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ABSTRACT

DEVELOPMENT OF HYDRAULIC RELA TIO N SH ire FOR ESTIM ATING 

IN-BANK RIVER DISCHARGE USING REMOTELY SENSED DATA

by

David M. BjerMie

University of New HaapsMre, May, 2004

An evaluation river hydraulic data currently or potentially available from  satellite and 

other remote platforms was completed, and a set of discharge estimation models proposed that 

can use the remotely sensed information to estimate discharge with reasonable accuracy. 

Reasonable accuracy is defined as within +/- 20% of the observed on average for a large number 

of estimates. The proposed estimation models are based on the Manning and Chezy flow 

resistance equations, and utilize combinations of potentially observable variables including water- 

surface width, maximum-channel (or bankfuil) width, mean water depth, mean maximum- 

chaimel depth, mean water velocity, and channel slope. Both stastisticaUy and rationally derived 

prediction models are presented, developed and calibrated on a data base of river discharge 

measurements and a quasi-theoretical data base of synthetic data. It was found that the channel 

slope can be used in lieu of a measured water surface slope with very little reduction in prediction 

accuracy when considering many estimates. Notably absent from this list is a resistance variable, 

which is included in both the Manning and Chezy equations, because this variable cannot be 

observed or directly measured. One of the key outcomes of the research is that an exponent o f 

0.33 on the slope explains much of the variablity in the resistance variable, and provides better 

predictive qualities than the traditional value of 0.5. A dimensionaily homogeneous form of the

Manning equation was developed which derives the slope exponent of 0.33 based  on stable-bed
Ix
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grain size considerations. The prediction models were tested on two data sets of remotely sensed 

hydraulic information that included width, maximum channel width, and channel slope. 

Predictions were also made from a single radar image that also included remotely sensed surface 

velocity, demonstrating the potential for greatly improved accuracy with this additional 

inforrnation. Additionally, the prediction models were tested with chamiel slope informatioii 

derived fro m  a digital elevation model, and used to define river channel geometry for a 

continental scale runoff model.
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CH APTERI 

INTRODUCTION

Currently, less than 60% of the runoff from the continents is monitored at the point o f  

inflow to the oceans (Fekete, 1999). The distribution of runoff within the continents is even less 

well monitored. Despite the importance of river discharge informatioii, a comprehensive global 

river-monitoring network faces numerous technological, economic, and institutional obstacles. As 

a result, gaging stations and access to river-discharge information have been declining since the 

1980s (Vorosmarty at al. 1999; lAHS, 2001). Hydrographic data obtained from satellites and 

other remote sources offer the possibility of broad and potentially frequent global coverage o f  

river-discharge estimates (Barrett, 1998). Thus, a method that uses remotely sensed data to 

estimate river discharge would provide a means to maintain or even increase the global 

streamflow-monitoring network and may, in the long run, be a cost-effective method to obtain 

needed river-discharge data on a global scale.

Remotely sensed information can be appled to the science of estimating river discharge in 

two fundamental ways: 1) by providing data necessary to the watershed-ranoff modeling process 

such as soil type, land cover, precipitation, topography, air temperature, solar radiation and w ind 

speed such that runoff can be estimated and the discharge inferred from a routing scheme; or 2) 

by directly observing the hydraulic variables of flow in a river channel and estimating discharge 

from hydraulic functions that use this information. Although watershed modeling can provide 

estimates of river discharge, the discharge estimate is itself a by-product of a set o f modeling 

assumptions and simplifications and cannot be said to be directly measured or estimated.
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Additionaliy, it would not be independent of spatial and temporal complexities that are 

subject to various scaling and model-input limitations. Without ground-based discharge 

calibration data for a specific watershed, discharge estimates made from the first approach may or 

may not be accurate. The spatial and temporal complexities of the watershed runoff process and 

the modeling of that process suggest that a general approach to estimating discharge in this w ay 

would be inherently unreliable without watershed-specific calibration. In general, the number o f 

variables required to track tiie variability and describe the mechanics of discharge in a river 

system is much less than those necessary to understand and track the variability o f  the watershed- 

runoff process. It is because of these issues that estimating discharge with the second approach 

is preferred and is the focus of this study.

The goal of this dissertation is to develop, demonstrate, and evaluate the accuracy and 

application of methods suitable for estimating the discharge in rivers from remotely sensed river 

channel information. The specific objectives of the research are to:

• Document the type and quality o f river channel information that can be potentially 

observed from remote platforms;

• Evaluate the potential application and accuracy of the observed data to estimate discharge 

using hydraulic relationships developed from ground-based river-discharge data;

• Develop suitable hydraulic relationships from general hydraulic principles;

• Develop and test a method derived from the hydraulic analysis to estimate discharge from 

currently available information;
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® Evaluate the hydraulic methods within the context of general discharge modeling

application that maximizes the use of remotely obtained or modeled river discharge and 

channel variables.

The use of remotely sensed information, including water-surface elevation, water-surface 

velocity and water-surface area, to track changes in river discharge has been showm to be feasible 

and potentially usefiil where ground-based data are difficult to obtain (Kuprianov, 1973; 

Koblinsky et a l, 1993: Birkett, 1998; Brakenridge et al., 1994;and Brakenridge et al., 1998, 

Horritt et al., 2001, Jasinski et a!., 2001). These studies suggest that remotely sensed river 

hydraulic data could be used to directly estimate the discharge at a specific location, if ground- 

based discharge measurements are used to develop discharge ratings in conjunction with the 

remotely observed variable(s). This strategy, however, does not capitalize on the advantage o f  

using remotely sensed data because ground measurements of discharge are still a fundamental 

aspect o f the approach.

If remotely sensed river hydraulic data were used to directly estimate the discharge without 

the need for ground-based calibration data, then remote observation platforms could be used to  

estimate discharge over large areas in many rivers. A bankside system that remotely obtains the 

cross-sectional area of flow and surface velocity of rivers has been demonstrated by Costa et al. 

(2000), however, this system would still require ground-based installation and maintenance.

Thus, if satellite or aerial platforms could be used to obtain sufficient amount o f  information to  

estimate discharge, the need for ground-based measurements could be eliminated and would 

enable the potential of remote observation systems to obtain information over large geographic 

areas, including those areas that are difficult to access, to be realized.
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Estimating discharge in rivers from hydraulic information obtained solely from aerial and 

satellite platfonns has been explored and summarized by Smith et al. (1996 and 1997). The 

water-surface width (estimated from water-surface area), channel slope and mean channel width 

(est!m,ated from cliann,el surface area) can all be obtained from existing remote sources. The 

surface velocity of rivers can also be observed remotely using various forms of Doppler radar or 

lidar (Vdrosinarfy et a l, 1999; Emmitt, 2Q00 personal communication; Moller, 2003 personal 

communication).

This study further explores the potential for, and the accuracy of, estimating discharge from 

remote observations of the river channel. Hydraulic relationships and a reasonably accurate 

methodology are developed for this purpose. The relationships are applied to a set of aerial 

photos and SAR images and hydraulic modeling and mapping applications also explored.
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CHAPTER II

THE POTENTIAL FOR ESTIMATING RIVER DISCHARGE AND 

MEASURING HYDRAULIC VARIABLES REMOTELY

The measurement of river discharge from space will fundamentally require a knowledge 

of the hydraulic relationship between river characteristics that can be observed from space-based 

piatfomis and river discharge. This chapter review's the types of river hydraulic information that 

can potentially be observed from space-based platforms and develops several general 

relationships that can use this inforaiation to estimate discharge. Hydraulic data from more than 

1,000 flow measurements in a wdde range of rivers are used to develop and validate the 

relationships. An analysis of the impact of measurement error on prediction accuarcy is also 

undertaken. The approaches reviewed here are based on fundamental in-stream hydraulic 

relationships that are independent of watershed or basin predictor variables. Thus, the prediction 

methods are independent of regional and temporal climatic and physiographic variability and can 

be considered to be generally applicable to fluvial environments.

Estimating River Discharge from Hydraulic Variables

For most rivers, discharge (Q) cannot be measured directly, but rather m ust be calculated 

from, measurements of the pertinent hydraulic elements of the flow. Discharge at a river cross- 

section, from continuity, is the volumetric flow rate through that cross-section and is given by 

Q = VWY = VA (2-1)

where V is the average velocity, W is the water-surface width, Y the average w ater depth, and A 

the cross-sectional area perpendicular to the flow. Traditionally, Q is measured at selected cross-

5
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sections in a river by measurement of the velocity, depth, and width at incremental vertical 

stations across the channel, and the incremental flow estimates are summed to obtain the 

discharge through the cross-section. These periodic velocity-area measurements o f  discharge are 

then coixelated with measured water-surface elevation (stage) to develop a stage-discharge 

“rating” for the cross-section. The stage-discharge rating equation takes the general form (Rantz 

eta!., 1982; Herschy, 1998)

Q = a(Z-e)” (2-2)

where Z is the stage and the coefficients a and m are characteristic of the specific channel cross- 

section, and e is the elevation of zero flow.

For the periods between measurements of Q, the stage (Z) is recorded and Q is inferred 

from the rating cun^e. Since the value o f e represents the elevation of zero flow, the term (Z-e) 

may be viewed as equivalent to the effective flow depth (Y) and thus the rating provides an 

estimate of discharge from the hydraulic flow depth. A rating equation such as equation (2-2) is 

developed for a particular river channel or cross-section, and would not be expected to be 

applicable to any other river location (Rantz et al., 1982). This is because change in stage (or 

depth) is used as an index to change in width and velocity, and is specific to the channel 

characteristics of the reach being measured. Thus, single variate discharge ratings cannot be 

generalized without a substantial loss in accuracy. Inclusion of additional hydraulic infromation 

into the rating model would improve the accuracy o f the rating by accounting for more of the 

variability at any specific location.

Recently, Jasinski et al. (2001) used river stage obtained from satellite 

(TOPEX/Poseiden) altimetry data to develop discharge ratings for several locations in the 

Amazon basin by comparing the altimetry data with stage and discharge measured at existing

gaging stations. The accuracy of the ratings varied depending on distance between the altimetry
6
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observation and the ground-measured discharge, and on the topography and the width of the river. 

This study demonstrated the feasibility o f using satellite altimetry as a source o f remote river- 

stage information. However, ground-based discharge data were required to develop the rating, 

and the derived ratings could not be extrapolated to other rivers or reaches of the Amazon. While 

such a system might have advantages in some situations, it does not solve the problems imposed 

by the costs of establishing and periodically measuring discharge on-the-groimd, and would not 

offer the prospect of expanding the global coverage of discharge observations. Thus, a genera! 

rating that can estimate discharge from remotely obtained hydraulic data without ground-based 

measurements o f discharge provides the best opportunity to capitaltize on satellite and other 

remote data sources.

A more general depth-discharge rating equation can be developed from the Manning 

equation which is widely viewed as generally applicable to natural rivers (Chow, 1959).

Assuming a wide (W > 1OY) rectangular channel, the depth-discharge rating defined from the 

Manning equation is

Q = aY’ '’’ (2-3)

with

a = WS°'Vn. (2-4)

where S is the friction slope (slope of the total energy grade line but equivalent to the water 

surface or bed slope assuming uniform flow conditions) and n is the Manning resistance 

coefficient. In equation (2-3), the average depth is the dynamic predictive variable and the 

coefficient a can be directly calculated from channel properties and is comprised of a geometric 

component defined by W and a channel component defined by S®'̂ /n (which represents the 

balance between the gravitational energy supplied to the reach, S and the flow resistance, n). In a 

rectangular channel, W is constant and thus if S and n are constant the coefficient a is constant.

To the extent that S and n vaiy with depth, the exponent of equation (2-3) may also vary.
7
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I f  a  parabolic shape is assumed for the channel cross-section, a common assumption for 

natural channels (Chow, 1959), the width is related to the depth by W’"=aY where x  is the 

parabolic order. The derived depth-discharge rating from this assumption is

Q =  (2-5)

with

a =  (W,/Y,„’'^)(S"-'/n) (2-6)

The variable W,n is the maximum or bank-full width and Ym the maximum or bank-full average 

depth.

A similar equation can also be developed that uses width as the rating variable:

Q = (2-7)

with

a = (¥„,’■'Vw„’-‘''^)(S°-Vn)- (2-8)

Equations (2-5) and (2-7) can be regarded as generally applicable discharge ratings for within- 

bank flow to the extent that the Manning equation is generally applicable, under the assumption 

of a parabolic cross-section shape.

The channel resistance cannot be measured directly but is usually inferred from specific 

channel conditions including bed and bank material, channel irregularity (both in cross-section 

and planform shape) and other factors. In practice, the channel resistance is difficult to estimate 

with accuracy (Dingman and Sharma, 1997) and often varies considerably with discharge 

(Dingman, 1984). However, statistical studies by Riggs (1976), Jarrett(1984) and Dingman and 

Shanna (1997) have shown that reasonably accurate estimates of Q for within-bank flows can be 

obtained without resistance as an input variable, because the resistance varies w ith  the channel 

geometry. Assuming that the hydraulic radius of the cross-section is equivalent to the mean depth
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(v/hich would be expected for a Vt̂ ide cliannei), Dingman and Sharma (1997) show using multiple 

regression analysis that for a wide range of rivers discharge can be estimated as:

Q = 4.62W-” y ''” S°'"'‘ (2-9)

with all variables in SI units. Equation (2-9) was calibrated with over 500 flow measurements in 

128 rivers and provides estimate accuracies, on average, in the range of 20% or better. This 

relationship can be considered a generally applicable multi-variate discharge rating because it 

includes the fundamental elements of uiiifomi flow including the width, depth and slope. 

Additionally, since resistance is not an input variable, all of the necessary data can be measured 

either directly or remotely. However, equation (2-9) is ftmdamentally limited by the data used to 

' develop it and therefore cannot be said to be generally applicable in all situations. In addition, 

because of this limitation, specific knowledge of the variation in the coefficient or exponents o f  

the equation as they may relate to known channel conditions cannot be incorported into the 

model.

An equation similar to (2-9), which assumes that resistance is a function o f  the channel 

slope and geometry, can also be developed for situations where depth cannot be effectively 

measured, but velocity could be, such as in channels where there is substantial bed movement or 

bottom debris. The equation is developed by equating (2-1) with a general uniform flow equation 

such as equation (2-9), solving for the depth in terms of W, V and S, and then substituing this 

back into (2-1). Carrying through these operations yields an equation of the form:

Q = cWV%® (2-10)

In many situations it is difficult to establish the hydraulically meaningful channel slope 

that should be used in a theoretically or statistically based equation. Davidian (1984) suggests 

that a hydraulically meaningful slope should be measured over a reach length on the order o f  75

times the water depth. However, the water-surface slope in a channel reach m ay vary spatially
9
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and temporally due to unsteady and non-uniform flow conditions (Davidian, 1984), and because 

of this, the reach length and timing associated with the slope measurement can alter the “true” 

uriifonn hydraulic slope associated with a particular discharge and channel geometry. Thus, 

consistent definitions of channel and water-surface slope will be important in attempting to apply 

equations involving those quantities. Given the potential difficulties of consistently measuring a 

w^ater-surface slope that is hydraulically meaningfiil, a slope index may be used that considers the 

slope to be a constant rather than a variable. Such an index could be the topogi'aphic slope o f the 

channel and thus might be related to channel morphology.

Alternatively, a relationship between discharge and an index velocity can be developed 

(Rantz, et al., 1982) which eliminates the slope variable. Since the average velocity in a channel 

is generally considered to be proportional to the square root of slope and 2/3 pow er of the depth 

via the Manning equation (or to the square root of slope and depth via the Chezy equation), the 

mean velocity could be substituted for the depth and slope to obtain a width-velocity relationship 

that avoids the need to measure depth and slope but that still provides estimates over a wide range 

of flow conditions. The form of this equation would be

Q = cWV (2-11)

where c is a coefficient, and the exponents h and i reflect the relationships between depth and 

both width and velocity.

Measurement of Hydraulic Variables from Remote Platforms

Few studies have attempted to estimate river discharge entirely from satellite and/or other 

remotely obtained information, although the potential has been pointed out (Koblinsky, et al., 

1993). Estimating the discharge in rivers via equations (1-1), (1-5), (1-7), (1-9), (1-10) and (1-11)

requires a measure of the water-surface width, depth and water velocity, and/or river channel
10
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inforrnation including the water-surface slope, bank-fuil width and bank-fuU depth. The channel 

resistance is not a directly measurable quantity in the sense that it cannot be measured using an 

instrument, however it is related to the other geometric variables of the channel (Leopold et al., 

1964; Bray, 197E; Dingman and Sharma, 1997) or can be evaluated by comparison with channel 

charcteristics where resistance values are known.

Satellite-based sensors and other remote data sources can be used to determine channel 

and water-surface width and water-surface area, water-surface elevation, channel slope and 

channel morphology (Table 2.1). In addition, there is a possibility that surface velocity can be 

measured at discrete locations across the river channel (Vorosmarty et al., 1999; Emmitt, personal 

communication, 2001). The key hydrographic variables that cannot be directly measured from 

satellite infonnation or other remote data sources are average depth and average cross-sectional 

velocity'. Thus, average depth and average cross-sectional velocity will need to be related, at 

least implicitly, to stage and surface velocity, respectively, if these variables are used for 

estimating discharge. Recently, Costa et al. (2000) have demonstrated that surface velocity 

measurements can effectively be used to estimate the mean velocity in a channel section.

Numerous studies have employed satellite-based imagery to estimate flood inundation 

area (Smith, 1997). However, few have used satellite derived data to track variability in river and 

flood stage elevations, and even fewer have attempted to quantitatively estimate river discharge. 

Laiidsat 7 multi-Spectrai Scanner (MSS), Thematic Mapper (TM), and other visible/infrared 

spectrum sensors, and syntlietic-aperture radar (SAR) imagery from satellites have proven to be 

useful in tracking changes in water-surface area (and widths) in floodplains and large rivers 

(Smith, 1997). Sippel et al. (1994) determined the inundation area of the Amazon River 

floodplain using a scanning multi-channel microwave radiometer (SMMR) mounted on the

Nimbus 7 satellite. The SMMR sensor measures the microwave emission of the earth’s surface,
11
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Table 2.1

D a ta  S o u r c e

Satellite and Remote Data Sources

H y d ro g rap h ic  D a ta  
T yp e

Aer ia l P h o to g r a p h y

Vis ible S p e c t r u m  
Digital Im a g e ry

S u r f a c e  f e a t u r e s  inc luding 
width a n d  c h a n n e l  s h a p e .  
S t e r e o s c o p ic  P a i r s  ca n  
a l so  p r o v id e  s u r f a c e  
r o u g h n e s s  a n d  s lope .

S u r f a c e  f e a t u r e s  Including 
width, c h a n n e l  s h a p e  a n d  
c o u p le d  with a  DEM s u r f a c e  
r o u g h n e s s  a n d  s lope .

Reso lu t io n R e la t i v e  C os t

High R e so lu t ion  Low
D e p e n d i n g  o n  S c a l e

D e p e n d s  on  s e n s o r ,  p la tform 
a n d  orbital c h a ra c te r i s t i c s  
Aer ia l Im a g e ry  s u c h  
a s  E m e r g e { 1 )  P h o to g r a p h y  
c a n  b e  1m or  le ss  
Sa te l l i te  B a s e d  Im a g e ry  
s u c h  a s  L a n d s a t  7 typically 
10m or  l e s s

M o d e r a t e  to  high 
d e p e n d in g  on 
c o v e r a g e  
( la rge  a r e a s  a r e  
e x p e n s i v e )

L im i t a t i o n s /A d v a n ta g e s C o v e r a g e

Limited  by Inability to  s e e  
th ro u g h  c loud c o v e r  
C a n  p ro v id e  high resolu t ion  
a n d  deta i l  a n d  p ro v id e s  d ir ec t 
In te rpre ta t ion  a n d  yie ld s  
from a  r a n g e  of spec t ra !  b a n d s

Limited by inability to s e e  
th ro u gh  c loud  c o v e r  
P r o v id e s  d ir ec t In te rpre ta t ion  
a n d  y ie ld s  In format ion  from 
a  r a n g e  of sp ec t ra l  b a n d s

S p a t ia l  - D e p e n d s  on  S c a l e  
T e m p o r a l  - i n f r e q u e n t  c o v e r a g e

S p a t ia l  - C a n  b e  la rg e  
d e p e n d in g  on  d e s i r e d  re so lu t io n  

T e m p o r a l  - D e p e n d s  on  
orbital pe r iod  a n d  w e a t h e r

CD■D—iO
o .c
a
o

■D—J
o

CD
Q .

R a d a r  Im a g e ry  S u r f a c e  f e a t u r e s  inc luding
width, c h a n n e l  a n d  r o u g h n e s s  
a n d  u s e d  with in te r te rom e tr ic  
m e t h o d s  c a n  p ro v id e  s lope  
a n d  possib ly  s u r f a c e  veloci ty  
us in g  S A R  with in ter ferom e try .

R a d a r  Altimetry E lev a t io n  a t  d i s c r e te  poin ts
w hich  c a n  b e  u s e d  to d e t e r m i n e  
w a te r  s u r f a c e  h e i g h t s  ( s ta g e )  a n d  
a n d  possib ly  s lope .

S p a c e  b a s e d  10m to  3 0 m  High.
S A R  s u r f a c e  ve loci ty  
(not  veri fied) .

H ig h e r  reso lu t io n  with ae ria l

S p a c e  b a s e d  e l e v a t i o n s  High
typical ly 0 .5  m but p o ss ib le  
to  10 cm

H igher  reso lu t io n  with ae r ia l

In te rp re ta t io n  m a y  b e  difficult 
C a n  s e e  th r o u g h  c loud c o v e r  
a n d  y ie ld s  in fo rm ation  from 
a r a n g e  of s p e c t r a l  b a n d s

Limited r a n g e  of Informat ion 
C a n  s e e  th ro u g h  c loud  c o v e r

S p a t ia l  - c a n  b e  150  km X 150  km 
or  l e s s  d e p e n d in g  on  d es i re d  
resolu t ion .
T e m p o r a l  - d e p e n d s  on  orbital 
period .

P r o v id e s  d i s c r e te  po in t d a t a  
with c o v e r a g e  th a t  d e p e n d s  
on  th e  orb ital  pe r iod  ( f r e q u e n c y  
of r e p e a t  orbits).

T3
CD

Lidar S u r f a c e  veloci ty , w a te r  s u r face  
s lo p e  a n d  s t a g e .

P o s s ib l e  to IQ cm /s  for 
ve locity  (no t veri fied)
5 cm  e l ev a t io n

Not e v a l u a t e d  Limited by c loud
c o v e r  a n d  r a n g e  of  in formation  
is limited
In te rp re ta t io n  of re tu rn  m a y  
b e  s im p le r  th a n  r a d a r

P r o v id e s  d i s c r e te  po in t d a t a  
with c o v e r a g e  t h a t  d e p e n d s  
on  th e  orbi ta l period  ( f r eq u en c y  
of  r e p e a t  orbits).

T o p o g r a p h ic  M a p s  
and GIS

S ta t ic  c h a n n e l  s h a p e  a n d  s lo p e  
a n d  o th e r  s ta t ic  s u r f a c e  f e a tu r e s .

D e p e n d s  on S c a l e Low T e m p o r a l ly  limited b e c a u s e  
it Is a  s ta t ic  d a t a  b a s e  
In te rp re ta t io n  is direct

S p a t i a l  - d e p e n d s  on  s c a l e  
T e m p o r a l  - sta tic.

ERA R e a c h  d a t a  
b a s e  a n d  o th e r  
c o m p a r a b l e  d a t a  
b a s e s

Po ten t ia l ly  r e a c h  le n g th s ,  c h a n n e l  
ty p e s  a n d  o th e r  c h a n n e l  
f e a a t u r e s

D e p e n d s  on d a t a Low T e m p o r a l ly  limited b e c a u s e  
it is a  sta t ic  d a t a  b a s e  
In te rp re ta t io n  is di rect

D e p e n d e n t  on  a v a i la b l e  d a t a
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which can be correlated to ground saturation and open water at the surface; liow'ever the 

resolution is low', on the order of 25 km, and the signal is attentuated by atmospheric moisture. 

Vorosmarty et al. (1996) correlated SMMR signals with discharge in the Amazon River, thus 

developing a discharge rating based on general moisture conditions within the basin. Brakenridge 

et al. (1994) used SAR images from ERS-1 to delineate flood inundation area coupled with 

topographic information to determine water-surface elevations during the 1993 Mississippi 

floods. Horritt (2000), Bates and DeRoo (2000) and Hoiritt et al. (2001) have used SAR imagery 

to delineate flood boundaries and calibrate river hydraulic models.

A method to estimate river discharge from aircraft has been developed that couples 

ground-based channel geometry information with surface velocity measurements made by 

photographing floats or other tracking substance introduced into the river by aerial drop 

(Kuprianov, 1978). The mean velocity is estimated from the surface velocity using an assumed 

vertical velocity distribution, and the channel geometry is measured on the ground and assumed 

to be constant thereafter. This method has a reported accuracy of 10% or better where winds are 

moderate (2 to 3 m/s) and water-surface velocity is in the range of 1 to 2 m/s. Although this 

method relies on instruments introduced into the streamflow (the floats) to measure velocity, the 

measurement is made entirely from a remote platform (the aircraft) once the appropriate ground 

measurements are made.

Smith et al. (1996) estimated the discharge in three braided glacial rivers using reach- 

averaged water-surface area obtained from RADARSAT SAR imagery. That study correlated the 

water-surface area in braided reaches (lengths on the order of 10 km) with discharge obtained 

from existing ground-based gaging stations to derive power-function discharge ratings that use 

effective width (water-surface area divided by the reach length) as the predictor variable. The

accuracy of the ratings varied in each river, ranging from 1.5% (for 11 estimated values) to 54%
13
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(19 estimated values). A single best-fit power fimction was also developed as a general rating 

for all o f the rivers. Error associated with this fimction was much larger, providing accuracy only 

within a factor of 2 (100% error).

Smith et at. (1996) also pointed out that the total sinuosity w'as an important discriminator 

between the rivers studied. To test the predictive power of sinuosity, we used the data from Smith 

et a l (1996) to develop a general multi-parameter pow'er function with reach-averaged width as 

the dynamic variable and the average sinuosity as a channel constant to predict discharge in all 

the three braided rivers (data not shown). This relation reduced the standard error o f the estimate 

by 30% and improved the slope of the regression compared to the width-only relationship 

reported by Smith et al. (1996). These results suggest that morphologic features o f  a river channel 

that can be observed remotely and that are related to the energy-dissipation process may be useful 

for remote- discharge estimation. These features may include, in addition to channel sinuosity, 

meander wavelength, meander radius o f curvature, bankfuil width, width/depth ratio, and others 

(Leliavsky, 1966; Dury, 1976; Osterkamp et al., 1983;Rosgen, 1994).

Ill principle, it would seem that a width-discharge rating might be developed for a w ide 

range of rivers, because width generally increases with increasing discharge. However, in nearly 

rectangular channels, or channels with highly irregular cross-sectional shape, w idth may change 

very little or in a highly non-linear way w'ith discharge. This is illustrated in Figure 2.1, which 

shows changes in width with discharge over a range of flows for the Mississippi River at Thebes, 

Iliinois, and the Connecticut River at Thompsonviiie, Connecticut (USGS, 2001). The graphs 

demonstrate that in the Mississippi at Thebes width does indeed change linearly with discharge 

and could be used as an index to flow variation, whereas in the Connecticut at Thompsonviiie it 

changes noii-linearly with veiy little change at higher discharges. Similarly, w id th  changes very 

little with discharge in the Amazon River narrows at Obidos (Oltman, 1968). This condition may
14
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be common at many locations in larger rivers, and suggests that multi-variate discharge ratings 

that

M ississippi River a t  T hebes, IL
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Figure 2.1 -  Width versus discharge over a range of flows for the Mississippi River at 
Thebes, Illinois and the Connecticut River at Thompsonville, Connecticut (Source o f  
discharge measurements: U.S. Geological Survey).

reflect general hydraulic relationships would be more universally applicable than relations based

only on width. This also suggests that the best locations for evaluating river discharge from

space, where width is the most readily observed hydraulic variable, are those channel reaches

where width variation with dischage is most pronounced (Smith et al, 1997).

15
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Measurement of Width

Both channel width and water-surface width (and also the w'ater-siirface area) can be 

measured from a variety of sensors and imagers mounted on satellites and aircraft (Table 2.2), 

including pancliromatic and infrared imagers, digital photography, and synthetic aperture radar 

(SAR) (Barrett, 1998; Universit}/ of Wisconsin Environmental Remote Sensing Center, 2001).

The resolution of satellite-mounted digital panchromatic sensors is within the same range as 

aircraft- mounted sensors, indicating that satellite observation of width, because o f  the larger 

coverage, may be the preferred method to obtain this type of data. SAR is the only sensor that 

can measure the width in any atmospheric condition (Smith, 1997).

Panchromatic imagers have spatial resolution as fine as 1 or 2 m and SAR imagers as fine 

as 10 m (University of Wisconsin Environmental Remote Sensing Center, 2001). However, the 

accuacy of a sensor to observe surface-area or width change is not limited solely by the 

resolution. Improved measurement accuracy can be obtained by averaging resolution errors over 

the observed reach, such that relatively coarse resolution imagery may provide measurement 

accuracy significantly better than the resolution may imply. In addition, the ability to use different 

sensor bands to observe the surface area, each with its own observation qualities, can be used to 

complement each other and achieve potentially greater measurement accuracy.

The key objective of measuring surface area and width, as for any dynamic variable, is to 

detect change from one scene to another. Change detection is not necessarily restricted to 

resolution because identification of a pixel as either water or not-water depends on sub-pixel size 

qualities that are also detected. It is difficult to evaluate the true “error” that m ight be associated 

with the measurement of width and surface area from remote platforms, especially considering

16
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Observed Variable Satellite/Sensor Data Type Data Resolution Repeat Observation 
Frequency

Observational
issues

Water Surface 
Width and 
Channel 
Morphology

TERRA/ASTER

ERO SA &B

Visible Infrared 
Thermal Infrared 
Shortwave Infrared

Visible to 
Infrared

15m

1.5m

1-2 days

daily (with a
constellation of 
satellites)

Cannot detect through clouds
Banks may be obscured by vegetation and shadows

Cannot detect through clouds
Banks may be obscured by vegetation and shadows

T|
C

CD

ERS2 SAR 12-26m 6 days Banks may be obscured by vegetation and wet soils

CD
■D
OQ.C

SPOT 4 Panchromatic visible 10m 26 days Cannot detect through clouds
Banks may be obscured by vegetation and shadows

a
o

■D

LANDSAT 7 Panchromatic visible 15-60m 16 days Cannot detect through clouds
Banks may be obscured by vegetation and shadows

O

g;
CDQ.

IKONOS Panchromatic visible 1-4 m Cannot detect through clouds
Banks may be obscured by vegetation and shadows

§

Oc

RADARSAT SAR 8-30m 1-6 days Banks may be obscured by vegetation and wet soils

T3
CD

3

Water Surface Stage 
and slope

ERS-2
TOPEX/Posiedon

Radar Altimeter 10cm 10 days Repeat observations limited to large rivers
Using Interferometry coupled with Altimetry (unproven)

(/)(/) RADARSAT SAR 1cm 1-6 days
o '
o

Water Surface
Velocity

Lidar
Radar
SAR

NA
NA
NA

Signal obscured by surface wind and waves 
Sensors have not been tested in rivers
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that the error would be a fiinction of many factors including the observed reach length, the 

resolution, the spectral bands used for pixel identification and processing technique. Based on 

these coiisideratioES, we could easily assume that a “typical” measurement error for a reach- 

averaged width measurement could be on the order of 10 rn or less.

Width estimates using any imager would be subject to errors associated with vegetation 

obscuring the w'ater’s edge and the bank and, in the case of SAR, wet ground, vegetation, wind 

roughening and rocks can also obscure the edge o f water. With a combination o f  SAR imagery 

(to observe through cloud cover) and digital panchromatic imagery, it is conceivable that width 

could be observed with near global coverage on a repeat cycle of nearly one week.

Measurement of Stage and Depth

Radar altimetry has been successfully used to track water-level elevations (stage) in large 

rivers, lakes and floodplains. Koblinsky et al. (1993) were able to use Geosat altimeter data to  

track elevation changes at several locations in the Amazon River basin with an accuracy on the 

order of 0.7 m. The altimeter footprint ranges from 0.2 to 2 km so target must be at least this 

wide to obtain a return unique to the water body. More recently, Birkett (1998) and Birkett et al. 

(2002) measured water-surface elevation changes in several rivers (including rivers in the 

Amazon Basin, the Okavango River, the Indus River and the Congo River) using water-surface 

elevation data obtained from the TOPEX/Posiedon (T/P) altimeter and reported an accuracy 

ranging from 11 to 60 cm.

With the currently deployed T/P altimeter, the theoretical minimum river width that can

be observed ranges from 0.58 to 1.16 km (Birkett et al. 2002) with accuracies ranging from 10 cm

to 1 m. However, it is possible that the altimeter can obtain accurate water-surface elevation
18
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measurements on rivers with widths as low as 50 meters by altering the signal-filtering algoritkms 

(Emesto Rodriquez, personal communication, 2001). The accuracy of the T/P altimeter (and 

altimeters in general) is strongly dependent on the surface conditions being observed (Birkett et 

a l, 2002). Laser altimeters (lidar) such as GLAS (NASA, 1997), which will be deployed on 

ICESAT, can track elevation changes to within 15 cm, and thus may provide significantly higher 

accuracies in river environments than possible with currently deployed radar altimeters.

Depth cannot be measured directly from remote data (Table 2.1 and 2.2). Thus, this 

variable will need to be estimated, at least in pâ rt, from measurements of stage coupled with other 

obseiwable characteristics of the channel. Depth could be derived from repeated observations o f  

stage over a wide range of flow conditions provided accurate topographic data or altimetric 

measurements of sufficient accuracy were available to determine the exposed bank elevation at 

each observ'ed water level. However, in large rivers low flow depths may never be observed, 

necessitating the estimation of the bank-full depth or other depth reference so that stage 

measurements can be converted to average water depths.

An estimate of the depth can be developed from a time series of stage measurements 

provide it is long enough to identify the bottom (zero flow) elevation, or the elevation of the top 

of bank. If the zero flow elevation (Zo) is known, then computation of depth from  observations of 

stage can be made directly. If the top of bank elevation is known, then Zo could be estimated if  

width observations are also available, by statistically relating the width and stage observations 

through linear regression, with the intercept being equal to Zq. Another approacfi would be to  

assume a specific cross-section shape (e.g. a parabola) and then solve for Zo given stage and 

wddth observations that include the top of bank elevation and baiikfuli width.

19
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Measitrement of Water-Siirface Slope

Water-surface slopes on the Amazon River and some of its larger tributaries have been 

estimated by Merles et al. (1996) and Dunne et al. (1998) using SEASAT and. Birkett et at. (2002) 

using T/P. A.I1 of these estimates have been made from sea-level (the mouth o f the Amazon) to  an 

inland point hundreds or thousands of kilometers upstream. The long reaches that were evaluated 

ininiraized the impact of altimeter accuracy on the estimates. Birkett et al. (2001) were also able 

to observe temporal changes in water-surface slope in the mainstem of the Amazon over long 

reaches.

In the Amazon River at Obidos, tlie water depth is on the order of 40 to 50 m and 

hydraulically meaningful water-surface gradients are on the order of 1 cm/km (Oilman, 1968). 

Thus, given an optimistic altimeter error of 10 to 20 cm, a reach of 5 to 10 km could conceivably 

result in slope estimates ranging from negative values to 8 times the actual value. This suggests 

that slope information obtained from the current generation of altimeters would not provide 

sufficient spatial resolution to be hydraulically meaningful. Averaging the slope obtained from a 

large sampling of slope measurements may be the most meaningful slope information that can be 

considered reliable.

One approach to obtaining more accurate water-surface slope measurements could be 

through the use of interferometric SAR. With this technique, water-surface elevation changes on 

the order of 1 cm can be detected in large rivers and flooded areas (Alsdorf et al. 2000, A lsdorf 

et al. 2001) and, when coupled with high resolution topographic information, could be used to 

estimate water-surface slopes across a flooded area as well as within a river. L aser altimeters 

may also provide a means to accurately measure hydraulically meaningful water-surface slopes

20
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because the  altimeter could simultaneously measure the elevation at two points in a  channel, 

reach.

Measurement of Water-Surface Velocitv

Surface velocity in rivers is potentially measurable from satellites with doppler lidar or 

radar. However, surface winds and waves on the water body could significantly interfere with the 

measurement (Vorosmarty et al. 1999), although observing limitations have not been fully 

evaluated. Theoretical (e.g. the Prandti-von Kannaii velocity profile) or empirical relations would 

be required to translate surface velocity to average veiocitv'; however, surface velocity could 

potentially provide an index of average flow velocity and hence be directly useful in predicting 

discharge.

Based on information supplied by Emmitt (personal communication, 2001), a satellite 

mounted doppler lidar sensor that could observe surface velocity would have a  footprint of 

approximately 10 m with 75 ni between observations along a track, and have a measurement 

accuracy on the order of 0.1 m/s. Given these specifications, the lidar could observe two to three 

siirface-velocity “points” across a 200 meter wide river reach. There is no guarantee that the 

satellite track would cross the river reach perpendicular to the flow, thus the point measurements 

may be skewed across the channel. This should not be a problem provided the distance to each 

bank can be evaluated from another source (e.g. a concurrent image of the channel and 

knowledge of the satellite track) and the con-ectioii made. Despite the potential limitations, i f  

surface velocity were measured and can be used to infer average velocity, there is the potential 

for measuring all elements of equation (2-1) simultaneously and thus enabling direct calculation 

o f discharge.

21
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Observation of Channel Morphology

Valley and channel features such as the channel sinuosity, channel slope, meander length, 

and meander radius of curvature can be observed from a variety of data sources, including 

visible- and infrared-spectrum images, SAR images, DEMs, and topographic map inforniation. 

Because these features are considered relatively stable over short time frames, the frequency and 

timing o f observations is not a limiting factor, and therefore high-resolution panchromatic images 

could be used to measure them when weather conditions peniiit.

Estimating River Discharge

Based on the above discussion, there is a possibility that the hydraulic elements of 

equation (2-1) can all be measured simultaneously from satellites. If so, discharge could be 

calculated directly, with an accuracy dependent on the accuracy and precision o f the individual 

measurements of water-surface width, surface velocity, and stage and of the estimations of mean 

velocity and mean depth from observations of surface velocity and stage. Because there is a 

potential that stage or surface velocity will not be observed with confidence (e.g. under strong 

winds or where topography obscures the signal) there will be many situations w hen all three o f  

the key variables cannot be observed at the same time. In these situations statistically based 

relationships such as described by equations (2-9), (2-10) and (2-11) may be useful.

Statistically Based Estimation Methods

To explore the predictive characteristics o f different combinations of potentially 

observable (or estimated) river-hydraulic variables, a set of generally applicable river-discharge

estimation equations (models) were developed based on equations (2-5), (2-7), (2-9), (2-10) and
22
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Param eter Svmbol Units M ean Stdev Coeff. Var. M axim um M inimum

Calibration Data N = 506

Discharge Q m®/s 1585 12260 7.74 216000 0.01
Top W idth W m 146 206 1.41 2290 2.90
A verage  Depth (Hyd. Radius) Y m 2.48 3.56 1.44 48.03 0.18
Average Velocity V m/s 1.12 0,66 0.59 5.10 0.02
W ate r Surface Slope (average) s m/m 0.00278 0.00572 2.06 0.04 0.0000007
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Discharge Q m®/s 1666 13184 7.91 283170 0.05
Top W idth w m 158 211 1.34 2300 5.40
Average Depth (Hyd. Radius) Y m 2.73 3.53 1.29 50.33 0.14
Average Velocity V m/s 1.13 0.61 0.54 3.61 0.07
W ater Surface S lope (average) s m/m 0.00243 0.00474 1.95 0.04 0.0000007
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(2-11). The models were derived using multipie-regressioii analysis of hydraulic data from 1,012 

discharge measurements in 102 rivers in the United States and New Zealand, including 4 

measurements from the Amazon River at Obidos. The data include a wide range o f  river 

conditions (Table 2.3) and was randomly divided into a calibration data set and a validation data 

set each containing 506 measurements. The 4 Amazon River measurements were equally divided 

between, the calibration and validation data sets.

The data base includes 569 discharge measurements with reach averaged (generally three 

or more cross-sections representing a reach length 5 or more times the width) values of water- 

surface width, average water-surface depth, average velocity, and w'ater-surface slope measured 

concun'ently with the discharge. These data were obtained from Bames (1967), Hicks and M ason 

(1992) and Coon (1998). Because these data are reach-averaged, the hydraulic-geometry and 

velocity values are representative of the energy and resistance relationships within the channel, 

and less a reflection of conditions at a single cross-section. In addition, the reported width 

approximates the water-surface area divided by the reach length, consistent with Smith et al. 

(1996). To this extent, the data are consistent with what might be obtained from remote imagery 

capable of providing reach averaged width, channel slope, and surface velocity.

The reach-averaged data include only two discharge measurements greater than 10,000 

m7s. In order to include more large flows in the data base, 443 additional measurements 

representative of the larger rivers of North America were obtained from the USGS (2001) and 

data from four measurements for the Amazon River at Obidos, Brazil were also included 

(Oilman, 1968; Dury, 1976). These large discharge measurements are not reach averaged, and 

therefore have a certain incompatibility with the rest of the data in the data base. However, it is 

anticipated that hydraulic variability between the measurement section and the reach as a w hole is 

not large, and that the number of observations will average out the variability. In addition,
24
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inspection o f the channel characteristics at the measurement sections for these rivers do not 

indicate any channel constraints from bridges or other structures (however, some o f  the river 

hydraiiiics may be affected by bedrock outcrops and canyons).

The discharge data are all in-bank and do not represent overbank-flow conditions. In 

general, the data were obtained from relatively straight single-thread channel sections, and 

therefore do not necessarily reflect the hydraulic conditions in more complex or less constrained 

channel patterns. Because of this, the derived regression coefficients may be biased towards 

these types o f channels, reflecting typical relationships between width and depth, depth and 

resistance, and velocity and depth that would be found in straight channels. However, because the 

models are based on, and include, the fundamental hydraulic variables of uiiifonii flow, the 

resultant regression equations are considered to remain generally representative o f  unifonn-flow 

relationships for any defined channel.

Similar to Dingmae and Shanna (1997), the predictive models were assumed to be 

multiplicative. The form of the prediction equations (models) that were developed are based on 

Equations (2-5), (2-7), (2-9), (2-10) and (2-11) as follows:

Model 1 (Equation 2-9): Q = c, (2-12)

Model 2 (Equation 2-11): Q = CjŴ V̂ S® (2-13)

Model 3 (Equation 2-10): Q = C3 W®V*' (2-14)

Model 4 (Equation 2-5): Q = C4 W„®Y„*̂ S‘YJ (2-15)

Model 5 (Equation 2-7): Q = (2-16)

Models 1 ,2, 4 and 5 use the water-surface slope as a prediction variable. However, the USGS

discharge measurement data base does not include slope as a measured parameter. Therefore, a

channel slope for these river stations was measured manually from 1:24,000 scale USGS

topographic maps over one contour interval. This results in a constant slope value for all o f the
25
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flow measurements at a particular river station, implying slope as a geomoipliic characteristic o f  

the river.

The implication of using a constant slope is explored by comparing tw'o realizations o f  

Model 1 developed from the reach averaged data base, that includes a unique measured slope for 

ail discharge measurements (minimum of five) at each river station (excluding the Bames (1967) 

data, which includes only one flow measurement at each station). The first mode! uses slope as a 

dynamic variable and the second uses a slope obtained by averaging all of the measured slopes 

over the entire discharge range at each river station. The comparison show's nearly identical 

regression models (Table 2.4). Based on this comparison, we conclude that using an average 

slope, or a channel slope obtained from topographic information that is a constant for a river 

reach, can be used in lieu of a measured slope, thus obviating the need to track w ater surface 

slope as a dynamic prediction variable.

These results also indicate that the USGS flow measurement data, which includes width, 

average depth, average velocity, and discharge (but not slope) can be combined with the reach 

averaged data base (which includes a measured slope) using a slope measured from  1:24,000 

scale USGS topographic maps for each station. In the remainder of this paper, all o f  the 

regression models and all discussion of slope as a prediction variable assume a  constant slope for 

each river station, developed either as an average o f many measured values, or obtained from 

topography.

Using the entire calibration data set (N= 506), the following regression models are 

developed (in SI units):

Model I: Q = 7.22W‘-“ y '-’V-^" (2-17)

Model 2: Q = 0 . 0 9 W ^ ' ^ (2-18)
26
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Model 3: Q = 0,23W"^V-’® (2-19)

Model 4: Q = (2-20)

M odels: Q = (2-21)

The values for Yj„ and Wm used in the regresssion analysis are obtained as the maximum value 

for all o f  the flow measurements at each river station, and thus are constant for each station. The 

possiblity that the Amazon River measurements skewed the regression results w'as evaluated by 

removing them from, the calibration data set and re-running the regression analysis. It was found 

that the Amazon data did not significantly impact the regression results.

The four regression models varied in their ability to describe the observed data. 

Comparative statistics between the models are shown on Table 2.5 and indicate that Models 1, 2 

and 3 perform comparably well, and that Model 4 does not perform as well as Models 1, 2 and 3 ■ 

but is better than Model 5. The intercept and coefficient of the slope for Model 5 are not 

significantly different than zero at the 95% confidence level. Since the form o f the model is 

based on the Manning equation, slope would be expected to be a significant predictor variable as 

it is in Model 1. The reason for this outcome may be due to the fact that width by itself is not an 

especially good predictor variable at many specific river stations (as indicated by Figure 2.1), and 

thus a constant slope at each river station does not contribute to explaining at-a-station variation. 

The standard error of the estimate (standard deviation of the log residuals) for M odel 5 is nearly 

twice as large as the standard errors for Model 1, 2 and 3, and indicates that 67% o f  the 

predictions using this model fall within a wide margin (factor of 2.75). Because o f  the relatively 

poor performance of Model 5 it is not evaluated further.

For comparative purposes, Table 2.5 also lists regression results for three single-variate 

models that use each element of equation (2-1) (W, Y and V) to predict Q. These models indicate

that depth, by itself, predicts discharge better than width and has a lower standard error than
28
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Model 5. The standard en'or is the standard deviation of tiie log residual, and its aiitilog is 

representative of the standard deviation of the fractional errors between the predicted and 

observed values on a log scale, and can be used as an approximation of the percent expected error 

provided there are not too many extreme values in the residual distribution. Using this approach 

(for comparative purposes), the depth by itself would be expected to predict discharge to within a 

factor o f 2.7 67% of the time, vridth by itself would be expected to predict discharge within a 

factor o f 3 67 % of the time, and velocity by itself w^ouid predict discharge within a factor o f 7.4 

67% of the time. Relative to depth and width, velocity by itself is a poor indicator of discharge.

The validation statistics for Models 1, 2, 3 and 4 and the Dingman and Sharma Model 

(Equation 2-9) are compared in Table 2.6. Comparative statistics include the m ean and standard 

deviation of the following quantities:

Relative Residual = (Q’ - Q)/Q (2-16)

Log Residual = log(Q’) - log(Q) (2-17)

Actual Residual = Q’ - Q (2-18)

In addition, the number of predictions wdthin a specified percent-error interval (percent different 

than the observed) are also tabulated for 20%, 50% and 100% error. Figure 2.2 shows the 

predicted discharge (Q’) plotted against the observed discharge (Q) for each m odel, along w ith an 

upper- and lower-envelope curve defined by the +/- 50% error in the observed value.

The log and actual residuals indicate that Model 1 and the Dingman and Sharma model 

tend to over-predict discharge and Models 2, 3 and 4 tend to under-predict discharge (Table 2.6 

and Figure 2.2). Model 1 shows the least overall prediction bias, and the Dingman and Sharma 

model has the highest. The mean relative error indicates the average percent error of the 

predictions. Model 2 performs the best in this regard, with an average relative error of 10%. 

Average relative error for Model 1, 3 and 4 are less than 20%. The antilog of the mean of the  log
30
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TABLE 2.6 

Model

Model 1

REGRESSION MODEL VALIDATION STATISTICS 

Validation Statistics
Percent of predictions

Relative Residual Log Residual Actual Residual within 20, 50 and 100% of the observed

Mean
Stdev

(Q* - QVQ (looQ* - locQt

0.16
0.81

0 .004
0 .207

(m^/s)
243
5059

20%

39%

50%

82%

100%

90%

3-3"
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Q .Ca
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O
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Q .
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Model 2
Q = 0 .09W ’'^V®®S'°'^

Model 3
Q = 0.23W^-^V'^®

Model 4
Q = 3.55Wm^’'®Yr„'“ “ S°-®V-”

Dingman and Sharma Model
Q = 4.62W^-'’V'®^S°'^'^

Mean
Stdev

Mean
Stdev

Mean
Stdev

Mean
Stdev

0 .07
0 .58

0.10
0.71

0.17
0.99

0 .43
1.01

-0 .017
0 .195

-0 .024
0.231

-0 .016
0 .243

0 .092
0 .215

-615
7129

-790
9946

-119
5333

763
7644

37%

32%

28%

41%

79%

71%

73%

74%

94%

93%

89%

86%

(/)(/)
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residuals indicates the fractional error between the predicted and observed discharge (the iog 

residual can  also be expressed as log(Q7Q) such that the antilog is the ratio Q ’/Q), which can be 

regarded as a  correction factor. This measure of error shows that Model I has the highest mean 

accuracy (w ith a ratio of less than 1%), and that Models 2, 3 and 4 all show m ean accuracy 

within 5%. Model 2 shows the least overall prediction error variability, as indicated by the 

standard deviation of the relative error and the log residual. The eiTor percentiles indicate that 

Models 1, 2 and the Dingman and Sharma model are comparable.

liispection of Figure 2.2 indicates tliat the predictive characteristics of the models vary for 

different ranges of discharge. These differences are evaluated by comparing the  distribution o f  

the relative residual with observed discharge. To facilitate comparison, the mean and standard 

deviation o f the relative residuals have been averaged within four categories o f  discharge range 

(0-10, 10-100, 100-1,000 and >1,000 mVs). Models 1, 4 and the Dingman Sharma model tend to 

over-predict primarily in the low discharge range (0-10 m‘Vs). This suggests tha t these models 

will have the best results in medium to large rivers where discharge typically ranges above 10 

m'Vs.

The reason for this may be that the relationship between resistance and the channel 

geometry cannot be fully represented by a single regression intercept (model coefficient). Models

2 and 3 also tends to over-predict discharge in the low range (0-10 and 10-100 m'Vs) but also 

under-predicts in the high discharge range (>1,000 mVs). This result indicates that Models 2 and

3 would do better if the coefficients varied with discharge, i.e. different model coefficients were 

calculated for different flow ranges. The Dingman and Sharma Model shows a  consistent over­

prediction for all flow ranges, which may result because it was developed from a data set witli 

fewer large rivers (also suggesting that statistical models such as these would be improved i f  they 

were developed for specific flow ranges).
32
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Figure 2.2 -  Predicted Discharge plotted against observed discharge for the validation 
data set using Models 1, 2, 3, 4, and the Dingman and Shanna Model. The envelope 
curves represent +!- 50% of the observed discharge.
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Figure 2.3 -  Variation of the mean and standard deviation of the relative residuals 
averaged within ranges of observed discharge. The upper and lower lines are +/- one 
standard deviation from the mean. Multiplying the relative residual by 100 gives the 
percent error. The number of observastioiis in each range are 71, 132, 209, and 94 from 
lowest to highest.

Prediction variability, as indicated by the upper and lower standard deviation of the

relative residuals, is reduced in the highest discharge range for Models 1, 2, 3 and 4 (Figure 2.3).

This indicates that model precision is improved for the larger rivers. The Dingman and Sharma
34
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model does not follow this trend, which again may be due to the presence of fewer large rivers in 

the data base used to develop it. The validation statistics indicate that prediction models based on 

Models 1 , 2 , 3  and 4 could all be used as general discharge estimating models, with mean 

accuracy o f  less than 20% in all cases. The variability of the estimates would be expected to be 

within +/- 50% of the acutal value on the order of 2/3 of the time. The prediction accuracy would 

be improved, for medium and large rivers.

A s a  comparison, under good measurement conditions, the accuracy o f  a discharge 

measurement made on the ground with standard techniques is assumed to be in the range of 2 to 

4% of the actual value at least 2/3 of the time (Rantz et al., 1982, Herschy, 1998). The accuracy 

of measurements made using the slope-area method (usually for large discharges that could not be 

meausred using standard techniques), which is based on after-the-fact measurements of the flow  

width, depth, energy slope and flow resistance using the Manning or comparable uniform flow 

equation, are not explicitly known because it depends on field judgement and the quality of the 

measured data (Kirby, 1987). However it is often reported that good measurements have an 

accuracy between 10 and 20% (Herschy, 1998).

The development of the rating curve averages out some of the error associated with the 

discharge measurements, however interpolation from the rating curve may also introduce error, 

especially if the rating curve is subject to change over time. The accuracy of estimates made from 

the rating curve diminishes with extrapolation beyond the highest and lowest measured 

discharges because the nature of the “true” rating beyond the measured values is not known. 

Additionally, hysteresis effects may not be adequately reflected in the rating. Dickerson (1967) 

suggests that accuracy in estimating future (uncalibrated) discharge values from a  rating curve 

may range from +13% and -11% at the 80% confidence level, and from + 21% to -17% at the 

95% confidence level.
35
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Measurement Uncertainty Analysis

Models 1, 2, 3 and 4, and equation (2-1) enable exploration of the impact that potential 

uncertainty (error) in measurement of the dynamic variables W, Y and V would have on the 

accuracy o f discharge predictions. To do this, (the measured variables were assumed to be error 

free which is not really the case), typical measurement accuracies were assigned to  each variable, 

and then varied randomly assuming a normal distribution such that the mean measurement 

uncertainty for the entire data base is zero and 95% of the uncertainties are within the assigned 

accuracy. The modified data were then used to re-estimate the discharge in the validation data 

base and then these values were compared via the relative residual to the estimates that assumed 

no uncertaiiiity. A maximum and minimum measurement accuracy is assumed for each dynamic 

variable.

For W, the minimum assumed measurement uncertainty is 1 m and the maximum is 10 

m, which would be consistent with the resolution of many of the current SAR and visible 

spectrum sensors (Table 2.2). Although, accuracy in width (surface area) measurement greater 

than 10 m  may be routinely possible over longer reach lengths and by using complimentary 

observation bands, the range selected for the emor anafysis is not considered to  be unreasonable 

for the purpose of this analysis. The minimum assumed measurement uncertaiiiity in water- 

surface elevation (as a proxy for Y) is 0.1 m and the maximum is 0.5 m, consistent with the range 

associated with current satellite altimeters (Birkett, 1998, Birkett et al, 2002). The minimum 

measurement uncertainty in V is assumed to be 0.1 m/s, which is the low end o f  the anticipated 

accuracy of a surface velocity measurement (Emmitt, personal communication, 2001), and the 

maximum was arbitrarily chosen to be 0.5 in/s (since the measurement of surface velocity from  

satellites has not been tested).

36
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This analysis does not consider the potential uncertainity in estimating channel slope or 

the other characteristic channel values and These variables could be detemiined by a 

number o f  methods, including: I) estimation from topographic mapping and geomorphologic 

considerations; 2) raeasuremeet from repeated satellite obsen,'ations; and 3) measurement via 

field surveys. The magnitude of uncertainty associated with determining the chaimel 

characteristics will depend in large part on the accuracy of available topographic information and 

availability o f channel survey data. The analysis also does not consider the uncertainity associated 

with estimating the average velocity from the surface velocity measurements or the imcertainty 

associated with converting stage to average depth. However, Costa et al. (2000) has shown that 

the surface velocity can be used to estimate the mean velocity in a single cross-section with good 

overall results by using a simple correction factor o f 0.85 (Rantz et al, 1982).

The assumed measurement uncertainties are distributed with a mean o f  zero such tliat the 

mean value of the prediction residuals would not change. Because of this, the measure used to 

evaluate the effect of the measurement uncertainty on the predictions is the standard deviation o f 

the relative residuals. The standard deviation of the relative residuals as a function of discharge 

category for the maximum assumed uncertainty (error), the minimum assumed uncertainty, and 

the case witli no uncertainity are shown on Figure 2.4. The least variability is associated with 

using equation (2-1) because there is no associated statistical error. All of the plots in Figure 2.4 

show that the impact of maximum measurement unceitainty on prediction variability, relative to 

the no uncertainity case, becomes pronounced below a discharge of 10 m'Vs. The impact of 

maximum uncertainty for discharge above 10 m'*/s is greatest for equation (2-1) and Models 2 and 

3. This result shows the effect of compounding errors in the case of equation (2-1), which 

includes uncertainty in all three dynamic variables, and indicates that uncertainty in V has a larger 

impact on prediction variability than does uncertainty/ in Y (comparing Model 1 and 2).
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Figure 2.4 -  Variation of the standard deviation of the relative residuals assuming a high 
(maximum) and low (minimum) measurement error in the dynamic variables as 
compared to no (mean) assumed measurement error. The dynamic variables are W, Y, 
and V. Ninety five percent of the assumed maximum errors are within +/- 10 m for W, 
+/- 0.5 m for Y, and + !- 0.5 m/s for V. Ninety five percent of the minimum errors are 
within +/- 1 m for W, +/- 0.1 m for Y, and +/- 0.1 m/s for V.

The impact of minimum uncertainty is not large within any discharge category, although 

as in the maximum uncertainty case it is most pronounced for discharge below 10 m7s.

However, if the minimum measurement uncertainty is achieved for all dynamic variables,
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predicting discharge with equation (2-1) would result in a standard deviation in the relative 

residual (percent en'or) of less than 25% for discharges less than 10 m'Vs, less than 15% for 

discharge in the range 10 - 100 m'Vs and less than 10% for discharge greater than 100 mVs. The 

impact o f  minimum measurement uncertaint}' using Models 1, 2, 3 or 4 is less than 15% for 

discharge less than 10 m'Vs, and less than 10% for all other discharge categories. The plots in 

Figure 2.4 show that if the minimum measurement uncertainty can be achieved, uncertainty in the 

estimated discharge using the statistically based models is well below the uncertainty associated 

with the model itself (no error case).

As suggested by comparing the plots for Model 1 and Models 2 and 3 in Figure 2.4, there 

appears to be a different error response between Y and V. The differences in measurement 

uncertaint}/ impact associated with the three dynamic variables were evaluated by introducing 

error into one variable at a time, and then comparing the standard devaition o f the relative 

residuals. The results of this analysis are shown in Figure 2.5 for equation (2-1), and Models 1 

and 3. The plot for equation (2-1) show's that error in V has greater impact on the discharge 

estimate than does error in Y, and that error in W has the least impact. Comparing Models land  3 

shows that error in Y has the largest impact relative to W and V at low discharge (less than 10 

m'^/s), and that error in V has a greater impact than error in Y for discharge greater than 10 mYs.

Discussion

The advantage of a satellite-based river-discharge-monitoring system is that it has the

potential to fill in gaps where there is little or no information and obtain data over large areas

simultaneously. Another advantage that satellite (or aerial) based measurement o f  hydraulic

variables (particularly width) could provide is the ability to observe variation over a reach, thus

enabling a reach-averaged value to be derived and minimizing the local variability that is specific
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to single cross sections. Development o f a general method to estimate river discharge using river- 

channel hydraulic infonnation observed from existing space or aerial platforms can be 

accomplished with statistical relationships developed from river data bases. If the water surface 

velocit}/ o f  a river can be observed v»̂ ith Doppler lidar and used to estimate the average cross- 

sectiona! velocity and if the water-surface elevation can be used to estimate the average depth, all 

elements o f equation (2-1) can be obtained remotely and the discharge in the river can be directly 

calculated.

The use of equation (2-1) is the preferred method to estimate discharge because it does 

not rely on a statistical derivation, shows the least overall prediction variance, and is applicable to 

any river under any flow conditions. How-over, it is likely that not all elements o f equation (2-1) 

can be observed at the same time with confidence, thus in these situation statistically based 

models such as described by Models 1, 2, 3 and 4 can be used with reasonable accuracy, 

averaging +/- 20% or less, with accuracy within approximately +/- 50% 2/3 o f the time. This 

level of accuracy compares favorably with estimates derived from extrapolation o f  ground-based 

ratings and slope-area measurements of discharge. Measurement error analysis indicates that with 

anticipated maximum uncertainty in the values of the observed variables, the variability of 

discharge estimates is increased substantially for discharges less than 100 m7s, however 

assuming, a reasonable minimum measurement uncertainty- (0.1 m accuracy in depth, 1 m 

accuracy in width and 0.1 m/s) prediction eiror variability is only slightly increased over the no ­

error case.

Models that use width and surface-velocity only to estimate discharge (Model 3) can be 

used in situations w-here slope cannot be measured, or where anthropogenic control of slope

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Equation 1 (WYV)

0.9

0.2  -

>10000 -  10 1 0 - 1 0 0 1 00 -1000

- V d o c i ty  I 

-  D ep th  j

Discharge Range (uf / s)

Model 1 (WYS)

3

2.5

^  1.5

1

0.5

0
1 0 - 1 0 0 100-1000 >10000 -  10

Discharge Range (m^/s)

Model 3 (WV)

o
G
O
■S 0.8

I  0-6
^  0.4

0.2

1 0 - 1 0 0  1 0 0 -1 0 0 0 >10000 -  10

- V e lo c i ty

- W id t h

Discharge Range (nf!s)
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methods with more than one dynamic variable assuming error in only one variable at a 
time, showing the relative impact that error in the different dynamic variables has on 
prediction variabilit)'.
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violates the hydraulic assumptions inherent in Models 1 and 2, assuming surface velocity can be 

effectively measured. However, width-velocity models appear to have a bias trend across a w ide 

range of discharge.

The predictive models described above are applicable to within-bank discharge only, 

because these models did not include over-bank flow in the data base used to develop and 

evaluate them,. However, estimating over-bank discharge would require the same iiiformation,

i.e. the width of flow, the average depth of flow and the average velocity of flow'. Alsdorf et.al. 

(2000) has shown the feasibility of using interferometric SAR to map the surface relief of an 

inundated region of the Amazon, thus demonstrating that mapping flow paths within a flooded 

area is possible. With this infonnation, the discharge within the flooded area could be estimated 

and resolved in the dowmstream direction using floodplaio topography and water-surface 

elevation to estimate the flow depths across the inundated area. As shown by Brakenridge et ai. 

(1998), Bates and DeRoo (2000), and Horritt (2000), this infonnation could also be used in 

conjunction with a hydraulic model to estimate the discharge within a flooded region.

Brakenridge and Knox (1998) used satellite images obtained from ERS-1 coupled with 

topographic information to develop a three dimensional picture of the flooded area (inlcuding 

depth and areal extent) which were then used to track the flood w'ave and estimate flood discharge 

using the HEC-2 river hydraulic model.

The successful use of equation (2-1) and Models 2 and 3 will depend on the ability to  

measure surface velocity from space. To this end, development and verification o f this 

technology will greatly enhance  the potential ability to measure river discharge from space. 

Additionally, use of equation (2-1) and Models I, 2, 3 and 4 all depend on the ability to translate 

surface measurements of stage and/or velocity into average values for the channel section under 

observation. Thus, techniques to estimate the average water depth in a channel section based on
42
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observation of water-surface elevation and techniques to estimate the average velocity in channel 

section based on measurements of surface v d o c ity  need to be developed and verified. Another 

issue of concern is that currently deployed altimeters cannot acciirrately obtain w'ater-surface 

elevations on rivers less than several hundred meters wide. However, there is an indication that 

these same altimeters can observe much smaller rivers wdth similar accuracy by effecting a 

change in the on-board signal processing (personal communication, Emesto Rodriguez). Also, 

laser altimeters may provide much greater accuracy with reduced observation size limitations 

relative to radar altimeters. The potential improvements in river-stage measurement indicated by 

these developments need to be evaluated.
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CHAPTER M

DEVELOPMENT OF GENERALLY APPLICABLE EQUATIONS FOR ESTIM ATING

RIVER DISCHARGE

Because width is the most readily and reliably measured hydraulic element of the channel 

from remote sources, relationships that use width with either of the other two elements of the 

continuity equation (depth and velocity) along with characteristic channel variables such as 

maximum width and channel slope, would provide the most flexibility in measuring discharge 

from remote platforms or sources. Estimating discharge from relationships that use width as the 

only variable do not provide sufficient information to characterize the range o f river discharge 

variability with reasonable accuracy (e.g. a mean prediction accuracy within 20% or less of the 

expected value with, 67% of the predictions within 50% of the expected value), and consequently 

do not yield generally applicable models.

Additionally, models based on width only cannot be derived from hydraulic principles 

without over-simplification of in-channel hydraulic relationships, and are therefore limited to 

uniquely derived statistical relationships for a given reach. Thus, there is advantage to developing 

discharge-estimating equations that rely on measured width and geomorphic characteristics that 

can be readily observed and one of the other two dynamic variables of continuity, depth or 

velocity. Developing generally applicable models with the fewest possible independently 

measured variables that can provide reasonable estimation accuracy will minimize compounding 

error; and provide a way of estimating discharge when all of the elements of flow  continuity 

cannot be observed or accurately estimated.
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Generally applicable statistical relationships developed from multiple-regression analysis, 

that use width, channel slope, and either mean depth or mean velocity to estimate river discharge, 

as described in Chapter 2, have shown that discharge can be estimated with reasonable accuracy. 

However, regression models do not allow for improvements in the estimates if there is better 

knowdedge o f  the behavior of one river as opposed to another. The coefficients and exponents o f  

the models are fixed by the errors and variability within the data set used to develop them, and 

even if the data set represented the entire population of flows, variability that is not explained by 

the regression cannot be reduced by inclusion of more specific laiow'ledge that may be available 

for a specific river. For this reason, rationally based equations that are developed from physical 

principles would provide more general and adaptable models for estimating discharge in rivers.

In addition, rationally based models can be calibrated to specific rivers where additional or better 

knowledge is available.

This chapter develops and evaluates the use of generally applicable river-discharge estimating 

equations that are based on width, channel slope and either mean depth or mean velocity. Both statistically 

and rationally derived equations are developed from a flow-measurement data base similar to that used in 

Chapter 2 and a synthetic discharge data base that is based on principles of river hydraulics. Comparison 

and applications of these relationships are discussed including their use with other types of hydrologic 

information.

Hydraulic Data

A large discharge-measurement data base wms developed in order to derive, calibrate and

compare statistically based discharge-prediction models wdth similar models developed from

physical principles. The data base includes 1,037 flow measurements from 103 rivers in the

United States and New Zealand. At each river station, from five to twenty in-bank discharge
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measurements obtained for as wide a range of flow as possible, were incorporated into the data 

base. The data base includes a measured width and/or cross-sectional area, mean depth and/or 

hydraulic radius, a mean velocity for the measurement section or reach, and an average or 

topographic channel slope for the reach (see Chapter 2). In addition, the maximum depth and 

width for the set of measurements at each station were included as a separate charmel-sliape 

variable. Approximately half of the measurements consisted of values averaged, fo r a given reach, 

and the remainder of the data were obtained from single measurement cross-sections.

The data were obtained from Bames (1967), Hicks and Mason (1991), Coon (1998) and 

from the U.S. Geological Survey’s on-line NWIS data base (USGS, 2001), and all represent 

single-thread channels. The data include rivers that do not exhibit any control on the slope (no 

back-water effects), and no large expansion or contraction of the flow within the reach where the 

data were collected (thus, rivers that were contracted by a bridge or natural feature such as a 

canyon or narrows were not included in this data). These data are referred to as the channel- 

control data base (Appendix 1). The channel-selection criteria were implemented so that the 

hydraulic variables could all be considered adjusted to the channel slope. The channel 

characteristics of each river in the data base were evaluated based on information available from 

the data sources, or from inspection of topographic maps of the channel at each station. For 

comparative purposes, the channel-control data base ŵ as randomly divided into a  calibration data 

set (N = 680) and a validation data set (N = 357). The range of data in each sub-set is shown on 

Table 3.1.

Approximately 90% of the data in the channel control data base is the same as that used 

for the multiple regression analysis presented in Chapter 2. Eight large rivers, including the
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Amazon, w ere excluded from this data base because the data were judged to be affected by 

channel constrictioiis (both natural and anthropogenic) or otiier controls on the w'ater-surface 

slope. N ine additional rivers with no slope control were substituted for those that were excluded 

in order to maintain a similar size data set.

As discussed above, there are advantages to developing hydraulic models from physical 

principles rather than basing the relationships solely on the statistics of particular data sets. For 

this reason, a theoretically derived river-channel and discharge data set was generated from wdiich 

various hydraulic relationships were statistically extracted and analyzed. The synthesized data set 

was developed from the Praiidtl-von Karnian universal velocity distribution law assuming a 

uniforai channel with a parabolic channel cross-section shape. The following describes the steps 

taken in developing the data base.

The Prandtl von-Kamian universal velocity distribution law states that the velocity (v) in 

a vertical profile varies with distance from the bottom (y) as a log-fiinction of the vertical distance 

above an assumed roughness height. This relationship is given by:

V = 2.5V* ln(y/k) (3-1)

where V* is the shear velocity (V*=(gYS)^'", g is the acceleration due to gravity, Y  and S are 

mean depth and bed slope respectively) and k is a constant that is proportional to the surface 

roughness of the streambed, and is equal to 0.033 times the roughness height (ks) (Chow, 1959). 

The roughness height is considered to be the effective height of surface irregularities that intrude
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Parameter Svmbol Units Mean Stdev Coeff. Var. Maximum Minimum

Calibration Data N = 680

Discharge Q m®/s 860 2434 2.83 27576 0.01
Top W idth W m 128 159 1.24 1009 2.9
Average Depth (Hyd. Radius) Y m 2.38 2.24 0.94 12.39 0.1
Average Velocity V m/s 1.15 0.62 0.54 5.1 0.02
Water Surface Slope (average) S 1 0.0029 0.0056 1.93 0.04 0.000043

VaiWatiofi Data N ^ 35?

D ischarge 
T op W idth
A verage  Depth (Hyd. Radius)
A verage Velocity
W ate r S u rface  S lope  (av erag e)

Synthetic Data Set N ^ 3S0

D ischarge 
Top W idth
A verage Depth (Hyd. R adius)
A verage  Velocity
W ater S u rface  S lope (av erag e)

Q m®/s 717 1960 2.73 17837 0.02
W m 126 146 1.16 765 3.1
Y m 2.33 2 0.86 12.7 0.18
V m/s 1.11 0.59 0.53 3.53 0.02
s 1 0.0021 0.0042 2.00 0.04 0.000043

Q m^/s 4985 12559 2.52 98233 0.14
W m 337 405 1.20 2000 30
Y m 3.43 3,59 1.05 21.78 0.1
V m/s 1.4 0.63 0.45 3 0.15
S 1 0.0012 0.0021 1.75 0.01 0.00002
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beyond the laminar sub-layer for liydraulically rough flow conditions (which is the case in most 

natural rivers)(Chow, 1959). The relation betw'een k (used in the following theoretical 

developiiient) and the roughness height (ks) was developed from hydraulic experiments 

perfomied by J. Nikuradse in 1933 (Cho'w, 1959).

A general discharge equation can be derived in terms of velocity as:

Q = IJ  V dy dx (3-2)

where y is the mean distance above the bottom (depth) and x is the top width at y. Integrating v 

io, equation (3-1) with respect to y

q = 2.5V* J In(y/k) dy (3-3)

gives the unit discharge in the vertical (the flow per unit distance along the cross section): 

q = 2.5V* y(ln(y/k) -1) (3-4)

The unit discharge can now be integrated with respect to dx to obtain the total discharge in the 

cross-section assuming a regular geometric cross-sectional shape. To conduct the integration, a 

parabolic cross-section shape is assumed (Fekete, 2002; Chow, 1959). A parabolic shape is often 

used to represent self-formed river channel cross-sections (Chow, 1959), and in many cases are 

comparable to those obtained from assuming other regular geometric shapes commonly used such 

as a semi-ellipse, trapezoid, or higher order paraboloid. Additionally, liydraulically efficient 

stable channel cross-sections developed from theoretical considerations can be represented by 

cosine functions that are nearly equivalent to parabolic sections (Henderson, 1966; Ferguson, 

1986). This indicates that the assumption of a parabolic shape as representing the “typical” self- 

fornied channel is reasonable.
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T he integration of Equation (3-4) involves inverting the parabola to obtain the proper 

integration under the curve such that y = ym -  c where ym is the maximum depth within the 

section bounded by x. The inversion is fflustrated on Figure 3.1. The coefficient c is a geometric 

constant for the parabola defined at maximum width aad depth, equal to 1/(W„,^/Y^j). Substituting 

this into Equation (3-4) and setting Wj J2  -  e = X, where e is an arbitrarily small number gives;

Q = 2.5V* I  ( Yn j - c  x^)[ln((y„ -  c x ^ k )  -  1] dx

Integrating equation 3-5 gives (webMathematica, 2002):

Q/2 = 2.5V*[-7y„x/3 + 5cxV9 + (4y^=-5/3c°-^)(ArcTanh[c°VyJ-5]) 

+ (YnA -  cx^)in[(y^ -  cx^)/k]

(3-5)

(3-6)

y = cx y=ym*cx

X (distance from center of channel) X (distance from center of channel)

Figure 3.1 - Definition sketch: integration of the parabolic section

Numerous studies have shown that rivers exhibit general hydraulic relationships between 

depth, slope, width, velocity and resistance (Leopold et al, 1964; Henderson, 1966; Rosgen, 

1996). In order to avoid inclusion of unrealistic channels in the synthesized data base, general 

rules for estimating the maximum depths and roughness heights were used. The rule for 

estimating the maximum depth was developed based on multiple-regression analysis of a bank- 

full hydraulic geometry data set compiled from various sources for 521 river reaches (Schumm,
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1960; Bam es, 1967; Osterkamp et a!., 1982; Church and Rood, 1983; and Dingman and Palaia, 

1999) (Appendix 3). Based on the analysis of this data, it was found that maximum depth (¥„() 

could be predicted from the maximum width (W m) and the slope (S) according to the following 

relation:

(3-7)

In equation (3-7) all units are in meters. The width and slope in equation (3-7) explains 

approximately 73 %  of the variation in maximum depth (r  ̂= 0.73).

The roughness height was estimated directly from theoretical considerations based on an 

initial assumption that the Manning resistance coefficient (n) is a function of the slope (Bray, 

1979) as follows:

0 = 0.18°'* (3-8)

Chow (1959) presents a dimensional relationship between the Chezy C and M anning n based on 

the hydraulic radius (in feet), and a theoretical relationship between the Chezy C and roughness 

height (in feet) as follows

C=1.49R°-‘7n (3-9)

C = 32.6 log(12.2R/k,) (3-10)

Equations (3-8), (3-9) and (3-10) were used to compute the roughness height (ks) for a given 

slope assuming that R = The value of k in equation (3-6) is then computed as 0.033 times the 

roughness height. Thus, the channel dimensions and hydraulic characteristics o f  the synthesized 

data base are derived from maximum width and channel slope, and the assumption of a parabolic 

channel shape.
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The range of slopes and widths used to develop the synthetic data base w ere within the 

same range o f  values included in the flow-measuremeiit data base (Table 3.1). It is  recognized

that small streams may take on a large range of slopes, but typically larger rivers w ill only exhibit 

relatively fiat slopes. However, no such behavioral rule between width and slope was invoked to 

generate the synthetic data. Instead, the slope and width were treated as independent variables, 

and the range of values were selected to be comparable to actual rivers.

The derived synthetic data base consists o f 380 flows with associated values for width, 

mean depth, mean velocity and slope (a constant value for each synthetic river channel) in units 

of meters and. seconds (Appendix 4). Comparison o f the synthetic and measurement data bases 

was accomplished by analyzing the behavior of the dimensionless Froude number. In both the 

synthetic and fl,ow measurement data bases, the Froude number was found to be predictable from 

a dimensionless velocity head index given by V^/(2gW). The velocity head index (VHI) is used 

here because it does not include a depth term, and therefore would be more useful in a predictive 

capacity (because depth is not readily available from remote data). The Froude-number-VHI 

relationship derived from the synthetic data is:

F = 2.20[V^/(2gW)]°-’ (3-11)

The same relationship derived from the measurement data is:

F = 2.32[V^/(2gW)]“-’  ̂ (3 -1 2 )

Although not equivalent at the 95% confidence level, the similarity of these equations indicates 

the general comparability of the two data sets.

The Froude relationship for both the measurement data and the synthetic data are shown 

on Figures 3.2a and 3.2b. Further analysis of the relationship between the Froude number and
52
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VHI for the synthetic data revealed that the variability in the general relation given by equation 

(3-11) can be reduced by using the maximum îvidth and the slope to predict the coefficient and 

exponent o f the equation. Multiple regression analysis of (Wn,) and. (S) on the coefficient (c) and 

exponent (m) of equation (3-11) gives the following:

c = 2 3 .7 W /’̂ Ŝ®-̂ ’̂ (3-13)

and

m  =  0.881W „f'''“ V ” ® (3-14)

Figures 3.2c and 3.2d shows the predictive characteristics of the general relation between 

Froude number and VHI derived from the synthetic data base applied to both the synthetic and 

measurement data. Figures 3.2e and 3.2f show the improvement in predictability by using the 

relationships given by equation (3-13) and (3-14). The improvement in prediction for the 

synthetic data can be readily observed. The improvement in prediction for the measurement data 

w'as measured by computing the mean and standard deviation of the relative residual (predicted 

minus observed divided by the obsen^'ed) and the log-residual (log of the predicted minus log o f  

the observed) of the estimate. The mean relative residual and log-residual associated with Figure 

3.2d is 36% and 29% respectively, and the mean relative residual and log-residual associated with 

Figure 3.2f is 23% and 17% respectively, indicating that knowledge of Wm and S can 

substantially reduce Froude-number estimating en'ors. The standard deviation o f the errors were 

also reduced. Thus, the hydraulic characteristics of the synthetic data can be used, to derive 

relationships that help explain variability witliin the measurem.ent data, indicating that the 

theoretically derived data is a useful representation o f real-world rivers.
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Statistically Based Discharge Estimating Models

For comparison, a set of regression models parallel to those proposed in Chapter 2 w ere 

developed from regression analysis of the channel-control calibration data. These models are:

7r std. en'or

Model 1: Q = 4.24W'-’V ' “ S“-̂ ^ 0.97 0.19 (3-15)

Model 2: 0.97 0.19 (3-16)

Mode! 3: Q = 0.23W’-'‘V*''’̂ 0.95 0.24 (3-17)

Model 4: 0.94 0.27 (3-18)

The regression results differ from those presented in Chapter 2 because a somewhat 

different data base was used to develop them, although approximately 90% of the data in the 

channel-control data set are the same. Thus, even with a large amount of data in common, the 

statistically based models would, in general, provide different predictive results, indicating one a 

key limitation of statistically derived models. Comparing these models with those derived in 

Chapter 2 {Table 2.6), it is found that the magnitude of the slope exponent for Models 1 and 2 

were the same at the 95% confidence level, whereas the values for the width, depth and velocity 

exponents were not always the same between these models. This suggests that slope is an 

effective discriinmating variable even where the interaction of width and velocity may vary. 

Model 3 is similar for both data bases at the 95% confidence level.

The exponents of Model 4, with the exception of slope and depth, are also different,

however an interesting aspect of this mode! is that the exponents on the maximum width and

maximum depth are near the expected values (1.0 for W,„ and -0.5 for Y^) if the “typical”
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channei shape were a parabola (2nd order paraboloid). This suggests that self-formed single 

thread channels tend towards parabolic shapes, fiirther verifying the assumption underlying the 

development of the synthetic data base.

The exponents associated with Model 1 suggest a similarity to the Manning equation 

which is given as;

Q = (u/o)AR-''’S‘'̂  (3-19)

where u is a proportionality constant and ii is a resistance coefficient. The exponent on the depth 

term is near the expected value of 1.67 and the exponent on the width is near the expected value 

of 1. However, the exponent on slope is closer to 0.33 rather than 0.5, as formulated by Manning 

(1895).

Comparable regression models were also developed for the Prandtl-von Kamnan synthetic 

data base. Model 4 was not developed from these data because the maximum depth was derived 

from the maximum width and the slope (and thus is perfectly correlated with maximum width and 

slope). The resultant regression models are:

std. error

Model 1: 1.00 0.04 (3-20)

Model 2: Q = 1.00 0.06 (3-21)

Model 3: Q = 0 .i2W '” v ‘-*̂ 0.99 0.13 (3-22)

Model 1 derived from the synthetic data shows nearly the same exponents as those derived from  

the measured data bases (although different at the 95% confidence level with the exception o f  the 

slope exponent), and are similar to the Manning equation except for the exponent on the slope.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which is also nearer to the cubed root rather than the square root. The exponents on Model 2 and 

3 are different than those for the regression models derived from the measurement data.

The regression models from each of the data bases suggests that a general form of Model 

1 could be represented by the Manning equation with an exponent of 0.33 (cubed root) on slope 

rather than the square root. However, the regression models do not immediately suggest any 

general fomi, for Model 2 or 3. The consistent behavior of the regression statistics with regard to 

Mode! 1 suggests a robustness with regard to a general fonn, and its similarity to the Manning 

equation is encouraging. Additionally, the result that the slope exponent is always nearer 0.33 as 

opposed to 0.5 suggests that there is an underlying principle of natural rivers that relates the 

resistance to thus resulting in a slope exponent o f 0.33 (as indicated by equation 3-8).

General Discharge Estimating Equations

Open-channel flow's are often modeled as one-dimensional gradually varied steady or 

unsteady flows. Such flows satisfy three fundamental relations including; 1) continuity, requiring 

the conservation of mass; 2) the energy equation, characterizing the apportionment of mechanical 

energy and its spatial and temporal rates of change; and 3) a constitutive relation, characterizing 

the relation between energy gradient and flow rate. The constitutive relation is generally 

described as,

V = Kg'-RPS'* (3-23)

where K is a channel conductance and S in the general sense can be taken as the friction slope

(slope of the energ}' grade line). Specification of the constitutive relation is not straightforward

because there is uncertainty about the values of p and q (Manning, 1889; Goliibstov, 1969) and
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the ¥/ay in which the velocity conductivity coefficient K, varies with flow and boundary 

characteristics.

The most widely used constitutive relation is the Manning equation. How'-ever, studies 

that have established a sound theoretical basis for this relation or have unequivocally 

demonstrated that it governs all unifonn flows are not evident in the literature. A number of 

studies before and after publication of the papers on which wide acceptance o f the Manning 

equation are based (Manning 1889, 1895) have discussed the appropriate values o f  p and q and 

the question of whether and how the conductance coefficient varies with flow and channel 

characteristics. As is well known, Manning himself felt that the constitutive equation should be 

dimensionally coiTCct and was uncomfortable with the form of the equation that came to bear his 

name (Manning, 1895).

One major problem with the Manning equation -  and of many other proposed fornis o f  

the constitutive relation - is that there is no universally accepted way of determining the 

appropriate value of the conductance/resistance parameter from measurable channel 

characteristics for a p r io r i or a  p o ste r io r i applications. In addition, the Manning equation violates 

at least fiwo of the principles that should be satisfied by a constitutive relation (Bear 1972): (1) 

consistency with principles of momentum balance and (2) dimensional homogeneity. The 

Manning equation is an empirical modification of the Chezy equation,

V = (3-24)

which can be derived from force-balance relations and is dimensionally homogeneous. However,

the Chezy equation is based on the dimensionally-motivated assumption that resistance is

proportional to V .̂ As Leopold et al. (1960) pointed out, that assumption may only be true if

resistance associated with the flow boundaiy does not change with V, in other words resistance is
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constant for all velocities. This condition is gensrally true for pipe flow but not for open channels 

where the boundary changes substantially with discharge.

Manning (1889) himself cited empirical studies that showed various values for p and q, 

and subsequent empirical and even theoretical (Leopold, et al. 1960) and quasi-theoretical 

(Henderson 1966) studies have found wide variation in both p and q. Several studies, including 

Golubtsov (1969), Riggs (1976), Jarrett (1984), and Dingman and Sharnia (1997), have not only 

used statistical analysis to reveal different apparent values of p and q, but also to suggest that a 

very wide range of flows can be successfully modeled using a universal value for the velocity 

(conductance) coefficient (K). This latter point is especially important, because confirmation o f  

this finding w^ould free the modeler fro.m the inherently subjective and highly uncertain (HEC, 

1986) process of estimating the resistance. Lane’s stable-channel analysis (Henderson, 1966) also 

suggests that it may be possible to model open-channel flows using a constant conductance 

coefficient for all channels, at least to the accuracy obtainable by the usual subjective methods for 

estimating reach-specific resistance/conductance. Thus, it is of interest to compare the variability 

of K over all flows in the data bases using different assumptions for the values o f  p and q.

Four discharge-estimating models with exponents selected a p r io r i  based on the Chezy, 

Manning and regression equations were used to evaluate the variability of K as a function o f p 

and q. These are:

Q = k,WY* ,67g0.5 (3-25)

Q = kzWY^,67g0.33 (3-26)

Q = kjWY' .SgO.s (3-27)

Q = k 4 W ’.5g0.33 (3-28)
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The discharge coefficients (k| through Icj) were determined for each flow measurement in the 

channeJ-conti'ol data base and their distributions plotted as histograms in Figure 3.3. The 

coefficient o f variation for the distributions is also indicated on Figure 3.3. Comparison of the 

historgrams indicates that the discharge coefficient is bi-modally distributed W'hen a slope 

exponent of 0.5 is used (kj and k3 ), and there is significantly less overall variability in the 

conductance coefficient when an exponent of 0.33 is used (ka and k4 ). This indicates that there 

would be less estimation, error and greater accuracy when using constituitv'e equations that 

assume a slope exponent of 0.33 for natu.ral rivers.

The improved predictive qualities of the models when using a slope exponent of 0.33 can 

be explained, in part, by assuming that the principal source of resistance is the boundary 

roughness, and that the boundary roughness is directly related to a characteristic stable grain size. 

The stable grain diameter is proportional to the maximum channel hydraulic radius (or depth) 

times the slope (Henderson, 1966), such that D = (f)YmS with D equal to the stable grain diameter 

and (|) is a coefficient that accounts for the Shields eiitrainment function and the specific gravity of 

the sediment (solidrfluid density ratio). Given that bed shear stress is related to the size of the bed 

material, the stable-bed resistance coefficient w'ould also be related to grain size (Chow, 1959; 

Henderson, 1966). Resistance is also known to be a function of the depth of flow" (Chow, 1959), 

consistent with the concept of relative roughness (Engelund, 1966;Liinerinos, 1970; Hey, 1979; 

Arcement et a l, 1989). Thus, an expression for the stable-bed resistance should include the 

maximum depth and slope (YmS) to account for the resistance associated with, the size of the 

stable-bed material, and tlie flow depth (Y) to account for the relative roughness. With these 

assumptions a dimensionally homogeneous constitutive equation based on the Chezy equation 

v/ould take the fonn:

Q = C*g°-'WY'-" S°'V(Y„SW)^ (3-29)
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Figure 3.3 -  Distribution of tlie discharge coefficient for the channei-contro] data for the 
various forms of Model 1 showing the coefficient of variation for each distribution.

where f  is an exponent relating the stable grain size to resistance, and C is a constant of

proportionality that may vaiy with flow conditions. The value of C’, determined by minimizing

the tog-residual of error using the channel-control data, is estimated to be 2.74. This equation
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maintains dimensionality by including the ratio Yn/Y, wMch also accounts for the effect of 

relative roughness. Studies by Lacey (Bray 1979) have indicated that bankfiill (or regime) 

resistance, as expressed in the Manning equation, in natural gravel bed channels is  a ftinction o f 

slope to the 1/6**" power (i.e. resistance is proportional to S“' '̂)- TMs general relationship was 

further substantiated by Bray (1979). Accepting this relation (f = 0.17) would result in a slope 

exponent of 0.33 and a depth exponent of 1.67 for Model 1, which confirms the results from the 

regression analyses. The distribution of C* for this model has a smaller range than  the k values 

for flie comparable models as shown on Figure 3.3.

Because the variables used in equation (3-29) are rationally developed and provide a 

more complete representation of the geometric contributions to resistance, this equation is 

considered to be a more physically complete formulation of Model 1 compared to  equations (3- 

25) through (3-28). Deriving the form of equation (3-29) from regression analysis of the channel 

control data (N=1037) yields the following equation:

Q = 0.84g“ Ŵ -“ y-^“s “ V '^ ^  = 0.97 std error = 0.18 (3-30)

An interesting aspect of this equation is that it is very nearly dimensionally homogeneous. This 

suggests that the correct variables are included in the model, and thus also are included in 

equation (3-29). However, the magnitude of the exponents are significantly different than those 

proposed for equation (3-29), indicating that equation (3-29) is not a completely satisfactory 

physical representation of Model 1. Equation (3-30) suggests that width and otiier factors related 

to slope and maximum depth are important in defining the resistance.

Equation (3-29), if applied to the bankfull flow condition, would reduce to a form similar 

to the Chezy equation, except that the exponent on the slope is 0.33 rather than 0.5, because Y  =

Ym. Leopold et al. (1960) suggested that rivers in regime tend towards a constant bankfull
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Froude iiurDber. Figure 3.4 shows the Froude number plotted against discharge for 22 rivers in  

the United States over a wide range of flows (several orders of magnitude) obtained from the 

USGS N W IS data base. The plots show two distinctive patterns. One is a logarithmic increase in 

Froude Humher which converges to a constant value at high discharge, and the other is a random 

scatter at low  discharge which also converges to a constant at high discharge. In  either case, there 

appears to b e  a tendency for the Froude number to reach a constant value as discharge increases 

toward the bahkJull or regime flow.

The livers shown on Figure 3.4 represent chaimels that are unrestricted (as determined by 

inspection of topographic maps of the river stations) and therefore the Froude number would not 

reflect backwater or accelerating flow conditions. It is not known (because it w as not recorded in 

the data base) whether any of the discharges shown on the plots are greater than bankfull. 

However, it can be surmised that if the Froude number reaches a constant value at high discharge, 

the asymptote would occur at or near the bankfull discharge, and may persist in  overbank flow  

conditions assuming that the majority of flow even in floods remains in the channel (which m ay 

be the case for smaller overbank flood events).

The asymptotic Froude number for each river shown on Figure 3.4 was estimated by 

inspection and tabulated in Table 3.2 along with the channel slope measured fro m  topographic 

maps. These data are plotted on Figure 3.5 and show that the asymptotic Froude number is a 

function of the channel slope and can be fit to the following equation, which is plotted as the 

trend line given by:

F = 3.5S“'̂ ® (3-31)
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Figure 3.4 -  Froude number as a function of discharge at 22 gaging stations.
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P e e  D ee River at Rockingham Platte River near A g e n c y
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Figure 3.4 -  (continued)
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T an an a  Rivsr near Fairbanks W illamette River a t S a lem
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Figure 3.4 -  (continued).
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TABLE 3 .2  - High Flow  F ro u d e  Numbers and Channel S lo p e s

R iver G a o ln a  S ta tio n C h a n n e l S lo o e   ̂ Fr«D u d e  N u m b er ^

A rk an sas  R iver a t A rkansas City, K an sas 0.000685 0 .2 5
D eiaw are R iver a t Callicoon, New York Q.00107 0 .4
K an sas R iver at Fort Riiey, K ansas 0.00049 0.25
Kuskokwim R iver a t Crooked Greek, A laska 0.000198 0.25
M ississippi R iver a t Thebes, Illinois 0.000137 0.25
M issouri R iver a t Hermann, Missouri 0.00013 0.23
P latte  R iver n ea r Agency Missouri 0.00046 0 .2 2
R ed R iver of the  North at Fargo, North Dakota 0.00009 0.12
W illam ette  R iver a t Salem , O regon 0.00032 0 .2 5
Yukon R iver a t  S tev en s  Village, A laska 0.000068 0 .1 8
Yukon R iver a t Eagle, Alaska 0.00036 0 .3
S aco  R iver a t Conway, New H am pshire 0.0018 0.4
C h en a  R iver a t Two Rivers, A laska 0.00136 0.4
Kobuk R iver a t Kiana, Alaska 0.00008 0.15
S agav an irk to k  River near Pum p S tation  3, A laska 0.00274 0.5
M errim ack R iver a t Franklin, New H am pshire 0.0002 0.18
N euse  R iver a t Clayton, North Carolina 0.00028 0 .2
P e e  D ee R iver a t Rockingham, North Carolina 0.00068 0 .3 5
P o to m ac  R iver a t Point of Rocks, M aryland 0.00027 0.2
S u sq u e h a n n a  River at W averley, New York 0,00048 0 .3
T an an a  R iver n ea r Fairbanks, A laska 0.00043 0 .3 5
Red R iver of the  North at G rand Forks, North D akota 0.000043 0 .1 8

Notes:
1 - C hannel s lo p e  m easured  from topographic m a p s
2 - F roude num ber based  on inspection of Figure 3,4

Froude Nurrtoer versus Channel Slope
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Figure 3.5 -  Asymptotic Froude number (F) as a function of the channel slope 
for the rivers shown on Figure 3.5 and Table 3.2.
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Substituting the definition for the Froude number, F = V/(gY)®^  ̂ into equation (3-31), re- 

am nging and multiplying by the cross-sectional area yields the following equation for bankfull 

discharge:

(3-32)

which verifies the form of equation (3-29) if Yo, is substituted for Y. The different discharge 

coefficient in equation (3-29) compared to equation (3-31) (i.e. 3.5 versus 2.74 respectively) is 

probably due in part to the small data set used to develop equation (3-31), but may also indicate 

that the discharge coefficient varies with flow conditions.

Thus, equation (3-29) is considered to be a rational forni of Model 1. However, a model 

that requires an estimate of both the depth and maximum depth, as would be needed for equation 

(3-29), increases the potential for compounding errors because depth cannot be directly measured 

remotely and would need to be estimated. Therefore, a more practical general formulation for 

Model 1 would be that given by equation (3-26). This equation appears to have comparable 

(possibly somewhat better) predictive characteristics compared to equation (3-29) after 

calibration of the discharge coefficient (Figure 3.2; also see Table 3.3 foilowdng this section).

Model 1, as described by equation (3-26) can be used to develop a general form of M odel 

2, (M'hich does not require an estimate of the depth) by re-arranging and solving for depth, and 

then equating it to continuity, Q = WYV. The resulting form of Model 2 is:

Q = kWV '̂=S‘“'̂  (3-33)

This form of Model 2 is more similar to the equivalent model developed from regression analysis 

of the synthetic data base, compared to the equivalent model developed from regression analysis 

of the measurement data. However, because it can be easily developed from M odel 1, it is

viewed as an appropriate general fomi for Model 2.
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M odel 3 can be developed assuming that the concept of predictable river hydraulic 

geometry (Leopold et a!., 1964) can be considered a physical principle. Within this conceptual 

framev/ork, theoretical and observed values for the down-the-channel and at-a-station relationship 

between discharge and depth both tend tow'ards approximately the same relationship, Y = 

(Leopold et at. 1964). Thus, Model 3 can be developed by substituting kQ®'̂  for Y  in the 

continuity equation yielding:

Q = (3-34)

Model 4 is a special case of Model I (as represented by equations (3-26) and (3-29)), 

developed by assuming width is a function of depth. Based on the previous disciission, an 

appropriate assumed geometric shape for a channel cross-section is a parabola. With this 

assumption, the form of Model 4 would be

Q = k W ^ Y L ® ' (3-35) 

or in a more complete rational form

Q = (3-36)

derived by substituting the equation of a parabola in terms of depth in to Model 1 for the width,

i.e. = aY where a =

Calibration of General Equations and Comparison with Comparable Regression Models

To facilitate a comparison between the derived general prediction models and 

corresponding statistically based models (derived from the measurement and synthetic data), the 

channel-control data base was randomly divided into a calibration (N = 680) and validation (N  = 

387) data set. Table 3.1 compares the range of data in both the calibration ajid validation data 

sets. The conductance (or discharge) coefficients for the general prediction models were
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optimized by finding the constant value that minimized the log-residual of the predicted minus 

observed discharge for the calibration data. The log-residual was chosen for the minimization 

process because the discharge estimates are bounded by zero at the low end, with no constraint at 

the upper end.

The regression and'general models were used to predict the discharge for the validation 

data set and the prediction errors of the various models were compared. The comparative error 

statistics included the log-residual, relative residual, actual residual (predicted minus observed) 

and the root mean square error (RMSE) o f the predictions. Both the relative residual and the anti­

log of the log-residual are measures of the percent error of the estimates. The comparative 

validation statistics of the models are shown on Table 3.3. The log-residuals for all of the general 

models are unbounded and in general are normally distributed as illustrated on Figure 3.6. The 

actual residuals and the relative residuals are not nomially distributed because they' are bounded 

by zero on the low end, with no upper boundary, thus they tend to have a skewed probability 

distribution.

The error statsitics indicate that the models derived from the synthetic data performed the 

worst. However, similar statistical results can be obtained using the synthetic data models if  the 

coelficient is optimized from the calibration data in a similar manner as the genera! model (Table 

3.3). This suggests that the general form of the synthetic models are applicable provided they are 

calibrated, similar to the general models. An interesting apsect of the synthetic models is that 

Model 1 (width-depth-slope) tends to overpredict discharge, whereas Models 2 and 3 (width- 

velocity-slope and wddtli-slope) tend to underpredict discharge. These results suggest that the 

theoretical data used to develop the synthetic models under-represents the magnitude of resistance 

in the channel -  with a subsequent smaller depth and higher velocity. This feature of the
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synthetic data would not be expected to affect the previous conclusions regarding the prediction 

of Froude number from the velocity head index, because these variables are dimeiisionless.

The various fonns of Model L vrith the exception of the one based on the noii-optimized 

synthetic data, all performed similarly, suggesting that any of the general forms o f  Model 1 can 

be used w ith the same confidence as a model developed from multiple- regression analysis. The 

expected accuracy of this model, using ground-measured depth and width, and slope measured 

from a topographic map, would be better than 5% on average, and approximately +/- 50% two 

thirds of the time. Model 2 and 3 perfomied reasonably well, with mean accuracies of less 

than+/- 6% for all forms of the models except those derived from the non-optimized synthetic 

data. However, the estimates exhibit more variabilty than those using Model 1, with 67% o f the 

estimates falling within a factor of 2. In general. Mode! 2 performed better than Model 3 and the 

regression models developed from the measurement data performed the best. The form of Model 

4 developed from the measurement data performed the least well of all of the regression models; 

however the general form of this model performed as well if not slightly better than Models 2 and 

3. Additionally, the rational form of Model 4 performed as well if not slightly better than the 

same model developed from regression.
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TABLE 3.3

Mode! Type  
R egress io n  Models

Model 1
Q ^  4.84W

M e a s u re m en t  Data

1 .1 0 ^ 1 .6 3 ^ ,0 .3 3

Model 2

M odel 3
Q = 0.23W''  ''®

M odel 4

S yn t h e t i c  D a t a
M odel 1
Q = 8.42W°®®Y^’"’S°®̂

Model 2

M odel 3
Q = 0 .1 2 W ’ ” v ’ ®®

MODEL COMPARISON

Validation Statist ics
Relat ive Residual Actua l Residual Log Res idual Root Mean Square Error

Mean
Stdev

Mean
Stdev

Mean
Stdev

Mean
Stdev

Mean
Stdev

Mean
Stdev

Mean
Stdev

Synthet ic  with O pt im ized  Coeff ic ien t  
M odel 1
O = 6 .5 4 W ‘’ »«y ' '^^s “ ®''

M ode l 2

M odel 3

Mean
Stdev

Mean
Stdev

M e a n
S t d e v

(O' - Q)/Q

14
92

19
75

16
57

32
52

0.49
1,27

- 0.21
0.36

-0.24
0.45

0.15
0.99

0.19
0.54

0.15
0 . 68

(Q'-Q1
(m^/s)

71.8
562.1

-99.3
687.7

-103.2
613

5.1
707.4

257.2
938.6

-218.9
776.1

-199.8
774

39.7
486.2

30.2
552.2

59
574.7

loa(Q7Q1

0.001
0.192

0.018
0.199

0.001
0.249

- 0.002
0.284

0.110
0.200

-0.161
0.257

- 0.201
0.290

0.001
0.199

0.015
0.257

-0.025
0.29

.RJiSE
(m®/s)

30

36.7

32 .e

37.4

51.4

42.6

42.3

25.

29.2

30.5
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TABLE X3 fContinyed) 

Model Type Validation Statistics
Regression Models Relative Residual Actual Residual Log Residual Root Mean Square Error

(O' - QVQ fQ' - Q1 log.tQ7Q) RMSE
Calibrated General Models (m®/3) (m®/s)

Model 1
Q = 7.14WY^®^S°®® Mean 0.15 -24.6 -0.003 23.2

Stdev 1.04 437.7 0.195
Model 1 (Rational)
Q = 2.74g°®WY''®^S°” Yn;°''^ Mean 0.15 -132.0 -0.007 31.7

Stdev 1.21 585.9 0.201
Model 2
Q = 0,05WV^®S‘®-® Mean 0.18 134.9 0.001 47.6

Stdev 0.57 889.6 0.296
Model 3
Q = 0,1W''®V®^ Mean 0.18 183.9 -0.020 38.1

Stdev 0.8 697.7 0.297
Model 4
Q = 6 .8 7 W „ Y / Mean 0.34 49.0 0.007 40.0

Stdev 1.49 755.6 0.283
Model 4 (Rational)

Mean 0.34 -68.2 0.004 36.2
Stdev 1.61 681.4 0.287

■D
CD

(/)(/)

73



Model 1 Model 1 (Rgiional)

0.5

q: !
S’ -0,5 -I>J ;

51 101 151 201 251 301 3511

®norma! j 
- log residual:

^  -0.5

-1.5

1 51 101 151 201 251 301 351

®normal | 
- log residual j

Ranked Distributicrs Ranked Distribution

Model 2

0.5

-1.5

1 51 101 151 201 251 301 351

® normal 
- log residual

0.5CODS
-0.5

-1.5

1 51 101 151 201 251 301 351

» normal i 
- log re s id u a l;

Ranked Distributicrt Ranked Distribution

ModeM Model 4 (Rational)

^  -0.5

-1,5

1 51 101 151 201 251 301 351

® normal i
- log residual {

0.5
CO3•O

^  -0.5 -

1 51 101 151 201 251 301 351

®normai I 
- log residual i

Ranked Distribution Ranked Distribution

Figure 3.6 -  Log-residual distribution from the validation data for Models 1 through 4 
plotted with the equivalent normal distribution assuming the same standard deviation and 
mean of zero.
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Slope-Controlled Reaches

The relationships that have been developed provide a set of equations that can be used to 

estimate in-bank river discharge depending on the type of information that is available. However, 

all of the relationships are based on an underlying assumption that the channel is adjusted to a 

characteristic slope. There are many river reaches where the channel is not adjusted to the slope, 

such as behind run-of-tlie-river dams, and where rivers are constricted by both natural and 

manmade features. In order to evaluate the use of the equations developed here for these types of 

rivers, a data set of discharge measurements were obtained from the USGS NWIS data base for 

rivers judged to exhibit control on the slope.

Selected flow measurements that did not meet the criteria for the channel-control data 

described in the hydraulic data section, were compiled into a slope-control data base that includes 

293 measurements from 17 rivers, including the Amazon River at Obidos narrows (Oltman,

1968). The slope-control data includes rivers where there is an identifiable feature that creates a 

backwater or in other ways controls the hydraulic slope of the channel. These features include 

bridges or canyons that constrict the channel, and measurement stations that are located w'ithin 

run-of-the-river reservoirs behind dams or are suspected of being affected by backw'ater from 

dam and lock systems.

A data set of river stations where slope could not be effectively measured from 

topographic maps, and where large wetland and swamp systems are associated with the river 

channel were also compiled. These latter stations are presumed to exhibit significant lateral w ater 

exchange with the associated wetlands and swamps, and therefore the traditional concept o f
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diaimel slope being the only significant mechanism driving the downstream motion may not be 

appropriate.

Figure 3.7 shows the predicted versus observed discharge for these data using the general 

models as compared to the same models applied to the channel control vaiidaton data set. Figure 

3.7 also shows that the estimates for the non-confoniiing reaches are generally subject to greater 

eiTor. The mean prediction errors are significantly greater when applied to these data for all o f  the 

models. However, the standard deviation of the errors are comparble to those obtained for the 

channel control data. This suggests that in rivers where slope is controlled by hydraulic features, 

correction factors could be applied to the various models. Using the anti-log o f the log residual as 

the best measure of prediction accuracy, the mean error for Model 1 is approximately 35% and 

the mean error for Model 2 is -58%. The mean error using Model 3, which does not use slope as a 

predictor variable is less than 5%, indicating that this model is the preferred model for situations 

where channel slope is not the primary hydraulic control. Interestingly, Model 4 showed the 

lowest mean error (less than 1%) suggesting that the additional infonnation provided by the 

maximum width compensates to some degree for the effects of hydraulic control.
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Figure 3.7 -  Observed versus predicted discharge for the validation data and the slope- 
control data. The validation data are plotted on the left and the non-conforming data on 
the right.
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Figure 3.7 -  (continued).

Discussion

Based on these comparisons, the calibrated general models and the m odels developed 

from the synthetic data base can be considered as useful and applicable as the regression models 

based on obsen^ed data. This suggests that river discharge is predictable from 

fundamentalliydraulic principles and can be estimated with reasonable accuracy for a wide range 

of flow conditions using constant values for coefficients calibrated on observations. An important 

finding is that uniform flow equations that use a slope exponent of 0.33 rather than  0.5 tend to
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have better predictive qualities in natural rivers, including less variation of the discharge 

coefficient and greater predictive accuracy. An advantage to using the general equations 

developed here rather tlian multiple-regression-based models is that they can be adapted to any 

flow conditon because they ai'e based on well founded hydraulic principles and considerations 

rather than specific data sets. Thus, the assigned discharge coefficients can be adjusted based on 

knowledge o f specific river reaches, for example wdiere some ground-based data is available, 

without changing the predictive qualities of the model.

The general relationships provide a means to estimate in-bank river discharge from 

limited hydraulic infonnation potentially obtained completely from remote sources. Model 2 or 3 

combined with equations (3-11), (3-13) and (3-14), at a minimum, provides a method to estimate 

in-bank river discharge given knowledge of the bank-full width, wetted dynamic width and the 

channel slope. These variables can all be directly measured from remote platforms and available 

topographic information. The accuracy o f the relationships vary, however the ability to use 

theoretically based synthetic data to generate models that predict as well as models developed 

from measured data suggests the general applicability of the formulations. Rationally derived 

relationships enable the predictive models to be calibrated and updated as specific knowledge is 

gained regionally or for individual rivers. In addition to the potential use o f these relationships to 

estimate discharge in rivers from remotely obtained data, they can also be used in combination as 

tools to synthesize and map hydraulic geometry of rivers, and to interpolate hydraulic conditions 

in rivers based on limited field data or output from land-surface hydrology models.
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CHAPTERIV

ESTIMATING DISCHARGE IN RIVERS USING REMOTELY SENSED HYDRAULIC

INFORMATION

As discussed in Chapter 2, a mean water-surface width for a river can be readily 

measured (by measuring the wetted surface area and then dividing by the reach length) from a 

variety o f existing remote imagery sources over large portions of the earth,. However, existing 

remote data sources do not provide coverages of river water-level elevations in areas where 

discahrge measurements are also readily available, and data sets of remote surface velocity 

mesurements are unavailable. Thus, at the present time, measurements of the water-surface width 

of rivers, combined with channel features such as the maximum channel width and the channel 

slope could be used to develop estimates of river discharge in remote areas or between river 

stations.

This chapter tests a methodology, based on the hydraulic relationships described in 

Chapter 3, to estimate in-bank river discharge using remotely sensed width infonnation and 

channel-slope information obtained from topographic maps. Additionally, the use of water- 

surface velocity infonnation observed from a single SAR image (Moller, 2002 personal 

communication) is used to evaluate the application and improvement in discharge estimates that 

can be achieved with this additional source of infonnation. The results of these tests contl'ibute to 

an assessment of the data requirements and potential accuracy o f space-based discharge 

estimating methods.
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Images and Remote Data

A data base of hydraulic information measured from various remote sources was 

compiled for this study. River reaches selected for analysis were located at or near established 

river gaging stations so that measured discharge values were available for comparison with 

estimates made from the remotely-sensed data. Mean daily discharge obseivations were obtained 

from the USGS NWIS on-line data base or from the Water Survey of Canada (Smith et al., 1996). 

Although the discharge estimates made from the remote data strictly only apply to the moment 

when the remote obseiwation was made, the mean daily discharge, in all cases, did not vary 

widely through the day when the remote data were obtained. Thus, the average daily discharge is 

considered to be nearly equivalent to the instantaneous discharge at the time o f the remote 

measurement.

Fourteen air photos, taken as part of the National Aerial Photography Program (NAPP), 

were obtained from the USGS EROS Data Center for analysis. The photos depicted the channel 

reach of 7 different rivers in New England near the corresponding USGS gaging station on each 

river during different flow conditions. These photos are geo-referenced and routinely taken as 

part of the USGS topographic mapping program . The photos were printed at a scale of 1:10,000. 

The mean water-surface width and mean maximum channel width were measured by averaging 

many equally spaced sections perpendicu.lar to the channel banks.

Eleven digital orthophoto quadrangles (DOQs) available from the National Digital

Oithophoto Program (NDOP), showing the selected river reach in 9 large rivers, were also

obtained from the EROS data center for analysis. The resolution of the DOQs is 1 m. The w^ater-

surface width and maximum channel widths were measured from the DOQs by delineating the
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total water surface and channel surface areas within the reach by defining the area o f interest 

within a series of polygons. The polygons were fit as closely as possible to the observed 

boundaries, and then the total area of the polygons summed and divided by the total reach length 

to obtain the mean-width estimate.

The maxim.um channel width measured from the aerial photos and the DOQs was 

assumed to be the active channel (Figure 4.1), identified by the presence of sand and gravel bars, 

marked changes in vegetation on the channel banks (typically sparse) that suggest a riparian zone 

with frequent inundation, and areas where recent scour or deposition could be observed. Islands 

with prominent point bars and sparse riparian vegetation were included in the maximum width. 

Islands with stable vegetation and areas that appeared to be old meander scars or scars from scour 

were not included. The extent of the maximum channel width often varied considerably along the 

channel reach (Figure 4.1). In some cases, the maximum channel width was not an  obvious 

feature and a certain amount of operator judgment was required to define its extent. Thus, 

determination of the maximum channel width is a source of operator error. Comparing the 

channel surface area delineated for the Missouri River and the Sacramento River in Figure 4.1, 

this source of operator error is most likely greater in highly active and irregular channels.

The localized variability is minimized by using aerial mean averages o f  width (and other

variables) that more closely approximate the mean conditions in a channel, thus defining the

appropriate reach length is a key element of the data collection. Leopold et al. (1964) and

Leopold (1994) suggest that mean values for determining channel geometry should be averaged

over at least one meander length (typically 11 channel widths) because this length reflects the

energy dissipation regime of the reach. Rosgen (1994) suggests that data be averaged over a

minimum of two meander lengths in order to provide the most meaningful values. For this study,
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Figure 4.1 -  Missouri River near Elk Point South Dakota, showing digitized plygons 
delineating the maximum channel surface area (Source: 3.75 minute DOQs for Elk Point 
(top) and Ponca (bottom) South Dakota, National Digital Orthophoto Program (NDOP)).
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m

Figure 4.1 (continued) -  Sacramento River near Red Bluff California, showing digitized 
polygons delineating the maximum channel surface area (Source: 3.75 min. DOQ for 
Bend, Califronia, National Digital Orthophoto Program (NDOP)).

the widths were averaged over a reach length that included at least one meander wavelength and 

was limited to a length that did not inlcude any tributary inflow or change in moiphology.

The channel slope for ail of the river reaches was measured from the corresponding 

USGS 1:24,000 scale topographic map by measuring the channel length between consecutive . 

contour lines (approximately 3 meter contour interval). All of the images were obtained for river 

reaches at or near USGS stream gaging stations, and thus the mean daily discharge for the day of 

each image was available for comparison with the discharge estimates made fi'om the images.

A time series set of SAR images obtained from ERS-1, v/ere analyzed by Smith et al. 

(1996) to measure the water-surface area at different discharges in three large braided rivers (the
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Tanana. and Takii Rivers in Alaska, and the Iskat River in British Columbia). The resolution o f  

the images was 25in with a processed pixel resolution of 12.5 m, and were collected at C-band. A 

total of 41 water- surface areas were obtained for the three rivers, 19 for the Iskut, 11 for the 

Taki!, and  11 for the Tanana. The water-surface area estimates were made by summing all pixels 

classified as water based on a proced.ure developed by Smith et al. (1996). The total water-surface 

area within the braided channel system obsei'ved w'as divided by the valley le,ngtli to obtain a 

mean or "effective” water-surface width for the reach. A measurement uncertainty was not 

reported (for more detail on these data and on the processing techniques used to extract the 

effective widths from the SAR images, refer to Smith et al. (1996)).

The reach lengths observed ranged from 9 to 16 Ian (approximately 20 to 30 times the 

effective width). The channel slope was assumed to be represented by the valley slope for the 

braided rivers, and was measured from topographic maps, A maximum channel width was not 

specifically measured by Smith et al. (1996). The maximum water-surface width from the time 

series was assumed to represent the maximum channel width for the purposes o f this analysis. In 

each river, the maximum observed width occurred during high flow conditions, and likely reflects 

a high flow event that is near the mean annual flood. This assumes that the maximum channel 

width w'ould generally correspond to a discharge near the mean annua! flood (Leopold, 1964).

An airborne aloiig-track interferometric (ATI) SAR imager (AirSAR), flown by NASA- 

J PL, obtained an image of the Missouri River near Elk Point South Dakota on. March 25, 2002 

(Figure 4.2). The resolution of the image w'as 5 m and was collected at C-Band. The water- 

surface width and the surface velocity' were obtained from the image. The surface velocity w as 

obtained using a Doppler technique developed by J.PL (Goldstein et. al. 1994). Figure 4.2 shows
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the AirSAR radial velocity estimate projected onto the water surface. Note that in this figure 

positive velocities are flowing away from the radar to the south.

The velocities have also been corrected for the Bragg-resonant effect (Bragg 1913) 

whereby short wind-driven waves on the river surface have the effect of biasing the velocity 

estimate by their phase speed (Kinsman 1965). In this case the Bragg velocity' is approximately 

0.23 m/s although the correction increases with range due to the increasing incidence angle. A t 

the time o f the image, a mild wind blowing in the direction of the river flow (approximately 10 

knots) was inferred from the nearby weather station in Sioux City, Iowa. Given the flat 

topography it is reasonable to assume that the wind direction in the imaged area will be consistent 

with the w'eather station’s observation. Without the Bragg correction, the south-bound wind 

w'oiild have the effect of biasing the velocities high.

Because the ATI-SAR measures velocity in the radial direction only, the portion of the 

river which is oriented nearly parallel to the flight direction detects very low velocities (Figure 

4.2). As such, for this case study, the analysis includes the region w'here the river is directed 

toward the radar. Techniques to alleviate this limitation are suggested in the discussion. The 

slope of the river channel was obtained from USGS topographic mapping, and the approximate 

maximum channel width was measured from a recent DOQ of the same reach (photo taken on 

April 4, 1993). The reach of river where the image was taken is characterized by large sand and 

gravel bars, and is much wider than both upstream and downsti'eam sections o f the river. This 

reach of river is considered atypical of the Missouri River for the region.
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Figure 4.2 -  C-band SAR image of the Missouri River near Elk Point, Souoth Dakota showing 
radial surface velocity projected onto the horizontal plan (upper) and inferred flow direction 
(lower) indicated by arrows (Source:NASA-JPL Air SAR).
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Because of the large sand and gravel bars, estimating the effective water-surface w'idtli 

W'as problematic. It was decided not to include shallow or sluggish v/ater that did no t contribute 

significantly to the flow. For this reason, the effective water-surface width was assumed to 

include ooly those regions where the surface velocity was greater than a threshold value. Taking 

this approach avoids potential complications associated with non-parailel flow lines, which would 

more likely be present over the shallow' bars, and reduces the potential for assigning too much 

weight to generally non-contributing flow regions. The threshold velocity value used to estimate 

the mean water-surface width and velocity field w'as 0.15 m/s, thus velocities low er than this 

number were excluded when estimating mean velocities and river widths. This velocity threshold, 

was chosen because below' this value, the velocity estimate becomes too uncertain. This approach, 

while simplistic, was effective in excluding the sand-bar regions which would otherwise bias the 

velocity and width estimates.

A mean cross-channel w'idth and velocit}' were determined for four portions of the 

observed river reach that were oriented towards the radar, and which were able to provide reliable 

estimates of both width and velocity. Vector velocity estimates were inferred froiTi the radial 

velocities by assuming that the direction of flow w'as parallel to the river direction. Figure 4.2 

shows the infeired direction of flow and regions of the river that were used to obtain four 

discharge estimates.

The river lengths varied in absolute range depending on the estimated direction of flow. 

Note that the flow direction estimates in Figure 4.2 are biased toward the high-flow regions and 

exclude the obvious sandbars (compare with upper fram,e of Figure 4.2). The absolute ranges 

were [1107, 765, 976, 730] m respectively (from north to south) while the estimated water- 

surface width (adjusted for the direction of flow and excluding sand-bar regions) was 330 m on
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average (previously mentioned velocities <9.15 m/s were excluded from the estimation process). 

Although the range-to-width ratio is quite low, this was necessitated by the meandering nature o f  

the river.

The accuracy of the water-surface and maximum-channel width estimates measured from 

the images are, in part, a function of the resolution of the images and the accuracy o f the 

measuring tool. Thus, the resolution of the DOQs (Im) and the SAR images (10 m  ERS-1 SAR, 

and 5m NASA-JPL AirSAR) indicate the accuracy o f an estimated width measurement if it were 

a single measured value. However, the widths were estimated by measuring the total water- 

surface area of the reach divided by the reach length. This procedure would likely improve the 

accuracy of the estimate due to averaging. However, the methods used to measure the surface 

area may introduce additional unknown error. In the case of the NAPP aerial photos, the image 

resolution is a function of the ability to sharply see the boundmy of the defined object (since these 

are not digital). It is estimated that the resolution of these photos at 1:10000 scale is 

approximately 4 m. The width estimates made from the photo is assumed to be somewhat better 

than the resolution implies, however, due to averaging along the reach (i.e. the balance of positive 

and negative estimte errors would tend to improve the overall estimate for the reach). Overall, the 

accuracy of the width estimates made froin the various images is not precisely' known.

Discharge Estimating Methodology

The obseiT/ed water-surface wddth (W), bank-full (or maximum) channel width (W;n), and

the channel or valley slope (S) can be used to estimate the river discharge at the time of the

observation for the SAR images obtained by Smith, and for the 26 NAPP photos. This is

accomplished by estimating the mean velocity (V) using a general relationship for estimating the
89
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Froude number (F) and a relationship to estimate the discharge using width, velocity and slope as 

developed in Chapter 3. The Fronde number estimate is obtained from the followdng general 

form of equation (3-13):

F = c(V-/2gW)” (4-1)

where c = (4-2)

m = (3-14)

The equations for determining c and m were developed from the synthetic flow-measurement 

data base, as described in Chapter 3. The coefficient a  is assumed, for convenience, to be a

calibration coefficient that reflects specific channel conditions. Calibration procedures for a  are

described later.

As can be seen from equation (4-1) and the variables used to predict c and m, all of the 

variables needed to compute F are obtained from the image except V. Combined with a 

dimensionally formulated discharge-estimating equation that uses width, velocity and Froude 

number given as:

Q = g-’WV-’p-- (4-3)

where g is the accleration due to gravity, and equation (3-33) given below 

Q = 0.05WV -̂^S'®=,

an estimate of the velocity can be made by substituting F from equation (4-1) (with the values o f 

c and ni detemiined from Wn, and S) into equation (4-3), then equating this to (3-33) and re­

arranging. Once V is estimated, the discharge is then computed directly from equation (4-3). 

Thus, a discharge estimate can be made from a minimum of three variables all obtained from 

remote sources including: 1) observed water-surface wddth (W) measured from an image, 2) the 

maximum (or baiikfull) channel width (Wm) measured from an image, and 3) the channel slope 

(S) measured from a topographic map.
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Ib order to evaluate the magnitude of the calibration coefficient a , the observed discharge 

measurements in the chaimel-control data base (Chapter 3) were used to calibrate equation (4-2). 

The best fit value of a  found by nainimizing the mean of the log residual of the estimates is 20. 

Figure 4.3a shows that the distribution o f F, estimated using a constant value for a  (= 20) is non­

linear at low values (F less than about 0.2). The distribution was linearized by adjusting the 

value o f a  for observed inflection points in the distribution. Accordingly, for Froude numbers in 

the range 0 to 0.1, a  was adjusted to 11.3, for Froude numbers in the range 0.1 to 0.2, a  was 

adjusted to 17.7, and for Froude numbers in the range 0.2 to 0.4 and larger, a  w as adjusted to 

22.3 (Figure 4.3b). The linearized values of a  provide a means to self-calibrate equation (4-2) as 

follows; the Froude number determined from an intial value for a  is used to determine a new 

value o f a  according to the Froude number ranges described above. The value o f  a  is then 

adjusted accordingly. When the predicted Froude number and the value o f a used to determine 

the Froude number are in the appropriate range class, the self calibration is complete (usually 

after one adjustment).

Discharge Estimation Results

Initial estimates of the discharge for the single-channel data were made using a value o f 

20.0 for a . Table 4.1 lists the observed data and the estimated discharges for the single-channe! 

rivers derived from the air photos. The mean and standard deviation of the relative and log 

residuals of the estimates are also provided. Using the average value for the calibration 

coefficient resulted in very poor discharge estimate accuracy. Improvements in the estimates for
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Figure 4.3 -  Residuals of the predicted and observed Froude numbers when a  constant value o f  a 
is used (Plot a), and when a  is adjusted for Froude number ranges beti^^een 0 — 0.1, 0.1 -  0.2 and 
greter than 0.2, showing that the distribution becomes more linear.
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the single channel rivers were made by adjusting the calibration coefficient as a function of the 

Froude num ber, as described above.

T he initially estimated Froude numbers for the single-channel estimates greater than 0.2 

were recomputed using a  = 22.3, and the initial Froude number estimates between 0.1 and 0.2 

were recomputed using a  -  17.7. If the adjustment in a  forced the Froude number out of range 

for the value o f a  used, then the previous a  and the adjusted a  were averaged. I f  the revised 

Froude nmnber remained in range for the adjusted a , no additional adjustments were made. This 

approach does not require any new information or assumptions to be introduced into the 

calibration, and thus is considered to be a self calibration process. The revised discharge estimate 

accuracy is much improved (Table 4.1) using this calibration procedure.

An alternative calibration procedure was also explored by observing that the optimal 

value for a, determined by adjusting it until the predicted discharge equaled the observed 

discharge, was correlated with the maximum width o f the river channels that w ere analyzed. 

Best-fit linear predictive relationships (Figure 4.4) between and the optimized a  were 

determined for rivers where Wn, < 200m and Wm > 200m given by:

a  = -0.075Wh, + 23.7 and r  = 0.38 for Wj,,< 200m (4-4)

a  = -0.005W„, + 20.3 r" = 0.79 for W„,> 200m (4-5)
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Pemigewamtt Rivsr at PFymduS, Nil 82 0,0017 59.2 43.0 0.30 99.4 131.2 0.364 0.27 39.2 -8.8 -0.04Q 0.28 59.2 37,7 0.139
Pemigewassett Rivar at Plymouth, NH 82 0.0017 78.6 78.0 0.30 151,7 94.5 0,289 0.28 59.8 -23.3 -0.115 0.29 90,4 15,9 0.064
Psmigewassett River at Plymouth, NH 82 0.0017 73.2 59,0 0.30 119.8 103.1 0.308 0.27 47.3 -19,9 -0.098 0.28 71,4 21.0 0.083
Pem^ewassett River at Woodstock, NH 67.1 0.0026 54.6 26.0 0.33 73.0 180.9 0.449 0.31 32.3 24.4 0,085 0.31 40.7 56.7 0.195
Pemiflewassett River at Woodstock, NH 67,1 0.002B 61.4 20.0 0.33 60,3 201.3 0.479 0.30 28.7 33,4 0,125 0.31 33.6 88.0 0.226
White River at West Hartford. Verrrwnt 83.6 0.0012 78.6 93.0 0.27 135,3 45.5 0,163 0.24 48.3 -48.0 -0.284 0.26 77.6 -18.6 -0.079
Ammonoosuc River at Bethlehem, NH 27.9 0,0075 26.8 9.9 0.46 34.1 244.5 0.537 0.43 19.0 82.0 0,283 0.43 17.7 78.6 0252
Ammonoosuc River at BeWehem, NH 27,9 0.0075 15.7 fi.4 0,41 7.2 11.7 0.046 0,39 4.0 -37,7 -0,206 0.38 3.7 -42.1 -0.237
Baker River near Romney, NH 23.6 0,0013 19.9 5.4 0.26 16.1 198.1 0.474 0.24 6.6 22.0 0.087 0.23 5.7 5,0 0,021
Baker River near Rumney, NH 23.S 0.0013 16.9 3.5 0.25 9.4 169.3 0.430 0,23 3.9 10.3 0.042 0.22 3.3 -5.1 -0.023
Smith River at Brtsfol,NH 16.8 0.0037 17.7 11.0 0.36 16.5 50,4 0,177 0.33 8.5 -23.0 -0.113 0.33 7,3 -33.4 -0.177
Smith River at Bristol, NH 18.6 0.0037 13.6 6,1 0,34 7.5 22.4 0.088 0,32 3.8 -37.3 ■0.203 0.31 33 -46.8 -0.266
Pomperaug River at Southbury, CT 18.4 0.0021 16.3 3.8 0.30 13.0 241.2 0.533 0.27 6.0 58.0 0.189 0.27 5.1 33.4 0,125
Panp®au§ River at Southbury, CT 18.4 0.0021 13.1 3.3 0.28 6.6 980 0.297 0.28 3.0 -8.3 -0.038 0,26 2.6 -22.8 -0.111
Mississippi River at Tfiebss, IL 801 0.000137 710.Q 14326.0 0.10 34.5 -93.8 -2.619 0.14 1444.6 -89,9 -0,996 0.18 18107.2 26.4 0.102
MississipiJ! Rlvifat Thebes, IL 801 0.000137 657.0 4700.0 0.09 21,5 -08.5 -2.339 0.14 901.8 -80,8 -0.717 0.18 11305.2 140.5 0.381
Potomac River at Point of Rocks, MD 381 0.00027 280.0 144.0 0,14 75.8 ■47.4 -0.279 0.16 778,9 439.5 0.732 0.17 373.0 159.0 0,413
Missouri River near Eik Point, SD 851 0.00023 466.0 680.0 0.12 50.3 -92.6 -1.131 0.16 762,4 12,1 0.050 0.18 1764.8 159.6 0.414
Missouri River near Elk Point, SD 651 0,00023 336.0 450.0 0.11 9.7 -97.8 -1.867 0.14 147,0 -67.3 -0.486 0.16 340,3 -24.4 -0.121
South Platte River near Kersey, CO 125 0.00093 78.0 38.0 0.23 48.2 26.9 0.103 0.20 15,2 -60,1 -0.399 0.22 43.9 15,8 0,063
Missouri River near Culbertson, MT 343 0.000156 258.0 484.0 0,11 34.7 -92.8 -1.146 0.15 673,8 39.2 0.144 0.14 206,1 -57,4 -0.371
Kansas River at Fort Riley, KS 116 0.00049 77.0 17,6 0.18 40.7 132.5 0.366 0,18 40.7 132.5 0.383 0.18 31,0 76.9 0.248
Sacramento R. below Bend near Red Bluff, CA 163 0.000575 92,0 459.0 0.19 32.4 -92.9 -1.151 0.19 32,4 -92.9 -1.151 0,19 63.8 -88.3 -0.931
Willamette River at Salem, OR 219 0,00032 164.0 221.0 0.16 79.0 -64.2 -0.447 0,20 589.2 166.6 0.426 0.17 154.0 -30.3 -0.157
Delaware River at Port Jervis, DE 221 0.00098 162.0 172.0 0,24 167.9 -2.4 -0.011 021 50.2 -70.8 -0.536 0,25 264,8 54.0 0.137
Wenatchee River at Monitor, WA 128 0.0032 69.0 37.0t 0.34 54.8 48.0 0.170 0,31 24.2 -34,5 ■0.184 0,33 51.8 40.0 0.146
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Figure 4.4 -  Optimized a  plotted against a  predicted from maximum width relationships.

These calibration relationships improve the discharge predictions particularly for the 

Mississippi River, however they are based on limited data and are somewhat spurious because 

they are derived from the observed data (which for application purposes would be unknown). 

Both of the calibration procedures used to improve the discharge estimates indicate that specific 

channel characteristics (Wm) and the energy regime of the river reach (Froude number) are 

important to consider when applying the methods developed in this paper. Figure 4.5 a, b and c 

show the predicted discharge plotted against the observed discharge for the single-channel rivers 

using each of the calibration options described above.

Table 4.2 lists the discharge estimates developed for the braided channels derived from  

the SAR images by Smith et al. (1996). All of the Froude-number estimates for the braided 

channels were above 0.2, indicating that a value of 22.3 for a  should be used to  recompute the 

discharge. However, if this is done, the estimation accuracy becomes poor, w ith all of the
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estimates biased low. This suggests that the calibration for braided river channeJs is different 

than for single- channel rivers. This would not be surprising, as mean values o f  depth and 

velocity, averaged across the braided channel system (i.e. the water-surface area) reflect 

somewhat different dynamics coinpared to the single channels. Many researchers have found that 

there is a distinct regime threshold between braided and single channel rivers (Henderson, 1966; 

Ferguson, 19K6). Figure 4.5d show's the predicted discharges plotted against the observed 

discharges for the braided rivers.

The accuracy of the discharge estimates developed from channel width, water-surface 

width, and channel slope varied depending on the calibration procedure used. The en-or was 

evaluated from the relative residual ([Q’ -  Q]/Q) and the log residual (logQ’ -  logQ) where Q ’ is 

the predicted discharge and Q the observed discharge. For the single channel rivers, assuming a 

constant value for a , the estimates were rather poor (Table 4.1), exhibiting a m ean error on the 

order of +/- 50%. The standard deviation of the error was large using either error index and a 

distinct break in the predictive quality for larger rivers was evident (Figure 4.5). The Froude 

number calibration markedly improved the predictions, with a mean over-prediction of 12% 

based on the relative residual and an under-prediction of 23% based on the anti-log of the log 

residual. The standard deviation of the errors was also markedly reduced and the distinct break in 

predictive quality for the larger rivers nearly eliminated. Even further improvement in the 

accuracy of the estimates was made using the width-based calibration method.
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Figure 4.5 -  Plots a, b, and c show the predicted discharge for the single channel rivers 
plotted against tli,e observed discharge using differetn estimates of a . P lot d shows the 
predicted discharge plotted against the obsen'ed discharge for the braided rivers using a 
constant value for a.

The prediction error for the braided rivers was generally less than the error for the single- 

channel rivers even thoiigh there was no calibration (Table 4.2, Figure 4.5d). This suggests that 

the braided rivers constitute a more homogeneous data set. These results suggest that grouping 

rivers by channel tj'pe, size and energy regime may provide a means to improve overall 

estimation accuracy, and that improved and more robust self-calibration methods could be 

developed based on experience.
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T he SAR image obtained by NASA-JPL for the Missouri River provided both the surface 

velocity and  water-surface width, enabling the use of equation (3-33) directly. The mean velocity'’ 

for the cross-section was estimated by applying a correction factor of 0.86 to obtain the mean 

velocity in the vertical (Rantz et al., J 982). Recent experiments by Costa et al. (2000) in several 

rivers in which surface velocity' was measured using bank-side and helicopter-bome radar showed 

that this correction factor appears to provide reasonable estimates of mean velocity in the cross- 

section.

Table 4.3 provides the measured values of w'ater-surface width and mean velocity in four 

relatively short sections of river within the obser\'ed reach. The nearest USGS gaging station on 

the Missouri River is located at Sioux City, Iowa, approximately 20 miles downstream of the 

observed reach. For the date of the SAR image, the discharge at this station was approximately 

450 nrVs. There are no major tributaries entering the River between the observed reach and the 

gaging station at Sioux city, so the discharge at Sioux City is assumed to be approximately the 

same as for the observed reach.

The discharge estimate using equation (3-33) is approximately 70% higher than the 

observed discharge. This is within the expected accuracy of the statistical model (Model 2), 

which indicates that approximately 67% of the estimates would be within a factor of 2 (Chapter 

3). Given that the reach is non-conforming, i.e. it is atypical for the river, the relatively large 

error is not surprising. As a comparison, the width and mean velocity for two discharge 

measurements made at the Sioux City gage on March 6 and March 13, 2002 w ith  approximately 

the same discharge (442 and 476 raVs respectively) were 173 m  and 165 m for width, and 1.00 

m/s and 0.96 m/s for mean velocity. The channel slope at the gage is approximately the same as
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for the observed reach. Using equation (3-33) with these data provides estimates o f  discharge o f 

597 and 514 mUs respectively (errors o f +8 and +35%).

Tabie 4.2 - Hydraulic Data atid Discharge Estimate Statistics for Braided Channel Rlvere

River Haximym
Channel

Widtti
(m)

Slop© W ater S u rface
W idth

(m)

Observed
D ischarge

a  = 20.0

Estimated
F ro u d e
N um ber

Estimated
Discharge

P e r c e n t
E r r o r

Log
R es id u a l

Iskut River, British Columbia 700 0.0022 437 .0 292 0.32 604.1 106.9 0 .31S
700 0.0022 579.0 951 0.34 1603.0 68.6 0 .2 2 7
700 0.0022 656.0 1570 0.35 2471.7 57,4 0 .1 9 7
700 0.0022 584.0 1110 0.34 1651.5 48.8 0 .1 7 3
700 0.0022 490.0 862 0.33 898.6 4.2 0 .0 1 8
700 0.0022 393.0 735 0.31 418.1 -43.1 -0 .2 4 5
700 0.0022 291.0 388 0.29 147.5 -S2.0 -0 .4 2 0
700 0.0022 261.0 164 0.28 101.1 -38.3 -0 .2 1 0
700 D.D022 316.0 370 0.29 196.3 -47.0 -0 .2 7 5
700 0.0022 621.0 1320 0.35 2043.7 54.8 0 .1 9 0
700 0.0022 596.0 1140 0.34 1772.2 55.5 0 .1 9 2
700 0.0022 498.0 948 0.33 950.5 0.3 0.001
700 0.0022 694.0 1080 0.36 3004.7 178.2 0 .4 4 4
700 0.0022 533.0 1121 0.33 1203.0 7.3 0 .031
700 0.0022 534.0 818 0,33 1210.8 48.0 0.170
700 0.0022 446 .0 681 0.32 648.4 -4.8 -0 .021
700 0.0022 311.0 235 0.29 185.7 -21.0 -0 .1 0 2
700 0.0022 294.0 266 0.29 152.8 -42.6 -0 .241
700 0.0022 381 .0 403 0.31 375.5 -6.8 -0 .031

Taku River .A laska 580 0.0015 301.0 277 0.26 183.5 -33.8 -0 .1 7 9
580 0.0015 358.0 436 0.27 342.1 -21.5 -0 .1 0 5
580 0.0015 541.0 1840 0.30 1508.0 -18.0 -O.OSS
580 0.0015 520.0 1840 0.30 1308.0 -28.9 -0 .1 4 8
580 0.0015 360.0 801 0.27 349.1 -55.4 -0 .361
580 0.0015 229.0 309 0.24 68.7 -77.8 -0 .6 5 3
580 0,0015 339 .0 221 0.27 281.3 27.3 0 .1 0 5
580 0.0015 288.0 136 0.26 156.6 15.1 0 .061
580 0.0015 290.0 124 0.25 160.5 29,5 0 .1 1 2
580 0.0015 574.0 1480 0.31 1865.4 26.0 0 .101
580 0.0015 491 .0 765 0.30 1064.4 39.1 0 .1 4 3

T anana R iv e r , A laska 865 0.0010 820.2 1764 0.26 1670.2 -5.3 -0 .0 2 4
865 0.0010 782.1 1617 0.26 1390.7 -14.0 -0 .0 6 5
865 0.0010 733.3 1158 0.25 1085.2 -6.3 -0 .0 2 3
865 0.0010 562.2 595 0.23 390.2 -34.4 -0 .1 8 3
865 0.0010 494 .4 445 0.23 237.9 -46.5 -0 .2 7 2
865 0.0010 407 .9 283 0.21 113.5 -59.9 -0 .3 9 7
865 0.0010 614.6 566 0.24 549.9 -2,8 -0 .0 1 3
865 0.0010 704.8 1000 0.25 931.6 -6.8 -0 .031
865 0.0010 825 .9 1413 0.26 1715.4 21.4 0 .0 8 4
8S5 0.0010 857.7 1586 0.26 1983.9 25.1 0 .0 9 7
865 0.0010 649.1 561 0.24 578.5 21.0 0 .0 8 3

Mean
Standard Deviation

3,8 -0 .0 3 3
49.5 0 .2 1 7
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Table 4.3 SAR image Missouri River near Elk Point South D atota
Discharge Estimates Using Equation (3)

C ross-section Width Surface Estimated Mean Channel Estimated Discharge at Percen t
Velocity Vsioclty Slope Discharge Sioux City Error

Cm) {mis} (m/s) (srfls)
1 315 1.13 0.97 0.00023 966.8 450 114.9
2 313 1,07 0.92 0.00023 838.2 450 86.3
3 370 0.80 0.69 0.00023 478.9 450 6.4
4 321 1.05 0.90 0.00023 820.0 450 82.2

Average 330 1.01 0.87 776.0 72.4

Discharge Estimate Using Maximum Width
a  = 22.3

Cross-section Width Mean Estimated Channei Estimated Estimated D ischarge at Percent
Velocity Maximum Width Slope Froyde Discharge Sioux C ity Error

(m) (m/s) (m) Number
Mean 336 0.88 651 0,00023 0.2 435 450 -3.3

The discharge estimate can be improved if the maximum channel width is also used in 

the analysis. The maximum channel width for the reach coincident with the SAR image was 

measured from recent DOQs (Figure 4.1, taken April 4, 1993), and estimated to average 651 m. 

Assuming that this value has not changed between 1993 and 2002, the method described 

previously to estimate discharge from the single-thread and braided river reaches was used to 

develop the discharge estimate with the inclusion of the measured surface velocity rather than the 

estimated velocity. The resulting discharge estimate was 434 m^/s, which is within 5% of the 

observed discharge at Sioux City. Thus, discharge estimates developed from two channel 

variables (maximum channel width and channel slope) and two dynamic variables (water-surface 

width and velocity) appear to provide an optimum set of hydraulic information for prediction 

(based on one observation).

Discussion

This analysis indicates that relatively accurate estimates of in-bank river discharge can be 

made from remote observations of water-surface width in rivers provided two channel-
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cliaracteristic variables are also known or measured remotely, the maximum channel width and 

the channel slope. However, it may be difficult to automate or readily obtain the maximum (bank- 

full) channel data, especially considering that a certain amount of judgment is required to define 

the maximum areal extent of the active channel. Assuming that the channel dimensions and the 

clianaeJ slope are relatively constant (at least over a period of years), inventories o f  this 

information can be developed from air photo and map analysis and from field surveys. These data 

can then serve as baseline information that is coupled with dynamic tracking o f water-surface 

width to  obtain time series estimates of river discharge over large areas or selected sets of rivers.

Another approach to defining the maximum channel width of rivers would be based on 

accumulated water-surface width measurements developed over time. Similar to the Smith et al. 

(1996) braided river-width data, a sufficiently long time series of widths would enable the 

maximum channei width to be identified and catalogued. This approach would be preferable to 

methods that rely on the identification of the active channel from morphologic features, because 

the water is relatively easy to identify. Additionally, identification of water surface areas and 

widths can be automated depending on the type of imageiy (for example color infrared, SAR, and 

panchromatic) because water can be readily distinguished from surrounding land.

The accuracy of the discharge estimates reported on Table 4.1 and 4.2 indicate that robust

calibration procedures will be necessary to successfully develop discharge estimates from

imagery and other remotely sensed information. Experience may provide the data necessary'' to

develop these methods, as there is strong indication from this analysis that characteristic channel

features, including maximum width and channel type, can be used as calibration tools.

Additionally, there is an indication from this analysis that self-calibration methods based on the

Froude number can be developed. As data sets o f remotely sensed water-surface widths,
101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



velocities, maximum channel widths, and channel slopes are collected and associated with 

channel-t '̂pe information, robust methods for assigning calibration coefficients can be developed.

The successful use of SAR imager}' to simultaneously observe water-surface widtli and 

velocity holds great promise as a tool for substantially improving the accuracy of river-discliarge 

estimates, especially when coupled with maximum-channel width and cliannel-slope inforaiation. 

Surface- velocity measurements require information about surface wind speed and direction in 

order to correct for these effects. For rivers in deep gorges one can generally assume that the wind 

will blow in the direction of the river banks and ameliorate this restriction. An additional 

limitation, wdiereby river flow orthogonal to the radar line-of-sight results in extreme radial 

velocities, may be addressed by flight lines that cross the river from alternate directions and 

deriving the vector velocities by assuming, as was done here, that the flow is parallel to the banks 

or by combining directionally diverse paths. A further preferable alternative is a system that can 

measure velocity in a single pass by means of directionally diverse multi-beam interferometric 

measurement capability (Moller et.al. 2002, Frasier and Camps 2001).

The equations developed in Chapter 3 indicate that discharge-estimating models that 

include width, depth, and slope have generally greater accuracy, especially for larger rivers, 

compared to models that use width and slope only; or width, slope, and velocity. Inclusion of 

remotely observed stage (water-surface elevation) from altimetry (Birkett, 1998) may provide an 

additional dynamic variable that can be used to estimate the depth and thus improve the accuracy 

of estimates even further. Depth estimates could be developed from stage if knowledge of the 

river-bottom elevation is available, or from time series of stage observations over a range of water 

levels.
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Observation of water-surface area (and width) and river-clianne! characteristics can be 

made with currently operating satellites, frequently and over much of the globe on a routine basis 

from a variety of sensors (Chapter 2). However, surface velocitj' and stage data may be available 

only on an occasional basis depending on the orbits of satellites, sensor capabilities and 

availability. In these circumstances, more accurate discharge estimates could be made when 

these data (surface velocity and stage) are available and used to calibrate routinely made 

estimates based on measured widths and map slopes. This approach would maximize the use of 

the more readily available data (water-surface area and channel slope) and enable less frequently 

available data (surface velocity and stage) to be successfully incorporated into a river-discharge 

observing strategy.

This analysis has shown that water-surface width, maximum channel width and channel 

slope can be used to estimate in-bank river discharge with an accuracy of 20% or better on 

average, however the standard deviation of the error could be 50 to 100% depending on the type 

of river and calibration technique. Additional data, including surface velocity (and stage) are 

likely to markedly improve the discharge estimates. Development of time-series data sets o f 

water-surface area (and thus width), stage, and surface velocity of rivers will be key to fully 

developing robust estimating methods, calibration tools, and channel morphology inventories that 

will provide the basis for remotely tracking and estimating river discharge on large scales from 

space.
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CHAPTER V

APPLICATION OF MVER CHANNEL SLOPES DERIVED FROM A SIX MINUTE 

DEM FOR HYDRAULIC MODELING OF RIVERS

The water-surface slope is one of the key indicators of the hydraulic conditions within the 

river, and is an important predictor of the velocity, channel resistance, and stable channel 

geometry (Henderson, 1966). Most hydraulic models of river flow, sediment transport, bank 

stability, flooding, flood routing, and habitat conditions rely on an independently derived energy 

or water-surface slope as an input variable. Many hydraulic modeling applications (such as 

floodplain modeling) assume uniform flow between measurement points in a channel network, 

and thus inherently assume that the channel slope derived from channel-bottom elevations is 

equivalent to the water-surface and energy slope (Chow, 1959). With this assumption, the 

channel slope can be considered to be representative of the average energy slope in a river reach. 

Thus channel slopes obtained from topographic maps can be used in lieu of field-measured slopes 

in hydraulic models (as shown in Chapter 2), and provide a way of remotely obtaining estimates 

of channel slope.

However, measuring channel slopes from topographic maps is usually done manually, 

and is therefore labor intensive. Additionally, the scale of the map used to derive the slope is 

critical to its accuracy. Altimeters mounted on aircraft or satellites have the potential for 

measuring channel and water-surface slopes over large areas; however there are problems o f 

accuracy inherent in these measurements due to the low slopes that rivers exhibit relative to 

surrounding topography and the accuracy of the altimeters themselves (Birkett, 1998).
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Digital elevation models (DEMs) can be used to obtain river channel slopes with 

automated routines, thus eliminating the labor intensive task of meausring slope from topographic 

maps. However, the use of DEM derived slopes for iiistream hydraulic studies is limited due to 

the difficulty' of obtaining hydraulically meaningful values. This problem arises because routines 

used to develop the DEM cannot effectively determine the exact channel location and water- 

surface elevations within any specific grid ceil. Often, a channel slope derived from a DEM will 

have large variability wdthin a channel network, exhibiting sharp rises and troughs betw'een 

adjacent grid cells. Fekete (2002, personal communication) has developed a method to estimate 

the channel slope by a technique that smooths large slope fluctuations between grid cells and 

maintains a continuous dowmstream slope direction.

This Chapter evaluates the application of a river-cliannel slope field generated from a six 

minute DEM by Fekete (2002, personal communication) for modeling of rivers. The river- 

cliannel slopes obtained from the DEM. are used in conjunction with river hydraulic variables 

potentially obtained or estimated from remote data sources to estimate discharge in rivers using a 

set of general hydraulic relationships based on the Manning equation. The potential accuracy of 

discharge estimating equations, which rely on slope as an input variable, is evaluated and some 

potential applications of using the DEM-derived slope and the hydraulic relationships are 

explored and discussed.

Data and Methods

River discharge measurements obtained from the USGS National Water Information 

System (NWIS) flow measurement data base were downloaded

(http://wwv.water.usgs.gov/iiw'is/measurenients/) for more than 5,000 gaging stations in the
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United States. This data base cosisists of nearly one million records each providing measured 

discharge, flow width, flow cross-sectional area, mean velocity and other infoniiation about the 

gaging station and measurement conditions for stations across the United States. A DEM-derived 

slope w'-as also available for each station (Fekete, 2002 personal communication).

The mean annual flow (Qa) was used as a characteristic discharge for each station 

because it is considered to be coixelated with the general morphological characteristics of the 

channel (Leopold et a!., 1964; Osterkamp and Hedman, 1982) such that the water-surface slope 

associated with Qa is assumed to be approximately the same as the general topographic channel 

slope. Additionally, the mean annual flow is assumed to be subject to fewer potential backwater 

effects from upstream or downstream controls, such as bridges, and is more reliably identified

For this analysis, the mean annual flow was determined from a composite flow field 

developed by Fekete (2002), which combines USGS long-term flow records with estimates made 

from a continental water-balance model (Vorosmarty et al., 1999). These data were used because 

the inclusion of the modeled flow data in the mean-annual discharge field provides a means to  

compensate for the varying record lengths inherent in the USGS flow data. The USGS flow 

measurement (Qc) nearest to the estimated mean annual flow was extracted from NWIS flow 

measurement data base for analysis.

The USGS gaging station data were linked to a 6-minute gridded river network (STN-06,

Fekete, 2002) for spatial analysis. The USGS-reported basin area was compared with the STN-06

calculated basin area, and all stations where the difference between the two basin areas was

greater than 15% were discarded. This eliminated those stations with basin area less than the size

o f the 6 minute grid ceil (approximately 100 km̂ ). Stations with missing mean-annual flow data
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or missing cliannei-geometiy data were also eliminated from the data base. The resultant data 

base included mean-annual-flow measurement data for 2,256 stations.

The characteristic flow measurement (Qc) data were used with Model 1 (equation 3-26) 

to estimate an associated hydraulic slope. Model 1 is given by:

Qc = (5-1)

and is rearranged to calculate the slope:

Sc = [Qc/CKWY'-^’)]' (5-2)

where Sc = the characteristic hydraulic slope 

Qc = the characteristic discharge (nrVs)

Wc = the characteristic water-surface width (m)

Yc = the characteristic mean flow depth (m)

K =  a discharge coefficient 

The hydraulic slope calculated from equation (5-2) represents a general or “typical” slope 

associated with the particular flow and channel geometry obtained from the characteristic-flow 

data. A constant value of K was determined tlirough a calibration process that minimized the log-

residual between the predicted and observed discharge from an independent data set consisting of

over 1,000 flow measurements in 81 rivers (Chapter 3). The optimized estimate o f  K is 7.2, +/-

3.9 within one standard deviation. Because of the range of variability in the estimate of K, the 

calculated hydraulic slope has an associated uncertainty that reflects this variability.

Because the characteristic slope is derived directly from a calibrated hydraulic model, 

comparing this slope and the DEM-derived slope provides a means to evaluate the efficacy of the 

DEM slope for use in general hydraulic models. Additionally, evaluating the differences, or
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error, between the two slope estimates can provide insight into range of applicabiilt>'- of the DEM 

slope in hj/draulic models.

The DEM derived slope (8*01) was ased in conjunction with the USGS measured 

hydraulic variables for each station as input to Model 1, Model 2 (equation 3-33) and Model 3 

(equation 3-34) to estimate the discharge. Model 1 is given by equation (5-1), and Models 2 and 

3 are respectively given as (Table 3.3):

Q = O.OSWeVy-USden,”-' (5-3)

Q = 0.]Wc'-^Ve'-”  (5-4)

where Vc = the characteristic mean velocity (m/s).

The discharge coefficients for Model 2 and 3 were optimized on the same data set as Model 1. 

Models 1 and 2 use Sdem and the measured characteristic values for width (Wc) an,d either depth 

(Yc) or velocity (Vc) as input. Model 3 uses the measured characteristic width (Wc) and velocity

( V c ) ,  and thus is independent of slope. Discharge was estimated using the three models and 

compared against the measured characteristic discharge from the USGS NWIS data for each 

station. Because Model 3 is independent of slope, the effect of potential error in the slope can be 

evaluated by comparing the variability of this Model against the other two models.

Analysis and Results

The spatial distribution of the DEM-derived slope and the calculated hydraulic slope for

the 2,256 river stations are shown on Figure 5.1. Figure 5.1 also shows the spatial distribution of

the log residuals (error) between the hydraulic and DEM slopes. The log residual was chosen as

the best measure of enor because the eixor is bounded by zero on the low end and is not boimded

on the high end. The log residual is calculated as:
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fcrror = log(Sdem) -  iog(Sc) (5-5)

The tog residual can also be expressed as the log of the ratio of the two slopes:

En-or = Iog(Sdem/Sc) (5-6)

Equation (5-6) shows that the antilog of the residual is the ratio of the DEM slope and the 

hydraulic slope, and thus can be thought of as a correction factor between the two slopes. This 

characteristic of the residual provides a direct measure of the percent difference between the slope 

estimates.

Inspection of Figure 5.1 shows that the distribution of the DEM slope appears to be 

consistent with the general topographic trends of the continental United States. The distribution 

of the hydraulic slope shows greater variability, possibly indicating the effects of smaller scale

topographic relief on channel slope. Many of the slope residuals are quite large, in the range of

several orders of magnitude. The mean residua! between the two slopes is (10 and the 

standard deviation of the residuals indicates that the difference between the two slopes is nearly 

one order of magnitude (Table 5.1).

Figure 5.2 and Table 5.1 show the discharge prediction results for the three models, with 

Model 1 and Mode! 2 using the DEM slope as input. It can be seen that the DEM slope provides 

reasonably accurate results using the models, and that results for Model 1 and 2, which use the 

DEM slope, are comparable to Model 3 which does not. Model 3 is comparable to Model 1 and 2 

when a map-derived slope is used (Chapter 2 and 3). This suggests that the DEM slope provides 

results, on average, with the same accuracy as a map derived slope even considering some of the 

rather large deviations between the DEM slope and the hydraulic slope.
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Figure 5.1 -  Distribution of the hydraulic slope, DEM slope and the slope residual determined at 
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This conclusion, considering the large deviations between, the DE.M and hydraulic slopes, 

indicates that the discharge estimates using Models 1 and 2 are not highly sensitive to the slope, 

and that the DEM derived slope can be used in hydraulic river modeling with an acceptable level 

of confidence. However, given the rather large variation in DEM slopes compared to the 

calculated hydraulic slopes, understanding the variables that control the error could provide 

insight into the applicability and constraints of using the DEM slope for hydraulic modeling.

The slope residual and the residuals for each of the three models are normally distributed 

as seen on Figure 5.3. This indicates that inferential statistics regarding probable accuracy can be 

made when using the DEM derived slope and the hydraulic models. The ranked distributions also 

indicate that the DEM slope is unbiased relative to the hydraulic slope. This is indicated by the 

coincident residual distribution relative to a normal distribution with a mean of zero and the same 

standard deviation. However, the residuals from Models 1, 2 and 3 appear to be biased, as shown 

by the fact that tlie residuals plot either above (in the case of Model 1) or below (in the case of 

Model 2 and Model 3) the normal distribution. This suggests that these models could be linearly 

corrected by adjusting the magnitude of tlie coefficient of each model. However, because the 

models are used to predict only the mean annual flow', adjusting the model coefficients could 

result in greater errors for higher and low'er flows if the models were used to predict a wider range 

of discharge at each station.

As an example, if the largest 5, 10, and 15% of the positive and negative deviations 

between the DEM slope and the hydraulic slope are eliminated from the data base, the discharge 

estimates improve significantly, as seen on Figure 5.4 and Table 5.1. This can also be seen on 

Figure 5.3, w'hich shows that the largest residuals occur at the extreme ends of the ranked residua! 

distributions for each model. Thus if the occuirence of the largest slope deviations can be
113
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predicted, application of the DEM siope for these streams can be understood to be subject to lai*ge 

eiTor, and other slope measures obtained from maps or field surveys could be used for these 

reaches.

It can be reasoned that the slope deviations may be related to tire variability in micro- 

topography that is not captured adequately by the DEM, and error associated with using the 

general discharge coeffcient. Based on this, an initial assumption was that the smaller streams 

may be subject to more small scale topographic variation. However, measures of stream size 

including discharge, width, and basin ai'ea did not explain very much of the variation in the 

deviation either individually or combined, as evidenced by low correlation coefficients and high 

standard errors obtained from regression analysis. A combined variable, the wddth times the 

DEM slope, provided marginal improvement in predictability. This combined term indexes both 

stream size and potential energ}'' gradient. Based on this, it was reasoned that these terms would 

provide a good index for predicting the deviation.

The Froude number, obtained from the USGS measurements, was chosen as an indicator 

of the balance between inertial and gravitational (retarding) forces in the channel. As it turned 

out, the Froude number was much more strongly correlated to the deviations than any of the 

stream size indices. This is evidence that the general dishcarge coefficient, which is related to the 

FRoude number, can explain much of the resdual error. Since the width-slope temi provided 

some predictability, multiple regression of the Froude number and the width-slope term were 

used as predictor variables, and found to provide a good predictive model of the slope residual. 

Inclusion of the basin area as a predictor further improved the estimating relationship, as shown 

on Table 5.2 and Figure 5.5.
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Tabie 5.2 - Prediction of Log Slope Residual

Regression Equation !og(Sd3 n,/St;) = -2.794 0.794(log[WStjem]) - 3.000(log[F]) - 0 .180{iog[A])

R e p r e s s io n  Sfaf/sf/cs C o e ffic ie n ts S ta n d a r d  Err> t S t a t P -v a lu e L o w e r  § 5 % U p p e r  9 5 %
Multiple R 0.96091 Intercept -2.794 0.028 -99.651 0.000 -2.849 -2.739
R Square 0.923348 logtWS] 0.794 0.009 93.000 0.000 0.777 0.811
Standard E 0,238142 !og[F] -2.999 0,020 -149.019 0.000 -3.039 -2.960
Observatio 2257 log[A] -0,180 0.007 -24.285 0,000 -0.195 -0.1

notes: Sdem = DEM siope
So = characteristic hydraulic slope 

' W  = water surface width (m)
F = Froude Number 
A = Contributing basin area (km )̂

Slope Residual Prediction

a: 2

CO

g> 0

.y

Actual log Slope Residual

Figure 5.5 -  Predicted slope residual plotted against 
actual slope residual.

With knowledge of the DEM derived slope, channel width and basin area, all which can

be obtained remotely, coupled with a modeled or a-priori estimate of the Froude number, rivers

which may provide relatively poor candidates for hydraulic modeling using the DEM slope can

be identified. The question arises, however, as to the range of Froude numbers which are likely

to result in relatively poor discharge estimates. This was evaluated by using the slope-deviation

prediction equation with the width, basin area and DEM slope from the data base.
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Keeping all of the values of width, slope, and basin area constant, and varying only the 

Froude number, the mean and standard deviation of the log-residual discharge-predictioii errors 

were detennined assuming various ranges of the Froude number. It was found that within a 

Froude number range of 0.09 to 0.45, the prediction accuracy of the models was comparable to 

the case where the upper and lower 10% of the ranked slope residual errors were removed from 

the data (Table 5.1). The mean and standard deviation, respectively, of the errors within the 

above Froude number range ŵas 0.03 and 0.22 for Model 1, -0.143 and 0.34 for Model 2, and — 

0.1 and 0.26 for Model 3. Thus, it is concluded that the slope-residual predictive relation can 

provide selective knowledge about which streams can be modeled most accurately, and that 

relatively good predictability can be obtained for rivers that exhibit a range of Froude numbers 

between 0.09 and 0.45. This Froude number range is typical for many natural rivers, as 

evidenced by data compiled in Chapter 3 (Appendix) and as discussed by Leopold et ah, (1964). 

Thus, if Froude numbers detennined from modeling are outside of this range, the discharge 

estimate should be considered to be relatively inaccurate.

For comparison, a box plot of the log-residual range for the slope (sip) and the discharge 

prediction (Modi, Mod2 and Mod3) have been summarized by physiographic province in the 

continental United States on Figure 5.6. The ph5/siographic province boundaries were obtained 

from the USGS (bttph/www.water.usgs.goY/pub/dsdl/phvsio.eOO.gz) and represent regions of 

similar topography, rock types, and geologic/geomorphologic history. The residuals for a fourth 

discharge estimating model (Modws) that requires only slope and width as predictor variables is 

also shown on Figure 5.6 to illustrate the effect of using only one dynamic variable (width) to 

predict the discharge. This prediction model is developed by equating Models 2 and 3 (equations 

5-3 and 5-4) and then solving for the velocity. With velocitj' estimated, equation 5-3 is then used 

to estimate the discharge.
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Figure 5.6 shows that Modws has the largest potential prediction bias and range of error, 

as anticipated. In general, the largest mean prediction bias for the other models occurs in the 

Atlantic plains region. The lowest prediction bias for these models occurs in western and interior 

regions. For Modi, Mod2 and Mod3, the range of prediction error is greatest for Mod2, and is 

comparable for Mod! and Mod3 across all regions. Mod2 also shows the largest potential 

(negative) bias, and Modi shows the largest potential for positive bias.

The slope residual shows a general low bias in the interior regions, and a high bias in the 

Atlantic Plains region, similar to Figure 5.1. The error in Modi, Mod2 and Modws, which use 

slope as a predictor, does not always follow the slope error. This is due to the opposite predictive 

effective that the Froude number and the combined WS parameter have on estimating the 

magnitude o f the slope residual. The trend and variability of the discharge-estimate residuals 

illustrated in Figure 5.6 indicate that the models will provide the most accurate estimates in the 

Interior Plains and Rocky Mountain System regions because of less variability in the slope 

residual. This may indicate that channel slope generally conforms to the topographic slope in  

these regions with less small-scale variation. Additonally, the error distribution suggests that 

regional adjustments to the discharge coefficients could be made to account for the observed 

variance. For example, in the Atlantic Plain region, a lower coefficient value using Model 1 and 

a higher coefficient value using Model 2 would correct much of the error using these models in 

this physiogrtapHc region.
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Applying the DEM Slope to Large Scale River Modeling

The general hydraulic relationships developed in Chapter 3, used in combination, enable 

the discharge to be estimated from a minimum of necessary data including the maximum or 

bankfiill channel width, the djmamic width (i.e. the water surface width at the time of the 

observation) and the channel slope. Conversely, these relationships can also be used to develop 

channel geometries if the discharge, width and slope are known. This latter capability is of 

special application to large-scale land-surface w'ater-balance and runoff modeling because it 

provides the framework for development of realistic river-routing schemes. Assigning realistic 

channel geometry to the river netŵ ork can also provide an estimate of the channel capacity, and 

hence the occurrence of over bank flooding can be modeled.

An example of the application of these relationships in this capacity can be demonstrated 

using a high-resolutioii runoff field developed by combining a water-baiance runoff mode!

(WBM) with observed discharge from ground-based discharge monitoring networks (Fekete and 

Vorosmarty, 2002). The mean annual discharge values are derived for a gridded river network at a 

30 minute spatial resolution to obtain a mean annual discharge field for North America. An 

approximation of the bankful 1-channel widtli is then estimated for every 30-minute grid cell 

along the river-channel iietwmrk using a general regime relationship (Leopold et al, 1964) that 

relates the bankfiill channel width with the mean annual discharge. Osterkamp and Hedman 

(1982) have statistically developed the coefficients of this relationship from a large data base of 

rivers in the Missouri River Basin

Wb =  8.1Qa'’'* (5 -7 )

where Qa = the mean annual discharge (m’Vs)

Wb = the bankfull or regime channel width (m).
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A similar relationsMp correlating tlie bankfiill widtli to the mean animal flood, taken to be 

equivalent to the bankfiill discharge (Leopold et al, 1964) has also been determined from a data 

base of bank-full channel geometry compiled from various sources (Schumtn, 1960; Barnes,

1967; Osterkamp and Hedman, 1982; Church and Rood, 1983; Dingman and Palaia, 1999) (see 

Chapter 3, and AppendixS). The channel geometry data were measured in the field and the bank- 

ftill discharge estimated according to various methods for 521 rivers in North America. The 

resulting relationsMp is

Q b =  0 . 2 4 W b ^ - ® ^  ( 5 - 8 )

where Qb = the mean annual flood (m̂ /s).

The estimated bankfull width and discharge, obtained from the mean ammal discharge 

via equations (5-7) and (5-8), are coupled with a general physically based discharge relationship 

(equation 3-29) to estimate the bank-full depth and velocity, thus defining the bankfull channel 

geometry and flow regime. For the condition where the dynamic wetted width (W ) equals the 

bankfull width and the dynamic mean depth (Y) equals the bank-full depth, the bankfull depth 

can be calculated given the bankfull discharge from (equation 3-29):

Q = 2.74g°-%Y^'®^S°-^W-”  (5-9)

The slope can be taken as Sdcm, and the bankfull velocity can then be estimated from the equation 

of continuity, Vb = Qb/(WbYb). Figures 5.7 and 5.8 show the estimated mean bankfiill depth and 

estimated mean bankfull velocity plotted as a function of the estimated bankfull discharge for grid 

cells coinciding with 2,256 USGS gaging stations. These are compared to similar plots obtained 

from the bankfull channel geometry data base.
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Figure 5 .7 - Mean bankfull depth plotted against bankfull discharge for 
the estimated and obsei'ved data showing the general distribution patterns.
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Estimated Mean Velocity and  Discharge
iog-linear trend slope = 0.09
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Figure 5.8 -  Mean bankfull velocity plotted against bankfull discharge for 
The estimated and observed data showing the general distribution patterns.

Figure 5.7 show's that the estimated depths have a similar pattern of variability compared 

to the obsen'ed depths, however the trend slope for the estimated values is less steep. The 

estimated velocities (Figure 5.8) show' a similar trend compared to the observed data, but with 

less overall variability. In, general, the estimated depth and velocity compare well witli the 

observed relationships.
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A simiiar approach would combine the estimated bankfull width and discharge to 

calculate the bankfull velocity using a v/idth-velocity relationship (that does not require slope) as 

described by equation 5-4, or other forms of Model 3 developed in Chapter 3 (Table 3.3) shown 

as equations (5-10) and (5-11) below;

Q = 0.23W‘-̂ V-̂ * (5-10)

Q = 0.18W*-̂ V'-®̂  (5-11)

Once velocity is estimated, the bankfull depth is calculated from continuity. The estimated 

bankfull depth, therefore is dependent on which equation is used to compute the mean bankfull 

velocity.

Histograms of the approximated values for the bankfull discharge and width developed 

from the mean annua! discharge field for North America using equation (5-7) and (5-8) are shown 

on Figure 5.9. The mean width for 10043 30 minute grid cells (approximate land surface of North 

America) is 113 m, and for velocity and depth it is 1.59 m/s and 2.64 m using equation (5-4), 1.62 

m/s and 2.32 m using equation (5-10), and 1.46 and 2.68 using equation (5-11). Figure 5.9 also 

shows histrograms of the approximated values for bankfull velocity and depth derived from 

equations (5-4), (5-10) and (5-11). Figure 5.9 indicates that bankfull velocity is much less 

variable tlian either bankfull width or depth, suggesting that it is relatively constant for a wide 

range of river channels. This is in agreement wdth general predictions of regime theory, which 

indicates a small velocity exponent when correlated with the bankfull discharge (Savenije, 2003; 

Lacey, 1935; and Leopold, 1964). How'ever, observed values (Bray, 1979; Williams, 1978; and 

Church and Rood, 1983) of bankfull velocit)' tend to have a much wider range than predicted here 

or suggested by regime theoiy, thus the velocity derived from equation (5-1), which is based on 

statistical analysis of actual discharge measurements, appears to be the most realistic.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



If equation (5-10) is used to estimate velocity, then the estimated depth is lower (Figure 

5.7) than if equations (5-4) or (5011) are used. Thus, equation (5-10) may bet he most appropriate 

if the goal is to model velocity, and equations (5-4) or (5-11) would be most appropriate if the 

goal is to model depth. Equation (5-11) yields a greater range of velocity than equation (5-4), 

with a similar range of depth, thus equation (5-11) appears to provide the best overall values for 

both depth and velocity. The inclusion of slope in the development of the channel geometry 

would introduce more site specific information and would therefore result in a larger range of 

velocily’ and depth which would be more realistic, as demonstrated by Figures 5.7 and 5.8. Figure

5.10 shows the spatial distribution of the estimated bankfull width, depth and velocity assigned to 

the river network for North America using equations (5-7), (5-8) and (5-11).

Once the bank-full channel geometry is defined, a depth-discharge rating can also be 

defined. This is accomplished using equation (5-9) assuming a suitable channel cross-section 

shape. If a parabola is assumed, the following general discharge equation for in-bank channel 

depths is obtained from equation (5-9):

Q = 2.74g“' (̂WbÂ b“'̂ ’)Y-'” S°'"" (5-12)

Because Wb, Yb and S are constant values, equation (5-12) defines a unique depth-discharge 

rating for depths ranging from 0 to Yb.

A depth can be calculated from equation (5-12) for any in-bank discharge estimate generated

from the WBM. Given the assumed channel cross-section shape, a width and velocity can also be

calculated, thus defining the necessary routing parameters for the channel network. Thus, an

explicit river runoff routing scheme for the WBM model can be developed. Because the bank-full

depth is prescribed, when the model-estimated discharge results in a depth exceeding this value,

over bank flooding is assumed to be occurring. When over-bank flow occurs, routing can be

adjusted to account for over- bank storage. Additionally, this capability can be used to evaluate
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Figure 5.9 ~ Histograms showing the 30 minute distribution of approximated bankfull hydraulic variables for North America including discharge, 
width, velocity and depth. Velocity and depth distributions estimated from equations (5-4), (5-10), (5-11) are shown.
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North America based on general width-discharge function and equation (5-11).
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Figure 5.10 (continued)- Distribution of estimated bankfull velocity for North America based on 
general width-discharege function and equation (5-11).

the frequency of over bank flooding generated by the model, and coupled with the DEM, could 

define the areal extent of flooding.

The strategy outlined above cannot provide reach-specific rating curves because 

equations (5-7) and (5-8) represent relationships fitted to data from diverse geographic and 

hydrologic regions, vrith relatively large potential estimation errors. In order to evaluate the 

specific prediction en'ors associated with the procedure developed above, equation (5-9) was used 

to calculate the expected depth associated with the mean annual discharge, which was then
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compared to  the observed deptli associated with the mean annual discharge obtained for the 2,256 

USGS gaging stations.

Figure 5.11 compares the estimated and observed ineaii flow depth, and shows relatively 

poor agreement, tending to under-estimate at high depth, and over-estimate at low depth. This 

suggests that the initial estimates of the bank-full width and the bank-full discharge, obtained 

from equations (5-7) and (5-8), do not adequately reflect the channel-specific conditions at the 

gaging stations. In order to provide greater site specificity, observed elements o f the actual 

channel geometry within each reach would be needed. Bank-full widths obtained from imagery 

would provide sufficient additional site-specific information such that equation (5-7) would not 

be necessary. Additionally, if dynamic widths were also available, a unique channel cross-section 

shape need not be assumed, because equation (5-9), which does not assume a specific cross- 

section shape, could be used to develop the rating. Thus, it is anticipated that a more accurate 

river routing scheme can be developed by coupling the general hydraulic relationships with 

observed channel width (bankfull), the dynamic water-surface width and the channel slope.
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Figure 5.11 -  Estimated mean depth plotted against the observed 
mean depth for the mean annual flow data.
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Discussion

River-channel slopes developed from a 6-minute DEM using the Fekete method can be 

effectively used in general uniform-flow hydraulic models of river flovz. This enables the large- 

scale application o f river-flow models that require an independently derived channel slope as an 

input variable. General flow-routing models applied on a global or continental scale can 

therefore be effectively developed and linked to large-scale water-balance and runoff models. 

Additionally, large-scale evaluation of in-stream hydraulic conditions in rivers can be made 

where high accuracy in any given reach is not critical. The DEM slope could also be coupled 

with remotely sensed estimates of river channel and dynamic width to estimate discharge in rivers 

over large areas.

Errors associated with using the DEM-derived slope are normally distributed over a w ide 

range of rivers in the United States. The magnitude o f the error between the DEM' slope and the 

functional hydraulic slope associated with each discharge measurement is a function of the DEM

slope, the river wddth, the contributing drainage area, and the Froude number o f  the flow.

Because the error associated with using the DEM slope in lieu of a hydraulic slope is normally 

distributed and predictable, straight-forward statistical evaluation of modeling results can be 

undertaken, and those rivers that exhibit conditions conducive to greater modeling errors can be 

identified.

With improvements in the accuracy of DEM models, it can be assumed that estimates o f 

the channel slope would improve, enabling even better hydraulic-modeling results in the future. 

The DEM slope could also be used in conjunction wdth available field data and in-stream 

hydraulic iiifomiation to develop an improved composite field of the hydraulic slope in rivers.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The development of methods to estimate the discharge of rivers using remotely sensed 

data will provide the means to increase the streamflow measurement network globally. This 

component of the land-surface water-budget is currently measured at ground-based gaging 

stations for many of the larger rivers in populated regions, however large rivers in  remote areas 

and small to intermediate sized rivers over much of the globe are not currently monitored. 

Additionally, the global river-gaging network and access to these data have been decreasing in 

recent years. Because of these trends, the current ground-based streamflow gaging network does 

not provide adequate spatial coverage for many scientific applications, including verification o f 

the land-surface runoff contribution to the oceans and the spatial distribution of intra-continental 

runoff.

Calibration of continental scale runoff and climate models depend on adequate spatial 

density and length of streamflow records. Remote sensing of river discharge has the potential to 

provide this needed data by filling in gaps within the existing streamflow gaging network, and by 

adding new information from inaccessible regions that have not been gaged in the past. Generally 

applicable open-channel hydraulic equations, including the Manning and Chezy equations, have 

been in use for decades, and can be adapted to remote sensing applications because the dynamic 

constitutive elements of the equations can all be measured or potentially measured remotely, 

provided a general estimate of the resistance can be made.
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This research has shown that mnch of the variance associated with resistance can be 

predicted and measured through its effect on other elements of flow, including depth, velocity and 

channel slope. In particular, the usual formulation of the Manning and Chezy equation states that 

velocity varies as the square root of slope, whereas this research has shown that greater variance 

in velocity can be explained if the cubed root of slope were used. A physical explanation of this 

phenomena has been developed, and modified forms of the Manning and Chezy equations 

described that minimize the uncertainty associated with the resistance term.

Additionally, this reseach has shown that estimating the in-bank discharge of rivers from  

remotely sensed hydraulic information can be accomplished with reasonable accuracy (on 

average within 20% of the ground measured value) given observations of reach averaged water- 

surface width and maximum-channel (bankfull) width coupled with channel slope. Additional 

information such as surface velocity, measured using Doppler lidar or SAR techniques, appear to 

enable much higher accuracies. Mean accuracy for large numbers of estimates can be expected to 

be within +!- 20% of the actual discharge, with a relatively wide range of variability. For 

example, the accuracy for 67% of a large number of estimates (one standard deviation) made over 

a wide range of rivers would be expected to be within +/- 50 to 100% depending on the model 

used and the data available.

Satellite and other remotely obtained images of the land surface have the capability o f 

providing accurate measurments of the water-surface width of rivers around the globe on a nearly 

real-time basis. Additionally, satellite imagery and other remote sources of land-surface 

information can provide measurements of channel geomorphic characteristics including the 

bankfull (or active) channel width and the channel siope. There are potential difficulties in 

measuring water-surface slope; however measurement of slope from topographic information,
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and thus a  channel constant for a particular river reach, can be used in lieu of a  measured water- 

surface slope in discharge- estimating equations while maintaining reasonable accuracy.

T here is an indication that general features of a river, such as its channel morphology and 

size (indicated by its maximum width), can be used to self-calibrate the estimation procedure, 

thereby improving the accuracy of remotely based estimates. Additionally, self-calibration 

methods based on the predicted Froude number also show promise with regard to improving 

estimate accuracy. As more river hydraulic data become available from satellites and aerial 

surveys, improved methods and calibration procedures can be developed. These improvements 

will be based on experience with large data sets of remotely sensed hydraulic and river-channel 

infomiation.

Considering that traditional ground-based, non-contact discharge measurements (e.g. the

slope-area method) may provide an expected accuracy in the range of +/- 20%, the mean estimate 

accuracy potentially provided from remotely sensed information is certainly comparable. 

Although discharge estimates made from aerial or satellite sensed information will likely never 

provide the level of accuracy that can be achieved from direct in-stream measumient of depth, 

velocity and width (using tlie velocity-area method), there are numerous applications for remote 

discharge estimates. Where data gaps in flow records exist, and in rivers that have poor 

accessibility and costs for obtaining ground-based discharge are high, satellite and aerial 

paltforms can be used to supplement the ground-based network. In addition, because of the 

potential for global coverage by satellites, relatively frequent and accurate estimates of dischai'ge 

over large areas can provide much needed understanding of the spatial distribution of discharge 

across the continents on a near-real-time basis.

134

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The equations and methods developed here to estimate river discharge are easily adapted 

to other hy'drologic modeling applications. This is because they are based on general principles 

of open-channel flow, and therefore can be generalized to any river environment. Used in 

combination, the hydraulic reiationships can be used to estimate river discharge from a minimum 

set of observed channel and hdyraulic data; conversely, they can also be used to estimate river- 

channel geometry and discharge ratings from estimates of discharge. Thus, the equations and 

relationships developed to estimate discharge from measurable hydraulic variables can be used in 

watershed-modeling applications to generate realistic river-routing parameters based on channel 

geometry, including a criteria for identifying the occurrence of overbank flow (i.e. flooding).

Although the various estimating equations and relationships developed here pertain to  in­

bank discharge and river flow conditions, the basic hydraulic relationships may also be adaptable 

to estimating discharge in overbank conditions, with adequate understanding o f  the variability o f 

the discharge coefficient in these situations. Similar to the calibration of the equations for in­

bank discharge, the calibration of the equations for overbank dischai'ge will require a large and 

diverse data set of overbank flow measurements along with information about the nature of the 

flooded areas. Another key issue with regard to estimating the discharge o f overbank areas would 

be the identification of those flooded areas where the flow direction cannot be assumed to be in 

the dowmstreara direction, and identification of stagnant or flooded areas that do not contribute to 

downstream flow. Even though the surface area of a flooded reach can be measured remotely, 

and an average width determined, all of this area may not be contributing to downstream flow. 

This problem can be addressed through observations of surface velocity, as non-contributing 

reaches can be readily identified as those areas with a minimum downstream surface velocity 

vector.
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The current generation of spaced-based and aeriai imagers and sensors are adequate to 

measure river hydraulic variables and thus to provide estimates of river discharge. However, 

much o f the data that is potentially available for this prupose has not been developed to provide 

large spatial and temporal data sets for analysis. These data sets are critical to fonrmlating 

improved calibrations and more complete understanding of the error characteristics of the 

discharge estimates. Development of a comprehensive data set that includes remote observations 

of water-surface area, stage, surface velocity, channel slope and observed discharge for a large 

number o f river reaches is particularly important.
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APPENDIX
RIVER DISCHARGE AND CHANNEL HYDRAULIC DATA
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Appendix 1 - Channel Control Flow Measurement Data
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Tabte A1 - CSisnnei ContrsI Flow B®gsuremsnt Data

M ean M ean M aximum M axim um Slope F ro u d e
D ischarge Width Depth Velocity Width D epth N u m b e r

River N am e Source (m Is) (m) {m) (m) (m) (m) (m/m)
Q W Y V Wm Ym S a F

Mississippi a t  T h e b e s USGS-NWIS 27576,4 1002.7 11.21 2.45 1003 11 .2 0.000137 0 .2 3 3 7 4 9
USGS-NW iS 24547 1009.4 10.95 2.22 1003 11-2 0.000137 0 .2 1 4 3 0 5
USGS-NWIS 19762.2 8S4.6 11.11 1.99 1003 1 1 .2 0.000137 0 .1 9 0 7 1 4
USGS-NW tS 14496 765 10.79 1.76 10Q3 1 1 .2 0.000137 0 .1 7 1 1 5 5
USGS-NWIS 12542.5 764.4 10.9 1.51 1003 1 1 .2 0.000137 0 .1461
USGS-NWIS 10504 722.6 9.83 1.47 1003 1 1 .2 0.000137 0 .1 4 9 3 1 6
USGS-NWIS 9003.4 663.2 9.39 1.44 1003 1 1 .2 0,000137 0 .1 5 0 1 1 2
USGS-NWIS 8210.6 657.1 9.06 1.38 1003 1 1 .2 0.000137 0 .1 4 6 4 5 4
USGS-NWIS 7163.1 625.7 8.55 1.34 1003 1 1 .2 0.000137 0 .1 4 6 3 8 9
USGS-NWIS 6398.6 644.9 8.96 1.11 1003 1 1 .2 0,000137 0 .1 1 8 4 5 6
USGS-NW IS 5832.4 612 7.62 1.25 1003 1 1 .2 0.000137 0 .1 4 4 6 5
USGS-NW IS 5322.8 631.2 8.21 1.03 1003 1 1 .2 0.000137 0 .1 1 4 8 2 9
USGS-NW IS 4728.2 599.8 6.94 1.14 1003 1 1 .2 0.000137 0 .1 3 8 2 3 3
USGS-NW IS 4416.8 593.7 6.96 1.07 1003 11-2 0.000137 0 .1 2 9 5 5 9
USGS-NW IS 4246.9 573 6.31 1,18 1003 1 1 .2 0.000137 0 .1 5 0 0 5 6
USGS-NWIS 3822.2 570.9 6.02 1.12 1003 1 1 .2 0.000137 0 .1 4 5 8 1 7
USGS-NWIS 3052.3 572.1 5.81 1,1 1003 1 1 .2 0.000137 0 .1 4 5 7 7 8
USGS-NWIS 3171 566 5.79 0.97 1003 1 1 .2 0.000137 0 .1 2 8 7 7 1
USGS-NW IS 2641.6 563.2 5.1 0.92 1003 1 1 .2 0.000137 0 .1 3 0 1 3 4
USGS-NWIS 2216.9 545 4.13 0.98 1003 1 1 .2 0,000137 0 .1 5 4 0 4 2

P otom ac a t po in t of rocks USGS-NWIS 8154 476.7 9.39 1.82 477 9 .4 0.00027 0 .1 8 9 7 2 5
USGS-NWIS 1687.4 333.1 3,76 1.34 477 9 .4 0.00027 0 .2 2 0 7 4 9
USGS-NWIS 860.7 307.2 2.55 1.1 477 9 .4 0.00027 0 .2 2 0 0 4 4
USGS-NW iS 543.6 300.2 2.01 0.9 477 9 .4 0.00027 0 .2 0 2 7 8 3
USGS-NWIS 393.5 285.9 1.63 0.84 477 9 .4 0.00027 0 .2 1 0 1 7 1
USGS-NWIS 328.4 258.5 1.59 0.8 477 9 .4 0.00027 0 .2 0 2 6 6 5
USGS-NW iS 264.4 281.3 1.43 0.66 477 9 .4 0.00027 0 .1 7 6 3 0 4
USGS-NWIS 213.5 276.1 1.09 0.71 477 9 .4 0.00027 0 .2 1 7 2 3 6
USGS-NWIS 166.8 276.7 1.09 0.55 477 9 .4 0.00027 0 .1 6 8 2 8 2
USGS-NW IS 140.7 246.9 1.06 0.54 477 9 .4 0.00027 0 .1 6 7 5 4 4
USGS-NWIS 105.9 259.1 0.9 0.45 477 9 .4 0.00027 0 .1 5 1 5 2 3
USGS-NW IS 91.7 288.6 0.82 0.39 477 9 .4 0,00027 0 .1 3 7 5 7 7
USGS-NW IS 70.8 253.3 0.6 0.45 477 9 .4 0,00027 0 .1 8 9 7 0 1
USGS-NW IS 69,6 235.3 0.56 0.52 477 9 .4 0.00027 0 .2 2 1 9 7 1
USGS-NW IS 67.1 248 .4 0.66 0.4 477 9 .4 0.00027 0 .1 5 7 2 8 1
USGS-NW IS 59.7 240.5 0.78 0,32 477 9 .4 0.00027 0 .1 1 5 7 4 2
USGS-NWIS 54.9 234.4 0.53 0.44 477 9 .4 0.00027 0 .1 9 3 0 6 4
USGS-NW IS 48.7 221 0.48 0.46 477 9 .4 0.00027 0 .2 1 2 0 9 2
USGS-NWIS 34.8 235.9 0.41 0.36 477 9 .4 0.00027 0 .1 7 9 5 9 6
USGS-NW IS 15.6 192 0.34 0.24 477 9 .4 0.00027 0 .1 3 1 4 8

Missouri a t H erm ann USGS-NW IS 14439.4 602 .3 10.21 1.83 602 1 0 .2 0.00013 0 .1 8 2 9 4 7
USGS-NW IS 13S16.5 599.8 9.96 2.31 602 10-2 0.00013 0 .2 3 3 8 1 3
USGS-NW IS 11268.4 737.6 8.61 1.77 602 1 0 .2 0.00013 0 .1 9 2 6 9
USGS-NWIS 8635.3 585.8 9.42 1.56 602 1 0 .2 0.00013 0 .1 6 2 3 6 3
USGS-NWIS 8323.9 437 .4 10.58 1.8 602 1D.2 0.00013 0 .1 7 6 7 7 3
USGS-NWIS 7304.6 435 .8 9.76 1.72 602 1D.2 0.00013 0 .1 7 5 8 6 9
USGS-NWIS 6993.2 432. S 9.27 1.74 602 1 0 .2 Q.0DG13 0 .1 8 2 5 5 6
USGS-NW IS 6002,3 434 .6 8.93 1.55 602 1 0 .2 0.00013 0 .1 6 5 6 8 9
USGS-NW IS 4954.7 424 .9 8.35 1.4 602 1 0 .2 0.00013 0 .1 5 4 7 6 5
USGS-NW IS 4360,1 425 .5 7.86 1.3 502 1 0 .2 0.00013 0 .1 4 8 1 2 2
USGS-NW IS 3822.2 404.1 7,03 1.33 602 1 0 .2 0.00013 0 .1 6 0 2 3 6
USGS-NW IS 3454.1 42S.5 6.72 1.2 602 1 0 .2 0.00013 0 .14 7 8 7 1
USGS-NW IS 3001.1 424 6,53 1.09 602 1 0 .2 0.00013 0 .1 3 6 2 5 6
USGS-NWIS 2681.2 424 5.74 1.1 602 1 0 .2 0,00013 0 .1 4 6 6 6 4
USGS-NW IS 2406.6 384.6 5.94 1.05 602 1 0 .2 0.00013 0 .1 3 7 6 2
USGS-NW iS 2143.3 420 .6 5,19 0.98 602 1 0 .2 0.00013 0 .1 3 7 4 1 3
USGS-NW IS 1865,8 303 5.55 1.11 602 10-2 0,00013 0 .1 5 0 5 0 9
USGS-NW IS 1582.7 332.2 4.84 0.98 602 1 0 .2 0.00013 0 ,1 4 2 2 9 5
USGS-NW IS 1274.1 324 .8 3.89 1.01 602 1 0 .2 0.00013 0 .16 3 5 8 1
USGS-NW IS 7S4.3 237.1 3,66 0.95 602 1 0 .2 0.00013 0 .1 6 0 2 9 4

Yukon at S tevens Village USGS-NW IS 17836.9 597 .4 12.7 2.35 698 1 2 .4 0.000068 0 .2 1 0 6 4 6
USGS-NW IS 1SS47.8 638 12.39 1.93 698 1 2 .4 0,000068 0 .1 7 5 1 4 9
USGS-NW IS 13165.3 644 .6 11.1 1.84 698 1 2 .4 0.000068 0 .1 7 6 4 1 8
USGS-NW IS 10617.2 54S.6 10.67 1.81 698 1 2 .4 0.000068 0 .1 7 7 0 0 4
USGS-NW IS 8890,1 527.3 9.94 1.7 698 1 2 .4 0.000068 0 .1 7 2 2 4 3
USGS-NW IS 7644.4 676 .6 7.41 1.52 696 1 2 .4 0.000068 0 .1 7 8 3 7
USGS-NW IS 6540.2 S55.3 7.1 1.41 698 1 2 .4 0.000068 0 .1 6 9 0 3 5
USGS-NW IS 5945,6 544 8.11 1.35 698 1 2 .4 0.000058 0 .1 5 1 4 2 9
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Mean M ear Maximum M axim um Slope F ro u d e
D ischarge Width Depth Velocity Width Depth N u m b e r

River N am e Source (m'“/s) (m) (m) (m) (m) (m) (m/m)
Q W Y V Wm Ym S a F

USGS-NWIS 4898.1 505.9 7.44 1.3 698 1 2 .4 O.OOODSS 0 .1 5 2 2 4 5
USGS-NWIS 4530 509 7.08 1.26 698 1 2 .4 0.000068 0 .1 5 1 2 6 6
USGS-NWIS 4161.9 505 .9 6.85 1.2 698 1 2 .4 0.000068 0 .1 4 6 4 6 1
USGS-NWIS 3624 527.3 6.25 1.1 693 1 2 .4 0.000068 0 .1 4 0 5 5 3
USGS-NWIS 3284.3 582.1 5.27 1.09 598 1 2 .4 0.000068 0 .1 5 1 6 7 3
USGS-NWIS 2916.2 594.3 4.67 1.05 698 1 2 .4 0.000068 0 .1 5 5 2 0 3
USGS-NWIS 1056.1 609.6 3.47 0.5 698 1 2 .4 0.000068 0 .0 8 5 7 4 2
USGS-NWIS 753.1 673.6 2.23 0.5 698 1 2 .4 0.000058 0 .1 0 6 9 5 6
USGS-NWIS 523.8 512 2.14 0.48 698 1 2 .4 0.000G6S 0 .1 0 4 8 1 4
USGS-NWIS 472.8 609.6 1.35 0.57 698 1 2 .4 0.000068 0 .1 5 5 7 0 9
USGS-NWIS 416.2 505.9 1.98 0.41 698 1 2 .4 0.000068 Q .093075

W illam ette a t  S a le m  USGS-NWIS 8188 516.6 7.27 2.15 517 7 .3 0.00032 0 .2 5 4 7 1 7
USGS-NWIS 6935.6 512.6 6.84 1.98 517 7 .3 0.00032 0 .2 4 1 8 3 8
USGS-NWIS 4869.8 463.3 4.85 2.17 517 7 .3 0.00032 0 .3 1 4 7 5 7
USGS-NWIS 4331.8 435 .8 4.75 2.09 517 7 .3 0.00032 0 .3 0 6 3 2 8
USGS-NWIS 3793.9 289.5 6.48 2.02 517 7 .3 0.00032 0 .2 5 3 4 8 4
USGS-NWIS 3312.6 241 .4 7.58 1.81 517 7 .3 0.00032 0 .2 1 0 0 0 6
USGS-NWIS 3029.4 248.4 6.62 1.84 517 7 .3 0.00032 0 .2 2 S 4 4 2
USGS-NWIS 2117.8 212.1 5.91 1.69 517 7 .3 0.00032 0 .2 2 2 0 6 5
USGS-NWIS 1922.4 206 5.46 1.71 517 7 .3 0.00032 0 .2 3 3 7 S 9
USGS-NWIS 1613.8 213.3 5.22 1.45 517 7 .3 0.00032 0 .20 2 7 3 1
USGS-NWIS 1373.2 207.3 4.89 1.37 517 7 .3 0.00032 0 .1 9 7 9 0 3
USGS-NWIS 1087.2 204.2 4.35 1.23 517 7 .3 0.00032 0 .1 8 8 3 8 5
USGS-NWIS 713.5 203 .3 3.57 0.98 517 7 .3 0.00032 0 .1 6 5 5 8 3
USGS-NWIS 552.1 182.6 2.45 1.23 517 7 .3 0.00032 0 .2 5 1 0 2
USGS-NWIS 512.5 182 2.34 1.2 517 7 -3 0.00032 0 .2 5 0 5 8 8
USGS-NWIS 402 181 2.08 1.07 517 7 .3 0.00032 0 .2 3 6 9 9 5
USGS-NWIS 353.9 182.3 1.93 1.01 517 7 .3 0.00032 0 .2 3 2 2 3 6
USGS-NWIS 267.6 173.7 1.77 0.87 517 7 .3 0.00032 0 .208891
USGS-NWIS 199.9 170.1 1.57 0.75 517 7 .3 0.00032 0 .1 9 1 2 0 5
USGS-NWIS 163.1 120.4 3.5 0.39 517 7 .3 0.00032 0 .06 6 5 9 1

R ed River of th e  North a t G rant USGS-NWIS 2972.8 304.8 7.92 1.17 351 7 .9 0.000043 0 .1 3 2 8 0 4
USGS-NWIS 2457.5 350 .5 7.02 1 351 7 .9 0.000043 0 .1 2 0 5 6 4
USGS-NWIS 1797.8 182.9 7.62 1.29 351 7 .9 0.000043 0 .1 4 9 2 7 9
USGS-NWIS 1545.9 184.4 7.15 1.17 351 7 .9 0.000043 0 .1 3 9 7 7 2
USGS-NWIS 1285.4 182.9 6.04 1.16 351 7 .9 0.000043 0 .1 5 0 7 7 4
USGS-NWIS 982.4 157.3 6.26 1 351 7 .9 0.000043 0 .1 2 7 6 7 3
USGS-NWIS 724.8 130.4 5.58 1 351 7 .9 0.000043 0 .1 3 5 2 2 9
USGS-NWIS 560.6 110.3 5.27 0.93 351 7 .9 0.000043 0 .1 2 9 4 0 9
USGS-NWIS 525.6 91.4 5.88 0.98 351 7 .9 0.000043 0 .1 2 9 0 9 9
USGS-NWIS 501.1 90.5 5.52 1 351 7 .9 0.000043 0 .1 3 5 9 6 2
USGS-NWIS 472.8 103.6 5.32 0.86 351 7 .9 0.000043 0 .1 1 9 1 0 5
USGS-NWIS 421.9 88 .4 5.17 0.92 351 7 .9 0.000043 0 .1 2 9 2 5
USGS-NWIS 359.6 85.3 4.69 0.9 351 7 .9 0.000043 0 .1 3 2 7 5 3
USGS-NWIS 302.9 84.1 4.15 0.87 351 7 .9 0.000043 0 .136421
USGS-NWIS 273.5 78 4.14 0.85 351 7 .9 0.000043 0 .1 3 3 4 4 S
USGS-NWIS 222.5 77 .4 3.53 0.81 351 7 .9 0.000043 0 .1 3 7 7 1 5
USGS-NW IS 193.9 76 .5 3.45 0.73 351 7 .9 0.000043 0 .1 2 5 5 4 5
USGS-NWIS 128.3 76.2 3.18 0.53 351 7 .9 0.000043 0 .0 9 4 9 4
USGS-NW IS 98.8 74 .4 3.07 0.43 351 7 .9 0.000043 0 .0 7 8 3 9 5
USGS-NWIS 44.5 71 .3 3.33 0.19 351 7 .9 0.000043 0 .0 3 3 2 5

A rkansas River at A rkansas CIt USGS-NWIS 2265 278.6 5.14 1.5S 285 5.1 0.000685 0 .2 2 2 6 1 9
USGS-NW IS 2140.4 285.6 4.34 1.51 285 5.1 0.000585 0 .2 1 7 0 2
USGS-NW IS 1874.3 285 .3 4 .27 1.54 285 5.1 0.000685 0 .2 3 8 0 6 4
USGS-NW IS 1537.4 273.1 3.74 1.51 285 5.1 0.000685 0 .2 4 9 4 1 8
USGS-NW IS 1291.1 271 .3 3.63 1.3 285 5.1 0.000685 0 .2 1 7 9 6
USGS-NW IS 971.1 266.1 2.S4 1.29 285 5.1 0.000685 0 .2 4 4 5 2 2
USGS-NW IS 719.1 105.2 6.15 1.11 285 5.1 0.000685 0 .1 4 2 9 7 9
USGS-NWIS 475.7 179.8 2.41 1.1 285 5.1 0.000635 0 .2 2 6 3 4 5
USGS-NW iS 404.9 162.5 2.22 1.12 285 5 .1 0.000685 0 .2 4 0 1 2
USGS-NW IS 342.6 139.3 4.3 0.57 285 5.1 0.000685 0 .0 8 7 8 0 7
USGS-NW iS 306.8 153 1.96 1.02 285 5.1 0.000685 0 .2 3 2 7 3 4
USGS-NWIS 263.9 123.7 4.7 0.45 285 5.1 O.0QO685 0 .0 6 S 3 0 6
USGS-NW IS 246 146 1.77 0.95 2S5 5.1 0,000585 0 .2 2 8 0 9 9
USGS-NW IS 219.4 106.7 4.03 0.51 285 5.1 0.000685 0 .D 80853
USGS-NW IS 174.4 149.3 1.44 0.31 285 5.1 0.000685 0 .215621
USGS-NW IS 139 151.5 1.02 0.9 285 5.1 0.000665 0 .2 S 4 S 5 2
USGS-NW IS 111.8 150.6 1.12 0.66 285 5.1 0.000565 0 .1 9 9 2 1 5
USGS-NW IS 74.7 135.6 0.75 0.73 285 5.1 0.000685 0 .2 6 9 2 6 5
USGS-NW IS 54.9 150.3 0.63 0.58 285 5.1 0.000685 0 .2 3 3 4 2 4
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M ean M ear M aximum M axim um Slops - r o u d e
D ischarge Width Depth Velocity Width D epth N u m b e r

River N am e Source (m /$) (m) (m) (m) (m) (m) (m/m)
Q W Y V Wm Ym S a F

USGS-NWIS 39.4 127.1 0.64 0.48 285 5.1 0,000685 0 .1 9 1 6 6 3
Kuskokwim a t  C ro o k e d  Creek USGS-NWIS 6189.1 408 .4 7.8 1.94 442 7 .8 0.000198 0 .2 2 1 8 9 2

USGS-NWIS 4473.4 405 .4 6.05 1.82 442 7 .8 0.000198 0 .2 3 6 3 6 4
USGS-NWIS 3595.7 426 .7 5.44 1.55 442 7 .8 0.000198 0 .2 1 2 2 8 5
USGS-NWIS 3001.1 441.S 4.77 1.42 442 7 .8 0.000198 0 .2 0 7 6 9
USGS-NW IS 2641.6 389 .5 5.01 1.35 442 7 .8 0.000198 0 .1 9 2 6 5 5
USGS-NWIS 2347.1 363.8 4.91 1.3 442 7 .8 0.000198 0 .1 8 7 4 0 9
USGS-NWIS 2081 381 4.39 1.24 442 7 .8 0.000198 0 .1 8 9 0 5
USGS-NWIS 1823.3 371.8 4.37 1.12 442 7 .8 0.000198 0 .1 7 1 1 4 5
USGS-NWIS 1528.9 349 4.31 1.01 442 7 .8 0.000198 0 .1 5 5 4 0 7
USGS-NWIS 1449,6 350 .5 3.92 1,05 442 7 .8 0.000198 0 .1 6 9 4 0 8
USGS-NWIS 1435.4 362.7 4.1 0,97 442 7 .8 0,000198 0 .1 5 3 0 2 7
USGS-NW IS 1404.3 350.5 4.19 0.96 442 7 .8 0.000198 0 .1 4 9 8 1 4
USGS-NW IS 1217.4 347.5 3.88 0.9 442 7 .8 0.000198 0 .1 4 5 9 5 3
USGS-NW iS 1078.7 327.6 3.88 0.85 442 7 .8 0,000198 0 .1 3 7 8 4 5
USGS-NWIS 730.5 381 4.34 0,44 442 7 .8 0.000198 0 .0 5 7 4 6 8
USGS-NW iS 560.6 411 .5 3.84 0.35 442 7 .8 0.000198 0 .0 5 7 0 5 4
USGS-NW IS 515.3 362.7 2.87 0,49 442 7 .8 0.000198 0 .0 9 2 3 9 4
USGS-NWIS 498.3 364.S 2.88 0.47 442 7 .8 0.000198 0 .0 S S 4 6 8
USGS-NW IS 376.6 350 .5 3.23 0.33 442 7 .8 0.000198 0 .0 5 8 6 5 4

Platte nea r A g en cy  USGS-NW IS 965.5 156 4.59 1.35 156 4 .6 0.00046 0 .2 0 1 2 8 6
USGS-NW IS 707.8 137.2 3.35 1.54 156 4 .0 0.00046 0 .2 6 8 7 7 3
USGS-NW iS 622.9 134.1 3.38 1.37 156 4 .6 0.00046 0 .2 3 8 0 4
USGS-NW IS 404.9 53 5.8 1.32 156 4 .6 0.00046 0 .1 7 5 0 8 4
USGS-NWIS 396.4 106.7 3.14 1.18 156 4 .6 0.00046 0 .2 1 2 7 1 8
USGS-NWIS 393.5 64 6.49 0.95 156 4 .6 0.00046 0 .1 1 9 1 2 1
USGS-NW IS 390.7 103.6 3.43 1.1 156 4 .6 0.00046 0 .1 8 9 7 2 9
USGS-NW IS 314.3 57 4.48 1.23 156 4 .6 0.00046 0 .1 8 5 6 3 2
USGS-NW IS 222.8 48 .8 5.09 0.9 156 4 .6 0.00040 0 .1 2 7 4 3
USGS-NW IS 119.2 53.6 3.19 0.7 156 4 .6 0.00046 0 .1 2 5 1 9 6
USGS-NWIS 82.7 4 8 .2 2.76 0.62 156 4 .6 0.00046 0 .1 1 9 2 1 3
USGS-NW IS 54.4 4 4 .5 2.78 0.44 156 4 .6 0.00046 0 .0 8 4 2 9 8
USGS-NW IS 45.6 4 1 .8 2.38 0.46 156 4 .6 0.00046 0 .0 9 5 2 4 8
USGS-NW IS 39.1 39 .6 1.5 0.66 156 4 .6 0,00046 0 .1 7 2 1 4 1
USGS-NW IS 30.9 4 3 .3 1.21 0.59 156 4 .6 0.00046 0 .1 7 1 3 3 5
USGS-NW IS 23.4 41 .5 1.1 0.52 156 4 .6 0.00046 0 .1 5 8 3 7 8
USGS-NW IS 19.5 43 .3 3.22 0.14 156 4 .6 0.00046 0 .0 2 4 9 2 2
USGS-NW IS 12.9 34 .7 2.91 0,13 156 4 .6 0.00046 0 .0 2 4 3 4 4
USGS-NW IS 5.6 26 .8 0.58 0.36 156 4 .6 0.00046 0 .1 5 0 9 9 9
USGS-NW IS 3.6 24 .4 0.38 0,39 156 4 .6 0.00046 0 .2 0 2 0 9 7

SagavanirS^tok n e a r  Pum p Stati USGS-NW IS 478.5 233 .2 1.17 1.76 233 1.6 0,00274 0 .5 1 9 7 6 5
USGS-NW tS 410.5 131.1 1.6 1.96 233 1 .6 0.00274 0 .4 9 4 9 7 5
USGS-NW iS 387.9 132.9 1.52 1.91 233 1 .6 0.00274 0 .4 9 4 8 7 8
USGS-NW IS 342.6 129.5 1.53 1.72 233 1 .6 0.00274 0 .4 4 4 1 9 1
USGS-NW IS 328.4 131.1 1.52 1.65 233 1 .6 0.00274 0 .4 2 7 5 1 3
USGS-NW IS 305.8 129.5 1.41 1.07 233 1 .6 0.00274 0 .4 4 9 2 6 6
USGS-NW IS 239.5 132 1.44 1.26 233 1 .5 0.00274 0 .3 3 5 4 1
USGS-NW IS 201.6 128.3 1.31 1.2 233 1 .6 0.00274 0 .3 3 4 9 1 3
USGS-NW IS 191.1 126.2 1.21 1.26 233 1 .6 0,00274 0 .3 6 5 9 0 2
USGS-NW IS 160.5 125.9 1.05 1.22 233 1 .6 0.00274 0 .3 8 0 3 2 3
USGS-NW IS 113.8 102.1 0.92 1.21 233 1 .6 0,00274 0 .4 0 2 9 7 5
USGS-NW iS 88.9 83 .8 1.1 0.97 233 1 .6 0.00274 0 .2 9 5 4 3 5
USGS-NW IS 60,3 9 6 .9 1.11 0.56 233 1 .6 0,00274 0 .1 6 9 7 9 1
USGS-NW IS 52.9 96 0.8 0 .69 233 1.6 0.00274 0 .2 4 6 4 2 9
USGS-NW IS 39.4 86 .9 0.91 0.5 233 1 .6 0.00274 0 .1 6 7 4 3 1
USGS-NW IS 18 131.1 0.25 0.54 233 1 .6 0.00274 0 .3 4 4 9 9 3
USGS-NW IS 12.5 91 .7 0.35 0.39 233 1 .6 0.00274 0 .2 1 0 5 8
USGS-NW IS 9.2 8 1 .7 0.39 0.29 233 1 .6 0.00274 0 .1 4 S 3 3 S
USGS-NW IS 6.9 67.1 0.23 0.44 233 1 .6 0.00274 0 .2 9 3 0 7 3
USGS-NW IS 4.6 67.1 0.32 0.22 233 1 .6 0.00274 0 .1 2 4 2 3 2

K ansas  at Fort Riley USGS-NW IS 2349.9 337 .7 4.06 1.71 338 4 .3 0.00049 0 .2 7 1 0 9 4
USGS-NW IS 1641.8 320 4.27 1.2 338 4 .3 0,00049 0 .1 8 5 5 0 4
USGS-NW IS 1308 332 .2 3.24 1.21 338 4 .3 0.00049 0 .2 1 4 7 3 4
USGS-NW IS 908.8 315 .5 2.53 1.14 338 4 .3 0.00049 0 .2 2 S 9 4 5
USGS-NW IS 622.9 213 .3 2.66 1.1 338 4 .3 0,00049 0 .2 1 5 4 4 6
USGS-NW IS 458.7 206 .6 2,21 1 338 4 .3 0,00049 0 .2 1 4 8 7 7
USGS-NW IS 331.3 147.8 3.2 0.7 338 4 .3 0.00049 0 .125
USGS-NW IS 305.8 195.4 1.64 0.95 338 4 .3 0.00049 0 .2 3 6 9 S 7
USGS-NW IS 262.2 131.1 2.59 0.77 338 4 .3 0.0D049 0 .1 5 2 8 3 7
USGS-NW IS 234.1 96 4.18 0.58 338 4 .3 0.00049 0 .0 9 0 6 2 1
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Mean M ear Maximum M axim um Slope F ro u d e
D ischarge Width Depth Velocity Width Depth Number

River N am e Source (m Is) (m) (m) (m) (m) (m) (m/m)
Q W Y V Wm Ym S a F

USGS-NW IS 219.7 118.9 2.63 0.7 338 4 .3 0.00049 0.137882
USGS-NW IS 19Q.3 178.3 1.2 Q.39 338 4 .3 0.00049 0.259529
USGS-NW IS 132.5 174.6 1.01 0.76 338 4 .3 0.00049 0 .241568
USGS-NW iS 103.1 171.3 0.86 0.7 338 4 .3 0.00049 0.241121
USGS-NW IS 75.6 78.3 2.09 0.46 338 4 .3 0.00049 0.101642
USGS-NW IS 47 104.5 0.75 0.6 338 4 .3 0.00049 0 .221313
USGS-NW iS 35.7 92.7 0.63 0.61 338 4 .3 0.00049 0.245497
USGS-NWIS 19.3 64.3 0.55 0.55 338 4 .3 0.00049 0.236902
USGS-NW IS 12.9 59.4 0.44 0.49 338 4 .3 0.00049 0 .2 3 5 9 7

Kobuk at Kiana USGS-NW IS 4331.S 528.8 6.34 1.29 533 S .3 0.00008 0.163656
USGS-NWIS 3765.6 533.4 6.25 1.13 533 S .3 0.00008 0.144386
USGS-NW IS 3199.3 509 5.53 1.16 533 6 .3 0.00008 0.157573
USGS-NW IS 3086.1 475 .5 5.39 1.2 533 6 .3 O.OOOOS 0.16511
USGS-NW IS 2556.6 475 .5 4.77 1.13 533 6 .3 0.00008 0 .1 6 5 2 7 5
USGS-NW IS 2197.1 472.4 4.64 1 533 6 .3 O.OOOOS 0.148295
USGS-NW iS 1865.8 437 .4 4.14 1.03 533 6 .3 0.00008 0.161705
USGS-NW IS 1628 463 .3 4.93 0.71 533 6 .3 0.00008 0.102146
USGS-NW IS 1327.9 408 .4 3.68 0.88 533 6 .3 0.00008 0.146536
USGS-NWIS 968.3 344 .4 3.67 0.77 533 6 .3 0.00008 0.128394
USGS-NW IS 739 304.8 3.81 0.64 533 6 .3 0.00003 0 .1 0 4 7 3 S
USGS-NW IS 608.7 283.5 3.57 0.6 533 6 .3 0.00008 0 .1 0 1 4 3 9
USGS-NW IS 525.6 274.3 3.66 0.52 533 6 .3 0.00008 0 .0 S 6 8 2 5
USGS-NW iS 489.8 274.3 3.66 0.49 533 6 .3 0,00008 0.081817
USGS-NW IS 410.5 265.2 3.48 0.44 533 6 .3 0.00008 0.075344
USGS-NW IS 342.6 259.1 3.18 0.42 533 6 .3 0.00008 0.075235
USGS-NW iS 252.3 246 .9 2.69 0.38 533 6 .3 0.00008 0.074011
USGS-NW IS 144.7 231.6 2.76 0.23 533 6 .3 0.00008 0.044224
USGS-NW IS 59.2 222 .5 1.75 0.15 533 6 .3 0.00008 0.036221

Missouri nr C ulbertson USGS-NW IS 1155.2 205 .7 3.71 1.51 206 3 .7 0.000156 0 .250425
USGS-NW IS 1092.9 202 .7 3.14 1.72 206 3 .7 0.000156 0 .3 1 0 0 6 3
USGS-NW IS 761.6 204.2 3.62 1.03 206 3 .7 0.000156 0 .1 7 2 9 3
USGS-NW IS 566.3 205 .7 3 0.92 206 3 .7 0.000156 0 .169674
USGS-NW IS 461.5 207 .3 2.58 0.86 206 3 .7 0.000156 0 .1 7 1 0 3 1
USGS-NW IS 396,4 198.1 2.22 0.9 206 3 .7 0.000156 0.192954
USGS-NW IS 393.5 193.5 2.52 0.81 206 3 .7 0.000156 0.162994
USGS-NW iS 365.2 192.9 2.63 0.72 206 3 .7 0.000156 0.141821
USGS-NW IS 328.4 175.9 2.4 0.78 206 3 .7 0.000156 0 .160833
USGS-NW IS 297.3 192 2.23 0.69 206 3 .7 0.000156 0 .1 4 7 5 9 9
USGS-NW IS 275.5 160 2.43 0.71 206 3 .7 0.000156 0 .145493
USGS-NW IS 239 150.9 2.28 0.69 206 3 .7 0.000156 0 .145972
USGS-NW IS 213.2 164.6 2.03 0.64 206 3 .7 0.000156 0 .143489
USGS-NW IS 175.3 157 1.88 0.59 206 3 .7 0.000156 0 .137455
USGS-NW IS 145.8 181.3 1.28 0.63 206 3 .7 0.000156 0 .1 7 7 8 7 8
USGS-NW IS 144.1 181.3 1.56 0.51 206 3 .7 0.000156 0.130435
USGS-NW IS 138.4 179.8 1.36 0.57 206 3 .7 0.000156 0 .1 5 6 1 3 2
USGS-NW IS 116,4 117.3 1.54 0.64 206 3 .7 0.000156 0 .164743
USGS-NW IS 109.3 149.3 1.75 0.42 206 3 .7 0.000156 0 .101419
USGS-NW IS 98.2 172.2 1.07 0.53 206 3 .7 0.000156 0.163671

S. P latte  n ea r Ksrsey USGS-NW IS 436 195.1 1.91 1.17 203 1 .9 0.00093 0.270431
USGS-NW IS 402 202.7 1.72 1.16 203 1 .9 0.00093 0.282541
USGS-NW IS 207.8 139.6 1.52 0.98 203 1.9 0.00093 0 .253917
USGS-NW IS 139.S 129.S 1.32 0.82 203 1 .9 0.000S3 0 .227989
USGS-NW IS 72.8 105.2 0.95 0.73 203 1 .9 0,00093 0 .239248
USGS-NW IS 36.5 73.1 0.61 0.82 203 1 .9 0.00093 0 .335379
USGS-NW iS 33.1 72.5 0.6 0.77 203 1 .9 0.00093 0 .317543
USGS-NW IS 32.3 68.9 0.64 0.73 203 1 .9 0.00093 0 .291487
USGS-NW IS 28.3 65 .5 0.61 0.71 203 1 .9 0.00093 0 .2 9 0 3 8 9
USGS-NW IS 27.6 69 .5 0.56 0.71 203 1-9 0.00093 0 .3 0 3 0 7 6
USGS-NW IS 24.4 71.3 0.49 0.7 203 1 .9 0.00093 0 .3 1 9 4 3 8
USGS-NW IS 22 65.1 0.5 0.6S 203 1 .9 0.00093 0 .298158
USGS-NW IS 19.6 67 .7 0.45 0.64 203 1 .9 0.00093 0 .3 0 4 7 6 2
USGS-NW IS 15.7 57.6 0.42 0.65 203 1.9 0.00093 0 .3 2 0 3 8 8
USGS-NW IS 14.4 48 .5 0.47 0.64 203 1 .9 0.00093 0 .2 9 8 2 0 7
USGS-NW IS 13.9 57 0.4 0.61 203 1.9 0.00093 0 .3 0 8 0 9 7
U SGS-NW iS 13.5 4 7 .9 0.44 0.64 203 1 .9 0.00093 0 .308206
USGS-NW IS 12.2 4 9 .7 0.41 0.6 203 1 .9 0.00093 0 .299327
USGS-NW IS 10 45.1 0.3S 0.61 203 1 .9 0.00093 0 .324762

G hana nea r Two Rivers USGS-NW IS 458.3 73.1 2.9 2.16 74 2 .9 0.00136 0 .405174
USGS-NW IS 311.4 73.8 2.2 1.92 74 2 -9 0.00136 0.413501
USGS-NW IS -294.5 72.8 2.21 1.83 74 2 .9 0.00136 0 .393226

148

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



M ean M ear Maximum M axim um Siope F ro u d e
D ischarge Width Depth Velocity Width Depth N u m b e r

River N am e Source (m Is) (m) (m) (m) (m) (m) (m/m)
Q W Y V Wm Ym S a F

USGS-NW IS 246 71 .9 1.99 1.72 74 2 .9 0.00136 0 .3 8 9 4 8 3
USGS-NW IS 195.1 70.1 1.72 1.62 74 2 .9 0.00136 0 .3 9 4 5 8 2
USGS-NW IS 171.3 65.5 1.91 1.37 74 2 .9 0.00136 0 .3 1 S S 5 8
USGS-NW IS 143 68 .9 1.4 1.48 74 2 .9 0.00136 0 .3 9 9 5 6 2
USGS-NW IS 95.1 65.8 1.32 1.1 74 2 .9 0.00136 0 .3 0 5 S 3 9
USGS-NW IS 80.1 SS.1 1.18 1.03 74 2 .9 0.00136 0 .3 0 2 3 8 9
USGS-NW IS 51.5 66.1 0.96 0.81 74 2 .9 0.00136 0 .2 6 4 0 8 1
USGS-NW IS 46.3 69 .2 0.79 0.83 74 2 .9 0.00136 0 .2 9 S 2 9 9
USGS-NW IS 36.5 65.1 0.83 0.66 74 2 .9 0.00136 0 .2 3 1 4 1 5
USGS-NW IS 32.8 67 .7 0.59 0.82 74 2 .9 0.00136 0 .3 4 1 0 1 6
USGS-NW IS 31.7 52.1 1.29 0.47 74 2 .9 0.00136 0 .1 3 2 1 8 7
USGS-NW IS 30 68 0.64 0.69 74 2 .9 0.00136 0 .2 7 5 5 1 6
USGS-NW IS 25.3 64 .9 0.63 0.62 74 2 .9 0.00136 0 .2 4 9 5 2 2
USGS-NW IS 23.5 65 .5 0.82 0.44 74 2 .9 0.00136 0 .1 5 5 2 1 5
USGS-NW IS 19.1 59.1 0.34 0.96 74 2 .9 0.00136 0 .5 2 5 9 1 9
USGS-NW IS 15.7 56 .4 0.6 0.47 74 2 .9 0.00136 0 .1 9 3 8 2 5

Delaware a t C aliicoon USGS-NW IS 1851.6 290.5 3.4 1.86 290 3 .4 0.00107 0 .3 2 2 2 2 6
USGS-NW IS 767.3 239 .3 1.77 1.82 290 3 .4 0.00107 0 .4 3 6 9 9
USGS-NW IS 696.5 243.8 1.56 1.74 290 3 .4 0.00107 0 .4 4 5 0 1 4
USGS-NW IS 464.3 160.9 1.77 1.52 290 3 .4 0.00107 0 .3 6 4 9 5 9
USGS-NW IS 390.7 160.9 1.55 1.57 290 3 .4 0.00107 0 .4 0 2 8 2 9
USGS-NW IS 359.6 164,9 1.43 1.48 290 3 .4 0,00107 0 .3 9 5 3 4 9
USGS-NW IS 314.3 157.9 1.34 1.4 290 3 .4 0.00107 0 .3 S 6 3 3 4
USGS-NW IS 305.8 163.7 1.32 1.33 290 3 .4 0.00107 0 .3 6 9 7 8 7
USGS-NW IS 268.4 152.8 1.24 1.33 290 3 .4 0.00107 0 .3 S 1 5 2 9
USGS-NW IS 217.2 156 1.18 1.12 290 3 .4 0.00107 0 .3 2 9 3 5 5
USGS-NW IS 188.6 146.9 0.93 1.32 290 3 .4 0.00107 0 .4 3 7 2 4
USGS-NW IS 166.5 157.9 0,94 1.13 290 3 .4 0.00107 0 .3 7 2 3 0 7
USGS-NW IS 135.3 147.8 0.73 1.15 290 3 .4 0.00107 0 .4 2 9 9 5 5
USGS-NW IS 109.5 147.2 0.66 1.05 290 3 .4 0.00107 0 .4 1 2 8 6 1
USGS-NW IS 79.6 145.4 0.65 0.79 290 3 .4 0.00107 0 .3 1 3 0 0 9
USGS-NW IS 52.4 184.7 0.64 0.44 290 3 .4 0.00107 0 .1 7 5 6 9 1
USGS-NW IS 32.3 1S2.9 0.55 0.32 290 3 .4 0.00107 0 .1 3 7 8 3 4
USGS-NW IS 26.8 213.3 0.35 0.36 290 3 .4 0.00107 0 .1 9 4 3 8 2
USGS-NW IS 19.8 183.2 0.33 0.33 290 3 .4 0.00107 0 .1 8 3 5 0 3
USGS-NW IS 12.4 113.1 0.2 0.54 290 3 .4 0.00107 0 .3 8 5 7 1 4

K ansas at D eS oto USGS-NW IS 4784.8 205.7 9.71 2.4 206 9 .7 0.00035 0 .2 4 6 0 3
USGS-NW IS 4473.4 217 7.79 2.65 206 9 .7 0.00035 0 .3 0 3 2 9 4
USGS-NW IS 3624 137.4 8.42 2.3 206 9 .7 0.00035 0 .2 S 3 1 9 7
USGS-NW IS 3114.4 1S2.9 7.92 2.15 206 9 .7 0.00035 0 .2 4 4 0 4 1
USGS-NW IS 2944.5 182.9 8.03 2 206 9 .7 0.00035 0 .2 2 5 4 5 5
USGS-NW IS 1990.4 175.3 7.1 1.6 206 9 .7 0.00035 0 .1 9 1 8 1 3
USGS-NW IS 1823.3 178.3 6.1 1.68 206 9 .7 0.00035 0 .2 1 7 2 8 5
USGS-NW IS 1625.1 178 5.38 1.7 206 9 .7 0.00035 0 .2 3 4 1 2 3
USGS-NW IS 1415.6 175.3 5.27 1.53 206 9 .7 0.00035 0 .2 1 2 8 9 9
USGS-NW IS 1192 175.9 4.91 1.38 206 9 .7 0.00035 0 .1 9 8 9 4 1
USGS-NW IS 971.1 170.7 4.33 1.31 206 9 .7 0.00035 0 .2 0 1 1 0 1
USGS-NW IS 671 172.2 3.71 1.05 206 9 .7 0.00035 0 .1 7 4 1 3 5
USGS-NW IS 535.1 170.7 3.1 1.01 206 9 .7 0.00035 0 .1 S 3 2 4 3
USGS-NW IS 492.5 171.9 2.8 1.02 206 9 .7 0.00035 0 .1 9 4 7 1 9
USGS-NW IS 419 169.8 2.23 1.11 205 9 .7 0.00035 0 .2 3 7 4 4 2
USGS-NW IS 353.9 163.4 2.14 1.01 206 9 .7 0.00035 0 .2 2 0 5 4 7
USGS-NW IS 294.5 167 1.94 0.91 206 9 .7 0.00035 0 .2 0 8 7 0 2
USGS-NW IS 213.8 164 1.68 0.77 206 9 .7 0.00035 0 .1 S 9 7 6 8
USGS-NW IS 106.2 151.5 1.21 0.58 206 9 .7 0.00035 0 .1 6 8 4 3 1
USGS-NW IS 50.4 142.6 0.78 0.45 206 S .7 0.00035 0 .1 S 2 7 6 2

N euse near Clayton USGS-NW IS 648.4 96 5.02 1.35 96 5 0.00028 0 .1 9 2 4 7 3
USGS-NW IS 489.8 9 5 .7 4.07 1.26 96 5 0.00028 0 .1 9 9 5 0 8
USGS-NW IS 461.5 7 8 .6 5.13 1.14 96 5 0.0002S 0 .1 6 0 7 3
USGS-NW IS 370.9 92 .3 3.41 1.18 96 5 0.00028 0 .2 0 4 1 2 3
USGS-NW IS 269.5 74.1 3,44 1.06 96 5 0.00028 0 .1 8 2 5 6 3
USGS-NW IS 211.8 72 .5 2.84 1.03 95 5 0.00028 0 .1 9 5 2 3 S
USGS-NW IS 190 71.5 2.81 0.94 96 5 0.00028 0 .1 7 9 1 2 7
USGS-NW IS 160,5 53 3.05 0.99 96 5 0.00028 0 .1 8 1 0 8 1
USGS-NW IS 140.4 51 .8 2.26 1.2 95 5 0.00028 0 .2 5 4 9 8 5
USGS-NW IS 107.6 4 5 .7 2.4 0.98 96 5 0.00028 0 .2 0 2 0 7 3
USGS-NW IS 71.6 4 6 .6 2.03 0.76 96 5 0.00028 0 .1 7 0 3 9 3
USGS-NW IS 49.8 4 8 .5 1.62 0.63 96 5 0.00028 0 .1 5 8 1 1 4
USGS-NW IS 36.5 4 5 .7 1.36 0.59 96 5 0,00028 0 .1 6 1 6 1
USGS-NW IS 32.8 41.1 1.17 0.68 96 5 0.00028 0 .2 0 0 8 1 8
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y e a n  Mean Maximum M axim um Slope P fo u d e
D ischarge Width Depth Velocity Width D epth N u m b e r

Rfver Mame Source (m'"/s) (m) (m) (m) (m) (m) (m/m)
Q W Y V Wm Ym S a F

USGS-NWIS 22.2 41.1 0.97 0.56 96 5 0.0002S 0 .1 8 1 6 3 1
USGS-NWIS 17.3 43 0.77 0.52 96 5 0.00028 0 .1 8 9 2 9 8
USGS-NWIS 15.9 4 2 .4 0.84 0.45 96 5 0.00028 0 .1 5 6 8 4 1
USGS-NWiS 13.1 40 .8 0.73 0.44 95 5 0.00028 0 .1 6 4 5 0 5
USGS-NW iS 10.4 38.1 0.67 0.41 96 5 0.00028 0 .1 6 0 0 0 5
USGS-NW iS 7.6 41.1 0.62 0.3 96 5 0.00028 0 .1 2 1 7 0 6

Red R. of th e  N ortfi a t Fargo USGS-NW iS 792.8 204 .2 4.64 0.S4 204 4 .8 0.00009 0 .1 2 4 5 6 8
USGS-NWIS 724.8 193.5 4.78 0.78 204 4 .S 0.00009 0 .1 1 3 9 6 4
USGS-NW iS 702.2 189 4.65 0.8 204 4 .8 0.00009 0 .1 1 8 6 0 9
USGS-NWIS 654 180.4 4.26 0.85 204 4 .8 0.00009 0 .1 3 1 5 5 3
USGS-NWIS 557.8 167 4,34 0.77 204 4 .8 0.00009 0 .1 1 8 0 6 8
USGS-NW iS 532.3 178.3 4.08 0.73 204 4 .8 0.00009 0 .1 1 5 4 4 6
USGS-NWIS 506.8 17S.S 3.87 0.74 204 4 .8 0.00009 0 .1 2 0 1 6 1
USGS-NW iS 447.3 164.6 3.6 0.76 204 4 .8 0.00009 0 .1 2 7 9 5 3
USGS-NWIS 342.6 152.7 3.41 0.66 204 4 .8 0.00009 0 .1 1 4 1 7
USGS-NWIS 308.6 142.6 3.1 0.72 204 4 .8 0.00009 0 .1 3 0 6 2 9
USGS-NWIS 278 109.7 3.67 0.69 204 4 .8 0.00009 0 .1 1 5 0 5 4
USGS-NWIS 250 108.2 3.35 0.69 204 4 .8 0.00009 0 .1 2 0 4 2 4
USGS-NW IS 200.7 91 .4 3.23 0.63 204 4 .8 0.00009 0 .1 2 0 8 6 3
USGS-NWIS 185.7 85 .3 3.25 0.67 204 4 .3 0.00009 0 .1 1 8 7 1 9
USGS-NW iS 163.1 7S.2 3.75 0.57 204 4 .8 0.00009 0 .0 9 4 0 2 6
USGS-NWIS 132.5 73.1 3.53 0.51 204 4 .8 0.00009 0 .0 8 6 7 1
USGS-NW iS 101.9 4 4 .2 3.47 0.56 204 4 .8 0.00009 0 .1 1 3 1 7 9
USGS-NWIS 74.7 39 .6 3.21 0.59 204 4 .S 0,00009 0 .1 0 5 1 9 3
USGS-NW iS 45.S 43 .9 3.01 0.34 204 4 .8 0.00009 0 .0 6 2 6 0 1
USGS-NW IS 35.4 37 .8 2.24 0.42 204 4 .8 0.00009 0 .0 8 9 6 4 2

S aco  at Cornish USGS-NW IS 744.6 79.2 5.56 1.69 81 5 .5 0.0006 0 .2 2 8 9 4 3
USGS-NW IS 676.7 80 .8 5.35 1.57 81 5 .6 0.0006 0 .2 1 S 8 2 5
USGS-NWIS 543.6 S0.8 4.69 1.44 81 5 .6 0.0006 0 .2 1 2 4 0 4
USGS-NWIS 458.7 77 .7 4.4 1.34 81 5 .6 O.Q006 0 .2 0 4 0 6 4
USGS-NWIS 447.3 77 .7 4.36 1.32 81 5 .6 0.0006 0 .2 0 1 9 3 8
USGS-NW IS 407.7 77.1 4.19 1.26 81 5 .6 0.0006 0 .1 9 6 6 3
USGS-NW IS 351.1 76 .2 4 1.15 81 5 .6 0.0006 0 .1 8 3 6 7 7
USGS-NW IS 314.3 74 .7 3.83 1.1 81 5 .5 0.0006 0 .1 7 9 5 4 8
USGS-NW IS 308.6 63.1 3.14 1.56 81 5 .6 0.0006 0 .2 8 1 2 2
USGS-NW IS 266.4 62 .5 2.99 1.43 81 5 .6 0.0006 0 .2 6 4 1 7 2
USGS-NW IS 250.8 76 .5 3.5 0.94 81 5 .6 0.0006 0 .1 6 0 5 0 2
USGS-NWIS 217.4 77.1 3.42 0.82 81 5 .6 0.0006 0 .1 4 1 6 4 1
USGS-NW IS 176.7 75 .9 3.15 0.74 81 5 .6 0.0006 0 .1 3 3 1 8 7
USGS-NW IS 163.6 76 .2 3.07 0.7 81 5 .6 0.0006 0 .1 2 7 6 1 9
USGS-NW iS 135.6 74 .7 2.95 0.62 81 5 .6 0.0006 0 .1 1 5 3 1
USGS-NW IS 103.3 7 4 .7 2.7 0.82 81 5 .6 0.0006 0 .1 5 9 4 1 1
USGS-NW IS 77.3 7 6 .2 2.6 0.39 81 5 .6 0.0006 0 .0 7 7 2 6 2
USGS-NW iS 49.3 8 1 .7 1.36 0.44 81 5 .6 0.0006 0 .1 2 0 5 2 3
USGS-NW IS 42.5 74.1 2.28 0.25 81 5 .5 0.0006 0 .0 5 2 8 8 8
USGS-NW IS 36 32 .3 1.03 0.42 81 5 .6 0.0006 0 .1 3 2 1 9 6

Sacram ento  nea r R ed Bluff USGS-NW IS 3708.9 3 7 7 .9 5.24 1.87 378 5 .2 0.000575 0 .2 6 0 9 5 3
USGS-NW IS 3397.5 367 .3 4.58 2.02 378 5 .2 0.000575 0 .3 0 1 5 1 3
USGS-NW IS 3001.1 3 52 4.35 1.96 378 5 .2 0.000575 0 .3 0 0 1 9 2
USGS-NW IS 2757.6 213 .3 5.83 2.22 378 5 .2 0.000575 0 .2 9 3 7 0 1
USGS-NW IS 2406.6 210 .3 5.48 2.09 378 5 .2 0.000575 0 .2 8 5 1 9 6
USGS-NW IS 2253.7 229 .5 4.82 2.04 378 5 .2 0.000575 0 ,2 9 6 8 2
USGS-NW IS 1970.6 204 .2 4.98 1.94 378 5 .2 0.000575 0 .2 7 7 6 9 9
USGS-NW IS 1653.5 189 4.56 1.92 378 5 .2 0.000575 0 .2 8 7 2 1 4
USGS-NW IS 1376 166.1 4,42 1.87 378 5 .2 0.000575 0 .2 8 4 1 3
USGS-NW IS 1090 155.4 3.93 1.79 378 5 .2 0.000575 0 .2 8 8 4 3 2
USGS-NW IS 787.1 11S.9 3.94 1.68 378 5 .2 0.000575 0 .2 7 0 3 6 4
USGS-NW IS 504 117 2.9 1.48 378 5 .2 0.000575 0 .2 7 7 6 1 9
USGS-NW IS 450.2 115.3 2.58 1.51 378 5 .2 0.000575 0 .3 0 0 2 9 9
USGS-NW IS 376.6 115.8 2.39 1,36 378 5 .2 0.000575 0 .2 8 1 0 1 3
USGS-NW iS 331.3 114 .3 2.07 1.4 378 5 .2 0.000575 0 .3 1 0 8 3 5
USGS-NW IS 267.6 112 .5 1.56 1.52 378 5 .2 0.000575 0 .3 8 8 7 4 8
USGS-NW IS 225.4 111.2 1.41 1.44 378 5 .2 0.000575 0 .3 8 7 3 8 2
USGS-NW IS 165.9 109.7 1.13 1.34 378 5 .2 0.000575 0 .4 0 2 6 7 3
USGS-NW IS 138.2 106.4 0.94 1.38 378 5 .2 0.000575 0 .4 5 4 6 7 6
USGS-NW IS 107 105.2 0.83 1.22 378 5 .2 0.000575 0 .4 2 7 7 6 7

S usquehanna at W averley USGS-NW IS 2514.2 301.1 4.6 1.89 301 4 .6 0.00048 0 .2 8 1 4 9 4
USGS-NW IS 2301.8 260 3.97 2.23 301 4 .6 0.00048 0 .3 5 7 5 1 7
USGS-NW IS 2Q27.2 301.1 4.01 1.68 301 4 .6 0.00048 0 .2 6 7 9 9 3
USGS-NW IS 1860.1 301.1 3.52 1.76 301 4 .6 0.00048 0 .2 9 9 6 6
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Mean Mean Maximum M axim um Slope F ro u d e
D ischarge Width Depth Veioclty Width Depth vium ber

River N am e Source (m /s )  (m) (m) (m) (m) (rn) (m/m)
Q W Y V Wm Ym S a F

USGS-NWIS 1053.2 162,1 4.04 1.61 301 4 .6 0.00048 0 .2 5 5 8 7 2
USGS-NWIS 789.3 203.S 2,64 1.47 301 4 .6 0.00048 0 .2 8 9 0 0 3
USGS-NWIS 719.1 198.7 2.41 1.5 301 4 .6 0.00048 0 .3 0 8 6 5 2
USGS-NWIS S56.9 195.1 2,26 1.49 301 4 .S 0,00048 0 .3 1 6 6 0 6
USGS-NWIS 583.2 163.1 2.92 1.23 301 4 .6 0.00048 0 .2 2 9 9 3 3
USGS-NW iS 532.3 159.7 2.95 1.13 301 4 .6 0.00048 0 .2 1 0 1 6 2
USGS-NWIS 396.4 161.5 2.76 0.83 301 4 .6 0,00048 0 .1 7 1 1 2 9
USGS-NW tS 356.7 181.3 1.63 1.23 301 4 .6 0.00048 0 .3 0 7 7 5
USGS-NWIS 242.4 173.7 1.3S 1.04 301 4 .S 0.00048 0 .2 8 4 8 7 3
USGS-NWIS 194.2 172.2 1.2 0.95 301 4 .6 0.00048 0 .2 7 7 0 2 6
USGS-NWIS 140,1 172.2 0.98 0.84 301 4 .6 0.00048 0 .2 7 1 0 5 2
USGS-NWIS 77.3 167.6 0,73 0.64 301 4 .6 0,00048 0 .2 3 9 2 8
USGS-NW IS 25,4 8S.4 0.56 0.52 301 4 .6 0.00048 0 .2 2 1 9 7 1

Tanana n ea r F a irbanks USGS-NWIS 2420,7 409 ,6 3.38 1.75 410 7 .7 0.00043 0 .3 0 4 0 6 5
USGS-NWIS 1922.4 156.7 7.71 1.59 410 7 .7 0.00043 0 .1 8 2 9 1 S
USGS-NW iS 1639.3 408 .4 2.32 1.73 410 7 .7 0.00043 0 .3 6 2 8 1 8
USGS-NWIS 1305.2 423 .7 2.12 1.46 410 7 .7 0.00043 0 .3 2 0 3 1 1
USGS-NW tS 1039.1 277 2.45 1.53 410 7 .7 0.00043 0 .3 1 2 2 4 5
USGS-NWIS 755.9 254.8 2.32 1.28 410 7 .7 0.00043 0 .2 6 8 4 4 4
USGS-NWIS 535.1 195.4 1.7 1.61 410 7 .7 0.00043 0 .3 9 4 4 4 7
USGS-NW IS 450.2 192.9 2.3 1.01 410 7 .7 0.00043 0 .2 1 2 7 3 8
USGS-NW IS 390.7 146.3 1.71 1.56 410 7 .7 0.00043 0 .3 8 1 0 7 8
USGS-NWIS 278.9 152.4 2.41 0.76 410 7 .7 0.00043 0 .1 5 6 3 8 4
USGS-NWIS 271.2 103 2.68 0.98 410 7 .7 0.00043 0 .1 9 1 2 2 5
USGS-NWIS 222.5 125 2.4 0.74 410 7 .7 0.00043 0 .1 5 2 5 8 5
USGS-NWIS 167.9 128.9 1,87 0.69 410 7 .7 0.00043 0 .1 6 1 1 8 2
USGS-NW IS 158.8 149.3 1.26 0.84 410 7 .7 0.00043 0 .2 3 9 0 4 6
USGS-NW IS 152.9 125 1.86 0.66 410 7 .7 0.00043 0 .1 5 4 5 8 8
USGS-NW IS 147.5 137.2 1.64 0.66 410 7 .7 0.00043 0 .1 6 4 6 3
USGS-NW IS 141 103.6 1.8 0,76 410 7 .7 0.00043 0 .1 8 0 9 5 2
USGS-NWIS 139.9 122.2 1.35 0.85 410 7 .7 0.00043 0 .2 3 3 6 8 9
USGS-NWIS 137 118.9 1.2 0.96 410 7 .7 0.00043 0 .2 7 9 9 4 2

Yukon a t E ag le USGS-NW IS 15062.3 487 .7 10.42 2.97 4SS 1 0 .4 0.00036 0 .2 9 3 9 0 7
USGS-NWIS 10957 481 .6 9.14 2.49 488 1 0 .4 0.00036 0 .2 6 3 0 9 5
USGS-NW IS 6483.6 472 .4 6.65 2.07 488 1 0 .4 0.00036 0 .2 5 6 4 1 7
USGS-NW IS 5294.5 470 5.79 1.94 488 1 0 .4 0.00036 0 .2 5 7 5 4 3
USGS-NW IS 4756.5 448 5.7 1.86 488 1 0 .4 0.00036 0 .2 4 8 6 6 4
USGS-NW IS 4331.8 460 .2 5.13 1.83 488 1 0 .4 0.00036 0 .2 5 8 0 9 5
USGS-NW IS 3963.8 441 .9 5.19 1.73 488 1 0 .4 0,00036 0 .2 4 2 5 7 7
USGS-NW IS 3510.S 417 .6 5.09 1.65 488 1 0 .4 0.00036 0 .2 3 3 6 2 1
USGS-NW IS 3227.6 396 .2 5.23 1.56 488 1 0 .4 0.00036 0 .2 1 7 9 0 2
USGS-NWIS 2732.2 381 4.8 1.49 488 1 0 .4 0.00035 0 .2 1 7 2 4 6
USGS-NW IS 2531.1 414 .5 3.72 1.64 488 1 0 .4 0.00036 0 .27161B
USGS-NW IS 1896.9 36S.8 4.31 1.19 488 1 0 .4 0.00036 0 .1 8 3 1 0 3
USGS-NW iS 787.1 438 .9 1.71 1.05 488 1 0 .4 0,00036 0 .2 5 6 4 9 5
USGS-NW IS 705 449 .6 2.21 0.71 488 1 0 .4 0.00036 0 .1 5 2 5 6 3
USGS-NW IS 622.9 359 .6 2.3 0.75 488 1 0 .4 0.00036 0 .1 5 7 9 7 4
USGS-NW IS 506.8 344 .4 2.19 0.67 488 1 0 .4 0.00036 0 .1 4 4 6 2 4
USGS-NW IS 489.8 313 .9 2.94 0.53 488 1 0 .4 0.00036 0 .0 9 8 7 3 9
USGS-NW iS 475.7 214 .9 3.99 0.55 488 1 0 .4 0.00036 0 .0 8 7 9 5 6
USGS-NW IS 470 320 2.66 0.55 488 1 0 .4 0.00036 0 .1 0 7 7 2 3
USGS-NW IS 407.7 297.2 2.5 0.55 488 1 0 .4 0.00036 0 .1 1 1 1 1 7

Trem per Coon, 1998 2.4 11.3 0.23 0.73 16 0 .9 0.0104 0 .4 3 3 0 2 3
Kin Coon, 1998 6.8 12.6 0.48 1.11 16 0 .9 0.0104 0 .5 1 1 7 8 7

Coon, 1998 7 12.8 0.52 1.06 16 0 .9 0.0104 0 .4 6 9 5 6
Coon, 1998 7.7 12.8 0.52 1.17 15 0 .9 0.0104 0 .5 1 8 2 8 S
Coon, 1998 8.9 13.1 0.56 1.2 16 0 .9 0.0104 0 .5 1 2 2 4 1
Coon, 1998 10.1 13.3 0.61 1.25 15 0 .9 0.0104 0 .5 1 1 2 4 9
Coon, 1998 16.9 14.5 0.77 1.52 IS 0 .9 0.0104 0 .5 53331
Coon, 1998 29.4 16.2 0.94 1,93 16 0 .9 0.0104 0 .6 3 5 8 8 8
Coon, 1998 5 12.5 0.46 0.88 16 0 .9 0.0104 0 .4 1 4 4 6 8
Coon. 1998 11.7 13.9 0.71 1,19 16 0 .9 0,0104 0 .4 5 1 1 3 3
Coon, 1938 11.9 13.9 0,71 1.21 16 0 .9 0.0104 0 .4 5 8 7 1 5
Coon. 1998 14 14,1 0.73 1.36 16 0 .9 0.0104 0 .5 0 8 4 6 9
Coon, 1998 19.6 15.3 0.86 1.5 16 0 .9 0,0104 0 .5 1 6 5 8 9
Coon, 1998 23.6 15.9 0.91 1.63 16 0 .9 0,0104 0 .5 4 5 8 2 6

M oordenor Coon. 1998 2.2 11.3 0.38 0.51 14 0 .8 0.0015 0 .2 64281
Kill Coon, 1998 3.5 11.6 0.45 0.67 14 0 .8 0.0015 0 .3 1 9 0 4 8

Coon, 1998 4 11.8 0.47 0.71 14 0 .8 0.0015 0 .3 3 0 8 2 4
Coon, 1998 7.1 12.9 0.67 0.82 14 0 .8 0.0015 0 .32001
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Coon, 1998 9.4 13.3 0.73 0.97 14 0 .8 0.0015 0 .3 6 2 5 5 8
Coon, 1998 10.6 14 0.81 0.93 14 0 .8 0.0015 0 .3 3 0 0 8 6
Coon, 1998 11.6 14.2 0.S3 0.9S 14 0 .8 0.0015 0 .3 4 3 6 1 6

C anisteo Coon, 1998 4.1 9 .2 0.58 0.77 12 1 0.00274 0 .3 2 2 9 7 1
River Coon, 1938 5.8 9 .4 0.62 1 12 1 0.00274 0 .4 0 5 6 8 7

Coon, 139S 7.4 9 .7 0.68 1.12 12 1 0.00274 0 .4 3 3 8 6 1
Coon, 1998 12.8 10.5 0.81 1.51 12 0.00274 0 .5 3 5 9 4 6
Coon, 1998 13.8 10.8 0.83 1.53 12 •? 0.00274 0 .5 3 5 4 6 2
Coon, 193S 14.3 11.1 0.86 1.49 12 1 0.00274 0 .5 1 3 2 4 4
Coon, 1998 14.5 10.7 0.83 1.63 12 1 0.00274 0 .5 7 1 5 2 5
Coon, 1998 14.6 11.1 0.86 1.54 12 1 0,00274 0 .5 3 0 4 6 7
Coon, 1998 14.6 11.1 0.87 1.51 12 1 0.00274 0 .5 1 7 1 3 5
Coon, 1998 14.6 11.4 0.88 1.48 12 1 0.00274 0 .5 0 3 9 7 3
Coon, 1998 16 11.3 0.88 1.6 12 1 0.00274 0 .5 4 4 8 3 6
Coon, 1998 16.3 11.4 0.89 1.61 12 1 0.00274 0 .5 4 5 1 5 2
Coon, 1998 5 9.1 0.55 1 12 1 0.00274 0 .4 3 0 7 3
Coon, 1998 13.8 10.9 0.S4 1.5 12 1 0.00274 0 .5 2 2 8 0 4
Coon, 1998 16.5 11.2 0.87 1.7 12 1 0.00274 0 .5 8 2 2 0 5
Coon, 1998 17 11.8 0.93 1.55 12 1 0.00274 0 .5 1 3 4 2 5
Coon, 1998 17.9 11.8 0.94 1.61 12 1 0.00274 0 .5 3 0 4 5 5
Coon, 1998 19 12 0.97 1.64 12 1 0.00274 0 .5 3 1 9 1 8

Milt Coon, 1998 3.1 11.6 0.35 0.76 19 1 .2 0.01025 0 .4 1 0 3 6 1
Brook Coon, 1998 4.8 -13.2 0.45 0.81 19 1 .2 0.01025 0 .3 8 5 7 1 4

Coon, 1998 5.7 13.1 0.44 1 19 1 .2 0.01025 0 .4 8 1 5 7 1
Coon, 1998 6.1 13.4 0.44 1.03 19 1 .2 0.01025 0 .4 9 6 0 1 8
Coon, 1998 22.9 17.1 0.72 1.86 19 1 .2 0.01025 0 .7 0 0 2 1 9
Coon, 1998 48.7 18.9 1.06 2.44 19 1 .2 0.01025 0 .7 5 7 0 4 9
Coon, 1998 70.8 19.1 1.19 3.11 19 1 .2 0.01025 0 .9 1 0 6 9 7

E.Branch Coon, 1998 107.3 5 3 .9 1.16 1.72 70 1 .9 0.00842 0 .5 1 0 1 3 7
A usable Coon, 1998 119.2 5 7 .3 1.18 1.76 70 1 .9 0.00842 0 .5 1 7 5 5 8
River Coon, 1998 161.9 63 .7 1.32 1.92 70 1 .9 0.00842 0 .5 3 3 8 2 8

Coon, 1998 178.1 64 .9 1.4 1.96 70 1 .9 0,00842 0 .5 2 9 1 5
Coon, 1998 248.9 SS.3 1.67 2.18 70 1 .9 0.00842 0 .5 3 8 8 7 2
Coon, 1998 305.8 70.1 1.86 2.35 70 1 .9 0.00842 0 .5 5 0 4 2 5

B eaver Coon, 1998 16.3 53 0.48 0,64 68 2 .6 0.00451 0 .2 9 5 0 8 4
KIN Coon, 1998 71.3 57 .6 0.94 1.32 68 2 .6 0.00451 0 .4 3 4 9 0 8

Coon, 1998 140.7 60 .7 1.25 1.84 68 2 .6 0.00451 0 .5 2 3 6 2 4
Coon, 1998 246.6 63 .4 1.7 2.29 68 2 .6 0.00451 0 .5 6 1 0 4 5
Coon, 1998 269.5 63 .7 1.75 2.42 68 2 .6 0.00451 0 .5 8 4 3 6 4
Coon, 1998 286 64 1.8 2.48 68 2 -6 0.00451 0 .5 9 0 4 7 6
Coon, 1998 297.3 64 1.79 2.6 68 2 .6 0.00451 0 .6 2 0 7 7 4
Coon, 1998 560.6 6 6 .7 2.38 3.53 68 2 .6 0.00451 0 .7 3 0 9 2 6
Coon, 1998 676.7 6 7 .7 2.61 3.83 68 2 .6 0.00451 0 .7 5 7 2 9 6

Tioughnioga Coon, 1998 14.2 64 .3 0.53 0.41 SB 2 .1 0.00118 0 .1 7 9 9 0 1
River Coon, 1998 129.1 80.8 1.29 1.24 88 2.1 0.00118 0 .3 4 8 7 5

Coon, 1998 153.5 82 1.39 1.34 88 2.1 0.00118 0 .3 6 3 0 6 5
Coon, 1998 159.7 82 .3 1.44 1.34 88 2.1 0.00118 0 .3 5 6 7 0 6
Coon, 1998 171.6 S 2.9 1.49 1.39 88 2 .1 0.00118 0 .3 6 3 7 5 5
Coon, 1998 1S2.9 83.2 1.55 1.42 88 2 .1 0.00118 0 .3 6 4 3 4 2
Coon, 1998 187.1 8 3 .5 1.54 1.46 88 2 .1 0.00118 0 .3 7 5 8 2
Coon, 1998 214.3 84 .4 1.67 1.52 88 2 .1 0.00118 0 .3 7 5 7 2 7
Coon, 1998 281.4 86 .5 1.91 1.7 88 2 .1 0.00118 0 .3 9 2 9 3 4
Coon, 1998 286 86 .9 1.93 1.7 88 2 .1 0.00118 0 .3 9 0 8 9 2
Coon, 1998 305.8 87 .2 1.99 1.76 88 2 .1 0.00118 0 .3 9 8 5 4 1
Coon, 1998 308.6 87.2 2 1.77 88 2.1 0.00118 0 .3 9 9 8 0 2
Coon, 1998 322.8 87.5 2.05 1.8 88 2.1 0.00118 0 .4 0 1 5 9

K ayderasasa Coon, 1998 24.8 24 1.13 0.91 30 1 .4 0.00363 0 .2 7 3 4 5 7
C reek Coon, 1998 27 24 .4 1.16 0.95 30 1 .4 0.00363 0 .2 8 1 7 6 1

Coon, 1998 28.3 24 .8 1.19 0.97 30 1 .4 0.00363 0 .2 8 4 0 4 4
Coon, 1998 29.7 25.1 1.2 0.98 30 1 .4 0.00363 0 .2 8 5 7 7 4
Goon, 1998 30 26 .8 1.16 0.96 30 1 .4 0.00363 0 .2 8 4 7 2 7
Coon, 1998 30.3 26 .7 1.15 0.98 30 1 .4 0.00363 0 .2 9 0 6 5 9
Coon, 1998 31.4 26.S 1.17 1 30 1 .4 0.00363 0 -295321
Coon, 1998 48.1 30 .2 1.37 1.16 30 1 .4 0.00363 0 .3 1 6 5 8 1

Indian Goon, 1998 2,8 13.9 0.43 0.47 19 0 .8 0.01217 0 .2 2 8 9 5 5
River Coon, 1998 3.7 14 0.44 0.61 19 0 .8 0,01217 0 .2 9 3 7 5 9

Coon, 1998 5.5 14.5 0.49 0.77 19 0 .8 0,01217 0 .3 5 1 3 8 2
Coon, 1998 6 14.4 0.49 0.36 19 0 .8 0.01217 0 .3 9 2 4 5 3
Coon, 1993 8.4 16.5 0.52 0.98 19 0 .8 0.01217 0 .4 3 4 1 2 2
Coon, 1998 9.4 1S.6 0.54 1.06 19 o.s 0.01217 0 .4 6 0 7 8 2
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Coon. 1998 10.2 16.8 0.55 1.1 19 O.S 0.01217 0 .4 7 3 8 0 4
Coon, 1998 12.8 17.6 0.6 1.21 19 0.8 0.01217 0.498996
Coon, 1998 18.1 1S.3 0.7 1.4 19 O.S 0.01217 0 .5 3 4 5 2 2
Coon, 1998 20.3 18.6 0.74 1.48 19 O.S 0.01217 0 .5 4 9 5 8 2
Coon, 1998 22.5 18.S 0.78 1.54 19 o .s 0.01217 0 .5 5 7 0 0 7

S acandaga Coon, 199S 109.6 S3.2 1.47 0.89 89 2 .6 0.0009 0 .2 3 4 4 8 7
River Coon, 1998 112.4 33.2 1.51 0.9 89 2 .6 0.0009 0 .2 3 3 9 6

Coon, 1998 116.9 83.2 1.53 0.92 89 2.6 0.0009 0 .2 3 7 5 9 1
Coon, 1998 119.5 83.2 1.54 0.93 89 2 .6 0.0009 0 .2 3 9 3 9 2
Coon, 1998 376.6 89 2.57 1.65 39 2.S 0.0009 0 .3 2 8 7 7 9

Esopus Coon, 1998 63.4 46 .6 1.12 1.22 67 4 .3 0.00406 0 .3 6 8 2 4 6
Creek Coon, 1998 156.3 51.8 1.62 1.86 57 4 ,3 0.00406 0 .4 6 6 8 1 2

Coon, 1998 173.8 53 1.73 1.9 67 4 .3 0.00406 0 .4 6 1 4 4 2
Coon, 1998 246.3 54.9 2.01 2.23 67 4 .3 0.00406 0 .5 0 2 4 5 1
Coon, 1998 255.7 54.6 1.97 2.37 67 4 .3 0.00406 0 .5 3 9 3 S 9
Coon, 1998 345.4 56.7 2.31 2.64 57 4 .3 0.00406 0 .5 5 4 8 6 2
Coon, 1998 1058.9 64.9 3.79 4.3 67 4 .3 0.00406 0 .7 0 5 5 6 3
Coon, 1998 1463.8 67.1 4.28 5.1 67 4 .3 0.00406 G .7 87472

E.B. D elaw are Coon, 1998 40.2 32 0.96 1.31 39 2.1 0.00202 0 .4 2 7 0 9 3
River Coon, 1998 52.1 32.9 1.09 1.45 39 2.1 0.00202 0 .4 4 3 6 5 1

Coon, 1998 56.3 33.2 1.26 1.34 39 2.1 0.00202 0 .3 8 1 3 3 5
Coon, 1998 59.5 33 .5 1.16 1.54 39 2.1 0.00202 0 .4 5 6 7 5
Coon, 1998 81 34.7 1.42 1.65 39 2.1 0.00202 0 .4 4 2 3 1
Coon, 1998 186.9 39.3 2.14 2.22 39 2.1 0.00202 0 .4 S 4 7 6 7

O ueleot Coon. 1998 27.4 23 .6 0.84 1.38 28 1.1 0.00836 0 .4 8 0 9 7 9
River Coon, 1998 30 24 0.86 1.45 28 1.1 0.00836 0 .4 9 9 4 6 6

Coon, 1998 31.1 24 0.86 1.51 28 1.1 0.00836 0 .5 2 0 1 3 3
Coon, 1998 33.7 24.8 0.91 1.6 28 1.1 0.00836 0 .5 0 2 2 9 3
Coon, 1998 40.2 25.9 0.95 1.64 28 1.1 0.00836 0 .5 3 7 4 8 8
Coon, 1998 41.1 26.3 0.96 1.62 28 1.1 0.00836 0 .5 2 8 1 6 1
Coon, 1998 44.2 27 1.01 1.63 28 1.1 0.00836 0 .5181
Coon, 1998 47 27.3 1.03 1.67 28 1.1 0.00836 0 .5 2 5 6 3 S
Coon. 1998 47.6 26 .9 1.03 1.72 28 1.1 0,00836 0 .5 4 1 3 7 3
Coon, 1998 50.4 28 1.05 1.71 28 1.1 0.00836 0 .5 3 3 0 7 5
Coon, 1998 53.2 28.2 1.06 1.77 28 1.1 0.00836 0 .5 4 9 1 7 1
Coon, 1998 24.8 23.2 0.81 1.33 28 1.1 0.00836 0 .4 7 2 0 5 9
Coon, 1998 29.7 23 .7 0.86 1.46 28 1.1 0.00836 0 .5 0 2 9 1
Coon, 1998 36.5 24.9 0.94 1.56 28 1.1 0.00836 0 .5 1 3 9 8 2
Coon, 1998 45.6 27.1 1.03 1.64 28 1.1 Q.00S36 0 .5 1 6 1 9 3
Coon, 1998 45.9 27 1.02 1.67 28 1.1 0.00836 0 .5 2 8 2 0 5
Coon, 1998 49.5 27.9 1.05 1.7 28 1.1 0.00836 0 .5 2 9 9 5 8

S usquenhanna Coon, 1998 100.2 57.9 1.84 0.94 60 2 .3 0.00081 0 .2 2 1 3 6 3
River Coon, 1998 118.9 58.5 1.95 1.04 60 2 .3 0.00081 0 .2 3 7 9 0 5

Coon, 1998 174.4 59.7 2.29 1.28 60 2 .3 0.00081 0 .2 7 0 1 9 6
Coon, 1998 194.5 60 2.43 1.33 60 2 .3 0.00081 0 .2 7 2 5 4 3
Coon, 1998 257.6 61.6 2.67 1.57 60 2 .3 0.00081 0 .3 0 6 9 2 4
Coon, 1998 294.5 62.2 2.85 1.56 60 2 .3 0.00081 0 .3 1 4 1 0 3
Coon, 1998 404.9 64 3.22 1.96 60 2 .3 0.00081 0 .3 4 8 9 1 1
Coon, 1998 537,9 66.4 3.62 2.24 60 2 .3 0.00081 0 .3 7 6 0 8
Coon, 1998 105.3 57 .9 1.88 0.97 60 2 .3 0.00081 0 .2 2 5 9 8 5
Coon, 1998 119.2 58.5 1.97 1.03 50 2 .3 0.00081 0 .2 3 4 4 1 8
Coon, 1998 122.3 58.5 1.97 1.06 50 2 .3 0.00081 0 .2 4 1 2 4 6
Coon, 1998 120 58.5 2.02 1.07 50 2 .3 0.00081 0 .2 4 0 4 8 9
Coon, 1998 166.5 59.7 2.29 1.22 50 2 .3 0.00081 0 .2 5 7 5 3 1

Unadilia Coon, 1998 40.5 45.1 1.03 0.87 49 3 .2 0.00094 0 .2 7 3 8 3 4
River Coon. 1998 46.7 45.1 1.09 0.95 49 3 .2 0.00094 0 .2 9 0 6 6 8

Coon, 1998 51 45.1 1.17 0.97 49 3 .2 0.00094 0 .2 8 6 4 6 1
Coon. 1998 58.9 45 .4 1.24 1.05 49 3 .2 0.00094 0 .3 0 1 2 0 7
Coon, 1998 63.4 45 .7 1.28 1.08 49 3 .2 0.00094 0 .3 0 4 9 3 4
Coon, 1998 68.8 45 .7 1.32 1.14 49 3 .2 0.00094 0 .3 1 6 9 6
Coon, 1998 81.3 46 1.43 1.23 49 3 .2 0.00094 0 .3 2 8 5 6 7
Coon, 1998 114.4 46 .9 1.72 1.42 49 3 .2 0.00094 0 .3 4 5 8 6 9
Coon, 1998 117.5 47 .2 1.76 1.42 49 3 .2 0.00094 0 .3 4 1 9 1 6
Coon, 1998 129.7 47 .5 1.S5 1.48 49 3 .2 0.00094 0 .3 4 7 5 8 6
Coon, 1998 131.9 47 .5 1.84 1.51 4 9 3 .2 0.00094 0 .3 5 5 5 9 4
Coon, 1998 174.7 47 .9 2.23 1.64 4 9 3 .2 0.00094 0 .3 5 0 8 1 5
Coon, 1998 179.2 47 .9 2.25 1.65 49 3 .2 0.00094 0 .3 5 3 5 1 2
Coon, 1998 180.4 48 .2 2.31 1.52 49 3 .2 0.00094 0 .3 4 0 4 8 3
Coon, 1998 234.4 48 .5 2.6 1.86 49 3 .2 0.00094 0 .3 6 8 4 7 9
Coon, 1998 368.1 49 .4 3.2 2.33 49 3 .2 0.00094 0 .4 1 6 0 7 1
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Coon, 1998 51.8 45 .4 1.18 0.96 49 3 .2 0.00094 0 .2 8 2 3 0 4
Coon, 1998 73.6 45 .7 1.37 1.17 49 3 -2 0.00094 0 .3 1 9 3 1
Coon, 1998 S6.9 46 1.54 1.26 49 3 .2 0.00094 0 .3 2 4 3 3 7
Coon, 1998 94.3 46 .3 1.57 1.3 49 3 .2 0.00094 0 .3 3 1 4 2 1
Coon, 1998 213.5 48 .5 2.47 1.78 49 3 .2 0.00094 0 .3 6 1 7 9 2

Tiouhgnioga Coon, 1998 39.4 56.4 0.96 0.73 66 2 .5 0.00051 0 .2 3 7 9 9 8
River Coon, 1998 45 56.7 1.03 0.77 66 2 .5 0.00051 0 .2 4 2 3 5 9

Coon, 1998 47.6 57 1.06 0.79 66 2 .5 0.00051 0 .2 4 6 1 1
Coon, 1993 54.4 57.3 1.14 0.83 66 2 .5 0.00051 0 .2 4 8 3 2 1
Coon, 1998 56.3 57.6 1.18 0.B3 66 2 .5 0.00051 0 .2 4 4 0 7 5
Coon, 199S 64.8 57 .9 1.27 O.SS 66 2 .5 0.00051 0 .2 4 9 4 4 1
Coon, 1998 66 57.9 1.28 0.89 66 2 .5 0.00051 0 .2 5 1 2 8 8
Coon. 1998 77.9 5S.8 1.41 0.94 66 2 .5 0.00051 0 .2 5 2 8 7 5
Coon, 1998 77.9 58.5 1.38 0.37 SB 2 .5 0.00051 0 .2 6 3 7 6 6
Coon, 1998 79.6 58.8 1.43 0.95 06 2 .5 0.00051 0 .2 5 3 7 7 1
Coon, 1998 79.8 59.1 1.43 0.95 66 2 .5 0.00051 0 .2 5 3 7 7 1
Coon, 1998 101.6 60.3 1.63 1.03 66 2 .5 0.00051 0 .2 5 7 7 0 9
Coon, 1998 118.1 61.3 1.76 1.1 66 2 .5 0.00051 0 .2 6 4 8 6 4
Coon, 1998 122.3 81.3 1.79 1.12 66 2 .5 0.00051 0 .2 6 7 4 1 1
Coon, 1998 159.7 65.5 1.9S 1.25 66 2 .5 0.00051 0 .2 8 5 2 1 3
Coon, 1998 252 66.1 2.49 1.53 66 2 .5 0.00051 0 .3 0 3 7 2 7

Chenango Coon, 1998 149.5 117.3 1.3 0.98 131 2 .8 0.00088 0 .2 7 4 5 6 3
River Coon, 1998 182.1 118.3 1.42 1.08 131 2 .8 0.00088 0 .2 8 9 5 1 2

Coon, 1998 187.4 118.6 1.43 1.1 131 2 .8 0.00088 0 .2 9 3 8 4
Coon, 1998 209.8 119.2 1.52 1.16 131 2 .8 0.00088 0 .3 0 0 5 5 4
Coon, 1998 234.1 119.8 1.57 1.25 131 2 .8 0,00088 0 .3 1 8 6 7 4
Coon, 1998 239.2 120.1 1.62 1.23 131 2 .8 0.00088 0 .3 0 8 6 9 9
Goon, 1998 253.7 120.7 1.65 1.27 131 2 .8 0.00088 0 .3 1 5 8 2 7
Coon, 1998 302.9 121.9 1.82 1.36 131 2 .8 0.00088 0 .3 2 2 0 2 5
Coon, 1998 317.1 121.9 1.84 1.42 131 2 .8 0.00088 0 .3 3 4 4
Coon, 1998 325.6 122.5 1.87 1.42 131 2 .8 0.00088 0 .3 3 1 7 0 7
Coon, 1998 385.1 124.4 2.02 1.54 131 2 .8 0.00088 0 .3 4 6 1 2 4
Coon. 1998 399.2 124.7 2.03 1.58 131 2 .8 0.00088 0 .3 5 4 2 3 9
Coon, 1998 416.2 125 2.1 1.59 131 2 .8 0.00088 0 .3 5 0 4 8 9
Coon, 1998 419 125 2.1 1.6 131 2 .S 0.00088 0 .3 5 2 6 9 3
Coon, 1998 424.7 125.3 2.11 1.6 131 2 .8 0.00088 0 .3 5 1 8 5 7
Coon, 1998 447.3 125.6 2.16 1.65 131 2 .8 0.00088 0 .3 5 8 6 2 8
Coon, 1998 ■ 569.1 127.7 2.44 1.82 131 2 .8 0.00088 0 .3 7 2 1 8 9
Coon, 1998 750.3 130.3 2.78 2.07 131 2 .8 0.00088 0 .3 9 S 5 8 4
Coon, 1998 164.2 117.6 1.37 1.02 131 2 -8 0.00088 0 .2 7 8 3 7 3
Coon, 1998 212.9 119.2 1.53 1.17 131 2 .8 0.00088 0 .3 0 2 1 5 3
Coon. 1998 231.6 120.1 1.59 1.22 131 2 .8 0.00088 0 .3 0 9 0 6 4
Coon, 1998 235 120.1 1.6 1.22 131 2.B 0.00088 0 .3 0 8 0 9 7
Coon, 1998 270.1 121.3 1.72 1.3 131 2 .8 0.00083 0 .3 1 6 6 4

G en esee Coon. 1998 94 41.5 1.95 1.16 48 3 .2 0.00038 0 .2 6 5 3 5 5
River Coon, 1998 111 42.1 2.09 1.26 48 3 .2 0.00038 0 .2 7 8 4 1

Coon, 1998 151.8 44 .2 2.59 1.33 48 3 .2 0.00038 0 .2 6 3 9 9 1
Coon, 1998 152.9 44 .5 2.59 1.33 48 3 .2 0.00038 0 .2 6 3 9 9 1
Coon, 1998 158.6 44 .5 2.59 1.38 48 3 .2 0.00038 0 -2 7 3 9 1 5
Coon, 1998 190.3 46 2.93 1.41 48 3 .2 0.00038 0 .2 5 3 1 3 1
Coon, 1998 196.2 46 .3 3.01 1.41 48 3 .2 0.00038 0 .2 5 9 6 1 1
Coon, 1998 219.1 47 .9 3.18 1.44 48 3 .2 0.00038 0 .2 5 7 9 5

Trout Coon, 1998 5.8 27.6 0.48 0.44 32 1 .6 0.00269 0 .2 0 2 8 7 1
River Coon, 1998 17.2 29.2 0.72 0.82 32 1 .6 0.00269 0 .3 0 8 6 9 9

Coon, 1998 23.5 29.5 0.81 0.98 32 1 .6 0.00269 0 .3 4 7 8 3 3
Coon, 1998 S3.4 31 .7 1.53 1.92 32 1 .6 0.0026S 0 .4 9 5 8 4 1
Coon, 1998 107.9 31.7 1.62 2.1 32 1.S 0.00269 0 .5 2 7 0 4 6

W aiau at Sunnyside Hicks and M ason 1991 21.5 64.8 1.03 0.32 83 3.1 0.00011 0 .1 0 0 7 2 1
Hicks and M ason 1991 21.6 64 .7 1.04 0.32 83 3.1 0.00011 0 .1 0 0 2 3 5
Hicks and M ason 1991 64.3 70.7 1.47 0.62 83 3.1 0.00011 0 .1 6 3 3 5
Hicks and M ason 1991 103 74.3 1.87 0.74 83 3.1 0.00011 0 .1 7 2 8 6 1
Hicks and M ason 1991 109 73 .7 1.79 0.83 83 3.1 0.00011 0 .1 9 S 1 7
Hicks and M ason 1991 188 75.7 2.14 1.16 83 3 .1 0.00011 0 .2 5 3 3 0 2
Hicks and M ason 1991 210 76.8 2.33 1.17 83 3 .1 0.00011 0 .2 4 4 8 4 7
Hicks and M ason 1991 405 80 .4 2.S 1.8 83 3.1 0,00011 0 .3 4 3 6 2 2
Hicks and M ason 1991 527 83.1 3.06 2.06 83 3.1 0.00011 0 .3 7 4 9 5 5

G rey at Dobson Hicks and M ason 1991 73 150.7 0.67 0.72 242 4 0.00094 0 .2 8 0 9 3 4
Hicks and M ason 1991 116 158.4 0.77 0.95 242 4 0.00094 0 .3 4 5 8 3 2
Hicks and M ason 1991 217 185.1 1,01 1.16 242 4 0.00094 0 .3 6 8 7 0 9
Hicks and M ason 1991 334 191.2 1.25 1.4 242 4 0.00094 0.4
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Mean M ean Maximum M axim uni Slope F ro u d e
D ischarge Width Depth Velocity Width Depth N u m b e r

River N am e Source (m Is) (m) (m) (m) (m) (m) (m/m)
Q W Y V Wm Ym S a F

Hicks and Mason 1391 35S 193.2 1.32 1.4 242 4 0.00094 0 .3 8 9 2 4 9
Hicks and Mason 1991 917 214 .5 2.27 1.88 242 4 0.00094 0 .3 9 8 5 9 5
Hicks and Mason 1991 1110 215 2.33 2.22 242 4 0.00094 0 .4 6 4 5 S 2
Hicks and Mason 1991 3220 242.2 3.96 3.36 242 4 0.00094 0 .5 3 9 3 6

Ongarue a t T a n n g a m o tu Hicks and Mason 1991 10.5 29.7 0.S7 0.41 48 3 0.00067 0 .1 4 0 4 1 4
Hicks and Mason 1991 14.S 30.3 1.01 0.48 48 3 0.00067 0 .1 5 2 5 6 9
Hicks and Mason 1391 18.7 30 .7 1.08 0.55 43 3 0.00067 0 .1 7 2 1 3 3
Hicks and Mason 1991 19.2 30.3 1.06 0.59 48 3 0.00067 0 .1 8 3 0 5 7
Hicks and Mason 1991 35.1 31.8 1.31 0.84 48 3 0.00067 0 .2 3 4 4 3 9
Hicks and Mason 1991 35.8 32 1.32 0.85 48 3 0.00067 0 .2 3 6 3 3
Hicks and Mason 1991 41.7 32.2 1.38 0.94 48 3 0.00067 0 .2 5 5 6 0 8
Hicks and Mason 1991 241 47 .5 3.03 1.67 48 3 0.00067 0 .3 0 6 4 6 6

Hut! at K aitoke Hicks and Mason 1991 3.53 27 0.26 0.5 35 1 .5 0.00473 0 .3 1 3 2 3 5
Hicks and Mason 1991 8.38 28.1 0.42 0.71 35 1 .5 0.00473 0 .3 4 9 9 6 2
Hicks and Mason 1991 8.69 28.8 0.48 0.53 35 1 .5 0.00473 0 .2 9 0 4 7 4
Hicks and M ason 1991 17.2 30.3 0.67 0.85 35 1 .5 0.00473 0 .3 3 1 7 1 8
Hicks and M ason 1991 77.2 33.5 1.32 1.75 35 1 .5 0.00473 0 .4 8 6 5 6 2
Hicks and M ason 1991 104 34.8 1.45 2.05 35 1 .5 0.00473 0 .5 4 6 4 7 5

Clarence at Jo llie s Hicks and M ason 1991 7.62 31.1 0.38 0.65 37 1 .4 0.00321 0 .3 3 6 8 2 8
Hicks and M ason 1991 12.4 32 0.46 0.84 37 1 .4 0.00321 0 .3 9 5 6 2 8
Hicks and M ason 1991 17.5 32.S 0.53 1.01 37 1 .4 0.00321 0 .4 4 3 1 7
Hicks and Mason 1991 18.1 32.8 0.58 0.95 37 1 .4 0.00321 0 .3 9 8 4 7 1
Hicks and M ason 1991 24 33.4 0.62 1.16 37 1 .4 0.00321 0 .4 7 0 5 9 7
Hicks and M ason 1991 39.7 34.5 0.77 1.49 37 1 .4 0.00321 0 .5 4 2 4 1
Hicks and M ason 1991 64.8 35.4 0.99 1.85 37 1 .4 0.00321 0 .5 9 3 9 3 8
Hicks and M ason 1991 106 36.3 1.23 2.38 37 1 .4 0.00321 0 .6 8 5 5 0 6
Hicks and M ason 1991 120 36.8 1.38 2.36 37 1 .4 0.00321 0 .6 4 1 7 4

Arnold at L ake Brunner Hicks and M ason 1991 24.3 40 .7 0.84 0.71 51 1 .9 0.00106 0 .2 4 7 4 6
Hicks and M ason 1991 36.8 42 .6 0.98 0.88 51 1 .9 0.00106 0 .2 8 3 9 6
Hicks and Mason 1991 44.4 43 .5 1.1 0.93 51 1 .9 0.00106 0 .2 8 3 2 5 2
Hicks and Mason 1991 72.2 40.8 1.55 1.14 51 1 .9 0.00106 0 .2 9 2 5
Hicks and Mason 1991 84.4 46.2 1.44 1.27 51 1 .9 0.00106 0 .3 3 8 0 7 2
Hicks and Mason 1991 125 50.5 1.89 1.31 51 1 .9 0.00106 0 .3 0 4 3 8 8

Rangitikei a t  M angaw eka Hicks and Mason 1991 15.3 35.3 0.57 0.76 94 2 .3 0.00362 0 .3 2 1 5 6 1
Hicks and Mason 1991 21.9 38 .4 0.62 0.92 94 2 .3 0.00362 0 .3 7 3 2 3 2
Hicks and M ason 1991 42.5 45 .6 0.72 1.3 94 2 .3 0.00362 0 .4 8 9 4
Hicks and M ason 1991 144 71.5 1.12 1.8 94 2 .3 0.00362 0 .5 4 3 3 1 3
Hfcks and M ason 1991 173 79.7 1.28 1.7 94 2 .3 0.00362 0 .4 7 9 9 8 9
Hicks and Mason 1991 342 86.3 1.83 2.15 94 2 .3 0.003S2 0 .5 1 0 0 5 3
Hicks and Mason 1991 413 89 .2 2.04 2.27 94 2 .3 0.00352 0 .5 0 7 6 8 9
Hicks and Mason 1991 542 94 2.34 2.46 94 2 .3 0.00362 0 .5 1 3 7 0 5

Buller a t W oolfs Hicks and M ason 1991 92.1 120.6 1.6 0.48 160 5 .6 0.00076 0 .1 2 1 2 1 8
Hicks and M ason 1991 124 129.5 1.46 0.66 160 5 .6 0.00076 0 .1 7 4 4 8 4
Hicks and M ason 1991 149 124.1 1.74 0.69 160 5 .6 0.00076 0 .1 6 7 0 9 4
Hicks and M ason 1991 285 127.3 2.16 1.04 160 5 .6 0.00076 0 .2 2 6 0 4 4
Hicks and M ason 1991 573 133.7 2.85 1.5 160 5 .6 0.00076 0 .2 S 3 S 2 8
Hicks and M ason 1991 1079 140.5 3.75 2.05 160 5 .6 0.00076 0 .3 3 8 1 6 2
Hicks and M ason 1991 2810 159.8 5.64 3.12 160 5 .6 0.00076 0 .4 1 9 6 6 4

N gongotaha a t SH5 Bridge Hicks and M ason 1391 1.89 6 .9 0.64 0.43 22 2 0.00101 0 .1 7 1 6 9 8
Hicks and M ason 1991 2.07 7 0.67 0.44 22 2 0.00101 0 .1 7 1 7 1 3
Hicks and M ason 1991 4.05 8 0,92 0.55 22 2 0.00101 0 .1 S 3 1 7 1
Hicks and M ason 1991 5.5 9 .2 1.06 0.56 22 2 0.00101 0 .1 7 3 7 4 9
Hicks and M ason 1991 5.95 9 .5 1.03 0.58 22 2 0.00101 0 .1 7 8 2 8
Hicks and M ason 1991 7.19 10.5 1.15 0.59 22 2 0.00101 0 .1 7 5 7 4 8
Hicks and M ason 1991 7.79 11.3 1.17 0.59 22 2 0.00101 0 .1 7 4 2 3 9
Hicks and Mason 1991 8.98 12.8 1.24 0.56 22 2 0.00101 0 .1 6 0 6 4 4
Hicks and Mason 1991 12 14.5 1.42 0.58 22 2 0.00101 0 .1 5 5 4 7 9
Hicks and M ason 1991 27.7 22.1 2.02 0.62 22 2 0.00101 0 .1 3 9 3 4 3

W anganui a t Paetaw a Hicks and M ason 1991 32.6 83.1 1.54 0.25 155 9 .2 0.00026 0 .0 6 4 3 5 3
Hicks and Mason 1991 45.9 84 .7 1.76 0.31 155 9 .2 0.00026 0 .0 7 4 6 4 4
Hicks and Mason 1991 130 87 .5 2.32 0.64 155 9 .2 0.00026 0 .1 3 4 2 2 2
H c k s a n d  Mason 1991 381 89 .6 3.57 1.19 155 9 .2 0.00026 0 .2 0 1 1 8 7
H cks and M ason 1991 962 102.4 5.52 1.7 155 9 .2 0.00026 0 .2 3 1 1 3 5
H cks and M ason 1991 1190 107.2 S.14 1.81 155 9 .2 0.00026 0 .2 3 3 3 3 6
H cks and Mason 1991 1810 124 7.38 1.S8 155 9 .2 0.00026 0 .2 3 2 8 2 2
H cks and Mason 1991 2130 131.7 7.97 2.03 155 9 .2 0.00026 0 .2 2 3 6 9 6
H cks and M ason 1991 2960 154.9 9.17 2.08 155 9 .2 0.00026 0 .2 1 9 4 1 5

Hutt a t Taita Gorge Hicks and M ason 1391 23.8 52.4 0.63 0.72 60 2.1 0.00187 0 .2 8 9 7 6 7
Hicks and M ason 1991 59.4 53 .9 0.97 1.14 SO 2.1 0.00187 0 .3 6 9 7 4 8
Hicks and M ason 1991 73 55 1.12 1.28 SO 2.1 0.00187 0 .3 8 6 3 5 5
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River N am e Source
Discharge
(m°/s)
Q

Width
(m)
■W____

yean
Depth
(m)
Y

Mean
Velocity
(m)
V

Maximum
Width
(m)
Wm

M axim um
Depth
(m)
Ym

S lope

{m/m)
S a

Froude
N u m b e r

Hoteo at G ubbs

Mokau at T otoro  Bridge

W aipapa at N garom a Rd.

W haream a a t  W aiteko

Awanui at School Cut

K aipara at W aim auku

R uakokapatuna at Iraia

P a te a  a t McColls Bridge

Pelo rus at Bryants

Hicks and M ason 1991 93 55.8 1.24 1.34 60 2.1 0.00187 0 .3 8 4 3 9 3
Hicks and M ason 1991 137 5S.1 1.65 1.43 60 2.1 D.001S7 0 .3 5 5 6 1 6
Hicks and Mason 1991 298 60 .2 2.06 2.4 60 2.1 0,00187 0 .5 3 4 1 5 2
Hicks and Mason 1991 24.1 15.6 1.82 0.8 43 3 0.00078 0 .1 8 9 4 2 7
Hicks and Mason 1991 27.9 17.6 1.88 0.84 43 3 0.00078 0 .1 9 5 5 9 8
Hicks and Mason 1991 39.4 20.1 2.01 0.97 43 3 0.00078 0 .2 1 8 5 5 5
Hicks and Mason 1991 39.8 20 .5 2.03 0.96 43 3 0.00078 0 .2 1 5 2 3 4
Hicks and Mason 1991 52.3 22 .4 2.16 1,08 43 3 0.00078 0 .2 3 4 7 3 8
Hicks and Mason 1991 54.3 23 2.21 1.07 43 3 0.00078 0 .2 2 9 9 1 9
Hicks and Mason 1991 72.1 24 .9 2.43 1.19 43 3 0.00078 0 .2 4 3 8 5 5
Hicks and M ason 1991 99.2 3 0 .6 2.62 1.24 43 3 0.00078 0 .2 4 4 7 1 4
Hicks and M ason 1991 149 41.1 2.92 1.24 43 3 0.00078 0 .2 3 1 8 0 2
Hicks and M ason 1991 156 4 2 .6 3.03 1.21 43 3 0.00078 0 .2 2 2 0 5
Hicks and M ason 1991 8.85 27 1.12 0.29 52 4 .2 0.00137 0 .0 8 7 5 3 4
Hicks and M ason 1991 98.2 3 1 .9 2,15 1.43 52 4 .2 0.00137 0 .3 1 1 5 3 3
Hicks and Mason 1991 195 4 0 .5 3.11 1.55 52 4 .2 0.00137 0 .2 8 0 7 6 2
Hicks and M ason 1991 240 4 6 .6 3.52 1.46 52 4 .2 0,00137 0 .2 4 8 5 8 1
Hicks and M ason 1991 255 4 5 .3 3.44 1.63 52 4 .2 0.00137 0 .2 6 0 7 3 4
Hicks and M ason 1991 271 49.1 3.77 1.46 52 4 .2 0.00137 0 .2 4 0 1 9 8
Hicks and M ason 1991 327 53 .7 4.28 1.42 52 4 .2 0.00137 0 .2 1 9 2 6 7
Hicks and M ason 1991 349 51 .8 4:21 1.6 52 4 .2 0.00137 0 .2 4 9 0 9 6
Hicks and M ason 1991 3.5 19.1 0.33 0.55 25 1 0.00748 0 .3 0 5 8 3 9
Hicks and M ason 1991 12.5 22 0.55 1.03 25 1 0.00748 0 .4 4 3 6 5 2
Hicks and M ason 1991 22.9 2 2 .8 0.67 1.5 25 1 0.00748 0 .5 8 5 3 8 4
Hicks and Mason 1991 31.4 2 3 .6 0.74 1.79 25 1 0.00748 0 .6 6 4 6 9 8
Hicks and M ason 1991 38.5 2 3 .9 0.79 2.04 25 1 0.00748 0 .7 3 3 1 6 8
Hicks and M ason 1991 57.4 2 4 .9 0.96 2.4 25 1 0.00748 0 .7 8 2 4 6 1
Hicks and M ason 1991 23.1 17.9 2.01 0.64 43 4 0,00075 0 .1 4 4 2 0 1
Hicks and M ason 1991 26.6 18.4 2.04 0.71 43 4 0.00075 0 .1 5 8 7 9 3
Hicks and M ason 1991 30 19.5 2.14 0.72 43 4 0.00075 0 .1 5 7 2 2 2
Hicks and Mason 1991 36 21 2.29 0.75 43 4 0.00075 0 .1 5 S 3 1 8
Hicks and M ason 1991 200 3 7 .9 3.67 1,44 43 4 0.00075 0 .2 4 0 1 1 3
Hicks and M ason 1991 220 41 3.88 1.38 43 4 0.00075 0 .2 2 3 7 9 5
Hicks and M ason 1991 289 42-9 3.96 1.7 43 4 0.00075 0 .2 7 2 8 9
Hicks and Mason 1991 8.8 12.3 1.08 0.66 37 3 .7 0.00134 0 .2 0 2 8 7 1
Hicks and Mason 1991 10.8 13.3 1.15 0.71 37 3 .7 0.00134 0 .2 1 1 4 9 3
Hicks and Mason 1991 13.6 14.5 1.33 0.7 37 3 .7 0.00134 0 .1 9 3 8 9 2
Hicks and Mason 1991 22.7 18 1.69 0.74 37 3 .7 0.00134 0 .1 8 1 8 3 4
Hicks and M ason 1991 25.3 19.7 1.81 0.71 37 3 .7 0.00134 0 .1 6 8 5 8
Hicks and Mason 1991 47.5 25.8 2,47 0.74 37 3 .7 0.00134 0 .1 5 0 4 0 S
Hicks and Mason 1991 49.5 26.1 2,51 0.76 37 3 .7 0.00134 0 .1 5 3 2 3 7
Hicks and Mason 1991 56 27 2.62 0.79 37 3 .7 0.00134 0 .1 5 5 9 0 6
Hicks and Mason 1991 115 3 2 .2 3.29 1.08 37 3 .7 0.00134 0 .1 9 0 2 0 1
Hicks and Mason 1991 143 3 4 .5 3.54 1.17 37 3 .7 0,00134 0 .1 9 8 6 4 2
Hicks and Mason 1991 172 37 .2 3.74 1.24 37 3 .7 0.00134 0 .2 0 4 3 2
Hicks and Mason 1991 13.6 16.8 1.57 0,52 35 2 .4 0.0005 0 .1 3 2 5 6 9
Hicks and Mason 1991 26.4 2 5 .6 1.77 0.58 35 2 .4 0.0005 0 .1 3 3 2 6 1
Hicks and Mason 1991 34.8 28 .8 2.04 0.59 35 2 .4 0,0005 0 .1 3 1 9 5 4
Hicks and M ason 1991 35.4 28 .8 2.05 0.6 35 2 .4 0.0005 0 .1 3 3 8 6 3
Hicks and M ason 1991 36.2 29 2.07 0.6 35 2 .4 0.0005 0 .1 3 3 2 1 5
Hicks and M ason 1991 72 34 .5 2.43 0.86 35 2 .4 0.0005 0 .1 7 6 2 3 1
Hicks and Mason 1991 0.08 4 .8 Q.13 0.13 12 0 .8 0.00601 0 .1 1 5 1 7 5
Hicks and Mason 1991 0.2 5 .8 0.17 0.2 12 0 .8 0.00601 0 .1 5 4 9 5
Hicks and Mason 1991 0.22 6 0.14 0.26 12 0 .8 0.00601 0 .2 2 1 9 7 1
Hicks and Mason 1991 0.29 7.1 0.16 0.25 12 0 .8 0,00601 0 .1 9 9 6 4 9
Hicks and Mason 1991 0.41 7.1 0,19 0.3 12 0 .8 0.00601 0 .2 1 3 8 5 3
Hicks and Mason 1991 0.89 7 .8 0.24 0.48 12 0 .8 0,00601 0 .3 1 2 9 8 4
Hicks and Mason 1991 3.89 9 .5 0.42 0.98 12 0 .8 0.00501 0 .4 8 3 0 4 6
Hicks and Mason 1991 6.03 10.3 0.53 1.22 12 0 .8 0.00601 0 .5 3 5 3 1 4
Hicks and M ason 1981 10 11 0.63 1,45 12 0 .8 0.00601 0 .5 8 3 5 5 9
Hicks and M ason 1991 10.9 11.1 0.64 1.53 12 0 .8 0.00601 0 .6 1 0 9 2 6
Hicks and M ason 1991 15.2 12 .3 0.78 1,59 12 0 .8 0.00601 0 .5 7 5 0 9 1
Hicks and M ason 1991 2.8 21 1.3 0.1 38 3 .5 0.00113 0 .0 2 8 0 1 7
Hicks and M ason 1991 46 27.1 2.1 0.81 38 3 .5 0.00113 0 .1 7 8 5 5 1
Hicks and M ason 1991 81 28 .3 2.32 0.93 38 3 .5 0.00113 0 .1 9 5 0 4 1
Hicks and M ason 1991 02 2 8 .5 2.32 0.94 38 3 .5 0.00113 0 .1 9 7 1 3 8
Hicks and M ason 1991 130 3 2 .7 2.97 1.34 38 3 .5 0.00113 0 .2 4 8 3 7 8
Hicks and M ason 1991 218 37 .6 3.51 1.65 38 3 .5 0.00113 0 .2 8 1 3 3 1
Hicks and M ason 1991 6.13 3 5 .4 0.76 0.23 55 2 .3 0.00359 0 .0 8 4 2 7 7
Hicks and M ason 1991 11.8 3 8 .2 0.83 0.37 55 2 .3 0.00359 0 .1 2 9 7 3 3
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M ean Mean Maximum M axim um Slope - r o u d e
D ischarge Width D epth Velocity Width D epth N u m b e r

Rivar N am e Source (m-Zs) (m) (m) (m) (m) (m) (m /m )
Q W Y V Wm Ym S a F

Hicks and M ason 1991 13.1 4 0 .5 0.S2 0.39 55 2 .3 0.00359 0 .1 3 7 5 7 7
Hicks and M ason 1991 27.3 4 4 0.97 0.64 55 2 .3 0.00359 0 .2 0 7 5 7 8
Hicks and M ason 1991 79.7 58 .2 1.14 1.2 55 2 .3 0.00359 0 .3 5 9 0 1 8
Hicks and M ason 1991 164 50 .2 1.84 1.7S 55 2 .3 0.00359 0 .4 1 9 1 7 8
Hicks and M ason 1991 290 55.1 2.25 2.34 55 2 .3 0.00359 0 .4 9 8 3 2 4

Collins at D rop  S tru c tu re Hicks and M ason 1991 0.07 5 .6 0.12 0.1 15 1 0.00858 0 .0 9 2 2 1 4
Hicks and M ason 1991 0.16 6 .6 0.18 0.13 15 1 0.00858 0 .0 9 7 8 8
Hicks and M ason 1991 0.23 S.S 0.2 0.17 15 1 0,00858 0 .1 2 1 4 2 9
Hicks and M ason 1991 0.55 7.2 0.25 0.31 15 1 0,00858 0 .1 9 8 0 5 2
Hicks and M ason 1991 2.35 8 0.41 0.71 15 1 0,00858 0 .3 5 4 2 0 4
Hicks and M ason 1991 5.31 8 .7 0.51 1.2 15 1 0,00858 0 .5 3 6 7 6 4
Hicks and M ason 1991 13 11.2 0.59 1.68 15 1 0,00858 0 .6 4 6 0 5 8
Hicks and Mason 1991 30.9 15.4 0.98 2.05 15 1 0.00858 0 .6 6 1 4 9 7

M angere a t K a ra  W eir Hicks and Mason 1991 . 0,65 8 .2 0.43 0.18 25 1.S 0.00293 0 .0 8 7 6 8 5
Hicks and Mason 1991 0.86 8.4 0.45 0,23 25 1.S 0.00293 0 .1 0 9 5 2 4
Hicks and Mason 1991 1.34 8.7 0.52 0.3 25 1 .9 0.00293 0 .1 3 2 8 9 4
Hicks and Mason 1991 6.95 11.5 0.87 0.7 25 1 .9 0.00293 0 .2 3 9 7 3 2
Hicks and Mason 1991 7.67 11.8 0.9 0.72 25 1 .9 0.00293 0 .2 4 2 4 3 7
Hicks and Mason 1991 7.69 11.7 0.9 0.73 25 1 .9 0.00293 0 .2 4 5 8 0 4
Hicks and Mason 1991 9.24 12 .S 1.09 0.66 25 1 .9 0.00293 0 .2 0 1 3 3 8
Hicks and Mason 1991 12.5 13.6 1.29 0.71 25 1 .9 0.00293 0 .1 9 9 6 S 7
Hicks and Mason 1991 20.4 14.8 1.45 0.95 25 1 .9 0.00293 0 .2 5 2 0 1 5
Hicks and Mason 1991 29.5 16.1 1.58 1.16 25 1 .9 0.00293 0 .2 9 4 7 9 2
Hicks and Mason 1991 46.6 19.8 1.68 1.4 25 1 .9 0.00293 0 .3 4 5 0 3 3
Hicks and Mason 1991 87 2 5 .4 1.9 1.8 25 1 .9 0.00293 0 .4 1 7 1 4 1

W aiwakaiho a t SH 3 Hicks and Mason 1991 2,44 19 0.45 0.29 35 1 .7 0.01077 0 .1 3 8 0 9 5
Hicks and Mason 1991 2.8 19.5 0.46 0.31 35 1 .7 0.01077 0 .1 4 6 0 0 6
Hicks and Mason 1991 3.43 2 0 .3 0.49 0.35 35 1 .7 0.01077 0 .1 5 9 7 1 3
Hicks and Mason 1991 9.12 2 4 .6 0.7 0.53 35 1 .7 0,01077 0 .2 0 2 3 5 5
Hicks and M ason 1991 21.8 2 6 .3 0.92 0,9 35 1 .7 0.01077 0 .2 9 9 7 3 4
Hicks and M ason 1991 26,4 2 6 .8 0.96 1.03 35 1 .7 0.01077 0 .3 3 5 8 0 6
Hicks and M ason 1991 31.2 2 7 .2 1.01 1.13 35 1 .7 0.01077 0 .3 5 9 1 7 4
Hicks and M ason 1991 77.4 3 1 .5 1.3 1.89 35 1 .7 0.01077 0 .5 2 9 5 1 4
Hicks and M ason 1991 216 35 1.71 3.61 35 1 .7 0.01077 0 .8 8 1 8 5 3

O rere at Bridge Hicks and M ason 1991 9.41 12 .7 0.54 1.16 17 1.1 0.003 0 .4 6 3 1  S6
Hicks and M ason 1991 11.6 13.2 0.7 1.25 17 1.1 0.003 0 .4 7 7 2 5 2
Hicks and M ason 1991 23.1 13 .7 0,84 2.01 17 1.1 0.003 0 .7 0 0 5 5 7
Hicks and M ason 1991 25.1 14 0.89 2.01 17 1.1 0.003 0 .6 8 0 5 9 4
Hicks and M ason 1991 26.5 14 .4 0.93 1.98 17 1.1 0.003 0 .6 5 5 8 5 9
Hicks and M ason 1991 28.5 14 .7 0.95 2.02 17 1.1 0.003 0 .6 5 8 5 7 1
Hicks and M ason 1991 35.5 16 .6 1.08 1,98 17 1.1 0.003 0 .6 0 8 6 1 2
Hicks and M ason 1991 50.6 17.4 1.12 2.59 17 1.1 0.003 0 .7 8 1 7 6 8

Avon at G loucester S tree t Bride Hicks and Mason 1991 1.S3 11 0.4 0.42 15 1 0.00105 0 .2 1 2 1 3 2
Hicks and Mason 1991 2.32 11 0.42 0.5 15 1 0.00105 0 .2 4 6 4 5 2
Hicks and Mason 1991 3.74 11.3 0.54 0.51 15 1 0.00105 0 .2 6 5 1 6 7
Hicks and Mason 1991 4.48 11.6 0.59 0.65 15 1 0.00105 0 .2 7 0 3 1 8
Hicks and Mason 1991 4.87 11 .5 0.62 0.68 15 1 0.00105 0 .2 7 5 8 6 7
Hicks and Mason 1991 6 11 .7 0.69 0.74 15 1 0.00105 0 .2 8 4 5 7 3
Hicks and M ason 1991 8.91 12 0.83 0.89 15 1 0.00105 0 .3 1 2 0 6
Hicks and Mason 1991 12.2 13 .3 0.92 1 15 1 0.00105 0 .3 3 3 0 3 7
Hicks and M ason 1991 15.6 14.9 1 1.05 15 1 0.00105 0 .3 3 5 4 1
Hicks and Mason 1991 17.3 15.4 1.01 1,11 15 1 0.00105 0 .3 5 2 8 1 7

Monowal below Contro! G a te s Hicks and Mason 1991 5.54 2 2 .6 0.47 0,53 28 0 .9 0.00078 0 .2 4 6 9 5 3
Hicks and Mason 1991 11.5 25 0.5 0.77 28 0 .9 0.00078 0 .3 1 7 5 4 3
Hicks and Mason 1991 14.1 2 5 .5 0.67 0,82 28 0 .9 0.00078 0 .32001
Hicks and Mason 1991 19.2 2 6 .9 0.3 0.89 28 0 .9 0.00078 0 .3 1 7 8 5 7
Hicks and Mason 1991 20.3 2 7 .2 0.81 0.92 28 0 .9 0.00078 0 .3 2 6 5 3 7
Hicks and M ason 1991 20.3 27 0.81 0.93 28 0 .9 0.00078 0 .3 3 0 0 8 6
Hicks and M ason 1991 21.5 27 0.83 0.96 28 0 .9 0.00078 0 .3 3 6 6 0 4
Hicks and M ason 1991 21.7 2 7 .8 0.85 0.92 28 0 .9 0.00078 0 .3 1 8 7 6 1
Hicks and M ason 1991 23 2 8 .3 0.S7 0.93 28 0 .9 0.00078 0 .3 1 8 5 0 1
Hicks and M ason 1991 23.1 28 0.86 0.96 28 0 .9 0.00078 0 .3 3 0 6 6 1
Hicks and M ason 1991 24.1 28.1 0.88 0.98 28 0 .9 0.00078 0 .3 3 3 7 1 2

W aikato at Ngaruawahia C a b le  Hicks and M ason 1991 237 157.6 2.24 0.67 198 4 .3 0.00016 0 .1 4 3 0 0 1
Hicks and M ason 1991 290 164 2.5 0.71 198 4 .3 0.00016 0 .1 4 3 4 4 2
Hicks and M ason 1991 448 183 .9 2.98 0.82 198 4 .3 0.00016 0 .1 5 1 7 3 7
Hicks and M ason 1991 641 194.1 3.74 0,88 198 4 .3 0.Q0016 0 .1 4 5 3 5 6
Hicks and Mason 1991 738 196 .8 4.03 0.93 198 4 .3 0.00016 0 .1 4 7 9 8 5
Hicks and Mason 1991 874 197 .9 4.32 1.02 198 4 .3 0.00016 0 .1 5 6 7 6 4
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River Name Source
Discharge Width

(m)
W

Mean
Depth
(m)
Y

Mean
Velocity
(m)
V

Maximum
Width
(m)
Wm

Maximum
Depth
(m)
Ym

Slope

(m/m)
Sa

Froude
N um ber

Heathcote at Sioan Terrace Hicks and Mason 1991 1.22 7.5 0.37 0.44 9 1.3 0.0005 0.231067
Hicks and Mason 1991 174 7.6 0.45 0.51 S 1.3 0.0005 0.242857
Hicks and Mason 1991 1.96 7.8 0.48 0.53 S 1.3 0.0005 0.244367
Hicks and Mascn 1991 2.12 7.9 0.5 0.54 ■ 9 1.3 0.0005 0.243947
Hicks and Mason 1991 2.34 7.9 0.63 0.59 9 1.3 0.0005 0.237448
Hicks and Mason 1991 4.22 8.7 0.76 0.64 9 1.3 0.0005 0.234509
Hicks and Mason 1991 4.83 8.9 0.83 0.66 9 1.3 0.0005 0.231415
Hicks and Mason 1991 5.74 9.7 0.99 0.6 9 1.3 0.0005 0.132629
Hicks and Mason 1991 6.27 10.1 1.08 0.5S 9 1.3 0.0005 0.17828
Hicks and Mason 1991 7.92 10.4 1.11 0.69 9 1.3 0.0005 0.209206
Hicks and Mason 1991 S.01 10.4 112 O.SS 9 1.3 0.0005 0.205252
Hicks and Mason 1991 8.21 9.4 1.27 0.69 9 1.3 0.0005 0.195584

Taseri below Patearoa Power St Hicks and Mason 1991 0.78 19.1 0.3 0.14 23 1 0.0009 0.081S5
Hicks and Mason 1991 1.24 19.5 0.34 0.19 23 1 0.0009 0.104088
Hicks and Mason 1991 6.13 20.2 0.54 0.56 23 1 0.0009 0.243432
Hicks and Mason 1991 6.56 20 0.57 0.58 23 1 0.0009 0.245402
Hicks and Mason 1991 9.1 20.3 0.65 0.69 23 1 0.0009 0.273388
Hicks and Mason 1991 113 20.7 0.71 0.77 23 1 0.0009 0.29191
Hicks and Mason 1991 11.8 20.1 0.72 0.81 23 1 0.0009 0.304934
Hicks and Mason 1991 12 20.8 0.74 0.78 23 1 0.0009 0.283645
Hicks and Mason 1991 12.3 20 0.74 0.83 23 1 0.0009 0.308212
Hicks and Mason 1991 18.7 21.7 0.84 103 23 1 0.0009 0.358992
Hicks and Mason 1991 20.4 21.6 0.88 107 23 1 0.0009 0.364353
Hicks and Mascn 1991 21.2 22.1 0.87 1.1 23 1 0.0009 0.376721
Hicks and Mason 1991 27.1 23 0.96 1.23 23 1 0.0009 0.401011

Tahunatara at Ohakuri Road Hicks and Mason 1991 2.93 13.4 0.88 0.25 20 1.6 0.00039 0.085131
Hicks and Mason 1991 7.45 14.4 1.06 0.49 20 1.6 0.00039 0.15203
Hicks and Mason 1991 9.97 15 114 0.58 20 1.6 0.00039 0.173525
Hicks and Mason 1991 15.6 15.8 1.3 0.76 20 1.6 0.00039 0.212926
Hicks and Mason 1991 18.1 16.4 1.36 0.81 20 1.6 0.00039 0.221872
Hicks and Mason 1991 21.8 16.4 136 0.98 20 1.6 0.00039 0.268438
Hicks and Mason 1991 36 20.2 1.58 1.13 20 1.6 0.00039 0.287169

Rangitalki at Te Teko Hicks and Mason 1991 47.5 40.1 1.71 0.69 55 2.7 0.00052 0.168554
Hicks and Mason 1991 53 40.6 178 0.73 55 2.7 0.00052 0.174783
Hicks and Mason 1991 74 42.9 2.07 0.83 55 2.7 0.00052 0.184281
Hicks and Mason 1991 98 46.8 2.35 0.89 55 2.7 0.00052 0.185457
Hicks and Mason 1991 107 48 2.46 0.91 55 2.7 0.00052 0.185336
Hicks and Mason 1991 120 49.4 2.61 0.93 55 2.7 0.00052 0.183886
Hicks and Mason 1991 144 54.9 2.73 0.96 55 2.7 0.00052 0.1856

Milt Creek at Papanul Hicks and Mason 1991 0.01 2.9 0.18 0.02 10 0.8 0.0029 0.015058
Hicks and Mason 1991 0.02 4.4 0.19 0.02 10 0.8 0.0029 0.014667
Hicks and Mason 1991 0.05 3.1 0.2 0.08 10 0.8 0.0029 0.057143
Hicks and Mason 1991 0.26 3.8 0.36 0.19 10 0.8 0.0029 0.101155
Hicks and Mason 1991 0.29 4 0.39 0.19 10 O.S 0.0029 0.097187
Hicks and Mason 1991 0.47 4 0.4 0.29 10 0.8 0.0029 0.146472
Hicks and Mason 1991 0.69 4.3 0.46 0.35 10 0.8 0.0029 0.164845
Hicks and Mason 1991 1.08 4.7 0.49 0.47 10 0.8 0.0029 0.21448
Hicks and Mason 1991 2.06 5.8 0.56 0.64 10 0.8 0.0029 0.273195
Hicks and Mason 1991 2.14 5.9 0.56 0.64 10 0.8 0.0029 0.273195
Hicks and Mason 1991 2.34 6.1 0.53 0.66 10 0.8 0.D029 0.276S32
Hicks and Mason 1991 8.52 10.1 0.8 1.05 10 0.8 0.0029 0.375

Ngunguru at Dugmores Rock Hicks and Mason 1991 0.38 7.3 0.42 0.12 16 1.2 0.00611 0.059148
Hicks and Mason 1991 0.61 7.5 0.43 0.19 16 1.2 0.00611 0.092556
Hicks and Mason 1991 2.19 8.1 0.58 0.46 16 1.2 0.00611 0.192944
Hicks and Mason 1991 5.03 8.2 0.77 0.8 16 1.2 0.00611 0.291227
Hicks and Mason 1991 7.72 10.1 0.81 0.94 IS 1.2 0.00611 0.333636
Hicks and Mason 1991 12.2 12.3 0.92 1.08 18 1.2 0.00611 0.35968
Hicks and Mason 1991 12.3 12.3 0.91 1.1 16 1.2 0.00611 0.368349
Hicks and Mason 1991 17.9 13.7 1 1.31 16 1.2 0.00611 0.418464
Hicks and Mason 1991 20.2 14.2 1.0S 1.34 16 1.2 0.00611 0.415756
Hicks and Mason 1991 25.1 15.7 1.17 1.36 16 1.2 0.00611 0.401636
Hicks and Mason 1991 29.3 16.3 1.23 1.47 16 1.2 0.00611 0.423401

Butchers Creek at Lake Kanlers Hicks and Mason 1991 0.02 4.1 0.1 0.05 9 0.7 0.01517 0.050508
Hicks and Mason 1991 0.05 5.4 0.14 0.07 9 0.7 0.01517 0.059761
Hicks and Mason 1991 0.29 5.3 0.16 0.34 9 0.7 0.01517 0.271523
Hicks and Mason 1991 1.75 6.6 0.31 0.85 9 0.7 0.01517 0.487669
Hicks and Mason 1991 1.95 6.8 0.34 0.84 9 0.7 0.01517 0.460179
Hicks and Mason 1991 1.99 6.7 0.33 0.9 9 0.7 0.01517 0.500464
Hicks and Mason 1991 4.31 7.4 0.44 1.33 9 0.7 0.01517 0.64049
Hicks and Mason 1991 4.8 7.4 0.45 1.44 9 0.7 0.01517 0.685714
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Mean Mean Maximum Maximum Slope Froude
Discharge Width Depth Velocity Width Depth Number

River Name Source (m /s) (m) (m) (m) (m) (m) (m/m)
Q W Y V Wm Ym Sa F

Hicks and Mason 1991 12.5 9 0.67 2.1 9 0.7 0.01517 0.819538
Hicks and Mason 1991 14.5 9.3 0.68 2.31 9 0.7 0.01517 0.894838
Hicks and Mason 1991 16.7 9.4 0.72 2.48 9 0.7 0.01517 0.933625
Hicks and Mason 1991 18.9 9.3 0.72 2.31 9 0.7 0.01517 1.057857

Waihua at Gorge Hicks and Mason 1991 D.42 9.2 0.21 0.22 18 O.S 0.01663 0.153356
Hicks and Mason 1991 1.1 10.9 0.27 0.38 IS 0.9 0.01668 0.233609
Hicks and Mason 1991 6.55 14.5 0.51 0.88 18 0.9 0.01668 0.393627
Hicks and Mason 1991 19,2 16.7 0.76 1.51 18 0.9 0.01668 0.553295
Hicks and Mason 1991 19.8 16.6 0.77 1.55 18 0.9 0.01658 0.564262
Hicks and Mason 1991 20.3 16.9 0.78 1.54 18 0.9 0.01668 0.557007
Hicks and Mason 1991 30.2 17.8 0.86 1.97 18 0.9 0.01668 0.678585
Hicks and Mason 1991 32.1 18.2 0.89 1.98 18 O.S 0.01668 0.670436

Wanganui at TePorere Hicks and Mason 1991 0.93 7.8 0.4 0.3 12 1.1 0.01907 0.151523
Hicks and Mason 1991 0.98 7.9 0.41 0.3 12 1.1 0.01907 0.149664
Hicks and Mason 1991 1.17 8.1 0.42 0.34 12 1.1 0.01907 0.167587
Hicks and Mason 1991 1.17 8 0.43 0.34 12 1.1 0.01907 0.165627
Hicks and Mason 1991 2.66 8.5 0.53 0.59 12 1.1 0.01907 0.258882
Hicks and Mason 1991 13.1 10.5 0.87 1.44 12 1.1 0.01907 0.493162
Hicks and Mason 1991 15.S 10.6 0.89 1.67 12 1.1 0.01907 0.566469
Hicks and Mason 1991 16.2 10.6 0.88 1.73 12 1.1 0.01907 0.589104
Hicks and Mason 1991 29.3 12 1.07 2.29 12 1.1 0.01907 0.707181

Opahi at Pond Hicks and Mason 1991 0.25 6.1 0.57 0.07 11 1.1 0.00113 0.029617
Hicks and Mason 1991 0.31 6.3 0.6 0.08 11 1.1 0.00113 0.032991
Hicks and Mason 1991 0.38 6.4 0.62 0.1 11 1.1 0.00113 0.040569
Hicks and Mason 1991 1.03 7.5 0.71 0.19 11 1.1 0.00113 0.07203
Hicks and Mason 1991 5.8 9.8 1.02 0.58 11 1.1 0.00113 0.183449
Hicks and Mason 1991 5.88 9.7 1.01 0.6 11 1.1 0.00113 0.190712
Hicks and Mason 1991 7.46 10.5 1.09 0.65 11 1.1 0.00113 0.198878

Huka Huka at Lathams Bridge Hicks and Mason 1991 0.03 5.5 0.11 0.15 9 D.5 0.04042 0.144471
Hicks and Mason 1991 0.48 6.8 0.24 0.3 9 0.5 0.04042 0.195615
Hicks and Mason 1991 0.63 7 0.25 0.36 9 0.5 0.04042 0.229996
Hicks and Mason 1991 1.08 7.4 0.29 0.5 9 0.5 0.04042 0.296591
Hicks and Mason 1991 1.63 7.5 0.33 0.66 9 0.5 0.04042 0.367007
Hicks and Mason 1991 1.93 7.7 0.34 0.74 9 0-5 0.04042 0.405396
Hicks and Mason 1991 3.55 8.3 0.42 1.02 9 0.5 0.04042 0.502762
Hicks and Mason 1991 4.17 S.3 0.44 1.14 9 0.5 0.04042 0.548991
Hicks and Mason 1991 5.09 8.5 0.46 1.3 9 0.5 0.04042 D.S122S2
Hicks and Mason 1991 8.17 9.4 0.51 1.71 9 0.5 0.04042 0.764868

Clark Fork Barnes 1967 1950.75 130.8 5 2.98 131 5 0.00019 0.425714
Clark Fork Barnes 1967 891.85 88.4 3.9 2.59 88 3.9 0.00073 0.41 S943
Blackfoot Barnes 1967 232.16 59.1 1.86 2.11 59 1.9 0.00027 0.494212
Coer d’Alene Barnes 1967 319.93 49.4 2.41 2.69 49 2.4 0.00233 0.553517
Salt Barnes 1957 36.24 57.9 0.67 0.93 58 0.7 0.00247 0.362938
Clearwater Barnes 1957 2802.96 171.9 6 2.72 172 6 0.00188 0.354716
Etowah Barnes 1957 63.99 19.5 2.96 1.11 20 3 0.00084 0-206093
WF Bitterroot Barnes 1967 109.85 32 1.46 2.35 32 1.5 0.00066 0.621267
Yakima Barnes 1967 784.26 67.4 3.57 3.26 67 3.6 0.00462 0.551151
MF Vermillion Barnes 1967 45.87 35.7 1.01 1.27 36 1 0.00295 0.403673
Wenatchee Barnes 1967 642.7 70.1 3.26 2.81 70 3.3 0.00311 0.497147
Moyie Barnes 1967 227.35 44.8 2.16 2,35 45 2.2 0.00236 0.510773
Spokane Barnes 1967 1121.18 89.9 4.45 2.8 90 4.5 0.00177 0.423999
Bull Barnes 1967 91.17 32.9 2.19 1.27 33 2.2 0.00121 0.274138
MF Flathead Barnes 1967 410.53 55.5 2.6S 2.76 56 2.7 0.00401 0.538553
M Oconee Barnes 1967 172.99 43 3.32 1.21 43 3.3 0.00043 0.212131
Chiwawa Barnes 1967 166.48 41.8 1.71 2.33 42 1.7 0.00502 0.569174
Grande Ronde Barnes 1967 130.8 34.7 1.65 2.28 35 1.7 0.00525 0.566996
Deep Barnes 1957 235 66.7 3.17 1.11 57 3.2 0.00076 0.19915
Chattahoochee Barnes 1967 144.39 44.8 2.35 1.37 45 2.4 0.00243 0.2S5479
sf Clearwater Barnes 1967 356.74 46.3 2.71 2.84 46 2.7 0.00628 0.551088
MB Westfield Barnes 1967 96.26 36.3 1.34 1.98 36 1.3 0.00868 0.546386
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Appendix 2 - Slope Control Flow Measurement Data
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Table A2 - S lo p e  Control Flow Measurement Data

Mean Mean Maximum Maximum Froude
Discharge Width Depth Velocity Width Depth Slope number

River Name Source (m /s) (m) (m) (m /s) (m) (m) (m/m)

Connecticut a t Thompsonville USGS-NWIS 2712.3 303.3 4.14 2.16 310 4.1 0.00042 0 .3 4
USGS-NWIS 2273.5 303.3 3.83 1.96 310 4.1 0.00042 0.32
USGS-NWIS 1976.2 310.9 3.71 1.72 310 4.1 0.00042 0.29
USGS-NWIS 1387.3 310.9 3.11 1.43 310 4.1 0.00042 0.26
USGS-NWIS 1177.8 310,9 3.11 1.22 310 4.1 0.00042 0.22
USGS-NWIS 1010.2 310.9 2.92 1.11 310 4.1 0.00042 0.21
USGS-NWiS 925.8 310.9 2.87 1.04 310 4.1 0.00042 0.20
USGS-NWIS 792.8 310.9 2.78 0.95 310 4.1 0.00042 0.18
USGS-NWIS 628.5 307.8 2.58 0.79 310 4.1 0.00042 0.16
USGS-NWIS 535.1 306.3 2.56 0.68 310 4.1 0.00042 0.14
USGS-NWIS 407.7 301.7 2.43 0.56 310 4.1 0.00042 0.11
USGS-NWIS 351.1 207.2 2.16 0.54 310 4.1 0.00042 0.12
USGS-NWIS 257.1 303-3 2.22 0.37 310 4.1 0.00042 0.08
USGS-NWIS 241.5 301.7 2.18 0.37 310 4.1 0.00042 0.08
USGS-NWIS 209.S 298.7 2.04 0.34 310 4.1 0.00042 0.08
USGS-NWIS 195.4 298.7 2.09 0.31 310 4.1 0.00042 0.07
USGS-NWIS 165.1 282.S 1.93 0.3 310 4.1 0.00042 0.07
USGS-NWIS 129.7 296.6 1.8 0.24 310 4.1 0.00042 0.06
USGS-NWIS 94.5 297.5 1.8 0.18 310 4.1 0.00042 0.04
USGS-NWIS 66.3 214.9 1.93 0.16 310 4.1 0.00042 0.04

Androscoggin a t Auburn USGS-NWIS 1874.3 125 6.94 2.16 125 6.9 0.00051 0.26
USGS-NWIS 1486.B 124 6.19 1.91 125 6.9 0.00051 0.25
USGS-NWIS 1313,7 126.5 5.91 1.76 126 6.9 0.00051 0.23
USGS-NWIS 1073 124.4 5.3 1.63 125 6.9 0.00061 0.23
USGS-NWIS 823.9 123.4 4.92 1.33 126 6.9 0.00051 0.19
USGS-NWIS 526.6 120.4 4.26 1.03 126 6.9 0.00051 0.16
USGS-NWIS 489.8 118.9 4.23 0.98 126 6.9 0.00051 0.15
USGS-NWIS 359.6 121.9 3.83 0.77 126 6.9 0.00051 0.13
USGS-NWIS 336.9 118.9 3.8 0.75 126 6.9 0.00051 0.12
USGS-NWIS 245.2 121.9 3.46 0.58 126 6.9 0.00051 0.10
USGS-NWIS 204.1 119.5 3.37 0.51 126 6.9 0.00051 0.09
USGS-NWIS 188.8 118.9 3.35 0.47 126 6.9 0.00051 O.OS
USGS-NWIS 158.3 118.9 3.22 0.41 126 0.9 0.00051 0.07
USGS-NWIS 131.1 114.3 3.15 0.37 126 6.9 0.00051 0.07
USGS-NWIS 101.4 115.8 3.02 0.29 126 6.9 0.00051 0.05
USGS-NWIS 80.1 115.S 2.9 0.24 126 6.9 0.00051 0.05
USGS-NWIS 48.7 111.2 2.73 0.16 126 6.9 0.00051 0.03
USGS-NWIS 40.5 112.8 2.65 0.13 126 6.9 0.00051 0.03
USGS-NWIS 27.5 106.7 2.71 0.09 126 6.9 0.00051 0.02

Delaware at Port Jervis USGS-NWIS 1959.2 195.4 4.09 2.45 196 4.1 0.00098 0.39
USGS-NWIS 1758.2 196 4.1 2.19 196 4.1 0.00098 0.35
USGS-NWIS 1220.3 193.8 3.22 1.96 196 4.1 0.00098 0.35
USGS-NWIS 1030.6 193.2 3.04 1.76 196 4.1 0.00098 0.32
USGS-NWIS 775.8 192 2.62 1.54 196 4.1 0.00098 0.30
USGS-NWIS 577.6 190.8 2.26 1.34 196 4.1 0.00098 0.28
USGS-NWIS 474.5 190.2 2.04 1.23 196 4.1 0.00098 0.28
USGS-NWIS 438.8 191.7 1.97 1.16 196 4.1 0.00098 0.26
USGS-NWIS 419 191.1 1.92 1.14 196 4.1 0.00098 0.26
USGS-NWIS 365.2 191.7 1.77 1.07 196 4.1 0.00098 0.26
USGS-NWIS 334.1 189 1.75 1.01 196 4.1 0.00098 0.24
USGS-NWIS 308.6 189.6 1.72 0.94 196 4.1 0.00098 0.23
USGS-NWIS 281.7 190.5 1.6 0.92 196 4.1 0.00098 0.23
USGS-NWIS 241.2 189 1.5 0.85 195 4.1 0.00098 0.22
USGS-NWIS 185.6 185.2 1.38 0.73 196 4.1 0.00098 0.20
USGS-NWIS 163.6 186.2 1.3 0.68 196 4.1 0.00098 0.19
USGS-NWIS 131.7 190.8 1.14 0.6 196 4.1 0.00098 0.18
USGS-NWiS 103.6 1S5.3 1.1 0.51 196 4.1 0.00098 0.16
USGS-NWIS 75 182.3 0.97 0.42 196 4.1 0.00098 0.14
USGS-NWIS 47.8 179.2 0.79 0.34 196 4.1 0.00098 0.12

Pee Dee at Rockingham USGS-NWIS 2686.9 324.6 3.95 2.1 325 4 0.00068 0.34
USGS-NWIS 863.5 193.5 3.71 1.2 325 4 0.00058 0.20
USGS-NWiS 7.3 193.8 0.19 0.2 325 4 0.00068 0.15
USGS-NWIS 7 186.8 0.18 0.21 325 4 0.00068 0.16
USGS-NWIS 8.1 192 0.23 0.18 325 4 0.00058 0.12
USGS-NWIS 10.4 203.6 0.21 0.24 325 4 O.OOOS8 0.17
USGS-NWIS 2194.2 262.1 4.32 1.94 325 4 0.00068 0.30
USGS-NWIS 8.4 195.7 0.15 0.29 325 4 0.00058 0.24
USGS-NWIS 10.3 203 0.19 0.27 325 4 0.00068 0.20
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River Name Source
Discharge Width 
(m^/s) (m)

Mean
Depth
(m)

Mean
Velocity
(m/s)

Maximum Maximum 
Width Depth Siope 
(m) (m) (m/m)

Froude
number

USGS-NWIS 145 184.4 2.36 0.33 325 4 0.00068 0.07
USGS-NWIS 222.5 184,4 2.65 0.46 325 4 0.00068 0.09
USGS-NWIS 175.8 185.6 2.39 0.4 325 4 0.00068 O.OS
USGS-NWIS 564.8 189 3.26 0.91 325 4 0.00068 0.1S
USGS-NWIS 509.6 192 3.09 0.86 325 4 0.00068 0.16
USGS-NWiS 223.4 189 2.56 0.46 325 4 0.00068 0.09
USGS-NWIS 897.5 202.4 4.02 1.1 325 4 0.00068 0.18

Penobscot a t W. Enfield USGS-NWIS 3086.1 270 6.04 1.S9 272 6 0.00021 0.25
USGS-NWIS 2534 271.6 5.54 1.63 272 6 0.00021 0.23
USGS-NWIS 1922.4 271.6 4,55 1.55 272 6 0.00021 0.23
USGS-NWIS 1480.7 270.3 3.88 1.41 272 6 0.00021 0.23
USGS-NWIS 959.8 270 3.03 1.2 272 6 0.00021 0.22
USGS-NWIS 639.9 264.6 2.4 1.01 272 6 0.00021 0.21
USGS-NWIS 475.7 257.2 1.97 0.94 272 6 0.00021 0.21
USGS-NWIS 444.5 258.5 1.9 0.9 272 6 0.00021 0.21
USGS-NWIS 402 260.9 1.87 0.82 272 6 0.00021 0.19
USGS-NWIS 342.6 258.5 1.66 0.8 272 6 0.00021 0.20
USGS-NWIS 334.1 179.8 4.42 0.42 272 6 0.00021 0.06
USGS-NWIS 302.9 256.3 1.54 0.76 272 6 0.00021 0.20
USGS-NWIS 276.9 252.4 1.46 0.75 272 6 0.00021 0.20
USGS-NWIS 245.2 189 2.76 0.47 272 6 0.00021 0.09
USGS-NWIS 235.8 253 2.01 0.46 272 6 0.00021 0.10
USGS-NWIS 223.7 252.4 1.31 0.68 272 6 0.00021 0.19
USGS-NWIS 196.8 182.9 2.39 0.45 272 6 0.00021 0.09
USGS-NWIS 167 239.3 1.12 0.62 272 6 0.00021 0.19
USGS-NWIS 137.3 227.7 1.06 0.57 272 6 0.00021 0.18
USGS-NWIS 112.1 182.9 3.35 0.16 272 6 0.00021 0.03

Taku near Juneau USGS-NWIS 2992.6 240,2 5.23 2.38 240 5.2 0.0006 0.33
USGS-NWIS 2304.6 231 5.05 1.98 240 5.2 0.0006 0.28
USGS-NWIS 2024.3 238.6 4.21 2.01 240 5.2 O.OOOS 0.31
USGS-NWIS 1809.2 207.3 4.44 1.97 240 5.2 0.0006 0.30
USGS-NWIS 1492.1 213.3 3.88 1.8 240 5.2 0.0006 0.29
USGS-NWIS 1183.5 219.1 3.56 1.51 240 5.2 0.0006 0.26
USGS-NWIS 917.3 207.3 3.14 1.41 240 5.2 0.0006 0.25
USGS-NWIS 461.5 205.7 2.28 0.98 240 5.2 0.0006 0.21
USGS-NWIS 393.5 50.6 7.36 1.06 240 5.2 0.0006 0.12
USGS-NWIS 334.1 196.6 1.98 0.86 240 5.2 0.0005 0.20
USGS-NWIS 278.9 195.9 1.77 0.8 240 5.2 0.0006 0.19
USGS-NWIS 204.4 198.1 1.5 0.69 240 5.2 0.0006 0.18
USGS-NWIS 156 195.1 1.24 0.64 240 5.2 0.0006 0.18
USGS-NWIS 95.7 112.8 1.91 0.44 240 5.2 0.0006 0.10
USGS-NWIS 56.8 158.5 1.41 0.3 240 5.2 0.0006 0.03
USGS-NWIS 40.9 190.5 0.82 0.26 240 5.2 0.0006 0.09
USGS-NWIS 37.7 181.3 0.66 0.31 240 5.2 0.0006 0.12
USGS-NWIS 35.1 144.8 1.17 0.21 240 5.2 0.0006 0.06
USGS-NWIS 27.1 79.9 0.93 0.37 240 5.2 0.0006 0.12

Tanana near Nenana USGS-NWIS 2273.5 263 4.49 1.93 314 4.5 0.000203 0.29
USGS-NWIS 2015.9 263.9 4.26 1.79 314 4.5 0.000203 0.28
USGS-NWIS 1823.3 251.1 4.29 1.69 314 4.5 0.000203 0.26
USGS-NWiS 1585.5 313.9 2.83 1.79 314 4.5 0.000203 0.34
USGS-NWIS 1299.5 265.8 3.6 1.36 314 4.5 0.000203 0.23
USGS-NWIS 1101.4 271 3.01 1.35 314 4.5 0.000203 0-25
USGS-NWiS 724.8 209.1 3.11 1.12 314 4.5 0.000203 0.20
USGS-NWIS 54S.4 227.1 2.33 1.03 314 4.5 0.000203 0-22
USGS-NWIS 461.5 208.8 2.69 0.82 314 4.5 0.000203 0.16
USGS-NWIS 242.9 228.6 2.4 0.44 314 4.5 0.000203 0.09
USGS-NWIS 222.3 248.4 3.48 0.26 314 4.5 0.000203 0.04
USGS-NWIS 195.1 201.2 2.22 0.44 314 4.5 0.000203 0.09
USGS-NWIS 193.1 196.6 2.24 0.44 314 4.5 0.000203 Q.Q9
USGS-NWIS 192.2 214.9 2.19 0.41 314 4.5 0.000203 0.09
USGS-NWIS 188 213.3 2.88 0.3 314 4.5 0.000203 0.06
USGS-NWIS 180.1 225.5 1.92 0.41 314 4.5 0.000203 0.09
USGS-NWIS 175 202.7 2.42 0.36 314 4.5 0.000203 0.07
USGS-NWiS 169.3 228.6 2.01 0.37 314 4.5 0.000203 O.OS
USGS-NWIS 165.9 210.3 2.04 0.39 314 4.5 0.000203 0.09
USGS-NWIS 156.9 214.9 1.79 0.41 314 4.5 0.000203 0.10

Susquehanna at Marietta USGS-NWIS 6427 29B.7 9.27 2.32 299 9.3 0.00044 0.24
USGS-NWIS 5124.6 323.1 7.53 2.11 299 9.3 0.00044 0.25
USGS-NWIS 3708.9 270 7.5 1.83 299 9.3 0.00044 0.21
USGS-NWIS 2658.6 264.9 5.47 1.82 299 9.3 0.00044 0-25
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River Name Source
Discharge Width 
(m^/s) (m)

Mean
Depth
(m)

Mean Maximum 
Velocity Width 
{m/s) (m)

Maximum
Depth
(m)

Slope
{m/m)

roude
number

USGS-NWIS 2084 243.8 6.06 1.42 299 9.3 0.00044 0.18
USGS-NWiS 1891.3 243.8 5.94 1.31 299 9.3 0.00044 0.17
USGS-NWIS 1449.6 271.3 3.85 1.36 299 9.3 0.00044 0.23
USGS-NWIS 1160.8 240.8 4.48 1.08 299 9.3 0.00044 0.1S
USGS-NWiS 897.5 237.7 4.1 0.92 29S 9.3 0.00044 0.15
USGS-NWIS 620 226.8 3.12 0.88 299 9.3 0.00044 0.16
USGS-NWIS 506.8 230.1 2.7 0.81 299 9.3 0.00044 0.16
USGS-NWIS 413.4 225.5 2.7 0.68 299 9.3 0.00044 0.13
USGS-NWIS 345.4 228.3 1.42 1.06 299 9.3 0.00044 0.28
USGS-NWIS 261.3 203 1.29 1 299 9.3 0.00044 0.28
USGS-NWIS 206.1 226.6 1.87 0.48 299 9.3 0.00044 0.11
USGS-NWIS 153.2 224 1.88 0.36 289 9.3 0.00044 0.08
USGS-NWIS 87.B 222.5 1.59 0.25 299 3.3 0.00044 0.06
USGS-NWIS 30.9 102.1 0.45 0.56 299 9.3 0.00044 0.31

Mississippi at St. Cloud USGS-NWIS 1282.6 195.1 5.24 1.26 195 5.2 0.00053 0.1S
USGS-NWIS 391.8 190.5 4.97 0.94 195 5.2 0.00053 0.13
USGS-NWIS 651.2 185.9 4.52 0.77 195 5.2 0.00053 0.12
USGS-NWIS 535.1 185.9 4.57 0.63 195 5.2 0.00053 0.09
USGS-NWIS 501.1 190.5 4.41 0.6 195 5.2 0.00053 0.09
USGS-NWIS 433.2 190.2 3.96 0.58 195 5.2 0.00053 0.09
USGS-NWIS 393.5 186.S 4.06 0.52 195 5.2 0.00053 0.08
USGS-NWIS 346 192 4.31 0.42 195 5.2 0.00053 0.06
USGS-NWIS 317.1 187.4 4.32 0.39 195 5.2 0.00053 0.06
USGS-NWIS 302.9 190.5 4.27 0.37 195 5.2 0.00053 0.06
USGS-NWIS 273.8 189.9 4.11 0.35 195 5.2 0.00053 0.06
USGS-NWiS 221.1 184.7 3.97 0.3 195 5.2 0.00053 0.05
USGS-NWIS 138.8 170.7 3.97 0.28 195 5.2 0.00053 0.04
USGS-NWIS 132.2 169.2 1.36 0.57 195 5.2 0.00053 0.16
USGS-NWiS 73.9 152.4 0.92 0.53 195 5.2 0.00053 0.18
USGS-NWIS 55.8 149 0.79 0.47 195 5.2 0.00053 0.17
USGS-NWIS 52.7 147.8 1.09 0.33 195 5.2 0.00053 0.10
USGS-NWtS 35.4 120.4 0.6 0.49 195 5.2 0.00053 0.20
USGS-NWIS 25.7 90.2 0.62 0.46 195 5.2 0.00053 0.19

Kennebec at Sydney USGS-NWIS 5549.3 207.3 10.4 2.58 207 10.4 0.000061 0.26
USGS-NWIS 2944.5 196.6 7.04 2.13 207 10.4 0.000061 0.26
USGS-NWiS 2491.5 195.1 6.33 2.02 207 10.4 0.000061 0.26
USGS-NWIS 2154.6 190.8 5.06 2.23 207 10.4 0.000061 0.32
USGS-NWIS 1837.5 190.5 5.32 1.81 207 10.4 0.000061 0.25
USGS-NWIS 1511.9 189 4.81 1.66 207 10.4 0.000061 0.24
USGS-NWIS 1169.3 182.9 5.44 1.18 207 10.4 0.000061 0.16
USGS-NWIS 872 178.3 5.15 0.95 207 10.4 0.000061 0.13
USGS-NWiS 586.1 176.8 4.35 0.76 207 10.4 0.000061 0.12
USGS-NWiS 526.6 182.9 3.03 0.95 207 10.4 0.000061 0.17
USGS-NWIS 396.4 182.9 2.39 0.91 207 10.4 0.000061 0.19
USGS-NWIS 351.1 179.8 2.32 0.84 207 10.4 0.000061 0.18
USGS-NWIS 268.1 182.6 2.8 0.52 207 10.4 0.000061 0.10
USGS-NWIS 219.7 169.2 3.25 0.4 207 10.4 0.000061 0.07
USGS-NWIS 164.5 175.3 2.26 0.41 207 10.4 0.000061 0.09
USGS-NWIS 105 173.7 2.1 0.29 207 10.4 0.000061 0.06
USGS-NWiS 75.9 179.8 1.96 0.22 207 10.4 0.000061 0.05
USGS-NWIS 62.9 173.7 1.38 0.26 207 10.4 0.000061 0.07
USGS-NWIS 26.8 158.5 1.08 0.16 207 10.4 0.000061 0.05

Allegheny at Salamanca USGS-NWIS 852.2 114.9 4.07 1.82 115 4.1 0.00056 0.29
USGS-NWIS 637 111.6 3.41 1.68 115 4.1 0.00056 0.29
USGS-NWIS 472.8 114.3 2.75 1.51 115 4.1 0.00056 0.29
USGS-NWiS 342.6 114.9 2.24 1.33 115 4.1 0.00056 0.28
USGS-NWIS 317.1 114 2.18 1.28 115 4.1 0.00056 0.28
USGS-NWIS 302.9 108.8 2.07 1.34 115 4.1 0.00056 0.30
USGS-NWIS 276.9 114.6 1.93 1.26 115 4.1 0.00056 0.29
USGS-NWiS 251.1 114.3 2.07 1.06 115 4.1 0.00056 0.24
USGS-NWIS 203 105.8 1.77 1.09 115 4.1 0.00056 0.26
USGS-NWIS 194.2 106.1 1.7 1.08 115 4.1 0.00055 0.26
USGS-NWiS 166.5 107.6 1.58 0.98 115 4.1 0.00056 0.25
USGS-NWtS 142.7 106.7 1.52 0.88 115 4.1 0.00056 0.23
USGS-NWIS 137.9 108.2 1.43 0.S9 115 4.1 0.00055 0.24
USGS-NWIS 115.2 108.2 1.54 0.69 115 4.1 0.00056 0.18
USGS-NWIS 110.1 106.7 1.57 0.66 115 4.1 0.00056 0.17
USGS-NWIS 89.2 107.6 1.44 0.58 115 4.1 0.00056 0.15
USGS-NWIS 81.3 109.7 1.2 0.62 115 4.1 0.00056 0.18
USGS-NWIS 64.6 106.7 1.11 0.54 115 4.1 0.00056 0.16
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River Name Source
Discharge Width 
(m' /̂s) (m)

Mean
Depth
(m)

Mean Maximum Maximum 
Velocity Width Depth 
(m/s) (m) (m)

Slope
(m/m)

Froude
number

USGS-NWIS 4S 99.7 0.69 0.71 115 4.1 0.00056 0.27
USGS-NWIS 32.6 95.7 0.51 0.67 115 4.1 0.00056 0.30

Hudson at Hadley USGS-NWIS 4S7 11S.3 3.49 1.18 118 3.5 0.00052 0.20
USGS-NWIS 314.3 114.6 2.75 1 11S 3.5 O.D0052 0.19
USGS-NWIS 240.7 112.8 2.44 0.87 118 3.5 0.00052 0.1S
USGS-NWiS 214.3 114.3 2.32 0.81 113 3.5 0.00052 0.17
USGS-NWIS 184 114.3 2.08 0.77 118 3.5 0.00052 0.17
USGS-NWIS 1S1.4 112.8 2.01 0.71 118 3.5 0.00052 0.16
USGS-NWIS 141 112.8 1.95 0.64 118 3.5 0.00052 0.15
USGS-NWIS 101.6 109.7 1.79 0.52 118 3.5 0.00052 0.12
USGS-NWIS 90 107.9 1.72 0.48 118 3-5 0.00052 0.12
USGS-NWiS 87.2 106.4 1.76 0.47 118 3.5 0.00052 0.11
USGS-NWIS 73.6 106.7 1.67 0.41 118 3.5 0,00052 0.10
USGS-NWIS 59.5 98.1 1.59 0.38 113 3.5 0.00052 0.10
USGS-NWiS 54.4 91.4 1.65 0.36 118 3.5 0.00052 0.09
USGS-NWIS 43.3 88.4 1.3 0.38 118 3.5 0.00052 0.11
USGS-NWIS 39.6 85.9 1.63 0.28 118 3.5 0.00052 0.07
USGS-NWIS 38.5 85.9 1.65 0.27 118 3.5 0.00052 0.07
USGS-NWIS 35.1 83.8 1.66 0.25 118 3.5 0.00052 0.06
USGS-NWtS 33.1 85.3 1.57 0.25 118 3.5 0.00052 0.06
USGS-NWIS 29.7 76.5 1.68 0.23 118 3.5 0.00052 0.06
USGS-NWIS 18.8 76.2 1.54 0.16 118 3.5 0.00052 0.04

Matanuska at Palmer USGS-NWIS 878.8 93.9 3.34 2.8 94 3.3 0.0043 0.49
USGS-NWIS 693.7 84.7 2.92 2.81 94 3.3 0.0043 0.53
USGS-NWIS 651.2 93.3 2.41 2.9 94 3.3 0.0043 0.60
USGS-NWIS 617.2 93.6 2.59 2.54 94 3.3 0.0043 0.50
USGS-NWIS 50S.S 85.3 2.34 2.54 94 3.3 0.0043 0.53
USGS-NWIS 450.2 68.6 2.52 2.61 94 3.3 0.0043 0.53
USGS-NWIS 419 85.3 2.26 2.16 94 3.3 0.0043 0.46
USGS-NWIS 390.7 90.5 1.86 2.32 94 3.3 0.0043 0.54
USGS-NWiS 356.7 70.7 2.4 2.1 94 3.3 0.0043 0.43
USGS-NWIS 331.3 68.6 2.14 2.25 94 3.3 0.0043 0.49
USGS-NWIS 297.3 80.2 1.67 2.21 94 3.3 0.0043 0.55
USGS-NWIS 272.4 87.8 1.72 1.8 94 3.3 0.0043 0.44
USGS-NWIS 235.8 83.2 1.63 1.74 94 3.3 0.0043 0.44
USGS-NWIS 212.6 84.7 1.32 1.91 94 3.3 0.0043 0.53
USGS-NWIS 188.6 74.1 1.73 1.47 94 3.3 0.0043 0.36
USGS-NWIS 132.5 57.1 1.43 1.38 94 3.3 0.0043 0.37
USGS-NV'VIS 101.9 92 0.82 1.34 94 3.3 0.0043 0.47
USGS-NWtS 47.3 83.5 0.59 0.96 94 3.3 0.0043 0.40
USGS-NWIS 24.3 38.1 0.7 0.91 94 3.3 0.0043 0.35

Merrimack at Franklin USGS-NWIS 458.7 83.8 4.72 1.17 84 4.7 0.0002 0.17
USGS-NWiS 421.9 S0.8 4.69 1.11 84 4.7 0.0002 0.16
USGS-NWIS 295 79.2 4.09 0.91 84 4.7 0.0002 0.14
USGS-NWIS 185.4 77.1 3.54 0.68 84 4.7 0.0002 0.12
USGS-NWIS 163.1 78 3.36 0.62 84 4.7 0.0002 0.11
USGS-NWIS 145 77.7 3.27 0.58 84 4.7 0.0002 0.10
USGS-NWIS 113.8 74.7 3.11 0.49 84 4.7 0.0002 0.09
USGS-NWIS 95.7 77.7 2.98 0.41 84 4.7 0.0002 0.08
USGS-NWIS 90.3 77.4 2.94 0.4 84 4.7 0.0002 0.07
USGS-NWIS 84.4 76.8 2.85 0.39 84 4.7 0.0002 0.07
USGS-NWIS 74.2 76.2 2.84 0.34 84 4.7 0.0002 0.06
USGS-NWIS 51 75.3 2.67 0.25 84 4.7 0.0002 0.05
USGS-NWIS 32.8 75.6 2.43 0.18 84 4.7 0.0002 0.04
USGS-NWiS 27.4 73.1 2.45 0.15 84 4.7 0.0002 0.03
USGS-NWIS 25.9 74.7 2.44 0.14 84 4.7 0.0002 0.03
USGS-NWIS 24 85.3 0.87 0.33 84 4.7 0.0002 0.11
USGS-NWIS 20.8 73.1 2.39 0.12 84 4.7 0.0002 0.02
USGS-NWIS 20.2 S4.7 0.76 0.31 84 4.7 0.0002 0.11

White at W. Hartford USGS-NWIS 308.6 47.9 3.24 1.98 48 3.2 0.0012 0.35
USGS-NWIS 233 42.7 3.12 1.75 48 3.2 0.0012 0.32
USGS-NWIS 145.2 38.7 3.12 1.2 48 3.2 0.0012 0.22
USGS-NWIS 109.6 38.1 2.97 0.97 48 3.2 0.0012 0.18
USGS-NWIS 89.5 37.S 2.8 0.S4 48 3.2 0.0012 0.16
USGS-NWIS 82.4 36.9 2.85 0.7S 48 3.2 0.0012 0.15
USGS-NWIS 62.3 72.2 1.58 0.55 43 3.2 0.0012 0.14
USGS-NWIS 47.3 35.4 2.61 0.51 46 3.2 0.0012 0.10
USGS-NWIS 32.6 84.4 0.81 0.48 48 3.2 0.0012 0.17
USGS-NWIS 30.9 95.4 0.44 0.73 48 3.2 0.0012 0.35
USGS-NV\/IS 2B.9 83.2 0.72 0.48 48 3.2 0.0012 0.18
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River Name Source
Discharge Width
(m^/s) (m)

Mean
Depth
(m)

Mean
Velocity
(m/s)

Maximum
Width
(m)

yaximum
Depth
(m)

Slope
(m/m)

Froude
number

USGS-NWIS 28 93.9 0.38 0.79 48 3.2 0.0012 0.41
USGS-NWIS 24.7 75.3 0.71 0.46 48 3.2 0.0012 Q.17
USGS-NWIS 22.3 76.8 0.74 0.3S 48 3.2 0.0012 0.14
USGS-NWIS 19.6 57.6 0.52 0.65 48 3.2 0.0012 0.29
USGS-NWIS 16.7 80.5 0.6 0.34 48 3.2 0.0012 Q.14
USGS-NWIS 13.5 74.4 D.6S 0.2B 48 3.2 0.0012 0.11
USGS-NWIS 10.4 79.9 0.48 0.27 48 3.2 0.0012 0.12
USGS-NWIS 8.1 81.1 0,49 0.2 48 3.2 0.0012 o .o s
USGS-NWIS 5.3 82 0.43 0.15 48 3.2 0.0012 0 .0 7

Columbia Barnes 1967 11494.96 529.4 8.53 2.55 529 8.5 0.00019 0.28
Columbia Barnes 1967 28312.7 510.8 16.79 3.3 511 16.8 0.000265 0.26
Amazon at Obidos Oilman 1968 216000 2290 48.03 1.96 2300 50 7.3E-0S 0.09

Oilman 1968 72500 2260 40.88 0.78 2300 50 7.3E-05 0 .0 4
Dury 1976 283170 2300 50.33 2.45 2300 50 7.3E-06 0.11
Oilman 1968 165000 2280 46.49 1.56 2300 50 7.3E-0S 0.07
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Appendix 3 - Bankfull River Discharge and Channel Geometry Data
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Tabie AS - Bankfull Rivsr DIscharg® and Charm®! Geometry Data Base

River Name
Discharge
(m^/s)

Water
surface Channel 
slope width 
(m/m) (m)

Average
Channel
Depth
(m)

Average
Channel
Velocity
(m/s)

Froude
Number

NA 368 0.0042 47 2.41 3.25 0.67
NA 116 0.001 32 1.73 2.10 0.51
NA 91.8 0.0007 42 2.58 0,85 0,17
NA 581 0.000S5 99 7.01 0.84 0.10
NA 668 0.0008 69 5.95 1.63 0.21
NA 69.4 0.0025 33 3.08 0.68 0.12
NA 17.6 0.0048 13 0.65 2.08 0.83
NA 23.8 0.0073 31 1.03 0.75 0.23
NA 5.7 0.0037 10 0.58 0.98 0.41
NA 3 0.0412 3 0.33 3.03 1.69
NA 7.5 0.014S 7 0.44 2.44 1.17
NA S9.2 0.0063 26 1.5S 2.17 0.55
NA 60.9 0.0061 34 0,76 2.36 0.86
NA 27.5 0.0036 24 0.7 1.64 0.62
NA 8.2 0.003 25 0.71 0.46 0.18
NA 365 0.003 37 3.3S 2.92 0.51
NA 1.7 0.0184 4 0.59 0.72 0.30
NA 10.5 0.0026 27 0.81 0.48 0.17
NA 10.9 0.0042 13 0.66 1.27 0.50
NA 275 0.0042 29 2.49 3.81 0.77
NA 10.5 0.001 20 0.88 0.80 0.20
NA 187 0.001 32 2.51 2.33 0.47
NA 226 0.0008 58 1.78 2.19 0.52
NA 73.6 0.0135 16 1.07 4.30 1.33
NA 13.2 0.0039 8 0.81 2.04 0.72
NA 12.2 0.0025 14 0.7 1.24 0.48
NA 79.3 0.0008 29 1.43 1.91 0.51
NA 22.2 0.004 17 0.55 2.37 1.02
NA 12 0.0064 17 0.93 0.76 0.25
NA 12.6 0.0074 15 0.9 0.93 0.31
NA 24.5 0.0092 13 0.83 2.27 0.80
NA 6.2 0.0237 4 0.41 3.78 1.89
NA 5 0.0066 7 0.39 1.83 0.34
NA 4.5 0.0154 3 0.5 3.00 1.36
NA 5.5 0.0013 17 0.65 0.50 0.20
NA 45.3 0.0029 29 1.71 0.91 0.22
NA 850 0.0012 141 2.76 2.18 0.42
NA 229 0.00127 90 1.25 2,04 0.58
NA 354 0.00019 149 2.36 1.01 0.21
NA 10-2 0.0118 12 0.55 1.55 0.67
NA 5.5 0.0152 10 0.37 1.49 0.78
NA 5.5 0.0162 8 0.37 1.86 0.9B
NA 4.9 . 0.0263 8 0.46 1.33 0.63
NA 28.3 0.004 24 0.76 1.55 0.57
NA 13.5 0.0099 10 0.82 1.65 0.58
NA 20.2 0.0036 16 0.98 1,29 0.42
NA 10S 0.0041 35 1.9 1.59 0.37
NA 6.29 0.051 9 0.37 1.89 0.39
NA 2.75 0.052 3 0.46 1.99 0.94
NA 5.83 0.0128 10 0.37 1.5S 0.83
NA 1.52 0.081 5 0.24 1.27 0.83
NA 7.73 0.0148 12 0.34 1.89 1.04
NA 9.29 0.0107 9 0.54 1.61 0.64
NA 1.51 0.0369 2 0.27 2.80 1.72
NA 12.9 0.0124 9 0.73 1.96 0.73
NA 145 0.0046 50 1.3 2.23 0.62
NA 8.86 0.0157 9 0.55 1.79 0.77
NA 3.51 0.0307 4 0.52 1.69 0.75
NA 6.2 0.Q20S 7 0.52 1,70 0.75
NA 25.3 0.0106 15 0.73 2.31 0.86
NA 11.6 0.013 10 0.61 1.90 0.78
NA 1.9 0.0755 2 0.37 2.57 1.35
NA 7.62 0.0025 10 0.73 1.04 0.39
NA 8.92 0.046 13 0.4 1.72 0.87
NA 5.24 0.0495 13 0.3 1.34 0.78
NA 2.25 0.0625 3 0.4 1.88 0.95
NA 6.S5 0.0604 7 0.46 2.13 1.00
NA 1.06 0.0165 3 0.4 0.88 0.45

S ource

C hurch  and Rood 
1S83

{includes data from 
Bray, 1979; and 
Wiiiiams, 1978).
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River Name
Discharge
(m^/s)

Water
surface Channel 
slope width 
(m/m) fm)

Average
Channel
Depth
(m)

Average
Channel
Velocity
(m/s)

Froude
Number

NA 0.535 0.013 3 0.3 0.59 0,35
NA 2.42 0.0356 7 0.37 0.93 G.4S
NA 156 0.0018 50 1.5 2.08 0.54
NA 17 0.0089 14 0.52 2.34 1.03
NA 3.4 0.020 6 0.3 1.89 1.10
NA 31 0.0143 13 0.76 3.14 1.15
NA 1.7 0.0009 5 0.27 1.2S 0.77
NA S.3 0.035 6 0.49 2.14 0.98
NA 16.7 0.0169 9 0.76 2.44 0.S9
m 510 0.0022 104 1.87 2.52 0.61
NA 666 0,0022 106 2.03 3.10 0-S9
NA 9621 0.00004 332 7.92 1.46 0.17
NA 10895 0.00004 881 8.1 1.53 0.17
NA 16696 0.00007 738 11.18 2,02 0.19
NA 9055 0.00007 725 8.22 1.52 0.17
NA 10753 0.0007 728 8.86 1.67 0.18
NA 107 0.0011 59 2.62 0.69 0.14
NA 68 0.00011 51 2.16 0.62 0.13
NA 101 0.00011 58 2.52 0.69 0.14
NA 141 0.00021 54 2.92 0.89 0.17
NA 127 0.00021 54 2.74 0.86 0.17
NA 848 0.0003 225 2.74 1.38 0.27
NA 396 0.0003 203 2.07 0.94 0.21
NA 679 0.0003 219 2.52 1.23 0.25
NA 1058 0.00036 235 3.53 1.28 0.22
NA 2263 0,00036 253 4.78 1.37 0.27
NA 565 0.00033 79 4.14 1.73 0.27
NA 96 0.00033 51 2.01 0.94 0.21
NA 152 0.00033 55 2.46 1.12 0.23
NA 396 0.0005 39 7.19 1.41 0.17
NA 79 0.0005 30 1.79 1.47 0.35
NA 141 0.0005 33 2.92 1.46 0.27
NA 148 0.0002 42 3.77 0.93 0.15
NA 148 0.0002 42 3.77 0.33 0.15
NA 130 0.00051 46 3.2 0.88 0.16
NA 48 0.00051 33 1.73 0.84 0.20
NA 121 0.00051 45 3.04 0.87 0.16
NA 2605 0.00009 442 5.33 1.11 0.15
NA 7782 0.00074 479 5.82 2.79 0.37
NA 6084 0.00074 475 4.99 2.57 0.37
NA 6933 0.00074 475 5.36 2.72 0.38
NA 121 0.0054 51 1.15 2.06 0-61
NA 48 0.0054 40 0.85 1.41 0.49
NA 84 0.0054 47 •1.03 1.74 0.55
NA 52 0.016 35 0.76 1.95 0.72
NA 40 0.016 28 0.73 1.96 0.73
NA 20 0.019 24 0.58 1.44 0.60
NA 13 0.019 23 0.55 ■ 1.03 0.44
NA 2829 0.0025 201 3.47 4.06 0.70
NA 690 0.0025 151 1.79 2.55 0.61
NA 933 0.0025 162 2.01 2.87 0.65
NA 155 0.0057 49 1.09 3.09 0.95
NA 84 0.0057 40 0.97 2.16 0.70
NA 155 0.0057 48 1.09 2.95 0.91
NA IS 0.001 21 0.97 0,88 0.29
NA 37 0.001 25 1.09 1.36 0.42
NA 169 0.0049 72 1.21 1.94 0.56
NA 311 0.0049 73 1.S4 2.60 0.65
NA 152 0.0025 95 1.24 1.29 0.37
NA 52 0.0077 35 0.73 2.04 0.76
NA 101 0.0077 41 0.82 3.00 1.06
NA 65 0.0038 45 0.76 1.90 0.70
NA 181 0.003S 62 1.03 2.83 0.89
NA 486 0.0017 121 1.98 2,03 0.46
NA 299 0.0017 110 1.58 1.72 0.44
NA 9004 0.00069 549 7.S 2,16 0.25
NA 7220 0.00069 546 6.8 1.94 0.24
NA 8212 0.00069 548 7.22 2.08 0.25
NA 1416 0.0012 82 5 3.45 0.49
NA 159 0.0012 67 2.1 1.13 0.25
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River Name
Water 
surface 

Discharge slope 
(m’’/s) (m/m)

Channel
width
(m)

Average
Channel
Depth
(m)

Average
Channel
Velocity
(m/s)

Froude
Number

NA 278 0.0012 71 2.5 1.57 0.32
NA 55 0.0014 29 1.5 1.26 0.33
NA 18 0.0014 22 1 0.82 0.26
NA 3S 0.0014 27 1.3 1.11 0.31
NA 2378 0.0018 149 3.4 4.69 0.81
NA 439 0.0018 126 1.7 2.05 0.50
NA 595 0.0018 130 1.9 2.41 0.56
NA 178 0.0019 76 1.7 1.38 0.34
NA 68 0.0019 55 0.94 1.32 0.43
NA 101 0.0019 52 1.2 1.36 0.40
NA 749 0.00081 166 2.4 1.88 0.39
NA 1358 0.00081 174 3.23 2.42 0.43
NA 14998 0,00022 475 11.15 2.83 0.27
NA 8206 0.00022 469 6.91 2.53 0.31
NA 97S3 0.00022 472 7.89 2.62 0.30
NA 2405 0.00052 271 4.2 2.11 0.33
NA 3395 0.00052 274 5.18 2.39 0.34
NA 5433 0.00052 280 6.94 2.80 0.34
NA 834 0.00051 168 2.65 1.87 0.37
NA 1584 0.00051 182 3.53 2.47 0.42
NA 1839 0.00094 111 3.84 4.31 0.70
NA 679 0.00094 99 2.8 2.45 0.47
NA 919 0,00034 103 3.07 2.91 0.53
NA 905 0.00092 191 2.59 1.83 0.36
NA 1075 0.00092 194 2.83 1.96 0.37
NA 1075 0.0012 168 2.46 2.60 0.53
NA 481 0.0012 160 1.58 1.90 0.48
NA 792 0.0012 165 2.07 2.32 0.51
NA 1811 0.00084 134 4.57 2.96 0.44
NA 305 0.0D0B4 111 1.67 1.65 0.41
NA 543 0.00084 117 2.19 2.12 0.46
NA 113 0.00055 38 2.04 1.46 0.33
NA 28 0.00055 29 1.34 0.72 0.20
NA 56 0.00055 32 1.67 1.05 Q.2S
NA 203 0.0033 SO 1.37 1.85 0 .5 1
NA 79 0.0033 61 1 1.30 0.41
NA 166 0.0033 78 1.24 1.72 0.49
NA 155 0.0018 69 1.7 1.32 0.32
NA 288 0.0018 75 2.31 1.56 0.35
NA 481 0.0026 95 2.37 2.14 0.44
NA 594 0.0026 98 2.56 2.37 0.47
NA 367 0.004 94 1.58 2.47 0.63
NA 509 0.004 97 1.7 3.09 0.70
NA 314 0.002 104 1.43 2.11 0.5S
NA 404 0.002 107 1.S1 2.35 0 .5 9
NA 933 0.0012 85 3.29 3.34 0 .5 9
NA 124 0.0012 63 1.4 1.41 0.3S
NA 234 0.0012 69 1.79 1.89 0.45
NA 62 0.D03S 31 1.21 1.65 0.48
NA 28 0.0036 26 D.SS 1.22 0.42
NA 59 0.0036 31 1.18 1.61 0.47
NA 53 0.0035 44 0.79 1.52 0.55
NA 53 0.0035 44 0.79 152 0.55
NA 130 0.0012 28 3.41 136 0.24
NA 10 0.0012 16 1.12 0.56 0.17
NA 18 0.0012 19 1.4 0.68 0.18
NA 339 0,0012 112 1.82 166 0.39
NA 650 0.0012 130 2.46 2.03 0.41
NA 1018 0.00035 123 3.84 2.16 0.35
NA 350 0.00035 111 2.28 138 0.29
NA 693 0.00035 119 3.2 1.82 0.32
NA 141 0.0036 41 1.67 2.06 0.51
NA 28 0.0035 27 0.88 1.18 G.40
NA 59 0.0036 30 1.31 1.50 0.42
NA 891 0.00044 ISO 2.62 1.89 0.37
NA 1584 0.00044 192 3.56 2.32 0.39
NA 42 0.0024 30 0.94 149 0.43
NA 32 0.0024 28 0.91 126 0.42
NA 65 0.0032 31 124 1.69 0.49
NA 33 0.0032 27 0.S8 1.39 0.47
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River Name
Water
surface Channel 

Discharge slope width 
(m^/s) (m/m) (m)

Average
Channel
Depth
(m)

Average
Channel
Velocity
(m/s)

Froude
Number

NA 57 0.0032 30 1.15 1.65 0.49
NA 277 0.0037 77 1.49 2.41 0.63
NA 127 0.0037 57 1.12 1.09 0.60
NA 203 0,0037 69 1.34 2.20 0.S1
NA 12 0.0067 19 0.73 0.87 0.32
NA 27 0.0067 22 0.91 1.35 0.45
NA 100 0.0008 35 2.04 1.40 0.31
NA 29 0,0008 27 0.94 114 0.38
NA 65 0.0008 36 1.37 1.32 0.36
NA 203 0.00079 50 2.16 188 0.41
NA 42 0.00079 34 1.21 1.02 0.30
NA 95 0.00079 42 1.58 145 0.37
NA 46 0.0085 29 1 1.59 0.51
NA 67 0.0085 30 1.24 180 0.52
NA 118 0.0019 75 0.97 1.62 0.53
NA 161 0.0019 76 1.12 189 0.57
NA 42 0.00051 27 1.58 0.98 0.25
NA 3 0.00051 12 0.85 0.29 0.10
NA 16 0.00051 20 1.37 0.58 0.16
NA 11 0.011 18 0.57 1.07 0.45
NA 5 0.011 14 0.42 0.85 0.42
NA 8 0.011 17 0.48 0.98 0.45
NA 110 0.0041 45 1.06 2.26 0.70
NA 161 0.0041 50 118 2.73 O.SO
NA 489 0.002 119 2.31 1.78 0.37
NA 99 0.002 91 1.03 106 0.33
NA 175 0.002 101 1.37 126 0.35
NA 10 0.0051 16 0.51 123 0.55
NA 39 0.0051 22 0.76 2.33 0.85
NA 268 0.00059 53 2.22 2.28 0.49
NA 46 0.00059 37 1.12 1.11 0.34
NA 77 0.00059 41 1.43 131 0.35
NA 23 0.0025 25 0.7 126 0.48
NA 79 0.0025 31 0.85 3.00 1.04
NA 13 0.0018 14 0.76 122 0.45
NA 29 0.0018 16 0.97 1.87 0.61
NA 73 0.0059 37 0.94 2.10 0.69
NA 124 0.0059 43 1.06 2.72 0.84
NA 93 0.0042 52 0.85 2.10 0.73
NA 164 0.0042 57 0.88 3.27 111
NA 110 0.0016 64 1.24 1.39 0.40
NA 220 0.0016 70 164 1.92 0.48
NA 186 0.0021 59 128 2.46 0.70
NA 45 0.0021 43 0.82 1.28 0.45
NA 142 0.0021 56 1.18 2.15 0.63
NA 104 0.0038 45 1.09 2.12 0.65
NA 169 0.0038 49 1.4 2.46 0.67
NA 101 0.0046 45 1 2.24 0.72
NA 174 0.0046 57 1.18 2.59 0.76
NA 509 0.0016 126 2.37 1.70 0.35
NA 226 0.0016 116 1.79 1.09 0.26
NA 382 0.0016 122 2.16 1.45 0-32
NA 413 0.0012 109 192 197 0.45
NA 549 0.0012 111 2.22 2.23 0.48
NA 127 0.0041 61 117 178 0.53
NA 510 0.0042 152 1.01 3.32 1.06
NA 630 0.0031 108 2.3 2.54 0.53
NA 199 0.004 45 1.5 2.88 0.75
NA 153 0.0044 55 125 2.23 0.64
NA 8.5 0.0156 12 0.49 1.45 0.66
NA 161 0.0007 90 119 150 0.44
NA 141 0.002 27 3.51 149 0.25
NA 11553 0.0004 594 8.84 2.20 0.24
NA 368 O.OOOS 99 2.79 133 0.25
NA 163 0.0017 68 1.23 195 0.56
NA 73 0.002 37 3.51 0.56 0.10
NA 2265 0.0001 197 5.15 2.23 0.31
NA 4474 0.0015 229 7.01 2.79 0.34
NA 258 0.0007 85 2.45 1.24 0.25
NA 1954 0.0015 161 4.57 2.66 0.40
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River Name
Water
surface Channel 

Discharge slope width 
(m^/s) (m/m) (m)

Average
Channel
Depth
(m)

Average
Channel
Velocity
(m/s)

^roude
Number

NA 40 0.0015 48 0.98 0.85 0.27
NA 733 0.0005 111 3.86 1.71 0.28
NA 255 0.0D14 104 1.36 1.80 0.49
NA 354 0.00159 87 1.98 2.06 0.47
NA 962S 0.00056 493 6.77 2.88 0.35
NA 6478 0.0004 582 4.55 2.45 0.37
NA 2890 0.00047 311 4.63 2.01 0.30
NA 2661 0.00056 242 4.6 2.39 0.30
NA 2280 0.00026 333 4.64 1.48 0.22
NA 1402 0.0004 289 3.16 1.54 0.28
NA 2718 0.00032 356 4.24 1.80 0.28
NA 55 0.00053 31 2.53 0.70 0.14
NA 425 0.0042 61 2.3 3.03 0.54
NA 481 0.0019 79 3.29 1.85 0.33
NA 198 0.00092 82 1.98 1.22 0.2S
NA 23 0.0007 18 1.2 1.06 0.31
NA 64 0.0044 17 1.78 2.12 0.51
NA 10 0.0064 14 0.73 0.9B 0.37
NA 10.7 0.013 10 0.73 1.47 0.55
NA 29.5 0.0045 14 1.34 1.57 0.43
NA 66 0,0048 18 1.79 2.05 0.49
NA 66 0.0105 19 1.36 2.55 0.70
NA 140 0.0017 34 3.06 1.35 0.25
NA 58 0.0057 18 1.36 2.37 0.65
NA 67 0.0018 31 1.77 1.22 0.29
NA 25 0,0052 25 0.78 1.28 0.46
NA 66 0.0024 26 1.16 2.19 0.65
NA 81 0.0014 29 1.63 1.71 0.43
NA 170 0.0074 40 1.89 2.25 0.52
NA 260 0.0007 56 2.77 1.68 0.32
NA 14.2 0.0032 17 0.09 1.21 0.47
NA 36.5 0.0137 14 1.06 2.46 0.76
NA 370 0.0015 58 3.6 1.77 0.30
NA 66 0.0014 19 2.47 1.41 0.29
NA 2.7 0.0023 5 0.65 0.83 0.33
NA 212 0.0036 43 2.09 2.36 0.52
NA 157 0.0009 39 2.64 1.52 0.30
NA 550 0.0007 59 4.19 2.22 0.35
NA 38 0.Q02 19 1.67 1.20 0.30
NA 24 0.0037 17 0.74 1.91 0.71
NA 40 0.0028 20 1.29 1.55 0.44
NA 45 0.00066 18 1.27 1.97 0.56
NA 66 0.00069 27 1.6 1.53 0.39
NA 68 0.00062 23 1.5 1.97 0.51
NA 13 0.003 12 1.17 0.93 0.27
NA 4.8 0.0094 10 0.53 0.91 0.40
NA 1.1 0.0193 3 0.4 0.92 0.46
NA 3.8 0.0115 10 0.42 0.90 0.45
NA 3.5 0.0125 5 0.56 1.25 0.53
NA 2270 0.0015 244 4.36 2.13 0.33
NA 0.61 0.0286 4 0.1 1.53 1.54
NA 4.9 0.0175 31 0.11 1.44 1.38
NA 3.6 0.0151 24 0.13 1.15 1.G2
NA 0.06 0.032 2 0.04 0.75 1.20
NA 2096 0.00121 121 4.87 3.56 0.51
NA 1042 0.00189 170 2.25 2.72 0.58
NA 1700 0.00221 178 3.33 2.87 0.50
NA 3820 0.01003 212 4.77 3.73 0.55
NA 16300 0.00007 776 11.34 1.85 0.18
NA 16950 0.00009 625 13.92 1,95 0.17
NA 1500 0.00013 515 3 0.97 0.18
NA 4000 0.00013 525 6 1.27 0.17
NA 3426 0.0011 195 5.67 3.10 0.42
NA 5154 0.0013 206 7.01 3.57 0.43
NA 2662 0.00055 146 5.94 3.07 0.40
NA 3341 0.00065 148 6.55 3.45 0.43
NA 1133 0,00027 226 3.76 1.33 0.22
NA 850 0.0003 186 2.97 1.54 0.29
NA 850 0,00031 187 2.2 2.07 0.44
NA 133 0.015 22 2.59 2.33 0.46
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River Name
Water 
surface 

Discharge slope 
(m^/s) (m/m)

Average 
Channel Channel 
width Depth 
(m) (m)

Average
Channel
Velocity
(m/s)

Froude
Number

NA 159 0.015 23 2.74 2.52 0.49
NA 184 0.011 35 2.01 2.62 0.59
NA 221 0.011 35 2.16 2.92 0.64
MA 317 0.0063 109 1.13 2.44 0.72
NA 42S 0.00S3 113 1.37 2.76 0.75
NA 3.4 0.0108 6 0.45 1.26 0.60
NA 2832 O.OOOS 1 900 2.14 1.47 0.32
NA 6.7 0.0023 10 0.48 1.40 0.64
NA 0.7 0.026 2 0.2 1.75 1.25
NA 85.2 0.0014 47 0.97 1.87 0.61
NA 7.1 0.017 9 0.52 1.52 0.S7
NA 9.S 0.019 12 0.46 1.78 0.84
NA 12.2 D.D046 12 0.73 1.39 0.52
NA 2.2 0.011 7 0.34 0.92 0.51
NA 2.7 0.014 7 0.29 1.33 0.79
NA 1.9 0.0061 5 0.31 1.23 0.70
NA 8.4 0.015 9 0.43 2.17 1.06
NA 22.6 0.0044 18 0.73 1.72 0.64
NA 4.5 0.0206 8 0.49 1.15 0.52
NA 3.2 0.01 6 0.39 1.37 0.70
NA 2.5 0.0092 6 0.41 1.02 0.51
NA 49 0.0058 34 0.84 1.72 0.60
NA 37.5 0.0067 26 0.91 1.58 0.53
NA 7.1 0.0046 12 0.52 1.14 0.50
NA 42 0.0058 25 0.88 1.91 0.65
NA 101 0.0037 37 1.45 1.88 0.50
NA 167 0.0018 53 1.63 1.93 0.48
NA 40.7 0.002 24 1.62 1.20 0.30
NA 255 0.00088 84 1.85 1.64 0.39
NA 72.2 0.0071 31 1.13 2.06 0.62
NA 114 0.0024 37 1.65 1.87 0.46
Diamonci 132.9 0.0196 33.2 1 4.00 1.28
Wild 205 0.0198 43.5 0.8 5.89 2-10
Ellis 33.7 0-049 20.2 1.3 1.2S 0.36
Lucy 16.1 0.039 14.4 1 1.12 0.36
Saco 462.6 0.0018 63.8 2.2 3.01 0.65
Oyster 8.5 0.0022 12.1 0.7 1.00 0.38
Dudley 4.6 0.0015 8 0.6 0.96 0.40
Pemli W 302.9 0.0026 61.4 1.6 3.08 0.78
Stevens 5.8 0.022 8.4 0.3 2.30 1.34
Baker 144.8 0.0007 34.4 1.8 2.34 0.56
Pemi P 5S8.3 0.0017 81.8 4.3 1.67 0.26
Smith 49.1 0.0037 19.1 1.3 1.98 0.55
Beards 33.9 0.0125 17.2 0.6 3.28 1.35
W Br War 8.9 0.0085 8.1 0.8 1.37 0.49
Warner 60.3 0.001 27.6 1.2 1.82 0.53
Soucock 32.2 0.0011 14.6 1.4 1.58 0.43
S BrPisc 57.6 0.0018 26.7 0.8 2.70 0.96
Stony 5.2 0.0126 6 0,5 1.73 0.78
Hails 89.4 0.D045 19.9 1.6 2.81 0.71
E Br Pass 35.7 0.004 17.3 1.2 1,72 0.50
Moose 58.6 0.01 19.3 1 3.04 0.97
Moose St 75.2 0.008 32.8 0.9 2.55 0.86
Ammon 119 0.0075 25.7 1 4.63 1.48
E Orange 6.9 0.011 8.4 0.6 1.37 0.56
Mink 6.1 0.016 7.7 0.6 1.32 0.54
Ayers 20.1 0.0021 17.1 2 0.59 0.13
White 487.8 0.0012 86.8 4.1 1.37 0.22
Williams 113.S 0.003 37 1.2 2.56 0.75
Saxtons 73.3 0.004 19.1 0.7 5.48 2.09
Cold 55.5 0.011 21.2 1 2.62 0.84
3 BrAshu 26.6 0.0154 9.6 0.5 5.54 2.50
Batten 90.5 0.0024 32.S 1.4 1.97 0.53
Dog 88.7 0.0036 24.8 2.3 1.56 0.33
Mad 161.7 0.0013 40 1.8 2.25 0.53
Misslsq 287.9 0.001 56 2.8 1.84 0.35
Black 58.2 0.0024 18.4 1.7 1.86 0.46
Paradise Creek near Paradise KS 35.81 0.001 9.75 2.38 1.59 0.33
North Fork Solomon River near Downs, KS 226.5 0.0006 24.99 2.62 3.46 0.58
Prairie Dog Creek at Norton KS 73.61 0.0005 13.72 1.8S 2.84 0.66
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River Name
Water 
surface 

Discharge slope 
(m^/s) (m/m)

Channel
width
(m)

Average
Channel
Depth
(m)

Average
Channel
Velocity
(m/s)

Froude
Number

Sappa Creek s t  Stamford NE 50.96 0.0013 13.11 1.83 2.12 0.50
Sappa Creek a t  Beaver city NE 38.22 0.003 7.92 1.92 2.51 0.58
Beaver Creek a t Beaver City NE 28.31 0.001 12.19 1.37 1.70 0.45
Beaver Creek a t Lude!! KS 12.74 0.001 8.53 2.44 0.61 0.13
Frenchman C reek at Hamiet, NE 24.07 0.0013 10.97 1.93 1,11 0.25
Blackwood C reek at Culbertson, NE 19.54 0.0021 8.23 2,56 0.93 0.19
Red Willow Greek near Red Willow, NE 62.85 0.001 13.72 2.16 2.12 0.4S
South Loup River near Cumro, NE 53.89 0.003 43.58 2.22 0.61 0.13
White River a t  Interior. SD 308.61 0.002 89.3 1.77 1.95 0.47
Cheyenne River a t Edgemont, SD 103.62 0.0025 67.36 1.52 101 0.26
Smoky Hili River near Russel, KS 226.5 0.00066 35.05 1.07 S.04 1.87
Smoky Hill River near Danopolis, KS 260.48 O.QOQ5 28.04 1.S8 5.53 1.36
Smoky Hill River near Junction city , KS 368.06 0.0004 46.63 1.52 5.19 1.35

Kansas River a t Wamego, KS 1104.19 0.0008 193.84 3.05 187 0.34
Kansas River near topeka, KS 1359 0.0005 243.83 5.49 102 0.14
Arikaree River at Haigler. NE 99.09 0.002 20.73 0.31 5.25 176
S. F. Republican River near Benkleman, NE 127.41 0.002 30.48 0.7 5,97 2.28
Republican river near Benkleman, NE 61.58 0.003 37.49 0.76 2.16 0.79
Republican River near Bostwick, NE 339.75 0.0008 46.94 1.52 4.76 123
Republican River at Concordia, KS 363.06 0.0007 76.2 1.52 3.18 0.82
Republican River at Junction City . KS 424.69 0.0007 9144 1.98 2.35 0.53
South Fork powder River near Kaycee, WY 110.42 0.004 36.27 0.7 4.35 1 6 6
Middle Fork Powder River above Kaycee WY 16.25 0.005 10.67 0.76 2.00 0.73
Middle Fork Powder River near Kaycee. WY 46.15 0.0015 14.32 1.34 2.41 0.66
Owl Creek near Thermopolis , WY 16.56 0.0015 10.67 1.19 130 0.38
Gooseberry Creek at Pulliam, WY 8.81 0.006 17.98 0.73 0.67 0.25
Greybull River near Basin.WY SS.9 0.0015 40.84 0.94 2.32 0.76
Bates Creek near Alcova, WY 14.16 0.0035 21.03 0.85 0.79 0.27
Powder River at Moorhead, MT 210.93 0.0016 64.61 122 2.68 0.77
Red Fork at Barnum WY 18.12 0.005 10.67 0.76 2.23 0.82
Tongue River near Acme, WY 97.68 0.002 30.48 1.31 2.45 0.68
Horseshoe Creek near Glendo, WY 14.86 0,0025 19.51 0.82 0.93 0.33
Smoky Hilt River near Elkader, KS 84.94 0.006 152.39 122 0.46 0.13
Republican River near Naponee, KS 321.35 0.0007 38.71 1.37 6.06 165

Powder River near Sussex, WY 165.63 0.0008 53.95 1.13 2.72 0.82
Powder River near Arvada WY 243.49 0.0007 51.81 137 3.43 0.94
Missouri Landusky 850 0.00049 190 6.33 0.71 0.09
Missouri Culbertson 683 0.00016 320 10.7 0.20 0.02
Yellowstone Corwin 487 0.0023 82.3 3.05 194 0.35
Yellowstone Livngston 584 0.0027 88.4 3.66 1.81 0.30
Bighorn Bighorn 407 0.00045 82.3 3.2 155 0.28
Yellowstone Miles City 1544 0.00058 219 7.3 0.97 0.11
Missouri at Sioux City 963 0.00021 350 17 0.16 0.01
Missouri Omaha 1811 0.00016 290 116 0.54 0.05
Middle Loup S t  Paul 235 0.001 134 1.07 1.64 0.51
North Loup Ord 75.1 0.0013 75.6 0.98 1.01 0.33
North Loup S t  Paul 181 0.0011 85.3 1.52 1.40 0.36
Elkhorn Norfolk 108 0.00069 80.8 1.01 132 0.42
Missouri Nebraska City 2554 0.00024 270 10 0.95 0.10
Missouri St. Joseph 2790 0.00021 270 10 1.03 0.10
Kansas Wamego 1080 0.00025 223 11 0.44 0.04
Kansas Topeka 1312 0.00027 159 8 103 0.12
Kansas Lecompton 1561 0.00027 171 8.5 1.07 0.12
Kansas DeSoto 1420 0.00034 165 8.5 1.01 0.11
Missouri Waverly 3200 0.00015 320 13 0.77 0.07
Thompson Trenton 640 0.00076 82.3 2.13 3.65 O.SO
Missouri Booneville 2148 0.00016 430 17.2 0.29 0.02
Missouri Herman 4941 0.00013 424 17 0.69 0.05
ColumbiaVenita 11494.9 0.00019 529.4 8.53 2.55 0.28
Indian fork 21.7 0.00028 15.8 165 0.83 0.21
Champiin 67.7 0.0035 23.8 137 2.08 0.57
Clark Fork 1950.7 0.00073 130.8 5 2.98 0.43
Clark Fork 891.8 0.00125 88.4 3.9 2.59 0.42
Columbia 28312.6 0.00026 510.8 16.79 3.30 0.26
Esopus 393.5 0.0034 89.3 168 2.62 0.65
Salt Cr. 52.7 0,00056 22.9 2.07 111 0.25
Blackfoot 232.2 0.0023 59.1 1.86 2.11 0.49
Coer d'Alene 319.9 0.0025 49.4 2.41 2.69 0.55
Rio Chama 30 0.0012 27.4 104 105 0.33
Salt 36.2 0.0019 57.9 0.67 0.93 0.36

Source

Osterkamp and 
Hedman, 1932.

B arnes, 1967
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River Narr.e
Discharge 
(rr?ls)

Water
surface
slope
(m/m)

Channel 
width 
(m)

Average
Channel
Depth
(m)

Average
Channel
Velocity
(m/s)

Froude
Number

Source

Beaver Kill
Clearwater
Etowah
WF Bitteroot
Yakima
MF Vermiliorf
Weneatchee
Moyie
Spokane
Tobesfokee
Bull Or
NF Flathead
Middle Oconee
Beaver Or
Catherine Cr
Chlwawa
Esopus
Grande Ronde 
Murder Or 
Provo
S Beaverdam 
Deep 
Clearer 
Chattahoochee 
SF Clearwater 
EB Ausable 
MB Westfield 
Mission Cr 
NF Cedar 
Merced 
Pond Cr 
Boundary 
Amazon

438.8 
2802.9

S4
109.9
754.3
45.9

542.7
227.3 

1121.2
71.9
91.2

410.5 
173

45.3
49.3

166.5
393.5
130.8
23.8 

34
23.2 
235

39.1
144.4 
356.7
220.6

96.3 
3.5

28.2 
55.2
41.9 
71.6

283170

0.0034
0.00073
0.00066

0,0046
0.003

0.0031
0.0024
0.0036
0.0Q1S

0.00077
0.0012
0.0036

0.00047
0.0012
Q.0D67
0-0052
0.0045
0.0053
0.0027
0.0089
0.0016

0.00077
0.0168
0.0024
0.0063
0.0056
0.0087
0.0169
0.0237
0.013

0.00064
0.0187

0.000013

8.3
171.9

19.5
32

67.4
35.7
70.1
44.8
89.9 

25
32.9
55.5 

43
14.9
17.4 
41.8 
54.3
34.7
13.7
15.5
18.6
66.7
15.2
44.8
46.3
46.6
35.3

6.4
18.6 
21.6
31.4 
25.6 
3870

2.26
S

2.96
1.46 
3.57 
1.01 
3.26 
2.16 
4.45 
2.74 
2.19 
2.68 
3.32 
2.65 
1.2S
1.71 
2.53 
1.62

1.4 
1.07

1.4 
3.17 
1.16 
2.35
2.71 
2.16
1.34 
0.43 
0.79 
1.31
2.47
1.34 

33

2.84 
2.72 
1.11
2.35
3.26
1.27 
2.81
2.35 
2.80
1.05
1.27 
2.7S 
1.21 
1.15 
2.21
2.33 
2.86
2.33 
1.24
2.05 
0.89 
1.11 
2.22 
1.37
2.84 
2.19 
1.98
1.27 
1.92 
1.95 
0.54 
2.09 
2.22

0.60
0.35
0.21
0.62
0.55
0.40
0.50
0.51
0.42
0.20
0.27
0.54
0.21
0.23
0.62
0.57
0.58
0.58
0.34
0.63
0.24
0.20
0.66
0.29
0.55
0.48
0.55
0.62
0.69
0.54
0.11
0.58
0.12 Dury, 1976*

Reference
‘Discharge Prediction, Present and Future from Channel Dimensions, Journal of Hydrology vol. 30 pg. 219-245.
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Appendix 4 - Prandtl-von Karmen Synthetic River Channel Data Base
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Tabi® A4 - P ra n d tl von-Karmen Synthetic River Cliannei Data Base

Channel D ata Scalars Estimateti Data
Channel C hannel Channel Roughness

integral
Top Mean Mean Froude

Width S lope  Max Depth Height Max Y‘ Distance Discharge Width Depth Velocity Num ber
Wm S ks Y X Q‘ Q W Y V F
(m) (m/m) (m) (m) (m) (m) (m^) (m^/s) (m) (m) (m/s)

30 0.008 1.47 0.0210 0.15 4.7 0.31 0.14 9.5 0.10 0.15 0.15
30 0.008 1.47 0.0210 0.29 6.7 1.79 1.11 13.4 0.20 0.42 0.30
30 0.008 1.47 0.0210 0.44 8.2 4.27 3.24 16.4 0.29 0.67 0.39
30 0.008 1.47 0.0210 0.59 9.5 7.64 6.70 19.0 0.39 0.90 0.46
30 0.008 1.47 0.0210 0.74 10.6 11.84 11.60 21.2 0.49 1.12 0.51
30 0.008 1.47 0.0210 0.88 11.6 16.81 18.04 23.2 0.59 1.32 0.55
30 0.008 1.47 0.0210 1.03 12.5 22.51 26.10 25.1 0.69 1.52 0.58
30 0.008 1.47 0.0210 1.18 13.4 28.90 35.83 26.8 0.78 1.70 0.61
30 0.008 1.47 0.0210 1.32 14.2 35.97 47.29 28.5 0.88 1.88 0.64
30 0.008 1.47 0.0210 1.47 15.0 43.67 60.53 30.0 0.98 2.05 0.66
30 0.004 1.74 0.0156 0.17 4.7 0.62 0.21 9.5 0.12 0.19 0.18
30 0.004 1.74 0.0156 0.35 6.7 2.83 1.35 13.4 0.23 0.43 0.29
30 0.004 1.74 0.0156 0.52 8.2 6.36 3.71 16.4 0.35 0.65 0.35
30 0.004 1.74 0.0156 0.69 9.5 11.05 7.44 19.0 0.46 0.85 0.40
30 0.004 1.74 0.0156 0.87 10.6 16.82 12.66 21.2 0.58 1.03 0.43
30 0.004 1.74 0.0156 1.04 11.6 23.58 19.45 23.2 0.69 1.21 0.46
30 0.004 1.74 0.0156 1.22 12.5 31.28 27.87 25.1 0.81 1.37 0.49
30 0.004 1.74 0.0156 1.39 13.4 39.87 37.98 26.8 0.93 1.53 0.51
30 0.004 1.74 0.0155 1.56 14.2 49.32 49.84 28.5 1.04 1.68 0.53
30 0.004 1,74 0.0156 1.74 15.0 69.60 63.47 30.0 1.16 1.83 0.54
30 0.002 2.06 0.0108 0.21 4.7 1.08 0.28 9.5 0.14 0.22 0.19
30 0.002 2.05 0.0108 0.41 6.7 4.32 1.58 13.4 0.27 0.43 0.26
30 0.002 2.05 0.0108 0.62 8.2 9.31 4.17 16.4 0.41 0.62 0.31
30 0.002 2.05 0.0108 0.82 9.5 15.82 8.19 19.0 0.55 0.79 0.34
30 0.002 2.05 0.0108 1.03 10.6 23.73 13.74 21.2 0.68 0.95 0.37
30 0.002 2.05 0.0108 1.23 11.6 32.94 20.88 23.2 0.82 1.10 0.39
30 0.002 2.05 0.0108 1.44 12.5 43.36 29.69 25.1 0.96 1.24 0.40
30 0.002 2.05 0.0108 1.64 13.4 54.93 40.21 26.8 1.09 1.37 0.42
30 0.002 2.05 0.0108 1.85 14.2 67.61 52.49 28.5 1.23 1.50 0.43
30 0.002 2.05 0.0108 2.05 15.0 81.34 66.57 30.0 1.37 1.62 0.44
50 0.005 2.01 0.0189 0.20 7.9 1.15 0.47 15,8 0.13 0.22 0.19
50 0.005 2.01 0.0139 0.40 11.2 5.35 3.07 22.4 0.27 0.51 0.31
50 0.005 2.01 0.0189 0,60 13.7 12.06 8.47 27.4 0.40 0.77 0.39
50 0.005 2.01 0.0189 0.81 15.8 21.01 17.05 31.6 0.54 1.00 0.44
50 0.005 2.01 0.0189 1.01 17.7 32.01 29.04 35.4 0.67 1.22 0.48
50 0.005 2.01 0.0189 1.21 19.4 44.93 44.64 38.7 0.81 1.43 0.51
50 0.005 2.01 0.0189 1.41 20.9 59.65 64.01 41.8 0.94 1.63 0.54
50 0.005 2.01 0.0189 1.61 22.4 76.08 87.29 44.7 1.07 1.82 0.56
50 0.005 2.01 0.0189 1.81 23.7 94.16 114.58 47.4 1.21 2.00 0.58
50 0.005 2.01 0.0189 2.01 25.0 113.82 146.00 50.0 1.34 2.17 0.50
50 0.002 2.51 0.0115 0.25 7.9 2.38 0.68 15.S 0.17 0.26 0.20
60 0.002 2.51 0.0115 0.50 11.2 9.34 3.78 22.4 0.33 0.51 0.28
50 0.002 2.51 0.0115 0.75 13.7 19.94 9.89 27.4 0.50 0.72 0.32
50 0.002 2.51 0.0115 1.00 15.8 33.74 19.33 31.6 0.67 0.91 0.35
50 0.002 2.51 0.0115 1.26 17.7 50.46 32.31 35.4 0.84 1.09 0.38
50 0.002 2.51 0.0115 1.51 19.4 69.88 49.01 38.7 1.00 1.26 0.40
50 0.002 2.51 0.0115 1.76 20.9 91.83 69.57 41.8 1.17 1.42 0.42
50 0.002 2.51 0.0115 2.01 22.4 116.19 94.11 44.7 1.34 1.57 0.43
50 0.002 2.51 0.0115 2.26 23.7 142.85 122.72 47.4 1.51 1.72 0.45
50 0.002 2.51 0.0115 2.51 25.0 171.72 155.50 50.0 1.67 1,86 0.45
50 0.001 2.95 0.0072 0.30 7.9 3.82 0.64 15.8 0,20 0.27 0.19
50 0.001 2.96 0.0072 0.59 11.2 13.86 4.31 22.4 0.40 0.49 0.25
50 0.001 2.95 0.0072 0.89 13.7 28.75 10.95 27.4 0.59 0.67 0.28
50 0.001 2.96 0.0072 1.19 15.S 47.85 21.06 31.6 0.79 0.84 0.30
50 0.001 2.96 0.0072 1.48 17.7 70.78 34.83 35.4 0.99 1.00 0.32
50 0.001 2.96 0.0072 1.78 19.4 97.23 52.41 38.7 1.19 1.14 0.33
50 0.001 2.96 0.0072 2.08 20.9 126.98 73.93 41.8 1.38 1.28 0.35
50 0.001 2.96 0.0072 2.37 22.4 159.86 99.50 44.7 1.58 1.41 0.36
50 0.001 2.95 0.0072 2.67 23.7 195.72 129.21 47.4 1.78 1.53 0.37
50 0.001 2.96 0.0072 2.96 25.0 234.44 163.14 50.0 1.98 1.65 0.38

100 0.0D2 3.30 0.0125 0.33 15.8 6.95 2.28 31.6 0.22 0.33 0.22
100 0,002 3.30 0.0125 0.66 22.4 26.49 12.30 44.7 0.44 0.B2 0.30
100 0.002 3.30 0.0125 0.99 27.4 55.99 31.86 54.8 0.66 0.88 0.35
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Channel D ata Scalars Estimated Data
Channel Channel Channel Roughness

Integral’
Top Mean Mean Froude

Width S lope Max Depth Height Max Y’ Distance^ Discharge Width Depth Velocity Num ber
W„ S  Y„ ks Y X Q' Q W Y V F
(m) (m/m) (m) (m) (m) (m) (m^) (m’/s) (m) (m) (m/s)

100 0.002 3.30 0.0125 1.32 31.6 94.22 61.90 63.2 0.88 1.11 0.38
100 0.002 3.30 0.0125 1.65 35.4 140.36 103.10 70.7 1.10 1.32 0.40
100 0.002 3.30 0.0125 1.98 38.7 193.84 155.97 77.5 1.32 1.52 0.42
100 0.002 3.30 0.0125 2.31 41.8 254.21 220.93 83.7 1.54 1.71 0.44
100 0.002 3.30 0.0125 2.64 44.7 321.10 298.34 89.4 1.75 1.89 0.46
100 0.002 3.30 0.0125 2.97 47.4 394.22 388.49 94.9 1.98 2.07 0.47
100 0.002 3.30 0.0125 3.30 50.0 473.32 491.67 100.0 2.20 2.23 0.48
100 0.001 3.90 0.0075 0.39 15.8 10.97 2.77 31.6 0.26 0.34 0.21
100 0.001 3.90 0.0075 0.78 22.4 39.08 13.95 44.7 0.52 0.60 0.27
100 0.001 3.80 0.0075 1.17 27.4 80.46 35.18 54.8 0.78 0.82 0.30
100 0.001 3.90 0.0075 1.56 31.6 133.34 67.32 63.2 1.04 1.02 0.32
100 0.001 3.90 0.0075 1.95 35.4 196.61 110.97 70.7 1.30 1.21 0.34
100 0.001 3.90 0.0075 2.34 38.7 269.46 166.61 77.5 1.56 1.38 0.35
100 0.001 3.90 0.0075 2.73 41.8 351.30 234.62 83.7 1.82 1.54 0.36
100 0.001 3.90 0.0075 3.12 44.7 441.64 315.31 89.4 2.08 1.69 0.38
100 0.001 3.90 0.0075 3.51 47.4 540.06 408.97 94.9 2.34 1.84 0.38
100 0.001 3.90 0.0075 3.90 50.0 646.22 515.83 100.0 2.60 1.98 0.39
100 0.0005 4.61 0.0041 0.46 15.8 16.72 3.24 31.6 0.31 0.33 0.19
100 0.0005 4.61 0,0041 0.92 22.4 56.82 15.59 44.7 0.61 0.57 0.23
100 0.0005 4.61 0.0041 1.38 27.4 114.61 38.51 54.8 0.92 0.76 0.25
100 0.0005 4.61 0.0041 1.84 31.6 187.64 72.79 63.2 1.23 0.94 0.27
100 O.OOOS 4.61 0.0041 2.30 35.4 274.34 118.99 70.7 1.54 1.10 0.28
100 0.0005 4.61 0.0041 2.76 38.7 373.65 177.53 77.5 1.84 1.24 0.29
100 0.0005 4.61 0.0041 3.22 41,8 484.71 248.75 83.7 2.15 1.38 0.30
100 0.0005 4.61 0.0041 3.69 44.7 606.88 332.95 89.4 2.46 1.52 0.31
100 0.0005 4.61 0.0041 4.15 47.4 739.60 430.38 94.9 2.76 1.64 0.32
100 0.0005 4.61 0.0041 4.61 50.0 882.41 541.26 100.0 3.07 1.76 0.32
200 0.0012 4.91 0.0091 0.49 31.6 28.05 8.70 63.2 0.33 0.42 0.23
200 0.0012 4.91 0.0091 0.98 44.7 99.64 43.73 89.4 0.66 0.75 0.29
200 0.0012 4.91 0.0091 1.47 54.8 204.88 110.12 109.5 0.98 1.02 0.33
200 0.0012 4.91 0,0091 1.97 63.2 339.27 210.57 126.5 1.31 1.27 0.35
200 0.0012 4.91 0.0091 2.46 70.7 499.98 346.94 141.4 1.64 1.50 0.37
200 0.0012 4.91 0.0091 2.95 77.5 685.00 520.70 154.9 1.97 1.71 0.39
200 0.0012 4.91 0.0091 3.44 83.7 892.77 733.01 167.3 2.29 1.91 0.40
200 0.0012 4.91 0.0091 3.93 89.4 1122.05 984.87 178.9 2.62 2.10 0.41
200 0.0012 4.91 0.0091 4.42 94.9 1371.82 1277.14 189.7 2.95 2.28 0.42
200 0.0012 4.91 0.0091 4.91 100.0 1541.21 1610.59 200.0 3.28 2.46 0.43
200 0.0006 5.80 0.0049 0.58 31.6 42.70 10.18 63.2 0.39 0.42 0.21
200 0.0006 5.80 0.0049 1.16 44.7 144.76 48.82 89.4 0.77 0.71 0.26
200 0.0006 5.80 0.0049 1.74 54.8 291.72 120.49 109.5 1.16 0.95 0.28
200 0.0006 5.80 0.0049 2.32 63.2 477.28 227.63 126.5 1.55 1.16 0.30
200 0.0006 5.80 0.0049 2.90 70.7 697.54 371.95 141.4 1.93 1.36 0.31
200 0.0006 5.80 0.0049 3.48 77.5 949.72 554.75 154.9 2.32 1.54 0.32
200 0.0006 5.80 0.0049 4.06 83.7 1231.71 777.12 167.3 2.71 1.72 0.33
200 0.0006 5.80 0.0049 4.64 89.4 1541.82 1039.94 178.9 3.09 1.88 0.34
200 0.0006 5.80 0.0049 5.22 94.9 1878.67 1344.00 189.7 3.48 2.03 0.35
200 0.0006 5.80 0.0049 5.80 100.0 2241.08 1690.00 200.0 3.87 2.18 0.35
200 0.0003 5.85 0.0023 0.69 31.6 63.52 11.64 63.2 0.46 0.40 0.19
200 0.0003 5.85 0.0023 1.37 44.7 207.98 53.90 89.4 0.91 0.66 0.22
200 0.0003 6.85 0.0023 2.06 54.8 412.52 130.93 109.5 1.37 0.87 0.24
200 0.0003 6.85 0.0023 2.74 63.2 668.37 244.95 126.5 1.83 1.06 0.25
200 0.0003 6.85 0.0023 3.43 70.7 970.12 397.51 141.4 2.28 1.23 0,26
200 0.0003 6.85 0.0023 4.11 77.5 1313.97 589.79 154.9 2.74 1.39 0.27
200 0.0003 6.85 0.0023 4.80 83.7 1697.04 822.77 167.3 3.20 1.54 0.27
200 0.0003 6.85 0.0023 5.48 89,4 2117.03 1097.26 178.9 3.65 1.68 0.28
200 0.0003 6.85 0.0023 6,17 94.9 2572.08 1413.98 189.7 4.11 1.81 0.29
200 0.0003 6.85 0.0023 6.85 100.0 3060.59 1773.55 200.0 4.57 1.94 0.29
300 0.0008 6.36 0.0065 0.64 47.4 66.39 19.14 94.9 0.42 0.48 0.23
300 0.0008 6.36 0.0065 1.27 67.1 227.21 92.62 134.2 0.85 0.81 0.28
300 0.0008 5.36 0.0055 1.91 82.2 459.78 229.55 164.3 1.27 1.10 0.31
300 0.0008 6.36 0.0065 2.54 94.9 754.15 434.77 189.7 1.70 1.35 0.33
300 0.0008 6.36 0.0065 3.18 106.1 1104.13 711.67 212.1 2.12 1.58 0.35
300 0.0008 6.36 0.0065 3.82 116.2 1505,29 1062.84 232.4 2.54 1.80 0.36
300 0.0008 5.36 0.0065 4.45 125.5 1954.29 1490.43 251.0 2.97 2.00 0.37
300 0.0008 6.36 0.0065 5.09 134.2 2448.45 1996.22 268.3 3.39 2.19 0.38
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Channel D ata
Channel C hannel Channel 
Width S lo p e  Max Depth
Wm S
(m) fm /m ) (m)

Roughness
Height
ks
(m)

Scalars

Max V
Y

.(m)

Distance^
X
(m)

integral^
Q'
(m^)

Estimatee! Data 
Top

Discharge Width 
Q W

(m)

Mean
Depth
Y
(m)

Mean
Velocity
V
(m/s)

Froude
Number
F

300 0.0008 6.36 0.0065 5.72 142.3 2985.54 2581.76 284.6 3.82 2.38 0.39
300 O.OOOS 5.36 0.0065 6.36 150.0 3563.70 3248.43 300.0 4.24 2.55 0.40
300 0.0004 7.51 0.0032 0,75 47.4 99.22 21.98 94.9 0.50 0.46 0.21
300 0.0004 7.51 0.0032 1.50 57.1 327.19 102.49 134.2 1.00 0.76 0.24
300 O.G004 7.51 0.0032 2.25 82.2 651.12 249.81 164.3 1.50 1,01 0.26
300 0.0004 7.61 0.0032 3.00 94.9 1057.12 468.31 189.7 2.00 1.23 0.28
300 0.0004 7.51 0.0032 3.75 106.1 1536.61 761.08 212.1 2.50 1.43 0.29
300 0.0004 7.51 0.0032 4.51 116.2 2083.55 1130.48 232.4 3.00 1.62 0.30
300 0.0004 7.51 0.0032 5.26 125.5 2693.39 1578,44 251.0 3.50 1.79 0.31
300 0.0004 7.51 0.0032 6.01 134.2 3362.45 2106.59 268.3 4.01 1.96 0.31
300 0.0004 7.51 0.0032 6.76 142.3 4087.74 2716.34 284.5 4.51 2.12 0.32
300 0.0004 7.51 0.0032 7.51 150.0 4866.74 3408.93 300.0 5.01 2.27 0.32
300 0.0001 10.47 0.0005 1.05 47.4 210.85 27.58 94.9 0.70 0.42 0.16
300 0.0001 10.47 0.0005 2.09 57.1 661.30 122.32 134.2 1.40 0.65 0.18
300 0.0001 10.47 0.0005 3.14 82.2 1284.67 291.04 164.3 2.09 0.85 0.19
300 0.0001 10.47 0.0005 4.19 94.9 2054.11 537.34 189.7 2.79 1.01 0.19
300 0.0001 10.47 0.0005 5.24 106.1 2953.34 863.77 212,1 3.49 1.17 0,20
300 0.0001 10.47 0.0005 6.28 116.2 3971.02 1272.26 232.4 4.19 1.31 0.20
300 0.0001 10.47 0.0005 7.33 125.5 5098.62 1764.41 251.0 4.89 1.44 0.21
300 0.0001 10.47 0.0005 8.38 134.2 6329.39 2341.56 268.3 5.59 1.56 0.21
300 0.0001 10.47 0.0005 9.43 142.3 7657.83 3004.87 284.6 6.28 1.68 0.21
300 0.0001 10.47 0.0005 10.47 150.0 9079.32 3755.36 300.0 6.98 1.79 0.22
400 0.0007 7.36 0.0057 0.74 63.2 110.84 32.15 126.5 0.49 0.52 0.24
400 0.0007 7.36 0.0057 1.47 89.4 374.34 153.55 178.9 0.98 0.87 0.28
400 0.0007 7.36 0.0057 2.21 109.5 753.07 378.33 219.1 1.47 1.17 0.31
400 0.0007 7.36 0.0057 2.94 126.5 1230.83 714.01 253.0 1.96 1.44 0.33
400 0.0007 7.36 0.0057 3.68 141.4 1797.54 1165.84 282.8 2.45 1.68 0.34
400 0.0007 7.36 0.0057 4.41 154.9 2446.07 1737.87 309.8 2.94 1.91 0.35
400 0.0007 7.36 0.0057 5.16 167.3 3170.97 2433.40 334.7 3.43 2.12 0.37
400 0.0007 7.36 0.0057 5.89 178.9 3967.92 3255.23 357.8 3.92 2.32 0.37
400 0.0007 7.36 0.0057 6.62 189.7 4833.36 4205.75 379.5 4.41 2.51 0.38
400 0,0007 7.35 0.0057 7.36 200.0 5754.25 5287.09 400.0 4.91 2.69 0.39
400 0.0003 9.02 0.0022 0.90 63.2 179.25 37.68 126.5 0.60 0.50 0.20
400 0.0003 9.02 0.0022 1.80 89.4 581.58 172.89 178.9 1.20 0.80 0.23
400 0.0003 9.02 0.0022 2.71 109.5 1148.53 418.16 219.1 1.80 1.06 0.25
400 0.0003 9.02 0.0022 3.61 126.5 1855.79 780.19 253.0 2.40 1.28 0.26
400 0.0003 9.02 0.0022 4.51 141.4 2688.40 1263.63 282.8 3.01 1.49 0.27
400 0.0003 9.02 0.0022 5.41 154.9 3635.87 1872.09 309.8 3.61 1.68 0.28
400 0.0003 9.02 0.0022 6.31 167.3 4690.27 2608.49 334.7 4.21 1.85 0.29
400 0.0003 9.02 0.0022 7.21 178.9 5845.29 3475.31 357.8 4.81 2.02 0.29
400 0.0003 9.02 0.0022 8.12 189.7 7095.77 4474.69 379.5 5.41 2.18 0.30
400 0.0003 9.02 0.0022 9.02 200.0 8437.34 5608.51 400.0 6.01 2.33 0.30
400 0.0001 11.74 0.0005 1.17 63.2 323.41 44.78 126.5 0.78 0.45 0.16
400 0.0001 11.74 0.0005 2.35 89.4 1011.76 198.12 178.9 1.57 0.71 0,18
400 0.0001 11.74 0.0005 3.52 109.5 1963.00 470.78 219.1 2.35 0.92 0.19
400 0.0001 11.74 0.0005 4.70 126,5 3136.14 868.48 253.0 3.13 1.10 0.20
400 0.0001 11.74 0.0005 5.87 141.4 4506.36 1395.23 282.8 3.91 1.26 0.20
400 0.0001 11.74 0.0005 7.04 154.9 6056.38 2054.11 309.8 4.70 1.41 0.21
400 0.0001 11.74 0.0005 8.22 1S7.3 7773.20 2847.64 334.7 5.48 1.55 0.21
400 0.0001 11.74 0.0005 9.39 178.9 9646.57 3777.93 357.8 6.26 1.69 0.22
400 0.0001 11.74 0.0005 10.56 189.7 11668.09 4846.82 379.5 7.04 1.81 0.22
400 0.0001 11.74 0.0005 11.74 200.0 13830.73 6055.93 400.0 7.83 1.93 0.22
500 0.0006 8.34 0.0049 0.83 79.1 169.55 48.48 158.1 0.56 0.55 0.24
500 0.0006 8.34 0.0049 1.67 111.8 565.76 228.75 223.6 1.11 0.92 0.28
500 O.OOOS 8.34 0.0049 2.50 136.9 1131.99 560.56 273.9 1.37 1.23 0.30
500 0.0006 8.34 0.0049 3.34 158.1 1843.98 1054.41 316.2 2.22 1.50 0.32
500 0.0006 8.34 0.0049 4.17 176.8 2686.72 1717.62 353.6 2.78 1.75 0.33
500 0.0006 8.34 0.0049 5.00 193.6 3649.58 2555.87 387.3 3.34 1.98 0.35
500 0.0006 8.34 0.0049 5.84 209.2 4724.49 3573.76 418.3 3.89 2.19 0.36
500 O.OOOS 8.34 0.0049 6.67 223,6 5905.05 4775.19 447.2 4.45 2.40 0.36
500 0.0006 8.34 0.0049 7.51 237.2 7185.96 5163.50 474.3 5.00 2.60 0.37
500 0.0006 8.34 0.0049 8.34 250.0 8562.77 7741.69 500.0 5.56 2.7S 0.38
500 0.0003 9.85 0.0022 0.99 79.1 250.27 54.98 158.1 0.56 0.53 0.21
500 0.0003 9.85 0.0022 1.97 111.8 809.66 251.56 223.5 1.31 0.86 0.24
500 0.0003 9.85 0.0022 2.96 136.9 1596.81 607.64 273.9 1.97 1.13 0.26
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(m)

inel D ata
inel C iiannei Channei 
h S lo p e  Max Depth 

S  Yn,
(m /m ) (m)

Roughness
Height
l<s
(m)

Scalars

MaxY'
Y

Distance^
X
(m)

Integral®
Q'

Estimated

Discharge
Q
(m®/s)

Data
Top
Width
W
(m)

Mean
Depth
y
(m)

Mean
Velocity
V
(m/s)

Froude
N um ber
F

500 0.0003 9.85 0.0022 3.94 158.1 2577.94 1132.75 315.2 2.63 1.36 0.27
500 0.0003 9.85 0.0022 4.93 176.8 3732.31 1833.55 353.6 3.28 1.58 0.28
600 0.0003 9.85 0.0022 6.91 193.6 5045.36 2715.18 337.3 3.94 1.78 0.29
500 0.0003 9.85 0.0022 5.90 209.2 6506.11 3781.82 418.3 4.60 1.97 0.29
500 0.0003 9.85 0.0022 7.88 223.6 8105.80 5036.99 447.2 5.25 2.14 0,30
500 0.0003 9.85 0.0022 8.87 237.2 9837.30 5483.76 474.3 5.91 2.31 0.30
500 0.0003 9.85 0.0022 9.85 250.0 11694.56 8124.82 500.0 6.57 2.47 0.31
500 0.0001 12.32 0.0005 1.28 79.1 450.61 65.21 158.1 0.85 0.48 0,17
500 0.0001 12.82 O.OOOS 2.56 111.8 1407.01 287.96 223.6 1.71 0.75 0.18
500 0.0001 12.82 0.0005 3.85 136.9 2727.22 683.61 273.9 2.55 0.97 0.19
500 0.0001 12.82 0.0005 5.13 158.1 4354.37 1260.32 316.2 3.42 1.17 0.20
500 0.0001 12.82 0.0006 6.41 176.8 6254.02 2023.80 353.6 4.27 1.34 0.21
500 0.0001 12.82 O.OOOS 7.69 193.6 8402.20 2978.47 387.3 S.13 1.50 0.21
500 0.0001 12.82 0.0005 8.98 209.2 10780.92 4127.90 418.3 5.98 1.65 0.22
500 0.0001 12.82 0.0005 10.26 223.6 13375.95 5475.12 447.2 6.84 1.79 0.22
500 0.0001 12.82 0.0005 11.54 237.2 15175.68 7022.76 474.3 7.69 1.92 0.22
500 0.0001 12.82 0.0005 12.82 250.0 19170.34 8773.12 500.0 8.55 2.05 0.22
750 0.0005 10.23 0,0040 1.02 118.6 345.65 99.91 237.2 0.58 0.62 0.24
750 0.0005 10.23 0.0040 2.05 167.7 1136.22 464.49 335.4 1.36 1.02 0.28
750 0.0005 10.23 0.0040 3.07 205.4 2257.79 1130.43 410.8 2.05 1.34 0.30
750 0.0005 10.23 0.0040 4.09 237.2 3662.26 2117.28 474.3 2.73 1.64 0.32
750 0.0005 10.23 0.0040 5.12 265.2 5319.96 3438.68 530.3 3.41 1.90 0.33
750 0.0005 10.23 0.0040 6.14 290.5 7210.02 5105.18 580.9 4.09 2.15 0.34
750 0.0005 10.23 0.0040 7.16 313.7 9316.60 7125.33 627.5 4.77 2.38 0.35
750 0.0005 10.23 0.0040 8.19 335.4 11627.11 9506.39 670.8 5.46 2.60 0.36
750 0.0005 10.23 0.0040 9.21 355.8 14131.20 12254.60 711.5 6.14 2.81 0.36
750 0.0005 10.23 0.0040 10.23 375.0 16820.17 15375.49 750.0 6.82 3.01 0.37
750 0.0002 12.75 0.0012 1.27 118.6 571.12 116.55 237.2 0.85 0.58 0.20
750 0.0002 12.75 0.0012 2.55 167.7 1812.96 523.22 335.4 1.70 0.92 0.22
750 0.0002 12.75 0.0012 3.82 205.4 3542.96 1252.30 410.8 2.55 1.20 0.24
750 0.0002 12.75 0.0012 5.10 237.2 5685.70 2320.98 474.3 3.40 1.44 0.25
750 0.0002 12.75 0.0012 6.37 265.2 8198.86 3741.27 530.3 4.25 1.66 0.26
750 0.0002 12.75 0.0012 7.65 290.5 11047.73 5522.43 580.9 5.10 1.86 0.26
750 0.0002 12,75 0.0012 8.92 313.7 14209,47 7672.00 627.5 5,95 2.05 0.27
750 0.0002 12.75 0.0012 10.20 335.4 17665.16 10196.34 670.8 6.80 2.24 0.27
750 0.0002 12.75 0.0012 11.47 355.8 21399.33 13100.96 711.5 7.65 2.41 0.28
750 0.0002 12.75 0.0012 12.75 375.0 25399.00 16390.72 750.0 8.50 2.57 0.28
750 0.0001 15.06 0.0004 1.51 118.6 823.07 129.07 237.2 1.00 0.54 0.17
750 0.0001 15.06 0.0004 3.01 167.7 2561.35 568.03 336.4 2.01 0.84 0.19
750 0.0001 15.06 0.0004 4.52 205.4 4956.27 1346.19 410.8 3.01 1.09 0.20
760 0.0001 15.06 0.0004 6.02 237.2 7904.62 2479.14 474.3 4.01 1.30 0.21
750 0.0001 15.06 0.0004 7.53 265.2 11343.99 3977.78 530.3 5.02 1.49 0.21
750 0.0001 15.06 0.0004 9.03 290.6 15231.00 5850.52 580.9 6.02 1.67 0.22
750 0.0001 15.06 0.0004 10.54 313.7 19533.07 8104.19 627.5 7.03 1.84 0.22
750 0.0001 15.06 0.0004 12.04 335.4 24224.47 10744.58 670.8 8.03 1.99 0.22
750 0.0001 15.06 0.0004 13.55 355.8 29284.19 13776.58 711.5 9.03 2.14 0.23
750 0.0001 15.06 0.0004 15.06 375.0 34694.63 17204.91 750.0 10.04 2.29 0.23

1000 0.0003 12.96 0.0021 1.30 158.1 704.90 177.65 316.2 0.86 0.65 0.22
1000 0.0003 12.96 0.0021 2.59 223.6 2261.63 805.07 447.2 1.73 1.04 0.25
1000 0.0003 12.96 0.0021 3.89 273.9 4442.74 1939.30 547.7 2.59 1.37 0.27
1000 0.0003 12.96 0.0021 5.18 316.2 7154.50 3606.15 632.5 3.46 1.55 0.28
1000 0.0003 12.96 0.0021 6.48 353.6 10339.58 5826.69 707.1 4.32 1.91 0.29
1000 0.0003 12.96 0.0021 7.78 387.3 13957.85 8616.45 774.5 5.18 2.15 0.30
1000 0.0003 12.96 0.0021 9.07 418.3 17978.97 11988.04 836.7 6.05 2.37 0.31
1000 0.0003 12.95 0.0021 10.37 447.2 22378.92 15952.11 894.4 6.91 2.58 0.31
1000 0.0003 12.96 0.0021 11.67 474.3 27137.99 20517.91 948.7 7.78 2.78 0.32
1000 0.0003 12,96 0.0021 12.96 500.0 32239.62 25693.55 1000.0 8.64 2.97 0.32
1000 0.0001 16.87 0.0004 1.69 158.1 1261.79 209.47 316.2 1.12 0.59 0.18
1000 0.0001 15.87 0.0004 3.37 223.6 3917.55 919.72 447.2 2.25 0.91 0.19
1000 0.0001 16,87 0.0004 5.06 273.9 7571.71 2177.12 547.7 3.37 1.18 0.20
1000 0.0001 10.87 0.0004 6.75 316.2 12066.73 4006.34 632.5 4.50 1.41 0.21
1000 0.0001 16.87 0.0004 8.44 353.6 17307.48 6424.61 707.1 5.62 1.62 0.22
1000 0.0001 16.87 0.0004 10.12 387.3 23227.84 9445.23 774.6 6.75 1.81 0.22
1000 0.0001 16.87 0.0004 11.81 418.3 29778.18 13079.02 835.7 7.37 1.99 0.23
1000 0,0001 16.87 0.0004 13.50 447.2 36919.33 17335.12 894.4 9.00 2.15 0.23
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Channei Data 
Channei C hannel
Width S iope
W„, S
(m)______ (m/fn)

Channei 
Max Depth 
Ym
(m)_____

Roughness
Height

M .

Max Y Distance

EsUmated Data 
Top 
Width 
W

Discharge
Q

M ean M ean F ro u d e
D epth Velocity N u m b er
Y V F

(m) (m) (m/s)
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

30
30
30
30
30
30
30
30
30
30

500
500
500

0.0001
0.0001

0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00008
0,00008
0,00008
0.00008
0.00008
0.00008
0.00008
0.00008
0.00008
0.00008
0.00004
0.00004
0.0DD04
0.00004
0,00004
0.00004
0.00004
0.00004
0.00004
0.00004
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00002
0.00002
0.00002
0.00002
0.00002
0.00002
0.00002
0.00002
0.00002
0.00002

0.01
0.01
0.01
0,01
0.01
0.01
0.01
0.01
0.01
0.01

0.00005
D.00005
D.00005

16.87
16.87
19.93
19.93
19.93
19.93
19.93
19.93
19.93
19.93
19.93 
19.33
20.90
20.90
20.90
20.90
20.90
20.90
20.90
20.90
20.90
20.90
24.68
24.68
24.68
24.68
24.68
24.68
24.68
24.68
24.68
24.68 
26.22 
26.22 
26.22
25.22
26.22
25.22
26.22
25.22
26.22 
26.22
32.67
32.67
32.67
32.67
32.67
32.67
32.67
32.67
32.67
32.67

1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39
1.39

15.14
15.14
15.14

0.0004
0.0004
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0002
0,0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
o.oooo'
0.0000
0.0000
0.0000
0.0227
0.0227
0.0227
0.0227
0.0227
0.0227
0.0227
0.0227
0.0227
0.0227
0.0001
0.0001
0.0001

15.19
16.87

1.99
3.99
5.95 
7.97
9.96 

11.96 
13.95 
15.94
17.93
19.93 
2.09 
4.18
6.27 
8.36

10.45
12.54
14.63
16.72 
18.81 
20.90

2.47
4.94
7.41
9.B7

12.34 
14.81 
17.28 
19.75 
22.22 
24.68

2.62
5.24
7.87 

10.49 
13.11
15.73
18.35 
20.98
23.60 
26.22

3.27
6.53 
9.80

13.07
16.33
19.60 
22.87 
26.14 
29.40 
32.67

0.14
0.28
0.42
0.56
0.70
0.84
0.98
1.11
1.25 
1.39 
1.51 
3.03
4.54

474.3
500.0
158.1
223.6 
273.9
316.2
353.6
387.3
418.3
447.2
474.3
500.0
237.2
335.4
410.8
474.3
530.3
580.9
627.5
670.8
711.5
750.0
237.2
335.4
410.8
474.3
530.3
580.9
627.5
670.8
711.5
750.0
316.2
447.2
547.7
632.5
707.1
774.5
836.7
894.4
948.7 

1000.0
316.2
447.2
547.7
632.5 
707.1
774.6
836.7 
894.4
948.7 

1000.0
4.7
6.7 
8.2 
9.5

10.6
11.6
12.5
13.4
14.2
15.0
79.1

111.8
136.9

44619.32
52851.34 

1799.54 
5501.67

10549.74
16725.79
23899.03 
31978.91 
40897.69
50602.03 
61048.46 
72200.53

2583.35
7954.72

15310.02
24331.90
34829.34
46669.90 
59754.28
74004.25 
89356.00

105755.07 
3670.16 

11145 
21298.72 
33689.76 
48056.57 
64217.82 
82037.95

101410.41
122248.41
144479.41 

5021.98
15288.02 
29250.49
46306.26
66094.02
88364.04 

112929.53
139643.60
168386.60 
199058.45

7923.21
23760.48
45101.85
71023.93

100977.23 
134583.52 
171560.89 
211688.19 
254785.65
300703.23 

0.23 
1.53 
3.74 
6.77

10.56
15.05 
20.23
26.05 
32.48 
39.51

644.37
1979.02
3803.84

22221.44
27744.96 

229.55 
992.54

2330.98
4267.30 
6817.13 
9992.54

13803.35
18257.85
23363.22
29125.78

426.92
1859.12
4382.33
8042.19

12870.59
18892.12 
26126.81
34591.55
44300.97
55267.98 

466.08
2001.75
4684.80
8556.67

13646.29
19975.98 
27563.90 
36425.41
46573.77
58020.59 

734.88
3163.78
7413.69

13552.21
21626.58
31673.19
43721.71
57797.17
73921.26 
92113.06

818.51
3471.31 
8070.09

14574.32
23325.55
34055.78
46891.13
61853.60
78962.27 
98233.92

0.11
1.03
3.09
6.46

11.26
17.60
25,54
35.15
46.49
59.62
71.66

311.24
732.68

948.7 
1000.0
316.2
447.2
547.7
532.5
707.1
774.6
836.7
894.4
948.7 

1000.0
474.3
670.8 
821.6
948.7 

1060.7
1161.9
1255.0
1341.6
1423.0
1500.0
474.3
670.8
821.5 
948.7

1060.7
1161.9
1255.0 
1341.6
1423.0
1500.0

632.5
894.4 

1095.4
1264.9
1414.2
1549.2
1673.3
1788.9
1897.4
2000.0

632.5 
894.4

1095.4
1264.9
1414.2
1549.2
1673.3
1788.9
1897.4 
2000.0

9.5
13.4
15.4
19.0 
21.2 
23.2
25.1 
26.8
28.5 
30.0

158.1
223.6
273.9

10.12 
11.25 

1.33 
2.66
3.99 
5.31
6.64
7.97 
9.30

10.63
11.95
13.28

1,39
2.79
4.18
5.57
6.97
8.36
9.75

11.15 
12.54 
13.93

1.65 
3.29 
4.94
6.58
8.23 
9.87

11.52
13.16 
14.81 
16.46

1.75 
3.50
5.24
6.99 
8.74

10.49
12.24 
13.98 
16.73 
17.48

2.18
4.36 
6.53 
8.71

10.89
13.07
15.25 
17.42 
19.60 
21.78

0.09
0.19
0.28
0.37
0.46
0.56
0.65
0.74
0.84
0.93
1.01
2.02
3.03

2.31
2.47 
0.55 
0.84 
1.07
1.27 
1.45 
1.62 
1.77 
1.92
2.05 
2.19 
0.65 
0.99
1.28
1.52
1.74
1.94
2.13
2.31
2.48 
2.64 
0.60 
0.91 
1.16 
1.37
1.55
1.74 
1.91
2.06 
2.21
2.35 
0.66 
1,01 
1.29
1.53
1.75
1.95
2.14
2.31
2.48
2.53 
0.59 
0.89
1.13 
1.33 
1.51 
1.58 
1.84 
1.98 
2.12 
2.26 
0.13 
0.41 
0.67 
0.92
1.14
1.36
1.56
1.76
1.95
2.14 
0.45 
0.69 
0.88

0.23
0.23
0.15
0.16
0.17
0.18
0.18
0.18
0.19
0.19
0.19
0.19
0.17
0.19
0.20
0.21
0.21
0.21
0.22
0.22
0,22
0.23
0.15
0.16
0.17
0.17
0.17
0.18
0.18
0.18
0.18
0.19
0.16
0.17
0.18
0.19
0.19
0.19
0.20
0.20
0.20
0.20
0.13
0.14
0.14
0.14
0.15
0.15
0.15
0.15
0.15
0.15
0.13
0.31
0.41
0.48
0.54
0.58
0.62
0.65
0.68
0.71
0.14
0.15
0.16
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Channel D ate
Channel C hannel Channei 
Width S lope Max Depth 

S
(m) (m/m) (m)

Roughness
Height
k s

(m)

Sealarm

MaxY’
Y
(tn)

Distance^
X

(m)

Integral
Q'
(m^)

Estimated Data 
Top

Discharge Width 
Q W 
(m^/s) (m)

Mean
Depth
Y
(m)

Mean
Velocity
V
(m/s)

Froude
Num ber
F

500 0.00005 15.14 0.0001 6.06 158.1 6040.08 1343.40 316.2 4.04 1.05 0.17
500 0.00006 15.14 0.0001 7.57 176.8 8640.39 2148.58 353.6 5.05 1.20 0.17
500 0.00005 15.14 0.0001 9.09 193.6 11571.94 3152.21 387.3 6.06 1.34 0.17
500 0.00005 15.14 0.0001 10.60 209.2 14810.17 4357.54 418.3 7.07 1.47 0.18
500 0.00005 15.14 0.0001 12.11 223.6 18335.71 5767.34 447.2 8.08 1.60 0.18
500 0.00005 15.14 0.0001 13.63 237.2 22132.77 7383.97 474.3 9.09 1.71 0.18
500 0.00006 15.14 0.0001 15.14 250.0 26188.12 9209.52 500.0 10.10 1.82 0.18
100 0.0003 5.21 0.0024 0.52 15.8 22.47 3.59 31.6 0.35 0.33 0.18
100 0.0003 5.21 0.0024 1.04 22.4 74.31 16.79 44.7 0.69 0.54 0.21
100 0.0003 5.21 0.0024 1.56 27.4 148.08 40.97 54.8 1.04 0.72 0.22
100 0.0003 5.21 0.0024 2.08 31.6 240.63 76.88 63.2 1.39 0.88 0.24
100 0.0003 5.21 0.0024 2.60 35.4 349.98 125.02 70.7 1.74 1.02 0.25
100 0.0003 5.21 0.0024 3.12 38.7 474.77 185.78 77.5 2.08 1.15 0.25
100 0.0003 5.21 0.0024 3.65 41.8 513.95 259.49 83.7 2.43 1.28 0.26
100 0.0003 5.21 0.0024 4.17 44.7 766.69 346.42 89.4 2.78 1.39 0.27
100 0.0003 5.21 0.0024 4.69 47.4 932.31 446.80 94.9 3.12 1.51 0.27
100 0.0003 5.21 0.0024 5.21 50.0 1110.22 560.85 100.0 3.47 1.62 0.28

50 0.002 2.51 0.0115 0.25 7.9 2.38 0.68 15.8 0.17 0.26 0.20
50 0.002 2.51 0.0115 0.50 11.2 9.34 3.78 22.4 0.33 0.51 0.28
50 0.002 2.51 0.0115 0.75 13.7 19.94 9.89 27.4 0.50 0.72 0.32
50 0.002 2.51 0.0115 1.00 15.8 33.74 19.33 31.6 0.67 0.91 0.36
50 0.002 2.51 0.0116 1.25 17.7 50.46 32.31 35.4 0.84 1.09 0.38
50 0.002 2.51 0.0115 1.51 19.4 69.88 49.01 38.7 1.00 1.26 0.40
60 0.002 2.51 0.0115 1.76 20.9 91.83 69.57 41.8 1.17 1.42 0.42
50 0.002 2.51 0.0115 2.01 22.4 116.19 94.11 44.7 1.34 1.57 0.43
50 0.002 2.51 0.0115 2.26 23.7 142.85 122.72 47.4 1.51 1.72 0.45
50 0.002 2.51 0.0115 2.51 25.0 171.72 155.50 50.0 1.67 1.86 0.46
50 0.0005 3.50 0.0040 0.35 7.9 5.87 0.99 15.8 0.23 0.27 0.18
50 0.0005 3.50 0.0040 0.70 11.2 20.23 4.84 22.4 0.47 0.46 0.22
50 0.0005 3.50 0.0040 1.05 13.7 41.05 12.02 27.4 0.70 0.63 0.24
50 0.0005 3.50 0.0040 1.40 15.8 67.45 22.81 31.6 0.93 0.77 0.26
50 0.0005 3.50 0.0040 1.75 17.7 98.87 37.39 35.4 1.17 0.91 0.27
SO 0.0005 3.50 0.0040 2.10 19.4 134.92 55.88 38.7 1.40 1.03 0.28
50 0.0005 3.50 0.0040 2.45 20.9 175.28 78.42 41.8 1.63 1.15 0.29
50 0.0005 3.50 0.0040 2.80 22.4 219.73 105.09 44.7 1.87 1.26 0.29
50 0.0005 3.50 0.0040 3.15 23.7 268.06 135.98 47.4 2.10 1.36 0.30
50 0.0005 3.50 0.0040 3.50 25.0 320.11 171.17 50.0 2.33 1.47 0.31

100 0.0004 4.86 0.0033 0.49 15.8 19.05 3.39 31.6 0.32 0.33 0.19
100 0.0004 4.86 0.0033 0.97 22.4 63.93 16.11 44.7 0.65 0.56 0.22
100 0.0004 4.86 0.0033 1.46 27.4 128.24 39.58 54.8 0.97 0.74 0.24
100 0.0004 4.86 0.0033 1.94 31.6 209.23 74.57 63.2 1.30 0.91 0.26
100 0.0004 4.86 0.0033 2.43 35.4 305.19 121.61 70.7 1.62 1.06 0.27
100 0.0004 4.86 0.0033 2.92 38.7 414.92 181.11 77.5 1.94 1.20 0.28
100 0.0004 4.86 0.0033 3.40 41.8 537.48 253.41 83.7 2.27 1.34 0.28
100 0.0004 4.86 0.0033 3.89 44.7 672.16 338.79 89.4 2.59 1.46 0.29
100 0.0004 4.86 0.0033 4.37 47.4 818.34 437.49 94.9 2.92 1.58 0.30
100 0.0004 4.86 0.0033 4.86 50.0 975.52 549.73 100.0 3.24 1.70 0.30
200 0.0015 4.66 0.0108 0.47 31.6 24.34 8.22 63.2 0.31 0.42 0.24
200 0.0015 4.66 0.0108 0.93 44.7 88.10 42.08 89.4 0.62 0.76 0.31
200 0.0015 4.66 0.0108 1.40 54.8 182.53 106.79 109.5 0.93 1.05 0.35
200 0.0015 4.66 0.0108 1.86 63.2 303.62 205.12 126.5 1.24 1.31 0.37
200 0.0015 4.66 0.0108 2.33 70.7 448.81 339.00 141.4 1.55 1.54 0.40
200 0.0015 4.66 0.0108 2.79 77.5 616.29 509.93 154.9 1.86 1.77 0.41
200 0.0015 4.66 0.0108 3.26 83.7 804.64 719.12 167.3 2.17 1.98 0.43
200 0.0015 4.66 0.0108 3.73 89.4 1012.75 967.60 178.9 2.48 2.18 0.44
200 0.0015 4.66 0.0108 4.19 94.9 1239.68 1256.26 189.7 2.79 2.37 0.45
200 0.0015 4.66 D.01D8 4.66 100.0 1484.65 1585.88 200.0 3.10 2.55 0.46

notes: maximum depth of fiow (prescribed) 
distance from center of channei to bank 
value of equation (6) divided by 2.5V*
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