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ABSTRACT

FREE PRODUCTS OF OPERATOR SPACES AND  
FREE MARKOV PROCESS

by

Mingchu Gao 

University of New Hampshire, May 2004

Certain (reduced) free product is introduced in the framework of operator 

spaces. Under the construction, the free product of preduals of von Neum ann 

algebras agrees with the predual of the free product of von Neumann algebras. 

This answers a  question asked by Effros affirmatively. An example is presented to 

show th a t the C*-algebra reduced free product of two G^-algebras may be contrac- 

tively isomorphic to a proper subspace of the operator space reduced free product 

of the two C*-algebras.

Free Markov processes are also investigated in Voiculescu’s free probability the­

ory. This highly non-commutative notion generalizes th a t of free Brownian m otion 

and free Levy processes. Some free Markov processes are realized as solutions to 

free stochastic differential equations driven by free Levy processes. A special and 

rather interesting kind of free Markov processes, free Ornstein-Uhlenbeck pro­

cesses, is studied in some details. It is shown th a t a probability measure on M is 

free self-decomposable if and only if it is the stationary distribution of a stationary  

free Ornstein-Uhlenbeck process (driven by a free Levy process). Finally, the no­

tion of free fractional Brownian motion is introduced. Examples of fractional free 

Brownian motion are given, which are based on creation and annihilation operators 

on full Fock spaces. It is proved tha t the Langevin equation driven by fractional 

free Brownian motion has a unique solution. We call the solution a fractional free 

Ornstein- Uhlenbeck process.
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Chapter 1 

INTRODUCTION

A von Neumann algebra is a *-algbra of operators on a Hilbert space, containing 

the identity operator, and closed in the strong operator topology. Some Von 

Neumann algebras appear as group algebras of (infinite) groups and provide an 

indispensable tool for the study of the representations of these groups as well as 

harmonic analysis on them. On the other hand, they provide a m athem atical 

model for the study of infinitely extended quantum  systems (a study in the style 

indicated, first, by P. A. M. Dirac [16]). As a result, the subject of von Neumann 

algebras has undergone an intensive and massive development since its introduction 

in 1929.

F. J. M urry and von Neumann ([41, 42, 43, 46]) showed th a t each von Neumann 

algebra is a “direct integral” over its center of certain von Neumann algebras 

whose centers consist of scalar operators (these von Neumann algebras were called 

factors). The factors were recognized as the key components of the subject. M urry 

and von Neumann separated factors into three basic types: those with a m inimal 

projection, the type 1 factor; those without minimal projections but adm itting a 

functional resembling the trace of a m atrix, the type II factors; and all the rest, 

type 111 factors. The different types of factors are now known to be closely related 

to one another by means of general operations known as “tensor product” and 

“crossed product” by groups. The focus of much research has returned to the 

factors of type / / i  from the type 111 factors (most visible in the von Neum ann

1
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algebra approach to quantum  field theory and quantum  statistical mechanics), 

and to applications of operator algebras to other areas of mathematics.

A factor of type I ly  is hyper finite if it is the weak operator closure of the 

union of an increasing sequence of finite dimensional subfactors of it. This kind of 

type I I I  factors can be realized as the group von Neuman algebra of the group of 

those perm utations of the integers tha t move at most a finite number of integers. 

Another kind of examples of type I ly  factors is the free group factor, the group von 

Neumann algebra of the free non-abelian group on n  (>  2) generators. Murry and 

von Neumann proved in [43] tha t all hyperfinite type I I i  factors on a separable 

Hilbert space are isomorphic to one another. They also proved in the same paper 

th a t the hyperfinite type I I i  factor is not isomorphic to free group factors. One of 

the longstanding (still open) questions in the theory of von Neumann algebras is 

whether free group factors on different numbers of generators are iso­

morphic to one another.

To study free group factors (and answer the question above), Voiculescu intro­

duced and developed the theory of free probability in early 1980s in the context 

of von Neumann algebras. Free probability is one kind of non-commutative prob­

ability theory, where the classical independence is replaced by free independence. 

Independence of random variables, in classical probability theory, corresponds to 

certain tensor product relation of the polynomial rings generated by the variables; 

while free independence is based on the free product relation of the (noncom- 

m utative) polynomial rings generated by random variables. The notion of free 

product of algebras (or groups) existed long time ago. The free product used in 

free probability theory reflects certain topological structures of the algebras of ran ­

dom variables. A special case of such examples can be traced back to [14], where 

W. M. Ching introduced the notion of (reduced) free products of von Neumann 

algebras with traces. Later, it was generalized to C*-algebras with given s ta tes  by

D. Voiculescu in [58]. Some fundamental results were obtained by Voiculescu, e.g., 

the free central limit theorem. In early 1990s, Voiculescu, Ge, Redulescu were able
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to  solve old problems in von Neumann algebras using free probability techniques 

(see [53, 61, 25, 26, 27]).

The study on stochastic processes is a vast research area in free probability. The 

analogues of classical Brownian motion and Levy processes in free probability were 

introduced in 1990s. Voiculescu introduced the concept of free Markov processes 

in 1999 (see [61]). So far. Most of the research work on stochastic processes in 

free probability is on free Brownian motion and free Levy processes (see [1, 3, 

4, 8 , 9, 10, 11]). There is not much work on the general free Markov process, 

which is a focus of our study. In this dissertation, it is shown th a t free Brownian 

motion and free Levy processes are examples of free Markov processes. One of 

our results says that, for a free Markov process, the “future” subalgebra and the 

“past” subalgebra are “conditionally perpendicular” with respect to the “present” 

algebra. We call this “conditional perpendicularity” of the past algebra and the 

“future” algebra a weak Markov property. We proved that, in classical case, the 

weak Markov property is the same as classical Markov property. It is shown th a t 

a stochastic process with weak Markov property has transition functions. The 

transition functions have very similar properties to those of a classical Markov 

process.

Certain free stochastic differential equations driven by free Brownian motion 

were studied by Biane and Spicher in 2001. They showed th a t the free stochastic 

differential equations have solutions, and the solutions have free Markov property 

(see [11]). We consider the similar free stochastic differential equations driven by 

free Levy processes. We proved th a t the equations have solutions. The solutions 

are free Markov processes consisting of random variables with non-compactly sup­

ported distributions. The proof of our result relies on a free Burkholder-Gundy 

type inequality in L^-norm (for the Levy case) proved by M. Anshelevich [1]. A 

similar inequality in operator norm for stochastic integrals with respect to free 

Brownian motion was obtained in [10]. Our results provide a m ethod to find 

examples of free Markov processes with non-compactly supported distributions.
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Biane and Speicher [11] studied the solution to  the following stochastic differen­

tial equation ( a special case of the free stochastic diffrential equations mentioned 

previously)

Xt = Xo-X f  Xsds + St,t> 0, (1.1)
Jo

where A >  0, {S't : f >  0} is a  free Brownian motion, and the initial variable X q 

and {St : t  > 0} are free. They proved th a t the unique solution to (1.1) has the 

following form

Xf = e"^‘Xo + f  t > 0. (1.2)
Jo

The process given in (1.2) is called a free Ornstein-Uhlenbeck process (Briefly free 

, OU process). They also showed th a t its limit distribution is a semicircular law.

Barndorff-Nielsen and Thorbjornsen [4] mentioned free OU processes driven 

by free Levy processes (but there were no details given). In this dissertation, we 

study similar equations to (1.1), driven by free Levy processes. It is proved th a t the 

solution of the equation has the same form as (1 .2 ), a free OU process driven by a 

free Levy process. One of our results says th a t a probability measure on M is freely 

self-decomposable if and only if it is the limit distribution of a free OU process 

driven by a free Levy process. Periodic OU processes were introduced in classical 

probability by Pedersen [49] in 2002, and the class of the stationary distributions 

of periodic OU processes was studied in [50], 2003. In this dissertation, we consider 

the same questions in free probability and obtain similar results to the classical 

case. Fractional OU processes driven by fractional Brownian motion were studied 

recently in classical probability theory (see [13]). We introduce the notion of 

fractional free Brownian motion with examples based on creation and annihilation 

operators on a full Fock space. We show that the equation, similar to (1.1), driven 

by fractional free Brownian motion has a unique solution. We call the solution a 

fractional free 0  U process.

Another research topic in this dissertation is free products in operator spaces. 

The existence of free products in operator spaces was conjectured by Effros (see 

[18]). In this dissertation, we prove the conjecture affirmatively.
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Our ideas of the free product construction of operator spaces can be traced back 

to th a t of operator algebras. W. M. Ching and D. Voiculescu’s ideals for reduced 

free products of operator algebras with given states are based on the free product 

of Hilbert spaces and the GNS construction (see [14, 58, 62, 64]). The free product 

is more or less an algebraic construction. The difficulty arises when operator spaces 

are considered, where any algebraic structure is absent. By [21], an operator space 

may be viewed as the quotient space of the space of all trace class operators on a 

Hilbert space. It is natural to associate the space of all trace class operators with 

certain Hilbert space structure. Based on free products of Hilbert spaces, we give, 

in this dissertation, certain free products of operator spaces, which proves Effors’s 

conjecture mentioned above. In general, free products of C*-algebras (or von 

Neumann algebras) are not nuclear (or injective). It is proved, in this dissertation, 

th a t the reduced free product of operator spaces does not preserve the local lifting 

property, a notion introduced by S.-H. Kye and Z.J. Ruan to characterize the 

pre-dual of an injective operator space (see [19] and [35]). On the other hand, 

operator spaces with the local lifting property have certain property of completely 

isometric embedding into their free product. An example is presented to  compare 

the C'*-algebra reduced free product with the operator space reduced free product 

for two C'*-algebras.

The dissertation is divides into four chapters besides this introduction. Chapter 

two is a chapter of preliminaries. We review in this chapter some basic concepts 

and results in free probability and operator spaces used in the sequel. In Chapter 

three, we deal with certain free products of operator spaces. C hapter four is 

devoted to the study of free Markov processes. Finally, in Chapter five, we discuss 

a special class of stochastic processes—free Ornstein-Uhlenbeck processes.
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Chapter 2 

PRELIMINARIES

We review some basic concepts and results, which are used in the sequel, in free 

and classical probability theory and operator spaces. Certain unbounded oper­

ators affiliated with a von Neumann algebra and operator-valued functions on 

(unbounded) operator algebras will be discussed.

2.1 Free Probability

We refer to [64], [34] and [4] for basics on free probability, operator algebras, and 

unbounded operators affiliated with a von Neumann algebra and the convergence 

of unbounded operators in distribution, respectively.

A non-commutative probability space is a pair (A ,r )  consisting of a unital 

algebra A  over the complex field C, and a linear functional t  on A  with value 

1 a t the unit I  of algebra A . Elements in A  are called random variables. The 

distribution of a random variable A in a non-commutative probability space (A, r)  

is a linear functional on C[x], the polynomial algebra in variable x. The 

linear functional is defined by /x(A)(p) =  r(p(A )), for p in C[xj. Positivity is one 

im portant property for random variables in classical probability. To study the 

positivity for random variables in non-commutative probability spaces, we may 

assume that A  is a unital *-algebra and t  is a state (i. e. r(A*A) > 0, for 

A e  A). The element A*A  is said to be positive, for A £ A. State r  is tracial
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7

if t { A B )  = t { B A ) ,  t  is faithful if t { A * A )  =  0 implies tha t A  is zero. Examples 

of non-commutative probability spaces come from operator algebras on a  Hilbert 

space and the states used are usually vector states. In this dissertation, we always 

assume th a t non-commutative probability spaces are IE*-probability spaces.

A W*-probability space is a pair ( A , t )  consisting of a von Neumann algebra A  

and a normal sta te  r .  Throughout the dissertation, we assume that A  has a sepa­

rable predual and r  is a faithful normal tracial state. Define ||A ||2 == 

for all X  in A . Let L‘̂ ( A ,t )  be the completion of A  with respect to  || ■ H2. Then 

L A {A ,t)  is a Hilbert space with respect to inner product (A, Y ) = r{X Y * ) . Sup­

pose 5  is a subset of A . We use W*(<S) to  denote the von Neumann subalgebra 

of A  generated by S . The classical independence is replaced by free independence 

in free probability. A family {A i : i e  1} of von Neumann subalgebras of A  is free 

with respect to r  if t(A iA 2 • • • A„) =  0 whenever A j €  Ai-, ij €  1, ii ■■■ A  '̂ n 

and r{A j)  =  0 for 1 <  j  <  n  and every n  in N. A family of subsets (or elements) 

of A  is free if the family of the von Neumann subalgebras they generate is free.

Let 6  be a subalgebra of algebra A . A conditional expectation E  of A  onto B  

is a S-bi-module map (that is, E(J5 iAH2) =  B iE (A )B 2 , for A € A, B i ,B 2 € B). 

If S  is a von Neumann subalgebra of a finite von Neumann algebra A, there is a 

unique trace-preserving conditional expectation from A  onto B.

In free probability, freeness with amalgamation seems to be the right replace­

ment of the classical conditional independence. Let H be a von Neumann subalge­

bra of C and T>, C and V  be von Neumann subalgebras of von Neumann algebra A, 

Efi be the trace-preserving conditional expectation from A onto B. We say C and 

T> are B-free (or freely independent with amalgamation) if C and T> are free w ith 

respect to Eg, th a t is, C and V  satisfy the same condition as tha t in the definition 

of freeness (in this case, r  is repalced by conditional expectation Eg) (see [62] and 

[64]).

Note that, when B  =  C l, H-free independence is the same as free independence. 

Freeness, in general, does not imply 6 -freeness, when B A C L
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The freeness of subalgebras can be obtained from free products. Let 

and {A 2 , T2 ) be lT*-probabiIity spaces. Suppose Aq is the algebraic free product 

of A i  and A i- There is a unique tracial sta te  r  on Ao such th a t A i  and A 2 

are free with respect to r  and the restriction of t  on ylj is Tj, j  =  1 , 2 . Let A  

be the weak operator closure of Aq acting on L ^ ( ^ ,  r ) . Then A  is called the 

(reduced von Neumann algebra) free product of A i  and A 2 , denoted by A i * A 2 - 

For example, the free group factor jCp̂  is *-isomorphic to L°°([0,1]) =t= L°°([0,1]). 

Similarly, one may define (reduced C* -algebra) free product of two C*-algebras w ith 

given states (Roughly speaking, the free product is the uniform closure of ̂ 0  acting 

on L ‘̂ {A q ,t)).

In free probability, Gaussian law is replaced by semicircular law. In classical 

probability, Gaussian law is the limit distribution of the normalized partial sums 

of an i.i.d. sequence of random  variables. In free probability, semicircular law is 

the limit distribution of the normalized partial sums of a freely i.i.d. sequence of 

random variables. A semicircle law (or distribution) is a probability m easure on 

R whose density function is

2
'Yc,r{t) — 2 ^  ^)^X[c~r,c+r](l)i

where c and r  >  0 are real numbers. The mean of the semicircular law 7 c,r is c 

and the variance is ^ .

Free Brownian M otion, (cf. [11], [12]) Let { A ,t )  be a lT*-probability space 

with filtration {A t  : t >  0 } (that is, [A t : t >  0 } is a family of von Neumann 

subalgebras of A  such tha t A t Q As, when 0  <  t <  s). A family {S( : t >  0 } of 

self-adjoint operators in {A, r )  is called an {At)-free Brownian motion, if, Aq =  0, 

and, for 0 <  s <  t, S t~ S s  and are free, and S t-S g  has semicircular distribution 

of mean zero and variance t  — s.

Unbounded Operators and Convergence in D istribution. Let { A ,r )  

be a VF*-probability space with A  acting on the Hilbert space H  (=  L '^{A ,t))  by 

left multiplications. A self-adjoint (unbounded) operator A, defined on a dense 

subspace of H, is said to be affiliated with A ,  if all spectral projections of A  lie
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in A . Generally, a closed densely defined operator T  on H is said to be affiliated 

with A , i i T  =  t/A , for some U in A , and self-adjoint operator A  affiliated w ith A, 

where T  = U A is the polar decomposition of T. Denoted by A  the algebra of all 

densely defined and closed (unbounded) operators affiliated with A  (see [6], [34] 

and [44] for details). Elements in A  are again called random variables (in general, 

w ith non-compactly supported distributions).

Let Asa be the set of all self-adjoint elements in A . Given X  in Asa, let C *(X )  

be the unital C*-algebra generated by { f ( X )  : f  G 5G(M )}, where SC '(R ) is 

the space of all bounded continuous functions on R, W *(X )  be the von Neumann 

subalgebra of A  generated by C *(X). Let U\A\ be the polar decomposition of A, 

W *(A) denote the von Neumann subalgebra of A  generated by U and 1E*(|A|). 

For X i e  A , i ^  K  let X i = Ui\Xi\ be the polar decomposition of Xj. The family 

{X i : j e  A} is said to be free if {W *(X t) : i €  A} forms a free family. Similarly, we 

can define freeness with amalgamation for elements in A  (see [64]). We may view 

H  as a subset of A  as given by left multiplication (defined on the dense subspace 

A  o i H). Thus an unbounded random variable X  G A  is given by an element in 

H  (as a  left multiplication operator) if and only if the domain of X  can be enlarge 

to  contain A . In this case, we identify X  with the left multiplication operator 

given hy X  = X  ■ I  in H . We also use ||Ar||2 to denote j|a:||.

The distribution of element X  6  Asa, denoted by /u(X), is a linear functional 

on B C (R ), which maps function /  in BC (R ) to t ( / ( X ) ) .  Let A ,B g  Asa be freely 

independent elements with distributions p(A) and n (B ), respectively. We call the 

distribution p of A -b S  the free additive convolution of p(A) and p.(5), denoted 

by /i(A) ES fi(B ). A probability measure on M is S  (or free)-infinitely divisible, if 

for any natural number n, there exists a probability measure on R such th a t

p =  ffl ■ ■ • ffl /i„ .

n  t im e s

Let /  and g be independent random variables on a probability space ( 0 ,E ,p )  

with distributions p ( / )  and p(p), respectively. The distribution p ( /  -t- (?) of /  -Tp
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is called the convolution of /x(/) and n{g), denoted by jj,{f) * A probability 

measure n  on M is infinitely divisible if, for any natural number n, there is a 

probability measure Hn such tha t

/ i  ”  ^  ‘ ^ ‘

n  t i mes

We use and TV[*) to denote the set of all ffl-infinitely divisible distributions

on R  and th a t of all infinitely divisible measures on R, respectively.

i?-transform. Let g he a. probability measure on R  with all moments finite, 

one may define the Cauchy transform  of /r as follows.

- f c - 1  

fc=0

where Hk is the fcth moment of g,. Let K^^{z) := G~^{z) = We say th a t Rfi{z) := 

Kn{z) —  ̂ is the R-transform  of g. It was proved in [58], [39] and [6 ] th a t  a 

probability measure g G if and only if there exist a finite measure a  on R

and a real number 7 , such tha t

where 4>n{z) = R f^{l/z), R^  is the /?-transform of g, and C"'" is the the set of all 

complex numbers with positive real parts. We call (7 , a) the free generating pair 

of g. In classical probability, g  €  IV {* )  if and only if there exist a finite measure 

a  on R and a real number 7  such tha t

r  j  y f  1
log /^(^) =  *7 ^ +  y^(e'^‘ - l - ^ ) ^ a ( d f ) , z G R ,  (2 . 1.1)

where is the characteristic function of g  (see [55]). Similarly, (7 , cr) is called 

the generating pair of g. The following is another representation of a m easure g  

in IV {* )  (see Theorem 8.1 in [55]):

log fp.{z) =  i ^ z  -  \a z ^  +  [ (e'^‘ -  1 -  izx[~i,i]{t))v{dt), (2.1.2)
z J r
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where 7 ' is a real number, a >  0 and u is a measure on E  satisfying

u({0}) =  0, f  m in{l, <  0 0 . (2.1.3)
J r

This measure v is called the Levy measure of fx. (A measure ^  on E  is a Levy 

measure if it satisfies (2.1.3)). We call {’y ',A ,v )  the generating triple of measure 

y. The relationship between measures a  and v is the following:

v{dt) =  (2.1.4)

We can define the Levy measure of p  G /Z1(S) by (2.1.4). Bercovici and P a ta

[5] defined a bijection A from onto JP (ffl) as follows. For 6  with

generating pair (7 , a), A maps /x to be the measure in X P (S ) w ith free generating

pair (7 , a).

A probability measure /x on R is said to  be free (or self-decomposable if, 

for any c £ (0 , 1), there exists a probability measure /ic on R  such th a t E  /Xc, 

where measure Ddx is defined by Dcp{B) := for Borel set P  C E . A

sequence (an) of finite measures on R is said to converge weakly to a finite measure 

a on R, denoted by cr„ cr if, for all /  in BC'(R),

/  f{t)(Tn{dt) /  f{ t)a{d t),
J r J r

as n  —̂ 0 0 . For A „ ,X  in A a , is said to converge to X  in distribution,

denoted by A„ - i  X ,  if /x(A„) Af(A). Given X ^ X  in is said to

converge to X  in probability, denoted by X„ A  X , if \Xn — X | 0. By [4], 

for X„, X  € Asa, X„ X  if and only if X„ -  X  0, and X„ X  implies 

th a t X„ -i- X . For X, F  G A a , X  =  F  means X  and F  have the same spectral 

distribution.

A family {St : t >  0} of elements in A a  is a free Levy process, if S q — 0, it has 

free increments (that is, S'tj — i — A - i  ^ee, for 0 <  to <  t i  <

• • • <  In), it is stationary ( th a t is, /x(S't+s — Sg) = P'iSt), for s , t  G (0 ,0 0 )) and 

St -i- 0, as t ^  0 (see [1], [3], [4] and [9]).
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A free Levy process {St '■ t >  0} is adapted to the filtration [A t : t  >  0} of A., 

denoted by ^j-free  Levy process, if W *{St) €  .At, for t >  0, and St — S's and .As 

are free, for 0 <  s <  t (see [1]).

2.2 Operator Spaces

For the basics of operator spaces, we refer to [21] and [51].

Let B{'H) be the space of all bounded linear operators on Hilbert space 7i. For 

each n  €  N, there is a canonical norm || • ||„ on Mn{B{H)) given by identifying 

M n(B{H)) with B{H"'). We call this family of norms an operator space matrix norm  

on B(7i). A n  operator space is a  norm closed subspace of B{H,) equipped with the 

operator space m atrix  norm inherited from B{H ). The morphisms in the category 

of operator spaces are completely bounded linear maps. Given operator spaces 

V  and W , a linear map ip : V  W  is completely bounded if the corresponding 

linear maps : Mn{V) —>• M n{W ) defined by <Pn{[xij]) = [^{xij)] are uniformly 

bounded, i. e.

||(p|lc6 =  sup{||<^„|l : n  e  N} <  C O .

A map is completely contractive (respectively, completely isometric, a complete 

quotient) if ||(/5||cb <  1 (respectively, for each n  in N, Pn is an isometry , a quotient 

map).

Let Mr be the algebra of all r  x r  matrices over C, £  be a Banach space, 

br{E) = {T  : E  Mr ; T  is a linear operator and ||T || <  1}, 

b i E ) ^ [ J b r { E ) .
r-GN

W ith S  an element in M n{E), let

ll^llmin =  sup{ ||/„ (5 )|| : /  e  bt{E)) ,  llAIUax =  sup{||/„(A)l| : /  €  5(A)}. 

Moreover, we have

l | 5 | U i „  <  | | 5 | |  <  l l A I U a x ,
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where || • || is an operator space norm on M n{E) (see (3.3.6) in [21]). O perator 

space {E, || • Umin) (or E, || • Umax) IS Called minimal (or maximal) quantization  of

E. Proposition 3.3.1 in [21] states tha t an operator space S  is minimal (i. e. 

||51| =  IlS'llrain, for any S  €  M „ (5 ) ,n  € N) if and only if it is completely isometric 

to a subspace of a  commutative C*-algebra. Moreover, (max E)* = min E* (see 

(3.3.13) in [21]).

Effros and Ruan [21] showed th a t an operator space S  is the dual space of a 

Banach space (in this case, S  is called a dual operator space) if and only if there 

are a Hilbert space 7i and a VE*-homeomorphic and completely isometric m ap p  

from <S into B{H).  Take a unit vector (  € H  as a distinguished vector, we call 

((/?, H , 0  a realization of S .

Recall th a t an operator space S  is injective^ if for operator spaces Wq C W, 

each completely bounded linear m ap <po : kVo S  has a completely bounded 

linear extension (̂  : W  —> <S satisfying ||</?||c6 =  llv'oll cb (see [21]). A von Neumann 

algebra A  C B{'H) is injective if there is a  conditional expectation IT of B{H)  onto 

A . Given an operator space 5 , an injective operator space W  and a completely 

isometry k oi S  into W , we say th a t (W, n) is an injective envelope of <S if there 

is not an injective proper subspace of W , which contains k {S) (see Chapter 15 in 

[48]).

2.3 Classical M arkov Processes

Let (n , p) be a probability space, { /t : t >  0} a family of measurable functions 

from (fl, E ,  p)  into a locally compact Hausdorff space X  with a Borel a-algebra B. 

Define JF<t to be the cr-subalgebra of E  generated by for all Borel subsets

B of A  and s < t .  Similarly, one may define E ^t and E>t. The family { ft  ■ t > 0 }  

is a Markov process if

P{AB\E=t) = PiA\E^t)P{B\E^t),
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for all A  in F<t, B  in F>t, where P{-\F=t) is the conditional probability with 

respect to !F=f Given s < t, x  E X  and Borel subset F C X , we can define a 

transition function P (s, x, t, F) =  P( f t  €  F |/ ;  =  x). Then {f t  '■ t > 0} is a Markov 

process if and only if P (s,a;, t, F) has the following properties(see 8.1.3 and 8.2.3 

in [65]).

1. W hen s, t, x  are given, P{s, x, t, ■) is a probability measure on B;

2. when s, F are given, P (s , •, t, F) is a measurable function on (M, B)]

3. P { s , x , s , r )  = Xr { x ) .

2.4 Operator-Valued Lipschitz functions

A m ap Q : A^a Asa is called Lipschitz (or operator-valued Lipschitz) with respect 

to II • II2, if there exists a  constant C  >  0 such that

k
WQiXu ■ • • , W,) -  Q (Yu  • ■ • , Yk)\\2 < C J 2  (2-4.1)

i=l

for all operators X i,Y i,---  ,Xk ,Yk  in Asa- A. map Q : A'^^ Asa is locally 

Lipschitz (or locally operator-valued Lipschitz) with respect to || • H2, if for all 

M  > 0 there exists constants Cm  > 0 such th a t (2.4.1) holds for all X i, Yi in A a  

with IIAII2 and | | l i ||2 less than  M , 1 < i < k. Similar definitions of (locally) 

Lipschitz maps with respect to operator norm can be found in Section 2.3 in [11].
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Chapter 3 

CERTAIN FREE PRODUCT OF 
OPERATOR SPACES

We study certain free product of operator spaces in this chapter.

This chapter is organized as follows. We give the definition of certain (reduced) 

free product for operator spaces in Section 3.1 (Definition 3.1.2). We show th a t the 

(reduced) free product satisfies Effros’s requirement on the free product of preduals 

of von Neumann algebras acting on separable Hilbert spaces (Theorem 3.1.4). 

Section 3.2 is devoted to the study of the properties of the (reduced) free product 

of operator spaces. It is proved th a t the free product of two operator spaces does 

not have an operator space local lifting property, even if the two operator spaces 

have the operator space local lifting property (Theorem 3.2.4). On the other 

hand, operator spaces with the operator space local lifting property have certain 

property of completely isometrically embedding into their free product (Theorem 

3.2.5 and Corollary 3.2.6). Finally, in Section 3.3, an example is presented to show 

that the C*-algebra reduced free product of two C*-algebras may be contractively 

isomorphic to a proper subspace of the operator space (reduced) free product of 

the two (7*-algebras (Theorem 3.3.1).

15
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3.1 The D efinition o f th e Free Product

In this section, we give the definition of certain (reduced) free product for operator 

spaces and show th a t the free product satisfies Effros’s requirement on the free 

product of preduals of von Neumann algebras.

Let T{7i)  be the space of all trace class operators on Hilbert space H,. 

denotes the algebraic tensor product of Hilbert spaces 7ii and H 2 with H i ® H 2 

the completion of H \® H 2 - For Y a ^ i Xi ®y i  E K ® H  and z e H ,  define Yd=i ® 

yi{z) =  Thus, ® Vi gives rise to a finite rank operator

and thus is of trace class. Hence, H ® H  may be viewed as a  dense subspace of 

T{H) .  On the other hand, T { H )  is the predual of B{H).  Hence, we may identify 

X = ® Vi T ^^H  with the linear functional where is

the vector sta te  on BiJ-L) corresponding to vectors Xi,yi in H.

Given an operator space S,  Proposition 4.2.3 in [21] states tha t there are a 

Hilbert space H  with an orthonormal basis {e  ̂ : z €  A} and a completely quotient 

map ip : T { H)  —> S.  Thus, ip ; H ® H  <S has dense image and

l(p{x(g)y)| <  ||xll • ||j/||,

for x ,y  in H.  Moreover, suppose 5  is separable. Let [Ci ® Cj] =  tp{ei ® 6j) be the 

image of e, ej in <S, for all i , j  in A. We may choose a countable subset Aq of 

A such th a t {[ci (8 > Cj] : i , j  E Aq} spans a dense subspace of S . Let Ho be the 

separable Hilbert space spanned by {ê  : z 6  Aq}. Then ip{Ho®Ho) is dense in S . 

From the above discussions, we have

Proposition 3.1.1. Let S  he an operator space. Then there are a Hilbert space 

H  and a linear map 4/ : H ® H  —» S  such that the image of is dense in S  and 

||4/(x ® y)|l < ||x|| • ||y||, for all x ,y  in H . Moreover, we may choose H  separable, 

when S  is separable.

By Proposition 4.2.3 in [21], is a completely quotient map and tp* : S* 

B{H)  is a dual representation of S* (tha t is, is a weak ^-continuous and complete
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isometry from S* into We use (<S, (p, H,  to denote a tuple of an operator

space S  and a dual representation p  of the  dual space S* on a Hilbert space 7i 

with a distinguished vector or (<S, H,  to denote the tuple, when S* is viewed 

as a subspace of

Let (<Si, 771,^1) and (<S2,772,^2) be such two tuples. Define

w  =  ((7fi,Ci) * (7 f2 ,6 ))® ((H i,e i)  * (7^2,6)).

Let M  be the subspace of W  of all elements Xi<S>yi E W  such tha t

n

'^{> ^h {Ti ) ■ ■ ■ Xi^{Tm )xi,yi) =  0,VTj G 5 * , j  =  1,2,• • -m ,L 7  ̂ • • • 7̂

where ij € { l ,2 } ,m  G N, if m  >  0; \i-^{Ti) ■ ■ ■ Xi^{Tm) =  / ,  if m  =  0, and (•, ■) is 

the inner product in Tf, where (77,^) =  (7fi,Ci) * (7^2,^2)- We define a functional 

on W /A d as follows. For xt <S> Vi] G W / M ,  we define

n  n

:=  s u p { |] ^ ( r x i ,y i ) |  ; T  G O^aM irH <  1},
i=l i~i

where S I  © <S| is the ultra-weak operator topology closure of the linear span C. of

{Ai, (Ti) • • • X i ^  { T m )  ■ T j  G <Sî . , j  =  1 ,2 ,' • -771,L  7̂  ^  i m - i H t  ' ' ’ © m  G {1,2}},

where m  =  0 ,1 ,2 , • • •. First, we should verify tha t the functional || ■ || is well 

defined. Suppose x, © y*] G W / M  is zero, then, by definition,

n  n

T ( [ ^ X i  ©yi]) =  '^ { T x i ,y i )  = 0 ,
i=l 2=1

for all T  E C. Therefore, T '([^]L jX i © yi]) =  0, for all T  e  S^  © since 

Xi © Vi is continuous with respect to ultra-weak operator topology and £  

is dense in 5} 0  S 2 with respect to  this topology. Thus, ||[X)r=i^» ® “  b.

Moreover, it is easy to verify th a t || • || is a norm on W /Ad.

Since © 52 is a norm closed subspace of where H  is the free product

of H i and H 2 , and the completion of W I M  with respect to the norm || ■ j| defined
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above is a norm closed subspace of the dual space of 0  the completion has 

the operator space structure induced from

Now we are in a  position to give the definition of the (reduced) free product of 

operator spaces.

D efinition 3.1.2. Let (<Si,Hi,^i) and {32,^2, ̂ 2) be two tuples. The completion 
of W IM  with respect to the norm 1| • |1 defined above with the operator space struc­
ture described before the definition is called the (reduced) free product of operator 
spaces Si and S2, denoted by {Si,Hi, f i) * (<S2, 7̂ 2, C2)) briefly, by Si * <$2-

The following result shows tha t we can answer the question affirmatively asked 

by E. Effros by the (reduced) free product introduced above.

Theorem  3.1.3. Let {'JZi,u)i,'Hi,f,i) and (7̂ 2,W2, W2, 6 ) be two W*-tuple, and 
(7̂ 1)* and (7̂ 2)* be the preduals of von Neumann algebras IZi and 7I2, respectively. 
Then, as operator spaces,

((7^l)„ Wi,Ci) * ((7^2)*,7^2,6) =  ((7^l,n ;l,7fl,^ l) * (7e2, tU2,7^2 ,6)).- 

Proof. Let {H,C} be the free product of (7^i,Ci) aiid (7̂ 2,■$2),
00 00

'T =   ̂'^xi.Vi ■ Xi, yi € TL, ^^(ll^^ill +  ll îll ) < 0 0 }.
i=l n = l

Let 00 00
e  T  : (A) =  0,VA G 7^},

i=l i=l
where TZ = TZi * 7^2 is the reduced free product of von Neumann algebras TZi and 

7?-2. Then {TZi * IZ2 )* = T jT l^  (see Section 7.4 in [34]). Now we prove tha t the 

reduced free product of (7?-i)* and (77-2)* is jTZ^. Recall tha t £  in the definition 

of free product of operator spaces is the linear span of

( A i ) ■ ‘ ' (Am)  - Aj  G , f  112, • ‘ *, m ,  %i im Ai  1 * * ’  ̂im ^ ( f  ̂  >

where m  G N. Note th a t TZi and 77.2 are unital *-algebras and Xi is ^-isomorphism, 

for i — 1,2. Thus, £  is a unital *-sub-algebra of B{H). Hence, TZi Q 77-2 in
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the construction of free products of operator spaces is the von Neumann algebra 

generated by Ai(7^i) and \ 2 {'R-2 ), th a t is, TZi Q TZ2 = H i * TZ2 - I t follows tha t

(Teo* * (7^2). C  T / n ^ .

On the other hand, for x  = '^Xi,yi €  T ,  let the image of x  in

€ T j H ^  ^  {Jli * and n  e  N, we have [XlILi e  {T^i)* * {H2 )* and

00 n  00
I 5^Wxi,y,(Al) = I W^i,yM)\

1=1 1=1 i = n + l
00 00

< E 11̂*11 ■ s E + i'»P)
i = n + l  i= n 4 -l

^ 0 ,

SiS n  0 0 , VA e T Z i*  H 2 , 1|A|1 <  1. It implies th a t G (7?-i), *

By our Definition 3.1.2, (7^i)**(7?-2)* has operator space structure induced from 

{Jti * 7̂ 2)*- Let A  be a von Neumann algebra on Hilbert space H  with predual A*. 

A* has operator space structure by identifying A* =  T { H ) I A ^ .  By Proposition

4.2.2 in [21], A  is the operator space dual of A*. Furthermore, by Proposition

3.2.1 in [21], the canonical inclusion A , ^  A* is completely isometric. It implies 

th a t A* has operator space structure induced from A*. Hence, (T^i)* * {H2 )* and 

{TZi * 7̂ .2)* have the same operator space structure. □

Remark 3.1.4. Effros asked about the existence of the free product of the preduals 

of von Neumann algebras o f  type H i ,  but our result above answers the question 

affirmatively for  general von Neumann algebras acting on separable Hilbert spaces.

3.2 Local Lifting Property of the Free P roduct

In this section, we define the freeness for a family of subspaces of a dual operator 

space. We show th a t the (reduced) free product of operator spaces does not pre­

serve the local lifting property ( Theorem 3.2.4). It is proved th a t operator spaces
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with operator space local lifting property have certain property of completely iso- 

metrically embedding into their free product (Theorem 3.2.5 and Corollary 3.2.6).

We have known th a t the space O sSj in the construction of the (reduced) 

free product of operator spaces is a  natural generalization of free product of von 

Neumann algebras. As a natural generalization of freeness of von Neumann sub- 

algebras in a von Neumann algebra (see Section 2.1), we shall define freeness for 

subspaces of a  dual operator space.

D e fin itio n  3 .2 .1 . Let : X E A} be a family of W*-closed subspaces of a dual 

operator spaces S  acting on Hilbert spaces 7t with distinguished vectors We say 

S \ ,  A e  A, are free in S  with respect to vector state if

1- TifTi-i ' ' ' E S,\!Ti. E S i-lij  E A , i \  ^  i2 ^  ^  in^n in N;

2. ■ • • T iJ  =  0, ifu^{Tif)  =  € S i . , i j  E A ,i i  ^  i 2 ^  i n ,n  in

N.

Generally, we say that a family {A;  ̂ : Ax E S ,X  E A} is free in S  i f  the W*-closed 

subspaces S \  generated by Ax, A in A, are free in S .

R e m a rk  3 .2 .2 . Let <Si and S 2 be non-zero operator spaces. Let and 5^  be 

the dual operator spaces of S i  and S 2 acting on Hilbert spaces H i and LL2 with 

distinguished vectors and ^2 , respectively. Then and <5̂  are free in 0  S 2 

with respect to vector state .

Proposition 3.2 in [19] states th a t a dual operator space S  is injective if and 

only if there are an injective von Neumann algebra TZ, a projection P  E TZ, and 

a linearly completely isometric and W*-homeomorphic map : S  -^PTZ{I — P). 

Now we prove that, for given injective dual operator spaces Si  and S 2 , there exist 

realizations (ipi, T ti,^ i)  and {(p2 , H 2 , ^2) of S i  and S 2 , respectively, such th a t Si 0 S 2 

is not injective.

T h e o re m  3.2 .3 . Let S i  and S 2 be non-zero injective dual operator spaces. Then  

S 1 Q S 2 is not injective for  some realizations {<Pi,'Hi,f,i) and {g>2 ,'hi2 ,f,2 ) of S i  and 

S 2 , respectively.
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Proof. By Proposition 3.2 in [19], there are H i, H 2 , injective von Neum ann al­

gebras TZi C B{Hi), 7I 2 C B i j i i ) ,  and projections Pi €  TZi,i =  1 , 2 , such th a t

51 = P{IZi{Ii -  P i) ,S 2 =  P2P-2 {l2 — P2 ), where =  means “linearly completely iso­

metric and lP*-homeomorphic” . So, we can assume th a t <Si =  P iH i{Ii  — Pi), 8 2  =  

P2 'R-2 {l2 — A )- Take unit vectors €  Im (P i)  and ^2 G Im (P 2) such th a t there 

is an operator p  G P i  satisfying — Pi)TiPi^i 7  ̂ 0 ,i =  1,2, where Im (P )  is 

the image of operator P . Let and ^2 be the distinguished vectors of H i  and 

H 2 , respectively. Then, Xi^i = 0, for Xi  in S i , i  = 1 , 2 . By the definition of 

reduced free product of von Neumann algebras (see [64]), there are natural repre­

sentations Aj : B{Hi) B{H ), and Xi : P i  ^  Aj(Pj) is normal *-isomorphism, 

i = 1,2. Therefore, we can assume th a t P i  and P 2 are injective von Neum ann 

algebras in B{H), where {H,C) is {H i,^ i)  * ( ^ 2,^2}) and 5 i =  P iP i{ I i  — Pi) and

5 2 =  P27^2(/2  -  P2 ) are free in B{H ).  Thus, S 1 Q S 2 is the lT*-closure of the linear 

span of

{ a l  ; a  G C} U { P ^ I  -  P i , )  ■ • • -  P „ )  : ^ P i „ k ^ - - - ^  i ^ ,  } ,

where ij G {1,2}, m  G N. It is easy to  see tha t S i & S 2 is a unital operator 

sub-algebra in B{H). Proposition 15.15 in [48] states that the injective envelope 

J(<Si O  5 2 ) of S i  O  <S2 is a C*-aIgebra and the natural inclusion from S i  O  S 2 into 

its envelope 2{Si  0  S 2 ) is a complete isometry. Moreover,

I{Si  0  52) = I{Si Q S 2 + {Si O 52)*),

where (iSi O1S2)* =  X  Ei Si  0<S2}. Let 4* : iSi 0<S2 +  (5i QS2)* —*■ P{Si  0 52) 

be the natural inclusion. If 0 ^2 is injective, we have

*h(5i 0  <52) = 4’(5i ©52-1“ (<Si © <52)*) = P{Si O N2).

Therefore, <Si O 1S2 =  >Si 0 <S2 +  (<5i O 52)*, since $  is injective. Thus, Si  © ^2 is 

self-adjoint. On the other hand, we shall prove tha t 5i GS2 is not self-adjoint. In 

fact, we have known th a t ( p  — P i j p P i p  7̂  0. So, ( /  — P i jp P i^  7̂  0, where (  is
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the distinguished vector mT-i = H i *  7^2- On the other hand, P \S i{ I  — Pi)^ =  0, 

for S\  in Moreover,

P2 S 2 {I ~  P2 ) i  =  P2 S 2 {I -  P2 ) ( 6  ® C) =  0 , V52 £ 7^2.

Therefore, if S i  O S 2 is self-adjoint, ( /j  — Pi)TiPi  £ <Si 0  52- Thus, there is a net 

{X a}  C  £  such tha t

X ^ ^ { h - P i ) T i P i .

Then we have

{{h -  Pi)TiPi^,rj)  =  lim(X„e,??),Vr? £ U. (3.2.1)a

By the discussion above, Xa  £  C l  (otherwise, the right side of (3.2.1) is zero, so 

(£  — Pi)T iP i^  =  0, which contradicts the choice of ^). Thus, 0 ^  ( £  — Pi)T iP i  is 

in C L  This is impossible. Therefore, iS 0  «S2 is not injective. □

Recall th a t an operator space S  is said to have the operator space local lifting 

property if for given an operator space Y ,  a closed subspace M  o lY ,  q : Y  - ^ Y / M  

the quotient map, a complete contraction \ S  ^ Y / M ,  and each finite dimensional 

subspace E C S  and e >  0, there is a mapping p' : E  ~ ^ Y  such tha t ||(p'||cfc <  1 + e  

and q o p '  = p \^  (see [4] and [14]). Now we show that S i  * S 2 does not have 

this property for some representations (</?ii Ci) {p2 ,H 2 ,^ 2 ) of S^  and 52, 

respectively, even if both 5 i and ^2  have this property.

Theorem  3.2.4. Let Si and S2 be non-zero operator spaces with operator space 

local lifting property. Then there are realizations { p i ,H i ,^ i )  and {p2 i'P-2 -, 2̂ ) of  

S i  and S 2 , respectively, such that { S i ,p i ,H i ,^ i )  * (^ 2, H 2 , >̂2) does not have

operator space local lifting property.

Proof. Proposition 3.2 in [19] states that an operator space has locally lifting prop­

erty if and only if its dual space is injective. Hence, and S 2 are injective dual 

operator spaces. By Theorem 3.2.3, 0  5 |  is not injective, for some representa­

tions {pi,Hi,h,i)  and (<̂ 2,7^2, ^2)- Now we show that (5i * 5 2 )* =  S^ QS^-  In fact,
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the predual (S* Q S^)^  of 5 j OiSa is T { H ) /M ,  where

A f = { T e  T {H )  : tr{ST )  =  0, VS G S* © S*}, 

by Proposition 4.2.2 in [21]. Note th a t

w  =  ((W i,6 ) * (W2, 6 ) ) ® ( ( ^ i ,6 ) * ( ^ 2, 6 )) C T { 7 i ) ,M  = J \ f n w ,

there is an isometric injection ip : S i  * S 2 ^  {S^ Q S^)*- On the other hand, 

W  is dense in T{'H) with respect to  the trace norm, therefore, W /M .  is dense 

in T p H )lh f .  Hence, S i * <S2 =  T{ 'H )IM  ={S{  0 S2*)*, which does not have the 

operator space local lifting property. □

Given unital (7*-algebras (or von Neumann algebras) A \  and A 2 , it is well 

known th a t there is a *-isomorphism from A \  (or ^ 2) into the free product A i * A 2 

(see [64]). Now we show th a t the free product of operator spaces has a similar 

property under certain conditions.

Theorem  3.2.5. Let ( S ,H i A i )  o-nd (<S2, ^ 2 ,-̂ 2) be two tuples. Given j  =  1 or 2, 

le tS j  be the closure ofVj = {'Pjix) : x  = ^  'bi ĵ®‘b^%Y^1=i{xi,yi) =  0}

in S j ,  where ipj : —> Sj he the completely quotient map (see Proposition

3.1.1). I f  both S i  and S 2 are non-zero operator spaces and Ti^i — 0, for  all Ti in 

S(  and i = 1,2, then there is a complete isometry $1  (or ^ 2 ) from S^ (o rS ^ )  into 

S i  * S 2 .

Proof. W ithout loss of generality, we prove only th a t there is a complete isometry 

from 5i* into 5i=t=52. Define 4>i : Vj —»• «Si*<S2 as follows. For PifYfff^i Xi®yi) G Ifi, 

we define 4>i(</5i(^” ,i ® 1/i)) =  [ S L i  ® ?/*] €  <5i * S 2 , where [x] is the image

of X G 'H^'Si'Hi in W JM ..  We first show th a t this map is well-defined and one 

to one. It is obvious tha t it is one to one, i. e., Pi^fffJl^i Xi ® Vi) — 0 in <Si, if 

E L i  ® 1/i] =  0 in 5 i * <S2. Conversely, suppose 'Pi{YJ(^i Xi ®yi) = 0 in 5 i, now 

we show that Xj ® Pi] = 0 in 5 i * 52- In fact, for Xi ® yi ^  ® H i ,

and Tj G S f ,  ii ^  12 A  ' "  ^  im, ij G {1, 2}, we have
n

' ^ { X i ,{ T i )  ■ ■ ■ Xi^{Trr,)Xi,yi) 
i = l
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=  ^ ( K ( T l )  ■ • • h^^ATm-l){TmXi)\ v)
i —1 

n

+ '^{T m X i,  (Xi^{Ti) ■ ■ ■ 
i = l  

= 0,

if im =  1, m  > 1 and m G N (since Ti^i = 0, for all Ti G S*, i =  1,2), where

(Tx)^  =  T x -  {Tx,^i)^i, for T  G  5? C x  G Hi, Ci is the distinguished vector

and i =  1, 2. Similarly, we have
n

^ { K { T i )  ■ • • Ai„(Tm)xi,yi) =  0 ,

if im 7  ̂ 1 and m  > l , m  G N. It follows th a t X  E C,

where C is the linear span of

C l  U {Ajj(Ti) ■ ■■ \i„,{Tm) : Tj G <S)|,ii 7  ̂ • • • 7  ̂ imHj S {1 ,2} ,m  =  1,2, • • • }.

Hence, J2i=i(Txi,yi) = 0, for all T  e  Q S 2 , the weak*-closure of £ , since

X)”=i ® J /i, as a linear functional on C, is weak*-continuous. Hence, the m ap d/

of Vi into <Si * S 2 is well-defined. Moreover, for x — Xi ® ?/») G V), we have

l | [ ^ X i  ®yi]||5i*S2 =  sup{| Y 2{T x i ,y i) \  : T  E S I  0 S 2 , ||T || <  1}
4=1 4=1

n

=  s u p { |^ r x i ® y i |  : T  E £ , | | r | |  <  1}
4 = 1 
74

=  s u p { |^ r x i ® y i |  ; T  E 5 i,l |T |l  <  1}
4=1
n

4=1
Hence, the mapping $  of Vi into Si * S 2 is an isometry. Therefore, $  can be 

extended to  be an isometry from into 5 i * <S2 . Now we show th a t <I> is a 

complete isometry. Proposition 3.2.1 in [21] says tha t the canonical embedding 

I : 5 i (5i)** is completely isometric. Thus,

Af„(5°) C M „ ((5 i)" )  =  CB{SI, M„),
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where CB{Sl, Mn) is the space of all completely bounded maps from operator 

space (Ŝ  into the space M„ of all n  x n  complex matrices and =  means a linear 

isomorphism (see Section 3.2 in [21]), n  G N. For X  G we have

On the other hand, we have proved that, for ipi{x) =  € Vi,

n

Y ^ { T x i ,y i )  =  0 , 
i = i

if T  £ S I  Q S 2 — Ai(<Si). Hence, we have

=  il‘̂ l(-^)l|cB (B *0 <S2*,M„) =  |l^|lcB(Ai(Si*),M„)

Hence, $  : <Si —> 5 i * 52 is completely isometric. □

By theorems 3.4 and 3.5, we can get the following corollary, which provides a 

kind of examples of operator spaces tha t satisfy the conclusion of Theorem 3.5.

C o ro lla ry  3 .2 .6 . Let 5 i and ^2  be non-zero operator spaces with the operator 

space local lifting property. Then there exist dual representations (v>i,Hi,Ci) o,nd 

Tfi, ^1) of dual spaces and 5 | ,  respectively, such that there is a complete 

isometry from S^ (o rS ^ )  to (5 i, Tii, ^i) * (5 2 , H 2, C2) (see Theorem 3.5 for (or

SI)) .

3.3 A n exam ple

Given C*-algebras A i  and A 2 , we can construct two reduced free products for 

them. One is the C*-algebra free product, the other is the operator space free 

product. A natural question is tha t whether the two reduced free products are 

the same operator space. Moreover, is the free product for operator spaces a
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generalization of free products for C*-aIgebras? In this section, we shall present 

an example to show th a t the C*-algebra reduced free product of two C*-algebras 

may be contractively isomorphic to  a  proper subspace of the operator space reduced 

free product of the two C'*-algebras. So, we see th a t the operator space reduced 

free product is “bigger” than  the C'*-algebra reduced free product.

Theorem  3.3.1. Let Vi and V2 be two dimensional unital C*-algebras. Then 

there are a reduced free product Vi * V2 of C*-algebras V\ and V2 and a reduced 

free product Vi>i'V2 of operator spaces Vi and V2 such that I4  * ha contractively 

isomorphic to a proper subspace of Vi  * V2.

Proof. Let V  be the two dimensional C*-algebra. W ithout loss of generality, we 

can assume th a t V i  =  C * { G i ) ,  the reduced group C*-algebra of group G i ,  where 

i =  1, 2 , and G i == { I , v { \  and G 2 =  { /, '̂2} are two free copies of the group Z2. 

T hat is, {ui, fa} is a free family of unitary operators of order 2. Then the reduced 

free product W * V2 of C*-algebras Vi and V2 is

span{/, Ujj • • • - . L ^ i 2 ^ - - - y ^ i k , i j e  { l ,2 } ,j  =  1,2, ■ • C  ^(/^(Za * Z 2)),

where Z2 * Z 2 is the free product of group Za with itself. The dual space of Vi (or 

V2 ) is

4  =  {x =  ( X I , X 2 )  : X l ,  X 2 G C, ||x|| =  |xi| +  |X2|}.

Since V  is an abelian C*-algebra, by Proposition 3.3.1 in [21], V  is m in /“ , where If'  

is the two dimensional sequence space with l°° norm. Therefore, V* = m a x lj =  

m in l2 =  span{I^u}  C G(T), where C'(T) is the C*-algebra of all continuous 

functions on the unit disk T of the complex plane, I  is the constant function 

I(t )  =  l,V t G T, and u is the generator of C ( T )  (see Section 3.3 in [21]). Let 

H i =  7^2 =  L^(T), we have

V f  Q V f  = span{I, Ui, ■ ■ ■ : ii iz ik, ij G {L 2}, j  =  1, 2, ■ •

d  ■̂ 2̂1
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where u\  and are the generators of free group F 2, “ — W*” means the ultra- 

weak operator topological closure. By the definition of the reduced free product of 

operator spaces (see Section 3.1), the reduced free product Vi*V2 =  {V^ O 1̂ 2*)*- 

Let

S  =  span{«i (8) Mil • • 7  ̂ Z2 7  ̂ e  {1,2},

Moreover, let

M  = { V * Q V ; ) ^
n n

=  { Y . X i ® y i  e  l \ ¥ 2 ) ^ l ‘̂ {¥2 ) : Y .^ A x i ,y , )  = 0,V7l e  y ;  © F ;} .
2=1  2=1

For X =  <S)Ui -̂ ■ e  S  C\ M ,  h  i2 ^  i kJ j  ^  {1 , 2 } and

A  = Ui  ̂ - ■ -Ui^ 6  V{ 0  V2 , we have

A{x)  =  = 0.

Therefore, x  =  0. Hence, we may identity S  with its image in f^(F2)©/^(F2) /A l, 

and regard <S as a subspace of Vi*V2 =  0  F2*)*.

Now we show th a t S  is dense in Vi*V2. By Hahn-Banach Theorem, it is suffi­

cient to show th a t for all A G F̂ * 0  V2 , A =  0 if A(x) =  0, Vx G S .  In fact, let W„

be the closed subspace of /^(F2) generated by

{e,u-{ ■ ■ ^  ik, i j  G {1 , 2},57  G Z, |(ij| < n j  = 1,2, - ■ -k, k < n},

where e is the unit of group F 2, and P„ be the projection from f^(F2) onto W„. 

Given A G Fj* © Fj* with A |s =  0, there is a net

G spcin^I, Ui  ̂ ■ ■ • Uiî  • 1̂ 7  ̂^2 7  ̂ ■ ' ■ 7  ̂ f̂c, L ^  ̂^ 1 , 2 , '  • ■},

for A G A, such tha t lim^ =  A in the ultra-weak operator topology. Let 

Bx = “ A+i ® ■ '“ifc+i G S ,  we have

0 =  0 -Uî  • • • = lim 0  U;, • • -Ui.+J =  fim/1̂ }...,,.
A  A
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Hence, given n 6  N, liniA =  0 uniformly, for k < n. Now, for n € N, and 

7 , 7 ' € W„, where

'T =  T0i A).-,(7A)A\ • • • 4 ' ’
|(5j |<n,/<n 

|(5j|<n,Z<n

we have

|(P„AP„7 ,V)|

=  l i m | ( P „ P A P n 7 , 7 ' )  I
A

k+l<n,ii^ ĵi

^  1 Ai--ifc7(ifc,~l),---,(i)c-(+i,-l)7ii-ifc_,

< Iim su p { |d t..ij3 n ^ /^ ||7 || • llfll : fc <  2n}

= 0 .

It flows that P„AP„ =  0, Vn G N. Note that lim^ P„ =  /  in the strong operator 

topology. Therefore, Ve > 0 and 7 , 7 ' e there are a n € N and 7 „ =

Pn'y,l'„ = P n i  e  W„ such that II7  -  7n|| < e, ||7' -  7̂ l̂l < Hence,

1(^7, 7 ') I =  l(A(7n +  (7  -  7n)),7^ +  [ i  -  ln))\

< 1(21(7 -  7n), (7 ' -  7l))l +  I(2l7n, (7 ' -  7n))l +  1(21(7 -  7n),7')l

< l|2l|| ■ ||7„|| • Il7' -  7;il +  P H  • IIVII • Il7 -  7„11 +  P lle^

<£||A l|(||7 li +  l l7' l l+A-

It implies that (^ 7 , 7 ') =  0. So, A =  0. It follows that S  is dense in Vi * V2 .
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Let S '  = span{e,Vi^ ■ ■ ■ Vi  ̂ '■ i\ ^  h  ^  ik. i j  ^  { l ,2 } ,j  =  1 ,2 , • • -, A:, =

1,2,- • •}. It is obvious that S '  is a dense subspace of Vi * 14- Define a linear 

mapping <I> ; <S' —+ <S by $(e) =  ui ® Ui, <E>(njj ■ - -ViJ  =  ® , for any

■■■ ^  ik, i j  e  {1, 2 }, j  =  1 , 2 , • • •, /c, A; =  1 , 2 , ■ ■ Obviously, $  is bijective. 

For X =  J} ' '  ' '̂ ik ^  <5̂  by definitions,

||x|i =  sup(|(x7,7')|  : 7 , 7 ' G P(Z2 * Z 2), |l7 || <  1, IIt'II <  1}
00

sup{| I . ^  '^h—Ji'^h-'ikji—ji
l=0 ,ik^ji

k —1 00

i=l i=0,ii7 îl

7 =  X ]7 ji- j ,^ j i  • • • , 7 =  ^ • • • ^jk e  ^^(^2  * Z2),

INI <  1,I17'11<1},

and

ll^(x)|| =  sup( ly i (c i> (x ) ) l : y iG y;oy2M l ^ l l < i }

=  sup{l^aii...i,(AWi,,^^,Uii...i^^j)| : A £ V *  0L2MIAH <  1}.

For A  =  Yhf^jr-ii'^h ■ ■ ■ '“ n ^  b, where F is the linear span of

{"Ujj • • • Ui  ̂ i\ ^  12 ^  ik A  j €  {1, 2}, J 1 ,2 ,' • ", A; 1 ,2 ,' • •},

and ||A || <  1, we have

A('F(x)) =

Note th a t

(E i /^ H - i . r )^  =  i i ^ i h F . ) < i i 2i i i < i .

Now, let 7 =  e ,7 ' =  J ]  £ ^^(^2 * ^2), we have

(X7,7') =  II7 II =  1 , lb 'll =  (X ] ^  b

Hence,

sup(jA(<I>(x))j ; A 6  span{ui^ • - • Wtfc /  *2 b  ‘ £ {L 2 },
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Note th a t there is a sequence {An}  of operators in V̂ * 0  with | |^ „ | |  <  1 such 

tha t lim„^oo |^n('^’(a:))l =  |l^(a;)l|. Moreover, for A e  0  V2 C  ||A || <  1, 

by Kaplansky density theorem, there is a net {B \  : A 6  A} of elements in C F 2, the 

group algebra of group F2, such th a t lim^ B \  = A m  the weak operator topology, 

and 11-BaII ^  IjVA G A. Therefore, A(^>(a;)) =  lim ^5 a( $ ( x )). Hence,

||$(x)|i = lim j|5„(^>(a;))||,

for a sequence {jB„} in C F2 with |15„|| <  1. Let ' ' '  '^4

we have

and

It follows tha t 

l|$(x)il =  lim |lH„(d>(x))|i
n —»-oo

<  sup{lA ($(x))| ; A  G span{Ui^ • • • : A ^  *2 • • • 7  ̂ ifcAj €  {1,2},

j  =  l , 2 ,---,fc  =  l , 2 ,- .-} , |lA l | < 1 }

< I W I -

Hence, is contractive, and we can extend d) to be a contractive m apping from 

Vi * V2 into Vi * V2- Now we show th a t d> ; Hi * V2 —> Vi * V2 is injective. For x G S', 

define l|d>(x)||' =  ||xl|. Let S  be the closure of 5  with respect to norm || ■ |1', then  

S ,  as a Banach spaces, is isomorphic to Hi * H2. Now we prove th a t 5  C Vi * V2 - 

For y E S ,  there are G S '  such th a t lim„^oo l|y ~  =  b- Therefore, there

is a X G Hi * H2 such tha t lim„_oo ||x — x„|l =  0. It implies that

\\y -  II =  j j y  -  -  X „ ) I I
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<  11? / -  +  Ik -a ;„ |l

<  | |y - $ ( x „ ) l | '  +  |k - a ; „ | l  

0 ,

as n 0. Hence, <S C Vi * V2- Moreover,

ily||vi*V2 =  ||^k)||v i*V 2 =  lim ||$ (x„)|| <  ||x„|| =  |k ||.
n —»oo

Hence, <I> is an injective contractive mapping from Vi * V2 into Vi * V2.

Now we show th a t $(Vi =t= V2 ) k  H  * V2. Let be the group von Neumann

algebra of group Z 2 * Z 2, then Vi * Vq ^  £^^^2 2 - Now we consider to extend 

to the space £z^*z^. By Theorem 6.7.2 in [34], for each L £  £ 22**2) there is an 

X =  c(ii-ikVi^ ' '  ' ’’̂ ik ^  * Z2) such th a t L  =  Lx- Let

y n  =  Y l  ^ h - i k ' >^ ik+ i  e  4>(Vi * V 2 ) , n  e  N.
k <n

We shall show th a t {y„ : n  =  1,2, • • ■} is a Cauchy sequence in Vi * V2. In 

fact, {Xn =  Yk< n^h-ikV i2 ■ ■ ■ is a Cauchy sequence in f { Z 2 * Z 2), since

X =  lim„__,oo2;„ in the norm of /^(Z2 =f= Z2). Hence, for Ve > 0, there is an N  such 

that (Yki<k<k2 kn-»fcP)^ < whenever N  < h  < ki- Now, for k i , k 2 € N w ith

N  < ki < k2 , and B  = Y ^  span{I,Ui^ ■ • • ; d  k  ^2 7  ̂ • • • k

ik,ij e  {1,2}, j  =  1,2,- • •} C  V}* O V2* with l|Hl| <  1, we have

\B{yk2 - y k 2 )\ = \B ^  Ui_
ki<k<k2

ki<k<k2

ki<k<k2 ki<k<k2

— 1̂1 ' ■ ‘

It implies tha t

\\yk2 - y k 2 W = sup{\B{yk2 - V k 2 )\ ■ B  £ spa n {I ,u ^^ -■ ■ Ui  ̂ : ii i2 7^ ■ ■ ■ ^  ik,
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z , e { l , 2 } ,i  =  l , 2 , . - . } , | | i ? l l < l }

<  e.

So, we can define $(a;) =  lim„_,oo 2/n £ Vi * V2. For x  V2 , there is a sequence

{xn}  of elements in span{I,Vi^ ■ ■ ■ : ii ^  i2 ^  ^  ik ,i j  ^  {1 , 2 }, j  =  1 , 2 , • ■ •}

such th a t lim„ ||a: -  Xn\\Bm(Z2*Z2)) = 0, so, Iim„ l|a: -  Xn\\pri^*Z2) =  0. Hence,

$ (x) =  lim =  lim $(x„) =  <E>(x).
n —+oo n—̂00

Hence, $  is a generalization of $ . Finally, we show th a t is injective. Suppose 

th a t there is an x £ /^(Z2 * Z2) such th a t Lx €  Cz2*i2 ^{Lx)  =  0. Let x  = 

and y„ =  Z l / c < n ‘‘ "“4 ) we have lim„_oo ||2/„1| =  0 . 

Hence, for any ^  ^  B  = uq • - • G O we have

0 =: B{^{Lj,)) = lim By^ = a^o..,
n—^00 ^

It follows th a t Lx = 0, tha t is, $  is injective. Hence, we get

<I>(Vi * V2 ) S  $ ( £ 22*22) ^  Fi * V2.

□
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Chapter 4 

FREE MARKOV PROCESSES

This chapter is devoted to the study of free Markov processes.

This chapter is organized as follows. In Section 4.1, a notion of weak Markov 

processes in Vk*-probability spaces is defined in an explicit way similar to th a t 

of classical Markov processes in probability theory (Definition 4.1.1). We give 

some sufficient and necessary conditions for a process of noncommutative random  

variables to have the weak Markov property (Theorem 4.1.3), which are Parallel 

to those for a stochastic process to have Markov property in classical probability. 

We show that weak Markov processes have certain transition functions. In the 

commutative case, having the transition functions is the same as having Markov 

property (Corollary 4.1.4).

Section 4.2 is devoted to the study of free Markov processes of (unbounded) 

random variables. We prove th a t processes with free additive (or multiplicative) 

increments are free Markov processes (Theorem 4.2.6 and Theorem 4.2.7). I t  is 

shown th a t every free Markov process of bounded self-adjoint operators in a W*- 

probability space is a weak Markov process (Theorem 4.2.8).

Examples of Free Brownian motion were introduced and explored by R. Spe- 

icher [57] and P. Biane [8 ]. Together in [10] and [11], they studied the solutions 

to free stochastic differential equations driven by free Brownian motion. They 

prove th a t the solutions satisfy certain free Markov property with resect to some 

filtration. In Section 4.3, we shall consider similar equations driven by free Levy

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

processes (of bounded random  variables). We prove the existence and uniqueness 

of the solution to this system of the equations (Theorem 4,3.6). We show also th a t 

the solution of the system of free stochastic differential equations is free Markov 

process (in general, of random variables with un-compactly supported distribu­

tions) (Theorem 4.3.8 and Theorem 4.3.9 ). The proof of our result relies on a 

free Burkholder-Gundy type inequality in L^-norm (for the Levy case) proved by 

M. Anshelevich [1]. A similar inequality in operator norm for stochastic integrals 

with respect to free Brownian m otion was obtained in [10].

4.1 W eak M arkov processes

An analogue of the notion of markov processes in non-commutative probability 

theory is the following notion of weak Markov process.

Definition 4.1.1. Let (A, r )  be a W*-probability space, {Xt)f>o a family of self- 

adjoint operators in A . Let A<t — W *{Xs : s < t}, A=t = W*{Xt) and A>t =  

W*{Xg : s > t}. We say {X t  is a weak Markov process (or it has a weak

Markov property) in (A, r ) ,  i f

E=i(AB) -  E=t(A )E=t(B ), VA e  A<t, B e  A>t,

where E=t : A  —> A=t is the trace preserving conditional expectation onto A=t ■

The following result shows tha t, in the commutative case, weak Markov prop­

erty in our Definition 4.1.1 is the Markov property in classical probability. We 

shall show in next section th a t free Markov processes in Voiculescu sense have the 

weak Markov property (Theorem 4.2.8).

Theorem  4.1.2. A family [ f t  ; t >  0} of self-adjoint elements in the abelian 

von Neumann algebra A  =  L°°(Q, .A, P ) is a weak Markov process in sense of 

Defl.nition 4.1.1 i f  and only i f  { /t : t >  0} is a Markov process in classical sense.

Proof. Let f  e  A  ~  L°°{Ct,iF, P )  be a real valued random variable, then

W * ( / ) - L “ ((T (/),B .(/),4 f),
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where W*{ f )  is the von Neumann subalgebra generated by / ,  Ba{f) is the Borel 

algebra on cr(/), and df  (or / / /  ) is the distribution of random variable / ,  and =  

means ^-isomorphism as von Neumann algebras. Let {ft  ■ t < 0} be a  random  

process of real valued random variables in A.  Let = { /  H-®) • B  €  B}, where 

B is the Borel u-algebra on R. Then is a o-subalgebra of JF. Define

Tr ; L ^ { a { f ) ,B , ( f ) ,d f )  -  L ^ (n ,J ^ ^ t ,P )

such th a t Tr{g) =  g o / ,  for 5  G L°°{a{f),Bc{f),df).  It is obvious th a t 7r(^) =  

go  f  e L^{Q.,J^=t,P). Given, g^,g2 € L°°{<y{f),Ba(f),df), x  e Q, and Ai,A2 G C, 

we have

(Ai5i +  A2P2) o f { x )  = A igi(/(x)) -(- X2g2 {fix))^

and

■ 92{f{x)) = {gig2 ){ f{x ) ) ,g i{ f{x ) )  = g{f{x)) .

Thus, 7T is a ^-homomorphism. Moreover, the image of /  (i. e. the spectrum  

of f) is the domain of elements in L '^ (a { f) ,  Ba{f),df). Hence, n  is injective. For 

any simple function s = E^^^AiXSi G L°°(D, .F=t, P ), let g = P‘i=iXiXf(Bi]- Then, 

g e  L°°{a{f),Ba{f),df)  and s — g o f .  It implies th a t the image of t t  is dense in 

L°°(D, P ). Hence, t t  is a *-isomorphism. To prove

=  L °°(D ,P< t,P ),M > t =  L ~ (D ,P > t,P ) ,

we first note th a t A<t is generated, as a  von Neumann algebra, by : s <  t}, 

and we have proved th a t W*{Xg) is *-isomorphic to L°°(D, P=g, P ) . Thus, up to 

^-isomorphisms, we can assume that A<t is the von Neumann algebra generated 

by elements in P=g, P ), s <  t, and it is enough to show th a t P°°(0, P < t, P )

is generated by L ° ° ( D , P), s < t .  In fact, given a sequence t >  si >  S2 >  ■■ ■, 

and B i, 8 2 , • • • 6  H, we have

=  lim Xf-i • ■ -Xf - '  G A< 

Moreover, let 5i =  and

Sj =  f fXBj )  -  H z l f ; : \B t ) ) , j  =  2 , 3 ,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

then OO

i — 1

Hence, for S  6 T<t, Xs  e A<t- Hence, C A<t- Conversely,

it is obvious th a t A<t C (up to ^-isomorphism). Hence, A<t =

L°°(17, J^<f, P ). Similarly, A>t =  P > t,P ) . Suppose {ft ■ t > 0} is a weak

Markov process in sense of Definition 4.1.1, for a lH  >  0, M G T < tiB  G P>f, we 

have XA G A<t, Xb  € A>t. Hence,

P {A B \f t)  = E^tixAXB)  =  E=i(xA )E=t(xs) =  P {A \ft )P {B \ft ) .

It follows th a t random process [ f t  : P >  0} is a  classical Markov process.

Conversely, suppose { ft  : < >  0} is a classical Markov process, by the above dis­

cussion, E = t(PQ ) =  E=t(P)E=t(Q ),V f >  0 , where P ,Q  are projections in A<t and 

A>t, respectively. Thus, for Aj,A( G C, pi G A<t,qi G A>t, and X  = A^Pj, 

V  = KQi^ we have

n n

E = t{X Y ) =  A iA 'E=t(PQ ,) =  Y .  A.A'E=t(Pi)E=t(Qj) =  E=t(x)E=t(H ).
t,j=i *j=i

Note th a t conditional expectation E=t is norm continuous and the linear span 

of all projections is norm dense in a von Neumann algebra, so we have

E=t{AB) = E=t(A)E=t(P),VAl G M <t,P  G A>t-

It follows th a t { ft  '■ t > 0} is a weak markov process in sense of Definition 4.1.1. □

The following result gives some sufficient and necessary conditions for a process 

to be a weak Markov process.

Theorem  4.1.3. Let (M, r) be a W*-probability space. Let {Xt)t>o be a family of 

self-adjoint operators in A .  Then the following are equivalent.

1. The process {ATf : t > 0 }  is a weak Markov process.
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2. For all t  > 0, E<t(A) =  E=t(7l),VA e  A>t, where E<t : A  —> A<t is the 

trace preserving conditional expectation onto A<t ■

3. For all t  > Q, E>t(/1) =  E = t(^ ),V /l e  A<t, where E>t ; A  —>■ A>t is the 

trace preserving conditional expectation onto A>t-

4- For all 0  < s < t, let As,t =  W *{Xr : s < r  < t} and E ,̂* : A<t —̂ v4.<s be 

the trace preserving conditional expectation. Then, Ej,,t(>ls,f) C

Proof. (1) =4> (2) W ithout loss of generality, we can assume th a t von Neumann 

algebra A  acts on the Hilbert space LP‘{A, t ). Then, r  is the vector state  associated 

to identity element I  of A .  Thus, r  is continuous with respect to W OT (weak 

operator topology). Note th a t the linear span C of the set

{ X t ,  ■■■Xt ^:  t j  >  =  1,2, - • • , n , n  =  1,2, - ■ •

is dense in A>t with respect to W OT. If we can prove

E<,(X(, • ■ • X t J  =  E= ,(W , • • • X t j y t j  >  t, j  =  1,2, • - ■ , n, n  =  1,2, • ■ • , (4.1.1)

then, we have E<j(X ) =  E = t(X ),V X  G C. Moreover, for A  G A>t, there is a  net 

{Xa : a  G A} in £  such th a t limAXA =  A, where the limit is in W OT. Hence, for 

B  G A<t, we have

r(E = t(A )B ) =  lim r(E=f(XA)B)
A

=  lim r(E<t(XA )H) =  lim r(XA fi)
A  A

= r(E<t{A)B).

Hence, it is sufficient to show (4.1.1). For tj > t , j  = 1,2, - ■■ ,n  and B  G A<t, we 

have

T(Xt, ■■■Xt„B)^ r{E^t{X t, ■ ■ • Xt„B))

= r(E = t(X t, ■ ■ - X tjE ^ i(H ))
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where the second equality holds because of Definition 4.1.1. Hence,

(2) (1) For any A E A<f, B E A>t  and C  E A=f,  we have

t {ABC)  =  T{CAE<t(B))

=  r{CAE^t{B))  =  T{AE^t{B)C)

= riE ^tiA )E= t{B)C ).

Hence,

E^t{AB) =  E^t{A)E=t{B).

The proof of the equivalence of (1) and (3) is the same as tha t of (1) (2).

(4) (2) It is enough to show that

E < t ( X t ,  ■ ■ • Xt J  €  ^=t, ' i t j  > t, j  =  1,2, • ■ • , n, n G N.

Let u = m ax{tj : j  =  1,2 • ■ • , n}, then Xt, ■ • • Xt„ G A .w  Hence, by (4),

E < t( X t ,  • ■ ■ X t J  =  E , , t ( X t ,  • • • X t J  G ^ = 3 .

(2) => (4 ) I t  is e n o u g h  to  sh o w  t h a t  E s^ t(X rj • • -X r„ )  G v4=s, fo r a ll s  <  Tj <  t .  

N o te  t h a t  X^^ • • • X ^„ G A > a C \ A < u  so  E a,t(X r^  ■ ■ ■ X r„ )  =  E < s(X ,.j • • ■ X j.„) G A = s , 

by (2). □

C o ro lla ry  4 .1 .4 . Lei {X^ : t >  0} be a weak Markov process in W*-probability 

space { A , t ) .  Then the following statements hold.

1 . there is an operator

Xs,t : L°°(E)

for  0  <  s <  t, such that
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(a) ks^t{x,-) ■ r  —̂ ks^t{x,r) = K.s,t{xr){x) is a probability measure on 

^a{x,) for  almost all x  6  (t{X s) with respect to dXg,

(b)  k s , s { x , F)  =  X f {x ),

(c) E<,(^{X t)) =  e  L ^ m .

2. I f  {X t  : t  > 0} is commutative random process of operators in A. (i. e. 

X tX s  =  XgXt, for all t , s  > 0 ), and there is an operator

/C,,t : L ~(R )

for  0 <  s <  satisfies conditions (a), (b) and (c) above. Then, {X t  :  ̂ ^  0} 

is a weak Markov process in sense of Definition 4-1.1.

Proof. By (4) in Theorem 4.1.3, Es^t(^=t) C A=s, for 0 <  s <  t. Note th a t there 

is a ^-isomorphism

7Tt : A ^ t  ^  L°°{(r{Xt),B,^x,),dXt), 

where dXt  is the distribution of Xt  with respect to r .  For 0 <  s <  t, define

ICsAf)(x) = 7r ,E 3,i( /(X t))(x ),V / e  L°°(R),x  E M.

Then, /C,,t : L“ (E) ^  L°°(E) and

E < ,( /(X 0 )  =  7 r ; \ x , , { f ) )  =  x : , , ( / ) ( x , ) ,  V / g l ° ° ( e ) .

This means th a t Xs^t satisfies condition (c). Now we show th a t Xs,t satisfies the 

properties (a) and (b). It is obvious th a t function Xs^t{f){x) is measurable, since 

Xs,t{f)  €  L ~ (a (X ,), dXs). For 0 <  s <  f, x G E , a Borel set F  =  U > i Ft E

B ,F i I ^ F j  =  0 ,V i j , i , j  = V G  G and ks,t{x,F) =  Xs,t{xF){x),

we have

/ Fs,tixF)dXs = [  {Xs,t{xF)XG)dXs =  r(E s ,i(x f (X t))xG (^s))
JG
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=  T{XF{Xt)XG{Xs)) = T (^X F i{X t)X G {X s) )

0 0  OO «

i=l i=l
00n -wAJ

i = i

It follows th a t

1= 1

for almost all re G o'(Xs) with respect to dXg- Moreover,

^s,tXcr(Xs)i^') Fs^s,t{X(r(Xt)i^t}^ix') 1-

Hence, fcs,t(a;, •) is a Probability measure on n(X s), for almost all x  E cr{Xs). This 

completes the proof of (a), (b) is obvious.

Conversely, by Property (c) of operator we have Es,t(M=t) C A=s, for 0 <  

s < t. Now we show that Es,t(Ms,<) C M=s, for 0 <  s <  t. Note th a t As,t is abelian, 

the linear span C of elements in • • ■ Xr„ : s <  r i <  • ■ • <  r„ <  t, n  G N} is 

dense in As,t with respect to W OT. Hence, it is sufficient to show th a t

t {X, ,  ■ ■ ■ Xr^B) =  r ( E = , ( X , ,  • ■ ■ X r J B ) ,

for all B  in M<s. We shall prove it by induction in n. For n  =  1, Fis,t{f ( Xt J )  in 

A=g, for all /  6  L°°(M), since Es,t(M=t) C Suppose E s ,t( / i(X tJ  • ■ • /« (^ t„ ) )  

in A=s, for all / i ,  • • ■ , fn  in L°°(R), s < h  < ■ ■ ■ < t„ < t. Now for / i ,  • ■ ■ , fn-ti € 

) ,s  < ti < ■ • ■ < tn+i < t, and B  E M<s, we have

r i h i X t J  • ■ • /„ + i(W „ ,J ) i? )  =  r ( / i ( W j  • - • /n (X tJE < t„(/„+ i(W „^ J)i? )

=  r i f i i X t , )  • • • (/„ (X < jE < t„(/„+ i(W „^J))i3 )

=  r ( E ^ , ( / i ( W J  ■ • ■ ( /„ (X ,JE < * „ (/„ + i(X ,„ ,J )) )5 )  

=  r (E = ,( /i(X ^ J  • ■ ■ fn{X tJ fn+ l{X t^ ,^)B ).
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It implies th a t Es,t{fi{Xt^) ■ ■ ■ /n+i(-^t„+i)) G we have proved (4) in Theorem 

2.4. Hence, {Xt : t  >  0} is a -weak Markov process in kk*-probabiIity space 

( A t ) .  □

Theorem  4.1.5. Let {Xt : t > 0} be a random process in W* -probability space 

{A^t ). For 0 < s < t, k t  Es,f : A<t be the trace preserving conditional

expectation, and C*t be the untial C*-algebra generated by (X^ : s < r < t} .  I f  

Ea,t{C*t) C  C*{Xs), for a lio  < s < t ,  then the following statements hold.

1. Let Co(R) be the C*-algebra of all continuous functions on R, such that the 

functions vanishes at infinity. For allO < s < t ,  there is a completely positive 

contraction Ĥ t̂ ; C'o(R) —>• C'o(M) such that

A,t  : C((j(Xt)) -  C(a(X,)),

Hs,f(lc(a(Xt))) = lc(a(X,)), VO < S < t,
A .u =  ng,tnt,„,vo < s < t < u ,

and

E ,.t( /(X t))  =  A ,t ( /) (X ,) ,V /  G C (a(X t)).

•2. [Xt  : t > 0} is a weak Markov process.

Proof. It follows from the hypotheses tha t 'Es,t{C*{Xt)) C C*(Xs), ior 0  < s < t. 

Let =  7f̂  o E*,tjc*(W() ° where ttj : C*{Xt) C{a{Xt))  is the canoni­

cal ^-isomorphism from abelian C*{Xt) onto the function algebra C{a{Xt)),  then 

Hs,t is identity preserving completely positive contraction from for C*(cr(Xt)) into 

C*(cr(Xs)). Moreover, define

n.,t(/) =  A ,t ( /o x .( x ,) ) .V /  G Co(R),0 < s < t ,

where Xo-(Xt) is the characteristic function of set <j(Xt). Then Ĥ t̂ ; Cq(R) —> C'o(M) 

is a completely positive contraction. For 0 < s < t < u ,  f E  C(cr(X„)), we have
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n.,„(/) =  TT, o E s M i ^ u ) )  =  TT. O E,,t{Et,uf{Xu))

=  TTsO Es,t O O 7Tt O (E t,„/(X „))

and

~Es,tif{Xt)) =  Es,t o 7 r r '( /)  =  7r ; i  o u , 4 f )  =  n , , ( / ) ( x , ) .

Assume A  acts on the Hilbert space L ^(A ,r), then trace r  is the  vector sta te  

associated with the identity operator in A.  Hence, r  is W OT continuous. To prove 

tha t {X t  ; t  >  0} is a weak Markov process, by Theorem 4.1.3, it is enough to  

show th a t Es_( : As,t W*{Xs). In fact, for A  €  As,t, there is a net A \  G 

such tha t A \  —>■ A  with respect to WOT. Thus, for any B  G A<s, we have

t {AB) =  limr(AAB) =  limr(AAE=s(H))
X X

= r(AE=,(5)) = r(E=,(A)E=3(S)) 

r(E=,(A)H).

Hence, Es_t(A) =  E=^(A) G M=^. By Theorem 4.1.3, process {X t  : t > 0} has 

weak Markov property. □

4.2 Free Markov processes

In this section, we study free Markov processes of (unbounded) random  variables 

in a lT*-probability space. We show that every process with free increments is a 

free Markov process, and every free Markov process is a weak Markov process in 

sense of Definition 4.1.1.

By [61] and [62], we have

D e fin itio n  4 .2 .1 . Let {Xt : t  > 0 } be a family of (unbounded) operators in  A .  

Let A<t be the von Neumann subalgebra o f  A  generated by {A  : A  E W*{Xs)-, 0 <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

s <  i}, A>t be the von Neumann subalgebra generated by {A  : A  E W *{Xs), s > t} 

and A=t = fo r  t > 0. We say that the random "process {X t : t > 0} is a

free Markov Process, if, fo r  t > 0 , A<t and A>t are A=t-free.

We generalized it to a more general case.

D efinition 4.2.2. Given t X t = • • • , Xk,t) e A'^. Let A<t, A=t, respec­

tively, A>t be the von Neumann suhalgebras o f A  generated by {A G W*{Xi^s) • 

0 <  s <  t , i  =  1 , 2 , ••• ,fc}, {yl G W*{Xi,t) : i =  1 , 2 ,- --  ,fe}, respectively, 

{A  : A  E W*{Xi^s), s > t , i  = \ ,2 ,- - -  , fc}. We say random process [X t : t  > 0 } is

a free Markov process, i f  A<t and A>t are A=t-free.

In order to prove th a t every process with free increments is a free Markov 

process, we need the following

D e fin itio n  4 .2 .3 . ([9], Definition f.2 )

1 . A  free additive increments process is a random process {X t '■ t > 0} of 

elements in  Msa such that, fo r  any sequence 0  < ti < t 2 < ■ ■ ■ < tn, the 

elements X t^,X t^ - X t ^ , - - -  ,X t „ -  Xt^_^ o f Asa form  a free family.

2. A unitary process with (left) multiplicative free increments is a fam ily {Ut : 

t > 0 } o f unitary operators in (,A, r) such that, for any 0  < ti < ■ ■ ■ < tn, 

the elements

U t„U t,U {;\--- ,U t^U tt,  

form  a free fam ily in [A, r ) .

L e m m a  4.2 .4 . ([61, Lemma 3.3]) Let I ^  V  C B Q A i , I E A 2 Q A \ be von 

Neumann subalgebras of finite von Neumann algebra A , and fl C A  be a subset 

such that A l and Q are -D free. Let 1 G C C W *(B  U fl) be a von Neum ann  

subalgebra. Then A 2 and C are B-free.

L e m m a  4 .2 .5 . Let X , Y  be self-adjoint operators ajfiliated with a W*-probability 

space {A, t ). Then W * {X + L )  C W *{X, Y ) , where W *{X , Y )  is the von Neum ann  

algebra generated by W *{X) and W *{Y).
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T h e o re m  4.2 .6 . Let {X t : t  > 0} be a free additive increments process ajfiliated 

with a W* -probability space ( A , t ) .  Then {X t \ t > 0 } is a free Markov process.

Proof. Let A<t = W * {X , : s < t} , A=t =  W *{X t}  and A>t =  W *{X^ -  X t  :

s > t} . Then, by Lemma 4.2.5, A>t ~  W*{Xg : s > t}  C W*{A>t U A=t). Thus, 

to prove th a t {X t : t  >  0} is a  free Markov process, it is enough to show th a t 

W*(A>t U A=t) and A<t are A=t free.

First, we show that A<t and M>t are free. Let A<t and A ^ t  be the *-subalgebras 

generated by {/(X ^) ; /  £  jBC(M),s <  t}  and { f{X s  — X t) : f  £ B C (R ) ,s  > t} , 

respectively. Thus, by Proposition 2.5.7 in [64], it is enough to show th a t A<t and 

A>t are free. For M i,• • • , M„ £ A<t and B i,- - -  ,B n  E A>t with r(Mj) =  T{Bi) =  

0 , 1 <  i <  n, we have to show th a t

t {A ,B i - - - A M  = 0. (4.2.1)

In fact, there are 0  < to < ti <■■■< tm = t < si < S2 <■■■< Sk and

/o, / i ,  • • • ) /m, 5ii ■ • • , 9 k E  BC{M)

such th a t Ml, • ■ • , M„ are in the *-algebra B  generated by

{ /0( X i J , / i ( X tJ , - - -  J n iX tJ } .

Lemma 4.2.5 implies th a t 6  is a subset of Ci = W * {X ta ,X t^ -X t^ , • ■ ■ , X t^ - x t^_^}, 

and 5 i ,  • • • ,B n  are in C2 =  VF*{Xs; -  X t,X s^  -  • •• ,X^,, -  X̂ ,̂  J .  B ut, by

Definition 4.2.3, Ci and C2 are free. Hence, (4.2.1) holds true. Therefore, A<t and 

M>( are free. Let V  =  CJ, Mi =  M<t, B  =  M=t and Q, =  M>t. We have proved th a t 

then Ml and W*{Ll WD) = Q, are free (i. e. T> free). By Lemma 4.2.4, A<t =  Mi 

and W* (ULSB) — A>t are M=rfree. □

T h e o re m  4.2 .7 . Let {Ut , ij ^  6 ]" be a umtary pvocess with ^IcftJ Tri'Uiltipliccxiti'VG 

free increments. Then {Ut : t  > 0} is a free Markov process.
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Proof. Let A<t =  W*{Us : s < t } ,  A=t = W *{Ut} and A>t = W *{UsUf^ : s > t } .  

Then A>t =  ^*{U g : s > t} — W*{A>t U .A=(). Let A<t and A ^ t  be the *- 

subalgebras generated by {Xg : s < t}  and {UgUf^ : s > t}, respectively. To 

prove tha t the process {Ut : t >  0} is a free Markov process, by Lemma 4.2.4 

and Proposition 2.5.7 in [64], it is enough to  show that and M>t are free. For 

4 1̂,-•• €  A<t and JBi,--- ,5 „  G A>t with r{Ai) =  r{Bi) =  0 ,1  < i < n,

we have to show that (4.2.1). In fact, there are 0 < Iq < ti < ■ ■ ■ < tm = 

t < Si < S2 <■■■< Sk such th a t A i, - ■ ■ ,An  are in the *-algebra generated by 

[Uto,Ut„--- which is a subset of Cy = W *{U to,U t,U f^,-■ ■ and

B i, • • • , are in Ci = W* = { U s ,U f\  ■■■ , But, by Definition

3.3, Cl and C2 are free. Hence, (4.2.1) holds true. Therefore, A<t and A>t are free. 

By Lemma 4.2.4, we finish the proof. □

T h e o re m  4 .2 .8 . Let {X t : t > 0} be a free Markov process o f elements in Asa- 

Then, {X t : t > 0 }  is a weak Markov process in W*-probability space {A, t ).

Proof For any Iq > 0, let A<to =  W *{X t : t <  io}> •^=«o ~  ^ * (^ < 0) and =  

W *{X t : t > to}. Let be the trace-preserving conditional expectation on A^to- 

For A  E A<tg and B  E M>to, we have

E,„(AB) = E,„((A-E,„(A) + E,„(A))((B -  E,,(B) + E,„(i?)))

=  E,,((A -  EiM )) (B  -  Ei,{B))) + -  Et,{B)))

+  E^„((A -  E i,{A ))^to{B ))  +  E,„(A)E*„(B)

= (E,„(A)E,„((B -  E U B )) )  + Eio((>l -  E,,(A))E,„(B)) 

+ E,„(A)E,„(B) 

= E*„(A)E^„(B),

where the third equality holds true because tha t free Markov property of X^. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

4.3 A Kind of Free SDEs

In this section, we study a kind of free stochastic differential equation (free SDE) 

(4.3.3) and the free Markov property of its solution. We generalize Biane and 

Speicher’s results on free differential equations driven by free Brownian motion 

(see [11]) to  those on free SDEs driven by free Levy processes. On the other hand, 

our results provide a m ethod to get free Markov processes (of random  variables 

with un-compactly supported distributions).

Let ( A ,t ) be a filtered VL*-probability space with filtration {A t  : t >  0 }, in 

which Syt, • • • , Sk,t{t >  0 ), a fc-dimensional A -free  Brownian motion is defined. 

Each Si^t is an A -free Brownian motion, and {5i,t : t  >  0}, • • • , {Sk,t : i  >  0} are 

free in (M, r ) . In [11], Biane and Speicher showed that

T h e o re m  4.3.1. (Theorem 3.1, Proposition 3.3 in [11]) Let Q i,Q 2 , ' "  tQ k ■ 

—* A  be k locally operator-valued Lipschitz functions (with respect to oper­

ator norm) such that each Qi : A^ ĝ  A ,sa /or' all s > 0 . I f  there exist constants

a, 6 €  R  and a > 0  such that
k k

^ ( Q i ( X i , - - .  ,Xfe)A +  A Q i(X i,- - -  ,Xfc) +  l ) < a 5 ^ X f  +  6 , (4.3.1)
i = l  j= l

fo r  all X i , - -  ■ , Xk  e  Asa- Then, given arbitrary initial conditions X ifl 6  Ao{i =

1 , 2 , • ■ ■ , k), the system

dXi^t ~  • 5 Ak^t)dt +  dSi^ti ? =  1, • • • , k , t  > 0  (4.3.2)

has a unique solution X{ t )  =  (Xqt, • • • , Xk,t) for all t > 0 .  Furthermore, we have 

Xi,t e  A  for all i = I, --  - , k , t  > 0 , the maps t  —> Xt^t o-fc norm continuous. 

Moreover, let B<t ~  S'i.s ■ s < t , l  < i < k}, B>t = ~  Si^t ■

s > t , l  < i < k )  and =  W*{Xi^t ■ I < i  < k}, then {B<t, B=u l^>t) is a free 

Markovian triple (i. e., B<t and B>t o,re B~t-free).

It is obvious th a t (4.3.1) is equivalent to
fc k

Y ,iQ ^ { X u  ■ ■ ■ ,Xk ) X i  +  X i Q f X ^ ,  ■■■ , Xk))  < a Y , X ]  + b, (4.3.1)'
i = l  i = l
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for all X i, ■ • • , Xk  E ^sa  and some real numbers a, b and a >  0. In this section,

we consider a  system similar to (4.3.2) as follows.

dXi{t) = , Xk,t)dt + dSi^t, z =  1, • • • , fc, i >  0, (4.3.3)

where {Si^t ■ t  >  0} {i = 1, - ■ ■ ,k )  are Levy processes of elements in

Asa (By [1, Lemma 1], the function t  —+ is continuous in L " { A ,t ), for all

n e  N), and : t > 0}, - ■ ■ , {Sk,t •• i  >  0} are free in {A,r} .  We shall prove 

tha t, under conditions similar to those in Theorem 4.3.1, the system (4.3.3) has a 

unique solution Xt  = {Xi^t, ■ ■ ■ ,Xk^t) G L ‘̂ {A ,t ). Moreover, we shall prove th a t 

{Xt ; t  >  0} is a free Markov process.

L e m m a  4.3 .2 . For 1 < i < k, let Qi : A'l^ Asa be a Lipschitz maps with 

respect to || • ||2, such that Qt : ^s.sa? for  z =  1, • • • , s >  0. Then, given

arbitrary initial conditions Xj_o E Ao, z =  1,2, ■ ■ • ,k , (4.3.3) has a unique solution 

X t = (Xi^f,--- jXft^t) fo r  all t > 0. Furthermore, we have Xi^t G -L^(-df,sa,T) for

all i = I , ..., k , t  > 0  and t Xi^t is continuous with respect to |1 • 1|2 -

Proof. The solution Xi^t to (4,3.3) is a process t —>■ Xi^t E L ‘̂ {AsaX) such th a t

X ,t = X ,f l+  [  Qi{Xi ,s, ---  ,Xk,s)ds + S^ , sXt > 0,1 < i < k .  (4.3.4)
Jo

We use Picard iteration m ethod to get the solution. Since Qi is a Lipschitz func­

tion, there exists C  >  0 such tha t
k

||Q t(X i,--- , X Q - Q i { Y u - - - , Y Q \ \ 2 < C ^ \ \ X , - Y i \ \ 2 ,

for ail Xt, Yi €  Asa, 1 < i < k. Take T  > 0 such th a t k C T  < 1 .  For 0 < t < T , let 

xf°^ =  Xj_o, 1 <  z <  A:, and

Xi,o +  f  Q i { x [ %  • • • , X g ) d s  +  Si,t, n =  1 ,2, - • • . (4 .3 .5 )
Jo

Then, X ^ f  G A,sa and X j; f  E At,sa is continuous with respect to |1 • H2, for 1 <  z < 

k. Assume xf"^(t) 6  L ^(A ,sa ,r) and t —> xf"^ e  L ‘̂ {Asa,T) is continuous with re­

spect to II-112. Then, Qi(X^|{\ • • • , X̂ {̂ )̂ G L ^(A ,5a, t )  and s -> Q i( x j" \  •• • ,Xj^"^)
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is continuous with respect to || ■ H2, since Qi : L?‘{A^t ) is continuous.

It implies th a t = Xi,o + £  ■■■, ̂ ts )d s  + Si,t) E L\At,sa, r) and

t —> t )  is continuous. By induction, X|_”  ̂ E A ,sa and t Xf"^ €

L ‘̂ {Asa,T) is continuous with respect to |  • ||2- Note th a t

| |^ („+1) ^  ^  II /■‘( Q , ( x W ,  . . . , X<” l) -  f t ( X l 7 ' * ,  ■ ■. 4 7 “ ) ) * l b
Jo

< . 4 ”’) - Q . X 7 ' V - -  w £ - ‘')ib<is
Jo

< c  f Y , u t s - x \ : ~ % d s .
do i=l

Let D „ =  supo<f<T E t i  we have

D„ <  kT C D n -i <■■■< { K T C f - ^ D ^ .

It follows tha t is a  Cauchy sequence with respect to  j| • H2, since 0 <

kT C  < 1. Therefore, there exist Xj,( E L ‘̂ {At,sa, r ) ,  for 0 <  t <  T, t == 1,2, • ■ ■ , A;, 

such th a t X yt =  hm„_oo Xf"^ where the limit is taken in the topology of norm 

II • II2. Note th a t Qt : L ‘̂ {Asa,T)^ is continuous with respect to || • H2.

Let n  approach 00  in (4.3.5), we get (4.3.4). Hence, X t =  (X^t, • • • ,X/-_f) is a

solution to (4.3.3), and Xi^t €  L ‘̂ (At,sa,r), for 0  < t < T. Now we show that

t —> Xi^t E L'^{Asa, T') is continuous. For 0 <  s, t, we have

IIX,,  -  ~  v g ’ii, +  ||X<;' -  x l f y  + \\Xu -  x';>ii2

=  l i m  | | X < 7 - X < 7 | l 2  +  | l X , 5 > - X 5 > | k +  l i m  \ I X ^  -  X ^ h
m —»oo

cx>

< 2 ^ ( lc C r)™ (X T C )" -^ D i +  -  x f ”^||2.

Since lim„..^oo =  0, for e >  0, there exists n  such

th a t 00
Y ^ { k C T ) ”̂ {KTC)^-^-Di < e/4.
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Note also th a t t  ^  is continuous. For the above e > 0, and t G [0, T], there 

exists 5 >  0 such th a t <  e/2, whenever, \ t - s \  < 6 . Hence, we have

-  X i,th  < e,

whenever \t ~  s\ < S. It follows tha t t  Xi^t G L‘̂ {Asa,r) is continuous. For 

T  < t < 2T, (4.3.4) can be rew ritten as

X i ^ t  =  X i ^ T  “ b  J  "  1 ^ k , s ) d s  +  Si^ t  —  5 ' i , T -

Let X l ^  = Xi^T and

xin+ i) ^  ^  r  , X^^l)ds  +  -  5 i , T ,  n =  1,2, ■ • - .
J T

As the above proof, we can prove th a t (4.3.3) has solution Xt — (Ai^t, ■ • • , Xk^t)-, for 

T  < t  < 2T. Generally, for t >  0, there exists n  €  N such tha t riT < t  < {n+  l )T.  

Thus, after doing the above process n  times, we get a solution of (4.3.3). Hence, 

by the construction of Xt  =  (Xi_t,--- ,Xk^t), (Ai_t, • ■ • ,Xfc_t) G L ‘̂(At,sa,'>') and 

t Xi^t is continuous with respect to |1 ■ II2.

Uniqueness. Suppose there are two solutions Xt^t and Yt t̂ in L ^ (^sa ,''") (1 <  

i < k). Then, we have

k k

sup V  \\Xi^s -  <  kC t  sup ^
0<s<t ^  0< s< t ^-  -  1=1 — -  1=1

By Bellman-Gronwall Inequality (Lem m a3.2 in [24]), supg<^<t ^ ^ = 1  =

0. Hence, Xt^t =  >  0,1 <  f <  fc. □

Lemma 4.3.3. Let Q : A^^ ^sa be a locally operator-valued Lipschitz function, 

and h : [0 , 0 0 ) —> [0 , 1] be a continuous function with the following property: there 

is a R  > 0 such that hlp.fi] =  1, h\[2R,oo) = 0 and there is a C  > 0 such that 

\h{t) — /i(s)| <  C\t — sj,Vi, s >  0. Let
k

f (Xi ,  ■■■ , X A =  Q{Xu-  • • , Xk)h{J2  Ii^*ll2 ), V2^1, • ■ ■ , Xfc € L^(A,a. t).
i = l

Then f  is a Lipschitz function.
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Proof. The proof is the same as tha t of Lemma 3.2 in [11]. □

L e m m a  4 .3 .4 . Let A  €  L?'{Asai'T) Q -^sa- Then €  L^(Asa,'i^) o.nd ||.4 ||2  =
r(A 2) i/2 .

Proof. There exists a sequence : n  G N} of elements in Asa such th a t 

lim„^oo \\A -  A n \\2 =  0. Let -  Af^ = U^lA^ -  be the polar decomposi­

tion of — A^. Then we have

\\A  ̂-  Al\U = r{Un{A^ -  AD)

^  \T{UnA{A — ^n )) | +  ~  An)AnUn)\

< (1|17„^||2 +  1|c /„ A ||2) P - A I I 2

< (ildll|2 +  ll^nlb)!!^ -  A „ \ \2  

^ 0 ,

as n  —> 0 0 . Hence, A^ e  L ^ ( A , t ). Moreover,

lim |r ( 74  ̂-  A l)\ = lim (lr((A  -  A„)/l)l -t lr(H„(H„ -  ̂ ) ) |)n—»cx5 n—̂00
< lim IIA +  A„||2(||24||2 +  ||j4„ 1|2)n—̂00 
=  0 .

Thus,

IIAll  ̂ =  lim P n l l l  =  lim r(A ^) =  r(A^).n—*-oo n—»-oo
□

To prove the existence of the solution of (4.3.3), we need the following lemma. 

First, we introduce some notions (see [1] for details).

Let A.°P be the opposite algebra of A  (i. e., the von Neumann algebra obtained 

by defining A • B  = B A , for A ,B  in A. and preserving all other operations in 

A ). Given 0 <  H <  • • • <  tn+i < 00 and Ai, f?i, • • • , A„, G A , the function 

U{t) =  Y ^= \A  ® is called a simple bi-process. A simple bi-process

U{t) is adapted with filtration {A t ■ t > 0}, if U{t) E A t ® A°t^, for all f >  0.
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The space of all ^ -a d a p te d  simple bi-processes is denoted by B. For U(t)

E L i ® e define

POO ^

J o  i = i

Denoted by m  the multiplication map A ®  A°^  —> A .  Then m{U{t))  = A i B i ,  if 

U{t) =  E ”=i A ’ ® and U < t  < U+i. Given a  >  0, we may define a

norm
POO p o o

\\U\ka =  ( /  \m s ) \ \ ld s y '^  + all /  m{U{s))dsh,
Jo Jo

for U E B. The completion of B  with respect to || • | |E  is denoted by

Lemma 4.3.5. Let t ^  X t be a continuous function in L ‘̂ { A ,t) ,  {St : t > 0} be 

an At-free Levy process of elements in Asa, r i  =  |r(S 'i)|. Then

max{|| f x , d S s h , \ \  f d S s X M < \ \ X . x m i - ) \ \ ' 2 ,rr 
Jo Jo

Proof. By Proposition 6 in [1], for X t  €  ||/o°°-^s}|dS's||2 <  ||-.^ll2,ri- Thus,

it is enough to show th a t XsX[o,t](s) E , for all t  > Q. In fact, for n  e N ,  let 

Un,s =  y ." -i X ± , y pi-i)t i i J s ) .  Then Un E B  andn [  ̂ ' n'

I |V X M -V „ ll2„

=  < E  +  f " j x . - x ^ ) d s h
* J  — n ‘ J  (t —l)t
i = l  n i — i n

< f ] i  sup W X s - X u W l - Y ' ^  + f ; ^  sup | |X , - X E | 2^

n

sup \ \ X s -  XAihit^^'^ + t)
i = l  0 < s ,s '< i, ls —s '|< ^

~ ^ 0 ,

as n  —>■ oo, where we have used the fact th a t s —> is uniformly continuous as a 

function from [0, t] into L^(A, r ) .  Hence, Xx[o,t](-) 6  B^’’̂'̂ . □
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Theorem  4.3.6. Let Qi : ^sa, (* =  1) ■ ‘ local Lipschitz mappings

with respect to |1 ■ ||2 such that Qi : -4-s,aa; fo r  i =  1, • • • , A;, s >  0, and

there exist constants a, 6 >  0 such that (4.3.1)' holds. Then, given arbitrary initial 

conditions X i^  G .Ao (i =  1,2, • • ■ ,k) ,  the system  (4.3.3) has a unique solution 

X t  =  (X i,f,--- ,Xk,t) f o r t  > 0. Furthermore, we have X ^  Iri L ‘̂ {At^sa,r) for  

i — 1 , - ■ ■ , k , t > 0 , and t Xi^t Is continuous with respect Ao || ■ ||2.

Proof. For R >  0, let Hr  be the function Lemma 4.3.3, and

k

f i i X i ,  ■■■,X,) = Q i{X u ... ,X k )h R iY ^  ll^ ilb),
1 = 1

for all X i , - - -  , X k  6  L'^{Asa,T) &nd I < i < k. By lemmas 4.3.2, 4.3.3, the 

following system

p t

X it  =  XiQ +  f  f i { ^ i , s i  ■ ■ •  )  X k ^ s ) d s  +  Si^t,  1  <  i  <  f c  
Jo

has a unique solution =  (X/^^,--- ,X^ f ) .  Note that, if X^^=i

we have ft  =  Qt, 1 < i < k. So, X ^  is a solution to (4.3.3). Let Tr  =  inf {A ; 

S L i  >  -R}> then X f ’- is a solution to (4.3.3), if A <  Tr . Hence, we shall be

done if we can prove tha t

lim T r  =  CO.
R—*oo

By [1, Corollary 12],

{S , ^ t f =  f dS i ^gS i , s+ [  5,,,d5,,, +  A,,2(A),
Jo Jo

where Xi^2 {t) = limjv-.oo x j -  the limit here is in operator norm
J  > ' N

(see Definition 3 in [1]). By Lemma 2 in [1], (Ai,fc(A) : A >  0} is an At-free Levy 

process. Hence,

d { S l t )  =  dSi^tSi , t  +  Si , tdS^, t  +  d A i ,2 ( A ) .

Let X/^ =  (Xj«j, ■ ■ • , X ^ ) ,  we have

d{{X!^tf) = d(Xlo  +  Xi,o f  Q^{X^)ds)  +  X,,oS'i,f
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+ f  Q(Xs)dsXifl +  i f  Q ( X , ) d s f +  f  Q{X,)dsSi^t 
Jo Jo Jo

+  Si^tXift J- Si^t f  Q {X s )d s  +  (5'j i)^)
Jo

=  +  Q { X ^ ) d t X ^ ,  +  f  Q { X  -  s)dsdX^^,
Jo

+ dSi t̂Xifl +  dSi t̂ f  Q{Xs)ds + Si^tQ{X^)dt +  d{3ff)
Jo

= X^^dX^, +  dX ^,X ^, +  o!A,.2(0 .

Let Z, =  Then,

i=l

+  e -“* j ^ id X f; ,  ■ . dX ^, + (dA,.2 (t)))
i—1

=  - a e - “* ( ^ ( X 5 )2) +  e - “‘ • • • ,

1=1 i~l
k

+  • • • , X « ) )  +  e - “‘ Y .id S i.X ,^ ,  +
*=1

k

+  e -“‘ ^ ( d A , , 2(t)).
t = i

By Lemma 4.3.2, t —> X^^ is continuous with respect to H • ||2- Therefore, Tr  > 0, 

if R  is big enough. Moreover, (f : Yli=i ll^t^tlU >  is open. So, for t < T r , we 

have X^  is a solution to (4.3). Hence, we have

Z  ̂ =  e ^ \ Z l - a  f  e - ^ ^ j ^ i X ^ S d u
do i=l

f  e — ( X ]  M X ^ ,  • ■ ■ > ■ • • , X ^ ^ J )d u
do i = i

f  e - ““ Y "(d 5 ,„A f„  +  X ^JS ,,u )d u  + e“‘ f  e -“  
do " S ' do

4
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<  I  be^^^du +  e“

+  e“‘

pt pt
/  6e - ““dn +  e“* /  

Jo Jo

f  e - ““
<J 0 „•—n

where the inequality holds because of (4.3.1)'. Let r = max{lr(5'i,il '. 1 <  i <  k}, 

we have

r{Ẑ ) < e“‘||Zo||2 + -  1) + e“V( T  e'™
“ Jo i=l

/><

6 '•*
< e “‘ ||Zo ||2 +  -

+  E  l^( f  d5,,„))l
i = i  -^ 0

t ^
<  e“‘||Zo||^ +  - ( e “‘ -  1) +  e“V ( /  e - ““ E ^ ^ i . 2(M))

® Jo i=l

+  e“‘ E l l  r e " ““d5.,„X fJl2 +  e“‘ E l l  /
1 = 1  Jo i=l •'O

t
(e-i _  1) +  e“V ( /  e'-“'‘ E '^ ^ * '2(^̂ ))

•̂ 0 i=l

+  2e“‘ E (  f  llX fJl2e-2 -dn)5  +  2re“‘ V  H f  
Jo ’ i=l 2o

t ^
< e“1 l^o ||2 +  - ( e “‘ -  1) +  e“V ( /  6“““ E

a Jo i=i

+  2 e“‘ sup y \ \ X ,^ u U i t e - '^ " ' 'd u ) " ^ + r  f  e~‘̂ ^du) 
0 <u<t ’ Jo Jo

< e<^ \̂\Zo\\l +  - ( e “‘ -  1) +  e“‘r (  f  e - ““ V
a Jo

+  2 t e “‘ sup { ^ l l X “ |l l) i( (  / ‘ e-"“ du)j + r  / ‘ e - 'd u ) ,
o<u<t 2o JO

where the third inequality holds by Lemma 4.3.5. Let
k

ip{t) =  sup{t(Z^) : 0 <  u  <  i} =  sup E  l l E ‘ll2>
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then we have

t ^
l) +  e“V ( / '  e -““ ^ d A i , 2(u)) 

• 0̂ 1=1

+  2 fc[(-—— )5 + -----   ]^{t)^.
ZO, CL

Note th a t ll-^i^K)ll2 =  R, so maxi<i<fc ||2C,̂ 7ijj||2 >  R /k .  It follows th a t 

^{T ny /^  = { sup X ^ lK J |^ ) ^ /^ > /i : / f c .
0<u<T« ^

It implies th a t

R V k ^  < ^(Tn)
nTa k

■̂0 i=l
^2aTn — 2 — 1) 1

2jCl a

Moreover,

v(T„) -  sup Y ,  l iM J lI  < sup ( ||X »  11,)̂  <  R \
(̂ <u<Tu CL<u<Tn i <

Hence, let r'l — m axr(A i,2 ( l))  ; 1 <  i <  fc, we have

rTn fc

<  M e - T n  +  -  1) ^  II r °  u -“ < iA „(u)|b
R  aR  R ^  Jo

R  aR R  Jo
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rTR f.'iaTji _  1 j.(paTa _  i \
+ r[ e-^^du) +

g2a r f t _ j

<  -  1 )
-  R  ^  aR

A:,. I . , / ,  , 1, — 1x1 r(e“^« —1),

It is obvious tha t map R ^  T r i s  increasing. Thus, if limn-^oo T r  ^  oo, the right 

hand side of the inequality above is upper bounded. On the other hand, the left 

hand side is upper unbounded as R  oo. This gives rise of a contradiction. 

Hence, limfl^oo T r  = oo. We finish the proof of the existence of solution to (4.3.3). 

Moreover, for t >  0, we can take i? >  0 such th a t t < T r , so, Xi^t =  X^^. Hence, 

Xi^t G rX{At^sa,T), and t —> Xi^t is continuous w ith respect to || • II2 , by Lemma

4.3.2.

Uniqueness. This result follows from the uniqueness of solutions to  (4.3.4) 

(Lemma 4.3.2). □

We shall show th a t the solution X t  to  (4.3.3) is a  free Markov process in 

L ‘̂ {A ,t ). By the following well known result, X t  is a free Markov process in 

A .

Lemma 4.3.7. Let { A , t )  be a W*-probability space, L ‘̂ { A ,t)  be the completion 

o f A  with respect to || • H2 and L ‘̂ {Asa,T) the completion o f Asa in L ‘̂ { A ,t) .  

Then, L?‘{ A ,t )  C  A  and L'^{Asa:'T) C  Asa-

Theorem  4.3.8. Under the hypotheses of Theorem 4..3.6, and the condition that 

Q : A  is polynomial of k non commutative unknown variables, the solution

X t = {Xi^t, ■■■,Xik,t) is a free Markov process.

Proof. Let

B<t = W * { X i f l , S t , s - s < t , l < i < k } ,

B>t = W*{Xt^t, Si,s - S i , t : s > t , l < i <  k},

C<t =  W*{Xi^s : s < t , l < i < k } , C > t  = ■ s > t , l  < i < k}.
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and

We want to  show that

C<tCB<t ,C>tQB>t  (4.3.6)

By the proofs of Lemma 4.3.2 and Theorem 4.3.6,

lim \ \ X i ^ t - 0 , 1  < i < k ,
n —*oo ’

where X-°^ =  X i^  €  A), and (n >  1) are defined by (4.3.5). Let H<t = 

t ) .  Then, X o ,t  e  H < t .  Let f i  =  Q i h  (see Lemma 4.3.3 for the definition of 

function h). Assume € B<t, I < i  < k ,s  < t .  Let > X-^^ in norm ||-1|2,

as m  -+ oo, where ^  (I3<t)sa, 1 < i < k. Then, /i(A {“ ’" \ s ) ,  • • • , €

B<ti since Qi is a  polynomial. Note th a t Qi : A a  is continuous with respect

to  II ■ II2. It implies that the || • H2 limit /i(A{"j, ■ • • , x j^})  of • • • , A^™’” )̂

is in H<t, for s <  t, 1 <  i <  /c. Hence,

A g + ' )  =  A , o  +  /  M X [ %  • • ■ , a £ V ^  +  S i ,  G H < i .
Jo

By induction, X-^^ G  H<t- Hence, X i ,  =  lim„_^oo(A\"^) ^  'kC<t- It follows that 

C<t C H<(. For s > t ,

Aj_s — X i ,  +
It

f i { X i ^ u ,  • • • I X k , u ) d u  +  5 s  — St -

By the above proof and the uniqueness of the solutions to (4.3.3), C>t C B>t- 
Now we show th a t B<t and B>t are C=f-free. Note that IT*{Ao, 5s ■ s < t} and 

W*{Su ~ St '■ u > t} are free in {A,r), and C=t C lT*{Ao, 5s : s < t}. By [11, 

Lemma 2 .1],' B<t and B>t are C=t-free. Therefore, C<t and C>t are C=(-free. By 

Definition 4.3.2, Xt is a free Markov process in L'^{A, t ) C A. □

For fe =  1, we can get more general condition on Q so tha t the solution is a 

free Markov process.
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T h e o re m  4 .3 .9 . Under the hypotheses of Theorem 4-3.6, and the conditions that 

fc =  1 and Q : M —>■ M is Borel measurable, the solution X t is a free Markov process.

Proof. We use the same notation (with A: =  1) as tha t in Theorem 4.3.8. Assume 

G 7i<t, then f{Xn,s)  £  B<t, since f  = Qh is bounded measurable function. 

Hence,

=  -^0 +  [  f  {Xn,s)dS + St G H<t.
Jo

The rest of the proof is the same as th a t of Theorem 4.3.8. □
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Chapter 5 

FREE
ORNSTEIN-UHLENBECK
PROCESSES

The main theme of this chapter is the study of free Ornstein-Uhlenbeck processes.

Barndorff-Nielsen and Thorbjornsen [4] established the stochastic integrals of 

continuous functions w ith respect to  a free Levy process, the stochastic integral 

representation of free self-decomposable distribution (see Theorem 6.1, 6.5 in [4]), 

and remarked th a t a possible definition of a  free OU-process driven by a free Levy 

process can be given (but no further details were given). In Section 5.1, We show 

th a t free OU  processes are solutions of a special kind of differential equations we 

studied in section 4.3 (Theorem 5.1.3). Furthermore, we show that, under certain 

condition ((5.1.3) below), a probability distribution on R is free self-decomposable 

if and only if it is the limit distribution of a free OU-process (Theorem 5.1.4). 

Moreover, it is showed that a  probability measure on R is free self-decomposable if 

and only if it is the distribution of a  stationary free OU process (Theorem 5.1.5). 

Section 5.2 is devoted to the study of periodic free OU processes. We show th a t  a 

free OU process defined on the finite interval [0,1] can be extended periodically to 

a  stationary process on the whole real line (Theorem 5.2.1). Moreover, we show 

th a t the class of the distributions of the stationary extensions is bigger strictly  

than  the class of all free self-decomposable distributions, and the class is smaller

59
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strictly than  th a t of all free infinitely divisible distributions on R (Theorem 5.2.3). 

At the end of this section, we give a  characterization for a probability measure on 

R  to  be the stationary distribution of a periodic free OU process in terms of its 

Levy measure (Theorem 5.2.6). Finally, in Section 5.3, the notion of fractional free 

Brownian motion is introduced (Definition 5.3.2), and examples of free fractional 

Brownian motion are given. These examples are given in term s of creation and 

annihilation operators on full Fock spaces. (Theorem 5.3.4 and Remark 5.3.5). We 

show that the Langevin equation driven by fractional free Brownian motion has a 

unique solution. We call the solution a fractional free OU process (Theorem 5.3.8).

5.1 Free QU Processes

In this section, we consider a special case of (4.3.3). Let k = 1, Q i(A ) =  —XX,  

A >  0 and {St : t  > 0} is A rfree  Levy process of operators in Asa- T hat is, we 

consider the following equation

X t = X o - x f  X sds + S t , t > 0 ,  (5.1.1)
Jo

where self-adjoint operator Xq € A q- We call
rt

Xt  =  e-^‘Xo +  /  t >  0
Jo

a, free OU process, where is defined by Theorem 6.1 in [4] (Generally,

we can define free OU process {X t : t  >  0} by the formula above in the case tha t 

{St ; t >  0 } is a free Levy process of self-adjoint operators in A ,  and Xq is affiliated 

with .4o). We show that the free OU  process is the unique solution to (5.1.1) and 

the limit distribution of Xt, as t ^  oo, is free self-decomposable.

L e m m a  5.1.1. Let f  : [a,b] R  be a continuous function. For n  e  N, and a =

tu,o < < ■ ■ ■ < tn,kn = b , a partition of[a,b], let /„ (t)  =  Y a I i

f n { b )  =  f { b )  be a s tep  fu n c t io n  such  th a t  f n { t )  = 4  f { t )  u n ifo rm ly  f o r  t  G [ a , f o j .

Then

lim
n —»oo

11 /  { f { t ) - f n { t ) ) d S t h  = 0.
J a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

Proof. By Lemma 4.3.5, /  — /„  is in ^ 2’“. Hence,

ll/n -  /II2 <  11/n  -  fWLHlafi]) +  k ( ‘S'l)l ' ll/n ~  /IU h M )

<  ll/n -  /|U-([a,fe])(^ -  a ) ( l  +  k (S 'l) l)

— ^  0 0 ,
as n  0 0 , since /„  = t /  on [a,6]. □

The following lemma gives some kind of Fibini Theorem. Some ideas in the 

proof are from the proof of Proposition 35 in [23].

L e m m a  5 .1 .2 . Let f  and g be continuous functions on [a,b],

f'b PS pb pb
X

Then X  = Y .

=  /  9 {s) f  f (u)dSuds,  Y  = f  f {u)  f  g{s)dsdSu-
Ja a Ja

Proof. Step I. We show that

/  udSu =  bSi> - a S a -  f  S J s .  (5.1.2)
J a J a

F o rn  G N and = a + i =  0, ■ ■ • ,2 ” , define /„(t)  =  X )Li

fn{b) =  f{b).  Then /„ (t)  =4 t  uniformly for t € [a,b]. By Lemma 5.1.1,

[  idSt = lim [  fn{t)dSt-/« n—̂oo%/ CL • /  CL

On the other hand.

i = l
2" - l  2" - l
^   ̂ ^  “H bSl)
i = l  i = l
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2n 2  ̂ 2^
i = l

b S ( b )  - a S a -  [  S t d t ,
J  a

as n  —> oo. Hence, we get (5.1.2).

Step II. Let /  =  9 = E != i be step functions on

[a,b]. T h e n X - y .

The proof is the same as th a t of Proposition 35 in [54].

Step III. Let /  be a continuous function, and g = E t= i be a step

function on [a, b]. Then X  = Y .

For n e  M, let { /„  : n  >  1} be a bounded step functions such tha t /„  /  on

[a, 6], and let

^ n =  f g { s )  r  f n { u ) d S ^ d s , Y n  =  f  g { s ) d s d S ^ .
J a  J a  J a  J u

By step II, Xn  =  Yn- I t is enough to show th a t

i i m ( | | x - x „ ||2  +  | | y - y „ | | 2 )  =  o .
n —*oo

In fact,

| | ( X - X „)||2 =  || f  g(s) j  X [ a , s \ ( x ) { f n { u )  -  f { u ) ) d S u d s \\2  
J  a J  a

<  f  l? ( s ) ! - l l  f  X[a,3]{u) i fn{u)  -  f { u ) ) d S u h d s
J  a J  a

< f  \9 is m \fn  -  + |t (S i) || |/„  -  f \ W ) d s
J  a

< f  |5^(a}|d5||/„-/||i«,(l>-a)(H-|r(S'i)|)
J  a 

^ 0 ,

as n  oo. Similarly, lim„^oo l l ^  ~  E II2 =  0. Hence, X  ~ Y .

Step IV. Both /  and g are continuous functions on [a,b]. In this case, let 

9 n  =  E f c i  9 n { b )  =  g{b) such th a t /  on [a, 6], and

X n =  [  3„(s)  f  f{u )d S u d s ,Y n =  I  f {u)  j  gn{s)dsdSy,.
J  a J  a a J  u
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By Step III, By the proof of Step III,

lim ||X  -  X „||2  =  0 , lim IlF -  y„l |2 =  0 .
n —̂ oo n —►oo

Hence, X ^ Y .  □

T h e o re m  5.1 .3 . Let X t = e“ ^^Xo +  dSu- Then t X t is continuous

with respect to |1 • W2 , and X t is the unique continuous solution to (5.1.1).

Proof. I t is obvious th a t t ^  X t is continuous. Moreover,

-A  / X ^du  = e-^'Xo -  Xo -  A / f  e^^dS^ds
Jo J o ' Jo

= e-^'Xo -  Xo -  A /  e^“ /  e^^'^dsdSu 
Jo Ju

= e-^^Xo -  Xo +  f  -  St
Jo

=  Xi -  Xo -  St,

where the second equality holds because of Lemma 5.1.2.

U n iq u en ess . Suppose th a t (5.1.1) has another continuous solution YJ. Let 

Zt = X t -  Yt, then Zt = -A  Jq Zudu. By Bellman-Gronwell inequality, Zt =  0, for 

f >  0. It follows tha t X t = Yt, for t >  0. □

Now we discuss the limit distribution of Xj. Let {St : t >  0} be a free Levy 

process of (unbounded) operators, (7 , a) be the free generating pair of the process 

(see Section 2.1).

T h e o re m  5.1 .4 . I f  the measure a in the free generating pair (7 , a) o f Levy process 

{S t : t > 0 } of (unbounded) self-adjoint operators in A  satisfies

f  log(l +  lt|)cr(c!t) <  0 0 , (5.1.3)
7|t|>i

the limit distribution of X t, as t  00, is ffl self-decomposable.

Conversely, if po is a Si self-decomposable distribution on R, there is a free OU 

process {Xt \ t  > 0} such that the limit distribution o f X t is /̂ q.
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Proof. Note tha t X t = e~^^^Xo +  J* so it is enough to show th a t

the limit distribution of f*  is ffl self-decomposable. Let tn j = j t / n ,

j  =  0 , 1 , . . .,n , r „  =  E ”=1 then T„ by

Theorem 6.1 in [4]. On the other hand,

n

T n  =  “  S ' t - ( t - t n j - L ) )

1=1
n

1=1

1=1

=  E  ( S r „ .  -  A  f  e - » “ d S . .
i . i  I "

Hence, we have

= f  e-̂ d̂Su= f  e-̂ dSuix.
Jo Jo Jo

Let St =  S t / x y t  > 0. It is obvious th a t St is a A -free Levy process. Let (f)u. (̂z) 

be the Voiculescu transform of By [4], A(S't)(0 =  Let (7 , a ) be  the

free generating pair of /ij, then (ty, ta ) is the free generating pair of /J.{St). Hence, 

/i(5 i) =  M S i )  has free generating pair (L7 , Lcr). It follows th a t the finite measure 

L(T in (y7 , ycr) satisfies (5.1.3). By Theorem 6.5 in [4], there is a self-adjoint 

operator X  E A  such that

f  = r  e-^dS^/x ^  X ,
Jo Jo

as t —> 00  and X  has a ffl self-decomposable distribution.

Suppose /i() is a free self-decomposable distribution on R. By Theorem 6.5 in 

[4], there is free Levy process St satisfying (5.1.3) and p(/q°° e~^dSt) =  Po- Let

Xt =  e“‘ /  e*d5.„t > 0 . 
loJo

By the proof above, the limit distribution of X t, as t —> 0 0 , is po- LI
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T h e o re m  5.1.5. A probability measure /x on R xs ffl self-decomposable i f  and only 

if  it is the distribution of a stationary free OU process.

Proof. In [4], Barndorff-Nielsen and Thorbjornsen showed th a t a probability dis­

tribution /X on R  is EB self-decomposable if and only if there is a free Levy process 

(Z j : t >  0 } of self-adjoint (probably unbounded) operators affiliated with a W*- 

probability space (B, t i )  satisfying

I  log(l +  \t\)cr{dt) < oo, .

where (7 , cr) is the free generation pair of p, such th a t p  =  p { j ^  e~^dZ[). Let 

Zt =  Z'^̂ , for t > 0, and Zt = - Z ^ t ,  for t < 0, then {Zt : t  > 0} is a  free Levy 

process. Let [Z t : t  >  0 } be a  free copy of [Zt : t >  0} (i. e, {Z t  : t >  0} and 

{Z t : t > 0 } are free), and let

Zt =  Zt, Vt >  0; Zt =  -Z _ t ,  Vt <  0.

Given a  >  0, a continuous function /  on [—a, a], a partition T  : —a = to < 

ti  < ■ ■ • <  t„ = 0 oi  [ -a ,  0] and Cx in [L-i,L], for x =  1,2, • ■ • ,n . Let ||T|( =  

max{tj — tj_i : X =  1,2, ■ • • , n}.  We have

P f i s  -  a)dZs = f  f(s)dZs+a =
Jo J-a

n  H

i=l

=  fJ-a liniHO ^

=  r / ( - s ) d Z „
Jo

Let Xo =  e'^dZs, then

/ O   pa ^

e^^dZs = lim /  e^“ dZ,
-a Jo
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/>oo ^  poo

=  /  e-^^dZs=  /  e~^dZ\ 
Jo Jo

has distribution /i. Define

X* =  e -"‘(X o +  [  e ^ d Z , ) , t > 0 .  
Jo

Then {Xt  ; i >  0} is a free OU process. Now we show that it is stationary. For 

t >  0 , we have

X t  =  e f  e'̂ d̂Zs + e-"‘ f  e^dZ,
J —OO J  0

= f  \^ d Z ,+ t+  f e " d Z ,+ t=  f  e'^^dz,+ [  e^^dZ,
J —OO J  ~ t  J —oo J —t

/ —t    ^ 0  ^  ^ 0  ^

/  e '^dZ s=  /  =  Xq.

-OO J  —t J  —oo

Conversely, if X t , t  > 0 is a  stationary free OU process, we proved in the 

preceding theorem th a t the limit distribution of a free OU process is free self- 

decomposable, if the limit exists. Hence, the limit distribution of Xt ,  as t  —» oo, 

is the distribution Xt ,  since it is stationary. Hence, the distribution of Xt ,  for all 

t >  0 , is free self-decomposable. □

R e m a rk  5 .1 .6 . From the theorem above, we see that the set 5P(EB) of all ffl self- 

decomposable distributions on R can be described as iSD(ffl) =  { the distributions 

of stationary free OU processes }.

5.2 Periodic Free QU Processes

In this section, we consider free OU processes in an interval. We extend them  

periodically to the whole real line. We show th a t the periodic free OU process is 

stationary. We also give a characterization of the stationary distribution in term s 

of its Levy measure.

Given a free Levy process [Zt : t > 0}, consider the following Langevin equation

dXt = ~ cX td t + dZ t,t  G [0,1], Xo =  X i. (5.2.1)
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It has a unique solution

‘ ( X o +  r e “ d Z , ) , t e  [ 0 ,1 ] ,
Jo

w h e r e  X q  =  J q e'^^dZg.  L e t  X t + k  =  X t ,  f o r  t  G [0 , 1 ] a n d  fc G  Z .  T h e n

{ X t  G M }  is  a  p e r i o d i c  p r o c e s s .  S o  w e  c a l l  { X t  : f  G  [0 , 1 ] }  a  p e r i o d i c  f r e e  O U  

p r o c e s s .

T h e o r e m  5 . 2 . 1 . T h e  p r o c e s s  { X t  ; f  G  M }  d e f i n e d  b y  X t + k  =  X t ,  f o r  t  G  [0 , 1 ] 

a n d  k  i s  a  s t a t i o n a r y  p r o c e s s  ( i .  e . ,  X t  =  X o ) .

P r o o f .  F o r  t^  e  [0 , 1 ] , w e  c o n s t r u c t  a  n e w  p r o c e s s  { Z f  : t  G [0 , 1 ] }  a s  f o l lo w s .  F o r

t e [ 0 , 1 ],

7*0 _  /  Xt+to — Zto, if t  < 1;
I  +  Xt+fi-i, if t + >  1.

N o w  w e  s h o w  t h a t  { Z f  : t  G  [0 , 1 ]}  i s  a  f r e e  L e v y  p r o c e s s .  C l e a r l y ,  Z ^  =  0 . F o r

0 <  U <  1 -  i*’ <  ^ 2  <  1, we have . t̂2 +*o_i =  Z)l -  Zf_^o, Zto -  Zt.,+to-i, Zf  ̂ =

Zt,+t<y ~  Z t o ,  Z i  -  Z t , + t o  =  Z f _ ^ o  -  Z l l  a r e  f r e e .  T h u s ,  Z ^ l  -  Zf^ =  -  Z f _ ^ o  +

Z f _ , o  ~  Z l l  a n d  <  =  Z t , + t ,  — Z t o  a r e  f r e e .  H e n c e ,  { Z f  : t  G [0 , 1 ] }  h a s  f r e e

i n c r e m e n t s .  M o r e o v e r ,  f o r  0  <  U  <  1  ~  ^  l i  w e  h a v e

f i i z l l  -  z f j  =  f i { Z t , + t o - t  +  Z i -  Z t , + t ^ )  =  l i { Z t , + t < ^ - i )  ffl t i { Z i  -  Z t , + t o )

= fi(Zt^+to-i) a  fx(Zi t̂i-t^) = h(Zt2 -  2i-to) ffl/x( î-to -  -̂ ti)

=  k-iZti ~  Xtfij = p{Zt2-ti)-

H e n c e ,  { Z f  : t  G [0 , 1 ] }  h a s  s t a t i o n a r y  i n c r e m e n t s .  M o r e o v e r ,  l e t  U  =  0 , w e  g e t  

Z j l  =  Z t 2 ,  ( o r  I  — <  t2  <  1 . I t  i s  o b v i o u s  t h a t  Z f  =  Z t + t o  "  X t ,  f o r

<  t  <  I  -  t^.  H e n c e ,  Z f  =  Z ( ,  f o r  t  G [0 , 1 ] .  I t  i m p l i e s  t h a t  { Z f  ; t  >  0 } i s  a  f r e e  

L e v y  p r o c e s s .  N o w  w e  s h o w  t h a t

 L _ _  f  mod ^  |-Q̂
( — e J q

/•I
Xt+t°

where

X  mod 1 =
x  + 1 , if —1 < a; <  0, 
X,  if a: G [0,1].
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For 0 <  t <  1 — we have

(1 -  e-")X(+to =  /  ^e“ dZ,
Jo Jo

H + t°

Jo

=  /  +  /  e- "̂(‘+‘”)e-'=e'="dZ
io  t̂+t®

=  e-(^+ ‘“)e-e^(^+‘“)dZ f + e“ dZ,
I t
r t+ t°

+ /  e-"(‘+*°>e“ dZ
Jt<!<0

r  ‘ e -^ e -^ e '^ d Z f  +  f
J t Jl~tof t

d Z f  +  I  e - ^ ^ e ^ ^ d Z f= t  ' e-̂ ê-̂ êdZf + t  e-'̂ ê-̂ êdzf + /
i t  i l - to  ^0

=  ^  e-"*e-"e“ d Z f +  e~^e^^dZf

= f  .
Jo

For t >  1, we have

f \ - c { t - s )  m odl^^to
Jo

= f  ‘ e"<'-*)dZ,+,o + f  + f  e-‘=('-^)e-=dZ,_(i_jo)
Jo Ji-t° Jt

=e~̂ \ t  ‘  ̂ f  e“ e^(i-‘“̂ dZ,)
JtO Jo Jt-{l-t°)

f l  ft° i‘t—{l—t°)
-c ( t+ t '> )n  e ^ ^ d Z s +  e ^ ^ d Z s  +  e^  e<^^dZ,)

Jt° Jt-(i-t°) Jo

/Jo
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On the other hand,

f>i

Hence,

(1 -  e-^)Xt+to -  (1 -  e-^)Xt+to-i =
Jt+t°-i Jo

Xt+to =  t  ^ d z f ,  \/t, €  [0,1].
1 -  Jo

It follows th a t

1 -  e Jo 

1 -  e <̂ 70

Vt, G [0,1]. Let t =  0, we get X^o =  Xq, for all G [0,1]. Hence, { X t  : t G  M} 

is a  stationary process. □

Let c >  0, [Zt : t  G [0 ,1 ]}  be a  free Levy process and {X^ ; t  G [0 ,1 ]}  b e  the 

periodic free OU process determined by c and [Zt : t  G [0 ,1]}  (i. e., X t  is the 

solution to (5 .2 .1 )) . We call fi{Xo) =  /ô  stationary distribution

of periodic free OU process { X t  : t  G [0 ,1 ]} . Note that

[ \ '^ ^ d Z ,)  = f ,{ fe ^ ^ d Z { ) ,
-  1 Jo Jo

where Z{ =  is a free Levy process. So we have the following proposition.

Proposition  5.2.2. For c ^  0, let I{c ) be the set of all jj,{jg e^^^dZ^), where 

{ Z t ,t  G [0 ,1 ]} , is a free Levy process. Then, given c > 0, X{c) is the set o f  all 

stationary distribution of periodic free OU processes determined by c and a free 

Levy process.

Given a distribution /Xq G  IP (ffl) , by [5] or [4], there is a unique /x' G 

such th a t A(yu') =  /x, where A is the bijection between XT>{*) and XT>{S). By 

Theorem 7.10 in [55], there is a bijective correspondence between infinitely divisible
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laws and Levy processes in law, if we identify all Levy process with the same margin 

distributions. Hence, there is a classical Levy process such th a t p(2^i ) =  iZ■ By 

[4], there is a free Levy process Zi such tha t n{Z i) — (jLq and fi{Zt) = 

for all t  >  0. Thus, given, c >  0, we can define a map $c from XT>(Si) into T(c)

such th a t ^’c(mo) =  Jo e^^dZg) in J (c ) , for /xq =  XX>(EB). We shall

show soon tha t is bijective.

T h e o re m  5.2 .3 . For c > 0, we have

1. I f  jii and p 2 in dl{c), /xi ffl //2 is in I{c).

2. Let a,b be in R and {Z t : t  €  [0,1]} be a free Levy process, then ii(a  +

6 f j  e^dZs) is in 1 (c).

3. ^^(EB) g  J (c ) and =  f]n>iZ{cn), ifO 7  ̂ c„ G R and lim„_oo c„ =  0 0 .

4- I{n c )  C I{c ), for all n  G N. T{—c) = T{c).

5. 4>c : —>■ I[c ) is one to one.

Proof. (1). Let /xi and p 2 be in 1(c). We may choose two free Levy processes

{Z/ ; t G [0,1]} and {Z f  ; t G [0,1]} such tha t

Pi =  p( p2 =  m( r e“ dZ^),
Jo Jo

and ; t G [0,1]} and { Z f  : t G [0,1]} are free. By the definition of integral 

Jg e^^dZj {j = 1,2) (see Theorem 6.1 in [4]), W *(fJ  e‘̂ dZJ) C W *{Z( : t G [0,1]), 

j  =  1,2. Hence, p i ffl p 2 =  m(JJ e^^d(Zj +  Z f)). To show th a t p i ES p 2 €  iZi(c),

it is enough to show that {Z^ + Z f  : t & [0)1]} is ^ free Levy process. For

0 <  ti <  t2 ^  1) we have

p(Z 4 +  z l  -  { Z j  + Z D ) = p((Z4 -  Z\f) +  { Z l  -  Z D )

=  p ( 4 _ J S p ( Z 2 „ J  

=  p ( Z ,U  +  Zf^_ J .
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Thus, Z} +  Z f  has stationary-increments. Now we show that, for 0 <  < ■ ■ - tn <

1, { Z l  +  Z l ) -  ( Z t  ̂  +  Z I J ,  { Z l  + z l  ) - { Z l +  z l ) and +  Z l  are free. 

In fact, let A i j  = W*{Zj. — Z l_ J ,  for i =  2,3, • • • , n  and j  = 1,2, = W *{Zi),

j  = 1,2. Then, the von Neumann algebra

=  - , n , j  =  1,2)

= W * { W * { A , i  : z =  1 , 2 ,  • • • , n ) ,  W * { A , 2  : z =  1 , 2 ,  - - • , n ) )

= i y * ( A , i  : z  =  l , 2 , - -  - , n ) * l T * ( ^ , 2 : z - l , 2 , - -  - , n )

* i= l ,2 ," ',n ; j= l ,2  A ij-

H e n c e ,  A \ ^ i ,  • • • , ^ n , i ,  v 4 g 2 ,  • • • , A i , 2  a r e  f r e e .  I t  f o l l o w s  t h a t  { Z l  +  Z l )  — { Z l _ ^  +

z l J  e  i T * ( A . i ,  A , 2 ) ,  • • • ,  {Zl  +  Zl) -  {Zl  +  Zl) e  i r * ( A , i ,  A . 2 )  a n d  z l  +

€  W * { A i ^ i ,  A i f i )  a r e  f r e e .  M o r e o v e r ,  Z l  +  Z^^ ^  0 , a s  t  —^ 0 , s i n c e  a d d i t i o n  o f  

t w o  e l e m e n t s  i n  A  i s  c o n t i n u o u s  w i t h  r e s p e c t  t o  t h e  m e a s u r e  t o p o l o g y  o n  A  ( s e e  

[4 ] ) .  H e n c e ,  Z /  +  Z l  i s  a  f r e e  L e v y  p r o c e s s ,  a n d  p i  ffl p 2  G T ( c ) .

( 2 ) .  G i v e n  a  G M , l e t  Z “  =  f o r  t  >  0 . T h e n  Z t  i s  a  t r i v i a l  f r e e  L e v y

p r o c e s s ,  a n d  e^^dZg  =  a l .  I t  f o l l o w s  t h a t  / z ( a / )  — 5 a ^  Z { c ) .  G e n e r a l l y ,  f o r  

0  7^ 6 , a  G  E ,

l i { a l  +  b  f  e ^ d Z s )  =  f J . { f  e^’̂ d { Z ^  +  b Z ^ ) ) .
J o  J o

I t  i s  o b v i o u s  t h a t  ( Z “  +  b Z ^ )  i s  a  f r e e  L e v y  p r o c e s s .  H e n c e ,  A a l  +  b  e '^^dZs)  G

J ( c ) .

( 3 ) ,  ( 4 ) a n d  ( 5 ) .  L e t

T { c )  =  { /z (  /  e ’̂ d Z g )  ; { Z t  : i  G [0 , 1 ]}  i s  a  c l a s s i c a l  L e v y  p r o c e s s } .
J o

W e  s h o w  f i r s t  t h a t  A ( I ( c ) )  =  X ( c ) .  I n  f a c t ,  f o r  L e v y  p r o c e s s  Z* { t  G  [0 , 1 ] ) ,  

M =  / ^ { f o  e ^ ^ d Z s )  i n  Z ( c ) ,  t h e r e  i s  a  L e v y  p r o c e s s  Z [  { t  >  0 ) s u c h  t h a t  Z (  =  Z t ,  

f o r  t  G [0 , 1 ] . H e n c e ,  b y  T h e o r e m  5 . 4  a n d  C o r o l l a r y  6 . 2  i n  [4 ] , t h e r e  e x i s t s  a  f r e e  

L e v y  p r o c e s s  Z t  { t  >  0 ) a f f i l i a t e d  w i t h  a  l L * - p r o b a b i l i t y  s p a c e  ( M ,  r )  s u c h  t h a t  

n { Z t )  =  K { j i { Z ' l ) ) ,  f o r  t  >  0  a n d  e^^^'dZs) =  e “ d Z s ) ) .  I t  f o l l o w s  t h a t
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A : J (c )  T{c). Moreover, by Theorem 5.4 in [4], the map A from X(c) to T{c) 

is onto. Note tha t A ; XV{*) TP(ffl) is bijective. Hence, A : T(c) — J(c )  is 

bijective. Theorem 4.8 in [4] showed th a t A { S D { * ) )  =  S D { S ) ,  and Theorem 3.1 

in [50] showed that

S D { * )  g  i{ c ) ,  n  i M = 5 C ( .) ,
n > l

for 0 <  c„ 6 and lim„_,oo c„ =  oo. It follows tha t

S D { m )  =  A { S D { * ) )  g  A(T(c)) =  T(c), 

f l  J(c„) =  =  H S D { * ) )  =  S D ( a ) ,
n  n

and

I (n c )  C 1(c), y n  E N ,T (—c) =  X(c).

Let >̂c : XV(*) X(c) be a  map defined by 4*c(p) =  h(Jq e^^dZg) E X(c), 

for j i  E I D { * ) ,  where Z t  is the Levy process determined by jj,. For €

Z P (S ) , there are measures ^ 1 ,^2  ^  XV{*) such tha t A(p[) =  Hi, and ^’c(Mi) =  

A ( f i ( J g  e‘̂ ^sZl)), where Z} is the Levy process determined by i =  1,2. Thus, 

if <I>c(pi) =  ^c(M2), M K id  =  H K J d  It follows th a t $c(P i) =

<I>c(/r2)- By Corollary 2.8 in [50], $c is one to one. So, pi =  A { j j , \ )  = A (j.i'^  =  /X2- 

Hence, 4>c is one to one. □

L e m m a  5.2 .4 . Let v be a Levy measure on M. Then

1 . V has a polar decomposition, i. e., there are non-negative real numbers Ai, A_i

and finite measures v\ and u_i on (0 ,0 0 ) such that
)

rain{l, u^}dvj(du) <  o o ,j =  1, —1
fJo

and

v(B )  =  XiVi(B) +  for all Borel set B C R .

ITe define a measure A on the set S  = {1, —1} by A(l) =  Ai, A(—1) =  A_i. 

Then

){B) =  f  A(d^) f  XB{uf,)v^(du), for Borel set 
J s  Jo

B  C
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8 . i f  AiA_i ^  0, then

(a) V has a nonnegative density function (u 0 )  i f  and only i f  Vi has

a non-negative density function with ki{u) — -^k{u), and v - i  has 

a non-negative density function  — with kx(u) = - j ^ k ( —u).

(b) Gc{u) = Y IT  k{e^'^u) is increasing for u  < 0  and decreasing fo r  u > Q if 

and only i f  both Gi^du) = and G -i^du) =

are decreasing for u  > 0

Proof. Let be a Levy measure on M and

Al =  y  +  n([l, oo)), A_i =  J  u ^ v { d u ) v { { - o o , - 1 ]).

For all B  in 6([0, oo)), the Borel a-algebra on R, let

ifAiy^O
^ I  i f A i= 0 .

Let

u ( B )=
i  if ^ -1 = 0 -

Then,
poo poo

/  m in{l, u^}ni((iu) =  / m in{l, ti^}n_i(dn) =  1.
Jo Jo

Moreover,

v{B ) =  n ( B n (0 ,o o ) )+ u ( i? n (—oo,0)) =  A _ iu _ i(5 n (—oo,0)) +  A iU i(Sn(0 , oo)).

This is the polar decomposition of measure ja.

Suppose Al 7  ̂ 0 and A_i d  0- Suppose v has a non-negative density function

i. e., v{B) =  In-{o} every Borel set B C R .  Then, for B  e

jB((0, oo)), we have
f  I k{u) 

v\{B) =  / T du.
JB '^1
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Hence, Vi has density function Similarly, u_i has density function

Conversely, if vi has non-negative density function and has non-negative 

density function 5riM^ have, for a Borel set B C R ,

v(B ) = XiVi(B  n  (0, oo)) -I- A_iu_i(—B fl (0, oo))
f  h { u )  f

— X\ I  du “h A_i I
JBn(0,oo) ^  J B/Bn(-oo,0) ^

f ,  , kAu)  , k - A - u ) . ,
— /  (X(0,oo)Al--------- h X(-oo,0)A-l )du.

J B  u U

Let k{t) — X(o,oo)Aifci('u) + X{-<x,o)^-ik-A~'^)-> th a t v has density function

kA u) = j^k{u)x(o,oo){u) and fc_i(u) =  ^ /c (-n )x (-o o ,o )W - 

Let
OO OO

Gi.e(u) =  J ]fc i(e J ’̂ u),G_i,e(u) =  J ]fc _ i(e t% ). 
i = i  j~i

Then Gi,c =  ^  kie^^'u) is decreasing for u >  0 if and only if Gc{u) = 

k{G'^u) is decreasing for n  >  0, and G_i,c =  =  YJ^= i k{—e^^u) is de­

creasing for rr >  0 if and only if Gc(w) is increasing for u < 0 . □

R e m a rk  5.2.5. The result that every Levy measure on (d > \ )  has polar 

decomposition was give in Proposition 2.6 o f [50J, but there were no precise proofs 

given. So we give a constructive proof o f the result for d — I in the Lemma above.

The following theorem give a characterization of measures in 1(c).

T h e o re m  5.2 .6 . For c >  0, a free infinitely divisible measure p  is in  X{c) i f  and 

only i f  the Levy measure v o f p  has a non-negative density function and there 

is a function Gc{u) such that Gc(u) is decreasing, for u > 0 , Gc{u) is increasing, 

fo r  u <  0, and
OO

Gc(u) = ' ^ k { e ^ ‘'-u},
3=1

for  almost all u €  (0,oo) with respect to the Lebesgue measure on (0, oo).
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Proof. Suppose A_iAi 7  ̂ 0. A measure u  e  X(c) if and only if A“ ^(u) G X(c). Let

(7 ', A, v) be the generating triple of A~^(u), where v is the Levy measure of u  (and

A“ ^(w)). Let

V =  A i m  +  A _ i u _ i

be the polar decomposition of v. [50] Proposition 2.7 showed th a t A~^(u) G /(c )  if 

and only if Vi and u_i has non-negative density functions and respec­

tively, and there are decreasing functions

00 CO

Gi,c(u) =  5^fci(e^% ),G _i,,(u) ^  J ]A :_ i(e ‘̂ ^u),Vu >  0, 
j=i j=i

where =  means =  for almost all it >  0 with respect to the Lebesgue m easure on 

(0 ,0 0 ). By Lemma 5.2.4, this is the case if and only if the Levy measure v oi fi 

has a non-negative density function and there is a function Gc{u) such th a t 

Gc{u) is decreasing, for u >  0 , Gc{u) is increasing, for n  <  0 , and

00
Gc{u) =  Y ] k { G ‘'u),

j  =  l

for almost all u G (0 ,0 0 ) with respect to the Lebesgue measure on (0 ,0 0 ).

If Al =  0, but A_i ^  0, then

Al =  /  u  du + /   du =  0 .
Jo u  J i u

It implies th a t k{u) =  0 for almost all u  >  0, and Gc{u) =  k{e'^^u) =  0, for

u >  0. In this case, v{B) =  A__iu_i(—/? D (0 , 0 0 )). By Lemma 5.2.4, u_i has a 

non-negative density function and there is a decreasing function G -i,c(n) =  

J k-i{e^^u), for M > 0  if and only if v has a non-negative density function ^  

and there is an increasing function Gc{u) for u <  0 such that Gc{u) =  X^j^i fc(ê -’M), 

for u >  0 (In fact, we can let k{—u) = k^i{u), for u >  0). Hence, in this case, we 

have proved the result.

Similarly, we can prove the result in the case of Ai 7  ̂ 0 and A_i =  0.

Finally, when Ai =  A_i =  0, u =  0, the result is trivial. □
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5.3 Fractional Free QU Processes

In this section, we introduce the notion of fractional free Brownian motion. We 

show that the corresponding Langevin equation has a unique solution, which is 

called a fractional free 0  U process.

Recall tha t a stochastic process {X t : t  G I  C M} is Gaussian if for 0 <  t i  < 

t 2 < ■ ■ ■ < in < oo, and Ai, • • • , A„ G R, Ya=i has a normal distribution (see 

[30]). Similarly, We can define the analogue in free probability.

D efinition 5.3.1. A family {X t : t G I  C R } of self-adjoint operators in  a 

W* -probability space (.A, r )  is called a semicircle process, i f  fo r  0 <  tj <  ^2 <

■ ■ ■ < in < oo, and Ai,--- ,A„ G R , ^ semicircle distribution. A

semicircle process is centered, i f  T(Xt) =  0, for t G I .

Now we are in a position to give the definition of fractional free Brownian 

motion.

D efinition 5.3.2. A centered semicircle process [X t ; t G  /  C R} is a fractional 

free Brownian motion with parameter H  G (0,1], i f

r {X tX ,)  =  ~ { \ t r  +  Isl""" - \ t -  s f ^ ) , \ / s ,  t G I.

Theorem  5.3.3. Free Brownian motion is fractional free Brownian motion with 

parameter 77 =  | .

Proof. Let [Bt : t >  0} be free Brownian motion. First, we show th a t [X t  : t >  0} 

is a  semicircle process. For A 6 M and 7 >  0, we have XXt has distribution 

T>xp{Xt), which is a semicircle law. by [64]. Hence, it is sufficient to show th a t 

X-t̂  +  • • • +  has semicircle distribution, for 0 < ti, ■ - • <  7n- Note tha t

W i  +  • • • +

=  -  Xt^_^ +  2W„„i-4------- f- Xtj

=  +  3W„_3 4 t  Aft,
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=  {^tn — “  ^ tn - 2 ) "I------- h (n — 1)(X (2 — X ti)  + nXt^.

Note th a t -  X,„„3), • • • , (n -  l){X t,  -

X ty),nX ty  are free. Hence, by induction, it is enough to show th a t X  + Y  has 

semicircle distribution, if X  and Y  form a semicircle family (i. e. X  and Y  are 

free and they have semicircle distributions). Note tha t A self-adjoint operator 

X  G v4 with t { X)  =  0 is a  semicircle element if and only if the /^-transform 

R/,(x){z) = ^ z ,  for some r  >  0 (see [64]). If R^l{x) = and R^(y) = Then

Rf i (x+Y){z )  =  Rf,(^x){z) +  Rf, (Y){z)  — — ^-2̂  — z.

It follows th a t X  +  F  is a semicircle element. Hence, we have shown th a t {Xt : 

1 >  0} is a centered semicircle process. Moreover, for f >  s > 0, we have

r(X tX ,) =  r((X t -  X .)X , +  X^) = { t - s ) .

Hence, {X t  ; f >  0} is a fractional free Brownian motion with param eter H  =

i  □2-

Theorem  5.3.4. Let G Asa : i > 0} 6e free Brownian motion, t >  0}

be a free copy of ■ t > 0} (i. e., : f >  0} is a free Brownian motion,

and {Bf'^ -X >  0} and '■ t > 0 }  are free). Define

j  t f  t> Q ,
® ‘ - | b S ,  . / t < 0 .

Then

1. fo r  f  e  T^(M), we have T { { J ^ f{ t)d B tf)  = f^ \f{ t)\^d t]

2 . f o r O < H <  1 , let C h =  ~  and

X t  =  Ch { f  {{t -  +  [ \ t  ~  u f - R ^ ) d B ,, .
J—00 J 0

ITe have {X( : t e M }  is a fractional free Brownian motion with parameter

H.
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Proof. Result (1) follows from Proposition 6 in [1].

(2). Since -  { - u ) ^ - i ) d B u  and J*{t -  are free,

and

r (  r  {{t -  u f - " ^  -  { - u f - ^ d B y )  =  /  ((t -  n )^ -5  -  { - u f - ^ d r { B u )  
J-oo J-OO

=  0 =  r (  j \ t - u f - ^ l ^ ) d B u ) ,
Jo

we have

r{X^) = C |(r((  r  ((t -  -  { - u f - " ^ ) d B ^ f )  + r(( f  {t -  u f - ^ '^ ) d B u ? ) )
J —oo " ^ 0

=  C l i f  -  i ~ u ) ^ ^ ^ f d u +  f  { t - u f ^ ~ ^ d u )
J - o o  Jo

=  C | t “ ( r  (1 -  u ) " - t  -  (-u )"-S )^< ia  +
J  —00

Moreover, for h, t €  M, we have 

T{{Xt+h -  X h f )

= Cl fT{{ f  {{t +  h - u ) ^ ~ ^ - { h - u ) ^ ~ ^ ) d B y ,
J  —00

rt+h rh+  {t +  h -  uf-^/^dB^ -  ( h -  uf-^^^dBuf)
Jo Jo

=  ChtH I  {{t ~ { u -  _ (_(u - h))^~^)dBu
J -0 0

+ [ \ { t  - { u -  h) f - '^ - { - { u - h)f-'^)dBu 
Jo

ft+h+  { t - { u - h ) f - ^ d B ^ f )
Jh

= C l r { { f  ~{-u)^-"-)dBu+h+ f  {t -  u f - UBu+ , ) ^ )
J —OO ^  0

= C|r(( f  {{t - - {-uf^'^)dBu+hf
J  — OO

+  { f \ t - u f ^ U B u + h f )
Jo
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2 _  ^ f d u +  [  '^ fdu )
J —OO J  0

=

It follows th a t

^ { M )  =  i ( i t r + i » r - i ( - » i “ ).

It is obvious th a t t (X i )  = 0, for t  G M.. Note th a t {Bt : t  G M} is a semicircle 

process. So, for real-valued step function s — where —oo < a  =

to < ti < ■ • ■ < tn = b < oo, we have

pb «
/  s{t)dB t = J 2 a t{ B t , - B t , )  

i=\

is a semicircle element. Generally, let /  is a continuous function an interval [a, b], 

then there exits a  sequence (/„) of step functions such that limn—*oo

-  0- Let T { ( f j ^ { t ) d B , f )  =  ! i ,  then

B   ̂ r  0, if =  2m -f 1,
r((y^  U t) d B t)  =  I  if fc =  2m ,m  > 0

(see (1.8) in [31]). It implies th a t

/'*' , f '’ f 0, if =  2m + 1 ,
f ( t)d B t)  ) =  lim t {J^ /„ (f)d S ,)  =  |  ifA: =  2 m , m > 0 ,

where r  =  lim„^oo ^n- Hence, f{ t)d B t  is a semicircle element. It follows tha t 

X t  is a semicircle element, for t  G M.
^  I

Generally, for -o o  < ti < t2 < ■ ■ ■ < tn < oo, Let T„ =  Y^^=i h   ̂Bt̂ u■ Then, 

for a step function s =  o;jX[sj-i,sji where a =  Sq < .?i <■■■< Sm = b, we 

have
m m  n  ^

s{u)dSn =
j = l  j  =  \  i = l
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is a semicircle element, since Bt is a semicircle process. For a continuous function 

/  on [a,b], there is a sequence s„ of real-valued step functions on [a, 6] such th a t

lim
n —̂ 00

II f  f { u ) d T ^ -  f f n { u ) d T 4 = 0 .
J  a a

Hence, by the proof above, f {u)dT„  is a semicircle element. Now we show th a t 

(Xt )  is a semicircle process. By an elementary computation, we have th a t

X t =  C n  

Hence,
J —00 0

+  - ■ • +  =  C k( r  ((1 -  u f - \  -  { - u f - ' ^ ) d n  + u f - U T ^ )
J  —OO "J 0

is a semicircle element. It follows tha t {X t  : t >  0} is a fractional free Brownian 

motion. O

R e m a rk  5 .3 .5 . From the Theorem above, we have

1. For H  = 1, let X \  he a standard semicircle element (i. e., X i  is a semicircle 

element with t { X i ) =  0 and t {X i )= 1). Let X t  =  t X i ,  fo r  t e  R, then 

T{XtXs)  = lts|. Hence, {Xt) is a fractional free Brownian motion with 

parameter H  = 1.

2. Biane and Speicher gave an example o f free Brownian motion, which comes 

from  creation and annihilation operators on a full Fock space, in [10]. From 

Theorem 5.3.4 and (1 ) in Remark 5.3.5, we can construct examples of frac­

tional free Brownian motion for every H  €  (0,1].

Recall th a t A family {X t : t  >  0} of self-adjoint operators affiliated with a 

iy*-probability space is called a free self-similar process, if for any c >  0, there 

exists 6 >  0 such tha t

yi{X,t) = K b X t ) ) X t > 0 .

{X t  : t >  0} is a  free H  self-similar process, if there exists a 0 < H  such that 

b =  , for all c >  0 (see [23]). We now give an abstract characterization of

fractional free Brownian motion.
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T h e o re m  5 .3 .6 . A centered semicircle process {Xt ;  ̂ G M} of self-adjoint oper­

ators in A  is a fractional free Brownian motion with parameter H  G (0,1] i f  and 

only i f  it is free H  self-similar, it has stationary increments and t {X ‘{) — 1.

Proof. If [X t : i >  0} is a fractional free Brownian motion. By definition, we have 

r (X^ )  =  1 and t {Xq) = 0. Thus, X q =  0. Moreover,

T{{Xt  -  X s f )  = r { X f  +  -  Xt Xs)  = \ t -  Vt, s 6  M.

Note th a t X t  -  X* is a semicircle element, _thus, p{X t ~  X^) =  p { X ts ) -  Hence, 

{ X , : f  >  0} has stationary increments. For t €  R  and c >  0, we have

r ( X ^ ) =

It follows th a t ret = 2 C ^ \t\^ , while =  2 \t\^ , where is the spectral radius of 

semicircle element Xt- Note that

J o ,  iffc =  2m +  l,

^ \  2m, for m  > 0

Hence, r(X^j) =  (c^ ) ''r(X f)  =  T {{c^X tY ). It follows th a t /r(Xcf) =  /r(c^X t).

Hence, {X^ : t >  0} is an i f  self-similar process.

Conversely, suppose {X t : t G R} is centered semicircle process with r ( X j )  =  1. 

Suppose tha t this process has stationary increments and it is H  self-similar. Then

r(X 2) =  r { { t ^ X t f )  =  It follows tha t

1
2 '
1
X

r { X , X t )  = - T [ X l  +  X2 -  {Xt -  X , f )

= ^~r{Xl + X l  -  { X t - s f )

Hence, {Xt  ; t  >  0} is a fractional free Brownian motion. □

Let /  be a  M-valued continuous function on [a, 5], we can define the integral 

f { t )dt  as follows. Given a partition Tn : a = to < t \ < ■ ■ ■ < tn = b with norm
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||T„|| =  m axji^— : i = 1 , 2 , ■ ■ • , n} and intermediates to <  <  C2 <  • ‘ <

t„ - i  <  <  tn, we have a Riemann sum R t„ = Z^Li ~  U-i)- I t is well

known th a t {Rr„ ; n  =  1,2, ■ ■ • } is a Cauchy sequence in operator norm of A,  as 

| | r „ | |  — 0. We define f { t )dt  as the operator norm limit of {Rt„ '■ n = 1 , 2 ,- ■ ■}.

Let /  ; [a, h] M be a function and {Bt ; t  G M} be a fractional free Brownian 

motion with param eter H  G (0,1]. Define Riemann sum

for a partition T„ : a = to < ti < ■ ■ ■ < tn  = b with norm

||r„|| =  max{L -  L -i : i =  1,2, - ■ • ,n }

and intermediates to < ^ 1  < ti < ^ 2  < ' • • ^  tn -i <  <  tn- We define f { t )dBt

as the operator norm limit of Riemann sum R t^ = Y a=i f  as

ll '̂nll ^  0) if this limit exists.

T h e o re m  5.3 .7 . Let [B t : t G M} be a fractional free Brownian motion with 

parameter H  G (0,1], and /  : [a, 6] —> M be continuously differentiable function. 

Then, f { t )dBt  exists and

/J a
'  f { t ) d B t  =  f { b ) B h  -  f ( a ) B n  -  f  f ' { t ) B t d t .

Proof. Since [B t : t €  R} is a semicircle process, T{{Bt — Bg)'^) =  |t — ~

where r  is the spectral radius of Bt — Bs (it is also \\Bt — Rsl| )• It follows tha t 

||Rt — Bs\\ =  2jt -  Hence, t Bt is norm continuous, and f '{ t)B td t

exists. Let T  : a == to <  • • • <  t„ =  6 be a partition of [a, 6] with intermediates 

to <  <̂i <  ti  <  ^2 <  ^2 <  • • • <  tn -i < f , n <  t„.Then we have

i—l  2=1

n 4 -l n

z=2 1=1
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-  / ( 6 ) 5 a
i= 2

= f i U B t  -  f i ^ l ) B a  + (/(6) -  /(«))5a + i f { b )  -  f i U ) ) B b

n

-[(/(6) -  f { a ) ) B a  + i m  -  f { ^ n ) ) B ,  + ^ (/(6 ) -
i= 2

= f { b ) B , - f { a ) B , ~ r r ' ,

where is the Riemann sum of Riemann-Stieljies integral J^Btdf { t )  w ith 

respect to  partition T ' : a =  <  Ci <  • • • <  S  Cn+i =  b with intermediates

eo =  ^0 <  6  <  <  ■ • ■ <  t n - l  < ( n < t n  =  Cn+1- N ote  th a t  | | r  || 0 US | | r | |  0,

and Bt.df{t) = f '{ t)B td t  exists. Hence, let | | r | |  0, we have

r  f { t )dBt  =  f {b)B,  -  f { a ) B ,  -  r  n t ) B ,d t .
J  a V a

□

T h e o re m  5 .3 .8 . Let {Bt : t  € R } be a fractional free Brownian motion with 

parameter id G (0,1], A, cr >  0. Then

1. the follovjing Langevin equation

X t = X o - \  f  Xsds + a B t , t > 0  (5.3.1)
Jo

with X q G .Asa bas a unique solution

X t  =  e-^^Xo  +  [  e^^dB,, t >  0,
Jo

which we call a fractional free 0  U process.

2. Let Yq be J°^e^^dB s  =  Huia-^x , = o'

for t > 0, is a stationary solution to (5.3.1). IRe call Y{t )  defined above a 

stationary fractional free OU process.

Proof. (1). For t >  0, we have

A f x , d s =  f  Xe^^^dsXo + X a  f  f  e^^dBr
Jo Jo  Jo  Jo
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e^^Br-drds

- e -^ ‘)Xo + Xa f  - A  /  e^^Brdr)ds)
Jo Jo

- e~^^)Xo + Xa f  B ,ds  -  A V  /  f
Jo Jo Jo

- e-^*)Xo + Xa [  Bsds -  Xa f  ê’’5 , ( e “ ^’' -  e-^*)dr
Jo Jo

- e~^*)Xo + Xae~^* f  e^'^Brdr
Jo

- e-^‘)Xo + ae-^ \e^^Bt  - f  e^^dBr)
Jo

= Xo + aBt -  e-̂ ‘Xo - ae~̂‘ f  e^ d̂B̂
Jo

= X o - X t  + aB t.

Hence, X t  is a  solution to (5.3.1). The uniqueness of solutions to  (5.3.1) is clear. 

(2). Now we show th a t f^^e^^d B g  =  liniA-^oo exists. In fact,

y O  y /
lim /  e^^dBs =  A lim /  e'^^^B^gds. 

2-A Jo
Note tha t, for A' > A  > 0,

r A

e-^^B^tII r  e~^^B t̂dt\\ < f  =  2 [  e-^H^dt 0,
J a  J a J a

as A —V oo. Hence,

Tn :=  r  e^^dBg=  lim f  e^^dB 
J - o o  J -

exists. By (1), Y t =  a  j^_^e~^d-A dB u  is a solution to (4.1) with initial value Yq. 

Now we show th a t Y) =  Tq. Note tha t Yt = e^^'dBt+r- So it is enough to  show 

th a t  ̂ ^

f  e^^dBt+r= f  e-^J-^^dBg, (5.3.2)
J — OO J —OO

for t  €  M. First, we show that

f  s{r)dBt+r = f  s{r)dBr, 
J  a J  a

(5.3.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

for real-valued step function s(r) =  1]"=! a ,b ,t  e  M. Since

nb «
/  s ( r ) d J 5 t + T .  =  a i { B t + n  -  - B t + r . )

•'“ i=i

is a semicircle element, and

r b

(( f  s { r ) d B t + r f )  =  ^  aia jT{ {Br ,+ t  -  Br,_,+t){Brj+t  -  Br^_^+t)) 
i , j = l

= -  OiiOijil'I'i ■" 0 - 1 1

+  | r j i  -  T j r  -  ki-1 -  -  r , n

=  7-(( f  s ( r ) d B r f ) ,  
J  a

(5.3.3) holds true. By taking limits, we get (5.3.2). Hence, Y) is a  stationary 

process.
□
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