Brownian motion
and free Lévy processes. Some free Markov processes are realized as solutions to
free stochastic differential equations driven by free Lévy processes. A special and
rather interesting kind of free Markov processes, free Ornstein-Uhlenbeck pro-
cesses, is studied in some details. It is shown that a probability measure on R is
free self-decomposable if and only if it is the stationary distribution of a stationary
free Ornstein-Uhlenbeck process (driven by a free Levy process). Finally, the no-
tion of free fractional Brownian motion is introduced. Examples of fractional free
Brownian motion are given, which are based on creation and annihilation operators
on full Fock spaces. It is proved that the Langevin equation driven by fractional
free Brownian motion has a unique solution. We call the solution a fractional free

Ornstein-Uhlenbeck process.
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Chapter 1
INTRODUCTION

A von Neumann algebra. is a *-algbra of operators on a Hilbert space, containing
the identity operator, and closed in the strong operator topology. Some Von
Neumann algebras appear as group algebras of (infinite) groups and provide an
indispensable tool for the study of the representations of these groups as well as
harmonic analysis on them. On the other hand, they provide a mathematical
model for the study of infinitely extended quantum systems (a study in the style
indicated, first, by P. A. M. Dirac [16]). As a result, the subject of von Neumann
algebras has undergone an intensive and massive development since its introduction
in 1929.

F. J. Murry and von Neumann ([41, 42, 43, 46]) showed that each von Neumann
algebra is a “direct integral” over its center of certain von Neumann algebras
whose centers consist of scalar operators (these von Neumann algebras were called
factors). The factors were recognized as the key components of the subject. Murry
and von Neumann separated factors into three basic types: those with a minimal
projection, the type I factor; those without minimal projections but admitting a
functional resembling the trace of a matrix, the type II factors; and all the rest,
type III factors. The different types of factors are now known to be closely related
to one another by means of general operations known as “tensor product” and
“crossed product” by groups. The focus of much research has returned to the

factors of type II; from the type III factors (most visible in the von Neumann
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algebra approach to quantum field theory and quantum statistical mechanics),
and to applications of operator algebras to other areas of mathematics.

A factor of type II is hyperfinite if it is the weak operator closure of the
union of an increasing sequence of finite dimensional subfactors of it. This kind of
type II; factors can be realized as the group von Neuman algebra of the group of
those permutations of the integers that move at most a finite number of integers.
Another kind of examples of type I, factors is the free group factor, the group von
Neumann algebra of the free non-abelian group on n (> 2) generators. Murry and
von Neumann proved in [43] that all hyperfinite type I1; factors on a separable
Hilbert space are isomorphic to one another. They also proved in the same paper
that the hyperfinite type II; factor is not isomorphic to free group factors. One of
the longstanding (still open) questions in the theory of von Neumann algebras is

whether free group factors on different numbers of generators are iso-

morphic to one another.

To study free group factors (and answer the question above), Voiculescu intro-
duced and developed the theory of free probability in early 1980s in the context
of von Neumann algebras. Free probability is one kind of non-commutative prob-
ability theory, where the classical independence is replaced by free independence.
Independence of random variables, in classical probability theory, corresponds to
certain tensor product relation of the polynomial rings generated by the variables;
while free independence is based on the free product relation of the (noncom-
mutative) polynomial rings generated by random variables. The notion of free
product of algebras (or groups) existed long time ago. The free product used in
free probability theory reflects certain topological structures of the algebras of ran-
dom variables. A special case of such examples can be traced back to [14], where
W. M. Ching introduced the notion of (reduced) free products of von Neumann
algebras with traces. Later, it was generalized to C*-algebras with given states by
D. Voiculescu in [58]. Some fundamental results were obtained by Voiculescu, e.g.,

the free central limit theorem. In early 1990s, Voiculescu, Ge, Redulescu were able
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to solve old problems in von Neumann algebras using free probability techniques
(see [53, 61, 25, 26, 27]).

The study on stochastic processes is a vast research area in free probability. The
analogues of classical Brownian motion and Levy processes in free probability were
introduced in 1990s. Voiculescu introduced the concept of free Markov processes
in 1999 (see [61]). So far, Most of the research work on stochastic processes in
free probability is on free Brownian motion and free Levy processes (see [1, 3,
4, 8, 9, 10, 11]). There is not much work on the general free Markov process,
which is a focus of our study. In this dissertation, it is shown that free Brownian
motion and free Levy processes are examples of free Markov processes. One of
our results says that, for a free Markov process, the “future” subalgebra and the
“past” subalgebra are “conditionally perpendicular” with respect to the “present”
algebra. We call this “conditional perpendicularity” of the past algebra and the
“future” algebra a weak Markov property. We proved that, in classical case, the
weak Markov property is the same as classical Markov property. It is shown that
a stochastic process with weak Markov property has transition functions. The
transition functions have very similar properties to those of a classical Markov
process.

Certain free stochastic differential equations driven by free Brownian motion
were studied by Biane and Spicher in 2001. They showed that the free stochastic
differential equations have solutions, and the solutions have free Markov property
(see [11]). We consider the similar free stochastic differential equations driven by
free Levy processes. We proved that the equations have solutions. The solutions
are free Markov processes consisting of random variables with non-compactly sup-
ported distributions. The proof of our result relies on a free Burkholder-Gundy
type inequality in L%norm (for the Lévy case) proved by M. Anshelevich {1]. A
similar inequality in operator norm for stochastic integrals with respect to free
Brownian motion was obtained in [10]. Our results provide a method to find

examples of free Markov processes with non-compactly supported distributions.
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Biane and Speicher [11] studied the solution to the following stochastic differen-
tial equation ( a special case of the free stochastic diffrential equations mentioned

previously)

t
thxg—A/ Xods + Syt >0, (1.1)
0

where A > 0, {S; : t > 0} is a free Brownian motion, and the initial variable X,
and {S; : t > 0} are free. They proved that the unique solution to (1.1) has the

following form

t
X, = e MXg+ e / e*dS,,t > 0. (1.2)
0

The process given in (1.2) is called a free Ornstein-Uhlenbeck process (Briefly free
,OU process). They also showed that its limit distribution is a semicircular law.

Barndorff-Nielsen and Thorbjornsen [4] mentioned free OU processes driven
by free Levy processes (but there were no details given). In this dissertation, we
study similar equations to (1.1), driven by free Levy processes. It is proved that the
solution of the equation has the same form as (1.2}, a free OU process driven by a
free Levy process. One of our results says that a probability measure on R is freely
self-decomposable if and only if it is the limit distribution of a free OU process
driven by a free Levy process. Periodic OU processes were introduced in classical
probability by Pedersen [49] in 2002, and the class of the stationary distributions
of periodic OU processes was studied in [50], 2003. In this dissertation, we consider
the same questions in free probability and obtain similar results to the classical
case. Fractional OU processes driven by fractional Brownian motion were studied
recently in classical probability theory (see [13]). We introduce the notion of
fractional free Brownian motion with examples based on creatioil and annihilation
operators on a full Fock space. We show that the equation, similar to (1.1), driven
by fractional free Brownian motion has a unique solution. We call the solution a
fractional free OU process.

Another research topic in this dissertation is free products in operator spaces.
The existence of free products in operator spaces was conjectured by Effros (see

[18]). In this dissertation, we prove the conjecture affirmatively.
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Our ideas of the free product construction of operator épaces can be traced back
to that of operator algebras. W. M. Ching and D. Voiculescu’s ideals for reduced
free products of operator algebras with given states are based on the free product
of Hilbert spaces and the GNS construction (see [14, 58, 62, 64]). The free product
is more or less an algebraic construction. The difficulty arises when operator spaces
are considered, where any algebraic structure is absent. By [21], an operator space
may be viewed as the quotient space of the space of all trace class operators on a
Hilbert space. It is natural to associate the space of all trace class operators with
certain Hilbert space structure. Based on free products of Hilbert spaces, we give,
in this dissertation, certain free products of operator spaces, which proves Effors’s
conjecture mentioned above. In general, free products of C*-algebras (or von
Neumann algebras) are not nuclear (or injective). It is proved, in this dissertation,
that the reduced free product of operator spaces does not preserve the local lifting
property, a notion introduced by S.-H. Kye and Z.J. Ruan to characterize the
pre-dual of an injective operator space (see [19] and [35]). On the other hand,
operator spaces with the local lifting property have certain property of completely
isometric embedding into their free product. An example is presented to compare
the C*-algebra reduced free product with the operator space reduced free product
for two C*-algebras.

The dissertation is divides into four chapters besides this introduction. Chapter
two is a chapter of preliminaries. We review in this chapter some basic concepts
and results in free probability and operator spaces used in the sequel. In Chapter
three, we deal with certain free products of operator spaces. Chapter four is
devoted to the study of free Markov processes. Finally, in Chapter five, we discuss

a special class of stochastic processes—free Ornstein-Uhlenbeck processes.
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Chapter 2

PRELIMINARIES

We review some basic concepts and results, which are used in the sequel, in free
and classical probability theory and operator spaces. Certain unbounded oper-
ators affiliated with a von Neumann algebra and operator-valued functions on

(unbounded) operator algebras will be discussed.

2.1 Free Probability

We refer to [64], [34] and [4] for basics on free probability, operator algebras, and
unbounded operators affiliated with a von Neumann algebra and the convergence
of unbounded operators in distribution, respectively.

A non-commutative probability space is a pair (A, 7) consisting of a unital
algebra A over the complex field C, and a linear functional 7 on A with value
1 at the unit I of algebra A. Elements in A are called random variables. The
distribution of a random variable A in a non-commutative probability space (A, 7)
is a linear functional u(A) on C[z], the polynomial algebra in variable z. The
linear functional is defined by u(A4)(p) = 7(p(A4)), for p in C[z]. Positivity is one
important property for random variables in classical probability. To study the
positivity for random variables in non-commutative probability spaces, we may
assume that A is a unital *-algebra and 7 is a state (. e. 7(A*A) > 0, for

A € A). The element A*A is said to be positive, for A € A. State 7 is tracial
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if 7(AB) = 7(BA), 7 is faithful if 7(A*A) = 0 implies that A is zero. Examples
of non-commutative probability spaces come from operator algebras on a Hilbert
space and the states used are usually vector states. In this dissertation, we always
assume that non-commutative probability spaces are W*-probability spaces.

A W*-probability space is a pair (A, 7) consisting of a von Neumann algebra A
and a normal state 7. Throughout the dissertation, we assume that .4 has a sepa-
rable predual and 7 is a faithful normal tracial state. Define || X ||y = T(X*X)/2,
for all X in A. Let L?(A,7) be the completion of A with respect to || - ||2. Then
L2(A, ) is a Hilbert space with respect to inner product (X,Y) = 7(XY™). Sup-
pose S is a subset of A. We use W*(S) to denote the von Neumann subalgebra
of A generated by S. The classical independence is replaced by free independence
in free probability. A family {A; : i € I} of von Neumann subalgebras of A is free
with respect to 7 if 7(A1 A+ An) = 0 whenever A; € A, 4, € L iy # -+ # i
and 7(4;) =0 for 1 < j < n and every n in N. A family of subsets (or elements)
of A is free if the family of the von Neumann subalgebras they generate is free.

Let B be a subalgebra of algebra A. A conditional expectation E of A onto B
is a B-bi-module map (that is, E(B1ABs) = BiE(A)By, for A € A, By, B, € B).
If B is a von Neumann subalgebra of a finite von Neumann algebra A, there is a
unique trace-preserving conditional expectation from A onto B.

In free probability, freeness with amalgamation seems to be the right replace-
ment of the classical conditional independence. Let B be a von Neumann subalge-
bra of C and D, C and D be von Neumann subalgebras of von Neumann algebra A,
Ep be the trace-preserving conditional expectation from A onto B. We say C and
D are B-free (or freely independent with amalgamation) if C and D are free with
respect to Eg, that is, C and D satisfy the same condition as that in the definition
of freeness (in this case, 7 is repalced by conditional expectation Ep) (see [62] and
64)).

Note that, when B = CI, B-free independence is the same as free independence.

Freeness, in general, does not imply B-freeness, when B # CI.
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The freeness of subalgebras can be obtained from free products. Let (A;, 1)
and (Ajg, 73) be W*-probability spaces. Suppose Ay is the algebraic free product
of A; and A,;. There is a unique tracial state 7 on Ay such that A; and A
are free with respect to 7 and the restriction of 7 on A; is 75, j = 1,2. Let A
be the weak operator closure of Ay acting on L?(Ay, 7). Then A is called the
(reduced von Neumann algebra) free product of Ay and A, denoted by A; * A;.
For example, the free group factor Lp, is *-isomorphic to L*°([0, 1]) * L*([0, 1]).
Similarly, one may define (reduced C*-algebra) free product of two C*-algebras with
given states (Roughly speaking, the free product is the uniform closure of Ay acting
on L*( Ay, 7)).

In free probability, Gaussian law is replaced by semicircular law. In classical
probability, Gaussian law is the limit distribution of the normalized partial sums
of an i.i.d. sequence of random variables. In free probability, semicircular law is
the limit distribution of the normalized partial sums of a freely i.i.d. sequence of
random variables. A semicircle law (or distribution) is a probability measure on

R whose density function is

2
’Yc,r(t) = ’7;’3 2 — (t — C)2X[C_r7c+r]<t),

where ¢ and r > 0 are real numbers. The mean of the semicircular law ., is ¢
and the variance is %.

Free Brownian Motion. (cf. [11], [12]) Let (A, T) be a W*-probability space
with filtration {A; : ¢ > 0} (that is, {A; : ¢t > 0} is a family of von Neumann
subalgebras of A such that A; C A,, when 0 <t < s). A family {S;:t > 0} of
self-adjoint operators in (A, 7) is called an (A;)-free Brownian motion, if, Xy = 0,
and, for 0 < s < t, S;— S, and A; are free, and S; — S, has semicircular distribution
of mean zero and variance ¢ — s.

Unbounded Operators and Convergence in Distribution. Let (A,7)
be a W*-probability space with A acting on the Hilbert space H (= L?(A, 7)) by
left multiplications. A self-adjoint (unbounded) operator A, defined on a dense

subspace of H, is said to be affiliated with A, if all spectral projections of A lie
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in A. Generally, a closed densely defined operator T' on H is said to be affiliated
with A, if T = U A, for some U in A, and self-adjoint operator A affiliated with A,
where T = UA is the polar decomposition of T. Denoted by A the algebra of all
densely defined and closed (unbounded) operators affiliated with A (see [6], [34]
and [44] for details). Elements in A are again called random variables (in general,
with non-compactly supported distributions).

Let /Al/m be the set of all self-adjoint elements in A. Given X in ./Tsa, let C* ('X )
be the unital C*-algebra generated by {f(X) : f € BC(R)}, where BC(R) is
the space of all bounded continuous functions on R, W*(X) be the von Neumann
subalgebra of A generated by C*(X). Let U|A| be the polar decomposition of A,
W*(A) denote the von Neumann subalgebra of A generated by U and W*(| Al).
For X; € /I, i € A, let X; = U;|X;| be the polar decomposition of X;. The family
{Xi : 7 € A} is said to be free if {W*(X;) : ¢ € A} forms a free family. Similarly, we
can define freeness with amalgamation for elements in A (see [64]). We may view
H as a subset of A as given by left multiplication (defined on the dense subspace
A of H). Thus an unbounded random variable X € A is given by an element in
H (as a left multiplication operator) if and only if the domain of X can be enlarge
to contain A. In this case, we identify X with the left multiplication operator L,
given by z = X - I in H. We also use || X2 to denote ||z

The distribution of element X € jsa, denoted by u(X), is a linear functional
on BC(R), which maps function f in BC(R) to 7(f(X)). Let A, B € AL, be freely
independent elements with distributions p(A) and p(B), respectively. We call the
distribution i of A + B the free additive convolution of u(A) and p(B), denoted
by u(A) B u(B). A probability measure on R is B (or free)-infinitely divisible, if

for any natural number n, there exists a probability measure u,, on R such that

p= o BB, .
—_—

n times

Let f and g be independent random variables on a probability space (Q, X, 1)
with distributions u(f) and u(g), respectively. The distribution pu(f +g) of f +g¢
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10

is called the convolution of u(f) and u(g), denoted by u(f) * (g). A probability
measure p on R is infinitely divisible if, for any natural number n, there is a

probability measure p,, such that

M= iy KK Ly
n times
We use ZD(H) and ZD(x) to denote the set of all B-infinitely divisible distributions
on R and that of all infinitely divisible measures on R, respectively.
R-transform. Let y be a probability measure on R with all moments finite,

one may define the Cauchy transform of p as follows.

2=Gu(Q) =¢T+ D m¢,

k=0

where p, is the kth moment of u. Let K,(2) := G;'(2) = ¢. We say that R,(z) ==
K,(z) — L is the R-transform of p. It was proved in [58], [39] and [6] that a
probability measure y € TD(H) if and only if there exist a finite measure o on R

and a real number ~, such that

Pu(2) =7+/ 1+tza(dt),z e Ct,
R z—

where ¢,(z) = R,(1/2), R, is the R-transform of , and C* is the the set of all
complex numbers with positive real parts. We call (v, o) the free generating pair
of . In classical probability, p € ID(x) if and only if there exist a finite measure

o on R and a real number 7y such that

izt 142
) v

log fu.(2) = iyz + /(em -1

where f, is the characteristic function of y (see [55]). Similarly, (vy,0) is called
the generating pair of pu. The following is another representation of a measure p
in ZD(x) (see Theorem 8.1 in [55]):

log fu(z) =iz — %az2 + /(e”t — 1 —izx-1,y(t))v(dt), (2.1.2)
R
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11

where ' is a real number, a > 0 and v is a measure on R satisfying

v({0}) =0, / min{1, #*}v(dt) < 0. (2.1.3)
R

This measure v is called the Levy measure of u. (A measure u on R is a Levy
measure if it satisfies (2.1.3)). We call (7', A,v) the generating triple of measure
p. The relationship between measures o and v is the following:

14+ ¢?

v(dt) = P

xr—{0}(t)o{dt). (2.1.4)

We can define the Levy measure of u € ID(8) by (2.1.4). Bercovici and Pata
[5] defined a bijection A from ZD(x) onto ZD(H) as follows. For u € ZD(*) with
generating pair (7, 0), A maps u to be the measure in TD(H) with free generating
pair (vy,0).

A probability measure p on R is said to be free (or B) self-decomposable if,
for any ¢ € (0,1), there exists a probability measure . on R such that D.u 8 p.,
where measure D,y is defined by D.u(B) := u(c™'B), for Borel set B C R. A
sequence (o,) of finite measures on R is said to converge weakly to a finite measure

o on R, denoted by ¢, — o if, for all f in BC(R),
[ sty = [ swyotan,
R R

asn — oo. For X, X in .Zsa, {X,}, is said to converge to X in distribution,
denoted by X, 5 X, if p(X,) 2 p(X). Given X, X in A, {X,}%2, is said to
converge to X in probability, denoted by X, 2 X, if | X, — X| 4 0. By [4],
for Xp, X € Ag, Xn 2 X if and only if X, — X 5 0, and X, » X implies
that X, 4 X. For X Y € .Zsa, X £V means X and Y have the same spectral
distribution.

A family {S; : t > 0} of elements in As, isa free Levy process, if Sy = 0, it has
free increments (that is, S,, St; — Sty -+ > Stn — St,_, are free, for 0 < 5 < ¢ <
o+ < t,), it is stationary ( that is, u(Sis — Ss) = p(Sy), for s,t € (0,00)) and
S; 40, as t — 0 (see [1], 3], [4] and [9]).
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A free Levy process {S; : t > 0} is adapted to the filtration {A; : ¢t > 0} of A,
denoted by A,-free Levy process, if W*(S,) € A,, for ¢ > 0, and S; — S, and A,

are free, for 0 < s < ¢ (see [1]).

2.2 Operator Spaces

For the basics of operator spaces, we refer to-[21] and [51].

Let B(H) be the space of all bounded linear operators on Hilbert space H. For
each n € N, there is a canonical norm || - ||, on M,(B(H)) given by identifying
M, (B(H)) with B(H™). We call this family of norms an operator space matriz norm
on B(H). An operator space is a norm closed subspace of B(H) equipped with the
operator space matrix norm inherited from B(H). The morphisms in the category
of operator spaces are completely bounded linear maps. Given operator spaces
V and W, a linear map ¢ : V — W is completely bounded if the corresponding
linear maps @n : My (V) — M, (W) defined by ¢n([zi;]) = [¢(zi;)] are uniformly
bounded, i. e.

lelles = sup{llenll : n € N} < oo.
A map is completely contractive (respectively, completely isometric, a complete
quotient) if |||l < 1 (respectively, for each n in N, ¢, is an isometry , a quotient
map).

Let M, be the algebra of all r x r matrices over C, E be a Banach space,

b.(E) ={T: E — M, : T is a linear operator and ||T|| < 1},

b(E) = | ) be(E).

reN

With S an element in M,,(F), let

[ llmin = sup{[lfa(S)II : £ € b1(E)}, 1S ]lmax = sup{ll/n(S)] = f € b(E)}.

Moreover, we have

15 llmin < ST < 1Sl mas
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where || - || is an operator space norm on M, (E) (see (3.3.6) in [21]). Operator
space (B, || - lmin) (or E, |} - ||max) is called minimal (or mazimal) quantization of
E. Proposition 3.3.1 in [21] states that an operator space S is minimal (i. e.
SN = |IS]imin, for any S € M,(8),n € N) if and only if it is completely isometric
to a subspace of a commutative C*-algebra. Moreover, (max E')* = min E* (see
(3.3.13) in [21]).

Effros and Ruan [21] showed that an operator space S is the dual space of a
Banach space (in this case, S is called a dual operator space) if and only if there
are a Hilbert space H and a W*-homeomorphic and completely isometric map ¢
from S into B(H). Take a unit vector £ € H as a distinguished vector, we call
(o, H, &) a realization of S.

Recall that an operator space S is injective, if for operator spaces Wy C W,
each completely bounded linear map ¢y : Wy — S has a completely bounded
linear extension ¢ : W — & satisfying ||¢lle = ||¢olles (see [21]). A von Neumann
algebra A C B(H) is injective if there is a conditional expectation IT of B(H) onto
A. Given an operator space S, an injective operator space VW and a completely
isometry « of S into W, we say that (W, k) is an injective envelope of S if there
is not an injective proper subspace of W, which contains «(S) (see Chapter 15 in
[48]).

2.3 Classical Markov Processes

Let (€2, F, 1) be a probability space, {f; : ¢ > 0} a family of measurable functions
from (£2, F, 1) into a locally compact Hausdorff space X with a Borel o-algebra B.
Define F«; to be the o-subalgebra of F generated by f;!(B) for all Borel subsets
B of X and s < t. Similarly, one may define F-, and F>;. The family {f;: ¢ > 0}

is a Markov process if

P(AB|F) = P(A|F=) P(B|F=),
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for all 4 in F<, B in F>;, where P(-|F_) is the conditional probability with
respect to F_;. Given s < t, z € X and Borel subset I' C X, we can define a
transition function P(s,z,t,I') = P(f; € T'|fs = x). Then {f; : ¢ > 0} is a Markov
process if and only if P(s,z,t,T') has the following properties(see 8.1.3 and 8.2.3
in [65)).

1. When s,t,z are given, P(s,z,t,) is a probability measure on B;
2. when s,t,T are given, P(s,-,t,I') is a measurable function on (R, B);

3. P(s,z,s,T) = xr(z).

2.4 Operator-Valued Lipschitz functions

Amap Q : A*, — A, is called Lipschitz (or operator-valued Lipschitz) with respect

to || - ||2, if there exists a constant C' > 0 such that

k
1Q(X, -, Xi) = Q(Y3, -+, Ya)lla O D [1Xi = Yills (2.4.1)

i=1
for all operators Xi,Y:, - -, Xy, Y in A, A map Q : A%, — A, is locally
Lipschitz (or locally operator-valued Lipschitz) with respect to || - ||z, if for all
M > 0 there exists constants Cjs > 0 such that (2.4.1) holds for all X;,Y; in A,,
with || X;|lz and ||Yi]]2 less than M, 1 < i < k. Similar definitions of (locally)

Lipschitz maps with respect to operator norm can be found in Section 2.3 in [11].
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Chapter 3

CERTAIN FREE PRODUCT OF
OPERATOR SPACES

We study certain free product of operator spaces in this chapter.

This chapter is organized as follows. We give the definition of certain (reduced)
free product for operator spaces in Section 3.1 (Definition 3.1.2). We show that the
(reduced) free product satisfies Effros’s requirement on the free product of preduals
of von Neumann algebras acting on separable Hilbert spaces (Theorem 3.1.4).
Section 3.2 is devoted to the study of the properties of the (reduced) free product
of operator spaces. It is proved that the free product of two operator spaces does
not have an operator space local lifting property, even if the two operator spaces
have the operator space local lifting property (Theorem 3.2.4). On the other
hand, operator spaces with the operator space local lifting property have certain
property of completely isometrically embedding into their free product (Theorem
3.2.5 and Corollary 3.2.6). Finally, in Section 3.3, an example is presented to show
that the C*-algebra reduced free product of two C*-algebras may be contractively
isomorphic to a proper subspace of the operator space (reduced) free product of
the two C*-algebras (Theorem 3.3.1).

15
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3.1 The Definition of the ¥Free Product

In this section, we give the definition of certain (reduced) free product for operator
spaces and show that the free product satisfies Effros’s requirement on the free
product of preduals of von Neumann algebras.

Let 7 () be the space of all trace class operators on Hilbert space H. H @H,
denotes the algebraic tensor product of Hilbert spaces H; and Hy with H; ® Ho
the completion of H1®Hy. For Y1, z; @ y; € H®H and 2 € M, define Y -, x; ®
yi(z) = S (zyi)w. Thus, 3.7 x; @ y; gives rise to a finite rank operator
and thus is of trace class. Hence, H®H may be viewed as a dense subspace of
T(H). On the other hand, 7 (H) is the predual of B(H). Hence, we may identify
T =31, % ®y in H®H with the linear functional Y 7 ; wy,,,, where wy, ,, is
the vector state on B(H) corresponding to vectors z;,¥; in H.

Given an operator space S, Proposition 4.2.3 in [21] states that there are a
Hilbert space H with an orthonormal basis {e; : i € A} and a completely quotient
map ¢ : T(H) — S. Thus, ¢ : HQH = S has dense image and

loz @y) < |l=ll - ol

for z,y in H. Moreover, suppose S is separable. Let [e; ® e;] = @(e; ® e;) be the
image of e; ® ¢; in S, for all 4,7 in A. We may choose a countable subset Ag of
A such that {{e; ® e;] : 1,7 € Ao} spans a dense subspace of S. Let Ho be the
separable Hilbert space spanned by {e; : i € Ag}. Then p(Ho&H,) is dense in S.

From the above discussions, we have

Proposition 3.1.1. Let S be an operator space. Then there are a Hilbert space
H and a lnear map ¥ : HQH — S such that the image of ¥ is dense in S and
19 (z @ )|l < |lz|l - lyll, for all z,y in H. Moreover, we may choose H separable,

when S is separable.

By Proposition 4.2.3 in [21], ¢ is a completely quotient map and ¢* : $* —

B(H) is a dual representation of S* (that is, ¢ is a weak *-continuous and complete
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isometry from S* into B(H)). We use (S, ¢, H, €) to denote a tuple of an operator
space S and a dual representation ¢ of the dual space §* on a Hilbert space H
with a distinguished vector &, or (S, H,£) to denote the tuple, when §* is viewed
as a subspace of B(H).

Let (81, H1, &) and (S,, Ha, &2) be such two tuples. Define

W = ((Hl,fl) * (H2a52))é’((H1v€1) * (Hw £2)).

Let M be the subspace of W of all elements Y ., z; ® y; € VW such that

n

Z(Ail(Tl) et )‘im(Tm)xhyi) = O,V,I‘; € S':;’J = 172)' : 'm7i1 ?é T 7é ima

i=1
where ¢; € {1,2},m e N, if m > 0; A\, (T1) -+ - X, (Tre) = I, if m = 0, and (-, -) is
the inner product in H, where (H, &) = (Hi,&1) * (Ha, &). We define a functional
on W/ M as follows. For [} 7 | x; ® y;] € W/ M, we define

n n
ID e @ulll:==sup{| > (Tmi,u)|: T € 8] 085, ||T|l < 1},
i=1 i=1
where S; © 8; is the ultra-weak operator topology closure of the linear span £ of

{)‘11(T1) Tt )‘lm(Tm) : 113 € 'S:;v] = 1’27' ) 'm’il 7£ T %imaila”' )im € {1a2}}v

where m = 0,1,2,---. First, we should verify that the functional || - || is well

defined. Suppose [y ., z; @ y;] € W/M is zero, then, by definition,

T() m@ul) =) (Tziy) =0,
i=1

i=1
for all T € L£. Therefore, T([> . ,z: @y]) = 0, for all T € Sf © &3, since
Yo % ®y; is continuous with respect to ultra-weak operator topology and L
is dense in 8§ ©® & with respect to this topology. Thus, {|[> ., z; @ ull] = 0.
Moreover, it is easy to verify that || - || is a norm on W/ M.

Since Sf © &3 is a norm closed subspace of B(H), where H is the free product

of H; and Hz, and the completion of W/ M with respect to the norm || - || defined
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above is a norm closed subspace of the dual space of S ® S;, the completion has
the operator space structure induced from (57 © S5)*.
Now we are in a position to give the definition of the (reduced) free product of

operator spaces.

Definition 3.1.2. Let (S;,H1, &) and (S, Ha, &) be two tuples. The completion
of W/ M with respect to the norm ||-|| defined above with the operator space struc-
ture described before the definition is called the (reduced) free product of operator
spaces Sy and Sa, denoted by (Sy,H1, &) * (S2, Ha, &), briefly, by Si x Ss.

The following result shows that we can answer the question affirmatively asked

by E. Effros by the (reduced) free product introduced above.

Theorem 3.1.3. Let (Ry,w;, H1,&1) and (Ra,we, Ha, &) be two W*-tuple, and
(R1)s and (Ra). be the preduals of von Neumann algebras Ry and R, respectively.

Then, as operator spaces,

((Rl)*aHlagl) * ((R2)*7H21€2) = ((RlvwhHh{l) * (R2’w2aH27 €2))*-

Proof. Let (H,£) be the free product of (Hi, &) and (Ha, &),

T =Y wog 2oy € 1, ) (laal® + lull®) < oo}
i=1 n=1
Let o -
RY =) wey, €T wey(A) =0,YAE R},

=1 =1
where R = R * Ry is the reduced free product of von Neumann algebras R; and
Ry. Then (Ry * Ry). = T/R* (see Section 7.4 in [34]). Now we prove that the
reduced free product of (Ry), and (Ry), is 7/R™. Recall that £ in the definition
of free product of operator spaces is the linear span of

{/\ll(Al))‘lm(Am) : AJ ER’L]’.}: 1,2)"‘,77’1,,7;1 # #inhil)”' 7im € {172}}’

where m € N. Note that R; and R are unital *-algebras and \; is *-isomorphism,
for ¢ = 1,2. Thus, £ is a unital *-sub-algebra of B(H). Hence, R; ® R in
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the construction of free products of operator spaces is the von Neumann algebra
generated by A\;(Ry) and Xy(R3), that is, Ry ® Ro = Ry * Ry. It follows that

(Rl)* X (Rg)* g T/R'L

On the other hand, for z = 3 o0 wy, 4 € T, let [3°, wy,,,] be the image of  in
€T/R* = (R1*Rs). and n € N, we have [}, ws ] € (R1)s * (R2). and

| D (A) = D we (Al = Y e (4)]

i=n+1
< lwll -l < Y (laall® + llvl®)
i=n+1 i=n+1

—0,

“asn — 00,VA € Ry * Ro, ||A]| < 1. It implies that [Y o) e, 4] € (Ri)s * (Ra)s.
By our Definition 3.1.2, (Ry).*(Rz2). has operator space structure induced from
(Ry*Rs)*. Let A be a von Neumann algebra on Hilbert space H with predual A,.
A, has operator space structure by identifying A, & 7(H)/A*. By Proposition
4.2.2 in [21], A is the operator space dual of A,. Furthermore, by Proposition
3.2.1 in [21], the canonical inclusion A, — A* is completely isometric. It implies
that A, has operator space structure induced from A*. Hence, (R1)« * (R2)« and

(R1 * Ra). have the same operator space structure. (W

Remark 3.1.4. Effros asked about the ezistence of the free product of the preduals
of von Neumann algebras of type Iy, but our result above answers the question

affirmatively for general von Neumann algebras acting on separable Hilbert spaces.

3.2 Local Lifting Property of the Free Product

In this section, we define the freeness for a family of subspaces of a dual operator
space. We show that the (reduced) free product of operator spaces does not pre-

serve the local lifting property ( Theorem 3.2.4). It is proved that operator spaces
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with operator space local lifting property have certain property of completely iso-
metrically embedding into their free product (Theorem 3.2.5 and Corollary 3.2.6).

We have known that the space Sf ® 8% in the construction of the (reduced)
free product of operator spaces is a natural generalization of free product of von
Neumann algebras. As a natural generalization of freeness of von Neumann sub-
algebras in a von Neumann algebra (see Section 2.1), we shall define freeness for

subspaces of a dual operator space.

Definition 3.2.1. Let {Sy : A € A} be a family of W*-closed subspaces of a dual
operator spaces S acting on Hilbert spaces H with distinguished vectors €. We say

Sx, A € A, are free in S with respect to vector state we if
1. E1E2 o 'ﬂn € van]- € Sijaij € A,il 74 i? ?é T #ZTMTL n N;

2, wf(TilTig o T,n) = 0, waE(T;J) = O,T%j S Sij’ij (= A,il # 19 7é R 7é in,n n
N.

Generally, we say that a family {Ay : Ay € S, A € A} is free in S if the W*-closed

subspaces Sy generated by Ay, A in A, are free in S.

Remark 3.2.2. Let S; and Sy be non-zero operator spaces. Let 87 and S5 be
the dual operator spaces of S1 and S acting on Hilbert spaces Hy and Hy with
distinguished vectors & and &, respectively. Then S} and 83 are free in S§ © &5

with respect to vector state wy.

Proposition 3.2 in [19] states that a dual operator space S is injective if and
only if there are an injective von Neumann algebra R, a projection P € R, and
a linearly completely isometric and W*-homeomorphic map ¢ : § =PR([ — P).
Now we prove that, for given injective dual operator spaces S; and S, there exist
realizations (¢;, Hy, &1) and (pq, Ha, &) of S1 and Sy, respectively, such that $; S,

is not injective.

Theorem 3.2.3. Let S; and Sy be non-zero injective dual operator spaces. Then
8108, is not injective for some realizations (p1, Hi,&1) and (w2, Ha, &2) of S1 and

So, respectively.
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Proof. By Proposition 3.2 in [19], there are H;, Hs, injective von Neumann al-
gebras Ry C B(H,), Rz € B(Hz), and projections P; € R;,4 = 1,2, such that
S1 2 PRI} — P1), 52 = PyRo(I — P»), where = means “linearly completely iso-
metric and W*-homeomorphic”. So, we can assume that Sy = PiR(I1 — P),S2 =
PyRy(Iy — P,). Take unit vectors £; € Im(P;) and & € Im(F,) such that there
is an operator T; € R; satisfying (I; — P,)T; P& # 0,1 = 1,2, where Im(P) is
the image of operator P. Let & and & be the distinguished vectors of #; and
‘Hs, respectively. Then, X;& = 0, for X; in S;,i = 1,2. By the definition of
reduced free product of von Neumann algebras (see [64]), there are natural repre-
sentations )\; : B(H;) — B(H), and A; : R; — A(R;) is normal *-isomorphism,
1 = 1,2. Therefore, we can assume that R; and R, are injective von Neumann
algebras in B(H), where (H,&) is (H;,&1) * (Hy, &), and S; = PR (I, — P;) and
Sy = P,Ro(f — P) are free in B(H). Thus, S§; ©S, is the W*-closure of the linear

span of
{al :a e CYU{P,T;,(I-P,)- P, T, (I-P;,): T, € Riji1 # - - # b }

where 4; € {1,2}, m € N. It is easy to see that S; ©® S; is a unital operator
sub-algebra in B(H). Proposition 15.15 in [48] states that the injective envelope
I(8; ® 8y) of 8, ©® 8, is a C*-algebra and the natural inclusion from &; © S into

its envelope Z(S, ® &) is a complete isometry. Moreover,
I(Sl @ 82) = _T.(Sl O] 82 + (81 ®© 82)*),

where ($108)* = {X*: X € 5108} Let $: 5,085+ (5108) - I(S5,© 82)

be the natural inclusion. If §; ® S, is injective, we have
(I)(Sl ® 82) = CI)(Sl 08+ (81 ® 52)*) = I(Sl ® Sz)

Therefore, §; © S3 = §1 © Sy + (S1 © S2)*, since @ is injective. Thus, S; © S; is
self-adjoint. On the other hand, we shall prove that Sy © S, is not self-adjoint. In
fact, we have known that (I, — P,)TiPi& # 0. So, (I — P)TiPA§ # 0, where £ is
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the distinguished vector in H = H; * Hz. On the other hand, P, S1({ — )¢ = 0,

for Sy in Ry. Moreover,
Pgsz(I - P2)§ = PzSQ(I — Pz)(gg ® /S) = O,VS2 S RQ.

Therefore, if §; © 8, is self-adjoint, (/; — P)T1 P, € §; ©S,. Thus, there is a net
{Xa} C L such that
Xo B (L = )T P

Then we have

((I; = P)T1Pé,m) = lign(Xaf, n),Vn € H. (3.2.1)
By the discussion above, X, € CI (otherwise, the right side of (3.2.1) is zero, so
(I; — P))T1 Pi€ = 0, which contradicts the choice of §). Thus, 0 # (I; — P)T1 P, is
in CI. This is impossible. Therefore, § ©® S is not injective. |

Recall that an operator space S is said to have the operator space local lifting
property if for given an operator space Y, a closed subspace M of Y, ¢: Y — Y/M
the quotient map, a complete contraction ¢ : § —Y/M, and each finite dimensional
subspace F C S and € > 0, there is a mapping ¢’ : E — Y such that ||¢']|e < 1+
and g o ¢’ = @|g (see [4] and [14]). Now we show that &; * Sy does not have
this property for some representations (1, H1,£1) and (p2, Hg, §z) of S7 and S5,
respectively, even if both &; and &, have this property.

Theorem 3.2.4. Let §; and Sy be non-zero operator spaces with operator space
local lifting property. Then there are realizations (¢, H1, &) and (v2,Ha, &2) of
St and S}, respectively, such that (Si, 1, Hi,&1) * (S, p2, Ha, &) does not have

operator space local lifting property.

Proof. Proposition 3.2 in [19] states that an operator space has locally lifting prop-
erty if and only if its dual space is injective. Hence, S and S; are injective dual
operator spaces. By Theorem 3.2.3, ST ©® S5 is not injective, for some representa-
tions (1, H1,&) and (o, Ha, £2). Now we show that (S; *S2)* = S7 © S5, In fact,
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the predual (S} ® S3). of S; ® 83 is T(H)/N, where
N ={T e T(H) : tr(ST) = 0,VS € §; © 5]},
by Proposition 4.2.2 in [21]. Note that
W = ((Hy, &) * (M £))&((Hy, €1) * (Hy, &2)) C T(H), M=N0W,

there is an isometric injection 1 : S; * S — (S © 83).. On the other hand,
W is dense in 7(H) with respect to the trace norm, therefore, W/M is dense
in T(H)/N. Hence, S; * So = T(H)/N =(Sf © S3)., which does not have the

operator space local lifting property. d

Given unital C*-algebras (or von Neumann algebras) A; and Ay, it is well
known that there is a *-isomorphism from A; (or As) into the free product A; * A,
(see [64]). Now we show that the free product of operator spaces has a similar

property under certain conditions.

Theorem 3.2.5. Let (S, Hy,&) and (S2, Ha, &) be two tuples. Given j =1 or 2,
let S9 be the closure of V; = {¢;(x) : ¢ = Y[, 7: Qv € HI®HT, Y i (i, y:) = 0}
in S;, where w; : H;@H; — S; be the completely quotient map (see Proposition
3.1.1). If both Sy and Sy are non-zero operator spaces and T;§; = 0, for all T; in
SF and i = 1,2, then there is a complete isometry ®; (or ;) from S (or 89) into
S % S,

Proof. Without loss of generality, we prove only that there is a complete isometry
from S into Sy *S,. Define &, : V; — S xS; as follows. For o1 (3, ©:Qy;) € Vi,
we define @1(p1 (> i, T @ Ui)) = [, 7 @ ui] € Si * Sy, where [z] is the image
of z € HIQHY in W/ M. We first show that this map is well-defined and one
to one. It is obvious that it is one to one, i. e., p1(3_ 0,2 ®y) = 0 in Sy, if
3% 2 ®y;] = 01in S xS,. Conversely, suppose (>, z; ® ;) = 0 in §;, now
we show that [S°1  z; @ 3] = 0in S; * Sp. In fact, for S0 7: @ v; € H) @ HY,
and T; € 57, i1 Fla # - F im, 45 € {1, 2}, we have

n

Z(Azl (Tl) e )‘im (Tm)xia yi>

i=1
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= aTh) Ao ) T

+ ) (T, i) Mt (T1) -~ Ny (T )6, 95)

i=1

=0,
if i, = 1, m > 1 and m € N (since T3§; = 0, for all T; € S}, i = 1,2), where
(Tz)° =Tz — (Tz,6)&, for T € Sf C B(H,;), z € H,, & is the distinguished vector

and 7 = 1,2. Similarly, we have

n

S (M) - i (T, 1) = 0,

i=1
if i, # 1 and m > 1,m € N. It follows that > (T'z;,y;) = 0, for all X € L,

where L is the linear span of

Clu {)\11(T1) e Azm(Tm) : T] S S)|,i1 7& cee 7é im,ij S {1,2},m =1,2,--- }
Hence, Y - {(Tziy) = 0, for all T € S; © 83, the weak™*-closure of £, since
Yo % @y, as a linear functional on £, is weak*-continuous. Hence, the map ¥
of V; into S; x Sy is well-defined. Moreover, for ¢ = ¢1(> ", ; z; ®y;) € V;, we have

1D 2 @ ulllsiws, = sup{] Y (Tzs,u)| : T € S; © S5, TN < 1}

i=1 =1

=sup{| Y Tz:®y|:T €L, |T| <1}

=1
=sup{| Y Tz @y : T €S}, |T| <1}
i=1

=1z @ yi)lls,-
i=1

Hence, the mapping ® of V; into S; x Sy is an isometry. Therefore, ® can be
extended to be an isometry from S into S; * S;. Now we show that ® is a
complete isometry. Proposition 3.2.1 in [21] says that the canonical embedding

118y — (S1)** is completely isometric. Thus,

M(8Y) C Ma((S1)™) 2 CB(S], M),
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where CB(S}, M,) is the space of all completely bounded maps from operator
space S; into the space M, of all n x n complex matrices and = means a linear
isomorphism (see Section 3.2 in [21]), n € N. For X € M,(S?), we have

1 X | azu(s9y = 1 X Nlesesy iy = (1 X leBouspyam)-

On the other hand, we have proved that, for ¢1(z) = ¢1(3 5, 2: ® ¥:) € W,

n

Z<T$z? yz> = Oa

i=1

if T € 8§ © & — A (Sf). Hence, we have

121 (XM Mnisi252) = 1PN Mais70ss))
=121 (X)llcaistos3.Mm) = X leBrtst) M)

=X aos0y-
Hence, ® : S? — S; * Sy is completely isometric. O

By theorems 3.4 and 3.5, we can get the following corollary, which provides a

kind of examples of operator spaces that satisfy the conclusion of Theorem 3.5.

Corollary 3.2.6. Let S; and Sy be non-zero operator spaces with the operator
space local lifting property. Then there exist dual representations (@1, Hy, &) and
(p1, H1,&1) of dual spaces S§ and S, respectively, such that there is a complete
isometry from 89 (or 8) to (Sy, Hy, 1) * (Sa, Ha, &) (see Theorem 3.5 for S (or

83)).

3.3 An example

Given C*-algebras A; and Ay, we can construct two reduced free products for
them. One is the C*-algebra free product, the other is the operator space free
product. A natural question is that whether the two reduced free products are

the same operator space. Moreover, is the free product for operator spaces a
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generalization of free products for C*-algebras? In this section, we shall present
an example to show that the C*-algebra reduced free product of two C*-algebras
may be contractively isomorphic to a proper subspace of the operator space reduced
“free product of the two C*-algebras. So, we see that the operator space reduced

- free product is “bigger” than the C*-algebra reduced free product.

Theorem 3.3.1. Let Vi and V4 be two dimensional unital C*-algebras. Then
there are a reduced free product Vi x Vo of C*-algebras Vi and Va and a reduced
free product Vy¥Vo of operator spaces Vi and Vi such that Vi x Vy is contractively

isomorphic to a proper subspace of Vi * V.

Proof. Let V be the two dimensional C*-algebra. Without loss of generality, we
can assume that V; = C}(G;), the reduced group C*-algebra of group G;, where
i = 1,2, and Gy = {/,v1} and Gy = {[, v} are two free copies of the group Z,.
That is, {v1,v2} is a free family of unitary operators of order 2. Then the reduced

free product V) x V5 of C*-algebras V; and V5 is
span{l, vy, - -v;, 10y F i F - F i i; € {1,2},5 = 1,2,---}H C BU2(Z4 % Z)),

where Zy * Z, is the free product of group Z, with itself. The dual space of V; (or
V) is
ly = {z = (z1,22) : 21,22 € C, |[]| = [21] + |22}

Since V is an abelian C*-algebra, by Proposition 3.3.1 in [21], V' is min [3°, where [$°
is the two dimensional sequence space with {® norm. Therefore, V* = maxli =
minl} = span{l,u} C C(T), where C(T) is the C*-algebra of all continuous
functions on the unit disk T of the complex plane, I is the constant function
I(t) = 1,Vt € T, and u is the generator of C(T) (see Section 3.3 in [21]). Let
Hy = Hy = L*(T), we have

VFEOVy = span{l,uy -~ w61 #ig # - # ik, 4y 6{1,2},j21,2,~-}_w*

C ‘Clea
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where u; and uy are the generators of free group Fy, “— W*” means the ultra-
weak operator topological closure. By the definition of the reduced free product of
operator spaces (see Section 3.1), the reduced free product V¥V, = (V* © V5')..
Let

S = span{y @ Uty Uiy, @ Uiy =+~ Uy 01 FlaF F i € {1,2},
Jo= 1,2,k k=12-} CEF)Q(F,),

Moreover, let

M = (W)
= (D_m®u € PF)DF) : ) (Azi,u) =0,YAE V] O V5}.
=1 i=1

For =37 @i i Uiy @ Uiy -+ - Uz, € SOM, Gy #ig # -+ # ik, 1y € {1,2} and
A=uy - wy €V OVY, we have

Az) = ajyq, = 0.

Therefore, z = 0. Hence, we may identity S with its image in I?(IFy)®I1%(F,) /M,
and regard S as a subspace of Vi¥Vy = (V¥ ® V7). '

Now we show that & is dense in V;*V,. By Hahn-Banach Theorem, it is suffi-
cient to show that for all A € VOV, A=0if A(z) =0,Vz € S. In fact, let W,
be the closed subspace of [*(IF5) generated by

{eudt o ul iy Ay # - F i, d; € {1,210 € 2,16 <nj=1,2,-k k< n},

where e is the unit of group Fy, and P, be the projection from {2(Fy) onto W,.
Given A € V! © V with Als =0, there is a net

By € span{l,ug -+ -ug i Fla # - Fin iy € {1,2},7=1,2,- -},

for A € A, such that limy By = A in the ultra-weak operator topology. Let
By =Y B it - ug. Forug,,, ®uy, -, €S, we have

A

0= A(uik—}—l @ Uy - uik+1) = h/{n B)\(uikH & Uy - - uilc+1) = h/{n iyig
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A

Hence, given n € N, lim) = (O uniformly, for & < n. Now, for n € N, and

i,
~, v € W,, where
== 51 « . 6[
T= Z Y(1.81), (060 Uiy Ujys
18;]<nl<n
! / & . 5[
7= Z Y6180+ Geg) Wi~ Wi
|6;]<n,l<n
we have
/
KPnAPn'Ya’Y )I

=lim |(P, By Py, )

N A I
< hin I _S_ ﬂil---i,ﬂ(jl 8155080 Vig i (G1,80) - (G161)
k+l<n,ic#jL

A
+ Z IBil"'ikfy(iky—l))"',(ik—t+1»-1)7z{1~-ik_l

1<I<k<n

A
+ E : (ﬂiruik’ﬂik;—l)r“‘(ik—l+1»_1)v(ik—lx50)1(j1;61)7"'v(jt’vét'))
So#—Lk—I+'<n j1#ik -1, l<k<n

7
(’Yix“'ihzq (tx—1,00+1){51,01),,(jt »51')) |

<limsup{| 3}, 130" y]] - |1Y']] < & < 2n}

i1tk
=0.

It flows that P,AP, = 0,Vn € N. Note that limy P, = I in the strong operator
topology. Therefore, Ve > 0 and v,y € (*(Fy), there are a n € N and v, =
Py, v, = PoyY € W, such that ||y — v|| <&, ||v —7,l| < . Hence,

(A7, )] = (Al + (Y = 1))s 7 + (= 7))
< WA =), (F = YD) + AT, (7 = YD + Ay = 1), )
< JAJ -yl 1Y =2l BA Y- 1y =l + 1Al
< ell AN+ IV + ).

It implies that (Av,v') = 0. So, A = 0. It follows that S is dense in V; x V.
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Let 8" = span{e,v;, - vy 191 Fla F - F ikt € (1,2}, =1,2,- -k k=
1,2,- - -}. It is obvious that &' is a dense subspace of Vi x V5. Define a linear
mapping ® : &' — S by ®(e) = u; Quy, (v, - - v;,) = Uz, DUy, -+ - Uy, fOr any
iy Fie F o Figi; € {1,2},7=1,2,---,k,k=1,2,---. Obviously, ¢ is bijective.
For £ =3 .50 - - - Ui, € S, by definitions,

lzll = sup{l{@y,7): 17" € F(Z2 % Zo), Hvll <LINVIN <1}

= sup{|§ :O‘n lkIBH lk Bll Ak T E : Vi Jz%l dpdigi
1=0,1k#71
k-1

+§ ;,Ylk R l+1fy1,1 e 1+ z : Vig--i1g1- Jl’Yh 9?
1=0,11#j1

v Z’Yh ST ',Ujlc7/71 = Z'le...jl'l)jl <V, € l2(Z2 * Z2),
vl < LI <1},

and
[2(2)]| = sup{]A(®(z))|: A€V OV, ][A]l <1}
= sup{l Zair--ik <Auilc+17ui1"‘ik+1>| tAe Vl* © V2*7 HAH < 1}*
For A =73 B - - -u; €', where I is the linear span of
{ug, <~ usy th FlaF - Funi; €{1,2},i=1,2,- k= 1,2,---},
and [|A]| < 1, we have
A(D(z) = > iy By
Note that
O Buea)? = Al < |4l < 1.
Now, let v =e,7 =3 Biyi ¥y - - - Vi € 12(Zy % Zy), we have

<1"7, 7/> = Z ail“'iklgil"'ik’ H’YH = 1: Hf/” = (Z IBi1~"ikl2)% S L.

Hence,

sup{|A(®(z))| : A€ span{u; -~ w; 19 Fla F - # U, 1 € {1,2},
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j = 1v2,"'ak:1727"'}’||AH Sl} SlIxH

Note that there is a sequence {A,} of operators in V{* @ Vy* with [|4,]] < 1 such
that lim,, o, [4,(®(z))| = ||®(z)||. Moreover, for A € V' ® V;f C Lg, ||A]] < 1,
by Kaplansky density theorem, there is a net {B) : A € A} of elements in CF, the
group algebra of group F,, such that limy, B, = A in the weak operator topology,
and ||B,|| < 1,V € A. Therefore, A(®(z)) = limy Bx(®(z)). Hence,

@@ = lim ||Bu(@()],

&7 &
n

for a sequence {B,} in CF, with ||B,|| < 1. Let B, = Zﬂ@{‘ﬁ{”)--{jfﬁl")uh U,
we have

Bo(@(@)) = 3 i By
and k

[

1

QO 1Bianl®)

It follows that

|@(2)][ = lim || B (®(z))]]
= lim |1 ei B,
< sup{|A(®(z))| : A € span{u;, -+ - uy G F i F - F ki € {1,2},
§g=12--k=1,2,---}||A4]| <1}

< l=l-

Hence, ® is contractive, and we can extend ® to be a contractive mapping from
Vi % Vy into V; xV,. Now we show that & : Vi x V4 — V; %)), is injective. Forz € &/,
define ||®(z)||' = ||z||- Let S be the closure of S with respect to norm || - ||’, then
S, as a Banach spaces, is isomorphic to V; * V5. Now we prove that S CV W,
For y € S, there are z, € &' such that lim, .o ||y — ®(z,)|' = 0. Therefore, there
isax € V] * V3 such that lim,_ ||z — z,|| = 0. It implies that

ly = 2@ = lly— $(zn) — Bz —z)]|
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IA

lly = @(@a)|| + ll& — 2]
< ly = (@)l + [z = zall
Oa

!

as n — 0. Hence, S C V; * V5. Moreover,

[Yllviv, = 12(@) v, = Hm [ @(za)]| < [zl = [l

Hence, @ is an injective contractive mapping from V; * V5 into V; * V,.

Now we show that ®(V; x V2) # Vi *V,. Let Lg,,z, be the group von Neumann
algebra of group Zsy * Zg, then Vi ¥ Vj g Lz,.z,- Now we consider to extend ®
to the space Lz,.7,- By Theorem 6.7.2 in [34], for each L € Lgz,.z,, there is an
T = Qi Vi Vi, € 12(Zg % Zs) such that L = L. Let

Yn = Z Qi Uiy DUy =+ Uy, € (Vi xVo),n €N
k<n
We shall show that {y, : n = 1,2, - -} is a Cauchy sequence in V; x V. In
fact, {Tn = D pcp QirigViy * + Vi Faro is @ Cauchy sequence in 12(Zy * Zy), since
% = lim,_ T, in the norm of {3(Zy * Z,). Hence, for Ve > 0, there is an N such
that (Eklgkgkg ]ail...ik}z)% < g, whenever N < k; < ky. Now, for ky, ke € N with
N < ky <kg,and B =Y Bj,.5,u3 - - uj, € span{l,uy -~ vy 191 Fia # - - #
i, i; € {1,2},7=1,2,---} C V © V with ||B|| < 1, we have

’B(yk2”‘yk2)] = iB E ai1~--ikuik+,®uil""Uikuikﬂ
k1 <k<ka
= | Y Bl
k1 <k<ko
i 1
< ( Z Iail“'ik|2)2( Z |ﬁi1“'ik:l2)2
k1<k<ky k1<k<ks
< el Y Bty - uglle
< ¢gl|Blj <e.

It implies that

Hykz - ykz“ = Sup{‘B(ykz - ykz)‘ :B € Span{l’uil T Uy g 7é iy % to # ik,
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ij S {1,2}1.7 = 172a"'}’”BH < 1}

< e

So, we can define €Iv>(z) = liMp_0o Y € Vi * Vs. For x € V; % V;, there is a sequence
{2} of elements in span{l,v;, -+ -v;, 11y Fia # - F ity € {1,2},5 = 1,2, -}

such that limy, ||z — Zn||g@2@.42,)) = 0, 80, limn || — Znl|2z,4z,) = 0. Hence,

(z) = lim &(z,) = lim O(z,) = O(x).

n—0o0

Hence, disa generalization of ®. Finally, we show that ® is injective. Suppose
that there is an = € [?(Zg * Zy) such that L, € Lz,.2, and 5(Lm) =0. Let z =
3 Qi Uiy Uiy A0 Yy = 5 Qg iy Uiy @ Uiy - Uiy, We have limp o llya]| = O.
Hence, for any &} # i) # - -- #43, B =ug - -~ up € VI O V', we have

0= B(®(L,)) = lim By, = oqg...9.

It follows that L, = 0, that is, P is injective. Hence, we get

O(Vi + Vo) G ®(Lapuz,) C Vi # Wa.
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Chapter 4
FREE MARKOV PROCESSES

This chapter is devoted to the study of free Markov processes.

This chapter is organized as follows. In Section 4.1, a notion of weak Markov
processes in W*-probability spaces is defined in an explicit way similar to that
of classical Markov processes in probability theory (Definition 4.1.1). We give
some sufficient and necessary conditions for a process of noncommutative random
variables to have the weak Markov property (Theorem 4.1.3), which are Parallel
to those for a stochastic process to have Markov property in classical probability.
We show that weak Markov processes have certain transition functions. In the
commutative case, having the transition functions is the same as having Markov
property (Corollary 4.1.4).

Section 4.2 is devoted to the study of free Markov processes of (unbounded)
random variables. We prove that processes with free additive (or multiplicative)
increments are free Markov processes (Theorem 4.2.6 and Theorem 4.2.7). It is
shown that every free Markov process of bounded self-adjoint operators in a W?*-
probability space is a weak Markov process (Theorem 4.2.8).

Examples of Free Brownian motion were introduced and explored by R. Spe-
icher [57] and P. Biane [8]. Together in [10] and [11], they studied the solutions
to free stochastic differential equations driven by free Brownian motion. They
prove that the solutions satisfy certain free Markov property with resect to some

filtration. In Section 4.3, we shall consider similar equations driven by free Lévy

33
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processes (of bounded random variables). We prove the existence and uniquencss
of the solution to this system of the equations (Theorem 4.3.6). We show also that
the solution of the system of free stochastic differential equations is free Markov
process (in general, of random variables with un-compactly supported distribu-
tions) (Theorem 4.3.8 and Theorem 4.3.9 ). The proof of our result relies on a
free Burkholder-Gundy type inequality in L%-norm (for the Lévy case) proved by
M. Anshelevich [1]. A similar inequality in operator norm for stochastic integrals

with respect to free Brownian motion was obtained in [10].

4.1 Weak Markov processes

An analogue of the notion of markov processes in non-commutative probability
theory is the following notion of weak Markov process.
Definition 4.1.1. Let (A, 7) be a W*-probability space, (Xi)i>o a family of self-
adjoint operators in A. Let Acy = W*{X, : s < t}, Ay = WH(Xy) and Ay, =
W*{X;s:s>t}. Wesay {X;:t> 0} is a weak Markov process (or it has a weak
Markov property) in (A,T), if

E_((AB) = E_(A)E_(B),YA € A<, B € A,

where E_, : A — A_, is the trace preserving conditional expectation onto A_;.

The following result shows that, in the commutative case, weak Markov prop-
erty in our Definition 4.1.1 is the Markov property in classical probability. We
shall show in next section that free Markov processes in Voiculescu sense have the

weak Markov property (Theorem 4.2.8).

Theorem 4.1.2. A family {f; : t > 0} of self-adjoint elements in the abelian
von Neumann algebra A = L®(Q,F, P) s a weak Markov process in sense of

Definition 4.1.1 if and only if {f, : t > 0} is a Markov process in classical sense.

Proof. Let f € A= L>(Q,F, P) be a real valued random variable, then

W*(f) = L*(o(f), Bopy, df),
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where W*(f) is the von Neumann subalgebra generated by f, B,(y) is the Borel
algebra on o(f), and df (or py ) is the distribution of random variable f, and =
means *-isomorphism as von Neumann algebras. Let {f; : ¢ < 0} be a random
process of real valued random variables in A. Let F_, = {f~'(B) : B € B}, where
B is the Borel o-algebra on R. Then F_, is a o-subalgebra of F. Define

7 : L2 (f), Bosy, df) — L°(, Foy, P)

such that 7(g) = go f, for g € L*®(a(f), Bo(s),df). It is obvious that 7(g) =
go f € L=, Fey, P). Given, g1,92 € L=(0(f), Bo(s), df ), € Q, and Ay, A3 € C,
we have

(Arg1 + Aag2) © f(z) = Mgi(f(2)) + Aaga(f(2)),

and

91 (f(2)) - g2(f(2)) = (9192)(f(2)), 9:(f(2)) = G(f (2))-

Thus, 7 is a s-homomorphism. Moreover, the image of f (i. e. the spectrum
of f) is the domain of elements in L*®(o(f), Bo(s), df). Hence, 7 is injective. For
any simple function s = $¥_ A\;xp, € L®(Q, F=, P), let g = ¥ Xixs(m,)- Then,
g € L>=(o(f),Bs(s),df) and s = go f. It implies that the image of = is dense in

L>(Q, F_;, P). Hence, 7 is a *-isomorphism. To prove
Ag & L2(Q, Fey, P), Ase = L(Q, Py, P),

we first note that A< is generated, as a von Neumann algebra, by {X, : s < t},
and we have proved that W*(X,) is *-isomorphic to L>(Q, F—,, P). Thus, up to
*_isomorphisms, we can assume that A<, is the von Neumann algebra generated
by elements in L®(Q, F—,, P), s < t, and it is enough to show that L>(Q, F<, P)
is generated by L>°(§), F-, P), s < t. In fact, given a sequence t > 51 > 59 > -,
and Bi, Bs, -+ € B, we have

Xn(zzlfs—il(Bi) = lim Xf;ll R st—ll S .Aét.

Moreover, let Sy = f1(B;), and

S1

Si = Fi(By) = (U2 [ (B)),d = 2,3,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

then

o0
Xuge, £ By = XU2,S; = Z Xs; € Ast-

i=1

Hence, for S € F, xs € A« Hence, L®(Q, F<y, P) C A« Conversely,
it is obvious that A<; C L®(Q, F<, P) (up to *-isomorphism). Hence, A< &
L®(§), F<y, P). Similarly, A5, & L®(€, Fs¢, P). Suppose {f; : t > 0} is a weak
Markov process in sense of Definition 4.1.1, for all ¢t > 0, A € F<;, B € F», we
have x4 € A<t, xB € A>;. Hence,

P(AB|f) = E_i(xaxs) = E:t(XA)E=t(XB) = P(A‘ft)P(Blft)-

It follows that random process {f; : t > 0} is a classical Markov process.

Conversely, suppose { f; : ¢ > 0} is a classical Markov process, by the above dis-
cussion, E_;(PQ) = E_,(P)E(Q),Vt > 0, where P, Q are projections in A<; and
Asy, respectively. Thus, for A\;, X, € C, p; € A<y, q; € Ay, and X = 370 AP,
Y =37, M@, we have

E_(XY) =Y MNE=(PQ)) = Y MNEx(P)E(Q)) = Ex(z)Eo(Y).

i,j=1 i,j=1
Note that conditional expectation E_, is norm continuous and the linear span

of all projections is norm dense in a von Neumann algebra, so we have
E:t(AB) = E:t(A)E:t(B),VA S Agt, B E AZt'
It follows that { f; : t > 0} is a weak markov process in sense of Definition 4.1.1. O

The following result gives some sufficient and necessary conditions for a process

to be a weak Markov process.

Theorem 4.1.3. Let (A, 7) be a W*-probability space. Let (X)i>o0 be a family of

self-adjoint operators in A. Then the following are equivalent.

1. The process {X;:t > 0} is a weak Markov process.
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2. For allt > 0, E<(A) = E_(A),YA € A5, where E<; : A — A is the

trace preserving conditional expectation onto A<;.

3. For allt > 0, Exi(A) = E_(A),VA € A<, where Exy 1 A — Ay is the

trace preserving conditional expectation onto As¢.

4. Forall0 < s <t let Ay = WX, :s<r <t} and Ey: Ay — Ags be

the trace preserving conditional expectation. Then, Eg¢(Ase) C A=s.

Proof. (1) = (2) Without loss of generality, we can assume that von Neumann
algebra A acts on the Hilbert space L?(.A, 7). Then, 7 is the vector state associated
to identity element I of A. Thus, 7 is continuous with respect to WOT (weak

operator topology). Note that the linear span £ of the set
{ Xy - Xp, it 26,5=1,2,--- ,n,n=1,2,--- .}
is dense in A5, with respect to WOT. If we can prove
Eoi( Xy - X)) =E_ (X - Xs,), V8, 28,7 =1,2,--- ,n,n=1,2,---, (4.1.1)

then, we have E«;(X) = E_4(X),VX € L. Moreover, for A € A, there is a net
{Xx : X € A} in £ such that limy X = A, where the limit is in WOT. Hence, for
B € A, we have

T(E=(A)B) = h)I\HT(E=t(XA)B)
= Il}\’IlT(ESt(X)\)B) = hinT(X,\B)
= 7(E<(A)B).

Hence, it is sufficient to show (4.1.1). For t; > ¢, =1,2,--- ,n and B € A<, we

have

T(th e Xt"B) = T(E_—:t(th e thB))
= 7(B=(Xy, - Xe,)Ex(B))
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=71(E_(Xy, -+ X4,)B),
where the second equality holds because of Definition 4.1.1. Hence,
Eo (X, - - Xe,) =Eo(Xy, - - X4,)-
(2) = (1) For any A€ Ay, B e A and C € Ay, we have

T7(ABC) = 1(CAE(B))
= 7(CAE_y(B)) = 7(AE,(B)C)
= 7(E_(A)E_(B)C).

Hence,
E_;(AB) = E_(A)E_(B).

The proof of the equivalence of (1) and (3) is the same as that of (1) < (2).
(4) = (2) It is enough to show that

ESt(Xh o 'th) € A=t7\7ltj > tuj = 1’27 e,mn e N.
Let v = max{t; : j = 1,2--- ,n}, then X,, - -- X3, € Ayy. Hence, by (4),
Egt(th e th) e Es,g(th v th) = .A:s'

(2) = (4) It is enough to show that E, (X, --- X;,) € A=, forall s <r; < 2.
Note that Xn Tt Xrn € AZS nASt’ 50 Es,t(Xrl U Xrn) = ESS(XN T Xrn) € -A:sa
by (2). O

Corollary 4.1.4. Let {X; : t > 0} be a weak Markov process in W™*-probability
space (A, 7). Then the following statements hold.

1. there is an operator

Kst: L®(R) — L¥(R),

for 0 < s < t, such that
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(a) kse(z,-) : T' — ksu(z,T) = Ksulxr)(z) is a probability measure on
Bo(x,) for almost all x € o(X,) with respect to dX,,

(b) ks,s(x>F) = XF(x);
(c) B<s(p(Xe)) = Koz (0)(Xs), Vi € L=(R).

2. 1If {X; : t > 0} is commutative random process of operators in A (i. e.

X X, = X, X, for allt,s > 0), and there is an operator
Kse: LP(R) — L=(R),

for 0 < s < t, satisfies conditions (a), (b) and (c) above. Then, {X;:t > 0}

is a weak Markov process in sense of Definition 4.1.1.

Proof. By (4) in Theorem 4.1.3, E,(A~;) € A, for 0 < s < t. Note that there
is a *-isomorphism
T * Azt — LOO(O'(Xt), BU(Xt), dXt),

where dX; is the distribution of X; with respect to 7. For 0 < s < t, define
Kos(f) (@) = mEe i (F(Xe))(z),Vf € L®(R),z € R.
Then, Ky, : L®(R) — L®(R) and
E<(f(X0)) = 71 (Ks(f) = Kt (/) (Xs), ¥ € L7(R).

This means that K, satisfies condition (c). Now we show that K, satisfies the
properties (a) and (b). It is obvious that function KC,,(f)(z) is measurable, since
Ksi(f) € L®(0(Xs), Box,), dXs). For 0 <s <t,r €R, aBorel set ' = Ui21 F; e
B,F,NF; = 0,Vi # ji,j =1,2,---, VG € Byx,), and ks¢(z, F) = Ky (xr)(z),

we have

/ ’Cs,t(XF)dXs = / (’Cs,t(XF)XG)dXs = T(ES,t(XF(Xt))XG(XS))
G a(Xs)
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= 1(xr(Xe)xe(Xs)) = 7O xm(Xe)xe(Xe))

i=]

= >l (XoxaX) = 3 [ Kudlxr)ax,

- /G (O Kaalxr))iXe

It follows that -
ks,t(F’ :C) = Z ks,t(-Fia ',E),
i=1

for almost all z € o(X,) with respect to dX,. Moreover,

ks,t(mya(Xs)) = )Cs,tXa(Xs)(I) = WSES,t(XU(Xe)(Xt))(w) =1

Hence, k,(z,-) is a Probability measure on ¢(X,), for almost all z € o(X;). This
completes the proof of (a). (b) is obvious.

Conversely, by Property (c) of operator Ky, we have E,(A-;) C A, for 0 <
s < t. Now we show that E (A, ;) C A, for 0 < s < t. Note that A, is abelian,
the linear span £ of elements in {X,, -+~ X,, :s <ry <--- <r, <t,n € N}is
dense in A, with respect to WOT. Hence, it is sufficient to show that

T(Xn e XTnB) = T(E=S(XT1 e Xrn)B>’

for all B in A<,. We shall prove it by induction in n. For n = 1, E,((f(Xy,)) in
A, for all f € L=(R), since E;;(A~;) C A_,. Suppose Egy(f1(Xe,) - fa(Xt))
in A, for all fy, -+, fnin L®(R),s < t; <--- <t, <t. Now for fi, -+, for1 €
L®(R),s <t; <+ <tpyy < t, and B € A<y, we have

T(fulXe) ot (X)) B) = 7(fi(Xey) -+ - o Xew) Bt (far1(Xt,4)) B)
=7(f1(Xu) - (ol X0, ) Bt (fo41(Xt011))) B)
= 7B (fi(Xe) -+ (fo(Xea ) Bzt (i1 (Xt,10)))) B)
= T(Bus(f1(Xe,) - fa(KXew) froa1(Xeay ) B).
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It implies that Es¢(f1(Xy,) - -« fas1(Xt,,,)) € A=s. we have proved (4) in Theorem
2.4. Hence, {X; : t > 0} is a weak Markov process in W*-probability space
(A, 7). O

Theorem 4.1.5. Let {X; : t > 0} be a random process in W*-probability space
(A, 7). For0 < s <t let Egp : Ay — A<, be the trace preserving conditional
expectation, and C5, be the untial C*-algebra generated by {X, : s <r < t}. If

8

Es1(Csy) © C*(Xs), for all 0 < s < t, then the following statements hold.

1. Let Co(R) be the C*-algebra of all continuous functions on R, such that the
functions vanishes at infinity. For all0 < s <, there is a completely positive
contraction Iy : Co(R) — Co(R) such that

L : C(o(Xy) — C(o(X5)),
(o)) = Loy, V0 < s <,

Hs,u = Hs,th,u,VO <s<t<u,
and
Es,t(f(Xt)) = HS,t(f)(Xs),vf € Clo(Xy)).

2. {X;:t >0} is a weak Markov process.

Proof. It follows from the hypotheses that B (C*(Xy)) € C*(X;), for 0 < s < &.
Let I;¢ = m5 0 Bgylor(x,y © m; ', where m, : C*(X;) — C(0(X,)) is the canoni-

cal *-isomorphism from abelian C*(X,) onto the function algebra C(c(X;)), then

I1,, is identity preserving completely positive contraction from for C*(o(X;)) into
C*(0(X5)). Moreover, define

Hs,t(f) = Hs,t(f o XU(XL))7vf € CO(R)7O <s< t1

where X,(x,) is the characteristic function of set o(X;). Then 1L, : Co(R) — Co(IR)

is a completely positive contraction. For 0 < s <t <u, f € C(0(Xy,)), we have
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Hs,u(f) =T O Es,u(f(Xu)) =Ts0 Es,t(Et,uf(Xu))
=ms0E,;0 7 om0 (Biyuf(Xu))

= Hs,tnt,u(f) )

and
Es,t(f(Xt)) = Es,t 0 Wt—l(f) = 7T3—1 © Hs,t(f) = Hs,t(f)(Xs)~

Assume A acts on the Hilbert space L2(A, 7), then trace 7 is the vector state
associated with the identity operator in A. Hence, 7 is WOT continuous. To prove
that {X; : t > 0} is a weak Markov process, by Theorem 4.1.3, it is enough to
show that Es; : Asy — W*(X,). In fact, for A € Ay, there is a net A\ € C3,
such that Ay, — A with respect to WOT. Thus, for any B € A<,, we have

7(AB) = li{nT(AAB) = li}r\nT(AAEzs(B))
= 7(AE_s(B)) = 7(E=,(A)E=(B))
7(E=s(A)B).

Hence, E, ,(4) = E_,(A) € A_,. By Theorem 4.1.3, process {X, : t > 0} has
weak Markov property. O

4.2 Free Markov processes

In this section, we study free Markov processes of (unbounded) random variables
in a W*-probability space. We show that every process with free increments is a
free Markov process, and every free Markov process is a weak Markov process in

sense of Definition 4.1.1.
By [61] and [62], we have

Definition 4.2.1. Let {X, : ¢ > 0} be a family of (unbounded) operators in A.
Let A<; be the von Neumann subalgebra of A generated by {A: A€ W*(X;),0 <
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5 < t}, Ast be the von Neumann subalgebra generated by {A: A € W*(Xs),s > t}
and Ay = W*(X;), fort > 0. We say that the random process {X; : t > 0} is a
free Markov Process, if, for t > 0, A<, and A, are A;-free.

We generalized it to a more general case.

Definition 4.2.2. Givent — X; = (Xi4,-+ , Xkt) € AF. Let Acy, Ay, respec-
tively, A>; be the von Neumann subalgebras of A generated by {A € W*(X;,) :
0<s<ti=12-k} {Ae W (Xiy):i=12,---,k}, respectively,
{A: Ae W*(Xis),s>t,i=1,2,--- ,k}. We say random process {X;:t >0} is

a free Markov process, if A<, and A, are A_;-free.

In order to prove that every process with free increments is a free Markov

process, we need the following
Definition 4.2.3. ([9], Definition 4.2)

1. A free additive increments process is a random process {X; : t > 0} of
elements in .Zsa such that, for any sequence 0 < t; < ty < -+ < tn, the
elements X3, Xy, — Xy, Xy, — Xt,_, of /La form a free fomily.

2. A unitary process with (left) multiplicative free increments is a family {U; :
t > 0} of unitary operators in (A,T) such that, for any 0 < t; < -+ < i,
the elements

U, U, U+ UL UL

t1 0 tn—1
form a free family in (A, T).
Lemma 4.2.4. ([61, Lemma 3.3]) Let 1 € D C B C A;, 1 € A, C Ay be von
Neumann subalgebras of finite von Neumann algebra A, and } C A be a subset

such that Ay and Q are -D free. Let 1 € C C W*(BU Q) be a von Neumann
subalgebra. Then As and C are B-free.

Lemma 4.2.5. Let X,Y be self-adjoint operators affiliated with a W*-probability
space (A, 7). Then W*(X+Y) C W*(X,Y), where W*(X,Y) is the von Neumann
algebra generated by W*(X) and W*(Y).
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Theorem 4.2.6. Let {X; :t > 0} be a free additive increments process affiliated
with a W*-probability space (A, 7). Then {X; :t > 0} is a free Markov process.

Proof. Let Ac; = W*{X, : s < t}, Aoy = W*{X;} and A5y = WH{X, - X, :
s > t}. Then, by Lemma 4.2.5, A, = W*{X,:s >t} C W*(A,, U A_;). Thus,
to prove that {X; : ¢ > 0} is a free Markov process, it is enough to show that
W*(As: U A-) and A<, are A, free.

First, we show that A<, and A are free. Let A, and A, be the *-subalgebras
generated by {f(X,) : f € BC(R),s < t} and {f(X, — X;) : f € BC(R),s > t},
respectively. Thus, by Proposition 2.5.7 in [64], it is enough to show that A<, and
A, are free. For Ay,--- , A, € Ag; and By, -+, By € As; with 7(4;) = 7(B;) =
0,1 < ¢ < n, we have to show that

7(A1By - ApnB,) =0. (4.2.1)
In fact, there are 0 < < t; <+ <t =t <85 <5 <+« < s and

anfla"' ,fmvgla“' » Gk € BC(R)

such that A;,---, A, are in the *-algebra B generated by

{fO(Xto)1 fl(Xh)’ T 7fn(th)}‘

Lemma 4.2.5 implies that B is a subset of C; = W*{ Xy, X, =X, , Xtm—x.,._, }>
and By, -, By are in Co = W*{X,, — X;, X5, — X5y, X, — X, }- But, by
Definition 4.2.3, C; and C; are free. Hence, (4.2.1) holds true. Therefore, A<; and
A are free. Let D = CI, A; = A, B = A-; and Q = A,;. We have proved that
then A; and W*(QU D) = Q are free (i. e. D free). By Lemma 4.2.4, A<, = A;
and W*(QU B) = A>¢ are A_;-free. a

Theorem 4.2.7. Let {U; : t > 0} be a unitary process with (left) multiplicative

free increments. Then {Uy : t > 0} is a free Markov process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

Proof. Let A<y = W*{U, : s <t}, Acy = W*{U;} and Ay = WH{UU;' 1 5 > t}.
Then As, = W*{U, : s > t} = W*(As; U A). Let A, and A, be the *-
subalgebras generated by {X, : s < t} and {U,U;" : s > t}, respectively. To
prove that the process {U; : ¢ > 0} is a free Markov process, by Lemma 4.2.4
and Proposition 2.5.7 in [64], it is enough to show that _-th and A, are free. For
Ay, A, € A<y and By,--+ B, € As; with 7(4;) = 7(B;)) = 0,1 <1 < n,
we have to show that (4.2.1). In fact, there are 0 < &y < & < -+ <ty =
t < 81 < 89 < --- < s such that A;,---, A, are in the *-algebra generated by
(U, Uy, -+, U, }, which is a subset of C; = W*{Uy,, Up U ", - ’Xt;lutm_l}’ and
Bi, -, By are in Co = W* = {U, U1, U, Ut -+ U, Uzt }. But, by Definition
- 3.3, C; and C, are free. Hence, (4.2.1) holds true. Therefore, A<, and A, are free.
By Lemma 4.2.4, we finish the proof. a

Theorem 4.2.8. Let {X; : ¢t > 0} be a free Markov process of elements in As,.
Then, {X, : t > 0} is a weak Markov process in W*-probability space (A,T).

Proof. For any ty > 0, let A<y, = WX, : ¢t < o}, Agy = WH(Xy) and Ay, =
W*{X,:t>tg}. Let E;, be the trace-preserving conditional expectation on A_,.
For A € A, and B € A5, we have

Eq,(AB) = Eqy, (A — Eyp(A) + By (A))((B — Eyy (B) + Eyy(B)))
= Ey (A = Ey(A))(B = Eq,(B))) + (Eyy (A)Ey (B — Ey (B)))
+ Eq, (A — Ey, (4))Ew(B)) + Eqo (A)Ey (B)
= (By(A)Ey (B — Ey(B))) + Ey (A — Ey, (4))Ey (B))
+E, (A)E;, (B)
= Ey(A)E(B),

where the third equality holds true because that free Markov property of X;. 0O
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4.3 A Kind of Free SDEs

In this section, we study a kind of free stochastic differential equation (free SDE)
(4.3.3) and the free Markov property of its solution. We generalize Biane and
Speicher’s results on free differential equations driven by free Brownian motion
(see [11]) to those on free SDEs driven by free Levy processes. On the other hand,
our results provide a method to get free Markov processes (of random variables
with un-compactly supported distributions).

Let (A,7) be a filtered W*-probability space with filtration {A; : ¢ > 0}, in
which Si4,- -+, Sks(t > 0), a k-dimensional A;-free Brownian motion is defined.
Each S;; is an A;-free Brownian motion, and {Sy; :t > 0}, ,{Sk: : t > 0} are
free in (A, 7). In [11], Biane and Speicher showed that

Theorem 4.3.1. (Theorem 3.1, Proposition 3.3 in [11]) Let Q1,Qa2,--- , Gk :
Ak — A be k locally operator-valued Lipschilz functions (with respect to oper-
ator norm) such that each Q); : A’;,m — A sq for all s > 0. If there exist constants

a,b € R and a > 0 such that

k k
Z(Qi(xla s X)X+ XaQu( Xy, -, X)) +1) < GZX{? +9, (4.3.1)

i=1 gxx]
for all X, -+, Xp € Asa. Then, given arbitrary initial conditions X;o € Ao(i =
1,2,---,k), the system

dXi’t = Qi(Xl,t7 M ,Xk‘f,)dt + dSi’t,Z. = 1, et ,k?,t Z O (432)

has a unique solution X (t) = (X4, , Xks) for all t > 0. Furthermore, we have
Xit € Ag foralli = 1,--- Kkt > 0, the maps t — X, are norm continuous.
Moreover, let B<y = W*{X;0,Si5 18 < t,1 <1 <k}, Boy = WH{Xiy,Sis — St :
s>t 1<i<k}and Boy = W {X;;:1<1i <k}, then (B<t, B, B>¢) 15 a free
Markovian triple (1. e., B<; and Bsy are B—y-free).

It is obvious that (4.3.1) is equivalent to
k

k
D (Qu(Xe, - X)X+ XiQi(Xa, -, Xi)) Say  XP 40, (4.3.1)

i=1 =1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

for all Xy,:--, Xy € A, and some real numbers a,b and ¢ > 0. In this section,

we consider a system similar to (4.3.2) as follows.
dX;(t) = Qi(X14, -+, Xgp)dt +dSig,i=1,--- ,k,t >0, (4.3.3)

where {S;; : t > 0} (¢ = 1,--- k) are Ai-free Lévy processes of elements in
Ao (By [1, Lemma 1], the function £ — S;, is continuous in L™(A,7), for all
n € N), and {Si; : ¢t > 0},--+,{Sk¢ : t > 0} are free in (A, 7). We shall prove
that, under conditions similar to those in Theorem 4.3.1, the system (4.3.3) has a
unique solution X; = (X4, , Xks) € L*(A, 7). Moreover, we shall prove that
{X::t >0} is a free Markov process.

Lemma 4.3.2. For 1 < i < k, let Q; : A, — Ay, be a Lipschitz maps with
respect to | - ||z, such that Q; : A%, — Assa, fori=1,--- ,k,s > 0. Then, given
arbitrary initial conditions X9 € Ap, i =1,2,--- ,k, (4.3.3) has a unique solution
Xy = (X14,--, Xgy) for all t > 0. Furthermore, we have X;; € L*(A¢sq,7) for

alli=1,...kt>0 and t — Xi; is continuous with respect to || - ||2.
Proof. The solution X;, to (4.3.3) is a process t — X;; € L*( Ay, 7) such that
t
Xi,t = Xi,O +/ Qi(X1,57 s ,Xk73)d8 + Si,s,\/t Z 0, 1 S ) S k. (434)
0

We use Picard iteration method to get the solution. Since @); is a Lipschitz func-

tion, there exists C' > 0 such that

1Qs(X1, -+ Xk) = Qi(Y1, -+, Yi)lla < C Y |1 X: = Yilla,

i=1

for all X;,Y; € A;a71 < i< k. Take T > 0 such that k<CT < 1. For 0 < ¢ < T, let
Xff? = Xi0,1 <4<k, and

t
Xi(,ytﬁl) = Xip +/ Qi(ng)a e 1Xl£?s)d3 +Sien =12 (4.3.5)
0

Then, Xi(g) € A, 4, and Xi(g) € A s, is continuous with respect to || ||o, for 1 <4 <
k. Assume Xi(ff) (t) € L?(At s, 7) and £ — Xi(ftl) € L*(As, 7) is continuous with re-
spect to ||-||z- Then, Qi(XfZ), e 1X1$)) € L*(A, 4, 7)and s — Qi(Xl(’"s), e ,X,(C"Q)
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is continuous with respect to || - |2, since @; : L2(A, 7)¥ — L%(A, ) is continuous.
It implies that XM = X0 + [T Qu(X (Y, -+, X)ds + Si) € L*(A s, ) and

t— Xi('tLH)Lz(Asa,T) is continuous. By induction, Xi(,?) € Apsq and t — Xi{'tl) €
L*( Ay, 7) is continuous with respect to || - ||2. Note that

t —
X5~ X =) / QX XIY = QXY X)) s
0
t p—
< / QX X)) = QX IV XY) ads
0
t k .
<c / SO IxE - XD ds.
0 =1

Let Dy, = suppicr Zf:l “Xi(,’tZ) - Xi(,?_l)|12a we have
D, <kTCD,_; <--- < (KTC)" 'Dy.

It follows that {Xi(;)};’f:l is a Cauchy sequence with respect to || - |2, since 0 <
kTC < 1. Therefore, there exist X;; € L*(A;0,7), for 0 <t < T,i=1,2,--- ,k,
such that Xi,.t = lim,, . Xi(;l) where the limit is taken in the topology of norm
| - ||2. Note that Q; : L*(Asq, 7)F — L*(Asq,7) is continuous with respect to || - |l2.
Let n approach oo in (4.3.5), we get (4.3.4). Hence, X; = (X4 -, Xky) 15 a
solution to (4.3.3), and X;; € L*(Assq,7), for 0 < ¢ < T. Now we show that

t — Xy € L*(Asq, 7) is continuous. For 0 < s,t, we have

1 Xis — Xisllo < 1 Xis — X2 + HXZ-(,Z) - Xi(,?)lb + [ X — Xi(,'f)lh

= Jim X7 = X0 + 15— XD+ Jim 167 - Xz

<2 ) (kOT)™(KTO) Dy + X7 = X7
Since liMyoo Y e, (KCT)™(KTC)* 1Dy = 0, for ¢ > 0, there exists n such
that

i(kC’T)m(KTC)"‘lDl < ¢/4.

m=n
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Note also that ¢ — Xi(fg) is continuous. For the above ¢ > 0, and ¢ € [0, T}, there
exists § > 0 such that HXZ(TS') —‘Xi(jtl)llg < €/2, whenever, [t —s| < . Hence, we have

“Xi,s - Xi,t”2 S €,

whenever |t — s| < 4. It follows that ¢ — X, € L*( Ay, 7) is continuous. For
T <t <27, (4.3.4) can be rewritten as

¢
Xig = X1 +/ Qi( X1+ s Xps)ds + Sie — Sir-
T
Let X,-(fg) = X, and

t
Xi(;“) =X;r +/ Qi(sz), e 7X1?;))d5 + 8¢ = Si,n=1,2,---.
T

As the above proof, we can prove that (4.3.3) has solution X; = (X4, -+ , Xk), for
T <t < 2T. Generally, for t > 0, there exists n € N such that nT < ¢ < (n+ 1)T.
Thus, after doing the above process n times, we get a solution of (4.3.3). Hence,
by the construction of X; = (X4, -+, Xks)y (X1 - Xpe) € L*(Aesa,7) and
t — X, is continuous with respect to || - {|.

Uniqueness. Suppose there are two solutions X;; and Y;, in L*( A, 7) (1 <
i < k). Then, we have

k k

sup 3 || Xie — Yislla < kCt oi‘?itz; [ Xis = Yislla-

0<s<t i1

By Bellman-Gronwall Inequality (Lemma 3.2 in [24]), supy<,<; Zle 1 Xie=Yielle =
0. Hence, X;; =Y, vt 20,1 <i < k. O

Lemma 4.3.3. Let Q : A*, — Ay, be a locally operator-valued Lipschitz function,
and h : [0,00) — [0,1] be a continuous function with the following property: there
is a R > 0 such that hlpr = 1, hlpre) = 0 and there is a C' > 0 such that
|h(t) — h(s)| < C|t —s|,¥t,5>0. Let

k
f(Xl" o 7Xk) = Q(le' o ’Xk)h'(z ”XiHQ)aVXla o 7Xk S LQ(‘ASGJT)'

Then f is a Lipschitz function.
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Proof. The proof is the same as that of Lemma 3.2 in [11]. O

Lemma 4.3.4. Let A € L*(Ag,7) C Asa. Then A2 € LM Ay, 7) and ||Al2 =
T(A%)V2.

Proof. There exists a sequence {A,, : n € N} of elements in Ay, such that
limy oo |A — Anlla = 0. Let A% — A2 = U?|A? — A2Z| be the polar decomposi-

tion of A2 — A%, Then we have

4% = AXfl = 7(Un(A? ~ A7))
< [r(UnA(A = An))] + [ ((A = An) AnUs)|
< (1UnAllz + |Un Arl2)[|A = Anll2
< (I1A%l2 + |1 Anll) |4 — Aull2

— 0,
as n — o0o. Hence, A? € L(A, 7). Moreover,

Tim (A — A2)] = Jim (|7((A — A2)A)| + |7(An(4n — 4))
< lim (4 + Al (Al + [ A4all)
= (.

Thus,
A = lim [[An[3 = lim 7(A7) = 7(A?).

g

To prove the existence of the solution of (4.3.3), we need the following lemma.
First, we introduce some notions (see [1] for details).

Let A% be the opposite algebra of A (i. e., the von Neumann algebra obtained
by defining A+ B = BA, for A,B in A and preserving all other operations in

A). Given 0 < #; < -+ < g1 < 00 and Ay, By, .-+, A,, B, € A, the function
Ut) = Dory Ai @ BiXjtiyy) 1s called a simple bi-process. A simple bi-process
U(t) is adapted with filtration {A; : t > 0}, if U(t) € A, @ A7, for all t > 0.
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The space of all A;-adapted simple bi-processes is denoted by B. For U(t) =
Yoty A ® BiXtiyr) € B, define

/0 U(s)4dS, : ZA (Stess — St)Bi-

Denoted by m the multiplication map A ® A% — A. Then m(U(t)) = AiB;, if
Ut) = D51 A ® BjXjt, t;,)(t) and t; <t <tiy1. Given a > 0, we may define a
norm

1Ula = ( / 1T (s)[2ds) "2 + o / $))ds],

for U € B. The completion of B with respect to | - ||, is denoted by B>

Lemma 4.3.5. Let t — X, be a continuous function in L*(A,7), {S¢:t > 0} be

an Ag-free Lévy process of elements in Aqq, and ry = |7(S1)|. Then

max (] / X,dS, o, | / 45,12} < 1% x00 (Mam-

Proof. By Proposition 6 in [1], for X; € By™, || fi° Xo4dSi|l2 < | X1, Thus,
it is enough to show that X xpq(s) € Bg ™ for all ¢ > 0. In fact, for n € N, let
Uns =3 1y XiyXpu-ne iy(s). Then U, € B and

X Xpa — U lar

- I L) o) A | O Xl

<Z sup || X, — Xul3 >1/2+Z L X Xulir

=1 LLLL<S<11 <3<L
n

< sw nxs—xsmz(t“?ﬂ)

im] 0<s,s'<t|s—s'|<L

— 0,

as n — oo, where we have used the fact that s — X is uniformly continuous as a

function from [0, ] into L2(A, 7). Hence, X xjo4(-) € B3 a
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Theorem 4.3.6. Let Q; : A*, — Ay, (i =1, k) be k local Lipschitz mappings
with respect to || - |2 such that Q; : .Af’sa — Assq, fori=1,---,k, 520, and
there exist constants a,b > 0 such that (4.3.1) holds. Then, given arbitrary initial
conditions X;0 € Ao (i = 1,2,--+,k), the system (4.3.3) has a unique solution
X; = (X1, Xgy) for t > 0. Furthermore, we have Xy in L*(Ageq,7) for

i=1,--,k,t>0, and t — X;; is continuous with respect to || - ||z

Proof. For R > 0, let hy be the function Lemma 4.3.3, and

fil X1, Xe) = Qi( Xy, ...,Xk)fm(z 1 Xill2),

for all Xy, -+, X € L*(Ag,7) and 1 < 4 < k. By lemmas 4.3.2, 4.3.3, the

following system
¢
Xie = Xio + / filX1s o Xs)ds + 85,1 <i < k
0

has a unique solution X7 = (Xf,---, X[,). Note that, if S Xl € R,
we have fi = Q;,1 <4 < k. So, X[ is a solution to (4.3.3). Let T = inf{t :
Sk | XE|l> > R}, then X[ is a solution to (4.3.3), if ¢ < Tg. Hence, we shall be
done if we can prove that

lim Tk = co.

R—00

By [1, Corollary 12],

t t
(Si0)? = / d5:,Ses + / S1adSis + Aualt),
4} 0

where A; 9(t) = limy 00 Zjil(si, iy~ Si i1 ,)?, the limit here is in operator norm
(see Definition 3 in {1]). By Lemma 2 in [1], {A;x(t) : ¢ > 0} is an A;-free Lévy
process. Hence,

d(Sit) = dSiytSi,t + Si,tdSi,t -+ dAiyg(t).

Let X = (Xf,---, X[,), we have

t
d((Xﬁ)Q) = d(Xz?,O + Xi,O/ Qi(Xf)dS) + X054
0
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t t t
+ / Q(X,)ds X+ ( / Q(X,)ds)? + / Q(X,)dsS;,
1] 0 0
t
+ S X0 +Si,t/ Q(Xs)ds + (Si,t)z)
0
t
= X;pdXE + Q(X)dtXE + / QX — s)dsd X[}
0

t
-+ dSi,tXi,o + dSi,t/ Q(Xs)ds + Sz,tQ(XtR)dt + d(SZJ
0
= XRdx[ + AXEXE 4 dAs().

Let Z, = (3F_ (XF)*)1/2. Then,

k
d(e™2}) = ~ae™ (D _(XF)?)
i=1
k
+em ™Y (dXf - XE 4+ XF - dXE A+ (dAa (1))
i=1
k k
— —aem (SR + e Y (filXE o XE))XE,
=1 =1
k
+ XE A X)) e Z(dSi,tXﬁ +X[1dS;)
=1
k
+em Y " (dAa(t)).
i=1

93

By Lemma 4.3.2,t — X[ is continuous with respect to || - [|. Therefore, T > 0,
if R is big enough. Moreover, {t : 3, | X|l2 > R} is open. So, for t < Tr, we

have X[ is a solution to (4.3). Hence, we have

t k
72 = e"(Z2 ~ a/ e Z(Xfu)Qdu
0 i=1

t k
+ / e——au(Z fi(Xll?uv T Xlgu)le,{u + Xfufoll?uv e 7leu))du
0 i=1
k k

t t
+ / e N (dSiuXE, + X dS: ) du + e / e 3" dA o (u)
0 0

i=1 i=1
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‘
\
N

¢ ¢ k
< eMZ24 et / be™*du + e* / e Z dAia(u)
0 i=1

0
. k
+ e / e Y (dSiu X, + X[ dS:a),
0 i=0

where the inequality holds because of (4.3.1)". Let 7 = max{|7(S;1] : 1 <@ < k},

we have

b Lo
) < 2+ 2 = 1) +ete( [ e Y dba(w)
0 i=1

t
0

k
+e > n( / e (dS; o XE, + XEdS:.))]
i=1
b ’ b
< Zalf + 26— 1)+ er( [ Y dAiaw)
0 i=1

k k t
+er Y / S X+ et S| / e X dS, 1
i=1 i=1 Y0

t
0
b S
< oot 2 Y pat -1 at / —au dAz u
< el Zollz + (e ) + e*r( € ; 2(v))
k t . k ¢
+2e ) / IXE [Be2 du)s +2re | / e~ X [ dulls
i Jo i=1 70

t k
<23+ o = 1)+ er( [ e S dA(w)
0 i=1

k

£ t
+2¢% sup Y [IX1(( / e dy) A 7 / e~ du)
0 0

0<u<t
SUSt =y

b a ‘ —au £
<l (e D[ Y dda(w)

k ¢ ¢
ok sup (O IXAIDA( [ e dut v [ e,
0<u<t {5 0 0

where the third inequality holds by Lemma 4.3.5. Let

k
p(t) = sup{r(Z2): 0 <u <t} = sup Y _[IXEI3

0<u<t i1
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then we have

e?at _ r(eat . 1)

2a a

o(t) < e™p(0) + g( —1) + e*r( / _‘“‘}:dAzz(u
1

+ 2k[(

Note that 3¢ | XE L )ll2 = R, so maxy i< | X%, 2 > R/k. Tt follows that

(Tr)"* = (_sup Z!I XLI3)? = R/E.

<'U'<TR i=1

It implies that
R*[k* < ¢(TR)

b T
< alr aTR -1 aTR / —au d Az
e p(0) + —(e )+ e rr( c Z 2(u))

e?Tr —1 1 7R —1)

1
2k 2 Tr)?
+ 2l + Jo(Tr)
Moreover,
p(Tr) = sup > |IXE|3 < s (> IxE ) < R
0=<usTh | cicp Tr 1ci<k

Hence, let r{ = max7(A;2(1)) : 1 <4 <k, we have

alg _
R/lc2 < Lpg)) euTR + b(e 1)

aR
vem i T“ge%(mi,z(u))\ por(C ¢ D,
< ?—%)—)e“T“ + ———————b(eaj}; D + TR — ‘I; /TR e "dA;2(u)ll2
+ 2k(( M;a_ Ly T(CGTZ — 1))
. %g) T b(eGZRR —1) ]l% i(( /OTR 20y /2
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Tr e?Tr — 1.,  r(e*Tr —1)
! —-aud Qk 5
brf [ o) om( e B
0(0) or, | ble™® —1)
< P ol 2% T 7
=R ¢ * aR
k1 e?Tr — 1., r(er - 1)
aTr ™ (7 = \1/2 ! —1 9 E
TR (2 ) ok T )

It is obvious that map R — Tg is increasing. Thus, if limg o, T # 00, the right
hand side of the inequality above is upper bounded. On the other hand, the left
hand side is upper unbounded as R — oo. This gives rise of a contradiction.
Hence, limg_.o Tk = c0. We finish the proof of the existence of solution to (4.3.3).

Moreover, for t > 0, we can take R > 0 such that ¢t < Tj, so, X;; = X,-,Rt. Hence,

Xit € L*(Atsa,7), and t — X, is continuous with respect to || - {l2, by Lemma
4.3.2.

Uniqueness. This result follows from the uniqueness of solutions to (4.3.4)
(Lemma 4.3.2). O

We shall show that the solution X, to (4.3.3) is a free Markov process in

LY(A,7). By the following well known result, X, is a free Markov process in

A.

Lemma 4.3.7. Let (A,7) be a W*-probability space, L*(A,T) be the completion
of A with respect to || - [l and L*(Asq, ™) be the completion of Az, in L*(A,T).
Then, L2(A,7) C A and LAy, 7) C Asa.

Theorem 4.3.8. Under the hypotheses of Theorem 4.8.6, and the condition that
Q : A* — A is polynomial of k non commutative unknown variables, the solution

Xy = (X14, -, Xky) @5 a free Markov process.

Proof. Let
Bep = W*{Xi0,Sis 8 < 8,1 <0 <k},

Bor =W {X;1,Sis — Siz:s>t1<i <k},

Cgt = VV*{Xi,s ) S t,l S ) S k‘},th = W*{Xi’s .8 2 t,l S 2 S JC},
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and
Czt = W*{Xi,t | < 1 S ]C}

We want to show that
C<t € B<t,Cst C By (4.3.6)

By the proofs of Lemma 4.3.2 and Theorem 4.3.6,
lim [ Xip — XPll2=0,1<i <k,
n—o0 '

where Xi(ft’) = Xio € A, and Xi(,?) (n > 1) are defined by (4.3.5). Let Hey =
L*(B<, 7). Then, Xo; € H<t. Let f; = Qih (see Lemma 4.3.3 for the definition of
function k). Assume Xi(fsl) € B, 1 <t <k,s <t Let Xi(":m — Xi(z) in norm ||-{|2,
as m — 00, where XZ.(;"’") € (B<t)sa,1 <1 < k. Then, fi(Xl(,':’")(s), e ,X,g:‘")) €
Bei, since Q; is a polynomial. Note that Q; : A¥, — A, is continuous with respect
€0 || -[|2- It implies that the |- || limit f;(X{™, -+, X{) of £,(X 7™, -+, X™™)
isin Hxy, for s <t,1 < ¢ < k. Hence,

t
X0 = X+ / F(XT, -, XYds + Sip € He.
0

By induction, X} € H,. Hence, X;s = lim,—oo(X7) € Her. It follows that
C<t C By. For s > ¢,

Xi,s = Xi,t + / fi(Xl,u, e 7ch,u)du + Ss - St-
t

By the above proof and the uniqueness of the solutions to (4.3.3), C>¢ € Bx:.
Now we show that B<; and By are C—i-free. Note that W*{X;, S, : s < t} and
W*{S, — S; : u > t} are free in (A4,7), and Co, C W*{X,, S, : s < t}. By [11,
Lemma 2.1], B<; and By; are C_i-free. Therefore, C<; and Cs; are C—s-free. By
Definition 4.3.2, X; is a free Markov process in L2(A4, 1) C A. 0

For k = 1, we can get more general condition on @ so that the solution is a

free Markov process.
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Theorem 4.3.9. Under the hypotheses of Theorem 4.3.6, and the conditions that

k=1 and @ : R — R is Borel measurable, the solution X is a free Markov process.

Proof. We use the same notation (with k = 1) as that in Theorem 4.3.8. Assume
Xus € Hey, then f(X,, ;) € Bey, since f = Qh is bounded measurable function.
Hence,

, ¢
Xns1t = Xo +/ f(Xns)ds + 5S¢ € Hey.
0

The rest of the proof is the same as that of Theorem 4.3.8. a
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Chapter 5

FREE
ORNSTEIN-UHLENBECK
PROCESSES

The main theme of this chapter is the study of free Ornstein-Uhlenbeck processes.

Barndorff-Nielsen and Thorbjornsen [4] established the stochastic integrals of
continuous functions with respect to a free Levy process, the stochastic integral
representation of free self-decomposable distribution (see Theorem 6.1, 6.5 in [4]),
and remarked that a possible definition of a free OU-process driven by a free Lévy
process can be given (but no further details were given). In Section 5.1, We show
that free OU processes are solutions of a special kind of differential equations we
studied in section 4.3 (Theorem 5.1.3). Furthermore, we show that, under certain
condition ((5.1.3) below), a probability distribution on R is free self-decomposable
if and only if it is the limit distribution of a free OU-process (Theorem 5.1.4).
Moreover, it is showed that a probability measure on R is free self-decomposable if
and only if it is the distribution of a stationary free OU process (Theorem 5.1.5).
Section 5.2 is devoted to the study of periodic free OU processes. We show that a
free OU process defined on the finite interval [0, 1] can be extended periodically to
a stationary process on the whole real line (Theorem 5.2.1). Moreover, we show
that the class of the distributions of the stationary extensions is bigger strictly

than the class of all free self-decomposable distributions, and the class is smaller

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

strictly than that of all free infinitely divisible distributions on R (Theorem 5.2.3).
At the end of this section, we give a characterization for a probability measure on
R to be the stationary distribution of a periodic free OU process in terms of its
Levy measure (Theorem 5.2.6). Finally, in Section 5.3, the notion of fractional free
Brownian motion is introduced (Definition 5.3.2), and examples of frce fractional
Brownian motion are given. These examples are given in terms of creation and
annihilation operators on full Fock spaces. (Theorem 5.3.4 and Remark 5.3.5). We
show that the Langevin equation driven by fractional free Brownian motion has a

unique solution. We call the solution a fractional free OU process (Theorem 5.3.8).

5.1 Free OU Processes

In this section, we consider a special case of (4.3.3). Let k = 1, Qi (X) = =X,
A > 0and {S;:t > 0} is Ai-free Lévy process of operators in Ay,. That is, we

consider the following equation
t
XtZXO—)\/ Xst+St,tZO, (511)
0
where self-adjoint operator Xy € Ay. We call

{
X, =eMXy+ / e M gS, >0
0

a free OU process, where fot e~ Mt-4)dS, is defined by Theorem 6.1 in [4] (Generally,
we can define free OU process {X; : t > 0} by the formula above in the case that
{5t : t > 0} is a free Levy process of self-adjoint operators in A, and X, is affiliated
with Ag). We show that the free OU process is the unique solution to (5.1.1) and
the limit distribution of X, as ¢ — o0, is free self-decomposable.

Lemma 5.1.1. Let f : [a,b] — R be a continuous function. Forn € N, and a =

tno <tpni < -+ <tnr. =b, apartition of [a,b], let fu(t) = Zf;l Qi X[t i irtms) (E),

fa(b) = f(b) be a step function such that f,(t) =3 f(t) uniformly for t € [a,b].
Then

b
tin || [ (76) = Fu)dSila =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

Proof. By Lemma 4.3.5, f — f, is in B>*. Hence,

Ifn = fll2 < e = fllzzqasy + 7SO 1 — Fllgesy
< lfa = flizeapy (b — a)(1 + |7(S1)])

— 00,
as n — oo, since f, = f on [a,b]. O

The following lemma gives some kind of Fibini Theorem. Some ideas in the

proof are from the proof of Proposition 35 in [23].
Lemma 5.1.2. Let f and g be continuous functions on |[a, b,
b s b b
X ———/ g(s)/ f(u)dSyds, Y = / f(u)/ 9(s)dsdS,.
Then X =Y.

Proof. Step 1. We show that
b b
/ udS, = bS, — aS, —/ Ssds. (5.1.2)

Forn e Nand t,; =a-+ i(z;:a), i=0,---,2" define f,(t) = Zf:l brsi Xfnio1 tni)s

fa(b) = f(b). Then f,(t) = ¢ uniformly for ¢ € [a,b]. By Lemma 5.1.1,

b b
/ tdS, = lim / Fa(t)dS:.

On the other hand,

b 2"
[ 10145, = 3 tns(Sir = 51
@ i=1

am—t -1
=) taiSt..— O tnis1Sh,, + S — 1S
i=1 =1
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271

=bS) ~ tn1Sa— ()

i=1

b—a b—a b—a

on St t+ on Sp) + o Sp

b
— bS(b) — aS, — f Sydt,

as n — oo. Hence, we get (5.1.2).

Step IL Let f = S3F CiX[tisti)r § = Z;zl bjX[s;_1.¢;) be step functions on
[a,b]. Then X =Y.

The proof is the same as that of Proposition 35 in [54].

Step III. Let f be a continuous function, and g = Zle bixis;_.,t) be a step
function on [a,b]. Then X =Y.

For n € R, let {f, : n > 1} be a bounded step functions such that f, = f on
[a,b], and let

b s b b
X, = / os) / fo(4)dSuds, Y,y = / Fulu) / o(s)dsdS,.
By step II, X, =Y,,. It is enough to show that
Jim (X = Xulls + Y = Yalla) = 0.

In fact,
b b
10X = Xl = | / o(s) / o) (W) (falw) — £(u))dSuds]o
< / () | / o) () () — ()0 llads
< [ 1o~ Sl + S — Tl

b
< / 19()[ds f — fllzo (b = @) (1 + [7(S1)])

— 0,

as n — oo. Similarly, limy, o [|Y — Y,]l2 = 0. Hence, X =Y.
Step IV. Both f and g are continuous functions on [a,b]. In this case, let
gn =" BriXtn s 1,tns)» 9n(b) = g(b) such that g, = f on [a,b], and

Xn= /abgn(S) /a f(U)dSuds,Yn=/abf(U) /ubgn(S)dsdsu.
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By Step III, X,, = Y,. By the proof of Step III,
lim | X — Xp|la=0, lim |V - Y,|2=0.
Hence, X =Y. 0

Theorem 5.1.3. Let X; = e MXg+ fot e~ Nt=wdS . Then t — X, is continuous

with respect to || - ||2, and X, is the unique conlinuous solution to (5.1.1).

Proof. 1t is obvious that t — X; is continuous. Moreover,
t t B
—/\/ X, du =e Xy — X, — )\/_e"\s/ e*dS,ds
0 0 0
t t
=eMXy— Xp— X / e / e dsd8,
0 u

t
= G—MXO - XO + / 6_’\(t~u)dsu - St
0

=Xy — Xo— 5,
where the second equality holds because of Lemma 5.1.2.
Uniqueness. Suppose that (5.1.1) has another continuous solution Y;. Let
Zy =X =Y, then Z;, = -\ fot Zydu. By Bellman-Gronwell inequality, Z; = 0, for
t > 0. It follows that X, = Y;, for t > 0. ]

Now we discuss the limit distribution of X,. Let {S; : t > 0} be a free Lévy
process of (unbounded) operators, (7y,0) be the free generating pair of the process

(see Section 2.1).

Theorem 5.1.4. If the measure o in the free generating pair (v, o) of Lévy process

{S¢ :t > 0} of (unbounded) self-adjoint operators in A satisfies
/ log(1 + [} (d£) < oo, (5.13)
11

the limit distribution of X, as t — oo, is B self-decomposable.
Conversely, if o is a B self-decomposable distribution on R, there is a free OU
process { Xt > 0} such that the limit distribution of X; is pro.
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Proof. Note that X; = e MXj + fot e~M—wgS,, so it is enough to show that
the limit distribution of fot e M-S, is @ self-decomposable. Let t,; = jt/n,
i=01,.,n Th=>", e Metni)(S,,  — S, ,_,), then T, 2 fot e~ Mt=wdS,, by

Theorem 6.1 in [4]. On the other hand,

n
Th = Ze—)\(t-tj)(st—(t~tn,j) - St—(t—tn,j—l))

J=1
n
I
= E :6 T ](St—rn,n»j - St"‘rn,'n-—j—}-l)
j=1
n
d —A "
= E e J(STn,n—j-H - STn,n—j)
j=1

n ¢
—ATp i P —X
= E e I(Sf'n,i - Srn,i41> —"/ e"dS,.
i=1 0

Hence, we have

t L A
/ eNewgs, 4 / e ds, = / ¢~ dSun.
0 0 0

Let S; = Si/a, Vt > 0. It is obvious that S; is a As-free Lévy process. Let ¢, (2)
be the Voiculescu transform of 1(S1). By [4], dus,)(t) = tdu, (2). Let (v,0) be the
free generating pair of u;, then (ty,to) is the free generating pair of 1(S;). Hence,

w(S1) = (S 1) has free generating pair (37, 30). It follows that the finite measure

1
A

operator X € A such that

t tA
/ e M- gg, 4 / e d Sy 4 X,
0 0

as t — oo and X has a H self-decomposable distribution.

o in (1v,}0) satisfies (5.1.3). By Theorem 6.5 in [4], there is a self-adjoint

Suppose g is a free self-decomposable distribution on R. By Theorem 6.5 in

[4], there is free Levy process S; satisfying (5.1.3) and u(f,° e™*dS;) = po. Let
i
X, = e_t/ e’dS;,t > 0.
0

By the proof above, the limit distribution of Xy, as t — oo, is pg. O
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Theorem 5.1.5. A probability measure u on R is B self-decomposable if and only
if it is the distribution of a stationary free OU process.

Proof. In [4], Barndorff-Nielsen and Thorbjornsen showed that a probability dis-
tribution p on R is M self-decomposable if and only if there is a free Levy process
{Z] : t > 0} of self-adjoint (probably unbounded) operators affiliated with a W*-
probability space (B, 71) satisfying

-/lt|>1 log(1 + Jt))a(dt) < oo,

where (v,0) is the free generation pair of y, such that g = p([f;° e 'dZ]). Let
Zt = 7%, for t > 0, and Zt —Zﬁt, for ¢t < 0, then {Z :t > 0} is a free Levy

process. Let {Z; : t > 0} be a free copy of {Z,:t >0} (i. e. {Z;:t>0} and
{Z, : t > 0} are free), and let

Zt = :—Z—t,‘v’t 2 O, Zt = —7_t,Vt < 0.

Given a > 0, a continuous function f on [—a,al, a partition T : —a = £y <
t; < -+ < t, = 0 of [—a,0] and & in [t;—y, &), for i = 1,2,--- ,n. Let [T =
max{t; —ti~; :1=1,2,--- ,n}. We have

a 0
[ #ts=aiz.= [ 16)z0a= Jim Zf& et~ Zores)

T~

d . d
= lim E i = lim E N2y — Ly,
1o 27 R S 2 )
§ j N
||Tu~+o o i)
0

f(S)dZ = lim Zf(—(_gi))(Z%iq - Z—ti)

HTl—0
_ /0 (-

Let Xy = ffoo ecsdgs, then
0 . a -
Xy = lim e“dZ, = lim e dZ,

a—oo f_ . a—oo f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

= / e~ dZ, = / e~tdZ;
4} 0

has distribution u. Define
3
X, = e (X5 +/ e“dZ,),t > 0.
0

Then {X; : t > 0} is a free OU process. Now we show that it is stationary. For
t > 0, we have

0 _ ¢
X, = e”Ct/ e“dZ, + e—Ct/ e“dZ,
0

—0o0

~t _ 0 —t ~ 0
= / €470y + / e4dZ, . = / e®dZ, + / e dZ,
—00 —t —00 —t

g [ - 0 ~ 0 ~
=/ ecsts+/ ecstS=/ e“dZ; = Xy

—00 -t —00
Conversely, if X;,t > 0 is a stationary free OU process, we proved in the
preceding theorem that the limit distribution of a free OU process is free self-
decomposable, if the limit exists. Hence, the limit distribution of X;, as ¢ — oo,
is the distribution X, since it is stationary. Hence, the distribution of X, for all

t > 0, is free self-decomposable. 0

Remark 5.1.6. From the theorem above, we see that the set SD(B) of oll B self-
decomposable distributions on R can be described as SD(H) = { the distributions
of stationary free OU processes }.

5.2 Periodic Free OU Processes

In this section, we consider free OU processes in an interval. We extend them
periodically to the whole real line. We show that the periodic free OU process is
stationary. We also give a characterization of the stationary distribution in terms
of its Levy measure.

Given a free Levy process {Z; : t > 0}, consider the following Langevin equation

dX, = —cXydt + dZ,t € [0,1], X = X1 (5.2.1)
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It has a unique solution
¢
X, = e=*(Xo + / e=dz,),t € [0,1],
0

where Xo = X; = 17 [ e®dZ,. Let Xop = X, for t € [0,1] and k € Z. Then
{X; € R} is a periodic process. So we call {X; : t € [0,1]} a periodic free OU

process.

Theorem 5.2.1. The process {X; : t € R} defined by Xopx = Xy, fort € [0,1]

and k € 7, is a stationary process (i. e., X; 4 Xo)-

Proof. For t° € [0,1], we construct a new process {Z¢ : ¢ € [0,1]} as follows. For

te0,1],
7t Ziyo — Zyo, ift+10 <1,
t Zfo—to + Zypoy, ift+ 0> 1.

Now we show that {Z¢ : ¢ € [0,1]} is a free Levy process. Clearly, Z§ = 0. For

0<t; <1—10 <ty <1, wehave Zyyppoy = Zb — Z8 10, Zp — Zipr01, 28, =

Gy a0 = Zy0, Zy — Zyaao = Z¥ 1o — ZE are free. Thus, Zf, — Z8 = Zf, — 28 5 +
7 o~ Z8 and ZE = Ziy 4 ~ Zpo are free. Hence, {Zf" : t € [0,1]} has free

10

increments. Moreover, for 0 < ¢ <1 — t® < t, < 1, we have

i

w(ZE = Z8) = i Ziyrio-1 + 21 — Zyysw0) = i Zagyeo—1) B Z1 = Zy, 40)
1 Zyyio—1) B(Zy gy _0) = 1(Zs, — Z1_0) B Z1 0 — Zt;)

N(Zt2 - Ztl) = /L(Zt2~t1)‘

i

Il

Hence, {Z!" : t € [0,1]} has stationary increments. Moreover, let t; = 0, we get
Zg 4 Zyy, for 1 — % < t, < 1. It is obvious that ZE = Zppoy — Zo 4 Z,, for
<t <1 - 1% Hence, Z* < Z,, for t € [0,1]. It implies that {Z¢" : t > 0} is a free

Levy process. Now we show that

1 1
Xirpo = T /0 ¢ clt=s) mod 1dZ;fO,t, % e [0,1],
where
2 mod 1 = z+1, if -1<z<0,
I if z € [0,1].
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For 0 <t <1—1% we have

1 40
(1 _ G_C)Xt+t0 - / e—c(t°+t)e—c+csts + / e—c(t—t—t“)ecsts
0 0
{0

t+
— 0y
—/ et g=cees g7,
0

t+t0 1

e~ o5z / et gmeges g7
t+t0

tO
e—c(t+t°)e—c€c(s+t0) dZstO + / e—c(t+t°) edZ,
0

+¢° o
et s d7

1
e_“e'cecstﬁo + / e—c(to+t)€c(s—(1~t°))de—(l_tO)

10

1
(3'Ct(3_°ec“"cz,’Z;50 + /

1—t0 0

/
1 t
~ / et e dZY + / e e dZ"
t 0
J

t
- - 0 - 0
e ct6 CCCSdZ£ _,_/ e ctecst‘s

1
0
e—c(t—s) mod le; )

For t + 9 > 1, we have

1
/ e—c(t—-s) mod lestO
0

1—¢0 t 1
:/ e—c(t_s)dZs+t0+/ B_C(t_s)dZs_(l_tO)’*'/ e~c(t—s)e—chS_(1_t0)
0 1 t

—30

1 0 t—(1-¢%) o t® o
:e—ct(/ ec(s—t )dZs +/ ec(s+(1—t ))dZs + e—c/ ecsec(l—t )dZS)
t 0 t

0 ~(1-19)

1 t0 t—(1—¢%)
:6—c(t+t0) (/ eSdZ, + / eSdZ, + € / ecsts)
t ¢ 0

0 ~(1-19)

1 t—(1-0)
:e—-c(t-{—to) / e dZ, + e—c(t+t°—1) / e*dZ,.
t—(1—¢2) 0
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On the other hand,

1 t+t0 -1
1- e ¢ Xt+t0 = (1-— e—c Xt 91 = 8_c(t+t0) ecsts + ec ecstS .
* 0

t+t0-1

Hence,
1

1-—-ec

1
Xy = / gelt=a) mod 1g7t% iy 40 & [0, 1].
0

It follows that

1
— /0 e—c(t—s) mod le;O)

1 1
- ( / e—c(t—s) mod les)
0

vt,t% € [0,1]. Let t = 0, we get X0 £ X,, for all £ € [0,1]. Hence, {X, : t € R}

is a stationary process. [

Let ¢ > 0, {Z; : t € [0,1]} be a free Levy process and {X; : t € [0,1]} be the
periodic free OU process determined by ¢ and {Z; : t € [0,1]} (i. e., X, is the
solution to (5.2.1)). We call u(Xo) = (= fol e*dZs) the stationary distribution
of periodic free OU process {X, : t € [0,1]}. Note that

1 1 1
u( / edz,) = uf / edz)),
ec—1Jg 0

where 7, = eC%ZS is a free Levy process. So we have the following proposition.

Proposition 5.2.2. For ¢ # 0, let Z(c) be the set of all u(jbl e“dZs), where
{Z,,t € 0,1]}, is a free Levy process. Then, giwen ¢ > 0, I(c) is the set of all
stationary distribution of periodic free OU processes determined by ¢ and a free

Levy process.

Given a distribution ug € ZD(H), by [5] or [4], there is a unique p’ € ID(x),
such that A(y') = u, where A is the bijection between ID(x) and ZD(H). By

Theorem 7.10 in [55], there is a bijective correspondence between infinitely divisible
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laws and Levy processes in law, if we identify all Levy process with the same margin
distributions. Hence, there is a classical Levy process Zt such that ;L(Z 1) = By
[4], there is a free Levy process Z; such that u(Z;) = po and p(Z;) = A(Z,)),
for all ¢t > 0. Thus, given, ¢ > 0, we can define a map ¥, from ID(H) into Z(c)
such that ®.(uo) = pu(= fol edZ;) in I(c), for p1o = p(Z,) in TD(B). We shall

ef~1

show soon that @, is bijective.
Theorem 5.2.3. For ¢ > 0, we have
1. If iy and py are in Z(c), py B po is in Z(c).

2. Let a,b be in R and {Z, : t € [0,1]} be a free Levy process, then p(a +
bfo1 e“dZs) is in Z(c).

3. SD(B) & Z(c) and SD(B) = (51 Z(ca), i 0 # ¢ € R and limp.o n = 00.
4. I(nec) CZ(c), for alln € N. I(—c) =I(c).
5. ®.: ID(H) — I(c) is one to one.

Proof. (1). Let u; and ps be in Z(c). We may choose two free Levy processes
{Z} :t€[0,1]} and {Z?2 : t € [0, 1]} such that

1 1
= [ ezt e = [ eaz),
0 0

and {Z} : t € [0,1]} and {Z? : ¢ € [0,1]} are free. By the definition of integral
[l essdzi (j = 1,2) (see Theorem 6.1 in [4]), W*(fy e=dZi) C W*(Z{ : t € [0,1]),
4 = 1,2. Hence, p; B py = u(fol ed(Z! + Z?%)). To show that py B py € Z(c),
it is enough to show that {Z} + Z% : t € [0,1]} is a free Levy process. For
0 <t <ty <1, we have

:u’(Ztlz + Zt22 - (Zt11 + thl))

i

w(Z;, = Z;,) + (25, — 2,))
M(Ztlz—tl) E/’L(thz——tl)
/I'(Ztlgvh + Zi_t1)~

It

i
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Thus, Z! + Z? has stationary-increments. Now we show that, for 0 < ¢; < -+ ¢, <
L(ZE + 22— (2 + 2 ), -, (ZL+ZL)— (2} + 2} ) and Z} + Z] are free.

In fact, let A, ; = W*(Z] — 2] _),fori=2,3,--- ,;nand j =1,2, A ; = w*(z9),

j =1,2. Then, the von Neumann algebra

W*(A’i,j:i: L2, ,n,j :1,2)
:W*(W*(Aﬁ',l:i: 1’2’... ’n),W*(A@QZi:l,Q,‘H ’n))
:W*(Aﬁl:i:laZ"" 7n)*W*(-’4’i,2:i:1,2a"' ,Tl)

= %=1, mij=1,2 Aij-

Hence, A1 1, , An1, A12,* , Ana are free. It follows that (Z} + 2 )— (2} _ +
Z2 ) € WH(Ans, An), (BL + Z2) = (Z1 + Z2) € W*(Apy, Anz) and Z} +
Z} € W*(Ay,1, Ar) are free. Moreover, Z} + Z} 2.0, as t — 0, since addition of
two elements in A is continuous with respect to the measure topology on A (see
[4]). Hence, Z} + Z? is a free Levy process, and p B ps € Z(c).

(2). Given a € R, let Z§ = 2], for t > 0. Then Z, is a trivial free Levy
process, and fol edZs = al. It follows that p(al) = §, € I(c). Generally, for

0s#£b,a R,

1 1
w(al + b/ e“dzZ,) = ,u(/ e“d(Z3 +bZs)).
0 0

It is obvious that (Z% + bZ;) is a free Levy process. Hence, u(al + b fol e“dZ;) €
Z(c).
(3), (4) and (5). Let

1 o~ o~
I(c) = {p,(/ e“dZs) : {Z : t € [0,1]} is a classical Levy process}.
0

We show first that A(Z(c)) = Z(c). In fact, for Levy process Z, (t € [0,1]),
o= p,(fol edZ,) in I(c), there is a Levy process Z! (t > 0) such that Zl = 7,
for t € [0,1]. Hence, by Theorem 5.4 and Corollary 6.2 in [4], there exists a free
Levy process Z; (t > 0) affiliated with a W*- probability space (A, 7) such that
w(Zy) = Au(Z)), for t > 0 and g f() e“dZ;) fl e*dZ,)). Tt follows that
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A : Z(c) — Z(c). Moreover, by Theorem 5.4 in [4], the map A from Z(c) to Z(c)
is onto. Note that A : TD(x) — TD(B) is bijective. Hence, A : Z(c) — Z(c) is
bijective. Theorem 4.8 in [4] showed that A(SD(x)) = SD(H), and Theorem 3.1
in [50] showed that

SD(x) & I(c), () Z(en) = SD(*),

n>1

for 0 < ¢, € R, and lim,_, ¢, = co. It follows that
SD(B) = A(SD(x)) & AZ(e)) = Z(e),
(Z(e) = (VAT (en)) = A(()Z(en)) = ASD(¥)) = SD(BB),
and
I(nc) CI(c),Yn € N,Z(—c) = I(c).

Let ©, : ID(*) — I(c) be a map defined by ®.(u) = ;L(fol edZ,) € Z(c),
for 4 € ID(x), where Z, is the Levy process determined by u. For py,us €
ID(H), there are measures uy, uy € ID(%) such that A(u;) = p;, and $c(p;) =
Ap( fol esZ")), where Z! is the Levy process determined by i}, i = 1,2. Thus,
if Oo(p1) = Polpa), Au(fy edZL)) = Au(f, edZ2)). Tt follows that ®.(u}) =
$,(1,). By Corollary 2.8 in [50], . is one to one. So, puy = A(i)) = A(ih) = pa.
Hence, &, is one to one, O

Lemma 5.2.4. Let v be a Levy measure on R. Then

1. v has a polar decomposition, i. e., there are non-negative real numbers Ay, A_q

and finite measures vy and v_; on (0,00) such that
/ min{1,u*}dv;(du) < c0,j =1, -1
0

and

v(B) = \v1(B) + A_1v_1(B), for all Borel set B C R.
We define a measure A on the set S = {1,—1} by A(1) = Ay, A(—1) = 4.
Then

v(B) = /s/\(dﬁ) /Ooo xB(u€)ve(du), for Borel set B C R.
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2. ’Lf )\1)\_1 7é 0, thB’I’L

(a) v has a nonnegative density function ﬂuﬂ (u % 0) if and only if v has
a non-negative density function ﬂl‘—) with ky(u) = ik(u), and v_y has
a non-negative density function —~<u—) with k;(u) = : k(—u).

(b) Ge(u) =Y k(e’“u) is increasing for u < 0 and decreasing foru>0if
and only if both Gy (u) = Y7 ki(e°u) and G_1,.(u) = 37" k-1(e’u)

are decreasing for u > 0

Proof. Let v be a Levy measure on R and

1 0
A = / w?v(du) + v([1,00)), A1 =/ w?v(du) + v((—oc0, ~1]).
0

-1

For all B in B([0,00)), the Borel o-algebra on R, let

oB) = { 31 0
Let
1 .
i ={ i, L
Then,
/00 min{1,u*}v,(du) = /00 min{1,u*}v_;(du) = 1.
Moreover, 0 O

v(B) = v(BN(0,00)) +v(BN(—00,0)) = A_jv_; (BN (—00,0)) 4+ Av; (BN (0, 00)).

This is the polar decomposition of measure p.
Suppose A; # 0 and A_; # 0. Suppose v has a non-negative density function
Ew) 5 e, v(B) = fB#[O} M1—:‘—)(111, for every Borel set B € R. Then, for B €

vl(B):/B—;—lk—(y—zdu.

U

B((0, ) we have
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Hence, v, has density function %F—%Q Similarly, v_; has density function ,\—1—1@,
k1(u)

Conversely, if v; has non-negative density function ==, and v_; has non-negative

density function 5—‘%@, we have, for a Borel set B C R,

v(B) = Mu1(B N (0,00)) + A_1v_1(—B N (0, 00))

:,\1/ Mdqu)\_l/ _/f“_lgﬂdu
Bn{0,00) U B\(—00,0) u

kilu k_i(—u
:/(X(O,oo)/\l 1( )+X(—oo,0))\-—1—"1(—l)du-
B u U

Let k() = X(0,00)Atk1(%) + X(o0,00A-1k—1(—u), we see that v has density function
E%—), ki(u) = ,\%k(u)X(o,oo)(U) and k_;(u) = A—f_lk(—u)X(—oo,o)(u)~

Let o o
Gie(u) = Zkl(ejcu), G_yc(u) = Z k_i(eu).
J=1 g=1
Then Gic = 3 Y oy k(e’°u) is decreasing for u > 0 if and only if Ge(u) =
>ooe i k(e°u) is decreasing for u > 0, and G-1, = 5 = 372, k(—e’u) is de-
creasing for v > 0 if and only if G.(u) is increasing for u < 0. O

Remark 5.2.5. The result that every Levy measure on R (d > 1) has polar
decomposition was give in Proposition 2.6 of [50], but there were no precise proofs

given. So we give a constructive proof of the result for d =1 in the Lemma above.
The following theorem give a characterization of measures in Z(c).

Theorem 5.2.6. For ¢ > 0, a free infinitely divisible measure p is in Z(c) if and
only if the Levy measure v of  has a non-negative density function k—(-;—‘—), and there
is a function G.(u) such that G.(u) is decreasing, for u > 0, G.(u) is increasing,

foru <0, and
Ge(u) = Z k(eu),
i=1

for almost all u € (0,00) with respect to the Lebesgue measure on (0, 00).
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Proof. Suppose A_1A; # 0. A measure u € Z(c) if and only if A™*(u) € Z(c). Let
(4, A,v) be the generating triple of A=!(u), where v is the Levy measure of u (and
A=1(u)). Let

v = AU + AU
be the polar decomposition of v. [50] Proposition 2.7 showed that A~ (u) € I (c) if

and only if v; and v_; has non-negative density functions 1“—1(:52 and k—“fﬂ, respec-

tively, and there are decreasing functions

Gre(w) 2 " ki(e¥u), G_1o(u) 2 > k_y(eu), Vu > 0,
J=1 j=l1

where = means = for almost all ¥ > 0 with respect to the Lebesgue measure on

(0,00). By Lemma 5.2.4, this is the case if and only if the Levy measure v of y
k(u)

has a non-negative density function =, and there is a function G.(u) such that
G.(u) is decreasing, for v > 0, G.(u) is increasing, for u < 0, and

o

Ge(uw) = > k(e¥u),

j=1
for almost all u € (0, 00) with respect to the Lebesgue measure on (0, 00).
If )\1 = 0, but /\_1 7é 0, then
1 [eS)
k k
M =/ u2—(—u)-du+/ ﬂaluzO.
0 1

(1 U

It implies that k(u) = 0 for almost all u > 0, and G (u) = > oo, k(e%u) = 0, for

i=1
u > 0. In this case, v(B) = A_jv_1(—B N (0,00)). By Lemma 5.2.4, v_; has a

non-negative density function %ﬂ and there is a decreasing function G_; .(u) 2

> ey k1(e’“u), for u > 0 if and only if v has a non-negative density function I—c—%‘l
and there is an increasing function G.(u) for u < 0 such that G.(u) = 3 i, k(e“u),
for u > 0 (In fact, we can let k(—u) = k_;(uw), for u > 0). Hence, in this case, we
have proved the result.

Similarly, we can prove the result in the case of A\y £ 0 and A_; = 0.

Finally, when A\; = A_{ = 0, v = 0, the result is trivial. a
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5.3 Fractional Free OU Processes

In this section, we introduce the notion of fractional free Brownian motion. We
show that the corresponding Langevin equation has a unique solution, which is
called a fractional free OU process.

Recall that a stochastic process {X; : ¢ € I C R} is Gaussian if for 0 < ¢; <
ty <o <tp,<oo,and Ap,---, Ay € R, 307 L A Xy, has a normal distribution (see

[30]). Similarly, We can define the analogue in free probability.

Definition 5.3.1. A family {X; : t € I C R} of self-adjoint operators in a
W*-probability space (A, 7) is called a semicircle process, if for 0 < 4 < i3 <
C <ty < 00, and Ar, -, A € Ry 30T N Xy, has a semicircle distribution. A

semicircle process is centered, if T(X;) =0, fort € I.

Now we are in a position to give the definition of fractional free Brownian

motion.

Definition 5.3.2. A centered semicircle process {X; : t € I C R} is a fractional

free Brownian motion with parameter H € (0,1], if
1
(X, X,) = 5(1:&1”‘ +|s]PH = |t — 5|, ¥s,t € L.

Theorem 5.3.3. Free Brownian motion is fractional free Brownian motion with

= 1
parameter H = 3.

Proof. Let {B, : t > 0} be free Brownian motion. First, we show that {X; : ¢ > 0}
is a semicircle process. For A € R and ¢ > 0, we have AX,; has distribution
Dyu(Xy), which is a semicircle law. by [64]. Hence, it is sufficient to show that
X, + -+ + X;, has semicircle distribution, for 0 < ¢1,--- < {,. Note that

th 4o 4 th
= th - th—l + 2th__1 + b + th
= (Xep = Xtooy) +2(Xe, = Xin ) +3Xe0 o+ + Xy
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= (th - th—x) + Z(th—l - th—z) ot (’I’L - 1)(Xlz - th) + nXt1'

Note that (X;, — Xi, 1), 2(Xt._, — Xe 0):3( Xy — Xtng)yo o5 (0 — 1)( Xy, —
Xt ),nX;, are free. Hence, by induction, it is enough to show that X 4+ Y has
semicircle distribution, if X and Y form a semicircle family (i. e. X and Y are
free and they have semicircle distributions). Note that A self-adjoint operator
X € A with 7(X) = 0 is a semicircle element if and only if the R-transform
Rux)(z) = %z, for some r > 0 (see [64]). If Ry x) = Fz and Ryy) = Z—gz. Then
Vi)
4

It follows that X + Y is a semicircle element. Hence, we have shown that {X; :

Rux+v)(2) = Ruxy(2) + By (2) =

t > 0} is a centered semicircle process. Moreover, for £ > s > 0, we have
(X, X,) = 7((X¢ — Xo) X, + X2) = (t — s).
Hence, {X; : t > 0} is a fractional free Brownian motion with parameter H =

1 0

Theorem 5.3.4. Let {BY € A,, : t > 0} be free Brownian motion, {Bt(z) :t >0}
be a free copy of {Bt(l) :t >0} (i e, {Bt(2) :t > 0} is a free Brownian motion,
and {B? : t > 0} and {B™" : t > 0} are free). Define

BY, if t>0,
Bt = B(g) .
Y, ift <.

Then
1. for f € L*(R), we have 7((fg f(£)dB)?) = [p|f(t)]*dt;
2 for 0 < H <1, let Cy=(f°_((1—uwH 3~ (—u)~7)2du + %)"V?, and
0 . ) ¢
X, = CH(/ ((t — w2 — (—u)""2)dB, +/ (t —u)T"Y?)dB,.
—oo 0

We have {X; : t € R} is a fractional free Brownian motion with parameter
H.
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Proof. Result (1) follows from Proposition 6 in [1].
(2). Since ff’m((t — Wl — (—w)H~1)dB, and [j(t — u)7/2)dB, are free,

and

7( / 0 ((t = w3 — (—u)~3)dB,) = / ;«t —w)f73 — (—u)")dr(B.)
=0= T(/Ot(t —u)f-12dB,),

we have

T(X}) = C?I(’f((/;((t — w7 — (—u)"'"3)dB)?) + T((/ (t — w)1)dBu)*)

0

t
0

= CH( /_ U () — ()Pt / (t — u)*~ du)

0 : 1 1
= ([ (=) ) P )
— t2H.

Moreover, for h,t € R, we have

7((Xern — Xn)?)

= r(([ (@ b)) = (=B,

—0Q

t+h h )
+ / (t +h—u)?1%dB, — / (h —w)*Y%4B,)?)
Q0

= ([ (- =R (= W)y

+ / (= (- W) = (~(u— 1) H)aB,

+ /h Hh(t — (u— h)F2dB,)?)

= C47(( / i ((t—uw)H 3 — (~u)f{*%)d3u+h + /O t(t —w)3dB,1)?)

—OoQ

= C?IT((/O ((t—w)"% — (—u)"2)dBysn)?

~—0Q

w ([ wtaBay)
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0 t
= 3 / (6 = u)#F = (—u)TH)2du + / (6 — w)4)2du)

—0o0
— tZH

1t follows that
1
7ﬂ%X0=§UﬁH+bFH—H~ﬂM)

It is obvious that 7(X;) = 0, for t € R. Note that {B, : t € R} is a semicircle
process. So, for real-valued step function s = Y . ; O X[t_..t:), Where —o0 < a =

to <ty <.+ <t,=0b< 00, we have

/ (t)dB, = Zaz - By)

is a semicircle element. Generally, let f is a continuous function an interval [a, b},
then there exits a sequence (f,) of step functions such that limy,_,c || f: f(t)dB; —
[P Fu(&)dBy = 0. Let 7((f? fu(t)dB,)?) = 2, then

/ . 0, itk =2m+1,
n = ml r2\m oy
t m%;:_w(f) s lfk_—'Qm,m _>_0

(see (1.8) in [31]). It implies that

ifk=2m+1,

mv(m+1)|

where r = lim,_,o, 7. Hence, f: f(t)dB; is a semicircle element. It follows that
X, is a semicircle element, for t € R.

Generally, for —co <t} <ty < --- <t, <oo, Let T, = > 1 | ¢ Bt . Then,
for a step function s = Z;n:l @jX[s;-1,5;» Where @ = 59 < 8y < -+ < 55 = b, we
have

/b s(u)dSu = i(){j(Tsj - Tsj) = iia].tf—%(BSjti - BSj_lli)
a j=1 =

j=1 i=1
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is a semicircle element, since B, is a semicircle process. For a continuous function

f on [a,b], there is a sequence s, of real-valued step functions on [a, b] such that

b b
tim || [ f(uw)dT, / FalwdTa] = 0.
n—o0 a a
Hence, by the proof above, fab f(u)dT, is a semicircle element. Now we show that
(Xt) is a semicircle process. By an elementary computation, we have that

0 1

X, = Cy( / (1 = w2 — (—u)72)dt" 2By, + / (1 —w)¥-2dt"~2B,,).
0

-0

Hence,
. 0 L . 1 ,
th + - th = CH(/ ((1 — u)H—E —_ (——u)H”i)dTu + / (1 - U)H_idTu)
—c0 0

is a semicircle element. It follows that {X; : t > 0} is a fractional free Brownian

motion. a
Remark 5.3.5. From the Theorem above, we have

1. For H =1, let X, be a standard semicircle element (i. e., X; is a semicircle
element with T7(X;) = 0 and 7(X?)=1). Let X; = tXy, for t € R, then
T7(X:X5) = |ts|. Hence, (X;) is a fractional free Brownian motion with

parameter H = 1.

2. Biane and Speicher gave an example of free Brownian motion, which comes
from creation and annihilation operators on a full Fock space, in [10]. From
Theorem 5.8.4 and (1) in Remark 5.8.5, we can construct examples of frac-

tional free Brownian motion for every H € (0,1].

Recall that A family {X; : ¢ > 0} of self-adjoint operators affiliated with a
W*-probability space is called a free self-similar process, if for any ¢ > 0, there
exists b > 0 such that

H(Xer) = p(bX)), ¥t 2 0.
{X,:t>0}is a free H self-similar process, if there exists a 0 < H such that
b = cf!, for all ¢ > 0 (see [23]). We now give an abstract characterization of

fractional free Brownian motion.
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Theorem 5.3.6. A centered semicircle process {X; : t € R} of self-adjoint oper-
ators in A is a fractional free Brouwnian motion with parameter H € (0,1] if and

only if it is free H self-similar, it has stationary increments and T(X7) = 1.

Proof. If {X; : t > 0} is a fractional free Brownian motion. By definition, we have
7(X2) = 1 and 7(X&) = 0. Thus, Xp = 0. Moreover,

(X — Xo)?) = (X2 4 X2 = X X, — X X,) = |t — s|*2, V¢, s € R.

Note that X; — X, is a semicircle element, thus, u(X; — X;) = p(X;—s). Hence,
{X; : t > 0} has stationary increments. For ¢ € R and ¢ > 0, we have

2

r(X3) = =T

It follows that ro = 2CH|¢|H, while r, = 2|t|¥, where r, is the spectral radius of

semicircle element X,. Note that

0, ifk=2m+1,

k =
7(Xz) { m!(%ﬁl)!cmH(é)m, if k=2m, form >0

Hence, 7(XE) = (cF)*sr(XF) = 7((cH X,)F). It follows that pu(Xa) = p(c?X).
Hence, {X; : t > 0} is an H self-similar process.

Conversely, suppose {X; : t € R} is centered semicircle process with 7(X 2) = 1.
Suppose that this process has stationary increments and it is H self-similar. Then
7(X2) = r((t7 X,)?) = ?H. 1t follows that

1
T( X Xy) = ET(X? + X2~ (X~ Xo)P)
1
= §T(X3 + X7~ (Xems)?)
1
= S (P JsPH — (1t = s
Hence, {X; : £ > 0} is a fractional free Brownian motion. O

Let f be a A-valued continuous function on [a,b], we can define the integral

f: f(t)dt as follows. Given a partition T, : @ = o < t; < -+ < t, = b with norm
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ITo|| = max{t;—t;—1 :4=1,2,--- ,n} and intermediates tp < & <, <& < -+ <
tn_1 < & < tn, we have a Riemann sum Ry, = 5. f(&)(t; — ti-1). It is well
known that {Rr, : n = 1,2,---} is a Cauchy sequence in operator norm of A, as
IToll — 0. We define f: f(t)dt as the operator norm limit of { Ry, : n =1,2,---}.

Let f: [a,b] — R be a function and {B, : t € R} be a fractional free Brownian

motion with parameter H € (0, 1]. Define Riemann sum

n
RTn = Z f(ém)(Btt - Bti—-l)’
i=1
for a partition T, : a =t < t; < --- < t, = b with norm
IT.)| = max{t; —t;_y :i=1,2,--- ,n}

and intermediates f < & <#; < & < -+ < by < £y < t,. We define [ f(t)dB,
as the operator norm limit of Riemann sum Ry, = Y ., f(&)(By — By,_,), as
|Tn]l — 0, if this limit exists.

Theorem 5.3.7. Let {B, : t € R} be a fractional free Brownian motion with
parameter H € (0,1], and f : [a,b] — R be continuously differentiable function.
Then, f; f(t)dB; exists and

b b
/ F(0)dB: = f(5)By — f(a)Bq — ] (0Bt

r2

Proof. Since {B, : t € R} is a semicircle process, 7((B, — B,)%) = |t — s]*! =T,
where r is the spectral radius of B; — B, (it is also ||B; — Bs|| ). It follows that
(|B: — Bll = 2|t — s[*”. Hence, t — B, is norm continuous, and fab f1(t)Bdt
exists. Let T : a =ty < -+ < l, = b be a partition of [a,b] with intermediates

to <& <ty <& <ty <-v- <ty <& <ty Then we have

S FEN By = Bu) =Y f(&) By — y_ f(&)Bu,
i=1 i=1

=1
n-+1 n

=Y fl&-1)Bu,—Y_ J(&)Bi,
i=2 =1
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n

=f(&n)Bo = D _([(&) = f(&-1)Buy = J(€) B

By — FE)Ba-+ (F(61) ~ £(@)Ba + (D) — F(E))By
{6 — F(@)Ba + (S0~ F(&)Bo+ 36 ~ F(E)B,
~/(8)Bs — /(a)Ba—Tr, -

where 't is the Riemann éum of Riemann-Stieljies integral f: B.df (t) with
respect to partition T : a = & < £ < +++ < & < &1 = b with intermediates
bo=10 < €& <t < <ty < En <ty = Ensr. Note that |T7]] — 0 as | — 0,
and f: Bdf(t) = fab f'(t)B.dt exists. Hence, let |T'|| — 0, we have
b b
[ 108~ 108y~ 1@ B~ [ 0Bt
O

Theorem 5.3.8. Let {B, : t € R} be a fractional free Brownian motion with
parameter H € (0,1}, A,0 > 0. Then

1. the following Langevin equation
t
Xt:XU—)\/ Xsds 4+ 0By, t >0 (5.3.1)
0
with Xy € Asq has a unique solution

t
X, =eMX, + Ue"’\t/ eMdB,,t > 0,
0

which we call o fractional free OU process.

9. Let Yy be ffoo eMdB, = limp_ fBA eMdB,, then Y, = affoo e Mt-udp,

fort > 0, is a stationary solution to (5.3.1). We call Y (t) defined above a

stationary fractional free OU process.

Proof. (1). For t > 0, we have

t t t E]
hY f X ds = / Ae *ds Xy + Ao / e / eMdB,
0 0 0 0
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1 K]
=(1- e"'\t)Xg + )\U/ e”*s(e)‘sBs — )\/ e)‘rBTdr)ds)
0

0

t ot 8
=(1- e"’\t)Xo + )\0'/ B.ds — )\20/ e‘)‘s/ e B,drds
0 0 0
t t
=(1—e)X,+ )\a/ Byds — /\a/ e B (e — e M)dr
0 0

t
=(1-e)Xo+ /\Ue“’\t/ e B,dr
0

t
=(1-e )Xo +0e(eMB; — / e’dB,)
0

¢
=Xo+ 0B, —e Xy — ae”\t/ e dB,
0

:X()"‘Xt-{‘UBt.

Hence, X, is a solution to (5.3.1). The uniqueness of solutions to (5.3.1) is clear.
(2). Now we show that ffoo eMdB, = lima_. ff 4 €2°dB; exists. In fact,

0 A

lim e**dB, = A lim e M B_.ds.
A—oo [ 4 A—oo Jg

Note that, for A’ > A > 0,
A’ Al A’
I / e MB_dt|| < / e M| X ||dt =2 / e MtHdt — 0,
A A A
as A — oo. Hence,
0 0
Yy = / e**dB, = lim e dB,

—o0 A—oo [_ 4

exists. By (1), ¥; = o [*_ e *¢~%dB, is a solution to (4.1) with initial value Yg.
Now we show that Y, 4 Y,. Note that Y; = ono e dB;,. So it is enough to show
that
0 4 [°
/ e dByyr = / e Mg B,, (5.3.2)
-0 —00

for t € R. First, we show that

/abs(r)dBt_H 4 /abs(r)dBr, (5.3.3)
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for real-valued step function s(r) = Y0 QiX[r_s,m)(r), and a,b,t € R. Since

b n
/ §(r)dBesr = Zai(Bt-{—r.; — Biyr,)

i=1
is a semicircle element, and

b n
T((/ s(r)dBur)?) = D 0:;7((Brett = Broy46)(Bryee — Brj_i41))

7,5=1

1 n
= —2— Z aiaj(ln - ’l"j_1|2H

1,j=1
s — P = frisy = g [P = [ = 75 2)

b
= o(([ s(r)aB.P)

(5.3.3) holds true. By taking limits, we get (5.3.2). Hence, Y} is a stationary

process.
ad
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