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ABSTRACT

IN-SITU STUDY OF THE INFLUENCE OF ADDITIVES ON THE 
GROWTH BEHAVIOR OF COPPER ELECTRODEPOSITS ON 

COPPER SINGLE CRYSTAL

By 
Aiwen Wu 

University of New Hampshire, December, 2003

Trace organic additives are known to be essential in obtaining desired metal 

electrodeposits in the microelectronic industry, however, fundamental design principles 

for their use and a scientific understanding of their interaction during electrodeposition is 

lacking. In the present study we investigated electrodeposition o f copper on the Cu(100) 

surface in air-saturated or dearated acid-sulfate plating solutions containing several 

combinations o f chloride and additives benzotriazole (BTA) and 3-mercapto propane 

sulfonic acid (MPSA) under galvanostatic pulse-current conditions. The electrodeposition 

process was followed using in-situ atomic force microscopy (AFM). AFM images were 

quantitatively analyzed by pattem-recognition and scaling procedures.

In the absence o f additives, copper deposits grew in a layer-by-layer mode from the 

earliest stage o f deposition. The surface consisted o f smooth terraces separated by steps. 

The scaling analysis result was consistent with a process dominated by surface diffusion 

and step growth.

In chloride containing solutions, square-pyramidal mounds were initiated and grew to 

cover the surface. Mound slope increased with deposition time with no indication o f 

reaching a steady-state value. This growth mode was consistent with a surface diffusion 

mechanism. The scaling result was similar to the additive-free system, but indicated that 

surface diffusion was more dominant in the presence o f chloride.

xi
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BTA inhibited the surface and produced nucleation-limited growth at hemispheroida! 

centers whose height to base radius aspect ratio increased linearly with deposition time. 

Nucleation and growth o f three-dimensional nodules started randomly across the entire 

surface. The nodules were smaller in size than the mounds observed without BTA. The 

number and density o f nodules were much higher than the mounds density. The deposit 

growth was dominated by a roughening mechanism that can be described by the random 

roughening term of a stochastic model.

In the presence o f MPSA, growth was not confined to nucleation centers, and the 

(100) symmetry was visible in the main features. However, pyramidal mounds did not 

develop. None o f the existing models described sufficiently the surface growth 

mechanism for this case.

Roughening of copper deposits in oxygen-free solution was faster than in oxygen- 

saturated solution. The results o f scaling analysis and pattem-recognition analysis were in 

agreement with kinetic studies conducted by other researchers. The presence o f dissolved 

oxygen in solutions did not remarkably affect the scaling behavior for each examined 

solution.

xii
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Chapter 1

INTRODUCTION

1.1 Purpose

Over the past decades, electrodeposition phenomenon have been studied through 

many different approaches due to both its complexity and its industrial importance. 

Electrodeposition o f metals is used in a large variety of process technologies, including 

electroplating, electroforming, electrorefining, and electrowinning. More recently, 

electrodeposition has been growing increasingly important in the microelectronics 

industry due to the continuing trend toward miniaturation, cost reduction, and high- 

performance packaging. Electrodeposition has had a major impact as an interconnection 

technology for integrated circuit packages. Among metals, copper is particularly favored 

as a metallization material due to its conductivity, solderability, reliability, and cost.

Regardless o f application, the commercial success o f many electrodeposition 

operations depends on control o f deposit morphology. To achieve smooth, uniform 

deposits with the desired physical properties, trace amounts o f organic additives are used 

in plating baths. Organic additives complicate the electrodeposition process, and little 

fundamental understanding exists on how such additives affect the growth o f deposits and 

physical properties o f electrodeposited metal films. Industrial application of such 

compounds remains empirical.

1
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The average behavior o f electrochemical deposition processes on large scales is well 

described by simple kinetic and transport equations. However, microscopic processes that 

determine the average macroscopic behavior are not well understood. The development 

o f electrochemically manufactured devices with sub-micron features requires a more 

complete description o f microscopic processes, especially the mediating effect of organic 

additives during the process. The challenge is to develop models describing molecular 

processes occurring at the solid-liquid interface and incorporate these models into the 

existing theory.

Progress in the understanding o f electrodeposition process has been helped by new 

techniques used to probe the solid-liquid interface with atomic resolution and to observe 

the development o f growing electrodeposits. These techniques include atomic force and 

scanning tunneling microscopes and in-situ spectroscopes. The new in-situ techniques 

promise to increase understanding o f the complex phenomena controlling 

electrodeposition and to relate macroscopic morphology development to molecular 

events.

The purpose o f the present work was to investigate the copper electrodeposition on 

copper single crystal surface with a special attention to the influence o f organic additives 

on the growth behavior o f copper electrodeposits. The basic electrolyte system was the 

acid copper sulfate bath with chloride and dissolved oxygen, both o f which are usually 

present in commercial plating baths. They act in a synergistic or competitive way with 

organic additives under practical conditions. The organic additives, benzotriazole (BTA) 

and 3-mercapto-1 -propanesulfonic acidic sodium salt (MPSA) were chosen due to their 

widespread use industrially. Atomic force microscopy (AFM) was used to measure

2
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surface morphology in-situ at sub-micron length scales. Quantitative information was 

obtained from AFM images. Scaling analysis and pattern recognition analysis were used 

to provide a quantitative description o f the effect of additives on growth behavior of 

copper electrodeposits.

1.2 Electrodeposition of Metals

Electrodeposition of metal is performed by immersing a conductive surface in a 

solution containing ions of the metal to be deposited. The surface is electrically 

connected to an external power supply and current is passed through the solution into the 

surface. This causes reaction of the metal ions Mn+ with electrons (e‘) to form metal M:

M n+ +ne~ = M  (1.1)

The process o f metal electrodeposition is considered to proceed in at least three steps, as 

shown in Figure 1.1.

1. Transport of metal ions from the bulk solution to the interface.

2. Adsorption of metal ions onto the electrode surface and transfer o f electrons at the 

electrode to form adatoms.

3. Surface diffusion o f adatoms, nucleation, and growth.

Step 1 is a bulk mass-transport process. The flux o f each species in the electrolytic 

solution is governed by the transport equation, which accounts for the contribution o f 

migration, diffusion, and convection: ^

Ni = -n .^ F C N ®  -  D NCi + C,V (1.2)

3
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where TV,- is molar flux o f species i. The first term on the right side represents the transport 

by migration in the electric field V0. The second term represents transport by diffusion 

and is proportional to the gradient o f concentration VQ. The last term represents 

transport by convection with the fluid velocity V. rij is the charge number carried by an 

ion, p.i is the mobility o f an ion, and F  is Faraday constant. D, is the diffusion coefficient 

o f species i.

Electrode Interface Bulk solution

Mass
Transport Metal ion

Adsorption

CD Adion
e

Electron transfer

Adatom

Nucleation & growth

Metal

Figurel.l Steps involved in the process of metal electrodeposition.

4
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In electrodeposition, the activated kinetics o f ionic discharge is important. The 

driving force for the electrode reaction is the surface overpotential tjs. The overpotential 

is defined as the deviation of the electrode potential 0  from its equilibrium value 0 e, 

which describes equilibrium between the electrode and the solution in contact with it.

The rate o f the electrode reaction is the rate o f deposition o f metals, and can be 

measured by the current density at the electrode. The current density depends on the 

driving force and is thus related to the surface overpotential. Copper deposition is often 

well described by the Butler-Volmer equation:

where io is exchange current density, a kinetic parameter that depends on the composition 

at the interface and the temperature. aa and ac are transfer coefficients. The parameters i0, 

aa, and ac can be obtained from experimental polarization curve o f the current density i 

versus the overpotential rjs.

If  the overpotential applied to the electrode becomes sufficiently negative, all metal 

ions that reach the electrode react. The rate becomes transport limited and reaches a 

constant maximum known as the limiting current density ij

TJS = 0 ~ 0 e (1.3)

(1.4)

i, = k.nFCt (1.5)

5
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where kt is the mass transfer coefficient which depends on electrode geometry and flow 

conditions and Q, is the bulk concentration o f metal ions.

Figure 1.2 shows a current-potential curve typical o f an electrodeposition process. As 

potential is scanned from the equilibrium potential to more negative values, the current 

increases in an exponential manner (Tafel region) where the overall deposition rate is 

determined largely by charge transport at the cathode. As potential continues to increase, 

mass transport becomes predominant, and a limiting current is reached. At this condition 

the concentration o f metal ions at the electrode surface is zero.

.....

1
120

ISO

1 IIS'

’m -cz T»

s . f ■ ‘JjsM.
***  ■ • ■

I 'te *1ST
3 :

Figure 1.2 Current-potential curve typical of an electrodeposition process.

The growth velocity o f deposit is proportional to the current density i

iV
<9 =  —  (1-6)

nF

where 9  is the growth velocity, V is molar volume of metal, and n is the number of 

electrons transferred in discharging the ion to the metal state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3 Atomistic Aspects of Electrodeposition of Metals

In the electrodeposition o f metals a metal ion Mn+ is transferred from solution onto 

the metal surface. A simplified atomistic representation o f the this process is

M n+ (solution) => M (surface) (1.7)

Atomic processes that constitute the electrodeposition process can be seen by 

presenting the structure o f the initial, Mn+(solution), and the final state, M(surface). Since 

metal ions in the aqueous solution are hydrated the structure o f the initial state in 

Equation (1.7) is represented by [M(H2 0 )x]n+. The structure o f the final state is the M 

adion (adatom) at the kink site. Thus, the final step of the overall reaction, Equation (1.7), 

is the incorporation o f Mn+ adion into the crystal lattice. Because o f surface 

inhomogeneity the transition from the initial state [M(H2 0 )x]n+ to the final state 

M(crystal)

[M(H20 ) x] n+ (solution) => M(crystal) (1.8)

can proceed via either o f two mechanisms: ( 1 ) step-edge site ion-transfer mechanism or 

(2 ) terrace site ion-transfer mechanism .[3][4]

Step-Edge Iort-Transfer Mechanism. The step-edge site ion-transfer, or direct 

transfer mechanism, is illustrated in Figure 1.3. It shows that ion transfer from the 

solution takes place on a kink site o f a step edge or on any other site on the step edge. In 

both cases the result o f the ion transfer is a M  adion in the metal crystal lattice. In the first 

case, a direct transfer to a kink site, the M adion is in the half-crystal position, where it is

7
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bonded to the crystal lattice with one half o f the bonding energy o f the bulk ion. In the 

second case, a direct transfer to the step edge other than kink, the transferred metal ion 

diffuses along the step edge until it finds a kink site. Thus, in a step-edge site ion-transfer 

mechanism there are two possible paths: direct transfer to a kink site and the step-edge 

diffusion path.

Solution ion
/
r

1 I
Kink atom

Step edge

Figure 1.3 Schematic of step edge ion-transfer mechanism.

Terrace Ion-Transfer Mechanism. In the terrace site transfer mechanism a metal ion 

is transferred from the solution to the flat face o f the terrace region (Figure 1.4). At this 

position the metal ion is in the adion state having most o f its water o f hydration. It is 

weakly bound to the crystal lattice. From this position it diffuses on the surface, seeking a 

position of lower energy. The final position is a kink site.

8
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Solution ion

I

Kink atom

Adion

Figure 1.4 Schematic of terrace ion-transfer mechanism. Ion transfer to the terrace 
site, surface diffusion, and incorporation at kink site.

The relevant microscopic processes taking place on the crystal interface include 

deposition, desorption, and surface diffusion. The morphology o f the interface is 

determined by the interplay between them. Lorenz[51 studied the electrodeposition of Cu, 

and found that only one tenth or less o f the surface area participated in the crystallization 

process. He concluded that surface diffusion was highly hindered and direct ion transfer 

and attachment played a predominant role in Cu deposition. However, Schmidt et al.[6] 

analyzed AFM images o f copper electrodeposits in acid sulfate solution by means o f 

scaling analysis and attributed surface texture to surface diffusion.

1.4 Roughening of a singular surface

Generally the surface types can be sorted into three categories: a) fully rough or self- 

affine, b) smooth, and c) singular or vicinal.

9
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The concept o f self-affinity is described mathematically by the following relation:

H(r)  = (1.9)

where H (r) is the height at point r  on the surface. If  a surface, k'H(kx) is 

indistinguishable from H(r), then H is self-affine.

In metal electrodeposition, deposits are grown far away from equilibrium conditions. 

The way in which a singular (atomically flat) surface roughens during growth under non- 

equilibrium conditions has been the subject o f extensive theoretical study. One theoretical 

approach to the problem of surface roughening during growth is the dynamic scaling 

hypothesis, often termed kinetic roughening. The general formalism, proposed by Family 

and Vicsek[7], presumes that the growth surface evolves into a temporal and scale 

invariant structure. The theoretical expectation is that roughening during crystal growth 

can lead to a self-affine surface that exhibits dynamic scaling. Typically the dynamic 

scaling o f  the correlation functions is reflected in power law behavior in space and time 

(see Section 4.3.1). Since the corresponding exponents do not depend on the microscopic 

details o f the system under investigation it is possible to divide growth processes 

according to the values o f these characteristic exponents into kinetic universality classes. 

The association with one particular class depends only on a few properties o f  the growth 

dynamics like conservation laws, the importance o f defects in the growing film, etc. The 

determination o f these relevant features is one o f the important problems that have to be 

addressed by the theory of kinetic roughening. Conversely, as soon as these relations are 

known the determination o f scaling exponents allows conclusions about the physical 

processes that dominate the growth dynamics. The details o f the scaling theory will be 

described in Chapter 4.

10
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Chapter 2

LITERATURE REVIEW

2.1 Copper Electrodeposition

Copper is the most extensively used plating metal due to its high conductivity and 

low resistivity. It is electrodeposited for a number o f engineering and decorative 

applications that require a wide range of mechanical and physical properties. Two 

important applications o f electrodeposited copper involve its use in the through-holes of 

printed circuit board and as microelectronic interconnects. The use of copper in the 

fabrication o f interconnects in microelectronics devices is a significant development in 

materials in the semiconductor industry. Electrodeposition has become the preferred 

method o f depositing copper for interconnects. It offers a number o f advantages including 

high yield, excellent fidelity o f shape replication and pattern transfer, ease o f producing 

high respect ratio structures, rapid processing and relatively low cost. 18-1

Acid copper sulfate plating solutions containing copper(II) sulfate and sulfuric acid 

are widely used for the plating o f printed circuit board and microelectronic interconnects. 

These plating baths provide the relative thick, ductile, and rapidly-formed copper 

deposits needed in the microelectronics industry.
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Compared to other metals electrodeposition o f copper is relatively simple since 

electrodeposition can proceed without hydrogen evolution for a wide range of conditions 

and in an acid solution, copper is free o f a surface oxide.[ 105

Copper is largely present as cupric ions in acid copper baths, but small amount o f 

cuprous ions are often present especially when complexes are formed with organic 

addition species . 1115

Mattson and Brockris[12] studied deposition and dissolution o f copper in acidic copper 

sulfate solution using galvanostatic method. It was found that the reaction obeyed the 

Butler-Volmer equation and that the transfer coefficients a a and a c based on experimental 

measurement were close to the theoretical values 1.5 and 0.5, respectively. They 

proposed a two-step electron transfer mechanism for copper electrodeposition at acidic 

sulfate solution with Cu+ as an intermediate. The process composed o f two elementary 

reactions:

Cu2+ + e~ > C u+ (2.1)

Cu+ + e- —-—> Cu (2.2)

The redox reaction between Cu2+ and Cu+ was found to be the rate controlling reaction 

while Cu+ exists in reversible equilibrium with Cu at the electrode surface. This was later 

verified by many other researchers using different methods. 513' 17]

Gerischer[18] reported a ratio o f approximately 1:10 between the exchange current 

density o f reaction (2.1) and reaction(2.2). Albaya et al.[19] examined the copper 

electrodeposition from acidic copper sulfate electrolyte using galvanostatic pulse method.
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The exchange current density o f reaction (2.2) was found to be three orders o f magnitude 

larger than that o f reaction (2.1). Chassaing et ai.[20] concluded that the charge transfer 

mechanism is independent of the substrate by performing impedance measurements on 

various copper substrates.

The presence o f Cu+ has been verified experimentally using a rotating ring disk 

electrode (REDE), but the source o f intermediate, Cu+, has been a topic of debate. It has 

been suggested that the disproportion reaction:

Cu + C u2+ > 2Cu+ (2.3)

could also be a source o f the intermediate ion Cu+. De Agostini et al. showed that the 

source o f the intermediate (either reaction (2.1) or (2.3)) depended on the age o f the 

copper surfaced211 They proposed that reaction (2.3) dominated on freshly deposited 

surfaces and that chemical equilibrium kept the Cu+ intermediate concentration constant. 

On surfaces that have undergone some aging, such as surface oxidation, reaction (2.1) 

facilitated the generation o f Cu+. It follows that when the formation o f Cu+ is dominated 

by reaction (2.1), reaction (2.2) has to be slow, and vice-versa. I f  the above situation was 

not true we would have an equilibrium between the Cu2+/Cu species which has not been 

observed experimentally. It is clear that most experimental studies indicate the formation 

o f copper deposits to be dominated by a two-step reaction mechanism described by 

reactions (2.1) and (2.2). However, it has also been shown not be a unique path for the 

reduction o f copper during electrodeposition.

13
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2.2 Use of Organic Additives during Copper Electrodeposition

In many copper electrodeposition applications, small amounts o f organic materials 

are introduced into the plating bath, which have specific functions in the deposition 

process. These additives, often adsorbed at the cathode surface, affect the kinetics and 

growth mechanism o f electrodedposition and consequently modify the structure, 

morphology, and properties o f the resulting deposits. Additives are classified according 

to their function, such as levelers, brighteners, structure modifiers, and wetting agents.[22] 

The use o f additives can also assist in causing the electrodeposition to occur 

preferentially in the bottoms o f high aspect ratio trenches used in microelectronic 

industry. This results in copper deposits that are free o f seams and voids, leading to better 

microelectronic device performance.[23J During the course o f electrodeposition, the 

additives can be consumed by incorporation into the deposits and/or electrochemical 

reaction at the cathode or anode.[24]

A large variety o f additives are used in copper electrodeposition. A list o f additives 

covered in patents granted from 1973-1995 is included in referenceJ2 4 -1 Many o f these 

additives contain nitrogen or sulfur. Although additives have been used for decades, most 

development and use o f additives have been o f a more empirical nature, and there is a 

lack o f fundamental understanding of their role in the electrodeposition process. Plating 

baths typically contain more than one additive, and how these additives work in 

conjunction with one another is not yet fully understood.[9] A number o f questions have 

been raised in the search for fundamental understanding o f the action o f additives in the 

electrodeposition process. The following is a list o f some o f these questions.
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• How do the additives interact with copper and each other as a function of 

potential?

• How do the additives interact with the growing copper deposit?

• What decomposition products o f the additives are produced during the 

electrodeposition process?

• How do the additives affect both the kinetics and growth mechanism of 

electrodeposition and the structure and properties of the resulting electrodeposit?

• How does the mode o f action o f the additives relate to their molecular structure?

• How do the additives affect electrodeposition in trenches and vias o f the scale 

used in the microelectronic industry?

A variety o f in-situ microscopic, electrochemical, and spectroscopic techniques are 

used in an attempt to explore the answers to these and other questions relating to the 

effect o f  additives on copper electrodeposition.

The influence o f additives on copper electrodeposition kinetics has been studied by 

various techniques. Electrochemical and spectroscopic measurements^25"27̂ showed that 

polyethylene glycol (PEG) and chloride ions act cooperatively to inhibit the deposition. 

Electrochemical quartz crystal microbalance measurements showed a synergistic 

interaction o f PEG and chloride ions in inhibiting the deposition .^  Using 

electrochemical techniques, copper deposition was found to be retarded in the presence of 

thiourea and benzotriazole.[29] A complex electrode process was suggested. The impact o f 

a range o f nitrogen-containing and sulfur-containing compounds on copper deposition 

was evaluated by cyclic voltammetry, and inhibition o f underpotential deposition o f 

copper on gold was reported.[30]
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The effect o f additives on morphology of the deposits has been examined by scanning 

tunneling microscopy (STM) and atomic force microscopy (AFM). Copper deposition 

with benzotriazole,1611311 sulfonium-alkane-sulfonate, 1321 and thiourea1611331 yields smoother 

deposits compared to deposits obtained from additive-free solutions. Addition of sodium 

dodecyl sulfate, however, leads to a three-dimensional growth o f copper.1341 The effects 

o f multi-additive plating baths were investigated using electron microscopes, and 

additive-additive interactions were found to be crucial to the leveling activity. 1-351 The 

influence o f  additives on quasi two-dimensional growth o f copper deposits has been 

examined . 1361

2.2.1 Benzotriazole

Benzotriazole (BTA) been widely studied and used as both corrosion inhibitor and as 

electrodeposition additive.137'471 The generalized molecular structure o f BTA is shown as:

N

H

The inhibiting effect o f BTA during electrodeposition is thought to be due to a 

complex formation mechanism, however the nature o f the complex is still a topic o f 

debate. BTA in acid copper sulfate solutions has been shown to form both cupric and 

cuprous complexes . 1371 It was reported that the cuprous BTA complex, Cu(I)BTA, was the 

only stable complex in an aerated solution . 1401 Vogt et al. found that the formation o f
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Cu(I)BTA was potential-dependent and was affected by the BTA concentration and 

solution pH.141-1 At BTA concentrations above 200 pM, Cu(I)BTA was found to

precipitate on the surface. It was further proposed that the electrodeposition process

proceeded through the formation of the intermediate complex Cu(I)BTA. [40] At open 

circuit, BTA adsorbs on the substrate surface. When a current is passed, cupric ions first 

reduce into cuprous ions. The cuprous ions form a polymeric complex with the adsorbed 

BTA.

Cu2+ + e~ — —> Cu+ (2.4)

Cu+ +BTA< > Cu(I)BTA (2.5)

Subsequently, the cuprous complexes reduce, and the copper atoms are released.

Cu(I)BTA + e“  > Cu + BTA (2.6)

Reduction o f Cu(I)BTA continues concomitant with diffusion o f cupric ions to the 

interface and formation o f Cu(I)BTA complex (reaction 2.4 and 2.5). Copper deposits 

nucleate and grow as more copper adatoms release. The “free” BTA may form polymeric 

complexes with cuprous ions. Another route for the free BTA is to include into copper 

deposits.

Surface-enhanced Raman spectroscopy (SERS) was used to elucidate the surface 

structure of the Cu(I)BTA complex. The results supported earlier findings that a film o f 

Cu(I)BTA was formed.[421t43] A recent SERS study suggested that BTA and deprotonated
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BTA' interacted with copper through the triazole nitrogen with their molecular planes 

perpendicular ( or tilted) to the surface.[43] Calculation suggested that the polymeric 

complex was in the form as : 1-4 4 -1

Loshkarev et al. however argued that the additive concentration o f BTA used during 

electrodeposition was too small to complex with a significant fraction o f copper and that 

direct adsorption o f BTA had to account for the observed inhibitionJ45] It was further 

shown that the effectiveness o f BTA as deposition inhibitor increased with pH . [45][465

BTA incorporated into electrodeposits at high current densities (> 70 mA/cm2) has 

been reported J47J The incorporation o f BTA supports an adsorption mechanism mediating 

the inhibition process. However, the exact nature o f the adsorbed species is still unclear. 

Both the cuprous complex and BTA appear to mediate the inhibition process through 

adsorption at the interface.

BTA has been shown to influence the surface morphology of copper 

electrodeposits.[38̂ 39] Concentration as low as 10‘6  M BTA has been shown to 

significantly alter surface morphology.p8] STM results by Armstrong and Muller[39] 

suggested that BTA eliminated preferential growth of specific crystallographic planes and 

imposed uniform kinetics.
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Schm idt^ et al. studied the effects o f BTA on copper electrodeposition using in-situ 

AFM and found an increase in the nuclear number density. They showed that BTA 

promoted smooth copper deposits.

2.2.2 SPS and MPSA

Although the use o f BTA in acid copper plating solutions does produce smoother 

copper deposits, BTA is not used in modem commercial plating baths. Bis-(3- 

sulfopropyl)-disulfide (SPS) and its thiol analog, 3-mercapto-l-propanesulfonate acid 

(MPSA), are currently used in commercial plating baths, especially in microelectronics 

industry. The structural forms o f SPS and MPSA are shown as follows:

SPS: SOT—  (CH2 ) 3 —  S —  S —  (CH2 ) 3 —  SOT

MPSA: SOT— (CH2 ) 3 — SH

Famdon et al.[48] studied the effect o f the additive SPS on the deposition o f copper 

from acid sulfate solutions using potential sweep techniques and found that the kinetics 

for copper deposition were more favorable in the presence o f SPS. They showed that 

SPS was first electroreduced to MPSA. MPSA then reduces Cu2+ to produce a Cu(I) 

thiolate complex and SPS is regenerated. The SPS can again be reduced while the Cu(I) 

complex undergoes reduction to produce copper metal and MPSA. A  possible reaction 

mechanism was proposed as follows:
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H 0 3 S(CH 2 ) 3 SS(CH 2 ) 3 S O 3H + 2 H + + 2e" < > 2HS(CH 2 ) 3 S 0 3H (2.7)

4HS(CH 2 ) 3 S 0 3H + 2Cu2+------> 2Cu(I)S(CH2 ) 3 S 0 3H

+ H 0 3 S(CH 2 ) 3 SS(CH 2 ) 3 S 0 3H + H + + e' ^

Cu(I)S(CH2 ) 3 S 0 3H + H + + e' — ^  Cu + HS(CH 2 ) 3 S 0 3H (2.9)

SPS is therefore able to participate in repeated oxidation and reduction cycles and 

depolarization occurs because Cu2+ reduction to Cu+ occurs chemically in reactions 

involving the additive in contrast to a purely electrochemical Cu2+ to Cu+ 

electroreduction process.

It has also been shown that SPS and MPSA have a significant effect on the structure 

o f copper electrodeposits. Using scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM), Kelly and West [35][491 investigated the role o f SPS in the 

copper deposition on microprofiled electrodes from an acid copper sulfate solution 

containing polyethylene glycol (PEG) and Cl'. SEM and TEM micrographs showed that 

the additive SPS removed the columnar structure o f the deposit and affected micro-sized, 

unoriented grains. Moffat et al.[50] demonstrated superfilling electrodeposition of copper 

in 500 nm trenches ranging from 500 nm to 90 nm in width using an acid copper sulfate 

electrolyte containing Cl, PEG, and MPSA additives. The films deposited from Cl-PEG- 

MPSA electrolyte exhibit spontaneous recrystallization at room temperature that results 

in a drop in resistivity.
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2 3  Effects of Chloride ions on Copper Electrodeposition

The chloride ion (CF) is a common additive in commercial electrodeposition baths 

and is one o f the few non-organic additives. It is generally agreed that CF is a complexing 

ligand and that CF even in small concentration can increase the reaction rate of copper 

electrodeposition from acidic sulfate solutions.[51] In CF-containing sulfate plating 

system, CF ions form complexes with Cu+ and Cu2+, such as CuCl, C uC h , and 

CuCl2' .[52] The complex formation in this system is controlled by chloride concentration. 

At low chloride concentration, the complex CuCl2 is predominant, and CuCl2' complex 

formation is negligible.[53]

The deposition reactions in the presence o f chloride ions probably proceed as

Cu2+ + 2 C r  + e~ —— » CuCl2 (2.10)

CuCl2 + e~ > Cu + 2 C r  (2.11)

where Equation (2.11) is the rate-limiting step.

The sparingly soluble CuCl is also present in the CF-containing acidic sulfate 

solutions. The following reactions also take place during the cathodic polarization o f 

copper

Cu+ + C E -----> CuCl (2.12)

CuCl + C r ----- » CuCl2 (2.13)
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Yoon et ah1-3 4 -1 proposed that there was a “critical CF concentration” for the formation 

of such an insoluble CuCl film on the electrode surface. Above the “critical CF 

concentration”, CuCl is precipitated on the metal surface by reaction (2.12) and dissolved 

to CuCl2 by reaction (2.13). Wu showed that chloride promotes the cathodic reduction 

process even in the trace amounts.[55i However, when the chloride concentration is further 

increased to 10 mM, the cathodic reduction process is blocked due to CuCl film 

formation. He concluded that chloride ion changes the reaction mechanism of copper 

deposition.

Several mechanisms have been proposed to explain the catalytic effect o f chloride ion 

on the deposition o f copper. Shi et al.[51] and Ehlers et al.[56] reported that CF was much 

more readily adsorbed on metal surfaces than sulfate, therefore, CF had a substantial 

surface coverage even in the presence o f sulfate. It has been postulated that the increase 

in reaction rate is caused by the adsorbed CF complexing with the metal ion. Chloride 

stabilizes cuprous ion by forming complexes with it, effectively increasing the amount of 

cuprous ions diffusing to electrode surface from cupric to cuprous reaction.1E57̂ 58! Another 

explanation for the increase in reaction rate is through ion bridging where the complexed 

ion accelerates the flow of electrons from the electrode to the metal ion.^91

In acidic sulfate solutions the CF has been shown to accelerate the copper 

discharge J20-' Chassaing and Wiat^20-' studied the effects o f CF in copper electrodeposition 

using impedance analysis. They found that chloride accelerated the second electron 

transfer reaction found in reaction (2 .2 ).

The trace amounts o f CF in copper sulfate solution have been shown to have a 

significant influence on the deposit electrocrystallization and morphology. Chassaing and
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Wiat[2° 3 found that CF promoted epitaxial growth on Cu(100) and Cu(llO). Pradhan et 

al.E60J reported chloride had a significant effect on cryatallographic orientations o f copper 

deposits. At low concentration o f chloride, the (220) plane is predominant, whereas at 

high concentration the ( 1 1 1 ) plane is predominant.

Gauvin and Winkler1-61-1 showed that addition o f chloride as sodium chloride to the 

acidic sulfate solution (0.55M CuSCVl.SM H 2 SO4 ) had no obvious influence on copper 

deposition when the concentration o f sodium chloride was below 9 mg/L. Above this 

concentration, the copper deposits become fine grained.

Nageswar and Setty[62] reported that chloride ions present in acidic sulfate solution 

modified the growth forms o f copper electrodeposited on Cu(100) surface. At a CF 

concentration o f 10"4  mol/L, there was breaking of layers producing a ridge type o f 

growth. At a CF concentration o f 3.5x1 (F3 mol/L, pyramids were observed. At 10' 2 mol/L, 

triangle pyramids o f CuCl were formed and at higher chloride concentration, 

polycrystalline deposits were produced. Nageswar also extended the study of the effect of 

chloride ions on the morphology o f copper electrodeposits on C u ( ll l)  plane,[63] and 

found that in the presence o f chloride ions the pyramidal type o f growth on a C u ( l l l )  

plane changed to a layer type o f growth due to specific adsorption o f chloride ions.

Moffat[64] used in-situ scanning tunneling microscopy (STM) to examine the 

influence of chloride ion adsorption on the structure o f steps on copper surfaces. Chloride 

is shown to form potential dependent adlayer structures on Cu(100) and C u ( l l l )  which 

strongly affects the orientation o f the surface steps. The adlayer acts as a template 

guiding step evolution during metal deposition. Moffat also examined step faceting and 

disordering on Cu(100) caused by adsorption o f chloride in the solution without copper
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ionsJ65-' Vogt et alJ66̂ observed that an ordered overlayer o f chloride on Cu(100) 

reversibly stabilizes the [1 0 0 ] step direction, and suggested that faceting of the step is 

induced by the overlay geometry. Wu and Barkey,[67J using AFM, imaged faceted 

monoatomic steps on Cu(l 11) in an acid copper sulfate solution containing 2mM chloride 

at low current density during deposition, and measured the velocity of singular steps. 

More recently, they also observed faceting o f Cu(100) surface induced by chloride.[68]

As an additive chloride is not used alone but in combination with other additives like 

polyethylene glycol (PEG). It is believed that there is some kind o f interaction between 

PEG and C f when used as an electrodeposition additive J69̂ There are many examples in 

the literature about additives when used alone do not produce a significantly good 

deposit, but the quality o f the deposit is dramatically increased when combined with other 

additives.[70]

In the present research, the chloride-containing electrolyte was 0.2 M CuSCVl.O M 

H2 SO4/I.O mM HC1. Two additional solutions were produced by adding 0.1 mM MPSA 

or 0.1 mM BTA to the solution. Appendix A contains the calculations o f equilibrium 

composition for the chloride solutions used in the present research. The results are 

presented in Table 2.1 below.

Table 2.1 Equilibrium composition: 0.2 M CuSO4/1.0 M H2 SO4/I.O mM HC1

I [Cu+] 3.622x10'5 M [Cu2+] 0.1997 M [Cf] 6.519xl0'4 M

[CuCljaq 1.183xl0‘5 M [CuCV] 1.771xl0"5 M [CuCl32-] 1.003x1 O'8 M

[Cu2C1421 2.342x10‘9 M [CuCfi] 3.007x1 O'4 M [CuCl2] 5.516xl0~8 M

[CuCl3‘] 2.102xl0’n M [CuC142‘] 2.957xl0’15 M [H+] 2.001 M

1 [S042-] 1.2 M [Cl"]Tota] 0.001 M
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2.4 Effects of Oxygen on Copper Electrodeposition

Dissolved oxygen is of particular interest since it is normally present in industrial 

copper sulfate plating systems through sparging system or simple exposure to air. As 

discussed before, in copper electrodeposition from acid sulfate solution, the reduction of 

cupric ion to metal proceeds through two elementary steps. In solutions exposed to air, 

dissolved oxygen consumes the cuprous ion[71]

Cu+ + —0 2 + H +------> C u2+ + - H , 0  (2.14)
4 2 2 2

Barkey et alJ72-1 proposed a mechanism where oxygen diffuses to a reaction-plane 

within the diffusion layer and oxidizes the cuprous diffusing away from the electrode 

surface. Since oxygen and cuprous react rapidly and irreversibly in solution at a reaction 

plane within the diffusion layer,[11] at steady state, no cuprous exists outside the reaction- 

plane and no oxygen exists between the electrode surface and the reaction-plane. One of 

the effects due to this reaction-plane is that cuprous and therefore cuprous complexes 

with organic additives are limited to the region between the reaction-plane and the 

electrode surface. The cupric hydrate limits its activity with these additives. The additives 

diffuse to the region within the reaction-plane where they function as desired. Therefore, 

the presence o f dissolved oxygen in solutions may improve the effectiveness o f additives.

In sulfate plating solutions containing both chloride and dissolved oxygen, chloride 

and oxygen are competitors in the copper cathodic reduction process since chloride ions 

stabilize the cuprous ions while oxygen oxidizes the cuprous ions. The influence of 

chloride may be greater than that o f oxygen because chloride is more strongly adsorbed
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on the electrode surface, and chloride changes the deposition mechanism and increases 

the reaction rate.

2.5 SPM Studies of Copper Electrodeposition

The experimental techniques used to studies the kinetics o f metal electrodeposition 

generally rely on information that originates from the entire electrode surface and 

represents the integration o f the contributions from individual locations on the electrode. 

Although this characteristic may not be important for the study o f homogeneous surfaces, 

it can be critical for the study of energetically inhomogeneous surfaces such as a metal 

electrode which have a variety o f features like steps, kinks, and screw dislocations that 

affect local rate o f processes occurring during electrodeposition. A breakthrough in the 

study o f structural problems came through the introduction o f local probe microscopies, 

particularly STM and AFM, which are characterized collectively as scanning probe 

microscopies (SPM). Both techniques employ a sharp and sensitive probe which is 

scanned over a surface and senses the variations o f a physical parameter as a function of 

the position on the surface, therefore can map the height variation on the sample. The 

application o f SPM to structural problems at the electrified solid-liquid interface is one of 

the most important advances in electrochemistry over the past decade.[73J

Nanoscale study o f the solid-liquid interface has been greatly enhanced by the 

development o f the Atomic Force Microscope (AFM) since its introduction by Binnig et 

al in 1985.[74] AFM enables in-situ examination o f atomic level details on surfaces. 

Furthermore, it does not require an electrically conductive sample for image generation. 

It works equally well on dielectrics, including metal oxides or adsorbed organic films.
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This is not the case with Scanning Tunneling Microscope (STM) or Scanning Electron 

Microscope (SEM). The use o f an inert tip makes this technique especially suitable for 

work in electrochemical environments.

AFM and other in-situ imaging techniques are powerful tools that can produce images 

o f events directly at the liquid-solid interface during electrodeposition. Such images 

provide a rich source o f qualitative observations that can test hypotheses o f mechanism. 

However, the utility o f qualitative results can be enhanced by a more quantitative 

treatment of information contained in such images. Based on methods for quantitative 

analysis of surfaces grown at the gas-solid interface, Schmidt et al.[6] proposed a 

procedure for extracting quantitative information from AFM images. They applied this 

method to analyze the AFM images o f growing copper deposits from additive-free and 

additive-containing acidic sulfate solutions to provide insight into the mechanism of their 

growth. For additive-free deposits, it was concluded that surface morphology was 

dominated by surface diffusion. In solutions containing benzotriazole, surface diffusion 

was strongly inhibited. In solutions containing thiourea, growth was dominated by three- 

dimensional island formation. The different mechanisms suggested for each solution 

indicate that this quantitative image analysis shows promise and its refinement for 

electrodeposition application is worthy o f further study.
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Chapter 3

EXPERIMENTAL

3.1 Introduction

Copper electrodeposits on copper single crystal formed in acid copper sulfate 

electrolyte under galvanostatic conditions were imaged with a commercially available 

AFM, NanoScope E (Digital Instruments, Santa Barbara, CA).

In order to examine the influence o f chloride and organic additives on the growth 

behavior o f copper electrodeposits, experiments were performed in conventional sulfate 

plating solutions o f 0.2M CuSCVl.OM H2 SO4  containing typical low concentrations of 

HC1 and organic additives. In addition, air-saturated and deaerated solutions were used 

respectively to examine the effect o f oxygen on the surface growth.

3.2 Experimental Setup

The main experimental setup is shown in Figure 3.1 and 3.2. It consists of a Digital 

Instruments NanoScope E atomic force microscope equipped with a 14 pm scanner, a 

standard AFM fluid cell obtained from Digital Instruments, and a computer-controlled 

EG&G Instruments VersaStat II Potentiostat/Galvanostat for controlling the current 

applied to the fluid cell. The AFM fluid cell is equipped with a gold-coated spring clip 

which holds a tip assembly. The assembly contains a pyramidal Si3N 4  45° tip mounted on
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a gold-coated 200 pm V-shaped silicon cantilever. The cantilevers have a force constant 

o f 0.06 N/m.

3.2.1 A FM  operation

The working principle o f an AFM is based on the deflection of a very sensitive 

cantilever due to repulsive forces between atoms on the sample surface and atoms at the 

cantilever tip. This deflection is measured using a laser beam while the sample is 

scanned. Scanning in the horizontal, or X, Y direction, as well as motion in the vertical, 

or Z direction, are performed by a piezo-electric translator. The computer subsystem 

controls the xyz translations and records the reflected laser beam signal. Dedicated 

software reconstructs these data into a topographic picture o f the sample surface based on 

either a height or a deflection feedback mode. Figure 3.3 shows the principle o f 

measurement of an AFM.

In height mode, the displayed data comes from the voltage output to the Z piezo. A 

feedback loop directs the Z piezo to move the sample up or down to maintain a constant 

cantilever deflection. The Z piezo signal thus describes the surface height as function o f 

position in the X-Y plane. Because the total force applied on the sample is constant, this 

mode is also referred as Constant Force mode.
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Figure 3.1 Schematic view of the AFM electrochemical cell for in-situ study of metal 
electrodeposition.
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Figure 3.2 Schematic illustration of AFM in-situ examination of a sample surface in 
electrolyte under electrochemical control using a Potentiostat/Galvanostat.
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In deflection mode, the cantilever is held at constant height and the cantilever 

deflection signal is captured and displayed. This data describes the surface height. This 

mode is also referred as Constant Height mode.

Mirror

Signal 1

Signal 2

Oscillating
CantileverSignal 1-2 gives Sample Surface

location o f beam ——

Figure 3.3 The principle of measurement of an atomic force microscope.

3.2.2 Electrochemical Cell

A commercially available fluid cell, supplied by Digital Instruments, was used for in- 

situ electrodeposition experiments. The cell was made of glass and had an indentation 

where the cantilever was placed and held in place with a spring clip (see Figure 3.1). A 

sulfuric acid-resistant ethane propylene diethylene O-ring (35 durometer) was fitted 

between the fluid cell and the sample and defined the side walls o f the electrochemical 

cell. The sample and the bottom surface of the fluid cell comprise the bottom and top 

walls o f the electrochemical cell respectively. The surface area exposed to solution 

during electrodeposition was 0.3 cm2. Two glass tubes were fitted to the inlet and outlet 

ports o f the fluid cell to hold electrolyte solution (not shown in Figure 3.1). Solution was
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then driven into the cell through the inlet and outlet ports. Solution driving can often be 

problematic since slow driving may result in the formation o f bubbles in the cell, which 

interfere with imaging and dismpt electrical conduct between the working and counter 

electrodes.

A copper single-crystal disk o f orientation (100) (99.999%, 12 mm in diameter and 

2mm thick, Monocrystals Incorporated) was mounted on the top o f the scanner and was 

used as working electrode. A single crystal plane is preferred to study the electrochemical 

behavior o f copper electrodeposition since it possesses a well-defined crystal orientation 

while the surface o f polycrystalline copper is an irregular ensemble o f randomly oriented 

crystal planes. The use o f single crystal plane allows for a more uniform initial surface 

for electrodeposition experiments. The counter electrode was a piece of coiled copper 

wire fitted in the outlet tube of the fluid cell.

3.2.3 Power Supply for the Electrochemical Cell

An EG&G VersaStat II Potentiostat/Galvanostat system controlled by a computer 

(Compaq Presario 5000) with Head Start Creative Electrochemistry Software (EG&G 

PARC, Version 1.70) installed was used for galvanostatic pulse-current electrodeposition 

experiments. The maximum potential and current output capability for this system are 

20V for potentiostatic and 200 mA for galvanostatic control, respectively.

In this research, galvanostatic deposition was selected over potentiostatic since it 

corresponds to constant flux of material to the surface, a condition that is implied in 

scaling analysis o f vapor deposited surfaces.[75] The use o f galvanostatic pulse-current 

deposition technique can lead to electrodeposits with improved physical properties such
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as smaller grain size, greater brightness, and less internal stress than those prepared with 

conventional direct-current methods.[76J

To prevent the interfacial concentration o f copper ions falling to less than 70% o f the 

bulk concentration, a square-wave pulse-current program was imposed. A current 

waveform for the galvanostatic pulsed electrodeposition is illustrated in Figure 3.4. In 

this study, the pulse-on period, ton and the relaxation period, t0ff, were set to 1 second and 

9 seconds, respectively. ip is the peak-pulse current, which was set to 10mA, 

corresponding to about 30mA/cm2 current density.

cathodic

ton to ff

pulse period
anodic

Figure 3.4 Current waveform for pulsed electrodeposition.

3.3 Experimental Materials and Preparation

3.3.1 Substrate Preparation

The copper single-crystal disk was first mechanically polished using a fine 

grinding/polishing system, which comprises a Struers RotoPol-11 polishing machine and 

a Struers RotoForce-1 sample mover (Struers Inc., Westlake, OH). The sample surface 

was polished with diamond compounds of 6  and 3 pm particle size as well as colloidal 

silica suspension successively.
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Figure 3.5 shows the schematic view o f the grinding/polishing machine setup. In a 

grinding/polishing process, the samples are held by a rotating specimen mover plate with 

the polished surface facing the horizontal rotating polishing wheel. On the top o f the 

wheel is a removable abrasive cloth on which the lubricant or colloidal silica suspension 

is poured. The specimen mover plate and wheel rotate in the same direction and speed but 

with the two rotating axes offset by some distance. The rotating speed o f the specimen 

mover plate and wheel and the pressure applied on the samples can be varied by 

adjustment o f the control panel. A lubricant delivery system is used to quantify the 

amount o f lubricant applied to the polishing process.

The polishing procedures are outlined below.

Carrier (Head)

Lubricant Feed
Specimen 

Mover Plate
Lubricant

Feed

Sample

Polishing Cloth Wheel

Figure 3.5 Schematic diagram of a grinding/polishing machine.
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Step #1 Grind sample until surface is uniform and perpendicular to disc axis

Rotating speed 150 rpm

Disc surface Cloth MD-Pan (Struers catalogue # 40500083)

Diamond compound 6  pm DP-Spray (Struers catalogue # 40600135)

Total load (Newtons) 25

Lubricant Ultrapure Water

Lube dosing 7 drops per minute

Time 5-20 minutes, depends on the sample initial quality

Etchant none

Clean sample Rinse with ultrapure water

Step #2 Polish sample until surface is uniform and scratch free

Rotating speed 150 rpm

Disc surface Cloth MD-Mol (Struers catalogue # 40500077)

Diamond compound 3 pm DP-Spray (Struers catalogue # 40600136)

Total load (Newtons) 2 0

| Lubricant DP-Lubricant Red, HQ (Struers catalogue # DEPPO)

I Lube dosing 7 drops per minute

Time 5 minutes

Etchant none

1 Clean sample Rinse with ultrapure water
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Step #3 Polish/Etch sample until surface is uniform and mirrorlike

Rotating speed 150 rpm

Disc surface Cloth MD-Chem (Struers catalogue # 40500092)

Total load (Newtons) 2 0

Lubricant OP-S Suspension (Struers catalogue # 40700000) 
(see Etchant recipe)

Lube/Etchant dosing 1) Wet entire disc surface prior to polish (w/5ml)
2) Then dose the surface again after 20 seconds (w/5ml)
3) Then dose the surface w/copious amounts of 

ultrapure water after 40 seconds have elapsed
Time 1 minute

Etchant Make etchant solution immediately before use
1) 10 ml o f OP-S Suspension in 50ml beaker
2) Add 6  drops (0.2 ml o f NH4 OH) to same beaker
3) Add 9 drops (0.3 ml o f H2 O2 ) to same beaker

Step #4 Clean sample until surface is uniform, mirrorlike, and deposit free

Clean in ethanol 1) Insert disk sample, polished side up, into ethanol.
2) Insert test tube into the Ultrasonic cleaning apparatus 

for one minute.

Rinse in ultrapure
water

1) Insert disk sample, polished side up, into ultrapure 
water.

2) Insert test tube into the Ultrasonic cleaning apparatus 
for one minute.

Dry Remove and shake sample, gently tamp the polished 
surface edge with a clean Kim-wipe to wick the 
remaining water from the surface.
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Prior to each experiment, the sample was electropolished in 85% phosphoric acid for 

2 minutes at a constant voltage o f 2 V. Polishing was followed by successive rinses in 

concentrated sulfuric acid (96%), 10% nitric acid, 10% sulfuric acid, and ultrapure water.

3.3.2 Solution Preparation

Four plating solutions were used to study the growth behavior o f copper 

electrodeposits under air-saturated and deaerated conditions.

(1) 0.2M CuSCyi.OM h 2s o 4

(2) 0.2M CuS04/l  .0M H2 SO4/I .OmM HC1

(3) 0.2M CuSCVl ,0M H2 SO4/I .OmM HCl/O.lmM BTA

(4) 0.2M CuSO4/1.0M H2SO4/1.0mM HCl/O.lmM MPSA

Chemical reagents used for the preparation o f electrolyte solutions are listed in Table

3.1.

Table 3.1 Chemical reagents used in the experiments

Chemicals Formula Content (%) Source

Cupric sulfate 
pentahydrate

CuS 0 4-5H20 99.999 Aldrich

Sulfuric acid h 2s o 4 9 5 .5 -9 6 .5 EM Science

Hydrochloric acid HC1 34.3 J. T. Baker

Benzotriazole (BTA) c 6h 5n 3 99 Aldrich

3-mercapto-l- 
propanesulfonic acid, 
sodium salt (MPSA)

HS(CH2)3S 0 3Na 90 Aldrich
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All o f  the solutions were made with ultrapure water produced in a Nanopure II Ultra­

filtration system. The resistivity o f the water was 17-18 mO-cm.

In some experiments, the solutions, assumed to be air saturated, were directly driven 

into the fluid cell. In others, the solutions were first stored in a closed glass vessel and 

deaerated by sparging ultrapure nitrogen (99.99%, Northeast Airgas) for 40 minutes 

before being introduced into the AFM cell through PTFE tubing. Under this anaerobic 

environment, a piece o f copper was placed in the reservoir to ensure equilibrium between 

solution and metal. The nitrogen was further purified by passing it through an indicating 

oxygen trap (VWR) before sparging it into the vessel.

3.3.3 Cleaning of Electrochemical Cell

A strict cleaning protocol was followed since trace mounts o f impurity affect the 

growth o f electrodeposits. All the glassware used in the experiment was first washed with 

hot water and mild detergent, rinsed with tap water and ultrapure water. It was then 

immersed in hot fuming sulfuric acid (96%) for 10 minutes, rinsed three times with 

ultrapure water, then boiled in ultrapure water for 10 minutes, and finally rinsed three 

times with ultrapure water and air-dried.

Great care must be taken in cleaning the fluid cell used in the AFM study. The cell 

was immersed in Nochromix (Godax Lab Inc.) concentrated sulfuric acid cleaning 

solution for several minutes to remove organic contaminants and metal. Immersion in the 

cleaning solution was carefully done in a way as to avoid contact between the acidic 

solution and the cantilever clip. After cleaning, the cell was rinsed thoroughly with 

copious amounts o f ultrapure water.
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Cleaning o f the 0-ring consisted o f two steps. In the first step the O-ring was 

immersed in a warm solution o f mild detergent for two hours. It was then rinsed 

thoroughly with ultrapure water, immersed in a 1:1 (vol.) mixture o f water and H2 SO4  for 

two hours, finally rinsed with ultrapure water.

3.4 Experimental Procedures

The single-crystal copper disk o f (100) orientation was mounted on the scanner and 

the O-ring was put on the top o f the disk. The optical head with attached fluid cell was 

placed in the center o f disk with the O-ring fitting into the V-groove on the bottom of the 

fluid cell. Head stabilizing springs were installed and the head was leveled with a set o f 

screws. The glass tubes were fitted into the inlet and outlet ports o f the fluid cell. Then 

electrolyte solution was then driven into the fluid cell, and the working, counter, and 

reference electrode were connected to the galvanostat.

The AFM was engaged after adjustment o f the laser signal. Images were captured in 

height and deflection mode simultaneously. Galvanostatic pulse-current electrodeposition 

experiments were performed at a current density o f 30 mA/cm2. AFM images ( 8  pm x 8  

pm) of surface morphology were acquired after intervals o f five current pulses. During 

the electrodeposition process for the solutions containing organic additives, the AFM tip 

was held in a small (10 nm x 10 nm) scanning region. After five current pulses the 

scanning size was increased to 8  pm x 8  pm and a surface image was captured. This 

technique of capturing AFM in-situ data was used to eliminate tip removal of organic 

additives adsorbed on the substrate at the area o f interest. After an image was captured 

the fluid cell was flushed by the fresh solution to prevent the copper depletion in the
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solutions. By repeating the electrodeposition, imaging and flushing steps, a sequence of 

images o f  copper electrodeposits on the single crystal copper were obtained for further 

qualitative and quantitative analysis. Cumulatively, the current was applied to the 

solution for 50 seconds, which corresponds to about 0.6 pm o f deposited metal, and ten 

images were obtained for each deposition experiment.
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Chapter 4

RESULTS AND DISCUSSION

4.1 Introduction

Deposits were formed on copper single crystal disks o f (100) orientation using a 

galvanostatic pulse-current deposition technique. A current density o f 30mA/cm was 

used to simulate practical deposition rates. A short pulse-on period o f 1 second was used 

to avoid depletion o f metal ions and transport-limited growth. The morphology of 

deposits was characterized as a function o f deposition time for additive-free and additive- 

containing solutions under air-saturated and deaerated conditions. Four different plating 

solutions were used:

(1) 0.2M CuS04/l .0M H2S0 4

(2) 0.2M CuSCVl .0M H2 S04/1 .OmM HC1

(3) 0.2M CuSCVl.0M H2 S(V1.0mM HCl/O.lmM BTA

(4) 0.2M CuS04/l.0M  H2 S 04/1 .OmM HCl/O.lmM MPSA

Approximately three runs were carried out for each solution under air-saturated and 

deaerated conditions respectively. For each experiment, images were taken with 8pm 

scan size. The number o f data points taken per scan line was 512. Images were then 

exported into an ASCII format with 512x512 Z-direction data points for data analysis. 

Scaling analysis and pattem-recognition procedures were used to analyze
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electrodeposited surfaces grown from each solution. With the use o f theoretical models, 

scaling analysis provided a statistical description of the spatial and temporal changes o f 

the surface during the course o f electrodeposition,[7:,]77] while pattem-recognition 

procedures were applied to identify and analyze the shapes o f individual surface 

features J78̂

4.2 Results

These experiments were carried out at current densities o f technological interest. 

Deposition produced changes too rapidly for representative images to be captured in real 

time. It was found that the images captured at open circuit were reproducible, and the 

surface did not change significantly during the off-time. Therefore, each image presented 

below represents the morphology observed at the end o f a given period of deposition. 

Taken together, each series o f AFM images represents evolution o f deposit growth at the 

same location on the substrate surface as a function of deposition time.

4.2.1 Air-saturated 0.2M CuSCVl.OM H 2 S 0 4

Figure 4.1(a) - (e) shows a time sequence o f AFM images captured during 

electrodeposition from air-saturated 0.2M CuSCVl .OM H2SO4 solution after deposition 

times o f 10, 20, 30, 40, and 50 seconds. The crystal was clearly observed to grow in a 

layer-by-layer fashion from the earliest stage o f deposition. The layer type o f deposits 

formed with side faces, or macro-steps, all running in one direction. The surface 

consisted o f smooth terraces 400 to 800 nm wide and separated by steps with a height o f 

6 to 10 run. Although the change of surface structure was very slow, there was a gradual
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decrease o f  distance between successive steps with increasing deposition time as layers 

caught up with neighboring layers. Initially the steps were oriented 45° from the (100) 

direction. Eventually, the steps were parallel to the (100) direction. Such a growth mode 

may be explained by supposing that addition occurs preferably on the edges o f layers 

surface, rather than on their surface.

4.2.2 Deaerated 0.2M CuSCVl.OM H 2S 0 4

Figure 4.2(a) - (e) represents a sequence o f images o f  electrodeposition from 

deaerated 0.2M CuSCVl.OM H 2 SO4 solution after deposition times o f 10, 20, 30, 40, and 

50seconds. The growth o f deposits was similar to that observed in air-saturated solution. 

The morphology o f copper deposits was layer growth with straight layer edges. 

Compared to the deposits formed in air-saturated solution, the distance between the 

successive steps and the height o f  steps were smaller, and all the steps were parallel to the 

( 1 0 0 ) direction from the beginning o f deposition.
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(a) (b)

Figure 4.1 AFM images of Cu electrodeposition on single crystal copper from air- 
saturated 0.2M CuSCVl.OM H2SO4 solution at current density of 30 mA/cm2 for 
deposition time of (a) 10s, (b) 20s, (c) 30s, (d) 40s, (e) 50s.
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(a) (b)

Figure 4.2 AFM images of Cu electrodeposition on single crystal copper from 
deaerated 0.2M CuSCVl.OM H2SO4 solution at current density of 30 mA/cm2 for 
deposition time of (a) 10s, (b) 20s, (c) 30s, (d) 40s, (e) 50s.
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4.2.3 Air-saturated 0.2M CuSCVl.OM H 2S€V1.0mM  HC1

Figure 4.3 shows a series o f AFM images o f copper deposited from air-saturated 

0.2M CuSCVl.OM H2SO4/I.OmM HC1 solution after 10, 20, 30, 40, and 50 seconds. As 

shown in Figure 4.3 (a), at the very early stages o f deposition, the shape o f the deposits 

might not be well defined, but later the larger features appeared to be developing a better- 

defined shape (see Figure 4.3 (c)-(e)). The deposits consisted o f extremely regular 

truncated square pyramids with edges parallel the (100) direction. The pyramids were 

observed to become quite large (ca. 1.5 pm) as deposition progressed. As more copper 

was deposited on the surface, the individual pyramids were seen to increase in size. 

Flowever, no additional pyramids were observed to form after the formation o f the initial 

ones. It is noteworthy that the faces o f pyramidal side contained steps. In contrast to the 

layer growth mode seen in additive-free solution, a three-dimensional growth-mode was 

dominant in solutions containing CF, although steps were still observed on the faces of 

the features. These observations indicate that CF has a strong influence on morphology o f 

copper deposits.

4.2.4 Deaerated 0.2M CuSCVl.OM H2 S(V1.0m M  HCI

Figure 4.4 shows a series o f AFM images o f copper deposited from deaerated 0.2M 

CuSCVl.OM BbSCVl.OmM HCI solution after 10, 20, 30, 40, and 50 seconds. The main 

features were the same as those seen in Figure 4.3. The deposits were composed of 

square-pyramidal mounds. The number o f mounds did not increase with deposition time, 

although their size increased.
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(e)

Figure 4.3 AFM images of Cu electrodeposition on single crystal copper from air- 
saturated 0.2M CuSCVl.OM KhSCVl.OraM HCI solution at current density of 30 
mA/cm2 for deposition time of (a) 10s, (b) 20s, (c) 30s, (d) 40s, (e) 50s.
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(c)

(d)

y

Figure 4.4 AFM images of Cu electrodeposition on single crystal copper from 
deaerated 0.2M CuSCVl.OM BhSCVl.OmM HCI solution at current density of 30 
mA/cm2 for deposition time of (a) 10s, (b) 20s, (c) 30s, (d) 40s, (e) 50s.
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4.2.5 Air-saturated 0.2M CuSCVl.OM H2S 0 4/U m M  HCl/O.lmM  BTA

Figure 4.5 shows a series o f  images depicting the evolution o f deposit morphology 

obtained from air-saturated 0.2M CuSCVl.OM HiSCVl.OmM HCl/O.lmM BTA solution. 

Nucleation and growth of three-dimensional nodules started randomly across the entire 

imaged surface. The number o f growth centers did not significantly change during the 

course o f  the deposition, while the existing centers increased gradually in size. This is 

indicative of an instantaneous nucleation process. After deposition o f 50 seconds the size 

o f individual nodules reached a few hundred nanometers in base width. The initial 

nodules did not merge with neighboring nodules. When compared to the very large 

pyramids formed from a solution containing only Cl' (see Figure 4.3 (e)), the nodules 

were smaller in size, and randomly distributed over the imaging area, and the number 

density o f nodules was considerably higher. The morphological differences between 

Figure 4.5 and Figure 4.3 indicate that BTA also significantly affects the deposition 

behavior o f copper.

4.2.6 Deaerated 0.2M C11SO4/I.OM HjSCVl.OmM HCl/O.lmM BTA

Figure 4.6 provides a series o f AFM images copper deposition from deaerated 0.2M 

CuSCVl-OM HiSCVl.OmM HCl/O.lmM BTA solution. The growth was clearly similar 

to that observed in the same solution when saturated with air. Randomly distributed 

nuclei formed across the surface. Each individual nucleus continued to develop with time, 

and new nuclei did not form at later deposition times. The surface was dominated by the 

growth o f the initial nuclei.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.5 AFM images of Cu electrodeposition on single crystal copper from air- 
saturated 0.2M CuSCVl.OM H 2 SO4/I.O111M HCl/O.lmM BTA solution at curren t 
density of 30 mA/cm2  for deposition time of (a) 10s, (b) 20s, (c) 30s, (d) 40s, (e) 50s.
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Figure 4.6 AFM images of Cu electrodeposition on single crystal copper from  
deaerated 0.2M CuSCVl.OM HhSCVl.OmM HCl/O.lmM BTA solution at current 
density of 30 mA/cm2 for deposition time of (a) 10s, (b) 20s, (c) 30s, (d) 40s, (e) 50s.
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4.2.7 A ir-satu rated  0.2M C 11SO 4/I.OM H2S€V1.0mM HCl/O.lmM MPSA

Figure 4.7 shows five images, taken from a series o f 10, showing deposition of 

copper from air-saturated 0.2M CuSCVl.OM B^SOVl-OmM HCl/O.lmM MPSA solution. 

Deposits consisted o f flat-topped mounds, which appeared to be intermediates between 

the clearly defined four-sided pyramids seen in Figure 4.3 and the rounded nodules seen 

in Figure 4.5. The symmetry of the underlying metal surface was visible, but distinct 

pyramids did not appear. The majority o f the mounds were formed during the first 20 

seconds o f deposition. After that, the existing mounds grew laterally and vertically as 

more material was deposited and no new growth centers emerged. Eventually the large 

mounds merged partly, leaving deep recess between them. The growth behavior observed 

here can be attributed to the combined effect o f  the C1‘ and MPSA in the solution.

4.2.8 Deaerated 0.2M CuSCVl.OM H 2SO4/1.0ijjM  HCl/O.lmM MPSA

Figure 4.8 shows a series o f AFM images that illustrates the growth of copper deposit 

from deaerated 0.2M CuSCVl.OM ^SC V l.O m M  HCl/O.lmM MPSA solution. The 

deposit morphology was consistent with that obtained in the same solution when 

saturated with air. Large, three-dimensional, flat-topped mounds formed at the advanced 

stages o f copper electrodeposition. No further growth occurred in the recess area between 

the large mounds as deposition proceeded. The morphological consistence between 

Figure 4.7 and Figure 4.8 indicates that dissolved oxygen in the plating solution did not 

affect the deposit morphology markedly under the conditions o f this study.
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(c)

Figure 4.7 AFM images of Cu electrodeposition on single crystal copper from air- 
saturated 0.2M CuSCVl.OM H2SO4/I.O1MM HCl/O.lmM MPSA solution at current 
density of 30 m A /c m 2 for deposition time of (a) 10s, (b) 20s, (c) 30s, (d) 40s, (e) 50s.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.8 AFM images of Cu electrodeposition on single crystal copper from 
deaerated 0.2M CuSCVl.OM HaSCVl.OmM HCl/O.lmM MPSA solution at current 
density of 30 mA/cm2 for deposition time of (a) 10s, (b) 20s, (c) 30s, (d) 40s, (e) 50s.
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4.3 Discussion

4.3.1 Scaling Analysis

The growth o f surfaces is inherently a complex phenomenon and discussion of 

growth mechanisms so far has been primarily qualitative in nature. However, in addition 

to insights obtained by inspecting AFM images directly, surface growth can be analyzed 

quantitatively using the scaling methodology J75][77] Scaling analysis o f the surface 

roughness is based on the assumption that surfaces become rougher as they grow and 

correlates the roughness evolution with the mechanism by which surface grows. This 

type of analysis, which has also been applied to surface growth from vapor deposition, 

considers the surface growth as the result o f competition between roughening processes 

such as stochastic arrival o f species from a vapor or solution phase and lateral smoothing 

processes such as surface diffusion. Recent theoretical and experimental developments 

have shown that the molecular scale phenomena involved in surface growth leave a 

definite signature in the morphology o f the surface J75-*

Scaling analysis applies strictly to surfaces that satisfy the condition of self-affinity.

A surface is characterized as self-affine when it exhibits self-resemblance over a range of 

scales; that is, the contour o f a self-affine surface has the same appearance when viewed 

at various degrees o f magnification. The concept o f self-affinity is described 

mathematically by the following relation:

H(r) = k 'H{kt) (4.1)

where H(r) is the height at point r  on the surface. If  a surface, defined by k'H(kt) is 

indistinguishable from one defined by H(r), then H is self-affine. Self-affinity is a more
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general case o f the scaling phenomenon o f self-similarity (H(r) = kH(kx)), which is used

surfaces formed by electrodeposition were self-affine.

To describe the surface growth quantitatively, the function o f surface width w(L, t) is 

introduced to characterize the roughness o f the surface. The surface width w(L, t), also 

known as the root mean square (rms) height o f the surface, is the standard deviation o f 

the surface height over length scale L consisting o f N  data points at growth time t and is 

defined by [77]

where h/t) is the height o f  the surface at position i at time t and h (t) is the mean height o f 

the surface over length scale L. The value o f surface width w(L, t) depends on the extent 

of the examined surface. With the increase o f scale length used to measure w(L, t), the 

value o f w(L, t) also increases up to a maximum magnitude wmax, which is characteristic 

o f the system. It is the description and characterization o f the scaling behavior o f w(L, t) 

that has developed into a powerful theoretical description o f non-equilibrium growth 

processes.

Family and Vicsek[7] showed that self-affine width w(L, t) can be expressed in the

to describe a fractal surface. Schmidt et alJ6-1 and Iwasaki et alJ32-1 found that copper

(4.2)

form

(4.3)
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where two parameters a  and /? are the scaling and growth exponents respectively, also

referred to as static and dynamic exponents. Self-affine surfaces are characterized by

values o f  a  between 0 and 1 whereas self-similar surfaces have a  =  1. Furthermore, in 

Eq. (4.3), /( t /L ^ )  has the following properties: = constant for t /L ^  -»  °o, and

fft/L ^ ) = ( t /L ^ f  for t/If'P —» 0. Therefore, Eq. (4.3) comprises two limiting cases. At 

long time and short length scales, t /L ^  oo, and

w(L) oc La (4 .4)

At short times and long length scales, t /L ^  0, and

w(t) oc t p (4.5)

The crossover between these two types o f behavior occurs at L = Lc, which is referred as 

the critical length. The critical length increases with time.

The values o f a  and (3 can be derived from log-log plots o f Eqs. (4.4) and (4 .5), 

respectively. The surface width log(w) increases with the length scale log(Z) o f the area 

over which it is measured, but if  L exceeds a critical value Lc the surface width has a 

constant value wmax that is independent o f L . By plotting the surface width w  as a function 

o f L at various deposition times, it is possible to evaluate the scaling exponent a  from the 

initial slope o f the log(w) vs. log(L). The constant surface width wmax increases with 

deposition time t, and the slope o f the log(wmax) vs. log(t) line is equal to the growth 

exponent J3. Reliable data for the two exponents can be derived from this procedure when 

scaling is made over wide length and time ranges. Comparison of measured scaling and
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growth exponents with those predicted by theoretical models provides insight into the 

mechanisms operative in real surface growth.

Several investigators have applied the scaling analysis to copper electrodeposits, 

producing scaling exponents o f 0 to 1 and growth exponents o f up to 0.5.C61t3!][32][79̂ More 

recently, Huo and Schwarzacher used an anomalous scaling relation, which had the 

form,[80]

v * £ ,0  = r t ' “ / < 7 ^ r )  0-6)

where the parameter /?toc is a ‘local’ growth exponent. This differs from normal scaling 

because surface width w  is no longer independent of t for small L, but rather shows a 

power law dependent on L and t. As before, w shows a power law dependence on t for 

large L, this time scaling as t ^ loc. Huo and Schwarzacher reported a scaling exponent a  

o f about 0.8 and a growth exponent f3 o f about 0.4 independent of deposition rate. The 

local growth exponent J3ioc varied from 0 to 0.44 and increased with increasing current 

density.

In this study, scaling analysis was employed to analyze the AFM images for the 

deposits obtained with all eight experimental conditions. Analysis was performed using a 

specifically developed code. The code calculated the surface width as a function of the 

image area size. For each ASCII data file exported from 8x8 pm AFM images, which 

consisted of 512x512 points, the surface was divided into squares o f 8x8 points each and 

surface width was measured on each square. A total o f 4096 resulting surface widths at 

this smallest surface area were calculated and a representative surface width value for the 

area was then obtained by averaging the 4096 values. The measured sample size was then
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increased and the surface width was recalculated for this bigger sample size. The same 

procedure was followed until the surface width o f the entire area (8x8 pm) was measured. 

The results were reported surface width vs. scaling length, and w  was plotted against L.

Figure 4.9 shows the experimental relationship between surface width w(L, t) and 

sample area L for copper deposits formed from an additive-free solution under air- 

saturated condition. Each set o f points, which is obtained from one of AFM images 

shown in Figure 4.1, corresponds to a different deposition time t. The range of t that can 

be studied is limited. When t is too small, w(L, t) is dominated by the substrate. When t is 

too large, the surface becomes too rough to measure reliably by AFM, and tip artifacts 

appear in the images. It can be seen from Figure 4.9 that at low L values, there is a linear 

dependence between log(w) and log(Z), and the surface width w(t, L) becomes constant at 

large L. The trend is observed in all eight studied conditions. According to Eq. (4.4), the 

scaling exponent a  is equal to the slope o f the linear regime o f the log-log plots. In this 

case, a  is determined to be 0.72.

A plot o f the constant surface width wmax at different deposition times is used to 

determine the growth exponent /?. Figure 4.10 is a log-log plot o f wmax vs. t for copper 

deposits formed from an additive-free solution under air-saturated condition. It may be 

seen that the data does exhibit a simple linear dependence as predicted by Eq. (4.5). The 

solid line is the least-square fit to the data. From Eq. (4.5), j3 is equal to the slope o f the 

line. In Figure 4.10, f3 is determined to be 0.24 with R2 = 0.979.
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Figure 4.9 Plots of surface width vs. length scale for deposits obtained from air- 
saturated 0.2M CuSCVl.OM H 2SO4 solution at different deposition times.
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Figure 4.10 Plot of maximum surface width vs. deposition time for copper deposited 
from air-saturated 0.2M CuSCVl.OM H2SO4 solution.
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Figure 4.11 Plots of surface width vs. length scale for deposits obtained from 
deaerated 0.2M CuSCVl.OM H 2SO4  solution at different deposition times.
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Figure 4.12 Plot of maximum surface width vs. deposition time for copper deposited 
from deaerated 0.2M CuSCVl.OM H2SO4 solution.
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Figure 4.13 Plots of surface width vs. length scale for deposits obtained from air- 
saturated 0.2M CuSCVl.OM H2SO4/LO111M HCl/O.lmM BTA solution at different 
deposition times.
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Figure 4.14 Plot of local surface width [w(t, L) for L = 200 nm] and maximum 
surface width vs. deposition time for copper deposited from air-saturated 0.2M 
CuSCVl.OM H2SO4/I.O mM HCl/O.lmM BTA solution.
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Figure 4.15 Plots of surface width vs. length scale for deposits obtained from 
deaerated 0.2M CuSCVl.OM H^SCVl.OmM HCl/O.lmM BTA solution at different 
deposition times.
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Figure 4.16 Plot of local surface width [w(t, L) for L  = 200 nm] and maximum 
surface width vs. deposition time for copper deposited from deaerated 0.2M 
CuSCVl.OM H2S 0 4 /l.OmM HCl/O.lmM BTA solution.
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Figure 4.17 Plots of surface width vs. length scale for deposits obtained from air- 
saturated 0.2M CuSCVl.OM BhSCVI.OmM HC1 solution at different deposition 
times.
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Figure 4.18 Plots of surface width vs. length scale for deposits obtained from 
deaerated 0.2M CuSCVl.OM BhSCVI.OmM HC1 solution at different deposition 
times.
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Figure 4.19 Plots of surface width vs. length scale for deposits obtained from air- 
saturated 0.2M CuSCVl.OM H2SO4/I.O111M HCl/O.lmM MPSA solution at different 
deposition times.
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Figure 4.20 Plots of surface w idth vs. length scale for deposits obtained from 
deaerated 0.2M CUSO4/I.OM H2SO4/I.O111M HCl/O.lmM MPSA solution at different 
deposition times.
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The same procedure was followed for the scaling analysis o f  surfaces grown from 

additive-free solution under deaerated condition. Figure 4.11 illustrates the surface width 

w a s  a function o f the length scale L  for the surfaces shown in Figure 4.2. Again the 

dependence o f w on L is linear at the small length scale, with a slope o f a  = 0.70 but as 

the length scale increases the surface width reaches a constant value wmax. Figure 4.12 

shows the maximum surface width dependence on deposition time for surfaces grown 

from additive-free solution under deaerated condition. The growth exponent /? is equal to 

the slope o f w w w ith  deposition time and was found to be equal to 0.28.

Figure 4.13 shows surface width w(L, t) data for a series o f films electrodeposited on 

Cu(100) surface from BTA+CT solution under air-saturated condition. For each 

deposition time, w is approximately constant for large scale length L and log(w) shows a 

linear dependence on log(Z) for small L, with a scaling exponent a  o f 0.86. For small L, 

w(L, t) increases with deposition time, which means that the kinetic roughening cannot be 

described by the normal scaling relation Eq. (4.3). It can, however, be described by the 

anomalous scaling relation Eq. (4.6). As Figure (4.14) shows, log(w) varies linearly with 

log(t) in both the small L and large L regions. Figure (4.14) shows local surface width 

w(L, t) for L ~ 200nm and maximum surface width wmax for L > Lc as calculated from the 

data o f Figure (4.13). The solid lines, which are the least-square fit to local and maximum 

surface width data, have slopes Pioc = 0.96 and p + Pioc = 1.31, respectively.

Surfaces o f copper deposits grown from BTA+CT solution under deaerated condition 

also demonstrated anomalous scaling as shown in Figures (4.15) and (4.16). The same 

analysis gives scaling exponents o f a  = 0.89, Pioc = 1.10, and p + Pioc = 1.48 for this 

deposition condition.
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Figures 4.17 to 4.20 show the scaling analysis o f copper deposits obtained from Cl" 

solutions and MPSA+CF Solutions under air-saturated and deaerated conditions, 

respectively. These figures show that kinetic roughening during copper electrodeposition 

in the presence o f additives obeys the anomalous scaling law, as described by Eq. (4.6).

Taken together, the results o f scaling analysis o f deposits grown from additive-free 

and additive-containing solutions show that at small length scales the surface width 

increases linearly with scaling length L. In additive-free solutions, surface width is 

independent o f deposition time. In Cl" and organic additives containing solutions, surface 

width continues to increases with deposition time. The fact that in all cases the scaling 

exponent a  is between 0 and 1 serves as evidence o f deposit self-affinity[75]. Information 

on the mechanism o f surface growth can be obtained by comparison o f the scaling 

exponents obtained here with values reported in the literature.

A summary o f the scaling parameters for the different deposition systems is given in 

Table 4.1. These scaling exponents represent the average values obtained from all three 

experiments performed for each deposition system defined by the solution and the purge 

gas. Among the four solutions, the deposits obtained from additive-free solutions give the 

smallest a, while the deposits obtained from solutions containing MPSA+CF yield the 

largest a. The presence o f dissolved oxygen does not markedly affect values o f  a  for 

either solution. The values o f j3 fall between 0.16 and 0.38, and decrease when dissolved 

oxygen is present for each solution studied here. pioc varies over a wide range. For the 

additive free solutions, /?/oc equals 0, and for the additive containing solutions, f3ioc is 

close to 1.
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Table 4.1 Experimentally determined scaling exponents for copper electrodeposition.

System a P P io c

Additive-free with air 0.72 0.24 0

Additive-free with N 2 0.70 0.28 0

CF with air 0.83 0.22 0.83

CF with N2 0.85 0.25 0.90

BTA+CF with air 0.86 0.35 0.96

BTA+CF with N2 0.89 0.38 1.10

MPSA+CF with air 0.92 0.16 0.96

MPSA+CF with N2 0.94 0.19 0.86

The maximum surface width in CF+BTA solutions after 50 seconds was 100 

nanometers, about twice the surface width of the deposits formed in Cl'+MPSA solutions, 

about three times the surface width o f the deposits formed in Cl' solutions, and more than 

ten times the surface width o f the deposits formed in additive-free solutions. In CF+BTA 

solutions, the surface width jumps about ten-fold from the substrate to the first deposit 

image, which represents the deposit formed at 10 seconds. This is probably the result of 

nuclei formation across the entire substrate surface from the very initial stage o f 

electrodeposition. In all four solutions, deposition after pre-equilibration o f the solution 

under nitrogen results in a larger surface width than deposition with exposure o f the 

solution to air.

From the scaling plots shown in Figure 4.13 to 4.20, the critical scaling length Lc was 

700 nm for CF+BTA solutions, 1000 nm for CF solutions and 3000 nm for Cl’+MPSA 

solutions. These scales correlate reasonably well with the size o f dominant features 

visible in the AFM images (see Figure 4.3 to 4.8).
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4.3.2 Scaling Analysis and Kinetic-Roughening Mechanism

A number o f models have been introduced to describe the mechanisms involved in 

surface growth and predict the values o f scaling exponents.1-75̂ 77-1 By comparing the 

experimentally found scaling exponents with those derived from different models, more 

understanding in the growth mechanism can be obtained.

The simplest growth model, called random deposition (RD), describes attachment o f 

particles at random positions on the surface, resulting in deposition without lateral 

growth. The RD model predicts a  = 0 and /? = 0.5. A more complicated growth model is 

the balllistic deposition (BD) model, which is similar to the RD model except lateral 

growth is allowed^81-1 In BD, particles impinge on the surface along straight lines at an 

angle to the surface normal. They are capable o f  sticking to the edges o f surface 

protrusions, leading to lateral growth. For a one-dimensional surface, a ~  0.5 and J3 ~ 1/3 

were estimated.

Additionally, several modified-RD and modified-BD models have been proposed. 

Family investigated the effect o f incorporating surface diffusion in the RD model on the 

scaling properties o f the surface.1-821 Surface diffusion implies a correlation between 

neighboring columns, resulting in a smoother surface. For d = 2, a  w 0.5 and j3 ^  0.25 

were estimated. The BD model with surface relaxation was also studied.183-1 Introduction 

o f surface relaxation leads to a  — 0.36 and f.3= 0.22 for d =  3.

In addition to these discrete growth models which consider microscopic processes, 

various continuum growth models have been developed, which describe surface growth 

as the result o f competition between stochastic roughening, caused by random arrival o f 

material at the surface and various smoothing mechanisms, such as surface diffusion.[7][751
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The simplest continuum growth model o f the evolution o f surface morphology by 

deposition is stochastic roughening. This model assumes random arrival of material to the 

surface and no mass transport along the surface, i.e. no smoothing processes.[84] As a 

result the surface height exhibits a Poisson distribution with no correlation between the 

height o f the any two sites regardless o f their distance. A continuum equation that models 

this stochastic roughening is

d k ( j , t ) = F  + V{r,t) (4.6)
dt

where h(r, t) is the surface height at any position r on the surface. F  is the local time- 

average growth rate set by the current density. r/(r, t) represents spatially uncorrelated, 

randomly fluctuating deposition rate. Surfaces grown by stochastic roughening exhibit 

scaling exponent a — 0 and growth exponent /?=  0.5.

Some terms depending on the spatial derivatives o f surface height h have been 

introduced into Eq. (4.6). These terms have the effect o f smoothing the surface and are 

local. Edwards and Wilkinson introduced the linear term V2h on the right hand of Eq. 

(4.6) to lead to the EW growth model, which has the form:1-85-1

dt
= F  + vV h + ?i(r,t) (4.7)

The term V2h is the lowest order derivative that models the erosion of hills and the filling 

o f valleys, v  is sometimes called a ‘surface tension’, for the vV2h term tends to smooth 

the interface. The EW equation can be solved exactly. Scaling exponents depend on the
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dimension o f the interface. In three dimensions, both a  and /? are zero. Growth for which 

a  = 0 = 0  apparently corresponds to the atomistic Frank van der Merwe model, where an 

initial flat surface grows without significant roughening. The EW model does not 

consider lateral growth and represents a class which can describe as a modified-RD 

model.

Kardar, Parisi and Zhang proposed an equation of motion to describe the spatial and 

temporal evolution o f a non-equilibrium growing surface, known as the KPZ equation:[86J

= p  + W 2h + -  (Vh)2 + rj(r,t) (4.8)
dt 2

The nonlinear term (Vh) is added to account for lateral growth, and v  and X are system- 

dependent parameters. The KPZ model applies to cases where the dominant surface 

relaxation mechanism is not surface diffusion. However, it takes into account smoothing 

processes on surface due to the erosion o f protrusions and the filling o f recesses as well 

as nonlinear effects expected in all physical systems. Numerical simulations have shown 

that surfaces that grow according to the KPZ model are characterized by a — 0.39 and /? = 

0.25.187-1 The values o f the exponents are very close to those in the modified-BD models 

described earlier. The BD model is believed to belong to the same universality class as 

KPZ growth.

W olf and Villain assumed that smoothing of growing surface may take place by 

surface diffusion, and presented thermodynamic arguments to show that a -V4h term 

would better model the process o f smoothing by surface diffusion. They proposed the 

following WV equation to describe surface g ro w th :^
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(4-9)

where co is a constant which incorporates the thermodynamic and transport parameters. 

The WV equation is linear and thus can be solved exactly in three-dimension to yield 

scaling exponents o f a  = 1 and (3 = 0.25. The WV model is not applied to a smooth 

surface but rather to a surface which has substantial features.

Given the importance associated with the nonlinear term in the KPZ equation, Villian 

added such a term to the WV equation to yield:1895

where the physical interpretation o f the nonlinear term is related to the growth o f steps 

which act as sources or sink o f atoms on a growing surface. This modified WV model or 

“WV + step flow” model leads to a  = 0.67 and j.3 = 0.2 for d = 3.

Each o f the models presented above represents a particular mechanism of deposit 

growth, which is characterized by a set o f scaling and growth exponents. Comparison of 

experimentally derived scaling and growth exponents with the ones predicted by models 

such as the ones discussed above can be used to determine the processes responsible for 

deposit growth. Table 4.2 summarizes the predictions for the scaling and growth 

exponents o f the various theoretical models and experimental values obtained from the 

present research. Notice that except for the stochastic model, all other models predict a 

small j3, while the values o f a  suggested in the different models span a relatively wide 

range.

= F - a N 4h + pS72(Vh)2 + rj(r,t)
dt

(4.10)
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Table 4.2 Scaling exponents from theoretical models and experimental results

a P Reference

Continuum Models
Stochastic roughening 0 0.5 [75][84]
EW 0 0 [85]
KPZ 0.39 0.25 [86][87]
WV(surface diffusion) 1 0.25 [88]
WV + step flow 0.67 0.2 [89]

Experimental Results
Additive-free with air 0.72 0.24
Additive-free with N 2 0.70 0.28
C f with air 0.83 0.22
CF with n 2 0.85 0.25
BTA+C1' with air 0.86 0.35
BTA+C1' with N2 0.89 0.38
MPSA+Cf with air 0.92 0.16
MPSA+Cf with N2 0.94 0.19
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There were a few studies which employed scaling analysis to study copper 

electrodeposition in acid sulfate solution. Among prior studies, none are directly 

comparable to the present work because o f differences in substrate, concentration of 

copper sulfate and additives, applied current density, and deposit thickness. Scaling 

analysis o f  the additive-free deposition o f copper has been conducted. Previous studies by 

Mendez et a lP 31 and Schmidt et alP^ suggested that the growth followed the surface 

diffusion model. The scaling analysis for the additive-free deposition conducted by 

Iwamoto and others proposed that the nonlocal growth effect was in play.[79]

Scaling analysis has also been applied to study the effect o f an additive on copper 

electrodeposition. Mendez and co-workers[33][90] investigated the action of thiourea, and 

the results showed that the growth followed the WV model at small length scales, and the 

EW model was operative at large length and time scales. Iwasaki and Yoshinobu[321 

studied the effect of sulfonium-alkane-sulfonate compounds and proposed that the growth 

followed the KPZ model.

In the present study, the scaling and growth exponents experimentally derived from 

additive-free deposition were a  — 0.72, /?=0.24 in air-saturated solution and a -  0.70, j3 

=0.28 in deaerated solution, respectively. Compared to the scaling exponents suggested 

by various models, the values o f a  and /? obtained from additive-free deposition are in 

reasonably close agreement with those predicted by the “WV+step-flow” model. It 

suggests that for this case “WV+step-flow” mechanism is operative. Deposit growth is 

the result o f competition between stochastic surface roughing and smoothing from 

surface diffusion and step growth. Direct evidence o f a step growth mechanism was given 

from the AFM images o f Figure 4.1 and 4.2 and is in agreement with the results of
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scaling analysis. It is noteworthy that using electrochemical STM, electrodissolution o f 

copper in pure sulfuric acid was found to start at steps as well.[91] In light of this, a 

reciprocal relationship may exist between the electrodissolution and electrodeposition 

processes. The reciprocal relationship was suggested in a study o f copper deposition with 

a different additive by Iwamoto et a\P 9̂

For the solution containing CF, the values o f a  and j.3 were found to be 0.83 and 0.22 

for air-saturated condition, and 0.85 and 0.25 for deareated condition. They are similar to 

the additive-free system (a  = 0.70~0.72 and (3 =0.24~0.28) and represent a similar 

surface growth mechanism in surface growth. The step growth was observed in the faces 

o f pyramidal side in the AJFM images obtained in the solution containing CF (see Figure

4.3 and 4.4). The values for (3 in CF containing solution are a little lower than those in 

additive free system. A little small value o f j3 suggests that there is a weaker coupling 

between surface roughness and deposition time for CFcontaining solution. CF was known 

to accelerate the electron transfer reaction and may be the cause o f the reduction in f3 

value.

For the case o f BTA+CF, the values o f  f3 (0.35 with air, 0.38 with nitrogen) are 

relatively large and close to the stochastic limit (J3 = 0.5). The relatively large (3 reflects 

the large and rapid increase in roughness from development o f nodules formed across the 

entire surface and is suggestive o f a roughening mechanism that can be described by the 

random roughening term o f the stochastic model. Tong and Williams175̂ proposed that an 

increase in j3 is due to an unknown roughening mechanism. The unknown roughening 

mechanism could be due to crystal growth in the deposit or electrochemical affects that
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the continuum models were not designed to simulate. This reflects a more complex

temporal and spatial scaling behavior.1891

For the MPSA+CF system, the values o f a  were found to be 0.92 with air and 0.94 

with nitrogen, which are close to 1 which is the value predicted for the case where the 

only smoothing mechanism is that o f surface diffusion. However, values o f /? found 

experimentally, 0.16 with air and 0.19 with nitrogen, are smaller than the value predicted 

by the surface diffusion growth model (0.25). From the growth exponents, it appears that 

the surface did not roughen as quickly as predicted from the model o f a purely surface 

diffusion dominated process. The rate o f roughening is even lower than that found for a 

process dominated by surface diffusion coupled with the lateral growth o f surface steps. 

The lower value o f /3 for the MPSA+CF system suggests that none o f the existing models 

describes sufficiently the surface growth mechanism for this case.

4.3.3 Pattern Recognition Analysis

Scaling analysis o f deposit surfaces describes statistical measures o f the surface 

roughness and represents highly averaged information. In contrast, pattem-recognition 

analysis provides a means o f analyzing kinetic roughening processes that produce regular 

surface geometries with a characteristic size. It can be used to identify and analyze the 

shapes o f individual surface features. In the present study, pattem-recognition procedures 

were used to identify the geometry o f features o f interest and to track their characteristic 

dimension during the course o f  copper electrodeposition with and without organic 

additives.
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The pattem-recognition analysis proceeds through two s t e p s . T h e  first step is to

detect the local features by template matching. A suitable measure of the similarity 

between two images has been used in statistics for many years —  the correlation 

coefficient. For an examined image ay and the template by o f equal size, the similarity 

between them can be evaluated quantitatively by calculation o f the square of the 

correlation coefficient r:

between 0 and 1 and is 1 when there is a perfect match between a y  and b y .  As the 

examined image and the template become increasingly different, the value o f the 

correlation coefficient falls towards 0.

Working out the correlation between the examined image and a number o f templates 

can be very time-consuming if  the formula given by Eq. (4.7) is used. In practice it is 

usual to normalize the average height o f all the images that are being processed making it 

possible to use the simpler equation:

-  a x * , - b ) f
r 2 (4-7)

where a and b are the average values o f ay and by, respectively. The quantity r2 varies

(4 .8)

If  the examined image and the template are normalized so that:
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(4.9)

then the measure of similarity becomes:

(4.10)
if

This is a much simpler quantity to calculate and, as long as the template and the 

examined image are normalized, it still varies between 0, corresponding to no similarity 

between the template and the image, and 1, corresponding to a perfect match between the 

template and the image. Information on the vertical scale is lost, but it can be recovered 

in a subsequent step.

The template matching can provide a measure o f similarity between two images, but 

as it stands it does not provide a method o f local feature detection. That is, template 

matching can be used to classify an image into a given prototype, but cannot be used to 

detect all the occurrences o f the pattern within the image. The reason for this is that 

template matching is sensitive to a shift in position. The solution to this problem is to 

compute the similarity o f the image with a template shifted by every possible amount. If 

the image is identical to the template apart from a shift, then the similarity will be 1 for 

some position o f the template.

This idea o f working out the similarity o f the image with a template shifted into every 

possible position is known as computing the convolution o f the template with the image. 

The convolution o f a template ay and the surface height hnm where the template is smaller 

than the full image is defined by:
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C nm = Y J a i jh i - n J - m  ( 4 - H )
V

The convolution cnm is a correlation coefficient based on the template and an area o f the 

surface. Local maxima in cnm indicate the presence o f local features similar to the 

template, and the magnitude o f a local maximum is a measure o f the degree of similarity. 

Thus, to detect a local feature, all we need to do is to convolve the image with a template 

that is a prototype o f the feature that we are looking for, and then pick out positions in the 

result which exceed a threshold value o f similarity.

For a local feature, the template will usually be very much smaller than the image, 

and this gives rise to the notion o f feature masks. Figure 4.21 illustrates the convolution 

with a 3x3 mask. Each element o f the convolution cnm is obtained by placing the top left- 

hand comer o f the mask over anm and working out the sum of the products o f 

corresponding elements.
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Result at a0o = multiply and sum

=mooaoo +  moiaoi +1002^02 mioSio 

+mnan + mi2ai2 + m2oa2o + m2ia2i + rri22a22

Image AW indow positioned a t aoo

3x3 Mask

m0O moi m02

mio mu IJHi 2

11120 mu m22

W indow positioned at ao

Result at a43 = multiply and sum

= Mooa43 + moia44 + mo2a45 + rrtioass 

+ mna54 + in^ss + m2oa63 + m2ia64 +m22a65

Figure 4.21 Schematic of convolution with a 3x3 mask.

The second step in the pattem-recognition procedure is to optimize the match 

between the template and surface feature at points where convolution cnm is large. 

Because the convolution involves a normalization step, it contains no information about 

the height to length aspect ratio o f the features o f interest. In the optimization step, both 

the template and surface region are left un-normalized. The aspect ratio of the template is
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then varied to find the optimum fit to the surface feature. For example, a template- 

matching procedure may identify a pyramid on the surface. The aspect ratio o f the feature 

o f interest is then determined by varying the aspect ratio o f the template pyramid to 

minimize the root-mean-square deviation a between the template and surface feature.

<4 - 1 2 >

In this study, the two steps o f pattem-recognition procedures described above were 

performed for the deposits formed in the chloride, BTA, and MPSA solution using two 

developed FORTRAN programs, respectively. The templates used were square pyramid, 

cone, and hemisphere.

Table 4.3 shows the average slopes o f square pyramid and correlation coefficients o f 

the pyramid, cone and hemisphere templates with deposits formed in the air-saturated C f 

solution at different deposition time. Results o f pattern recognition analysis from two 

deposition experiments are included in Table 4.3. The two sets o f data show good 

consistency. Table 4.4 shows the results o f pattern recognition analysis with deposits 

formed in the deaerated C f solution. From Table 4.3 and 4.4, it is clear that in the 

chloride solution, the square pyramid template provides the best fit, with a correlation 

coefficient over 90%. The other templates correlate to a lesser extent, with coefficients o f 

70 to 80%. The slope o f the pyramid sides is given by the ratio of height to half the base 

width o f the square pyramid template. Figure 4.22 shows the change o f the slope with the 

deposition time. The slope increases monotonically, with no tendency to a steady or
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selected value. The increase o f slope in air-saturated solution is more dramatic than that

in deaerated solution.

Table 4.5 and 4.6 show correlations o f  the pyramid, cone and hemisphere templates 

with deposits formed in the air-saturated and deaerated Cf+BTA solution, respectively. 

In this solution, the hemisphere template provides the best fit, with correlation 

coefficients above 90%. The other templates correlate to a lesser degree, with coefficients 

o f 70 to 80%. An aspect ratio is defined by the ratio o f height to base-radius o f the 

hemisphere. Figure 4.23 is a plot o f aspect ratio versus deposition time. The aspect ratio 

increases linearly with deposition time in both air-saturated and deaerated Cf+BTA 

solution.

The correlation o f the pyramid, cone and hemisphere templates with deposits formed 

in the air-saturated and deaerated Cf+MPSA solution are shown in Table 4.7 and 4.8. 

None o f the three templates provided a satisfactory fit to the surface grown in Cf+MPSA 

solution, and no further analysis was performed for these images. The result o f this 

quantitative analysis is in agreement with direct observation of the AFM images. (See 

Figure 4.7 and 4.8)
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Table 4.3 Correlation of the pyramid, cone and hem isphere templates with deposits
formed in air-saturated CF solution for two deposition experiments.

Deposition 
time (s)

Slope o f pyramid Pyramid 
corr. coeff.

Cone 
corr. coeff.

Hemisphere 
corr. coeff.

10 0.0193 ±0.0029 0.932 0.822 0.803

20 0.0205 ±0.0036 0.924 0.831 0.805
#1 30 0.0252 ±0.0039 0.916 0.817 0.801

40 0.0322 ±0.0078 0.922 0.824 0.795

50 0.0637 ±0.0160 0.944 0.814 0.774

10 0.0218 ±0.0022 0.938 0.837 0.816

20 0.0245 ±0.0042 0.924 0.810 0.800
#2 30 0.0280 ±0.0065 0.922 0.818 0.804

40 0.0440 ±0.0076 0.913 0.829 0.816

50 0.0596 ±0.0049 0.912 0.821 0.811

Table 4.4 Correlation of the pyramid, cone and hemisphere templates with deposits 
formed in deaerated CF solution for two deposition experiments.

Deposition 
time (s)

Slope of pyramid Pyramid 
corr. coeff.

Cone 
corr. coeff.

Hemisphere 
corr. coeff.

10 0.0223 ±0.0046 0.925 0.818 0.803

20 0.0264 ±0.0041 0.935 0.823 0.793
#1 30 0.0346 ±0.0043 0.926 0.824 0.809

40 0.0597 ±0.0151 0.939 0.822 0.800

50 0.1119 ±0.0280 0.943 0.801 0.784

10 0.0245 ±0.0044 0.941 0.787 0.791

20 0.0282 ±0.0049 0.914 0.829 0.822
#2 30 0.0353 ±0.0047 0.914 0.829 0.822

40 0.0593 ±0.0151 0.915 0.828 0.824

50 0.1119 ±0.0244 0.931 0.815 0.802
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Figure 4.22 Average slope of pyramids versus deposition time with deposits formed 
in Cl" solution.
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Table 4.5 Correlation of the pyramid, cone and hemisphere templates with deposits
formed in air-saturated CF+BTA solution for two deposition experiments.

Deposition 
time (s)

Aspect ratio of
hemisphere

Hemisphere 
corr. coeff.

Cone 
corr. coeff.

Pyramid 
corr. coeff.

10 0.0891 +0.0179 0.919 0.784 0.768

20 0.1549 ±0.0256 0.921 0.814 0.801
#1 30 0.2045 ±0.0236 0.929 0.816 0.784

40 0.2454 ±0.0321 0.925 0.796 0.784

50 0.2839 ±0.0364 0.935 0.788 0.777

10 0.0631 ±0.0119 0.915 0.792 0.776

20 0.0934 ±0.0102 0.927 0.792 0.776
#2 30 0.1259 ±0.0125 0.923 0.810 0.800

40 0.1652 ±0.0193 0.917 0.812 0.804

50 0.2061 ±0.0240 0.920 0.801 0.793

Table 4.6 Correlation of the pyramid, cone and hemisphere templates with deposits 
formed in deaerated CF+BTA solution for two deposition experiments.

Deposition 
time (s)

Aspect ratio of 
hemisphere

Hemisphere 
corr. coeff.

Cone 
corr. coeff.

Pyramid 
corr. coeff.

10 0.1054 ±0.0148 0.930 0.799 0.785

20 0.1748 ±0.0204 0.928 0.802 0.789
#1 30 0.2307 ±0.0474 0.922 0.811 0.799

40 0.2907 ±0.0512 0.932 0.807 0.799

50 0.3592 ±0.0647 0.928 0.821 0.809

10 0.2325 ±0.0207 0.950 0.771 0.755

20 0.2796 ±0.0244 0.936 0.790 0.776
#2 30 0.3172 ±0.0380 0.928 0.793 0.780

40 0.2907 ±0.0451 0.930 0.803 0.793

50 0.3973 ±0.0600 0.935 0.804 0.794 j
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Figure 4.23 Average aspect ratio of hemispheres versus deposition time with 
deposits formed in CF+BTA solution.
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Table 4.7 Correlation of the pyram id, cone and hemisphere templates with deposits
formed in air-saturated CF+MPSA solution for two deposition experiments.

Deposition 
time (s)

Hemisphere 
corr. coeff.

Cone 
corr. coeff.

Pyramid 
corr. coeff.

10 0.867 0.877 0.879

20 0.865 0.874 0.874
#1 30 0.861 0.868 0.872

40 0.860 0.873 0.870

50 0.868 0.881 0.865

10 0.856 0.869 0.856

20 0.852 0.872 0.861
#2 30 0.863 0.878 0.868

40 0.858 0.870 0.859

50 0.866 0.877 0.870

Table 4.8 Correlation of the pyramid, cone and hemisphere templates with deposits 
formed in deaerated CF+MPSA solution for two deposition experiments.

Deposition 
time (s)

Hemisphere 
corr. coeff.

Cone 
corr. coeff.

Pyramid 
corr. coeff.

10 0.870 0.878 0.890

20 0.858 0.866 0.882
#1 30 0.862 0.868 0.882

40 0.855 0.862 0.876

50 0.854 0.859 0.871

10 0.867 0.873 0.883

20 0.861 0.870 0.880
#2 30 0.858 0.866 0.874

40 0.853 0.863 0.877

50 0.871 0.860 0.873
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43.4  M ound Form ation and the Effect of O rganic Additives

Square-pyramidal mounds have been produced in epitaxial growth of the Cu(lGO) 

surface during both electrodeposition [92̂ 93] and molecular beam epitaxy.1̂  In the present 

study, square-pyramidal mounds were observed during copper electrodeposition on 

Cu(100) surface in the acid sulfate plating solution containing Cl'.

The theoretical interpretation of the mounding phenomenon has often been based on 

the step-edge diffusion bias^89-1 or the so-called Ehrlich-Schwoebel barrier (ES barrier) 

effect.1[95K96] The basic idea of the ES barrier-induced mounding (often referred to as an 

instability) is simple: ES effect produces an additional energy barrier for diffusing 

adatoms on terraces from coming ‘down’ toward the layer below, thus inhibiting 

attachment o f atoms to lower or down-steps and enhancing their attachment to upper or 

up-steps. The result is therefore mound formation because deposited atoms cannot come 

down from upper to lower terraces and so three-dimensional mounds or pyramids result 

as atoms are deposited on the top of already existing terraces. Furthermore, the slope of 

the mounds remains essentially constant and is determined by material parameters and 

growth conditions.^

There are other proposed mechanisms that lead to mounding without any explicit ES 

barrier. One o f them in v o k e s^  a preferential attachment to up-steps compared with 

down-steps (the so-called ‘step-adatoms’ attraction), which, in effect, is equivalent to 

having an ES barrier because the attachment probability to down-steps is lower than that 

to up-steps exactly as it is in the regular ES barrier case. These two energetic mechanisms 

are physically indistinguishable. The second mounding alternative1-98̂ 99'1, which is a 

purely topologic-kinetic effect, is the so-called step-edge-diffusion-induced mounding,
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where diffusion of adatoms around step edges is shown to lead to mound formation 

during surface growth in the absence o f any finite ES barrier. More recently, Das Sarma 

et al.[!00] used the limited-mobility surface diffusion model to explore the kinetic 

mechanism leading to mound formation.

All these theoretical models suggest that a kinetic instability amplifies the mounds 

under some growth conditions. The instability may appear if  there exist energetic barriers 

to surface diffusion across steps, short-range interactions between adatoms and steps, a 

step-edge diffusion process or limited-mobility surface diffusion. Depending on the 

mechanism of surface diffusion and attachment o f adatoms, the slope o f the mounds may 

approach a steady state or ‘selected’ value.

In the present experiments, electrodeposition o f copper on the Cu(100) surface in the 

acid sulfate copper plating solution containing only a low concentration o f chloride 

produces square-pyramidal mounds. Theoretical models that predict pyramidal mounds 

invoke a diffusion process on a surface with well-defined steps. Because chloride 

stabilizes the Cu(100) surface, it imposes a step excess free energy resulting in the 

formation of planar regions interrupted by steps oriented along the 100 direction. The 

appearance o f mounds on this surface in the present experiments conforms to predictions 

o f models based on well-defined steps and surface diffusion. However, the results of 

pattem-recognition analysis indicate that mound slope increases with deposition time up 

to 1.5 C/cm2 with no indication o f slope selection (see Figure 4.22).

Because this type o f kinetic instability to the growth o f square-pyramidal mounds 

arises through surface processes, organic additives that are adsorbed during 

electrodeposition likely influence or suppress the formation of mounds. In our
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experiments, addition of BTA to the plating solution eliminates mound formation in favor 

o f nucleation-limited hemispheroidal growth centers whose height to base radius aspect 

ration increases linearly with deposition time, while MPSA produces an intermediate 

surface structure that does not correlate with either pyramidal or hemispheroidal 

templates.

Thus, the C1‘ solution produces expitaxial growth that is unstable to mound formation. 

BTA strongly inhibits the surface and forces growth to proceed by nucleation of growth 

centers. MPSA modifies crystal growth, but to a lesser degree than does BTA.

4.3.5 Effect of Oxygen on Growth Mechanism of Copper Electrodeposits

When oxygen is present in acid copper sulfate solution, it consumes the cuprous ion 

according to reaction (2.14). At high deposition rates where the cuprous ion concentration 

at the surface is low, oxygen does reach the interface and is reduced in competition with 

copper ions.[1011 While it generally constitutes a small fraction o f the deposition current, it 

may have an effect on discharge kinetics and surface growth.11021 The kinetic study 

conducted by our group has shown that the exchange current density on Cu(100) is larger 

in the oxygen-free solution that that in the oxygenated system.1-551

As shown in Figures 4.9 to 4.20, in all four studied solutions, deposition in dearated 

solution results in a larger surface width than deposition in air-saturated system. Also, 

pattem-recognition analysis shows that the slope o f mounds formed in dearated C f 

solution is larger for the same deposition time and increases faster than that in air- 

saturated C f solution (Firgure 4.22). The same observation is obtained for the aspect ratio 

o f hemispheres formed in dearated and air-saturated Cf+BTA solutions (Figure 4.23).

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



These results indicate that roughening of copper deposits in oxygen-free solution is faster 

than in oxygen rich solution. The results of scaling analysis and pattem-recognition 

analysis are in agreement with kinetic studies conducted by other researchers.

According to Table 4.1, the presence o f dissolved oxygen in solutions does not 

remarkably affect values o f the scaling exponent a  for either solution. Although there is 

slight decrease in values o f the growth exponent (3, the presence o f dissolved oxygen does 

not change the mechanisms o f kinetic roughening o f copper electrodeposition under 

studied conditions.
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Chapter 5

CONCLUSIONS

Electrodeposition o f copper in acid copper sulfate solutions with and without 

additives and/or dissolved oxygen was investigated on a copper single crystal surface 

with the orientation o f (100) by means o f atomic force microscopy (AFM) under 

galvanostatic pulse-current conditions. In addition to insights obtained by inspecting 

AFM images directly, quantitative information was extracted from AFM images. Scaling 

analysis and pattem-recognition analysis procedures were performed to provide a 

quantitative description o f the effect o f additives on copper electrodeposition.

In additive-free solutions copper deposits grew in a layer-by-layer mode from the 

earliest stage o f deposition. The surface consisted o f smooth terraces separated by steps. 

In Cl" containing solutions, at the early stages o f deposition, the shape of the deposits was 

not well defined, but later the larger features developed very regular geometric shape. 

The deposits consisted o f square pyramidal mounds. As more copper was deposited, the 

size o f individual features increased, but no additional features formed after the formation 

o f the initial ones. For Cf+BTA solutions, nucleation and growth of three-dimensional 

nodules started randomly across the entire surface. The number o f growth centers did not 

increase during the deposition, and initial nodules did not merge with neighboring 

nodules. Compared to the very large pyramids formed in a solution containing only Cf,
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the nodules were smaller in size. The number and density o f nodules were much higher. 

In Cl'+MPSA solutions, deposits consisted o f flat-topped mounds, which appeared to be 

intermediates between the clearly defined four-sided pyramids seen in C f solution and 

the rounded nodules seen in Cl'+BTA solutions. The symmetry o f the underlying metal 

surface was visible, but distinct pyramids did not appear.

The development o f galvanostatic electrode surfaces was well described by a self- 

affine scaling process. The scaling and growth exponents (a, p) were different for each 

electrodeposition system. The values o f a  and /? obtained from additive-free deposition 

were close to those predicted by the “WV+step-flow” model. It suggested that the scaling 

analysis result for this system was consistent with a process dominated by surface 

diffusion and step growth. For a solution containing Cl", the values o f a  and ft were 

similar to those obtained in the additive-free system and represented a similar scaling 

behavior, but indicated that surface diffusion was more dominant compared to the case o f 

additive-free. The growth exponent j3, calculated for deposition from BTA+G" solutions, 

was large and close to the stochastic limit(/? = 0.5). The large /? was suggestive o f a 

roughening mechanism that can be described by the random roughening term o f the 

stochastic model. The scaling exponent a, obtained for deposition from MPSA+CF 

solutions, was close to 1 which is the value predicted for the case where the only 

smoothing mechanism is that o f surface diffusion. However, ft was smaller than the value 

predicted by the surface diffusion growth model. None of the existing models described 

sufficiently the surface growth mechanism for this case.

Pattem-recognition analysis o f AFM images was a useful tool for identifying and 

characterizing the scale and shape o f surface features. It has been used to demonstrate a
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kinetic instability to mound formation on Cu(100). In acid-sulfate copper plating solution 

containing a low concentration of chloride, deposition o f copper on the Cu(100) surface 

produced square-pyramidal mounds. Mound slope increased with deposition time up to

1.5 C/cm with no indication o f slope selection. Addition o f BTA to the plating solution 

eliminated mound formation in favor o f nucleation-limited hemispheroidal growth 

centers whose height to base radius aspect ratio increased linearly with deposition time. 

MPSA produced an intermediate surface structure that did not correlate with either 

pyramidal or hemispheroidal templates. The chloride solution thus produced epitaxial 

growth that was unstable to mound formation. BTA strongly inhibited the surface and 

confined growth to nucleation-limited centers. MPSA modified crystal growth, but to a 

lesser degree than did BTA.

Roughening o f copper deposits in oxygen-free system was faster than in oxygen 

system. The results o f scaling analysis and pattem-recognition analysis were in 

agreement with kinetic studies. The presence o f dissolved oxygen in solutions did not 

remarkably affect the scaling behavior for each examined solution. Although there was 

slight decrease in values of the growth exponent (3, the presence o f dissolved oxygen did 

not change the mechanisms of kinetic roughening o f copper electrodeposition under 

studied conditions.
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A p e n d i x  A

DETERMINATION OF EQUILIBRIUM COMPOSITION

A .l Thermodynamic Equilibrium Condition

The copper deposition reactions at acidic sulfate solution in the presence of chloride 

ions probably proceed as

C u2+ + 2CF + e ~ ------> CuCi; (A .l)

CuClj + e~  > Cu + 2CT (A.2)

The Nemst equation gives the equilibrium potential Eeq for reaction (A.1) and (A.2):

J A\>eq A\E l  - — In
{cucr2}

{cu2+\c r }2
(A. la)

E ~ E e - - - - - I nA2,eq A2 p  111

V

{cu}\cr
{cucr2 (A.2a)

where Ee is the standard potential, { } denotes activity [ ] denotes concentration. Activity 

is dimensionless, whereas concentration has units o f moles/liter. I f  the activities o f the 

ionic species are such that the equilibrium potential o f reaction (A .l) equals that of
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reaction (A.2), both reactions can be In equilibrium simultaneously and under this 

condition the metal and solution are in equilibrium.

The Gibbs free energy change for reaction (A .l) and (A.2) is calculated using the 

standard Gibbs free energy of formation data from Bard.[103]

AG°(CmC/2' )  = -240.5A/7 mol (A.3)

AG°f (Cu2+) = 65.7 kJ / mol (A.4)

A G j(C T ) = -131.0563kJ / mol (A.5)

Therefore, the standard Gibbs free energy changes for reaction (A .l) and (A.2)

A G°, = AG°f (C uCi;j-AG °f (Cu2+)-2AG°f ( C r )  (A. 6)

A G°, = -240.5 -  65.7 -  2(—131.0563) = -A A M lkJ/m ole

A G°A2 = A G°f  (Cu) + 2AG) (C G )-  A G°f  (CuCl2“ ) (A.7)

AG°2 = 0 + 2 ( - l  31.0563) -  (-240.5) = -21.613kJ/m ole

Then, standard potential can be calculated from the standard Gibbs free energy 

change. Standard potential for reaction (A .l)

E°a\ (A.8)
nF

E& _  (44.087^7/ mole){10 0 0 //  U)(V ! J / C)(l000m V / V)
A1 (1 eq I mole)(96485C / eq)
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E 0A] = 457mV

Standard potential for reaction (A.2)

<A.9)
nF

E& _ (21.613kJI mole){1000J  !kJ)(V ! J  ! C)(l000mVIV)  
M (1 eq 1 mole)(96485C / eq)

E°ax =224mV

At equlibrium, EAi,eq = EA2yeq, equating equation (A .la) and (A.2a) yield:

RT
In

{cuci;}
{Qf2+}{cr}2

_ J7e R T ,
A2

{cu}\cr
{CmC/2“

(A. 10)

RT
F

: 25.69mV

457m V -  (25.69m V) In
{CuCl-}

{Cu^lciT
2 2 4 m V -  (25.69m V) In

{Cm}{c/" P
{CuCl~\

assuming unit activity o f  copper metal, the above equation can be simplified to

In {<CuCl'} :

{ c u ^ ic r } *
9.07 (A .ll)
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A.2 Stability Constants

When copper metal is exposed to a chloride solution, the copper metal corrodes to 

form various cuprous and cupric chloride complexes. The cuprous ion is very unstable 

and reacts with chloride ions to form many cuprous complexes. The principal cuprous 

species are CuCl2", CuCfr2', with Cu+, CuCl and CU2 CI4 2', comprising a small fraction o f 

the total species. The most prevalent cupric complex is CuCl+, with CuCl2, CuCb", and 

then OuCl42’ encompassing a decreasing fraction o f the total cupric complexes, 

respectively. If  the production o f the concentration o f uncomplexed cuprous ions and 

uncomplexed chloride ions exceeds the solubility product constant, Ksp, a solid 

precipitate o f cuprous chloride is formed. Cuprous chloride is sparingly soluble in 

chloride solutions. To calculate the electrolyte equilibrium composition the following 

species were considered: Cu+, Cu2+, C f, (CuCl)aq, CuCl2', CuCfr2', CU2 CI4 2', CuCl+, 

CuCl2, CuCl3‘, and CuC142~.

Stability constants are applied in complex formation reactions and are analogous to 

equilibrium constants, except they are based on concentration, not activity, and are valid 

for a given ionic strength. All stability constants referenced below are valid at an ionic 

strength o f 5.0M  The ionic strength Is o f an electrolyte solution is defined as follows:

(A.12)

where «,• is the charge number of species i, n is the total number o f ionic species and Q  is 

the concentration o f species i. The ionic strengths o f the electrolyte solution is 3.8M for 

0.2M CUSO4 /I.OM H2SO4/1.0mM HC1.

The cuprous stability constants are taken from Smith and M artellJ104̂ 105-1
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[Cu+][Cl~] = 4.169 x 10“s = K sp (A. 13)

 -̂CuCl  ̂ = 501.2 = K x (A. 14)
[Cm+][C/“ ]

[Cua-2 ] _ 1 1 € „ in6
[cM+][cr]2 1.15x10 = K 2 (A. 15)

[CmC/3 ] _ L 0x106 (A. 16)

[Cm2C/42-]
V r  = l-0 x l0 13 = ^ :4 (A. 17)[c«+][cr]

The cupric stability constants are taken from Ramette.[106][107]

[CuCl+]
= 2.31 = iC  (A. 18)

[Ck2+][CT]

[CwCZ, 1
L 2J -  0.65 = K 6 (A. 19)

[Cu1+] [ C r f

0.38 = K 7 (A.20)
[CmC/31

[ Q r  ][CT]

[CuC/M
—^ -----i - 5— = 0.082 = 7C (A.21)
[Cm ][C/“] 8 1 '

A3 Chloride Ion Mass Balance

A chloride ion mass balance yields:

[Cr\Total =[Cl-]free+[CuCl]aq + 2[CuCl~ ] + 3[C«C/32“ ] + 4[Cm2C/2" ] +
[CuCl+] + 2[CwCZ, ] + 3[CmC/3'  ] + 4[CmC/2~ ] (A.22)
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A.4 Electroneiitrality

The electroneutrality condition yields:

2>,c,=o

[Cu+] + 2 [Cu2+ ] - [ C r  }fr"  -  [CuCl 2 ] -  2 [CuCl2i  ] -  2 [Cm2 O f  ] +

[CuCl+] -  [CmC73~ ] -  2 [C «C /f ] + [FT ] -  2 [SO f ] = 0 (A.23)

A.5 Solution Techniques

The equilibrium concentrations are solved simultaneously using four cuprous stability 

constant equations, four cupric stability constant equations, a chloride mass balance 

equation and the electroneutrality condition. To determine the equilibrium composition, 

the system at equilibrium is assumed free o f any solid precipitate o f cuprous chloride. 

Then equations (A .ll)  and (A. 14) through (A.23) are solved simultaneously. The 

resulting concentration o f free cuprous ions and free chloride ions are inserted into 

equation (A. 13), the solubility product equation for CuCl. If  the solubility product od 

cuprous and chloride ions is smaller than the saturation value, the assumption o f no 

precipitate is valid. Otherwise, the solid CuCl must be taken into account.

For the electrolyte 0.2M CuSOVLOM H 2 SO4/I.OH1M HC1, the following species are 

present at equilibrium: Cu+, Cu2+, C f, (CuCl)aq, CuCIf, CuCfr2', Q 12CI4 2', CuCl+, CuCl2 , 

CuCl3\  CuCU2;  H+, and S 0 42\
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Define x l through x !4  as follows:

xl=[Cu ] 

X4==[CuCl]aq 

x7=[Cu2C1421 

xlO=[CuCl3 ‘]

x13=[S0421= 1.2M

x2=[Cu 1 ]

x5=[CuCl2~]

x8=[CuCl+]

x ll-[C u C l42l  

xl4=[CF]=0.001 M

x3=[CF] 

x6=[CuC132"] 

x9-[CuC12] 

x l2 -[H +]=2.001 M

Assuming unit activity coefficients equation (A .l 1) can be expressed as:

In
[C u C l-f '

v[< V ‘ ] [ C r ] 4y
= 9.07 = Inf  (*5)2 ^

(x2)(x3)4

Taking the exponential o f both sides o f the above equation yields:

[CU° 2 ]2 ■ = e9'01 = 8690.624 = - (*5)‘
[Cul+] [ C r y (x2)(x3)

and can be written as:

J3(x2)(x3)4 - (x 5 )2 = 0

^  - 5 0 1 . 2 - * . -  (" 4)
[ C u ' ] [ c r ] (xl)(x3)

{Kx )(xl)(x3) -  (x4) = 0

(x5)
[Cu+][crf (xl)(x3)2

(K 2 )(xl)(x3)2 -  (x5) = 0

(A. 11 a) 

(A. 14) 

(A. 14a) 

(A. 15) 

(A. 15a)
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[CuCl:']
1 3 J ■ = 1.0x10 =K^

(x6)
- l3[Cu][cr] (xl)(x3)

(K 3 )(xl)(x3)3 -  (x6) = 0

i c u . c i :  l n
L 2 4 J • = 1 . 0 x 10 = K 4

(x7)
[Cu+}[crf (x l)2(x3)4

( K 4 )(xl) (x3) -  (x7) = 0

i ^ i _ =2.3!=*s= ^ i
[Cu \[cr (x2)(x3)

(K s )(x2)(x3) -  (x8) = 0

(A. 16) 

(A. 16a) 

(A. 17) 

(A. 17a) 

(A. 18) 

(A. 18a)

[CuCI2] (x9)
[Cu2+}[crf = 0.65 = K A =

(x2)(x3)2
(A. 19)

(K6)(x 2 ) ( x 3 ) 2 - ( x 9 )  =  0 (A. 19a)

[CuCl;]
[Cu2+][cr\ = 0.38 = ^ 7 =

(xlO)
(x 2 ) ( x 3 ) 3

(A.20)

{K7 ) ( x 2 ) (x 3 )3 -  (xlO) = 0 (A.20a)

[Cu2+][Cl~]4 (x2)(x4)
(A.21)

(K g )(x2)(x3)4 -  (xl 1) = 0 (A.2 la)

[cr]rota! =[cr]free+[CuCi\q +2[cMc/2i + 3[cMa 2i + 4[cM2a 42-]+ 
[C uC r] + 2 [CuCl2 ] + 3 [CuCl; ] + 4 [CuCl2i  ] (A.22)
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(.xl4) = (x3) + (x4) + 2(x5) + 3(x6) + 4(x7) + (x8) + 2(x9) + 3(xlO) + 4(xl 1) (A.22a)

[Cu+} + 2[Cul+] - { c r ] free - [CuCi; ] - 2 [CuCif  ] - 2 \c u 2c r ~] +
[CuCl+ ] -  [CuCl-] -  2[CuCl1;  ] + [E'+ ] -  2[S0l~ ] = 0

(xl) + 2(x2) -  (x3) -  (x5) -  2(x6) -  2(x7) + (x8) -  (xlO) ■ 

2(xl 1) + (x!2) -  2(xl3) = 0

(A.23)

(A.23 a)

The system of non-linear equations is solved with Engineering Equation Solver (EES) 

academic version 6.548N from F-Chart Software Inc. The solution to system of non­

linear equations is:

x 1=3.662x10"'

x4=1.183xl0‘:

x7=2.342xl0'

x l0= 2 .102x10 ■li

x2=0.1997

x5=l .771x10"

x8=3.007xl0“

x l 1=2.957x10

x3=6.519xl0 

x6= l.003x10‘ 

x9=5.516xl0’

-4

15

The product o f [Cu+]*[CT]=(xl)*(x3)=2.36118x10’ is less than the solubility product

Q
constant, Ksp=4.169x10’ . Therefore, the assumption that no CuCl precipitate is present at 

equilibrium is valid.
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NOMENCLATURE

aij Surface height of the examined image

bij Surface height of the template

c convolution

C Concentration, mol/1

D Dimension

D Diffusion coefficient, m2/s,

Eeq Equilibrium potential, mV

Ee Standard potential, mV

F Faraday constant, A-s/mol, or local time-average growth rate, nm/s

°fc*O<1 Gibbs free energy o f formation, kJ/mole

H,h Surface height, nm

i Current density, mA/cm2

io Exchange current density, mA/cm2

ii Limiting current density, mA/cm2

Is Ionic strength, moles/liter

k] Mass transfer coefficient

L Length scale, nm

n Number o f electrons transferred

N Molar flux, molar/m2-s

r Correlation coefficient

R Gas constant, 8.31 J/mol-K
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t Deposition time, s

T Temperature, K

V Fluid velocity, m/s

V Molar volume of metal, cm3/mol

w Surface width, nm

Greek letters

« a Anodic transfer coefficient

OCc Cathodic transfer coefficient

a Scaling exponent

p Growth exponent

Electrode potential, V

€>e Equilibrium potential, V

0 Growth velocity o f deposits, mm/s

tl Random fluctuating deposition rate, nm/s

f l s Surface overpotential, V

Mobility of an ion

V System dependent parameter defined in Eq. (4.7)

I System dependent parameter defined in Eq. (4.8)

CO Constant defined in Eq. (4.9)

p Constant defined in Eq. (4.10)

cr Root mean square deviation
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