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ABSTRACT

THERMAL REARRANGEMENTS OF LINEAR CARBON CHAINS: 
EXPERIMENTAL AND THEORETICAL STUDIES

by

John Mabry 

University ofNew Hampshire, December 2003

The potential energy surface of linear hydrocarbons has been extensively 

investigated by experiments and the use of molecular modeling. Linear C4 structures 

have demonstrated the potential to scramble their inner carbon atoms leading to the 

formation of novel strained intermediates.

Long-range carbon atom topomerization in a 1,3-diyne has been demonstrated for 

the first time. 1 -Phenyl-4-p-tolyl-1,3-butadiyne, I3C enriched at C -l, was synthesized 

and subjected to flash vacuum pyrolysis. Under high temperature and at low pressure, 

this resulted in nearly complete !3C label equilibration among all o f the sp hybridized 

carbons, as seen by NMR analysis. It has been proposed that 1,3-diynes rearrange to 

form several unprecedented strained intermediates in order to support carbon 

transpositions. As investigated computationally, 1,3-butadiene forms trialene,

(bicyclo[l.1.0]-l,3-butadiene), a highly strained organic intermediate. Trialene serves as 

a key intermediate in the long-range carbon scrambling. Density functional (B3LYP/6- 

311+G(2d,p)), and Moller-Plesset, theory calculations support the possible formation of 

trialene.

xvii
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Long-range carbon topomerization in butatrienes has been investigated as well. 

Density functional and Moller-Plesset theory calculations predict a low-energy pathway 

that leads to carbon scrambling of the inner sp hybridized carbons o f butatriene. We 

predict a thermal rearrangement o f butatriene to form methylenecyclopropylidene, 

followed by carbene insertion to form bicyclo[l. 1,0]but-l(3)-ene. Ring opening and re

formation of butatriene is an overall degenerate process that leads to carbon scrambling. 

All of these structures have been found computationally as true energy minima along this 

reaction pathway. Control pyrolysis experiments with tetraarylbutatrienes have 

established compound stability up to approximately 800 °C. A suitable synthesis o f 13C 

labeled unsymmetrical butatriene and pyrolysis experiments are needed in order to 

support our calculations.

xviii
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GENERAL INTRODUCTION

This dissertation is divided into three separate chapters: (1) Pericyclic and 

Dehydropericyclic Reactions; (2) Chemistry o f C4 H2 ; and (3) Chemistry of C4 H4 . Each 

chapter is self-contained with its own introduction, results and discussion, and 

conclusion.

1
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I

CHAPTER 1 

PERICYCLIC AND DEHYDROPERICYCLIC REACTIONS

Introduction to Pericyclic Reactions

1 2Pericyclic reactions play a prominent role in organic chemistry. ’ The historic 

1965 series o f publications by Woodward and Hoffmahn which describe orbital 

symmetry and the associated rules dictating pericyclic reactions have had an incalculable 

effect on the entire field of organic chemistry. “The Conservation of Orbital Symmetry” 

is an exemplary publication that summarizes the principles, which may be used to 

understand chemical reactions and to predict mechanisms, stereochemistry, and relative 

reactivity of molecules . 3 Although the Woodward-Hoffmann rules suggest what 

reactions may or may not occur, the rules do not serve to settle all questions of 

mechanism’ which have initiated intense debates o f the mechanisms of pericyclic 

reactions .4  The ensuing discussion fostered an enormous range o f experimental and 

theoretical investigations.

A concerted reaction is a single-step process in which bond making and bond 

breaking contribute to the structure at the transition state, but the degree of contribution is 

not necessarily the same . 5 These types of reactions are typically unimolecular or 

bimolecular processes with no intermediates. As these concepts developed, Doering and

2
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Roth6 referred to the observed reactions as “no-mechanism reactions.” Pericyclic 

reactions are an important class of concerted reactions,

Transition states are key to understanding pericyclic reactions . 5 Transition state 

theory may be used to analyze the enthalpic and entropic components o f a reaction. 

According to this theory, the rate constant o f an elementary reaction is determined by the 

difference between the free energy of the transition state and the reactants, as well as the 

rate o f the passage through the region of the transition state. Experimental data allow us
I

to deduce an approximate description of the transition state.

Transition states must be distinguished from iritermediates. An intermediate is an 

energy minimum on a potential energy surface and will have a finite, if  limited, lifetime. 

The lifetime o f an intermediate is based upon the relative depth o f the energy minimum. 

Transition states have a very limited lifetime and represent an energy maximum on a 

potential energy surface. These differences are illustrated graphically in the following 

potential energy diagrams (Figure 1).

3
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TS

R eactan ts

P roduct

T S 1

TS 2

Interm ediate

R eactants

Product

Figure 1. Potential energy diagrams for a single-step and a two-step reaction.

In discussion of pericyclic reactions, microscopic reversibility and Hammond’s 

postulate offer further understanding. The principle o f microscopic reversibility states 

that the same pathway should be traveled in both the forward and reverse directions o f a 

reaction . 5 This is often applied in multi-step processes. Hammond has established the 

circumstances under which it is logical to relate a transition state structure to the structure

n

of reactants, intermediates, and products. Hammond’s postulate suggests that for a 

single step in a reaction, the transition state geometrically resembles the energy minimum 

closer in energy. 8  This observation has allowed for insight into the description of 

transition states, which are referred to as being either “early” or “late” as illustrated in 

Figure 2. “Early” transition states occur for exothermic reactions with a low activation 

barrier. According to Hammond’s Postulate, an “early” transition structure will

4
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structurally resemble the reactants since they are close in energy and are interconverted 

by a slight structural deviation. In contrast, “late” transition structures occur for 

endothermic reactions with high activation barriers.

Late TS: "product-like" Early TS: "reactant-like"

A B

Figure 2. Potential energy diagrams for “late” and “early” transition states.

Pericyclic reactions constitute a wide variety of transformations that include 

neutral and charged species1 and have been used extensively in organic synthesis. 9  Many 

biological and biochemical transformations involve pericyclic processes . 1 0 The following 

sections focus on several selected pericyclic reactions o f the simplest representative 

hydrocarbons. Due to the breadth o f this subject, substituent effects will not be included.

The following sections will serve to classify pericyclic reactions and provide 

representative examples. Also presented is a description o f energetics and selected 

structural features. Pericyclic processes may be classified in five separate categories: 

electrocyclic reactions, sigmatropic rearrangements, cycloaddition reactions, cheletropic 

reactions, and group transfer reactions . 1 According to some authors, ene reactions do not 

fit cleanly into one o f these categories. The Woodward-Hoffmann rules provide a

5
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reliable guide to stereochemistry in pericyclic reactions that have no alternate pathways. 

These reactions include sigmatropic hydrogen shifts apd electrocyclizations. In the case 

of cycloadditions, cheletropic reactions and non-hydrogen sigmatropic rearrangements, 

an alternative stepwise mechanistic pathway may exist that is similar, or even lower, in 

energy to the concerted routes. In these cases, the Woodward-Hoffmann rules are not as 

reliable. The extent o f this debate will be discussed in the subsequent examination of 

cycloadditions.
!

Electrocyclic Reactions 1 !

Electrocyclic reactions form or break rings. There are two distinct modes o f ring 

opening or closing for electrocyclic reactions. The conrotatory mode (con) is 

characterized by a motion in which all substituents rotate clockwise or counterclockwise. 

In contrast, a disrotatory (dis) mode is characterized by a motion in which the 

substituents rotate in opposite directions during an electrocyclic process. These motions 

relate reactant and product stereochemistry.

One of the essential principles o f the Woodward-Hoffmann rules is that thermal 

and photochemical reactions are complementary to each other. Therefore, if an 

electrocyclic reaction is thermally “allowed,” it will be photochemically “forbidden” and 

vice versa. This idea resulted in the following set o f rules2 3  (Table 1).

n = # of electrons Thermal, A Photochemical, hv
4n con dis

4n + 2 dis con

Table 1. General selection rules for electrocyclic reactions.

6
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Electrocyclic reactions play a central role in organic chemistry . 11 An 

electrocyclic reaction is characterized by the opening, or closing, of a ring within a single 

molecule leading to the conversion o f two a  -electrons to two 71- e l e c t r o n s ,  or the

1 9reverse. Orbital symmetry determines the stereochemistry o f electrocyclizations. A 

classic example is the key step in the synthesis o f ergosterol (3). The first step is a 

sigmatropic rearrangement, which will be discussed next, to vitamin D 2  (2) and the final 

step involves a six-electron electrocylic process to form ergosterol (3) (Scheme 1).

HO OH

1 2

HO

Scheme 1. Pericyclic reactions involvement in the synthesis o f ergosterol (3).

The interconversion of cyclobutene and butadiene is a four-electron electrocyclic 

reaction and is the simplest electrocyclic reaction for a neutral system shown in Scheme 

2. The thermally allowed conrotatory electrocyclic ring opening has an experimental 

activation energy o f 32.5 kcal/mol. 13 MCSCF theory predicts a barrier o f 35.8 kcal/mol 

which is in good agreement with the MP4 value of 34.5 kcal/mol, reported by Houk and

7
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Evanseck.14 Ring opening of cyclobutene (4) to 1,3-butadiene (5) is an exothermic 

process with AH0,™ = - 1 0  kcal/mol. ,.

A or hv

Scheme 2. 4 7t electrocyclic reaction. ,

I
The interconversion of 1,3,5-hexatriene (6 ) and 1,3-cyclohexadiene (7) is a 

thermal, 6  7t electron, disrotatory process (Scheme 3 ) . ’ 1 The optimized transition 

structure adopts a boat shape to maximize the interaction of the n  system and the

formation ofthe a  bond. 13,14,15 The activation energy for a ring closure was predicted to

be 26 kcal/mol which is in good agreement with the experimental value of 29 kcal/mol. 

The cyclic diene is favored by approximately 12 kcal/mol (R = H).

R

A

\
R

Scheme 3. Disrotatory electrocyclization of 1,3,5-hexatriene (6 ).
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Sigmatropic Shifts

Sigmatropic shifts or rearrangements are characterized by migration of a a  bond 

that is adjacent to one or more 7 t- s y s te m s ,  with reorganization of the ^-system : 2 3  

Sigmatropic rearrangments can be predicted by a general set o f rules seen below in Table

-5
2. The orientation of interacting orbitals directs various sigmatropic rearrangments and 

the resulting stereochemistry. A sigmatropic rearrangement may occur in either a 

suprafacial or antarafacial manner. Suprafacial is the term used when the migrating 

group or atom remains on the same face o f the conjugated pi-system throughout the 

process. An antarafacial approach directs the migrating group or atom to the opposite 

face of the 7i-system. Sigmatropic rearrangements can be predicted using the following 

set o f general rules . 3

n -  # of electrons supra/supra supra/antara antara/antara
4n + 2 allowed forbidden allowed

4n forbidden allowed forbidden

Table 2. General selection rules for sigmatropic shifts.

The following schemes are just a few examples o f the many types of sigmatropic 

shifts. The 1,3 -sigmatropic hydrogen shift in propene (8) (Scheme 4) has been studied 

extensively . 16 The allowed [Is,3a] transition structure is very contorted and similar in 

energy to an allyl radical plus a hydrogen atom which would be formed in a dissociation- 

recombination mechanism. At the CASSCF/6-31 G* level o f theory, the parital C—H 

bond is 1.61 A long and the C-C bond length is approximately halfway between that of a 

double and single bond. The structure resembles an allyl radical system . 1 4  The

9
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symmetry forbidden suprafacial [Is,3s] hydrogen shift is an unfavorable pathway. 

Hartree-Fock and MCSCF calculation predict a transition structure that resembles a 

trimethylene diradical. 1 7 The calculated energy o f this species is approximately 60 

kcal/mol higher than propene (8 ). There is no experimental evidence for a thermal, 

concerted 1 ,3-hydrogen shift in simple hydrocarbon systems.

8

Scheme 4. 1,3-sigmatropic hydrogen shift o f 1 -propene (8 ).

The methyl shift o f 1-butene (9) is a thermally allowed [la, 3s] shift as illustrated

1 8in Scheme 5. The calculated activation energy at the MP2 level o f theory is 96 

kcal/mol, which is larger than the required 72 kcal/mol for the cleavage of the C-C 

bond . 1 9 Both allowed and forbidden processes are calculated to have activation energies 

comparable to, or higher than, the energy required for C-C bond cleavage and 

recombination. No decisive experimental examples o f 1,3-sigmatropic alkyl shifts are 

known in acyclic systems.

10

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.



[la, 3s]

Scheme 5. 1,3-sigmatropic methyl shift o f 1-butene (9).

The 1,5-sigmatropic methylene shift in bicyclo[4.1.0]-heptadiene (10) (Scheme 6)

9flhas been studied at the Hartree-Fock level o f theory. Possible transition structures for 

the [1,5] methylene shift are the allowed [Is, 5s] and the forbidden [la , 5s] 

rearrangments. The activation energy o f the [1,5] sigmatropic methylene shift in bicyclo- 

[4.1.0]-heptadiene (10) itself is not experimentally known. The calculated activation 

energy at the MP2 level o f theory is 53 kcal/mol for the allowed [Is, 5s] methylene shift 

and 87 kcal/mol for the forbidden [la , 5s] methylene shift reaction.

[Is, 5s]

10

Scheme 6 . [1,5] sigmatropic methylene shift in bicyclo [4.1.0]~heptadiene (10)

The most synthetically useful sigmatropic rearrangement is the [3,3] process, 

which was discovered by A. C. Cope in 1940 and now bears his name. The Cope 

reaction is a well known and synthetically useful sigmatropic process . 9 ,2 1  The

11
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unsubstituted example (Scheme 7) is an overall degenerate process since the reactants 

and products are identical. In substituted examples, th,e rearrangement is usually 

stereospecific.

[3s, 3s]

---------------
Sigmatropic

Shift

11

Scheme 7. Thermal rearrangement o f 1,5-diene (11) by a [3,3] sigmatropic shift.

The aromatic transition state for the Cope rearrangement prefers the chair 

conformation (12) over the boat conformation (13) by approximately 5-6 kcal/mol 

(Figure 3).22 The Cope reaction activation barrier is 33.5 kcal/mol and has a negative 

entropy of activation o f -13.8 cal/mol K, which supports a concerted, cyclic transition 

state, rather than a biradical (14).
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Figure 3. Possible transition structures for the Cope rearrangement.
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Cycloadditions

Cycloadditions are some o f the most widely used reactions in organic chemistry 

and have been studied extensively both experimentally and theoretically . 1 ’9  This field has 

been reviewed in a substantial number o f books and review articles. Cycloadditions are 

reactions involving the addition o f two or more unsaturated molecules to each other to 

form a new ring. This generally proceeds with a high degree of stereocontrol, which is 

very crucial for synthetic applications. This section serves to introduce the topic of 

cycloadditions and to briefly cover certain important aspects by using examples o f simple 

hydrocarbons.

Cycloadditions are characterized by the number o f electrons and the type o f atoms 

involved in the process. A broad definition o f cycloaddition reactions is reactions that . 

involve the addition of two or more unsaturated molecules to each other, which yields a 

new ring. Cycloadditions can occur intermolecularly or intramolecularly . 2 3  Orbital 

symmetry principles apply to both cycloaddition and retro-cycloaddition processes. The 

latter is the concerted fragmentation o f one molecule into two or more smaller 

compounds. Scheme 8  presents an example o f inter and intramolecular [4 + 2] 

cycloadditions.

13
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....X ,\\\C02CH3
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major

+

P  O

minor

Scheme 8 . Inter and intramolecular [4 + 2] cycloadditions.

The best-known orbital symmetry controlled process in organic chemistry surely 

is the Diels-Alder reaction. Otto Diels and Kurt Alder discovered the [4 + 2]1

cycloaddition, named in their honor, in the 1920’s and were later presented with a Nobel 

Prize . 2 4  The Diels-Alder reaction is categorized as a [4 + 2] cycloaddition due to four % 

electrons from the diene and two n electoms from the dienophile that are directly 

involved in the bonding process. Several common Diels-Alder reactions are illustrated in 

Scheme 9.

14
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Scheme 9. Standard Diels-Alder reactions.

The mechanism of the Diels-Alder reaction has been the subject o f a lively 

debate . 4  The parent Diels-Alder reaction o f 1,3-butadiene (5) with ethylene to form 

cyclohexene is the prototype thermally allowed cycloaddition. The reaction is said to 

proceed in a concerted fashion when there is formation o f the two bonds in a single 

transition state. Moreover, the reaction can be considered to be synchronous concerted if 

both the new bonds are formed simultaneously and at the same rate. If bonds are formed 

at different rates, the reaction is considered asynchronous concerted. Both processes are 

concerted and stereospecificity is expected. When unsymmetrically substituted dienes or 

dienophiles react, the asynchronous process should be operative (Figure 4).

15
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i Concerted Asynchronous

TS TS 1

TS 2

Stepwise

Concerted Synchronous

Figure 4. Concerted and stepwise mechanism o f Diels-Alder reaction.

The other plausible mechanism is depicted as a stepwise process. This involves 

formation of a single bond between the diene and dienophile to produce an intermediate, 

which then forms a second bond to yield the cycloadduct. The intermediate can be 

considered a diradical or zwitterion. Diels-Alder reactions are almost always 

stereospecific; therefore, if  a biradical intermediate forms, it cannot have a lifetime long 

enough to permit successive bond rotation and loss o f stereochemistry. Based upon the 

vast amount o f literature concerning this issue, the consensus is that this process is

concerted , 4  however, there is still discussion about the mechanism of substituted cases . 2 5

16
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Until recent years, only theoretical calculations could provide detailed 

information about transition state geometries. The emergence of femtosecond 

spectroscopy has allowed for the real-time studies of the retro Diels-Alder reaction of 

norbomene and norbomadiene. Zewail has suggested that both symmetric and 

nonsymmetric motions o f the forming and breaking of C-C bonds are possible and the

9 f\concerted and nonconcerted trajectories o f the reactants are present. It was also 

suggested that the reactions path followed would be determined by the 

symmetry/asymmetry o f the structure, activation barrier and available energy.

The Diels-Alder reaction’s ability to form six-membered rings is accompanied by 

remarkable regioselectivity and stereoselectivity for a given combination of diene and 

dienophile. The stereochemistry can often be predicted using the Alder “endo” Rule 

while frontier molecular orbital theory has been commonly used to predict the 

regioselectivity.5,27d Scheme 10 illustrates representative examples o f regioselectivity 

and stereoselectivity.

17
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O

I

Scheme 10. Regioselective and stereoselective Diels-Alder reactions.

The Woodward-tloffman rules for cycloadditions and cycloreversions are 

summarized in Table 3. These generalized selection rules serve to predict whether 

thermal or photochemical are allowed or forbidden of such reactions. These rules can 

be derived by orbital correlation diagrams, frontier molecular orbital theory, or transition 

state aromalicity analysis . 2 7

n = # of electrons Mode Thermal, A Photochemical, hv
4n supra/supra

antara/antara
forbidden allowed

4n supra/antara allowed forbidden
4n + 2 supra/supra

antara/antara
allowed forbidden

4n + 2 supra/antara forbidden allowed

Table 3. General selection rules for cycloadditions.

18
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The thermally allowed cycloaddition of s-cis 1,3-butadiene (5) and ethylene (15) 

represents the prototypical Diels-Alder reaction (Scheme 11). The reaction is believed to 

proceed through a symmetrical transition state. The calculated transition structure 

possesses Cs symmetry in which the angles o f attack o f the approaching diene and 

dienophile are approximately tetrahedral with a forming bond distance o f 2.285 A. A 

free energy o f activation o f 37.18 kcal/mol and an enthalpy of activation o f 25.01 

kcal/mol have been calculated at the MP4/6-31 G*//MP2/6-31G* level o f theory for the 

reaction o f 5 and 15.14 The experimental enthalpy barrier was determined to be

98approximately 27 kcal/mol, in excellent agreement with calculations. The stepwise 

mechanism is predicted to be slightly higher in energy. The difference in energy between 

the concerted and the stepwise processes is referred to as the energy of concert. 2 9  For the 

cycloaddition o f 5 and 15, the energy o f concert is predicted to be 6  kcal/mol at the 

CASSSCF/6-31G* level. This is in good agreement with experimental results o f 2-7 

kcal/mol .4a

{ S '

V

5

Scheme 11. Prototypical Diels-Alder reaction between butadiene and ethylene.

19
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High levels o f theory are required to reproduce experimental activation 

parameters. Hartree-Fock methods and other methods, which consist o f low levels o f 

electron correlation, are inadequate. Semiempirical methods are inconsistent. Higher 

levels of theory such as MP4 and B3PLYP (density functional theory) do a much better 

job at predicting cycloaddition reactions and pericyclic processes in general. 3 0

There are many other types o f cycloadditions. An example that has been 

extensively examined in the [2 + 2] cycloaddition as shown in Scheme 12. The [tc2s  +
I

7t2 s] dimerization o f two moles o f ethylene (15) to cyclobutane (17) is thermally 

forbidden and photochemically allowed . 3 Most c o m t r i o n ly ,  this is a photochemical 

cycloaddition that produces four-membered rings. Most thermal [2 + 2] cycloadditions,

I
which are formally symmetry forbidden, proceed by a stepwise pathway involving 

diradical or zwitterionic intermediates. One example is from the cycloaddition o f ketene 

(18) and ethylene (15), which occurs readily . 3 1 The cycloaddition is categorized as [tc2s 

+  ? i2 a ]  and the calculated transition state for the ketene cycloaddition indicates an 

asynchronous concerted reaction, which has a high degree o f zwitterionc character.

Other theoretical examples o f [2 + 2] cycloadditions involving unsaturated systems, such

32 33as acetylene' and allene, to ethylene have been studied.

20
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Scheme 12. Basic examples o f [2 + 2] cycloadditions.

17

A _______ /
+ — —►  

[7Gs +  7t2J

. 0

Higher-order cycloadditions serves as useful synthetic applications in making 

large complex ring £y$tems.9a An example is the [4 + 6 ] cycloaddition, which provides a 

route to ten-membered ring systems. The simplest example involves the reaction of 

1,3,5-hexatriene (6) and 1,3-butadiene (5) to give compound 19 (Scheme 13).14 

However, this reaction is entropically unfavorable and lacks the necessary geometric
I

constraints needed to be an efficient cycloaddition. A more efficient example is the 

reaction of tropone and cyclopentadiene is shown in Scheme 14.9b In contrast to the 

Alder rule, this reaction results in the exclusive formation of the exo isomer as 

represented in Scheme 14.

21

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.



✓

k

[Ms +7C6s]
+

5 6

Scheme 13. Cycloaddition to form 10-membered ring.

19

4*

Exo
(100%) Endo product 

(not observed)

Scheme 14. Example of [4 + 6 ] cycloadditon

A more complex reaction is the [2 + 2 + 2] cycloaddition, which is a 6  n electron 

thermally allowed process , 3 exemplified by the cyclotrimerization of ethylene (15) to 

yield cyclohexane (20) and the cyclotrimerization o f acetylene (21) to yield benzene (22) 

(Scheme 15). In 1886, Berthelot reported that acetylene thermally cyclotrimerizes to

benzene. 34

22
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[2 + 2-f 2] [2 + 2 + 2]

Scheme 15. [2 + 2 + 2]' Cycloadditions o f ethene and acetylene.

Recently, our research group found that a tethered triyne, 1,6,11 -dodecatriyne
I

(23), cyclotrimerizes to a benzene derivative, indacene (24) (Scheme 16).35 Even though 

concerted [ 2  + 2  + 2 ] cyclotrimerizations are exothermic reactions, they are unfavorable 

due to very high entropic and enthalpic barriers . 3 6  However, Johnson and Kociolek 

suggested a stepwise process in which a 1,4-diradical Is formed followed by subsequent 

trapping with an alkyne. More commonly, these reactions do not occur without the use 

o f metal catalyst as a template . 3 7

500°C 
vapor phase

23 24

Scheme 16. Intramolecular thermal cyclotrimerization of an acyclic triyne.
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Group Transfers , ,

Group transfers are the least explored category of pericyclic reactions. One of the 

most basic group transfers is the concerted dihydrogen transfer between ethylene (15) and 

ethane (25) as shown in Scheme 17. This group transfer reaction is categorized as [t i2s  + 

o2s + o2s]. Computational studies predict an aromatic transition state with D 2 I1

g
symmetry. The calculated activation barrier using MCSCF theory was 71 kcal/mol

I
while MP2 theory predicted a value o f 51 kcal/mol, both predicting relatively high

/

values. ' 1

,H

‘H

+
[ 712s +CT2s + CT2s]

+

H.

H*

25 15

Scheme 17.1 Basic Group Transfer reaction.

Several systems have been designed to overcome the large estimated activation 

barrier. Scheme 18 illustrates the reaction between anthracene (26) and cyclohexa-1,4- 

diene (27) to yield 9,10-dihydroanthracene (28) and benzene (22). Fleming and 

Wildsmith have demonstrated that group transfer reactions can take advantage of the 

formation of a benzene ring' and thus increased resonance energy serves as a driving 

force. Another example of a group transfer reaction is the hydrogenation of an alkene

24
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(29) using diimide (30). As shown in Scheme 18, this process can be highly selective, 

even in the presence of other functional groups . 4 0

A

26 27 28 22

,H

'H
N2

29 30

Scheme 18. Representative group transfer reactions.

Cheletropic reactions are defined as pericyclic processes in which two sigma 

bonds that terminate at a single atom are made or broken in a concerted fashion . 3 3  The 

fragment containing a single atom is referred to as the chelefuge. Reaction at the 

chelefuge position is classified as either linear or non-linear1 and reaction at the diene 

component is referred to as being suprafacial or antarafacial. The term linear implies the 

linear least motion path o f the chelefuge. Cheletropic 1,4-additions are not common

25
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because 1,2-addition is usually a more favorable process . 1 For this reason, most 

cheletropic reactions have been studied in the reverse process. Scheme 19 illustrates 

common examples o f extrusion o f small molecules from five-membered rings.

+ S 0 2

+ : c h 2

Ene Reactions

The ene reaction is a pericyclic reaction, but is not easily categorized because it is 

a combination of a cycloaddition and a sigmatropic shift. In this reaction a n bond is 

converted to a o bond, and a hydrogen atom is transferred at the same time by a 1,5- 

shift. 4 1  The ene reaction is a concerted process that consists of a thermal intermolecular 

or intramolecular process between an alkene carrying an allylic hydrogen, which acts as a 

donor (ene), and the double bond or triple bond (enophile), which acts as an acceptor. 

Basic ene reactions with simple unactivated hydrocarbons such as propene (8 ) and 

ethylene (15) usually take place at high temperatures (Scheme 20). Often, the reverse 

fragmentation is more favorable. Due to the high activation barrier o f many ene

26

v© ©
N = N  •

X
N , S O ;

X

o

X
+ CO ,CH;

X
Scheme 19. Cheletropic elimination reactions.
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reactions, the use of catalysts or the addition of appropriate activation groups is usually 

necessary .9 ,4 2  For example, Lewis acid catalyzed ene Reactions with methyl acrylate are 

highly selective and proceed under relatively mild conditions (Scheme 20).

1 ^ -
A H.

8 15

X

.c o 2c h 3
230° C

^ C 0 2CH3
+

K

'C 0 2CH3

jH

+
.c o 2c h 3 A lcli Hv / C 0 2CH3

25°C

Scheme 20. Representative ene reactions.
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This reaction has found considerable synthetic utility. Scheme 21 represents an 

example of an intramolecular ene reaction of an unsaturated ketones in which the 

carbonyl functionality serves as the ene component, via its tautomer, and the olefmic 

moiety serves as the enophile. This is known as the Conia reaction . 4 3

Scheme 21. Intramolecular Ene reaction.

28
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Introduction to Dehydropericyclic Reactions 

The term “dehydropericyclic” reaction is a new term coined in our research group 

to describe classes o f pericyclic reactions that form unstable intermediates. Essentially, 

dehydropericyclic reactions are pericylic reactions (as discussed previously) that are 

formally missing two or more hydrogens in the overall process. The first examples of 

dehydropericyclic reaction can be found in the scientific literature dating back to the late 

nineteenth century.65 Early researchers really did not know how to characterize these 

observations, but knew something was very unusual about them. The following section 

will describe some common types o f dehydropericyclic reactions.

Dehydrobenzene Chemistry

Dehydrobenzene, also known as benzyne, is the archetypal member of the class of 

compounds known as arynes . 4 4  Arynes are aromatic compounds containing a formal 

carbon-carbon triple bond and often are referred to as dehydroaromatic compounds. 

Benzyne, the simplest and most studied aryne, is best described as “benzene with two 

hydrogen atoms removed . ” 4 5  Two sp2 orbitals with a total of two electrons are 

orthogonal to the aromatic tc system. There are three possible isomeric CgHLj structures: 

o-benzyne 31, ra-benzyne 32, andp -benzyne 33 (Figure 5).

29

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.



®

31 32 33

Figure 5. CgFLt isomeric structures.

p-Benzvne

Bergman is credited with providing the first experimental evidence for the 

existence of p-benzyne (33) through deuterium labeling studies on enediyne

46 ' 1rearrangements (Scheme 22). The experiment demonstrated the thermal 

interconversion of deuterium labeled enediyne 34 to 35 with scrambling of deuterium and 

subsequent intermolecular trapping. These results provided evidence for a skeletal 

carbon rearrangement to produce a diradical intermediate, which was further, 

characterized by CIDNP spectroscopy and was determined to possess singlet spin state. 

This reaction is commonly referred to as the Bergman cyclization and is categorized as a 

6  7t-electron electrocyclization, which is a thermally allowed disrotatory process. Even 

though this is a diradical intermediate, the activation barrier is relatively moderate and 

analogous to other pericyclic reactions o f hydrocarbons. Bergman determined the 

enthalpy of activation to be 32 kcal/mol for cyclization and 18 kcal/mol for ring opening. 

An important observation was that incorporation o f strain in the ground state structure 

can lower the energy of activation and in some cases, cyclization occurs at ambient

47temperature.

30
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Scheme 22. Bergman cyclization.

It has been found that the incorporation of the enediyne moiety into a ring 

decreases the activation barrier for cyclization. In a ten-membered ring (37), 

cycloaromatization readily occurs at 37° C4 8  (Scheme 23). It has been suggested that the 

determining factor for reactivity is not the distance between the acetylenic termini. 

Magnus and coworkers concluded that the difference in strain energy between the 

enediyne and the transition structure leading to the diradical intermediate will determine 

the reactivity of the enediyne towards cyclization 4 9  This approach appears to reflect the

31
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observed reactivity of enediynes, but does not consider substituent effects, which also 

have been shown to affect reactivity.

®

Room
T emperature

36 n = 1

37 n = 2

Scheme 23. Cycloaromatization of cyclic enynes.

In recent years, there has been renewed interest in this important electrocyclic 

process because potent anti-tumor agents are believed to undergo Bergman-type 

cyclization as part of their essential chemistry . 5 0  This discovery has resulted in a 

dramatic increase in the exploration of the chemistry of enediynes and 

cycloaromatizations. The five known classes of enediyne containing natural products are 

calicheamicin, esperamicin, dynamicin, kedarcidin, and C-1027, which are illustrated in 

Figure 6. These natural products are among the most potent antitumor and antibacterial 

agents known. The mode of action is believed to involve diradicals, which abstract 

hydrogens from DNA to cause double-strand DNA cleavage and cell death . 51 In the 

natural product, the enediyne moiety is contained within a nine or ten membered ring, 

which facilitates chemical activation. However, the simple nine membered ring enediyne 

(36) is unknown and the ten-membered ring (37) reacts at room temperature . 5 2
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Figure 6 . Natural products that contain the enediyne moiety.
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ro-Benzyne

1,3-Didehydrobenzene, or m-benzene (32), is the least understood of the three 

benzynes. To date, very little has been reported about its chemical reactivity.5̂  m- 

Benzyne (32) is best described as a singlet diradical. 5 4  Examination of m-benzyne 

derivatives have shown them to be generally less reactive than related phenyl radicals . 5 5  

Recently, Sander and coworkers reported experimental and theoretical results on the 

chemistry of 32, which was generated by two separate precursors (Scheme 24), isolated 

in an argon matrix, and characterized spectroscopically . 5 6  The infrared spectrum of m- 

benzyne (32) was recorded and is in good agreement with the calculated spectrurm m- 

Benzyne (32) can be identified by the observed vibration at 547 cm ' 1 (545 cm ' 1 

calculated) which is attributed to the strong ring deformation. The CCSD/6-31G* 

optimized geometry of m-benzyne (32) indicated a planar distorted hexagon. •
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Scheme 24. Thermal and photochemical generation of m-benzyne (32). 

o-Benzyne

The structure of o-benzyne (31) has long held the interest of researchers. Wittig

57is acknowledged to have discovered o-benzyne chemistry. Roberts and coworkers later 

generated conclusive evidence by use of a !4C labeling study, which confirmed the 

existence of o-benzyne (31) as a reactive intermediate5 8  (Scheme 25). Equal amounts of 

,4C labeled anilines (39 and 40) were observed in the dehydrohalogenation of 

chlorobenzene (38), which demonstrated that a symmetrical intermediate was generated.
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o-Bemzyne (32) has been previously generated by trapping as a Diels-Alder adduct,

observed spectroscopically, and studied in metal complexation studies . 4 4

38 39 ' . 40

Scheme 25. o-Benzyne 14C labeling study.

o-Benzyne (33) is best described as a singlet, acetylenic or cumulenic compound 

with an estimated strain energy o f 63 kcal/m ol44b The MP2/6-31G* optimized geometry 

has been reported and shows a relatively unperturbed aromatic ring . 5 9  The 

dehydrogenated C-C triple bond length is calculated to be 1.268 A, which is longer than a 

typical C-C triple bond of 1.2 A. This is indicative of a weak triple bond. This is shown 

in the in-plane n bond strain energy, which is estimated to be 49.5 kcal/mol. 6 0

Figure 7. Resonance contributors of o-Benzyne (33)

Infrared stretching frequency assignment for the triple bond of o-benzyne (33) has 

been the subject of controversy. 4 4  Nevertheless, theory and experiment have recently 

come to an agreement and assigned a value o f 1860 ±15  cm '1. This value is outside the
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normal range for C-C triple bonds. Results conclude that the triple bond in 33 can be 

portrayed as an intermediate between a normal triple fciond and a double bond. Scheme 

26 illustrates a variety of synthetic strategies to form o-benzyne (33).

NH

-TMS

OTf

I

Mg‘ Ph
Br

Strong
Base

Scheme 26. Different synthetic pathways to form o-benzyne (33).

The triple bond of o-benzyne (33) should be easily polarizable, 4 4  consequently it 

should be able to undergo nucleophilic and electrophilic reactions as well as concerted 

processes. One o f the simplest reactions of o-benzyne (33) is the hydrogenation to 

benzene (22), which has been demonstrated under a variety of conditions . 61 The 

detection of benzene (22) under conditions found to generate o-benzyne (33) supports the
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n o t i o n  that reduction of o-benzyne with molecular hydrogen occurs readily. It is also 

evident that o-benzyne is capable of being dehydrogenated under mild and forcible 

conditions4 4  (Scheme 27).

Reduction

+ h 2 ------------------------ ► -

Scheme 27. Reduction of o-benzyne (33) to benzene (22).

The Dehydro Diels-Alder Reactions

One of the clearest examples of a dehydropericyclic reaction is the [4 + 2 ] 

cycloaddition. The traditional Diels-Alder reactions proceed by two modes as shown in 

equations [1] and [2]. In principle, however, this pericyclic process m aybe extended to 

six new types which result in strained six membered rings as shown in equations [3] -  

[8 ]. These eight versions of the Diels-Alder reaction are listed in Figure 8.
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X
Eq. 1

X
Eq. 2

X

Eq. 3 Eq. 4

Eq. 5

I^ X ji

Eq. 6

X x

Eq. 7 Eq. 8

Figure 8 . Eight versions of the Diels-Alder cycloaddition.
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Eneyne + Alkene Cycloaddition

Reports o f “dehydro” Diels-Alder reactions of enynes with alkenes [Eq. 3] are 

uncommon in the literature, but recently have increasingly regained the interest of 

researchers. One of the first to suggest enyne reactions with alkenes was Butz and 

coworkers62 (Scheme 28). They speculated that a 1,2-cyclohexadiene intermediate (42) 

resulted from cycloaddition between 40 and 41. The unstable allenes 42 reacted further 

to yield the observed product 43 under thermal conditions.

A
o

P

0

40 41 42

Scheme 28. Eneyne cycloaddition using maleic anhydride (41).

43

o

P

0

More recently, intramolecular cycloaddition of conjugated enynes to alkenes has 

been reported. Danheiser and coworkers have applied enyne cycloadditions to alkenes to 

the synthesis of aromatic compounds. One example is shown is Scheme 29.63 The work 

of Danheiser has demonstrated the synthetic utility of these cycloaddition processes in 

solution. In most cases, enyne cycloaddition to alkenes have been observed under protic 

acid conditions or in the presence of Lewis acid catalysts.
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CH
1.1 eq AICI3

 ►

CH9 CI9

Scheme 29. Danheiser’s solution-phase intramolecular enyne cylcoaddition.

1

In contrast, our research group has employed f^ash vacuum pyrolysis to 

investigate intramolecular cycloadditions of conjugated enynes6 4  as seen in Scheme 30. 

Under these conditions, Lewis and protic acid catalysis are unlikely. This issue will be 

further discussed later in this section.

H qC 600°C

1 0 " 2  torr

(90%)

Scheme 30. Johnson’s FVP intramolecular enyne cylcoaddition.
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Enyne + Alkyne Cycloaddition

The intermolecular dehydro Diels-Alder reactions (intramolecular [4 + 2] 

cycloadditions) of enynes with alkynes [Eq. 5] have been postulated for over a century . 6 5  

This, so-called, “dimerization” was discovered by Michael and Bucher, in 1895. In 1934, 

Dykstra reinvestigated the thermal reaction of vinylacetylene (44) and found only 

products from dimerizations . 6 6  Non-catalytic conditions mostly yielded . 

diethynylcyclobutane. Under catalytic acidic conditions, nearly half of the resulting 

product was styrene (46). At the time, trimerization of acetylenes to aromatic compounds 

was well known, so Dykstra hypothesized that this “represents a new type since 1,4- 

addition must be involved.” Dykstra also suggested that this new reaction was analogous 

to the Diels-Alder reaction and could be represented by Scheme 31. This is believed to 

be the first case in which the 1,2,4-cyclohexatriene structure 45 was documented.

\
+

\
44

A

45

A

46

Scheme 31. Dykstra example of an intermolecular dehydro Diels-Alder reaction.

Dykstra also concluded that intermediate 45, the cyclic allene, “appeared to be practically 

impossible stereochemically” and it may not be actually formed as an intermediate, but 

that a “triad” shift occurred simultaneously in order for styrene 46 to be formed.
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Daddar and El-Assal as well as other researchers synthesized substituted 

phenylnaphthalene 2,3-dicarboxylic anhydrides (49) by cyclization o f substituted 

phenylpropiolic anhydrides (47) (Scheme 32).6 7 ,6 8  This synthesis may also operate as a 

key step in the synthesis o f natural plant products called lignins . 6 9  Brown and Stevenson 

investigated substituent effects on cyclization of 47 to 49, still not proposing an

70intermediate. Whitlock and coworkers executed experiments in deuterium-labeled 

solvents and suggested that the phenylpropionic acid dimerization reaction may proceed
I

through cyclobutadiene formation and expressed reservations concerning the reaction

71 Ibeing concerted. Nevertheless, no further mechanistic explanation was given for the

formation of the naphthalene derivatives and formation of the cyclic allene intermediate
l

48 was not proprosed until the first clear example o f 1,2,4-cyclohexatriene was reported

by Miller and Shi, who described this as an “isoaromatic” molecule.72

, A

47 48 49

Scheme 32. Intramolecular Diels-Alder reactions o f phenylpropilic anhydride to 

phenylnaphthalenes.
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Over the past fifteen years, there has been a considerable effort to generalize 

dehydro-Diels-Alder reactions. Intramolecular and intermolecular [4 + 2] cycloadditions 

of alkynes to endiynes to form 1,2,4-cyclohexatriene, cyclic allene, intermediates can be 

categorized into a type I and type II dehydro-Diels-Alder cycloadditions as illustrated in 

Scheme 33.

Type I Cycloaddition

H

Type II Cycloaddition

Scheme 33. Type I and Type II Dehyro Diels-Alder cycloadditions.
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To date, the majority of dehydro Diels-Alder cycloadditions have been o f type I. 

An example of the type I cycloaddition would be o f Danheiser and coworkers in which, 

they reported on the solution phase intramolecular [4 + 2] cycloaddition reaction of in 

which l-en-3-ynes reacts with an alkyne. Scheme 34 illustrates that enediyne 50 

intramolecularly cyclizes under thermal conditions to form the substituted indan 51.

c h 3

-R

CH1 eq ArOH, toluene

50
R -  COCH3, C 0 2 CH3, S 0 2 Ph, SiCH3, H 

Scheme 34. Danheiser enyne cyloaddition in protic solvent conditions.

Recently;, Echavarren and coworkers have reported the first example of the

7Talternative type II cycloaddition (Scheme 35). ' The 3-ene-l-yne substituent of the 

naphthalene derivative (52) reacts with the alkyne portion under thermal conditions in 

solvent to form fluoranthene 53. The same aromatized product, fluoranthene 53, is 

expected in both the type I and II processes. However, their differences may be 

substantial with regard to the outcome o f the strained intermediates that are formed . 7 4
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xylenes 
hydroquinone (cat)

150 °C

52 53

Scheme 35. Type II cycloaddition.

Our research group has employed flash vacuum pyrolysis (FVP) to investigate 

intramolecular cycloadditions o f conjugated enynes as routes to strained allene 

intermediates . 6 4  Flash vacuum thermolysis experiments, generally represented by [Eq. 

4], are illustrated in Scheme 36. The results are consistent with [4 + 2] cycloaddition to 

give a strained cumulene, followed by secondary reactions.

600 ° C ^  
1 0 ' 2  torr

CH

+

(17%)(58%) ( 16%)

Scheme 36. FVP results of intramolecular enyne cycloadditions.
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The proposed mechanism involves a six-memt?ered allene, 1,2,4-cyclohexatriene 

(54), as the reaction intermediate (Scheme 37). The formation of such species [Eq. 4] 

has been shown experimentally using various trapping techniques. Six-membered ring 

allenes have a large calculated strain energy75. The experimental enthalpy of formation 

of AH°/-= 105.1 kcal/mol for 1,2,4-cyclohexatriene (54) m aybe to that of benzene, 19.81

76kcal/mol. The electronic structure and stability of 1,2,4-cyclohexatriene (54) have
i

been studied with several theoretical methods. AMI semiempirical calculations predict 

1,2,4-cyclohexatriene (54) to have a AH°/ = 93.7 kcal/inol compared1 to 22.0 kcal/mol for

77that of benzene. . Recent ah initio studies at the G2(MP2) level report similar values of 

AH°/= 96.2 kcal/mol and 21.1 kcal/mol for benzene (22). The energetics of 

cycloaddition reactions leading to allene intermediates were studied at the MP4//MP2 

level o f theory . 6 4  The formation of 1,2,4-cyclohexatriene (54) was found to have a AG°re„ 

= -13.4 kcal/mol which is significantly lower than a previous estimate6 3  and an activation 

energy of AG*= 42.0 kcal/mol for allene. Significant interest has been give to 1,2,4- 

cyclohexatriene (54) in its relationship to benzene isomers and related isomerization . 7 8 ,7 9

A

44 21 54

/ \

2 2

Scheme 37. Dehydro Diels-Alder reaction of enyne 44 and acetylene (21).
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A recent theoretical and experimental investigation o f dehydro Diels-Alder

reactions examined the formation of the cyclic allene intermediates under conditions for

80intramolecular, ionic, and radical intermolecular cycloaromatization processes. 

Computational examination of 1,2,4-cyclohexatriene (54) conversion to benzene (22) 

predicts the most favored intramolecular path for aromatization of 1,2,4-cyclohexatrienes

Q 1
as a pair of successive [1,2] H shifts rather than a [1,5] shift. Hopf and Schreiner and

O'}
Ananikov have reported results that support these computational predictions. 

Experimental studies shows that cycloaromatization of cyclic allenes may follow both 

inter- and intramolecular pathways, depending on the reactions conditions. For synthetic 

purposes, the best procedure is to use a protic solvent to promote the ionic intermolecular 

route, which has shown to be the fastest and highest yielding route. Computational 

calculations predict that benzoannulation significantly lowers the barrier to the rate- 

limiting [1,2]-H transfer of the intramolecular route as shown in Scheme 38.

Calculations also predict a very low barrier for the reaction of cyclohexatrienes with 

carbon tetrachloride, and that cyclic allenes may act as nucleophiles.
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Intramolecul

Isomerization
X-Y
transfer

Addition o f ROH(D)

Intermolecular 
Ionic Pathway

Intermolecular 
Radical Pathway

H(D) or X

Scheme 3 8 . Experimental and computional studies examining pathways of cyclic
i

allenes.

Divne + Alkene Cycloaddition

Our research group provided the first examples of cycloadditions in which the

traditional diene compound is replaced by a diyne moiety [Eq. 5] , 6 4 ,8 3  It is proposed that
!

1,3-nonadiyn-8-ene (55) undergoes cycloaddition to give intermediate 56 (Scheme 39). 

Subsequently, 1,2,3-cyclohexatriene derivative intermediate 56, is believed to undergo 

electrocyclic ring opening to dieneyne 57 (major product). The thermolysis of 55 also 

produced a minor amount of indan (58) and indene (59), which indicates that 

aromatization competes with ring opening of 1,2,3-cyclohexatriene intermediate 56. The 

unidentified isomeric structure was proposed to be 60. Included in this report was the 

predicted cyclization of 1,3-nonadiyn-8 -yne (61) to form 1,2,3-cyclohexatriene or o-
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benzyne derivative intermediate 62. The basic reaction is represented in Eq. 6 . Pyrolysis 

of 61 gave indene (59), which presumably goes through indan (58).

/
55

600°C

10"2 tonr

56

(20%)

(4%) (3%)

57 58 5 9 60

61

580°C

62

+ 2H

58

2H

59

Scheme 39. Our results o f intramolecular dehydro Diels-Alder reactions.
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A fundamental goal of our research group is to explore the structural limitations 

of cyclic allenes. This experiment (Scheme 41) was executed in an attempt to examine 

the possibility o f an intramolecular Diels-Alder reaction of the enyne moiety reacting 

with the connected phenyl ring (dienophile). As discussed previously, dehydro Diels- 

Alder cycloadditions have been executed using a variety of eneyne and alkene or alkyne 

starting materials.

Recently, Saa and coworkers through theoretical and experimental studies, have
I

shown that diynes react with a % bond in the adjacent phenyl ring in a Diels-Alder 

cycloaddition to yield what is believed to be cyclic allbne intermediaites. 3 8  

Phenylethynylphenylpropynone (63) was allowed to reflux in toluene using both protic
I

and neutral conditions to yield benzofluorenone 64. The experiments were carried out in 

attempt to better understand the mechanism of this cycloaddition (Scheme 40).

toluene

150°C

63 64

Scheme 40. Saa Intramolecular Cycloaddition of diyne 63.
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Results and Discussion 

Thermal Chemistry of 1 -phenvl-6 -hepten-l -yne (65) (

The thermal exploration of 65 was of great interest to our group. Prior to the 

published work of Saa and coworkers, we attempted to find similar cycloadditions using 

an unconjugated eneyne as illustrated in Scheme 41. 1 -Phenyl-6 -hepten-1 -yne (65) was 

synthesized readily. Lithiation of phenylacetylene (70) followed by the addition of 5- 

bromo-l-pentene yielded 1 -phenyl-6 -hepten-1 -yne (65) (Scheme 42). We proposed that
I

under pyrolytic conditions, 1 -phenyl-6 -hepten-1 -yne (65), would cyclize to form a cyclic 

allene intermediate 6 6 . Through successive 1,2-hydrogen shifts or a ̂ 1,5-hydrogen shift, 

the intermediate, 2,3 -dihydronaphthalene(67) would form and then dehydrogenate to

i
yield 2,3-1 H-cyclopentanaphthalene (6 8 ).
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65 66

H-shift

67 68

?

69

Scheme 41. Proposed eneyne cyclization to yield cyclic allene intermediate.

1. n-BuLi

70

2 . 5-bromo - 1 -pentene 

65%

65

Scheme 42. Synthesis of 1 -phenyl-6 -hepten-1 -yne (65).
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1 -Phenyl-6 -hepten-1 -yne (65) was weighed out and passed through a quartz tube 

packed with quartz chips, maintained at 640 °C at 0.02 torr. The product was collected in 

a cold trap (-78°C) to give a yellow oil. The recovered material was taken up in CDCI3 

and passed through a plug of silica. The recovered material was observed by capillary

1 n  1
GC and H and C NMR. Mostly unreacted starting material (65) was observed. Trace 

amounts of phenylacetylene (70) were observed by GC and *H and i3C NMR. This may 

have been due to fragmentation of starting material during the pyrolytic process. There
I

was no evidence that cyclization occurred to form the predicted structure 6 8 . However, 

FVP at 750 °C showed evidence that cyclization o f 1 -jihenyl-6 -hepteln-1 -yne (65) may 

have led to 2,3-1 HTcyclopentanaphthalene (6 8 ) as an intermediate, which further
1

dehydrogenated, resulting in the formation o f a small amount o f benz[/]indene (69). The 

'H  NMR spectrum showed resonances from 6.92-6.97 and 6.58-6.63 which might result 

from vinyl protons o f ben2 [/]indene (69). Resonances at 3.42-3.47 ppm were also present 

that might show evidence for methylene protons o f benz[/]indene (69). These results are

171in good agreement with the resonances of benz[/]indene (69) as given by the literature.

!H NMR spectrum shows resonances from 6.80-7.05 (m, 1H) and 6.45-6.70 (m, 1H), 

which result from the vinyl protons, and 3.40-3.55 (m, 2H), which result from the 

methylene protons.

We conclude that pyrolysis of 65 may have led to the proposed intramolecular 

Diels-Alder reactions leading to 69. ’H NMR shows evidence for predicted product 69. 

The crude material that resulted from the pyrolysis of 65 resisted several different 

chromatographic purification methods. Purification by rotary chromatography, column 

chromatography, and preparative thin layer chromatography were not successful. In the
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future, more quantitative gas chromatography should be used to separate the crude 

mixture. If there is successful by separation by (GC), preparative gas chromatography 

should be employed so that pure formed products may be recovered to properly identify 

the produced products.
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CHAPTER 2 

CHEMISTRY OF C4H2

Introduction to High Temperature Gas Phase Chemistry of 

Alkynes, Arynes, and Aryl Radicals

Application o f flash vacuum pyrolysis (FVP) to the synthesis o f moderately 

complex organic compounds has gained the interest of research laboratories worldwide 

since the mid-1960’s. Discovery o f the thermal equilibrium between alkynes with 

ylidenecarbenes at high temperatures has led to an increase in the use of carbenes in the 

synthesis of polycyclic aromatic hydrocarbons (PAHs). Recent developments o f the 

utility of high temperature gas phase pyrolytic reactions of acetylenes, precursors of 

arynes, and aryl radicals will be examined in this chapter.

Much of the fundamental chemistry in this field was developed in the laboratories 

of Australian chemist Roger Brown. Brown’s involvement with acetylenic chemistry 

began with the generation of cumulenones such as propadienone, CH2  = C = C = O, 

which were unknown at the time. Pyrolysis at 430 °C of isopropylidene 

benzylidenemalonate (71), which was formed from the condensation o f benzaldehyde 

and Mel dram’s acid, generated the cumulenone 72 (unlabeled). At higher temperatures 

(560°C), Brown and coworkers first observed the generation and rearrangement o f the 

benzylidene carbene (73) through flash vacuum pyrolyis (FVP) of I3C labeled
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isopropylidene benzyli denemalonate(71) . 8 5  Decarbonylation of propadienone 72 led to 

the generation of the benzylidene carbenes (73 and 74). This reaction, at 560 °C, yielded 

acetone and phenylacetylene isotopomers (75 and 76) (Scheme 43).

Ph

H; c ^ ° )
FVP

/ - 0  560 C

Ph

H'
)c%=c=o

-CO

O'

71
72

Ph,

H
0 13=C:

73
Ph

'C—3C:
H

74

P h13C-CH

75 ■ +
PhC—3CH

76

FVP
Ph-13C=CH ---------------

75 700°C

Ph

H'
:C 1 3 -C :

73
p h ,

H
C — C:

74

PIt13C=CH ■

75
+ (50 : 50)

PhC—3CH

76

Scheme 43. Equilibration of acetylenes and methylcarbenes (vinylidene).

Through 'H NMR studies with a labeled substrate (75), it was determined the 

benzylidene intermediate (73 or 74) undergoes 1,2- phenyl, as well as, a 1,2-hydrogen 

shift to give mixed, labeled phenylacetylenes 75 and 76. Further studies showed 

evidence that the product ratio of 75 and 76 (75:25 respectively) was not a direct 

reflection of the aptitude o f hydrogen and phenyl migration . 8 6  It was proposed that in the
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temperature range o f 550 to 720 °C, these 1,2-shifts are reversible. Subsequent studies 

have shown that acetylenes are in equilibrium with vipylidenes at this approximate 

temperature and this process is now known as the Brown rearrangement.

* 87 88Many synthetic applications o f the Brown rearrangement have been described. ’ 

Generation of a carbene adjacent to a substituent bearing C-H bonds provides 

synthetically useful insertion reactions, as illustrated in Scheme 44. Studies by Brown 

and coworkers have shown that vinylidenes can be trapped in an intramolecular 

process . 8 9  For example, pyrolysis of biphenyl-2-ylacetylene (77) at 700 °C gives the
i i

vinylidene (78), which can directly insert into C-H bond on the adjacent phenyl ‘ 

substituent to give phenanthrene (79). The vinylidene (78) can also add into the 7t system 

of the adjacent phenyl substituent to give intermediate 80, which rapidly rearranges to 

benzazulene (81). The reaction follows both pathways as illustrated in Scheme 44.

Another example of this the behavior of o-tolylacetylene (82) which at 720 °C 

forms the vinylidene 83, leading to indene (59) in 75% yield. Pyrolysis of l-ethynyl-8 - 

methylnaphthalene (84) at 750 °C yielded phenalene (85) by similar insertion to form a 

six-membered ring . 9 0  Pyrolysis of 1 -ethynylnaphthalene (8 6 ) led to vinylidene insertion 

into an aromatic C-H bond with formation of acenaphthylene (87) in 80% yield.
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CHc

FVP

750°C

84 85

FVP

850°C
l

u 87

Scheme 44. Intramolecular trapping of vinylidene.

(
These syntheses usually require the initial preparation of ethynyl aromatics, but 

tend to behave poorly under FVP conditions because of decomposition to nonvolatile 

materials when sublimation is attempted. This problem becomes acute when the 

molecular system increases in size. The solution to this difficult problem has been to use 

precursors of the Ar-CX=CH2 type which, on FVP, lose H-X to give the required 

ethynylarene system in the gas phase. Such groups are more robust during sublimation 

and large multi-substituted systems can be manipulated without the problem of 

oligomerization (Scheme 45). In an innovative approach to the construction of fullerene
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fragments, Scott and coworkers reported the synthesis o f corannulene (91) by FVP of 

either 7,1O-diethynylfluoranthene (8 8 ) or bis-2,2-dibropiovinyl compound 89.91 In 1997, 

a full paper was published that describes compound 90 in which the 1-chlorovinyl group 

was used as a pyrolytic source of the ethynyl group. Yields o f the bowl-shaped 

hydrocarbon increased dramatically as a result of the change . 9 2  Other extensions of this 

approach are illustrated in the synthesis of cyclopentacorannule (93) from dichlorovinyl

compound 92 ' and to semibuckminsterfullerene (95) from tetrachlorovinyl compound
»

95, by Rabideau and coworkers. 9 4
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91

8 8  R = C=CH (9 1 ,10%), 89 R = CH=CBr2  (91, 23%), 90 R = CC1=CH2  (91, 35-40%)

FVP
1000°C

92 93

94

FVP, 1000°C

Scheme 45. Synthesis of corranulene and related systems by vinylidene insertions.
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Secondary Reactions and Rearrangements

Many pyrolytic hydrocarbon syntheses are carried out at very high temperatures 

in the range of 900 -  1200 °C. Due to these high temperatures, the expected primary 

products are often transformed through secondary reactions . 9 5  Scott and Necula 

attempted to generate the benzopyracylene (98) by FVP of the 1,5-bis( 1 -chlorovinyl) 

anthracene (96). 1,5-Bis( 1 -chlorovinyl) anthracene (96) could eliminate hydrogen 

chloride to give diethynyl anthracene (97) by carbene rearrangement and insertion. This 

would be expected to rearrange to benzopyracylene (98).96 However, FVP at 1100 °C,
i

yielded no benzopyracylene, instead, the resulting products were isomers 100 and 101. 

Scott and Necula proposed that breaking o f a C-C bond in 98 occurs with extrusion of a 

carbene to give 99, in equilibrium with the corresponding ethynyl compound.

Reinsertion of the vinylidene o f 99 into the left ring gives the observed 

cyclopent[/»']aceanthrylene (101). The subsequent deinsertion reaction is favored by 

strain energy of the pyracylene system of 98. The further isomerization of 101 to 

cyclopent[/»]aceanthrylene (100) is an example o f Scott’s well-known hydrogen-

07shift/benzene ring contraction, which interconverts five- and six-membered rings in 

cyclopentarenes, and which is also involved in the automerization of naphthalene . 9 8  This 

is described as a 6/5 rearrangement (Scheme 46).
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inserttion

H

6/5 RAR

99 100

Scheme 46. The insertion/deinsertion/reinsertion sequence leading to

cyclopent[A/]aceanthiylene (100).

The preceding example illustrates a C2 -substituent migration from one ring to an 

adjacent ring, but the Jenneskens group has observed migration o f an ethynyl group to an 

adjacent position in the same ring." 8 -Ethynylfluoranthene (102) is not positioned to 

undergo direct isomerization/insertion to give a cyclopentarene, however, on FVP at
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1100 -  1200 °C, benzo[ghi\fluoranthene (103) was a significant product (12 -  17 % 

yield). The other important reaction was the loss o f C2 to give fluoranthene (S3) in 28- 

31 % yield although the nature of this process is uncertain. It is proposed that ethynyl 

migration occurs by insertion of vinylidene in the adjacent position, followed by the 

alternative deinsertion reaction o f the cyclobutarene (104) and insertion of the new 

vinylidene into the adjacent ring to form 103 (Scheme 47).

FVP

1 ]00 - 1200°C

102 '53 103

Scheme 47. Migration of the methylene group through a cyclobutarene.
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High Temperature Chemistry o f Arvnes

< I

In the early 1980’s, Brown recognized that the equilibrium between acetylene and 

vinylidene might also be seen in benzyne and other arynes at high temperatures. Brown’s 

initial approach was to anticipate and examine the 13C label scrambling ofbiphenylene, 

formed ffom.high temperature generation of benzyne. The synthetic consequences of the

interaction of exocyclic carbenes with neighboring substituents were also explored.

1Doubly C labeled phthalic anhydride (105) was synthesized and exposed to FVP 

conditions that gave a pyrolysate containing biphenylene (106) in whjich the major 

labeled isotopomer was 1 3C2 -biphenylene. However, 13C NMR spectroscopy showed that 

in this biphenylene (106), one l3C label was distributed approximately equally between 

the two quaternary positions (Scheme 48).1 0 0  This result explained alternative ring 

contractions of benzyne (107) leading to fulvenylidenes 109 and 110, to benzyne (108) 

and ultimately to scrambling of one label in biphenylene (106). The explanation of these 

labeling results has been challenged by Wentrup and coworkers who proposed that 

scrambling is due to the symmetry of loss o f carbon dioxide from the anhydride (105)101 

(Scheme 49). Brown and coworkers later concluded that both types o f mechanisms are 

plausible . 10 2
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1 1Scheme 48. Generation and rearrangement of [1,6]- ' C2 benzyne.
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Scheme 49. Wentrup’s mechanism for scrambling of 13C labels by Wolff ring- 

contraction.

Exocvclic Vinylidene Insertion Across a Bay Region

As a tool to examine whether a vinylidene could insert into the C-H bond across 

the bay region, phenanthrene-3,4-dicarboxylic anhydride (111) was subjected to FVP at 

870 °C. The complex product mixture included 3-ethynylacenaphthylene (113) and 1- 

ethynylacenaphthylene (114). Their formation were attributed to alternate modes of 

cleavage, a and b, in the presumed, highly strained, intermediate 112 . 1 0 3 This was the 

first observation o f the deinsertion process. Brown failed to recognize a third important 

product, pyracyclene (115), which was later identified by Scott and coworkers 9 5  and 

rationalized as the product of 6/5 hydrogen shift/ring contraction involving rings D and A 

of 112 in Scheme 50.
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Scheme 50. Rearrangement products o f FVP phenanthrene-3,4-dicarboxylic anhydride

(111).
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Aryl Radicals and Radical Rearrangement

1,2-Shifts o f hydrogen in naphthyl radicals we^e first reported by Scott and 

Necula.104 Radicals were generated from bromonaphthalenes at 850 °C/0.1-0.5 torr in the 

presence of a 1 0 0 -fold excess of maleic anhydride, which is a precursor of acetylene at 

this temperature. 2-Bromonaphthalene (116) gave a substantial yield o f 2- 

ethynylnaphthalene by addition of the 2-naphthyl radical (117) to acetylene, and loss o f a 

hydrogen atom. However, the major product was acenaphthylene (87), which was
I

formed by the carbene insertion route from 1 -ethynylnaphthalene (119) as illustrated in 

Scheme 51. Control experiments suggested that the rhajor pathway t o l -  

ethynylnaphthylen? (119) involved isomerization of the 2-naphthyl to the 1 -naphthyl 

radical (118) and that direct isomerization o f 2-ethynylnaphthalene to 119 by ethynyl 

migration was less important.

H

1100°C

+ C,H1,2-H shift

116 117 118

119 87

Scheme 51. Hydrogen migration in the 2-benzo[c]phenanthryl radical and subsequent 

cyclization.
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A similar hydrogen shift was proposed where trapping of the new radical is 

intramolecular. 1 0 5  FVP of 2-bromobenzo[c]phenanthrene (120) at 950-1100 °C generated 

the 2 -benzo[c]phenanthryl radical (1 2 1 ) which was converted by a 1 ,2 -shift of hydrogen 

in the 1-radical (122). Radical attack on the neighboring bay position 12 and loss of 

molecular hydrogen gave benzo[Agi]fluoranthene (103), as illustrated in Scheme 52.

This result is supported by deuterium labeling studies and by BP/DN** calculations 

which predicts an activation energy o f 58.4 kcal/mol for the 1,2-H shift. An aryne 

mechanism was ruled out because the very unstable cyclopenta[cd]pyrene was not 

detected.

FVP: 
950-1100°C

,2-H Shi

120 121 122

103

Scheme 52. Hydrogen migration in the 2-benzo[c]phenanthryl radical (122) and 

subsequent cyclization.
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This approach has been utilized in the synthesis of large fullerene fragments. 

Mehta and coworkers have developed a three-step synthesis of C3 -symmetric 

hemibuckminsterfullerene (123).106 Similar 1,2-hydrogen shifts occurred after the initial 

homolytic cleavage of the bromine substituent during FVP at 1100 °C (Scheme 53).

FVP, 1100°C, 
0.5 torr

Scheme 53. Mehta’s three-step synthesis o f C3 -hemibuckminsterfullerene (123). 

Experimental Investigation of Thermal Rearrangements o f Butadiynes

I

A large number o f polycyclic aromatic hydrocarbons (PAHs) have been found in 

the gaseous products of fuel-rich hydrocarbon-air/oxygen combustion.107 Homann and 

Pidoll have studied the formation o f cyclic reaction products from the pyrolysis of a 

number of unsaturated aliphatic hydrocarbons, particularly the thermal decomposition of

1,3-butadiyne.108 Since 1,3-butadiyne is a very reactive hydrocarbon and has the highest 

concentration o f all polyynes in the combustion process, these combustion scientists 

decided to study the pyrolysis of 1,3-butadiyne at low pressures in order to examine its 

behavior. Homann and Pidoll found that when butadiyne mixed with helium when
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exposed to FVP at temperatures between 700 °C and 1000 °C and total pressures of 2.3 to 

9.8 torr, a variety of hydrocarbons formed. The hydroparbons that formed were (1) 

oligomers of (C4 H2 ),, with molecular structures such as 3-methylene-1,4,6-heptatriyne 

and triethynylbenzene, (2) acetylene and polyynes such as and hexatriyne (C6 H2 ), (3) 

other polycyclic hydrocarbons with and without side chains which were observed at 

higher temperatures and longer reaction times, including diethynylbenzene (CioHg), 

benzene (CeH^), ethynylnaphthalene (CnHg), and phenanthrene or anthracene (C 1 4H 1 0)
I

and finally (4) other products such as molecular hydrogen (H2 ), l-buten-3-yne (C4 H4 ), 

biphenyl (C 1 2H 1 0), polymer, and soot. The samples wfere drawn thrdugh a molecular 

beam system and analyzed by mass-spectrometry. A movable inlet lance varied the
1

residence time for C4 H2  with a maximum time of 45 ms.

A decade ago, Brown and coworkers studied the pyrolysis o f 1,4-diphenyl-1,3- 

butadiyne (124).109 The diyne was sublimed through a packed silica tube at 1120 °C/0.03 

torr during 1 h. The pyrolysate was dissolved in methylene chloride and the solvent was 

evaporated to give a brownish-red product, which was examined by ]H NMR 

spectroscopy, GLC, and HPLC. The ]H NMR spectrum indicated the presence of 

indeno[2,l -a]indene (125) (19%), fluoranthene (53) (59%), and acephanthrylene (126). It 

was found that GLC did not separate compounds 125 and 53, but showed the presence of 

acephenanthrylene (126) (13%), aceanthrylene (127) (2%) and unreacted 124 (7%).

HPLC confirmed the presence of 124,126, and 127, but failed to resolve 125 and 53 

(Scheme 54).
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Two pathways were proposed for these isomerizations. The first pathway 

involves an ethylidene rearrangement involving the shift o f a phenyl group to give a 

vinylidene, which inserts to form 1,2-didehydro-3-phenylnaphthalene (128). This 

intermediate undergoes ring contraction and carbene insertion to give 125. The second 

proposed mechanistic pathway involves an electrocyclic ring closure and 1,5-H shift to 

form 2,3-didehydro-1 -phenylnaphthalene (129), which is converted into fluoranthene 

(53) by a radical mechanism. This experiment was repeated in our labs and results were 

in good agreement with those reported by Brown. This will be described later in this 

chapter.
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insertion

124 128

1,5-H shift

53 129 127 126

Scheme 54. Brown’s FVP of 1,4-diphenylbuta-1,3-diyne (124) at 1120 °C/0.03 torr.
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As noted in earlier sections, the thermal interconversion of alkynes and 

vinylidenes, also known as the Brown Rearrangement,, is a reaction of great mechanistic

and synthetic importance. 92,96,110 The reverse o f this reaction, the Fritsch-Buttenberg-

Wiechell (FBW) Rearrangement, alkylidene carbenoids or alkylidenes (vinylidene) is a 

well-established method for the synthesis o f acetylenes.111 Scheme 55 represents several 

synthetic strategies of the generation of vinylidene.

R- -R

KOC(CH3)3

R

RV

R/

OTf

H

R 1— Ar

A i. r 2c u
2. CH3I, CuI

R-

hv

R

R R

LiR

Sml2

LiR

-S(CH3)2

R

R
Br

Br

R
\

R

Scheme 55. Various Syntheses to Generate Vinylidene (Alkylidene carbene).
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Research in our group has focused on the synthesis of highly strained compounds 

through thermal and photochemical dehydropericyclic reactions. Our work on C4 

isomers compelled us to investigate whether novel atom transpositions might occur in

1,3-butadiyne. The 1,2-shift o f the Brown Rearrangement in a conjugated 1,3-butadiyne 

(131) provides a straightforward mechanism for intrabond atom scrambling in diynes.

For interbond scrambling to occur, several plausible mechanisms may be considered. In 

order for interbond scrambling to occur, we propose that 1,3-butadiyne (131) would first 

undergo a Brown Rearrangement to form an alkynylyinylidene intermediate (132) and 

subsequently insert into an adjacent n bond to form bicyclo [1.1.0] buta-1,3-diene (133) 

[Eq. 10]. This interesting substance will be referred to its common name of trialene. In 

principle, when this cyclic structure forms, it can reopen with the central carbon atoms

13having exchanged positions. In the present work, we have used both C labeled material 

and computational modeling to study this process (Figure 9).
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[Eq. 9], Brown Rearrangement

133

C 4 H 7  Chemistry

There is little known about the C4 H 2  potential surface and the only shelf-stable 

isomer is butadiyne (131).112 Butatrienylidene (135) has been studied by computation1 13 

and generated in the laboratory . 1 1 4 Stang and Fisk reported the generation and interaction 

of butatrienylidene (135).114a Stang chose the triflate functionalized enyne (134) as a 

precursor to carbene 135 and trapped it with tetramethylethylene (Scheme 56). This 

structure 135 has also been observed in interstellar space gas clouds . 1 1 5  The geometry 

and spectroscopic properties of cyclopropenylidenemethylene (136) have been 

predicted,113b but this interesting carbene remains unknown.
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[Eq. 10], Brown Rearrangement and insertion to form trialene (133). 

Figure 9. Thermal Equilibrium of Acetylenes and Trialene Formation.
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Scheme 56. Generation and trapping of butatrienylidene (135).

Bicyclo[ 1.1 .Ojbuta-1,3-diene (133), more commonly known as trialene or 

propalene, presents an unusual % bond topology that has generated interest in numerous 

theoretical studies116. Trialene was used as an example in the classic 1961 HMO text by
t I

J. D. Roberts.1163 In addition to its obvious strain, this 4 n  electron structure may be 

considered antiaromatic and has been predicted to be thermodynamically and kinetically 

unstable.117,116' One study by Doehnert predicted that trialene (133) may exist as a 

biradical structure.U6e Baird and Dewar first used the semiempirical MNDO method to 

predict a C21, symmetric trialene structure, with alternating single and double bonds and 

with an unusually long interannular bond .118,1160 These authors further suggested that

trialene might be made by photolysis o f diacetylene (131) in a matrix. Schleyer and
1

coworkers later predicted that trialene should easily convert to ethynylvinylidene (132), 

itself lying in a shallow energy minimum.1168 Simkin predicted that bond shift 

isomerization in trialene will have a low barrier, proceeding through a D2 h structure.1161’

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



H

135 136 137 a 137b

a

138
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139 140

Figure 10. C4 H2 isomeric structures

Several high-energy C4 H2  structures are relevant to the work present (Figure 10). 

These isomers are 1,2,3-cyclobutatriene or cyclobutenyne (137), tetrahedrene (138), and

1,3-butadiene-1,4-diylidene (139).113a All o f these substances are unknown. In principle, 

cyclobutenylidene (136) and 137 may interconvert by a 1,2-shift, much like that predicted 

for cyclobutyne. 1,2,3-Cyclobutatriene (137a) and cyclobutenyne (137b) represent the 

smallest homologues in the cyclic butatriene or cyclic enyne series . 7 5 , 1 1 9 Sauer and Harris 

recently described calculations on tetrahedrene (138) and the related biscarbene (140)

190which are predicted to be high-energy species.
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Results and Discussion 

We began our investigation of butadiyne thermal rearrangements through 

preparation and pyrolysis of several different diarylbutadiyne. The particular system was 

chosen because the aryl groups differentiate the sp hybridized carbons and also served as 

“end caps”. This was expected to allow C4  chain chemistry to occur without the 

fragmentations that are generally observed for alkyl-substituted alkynes . 121

Synthesis and Thermal Chemistry o f 1.4-Diphenyl-1.3 -butadiyne (124)

The thermal stability o f 1,4-diphenyl-1,3-butadiynes was a key initial experiment 

in the investigation of butadiyne thermal rearrangements. 1,4-Diphenyl-1,3-butadiyne 

(124) was pyrolyzed previously by Brown and coworkers, as shown in Scheme 54. 

Brown and coworkers performed FVP at 1120 °C/0.03 torr 1 0 2  and observed formation of 

various polycyclic aromatic hydrocarbons (PAHs). 1,4-Diphenyl-1,3-butadiyne (124) 

was synthesized in one step by oxidative homocoupling of phenylacetylene based on

1 /r-1

previously published literature (70) (Scheme 57).

O,, CuCl

TMEDA, acetone

124

Scheme 57. Synthesis of 1,4-Diphenyl-1,3-butadiyne (124).
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Pyrolytic experiments were performed at progressively higher temperatures. 

Pyrolysis of 1,4-diphenyl-1,3-butadiyne (124) at 700 “QUOl torr resulted in only starting 

material. Brown rearrangments may have occurred, but without isotopic labels it would 

be impossible to detect this thermal rearrangement. Two sp hydridized carbons are

1 Tresolved in the C NMR spectrum of compound 124; these appear at 74.1 and 81.6 ppm. 

Pyrolytic experiments were next executed at 800 and 900 °C/0.01 torr. In each case, no

1 13rearrangement products were detected by H and C NMR. Next, FVP experiments were 

done at 1000 and 1100 °C/0.01 torr. Pyrolysis at 1000 °C showed some indication of 

product formation, but mostly diphenylbutadiyne remained. Pyrolysis at 1100 °C showed 

formation of mostly polycyclic aromatic hydrocarbons (PAHs) with only a small amount 

of starting material remaining. *H NMR spectroscopy indicated products consistent with 

the experiments o f Brown, as illustrated in Scheme 54.

Synthesis and Thermal Chemistry o f Ditolyl-1.3-butadivne (141)

Ditolyl-1,3-butadiyne (141) was synthesized in one step by oxidative 

homocoupling of /?-tolylacetylene based on previously published literature162 (142) 

(Scheme 58): This system is comparable to diphenybutadiyne (124) with the exception 

of the added methyl substituents. Pyrolysis o f 141 was carried out determine if the alkyl 

substituent would cleave at high temperatures. FVP was executed at 800-1000 °C/0.01

1 13torr (Scheme 59). The pyrolysate was dissolved in deuterated chloroform and H and ‘ C 

NMR spectra was measured; these spectra showed only ditolyl-1,3-butadiyne (141). 

Importantly, the NMR spectra did not indicate any phenyltolylbutadiyne (143) or
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diphenylbutadiyne (124), which would have resulted from methyl group cleavage under 

FVP conditions. Professor Lawrence T. Scott had suggested this possibility to us.

h 3ct

142 ■ 1 141

Scheme 58. Synthesis of 1,4-Ditolyl-l ,3-butadiyne (141).

0 2, CuCl

T M E D A , acetone

CH

141
CH

FVP

S  124800-1000°C 
0.01 torrH

141

143

Scheme 59. FVP of ditolylbutadiyne (141) at 800-1000 °C/0.01 torr.
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Synthesis of Unsymmetrical Diarylbutadiyne

The previous syntheses of butadiynes produced compounds with a plane of 

symmetry, which is responsible for diarybutadiynes exhibiting only two different sp 

hybridized carbons. An unsymmetrical butadiyne would have four differentiated sp 

hybridized acetylenic carbons in the 13C NMR. This is an essential element in the 13C 

labeled diarylbutadiyne pyrolytic experiments that will be described later.

The most direct route to an unsymmetrical diarylbutadiyne would be the cross 

coupling of two terminal arylacetylenes. This is usually achieved through differentiating 

one of the arylactylenes through halogenation at its terminal position. As described in the 

literature,155 phenylacetylene (70) was first brominated in situ with sodium hypobromite 

using aqueous sodium hydroxide and liquid bromine. This resulted in a 44.5% yield o f  1- 

bromophenylacetylene (144). The haloalkyne 144 was used in a Cadiot-Chodkiewicz- 

type of cross-coupling with 4-methylphenylacetylene (142) in the presence of pyrrolidine 

and copper(I) iodide.163 Unfortunately, the reaction resulted in an intractable mixture of 

homocoupled and cross-coupled products: diphenylbutadiyne (124), ditolylbutadiyne 

(141), and phenyltolylbutadiyne( 143), respectively. Thin layer chromatography (TLC) 

and preparative thin layer chromatography on silica did not separate the mixture. 

According to the results o f Alami and Ferri,122 these conditions produce substantially 

lower amounts of cross-coupled products in the presence of palladium catalysts. This 

catalytic method was also tried without success (Scheme 60).
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NaOH

Br2,
1,2-dimethoxyethane

45%

4-methylacetylene

pyrrolidine, Cu(I)I 
PdCl2(PPh3)2, RT

CH

143 124 141

Scheme 60. Attempted direct cross-coupling of arylacetylenes using bromine.

We next explored the usage o f a more reactive halogen. We hypothesized that 

metallation would occur more easily with iodine which could lead to more efficient
I

cross-coupling. Iodination of phenylacetylene using freshly distilled morpholine and 

iodine in benzene produced 1 -iodophenylacetylene (145) as a fragile liquid substance 

using previously published literature.164 Cross-coupling was attempted between 1- 

iodophenylacetylene (145) and 4-methylphenylacetylene (142) using the same conditions 

described above. Once again, the reaction resulted in an inseparable mixture o f the three 

different types of butadiynes (Scheme 61).
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I2, morpholme

benzene

4-methylphenylacetylene
 ^

pyrrolidine, Cu(I)I 
PdCl2(PPh3)2, RT

143 124 141

Scheme 61. Attempted direct cross-coupling of arylactylenes using iodine.

CH

We concluded that the previous attempts to synthesize unsymmetrical butadiynes 

by using two arylacetylenes were probably due to the two species being too structurally 

similar. With minor adjustments, we decided to use a different synthesis that leads to

158unsymmetrical diarylbutadiynes according to previously published literature.

Therefore, we decided to cross-couple 1 -iodophenylacetylene (145) with 2-methyl-3- 

butyn-2-ol (146). Due to the very low yields in the synthesis of 2-methyl-6-phenyl-3,5- 

hexadiyn-2-ol (147), it was decided to iodinate 2-methyl-3 -butyn-2-ol (146) and react it 

with phenacetylene (70) in hopes of better yields. Optimal yields were highly desired to 

due the incorporation of expensive 13C labeled material that will be described later. 2- 

Methyl-3 -butyn-2-ol (146) was iodinated using the conditions described in Scheme 61; 

this led to an 85.1% yield of 4-iodo-2-methyl-3-butyn-2-ol (148). This substance was

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



reacted with phenylacetylene (70) under cross-coupling conditions to yield 49.4% of 2- 

methyl-6-phenyl-3,5-hexadiyn-2-ol (147). 2-Methyl-6-phenyl-3,5-hexadiyn-2-ol (147) 

was then coupled with 4-iodotoluene (149) under aqueous basic conditions using the 

phase transfer catalysts along with catalytic amounts of palladium (II) and copper® 

iodide. After column chromatography, phenyl-p-tolylbutadiyne (143) was isolated in a 

19.3% yield (Scheme 62).

OH

OH

Cul

49.4%
X = H, I

70 148 ■ 147
OH

PdCl2(PPh,)2>CuI 
! Bn(Et)3NCl

aq. NaOH, benzene, reflux

19.3%

147 149 143

Scheme 62. Synthesis of phenyl-p-tolylbutadiyne (143).
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1 TSynthesis o f C Labeled Unsymmetrical Butadivne

Having synthesized the desired product, phenyl-p-tolylbutadiyne (143), several

1 Tattempts were then made to prepare phenyl-p-tolyl-butadiyne (143) enriched with C

label using the same synthetic strategy.

This route began with the synthesis o f 13C-enhanced phenylacetylene (76) at the

1 ̂terminal position. Preliminary syntheses were always executed prior to working with C

1Tlabel material. C labeled phenylacetylene (76) is not available commercially; therefore, 

we had to devise a synthetic method. Acetophenonq-methyl- C labeled (150) is 

commercially available and thus was our starting point. Starting from acetophenone 

(150), the synthesis of unlabeled phenylacetylene was attempted by various literature 

methods. We first attempted the based induced elimination of phosphate ester 151 which 

is based on upon previously published literature.’65 Yields as high as 26.9%.were 

achieved, but the syntheses were not reproducible. This route to phenylacetylene was 

abandoned for another synthetic approach (Scheme 63).

O
l.LDA

'CH3

150

2. ClPO(OEt)2

opo(oet)2

c h 2

151

1. 2 eq LDA

2. aq HC1 

26.9%

Scheme 63. Synthesis of Phenylacetylene via Phosphate Ester (151).

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The next synthetic approach to the synthesis of phenylacetylene (70) involved 

targeting another intermediate, a-chlorostyrene (152), Acetophenone (150) was treated 

with phosphorus pentachloride in refluxing benzene. TLC was used to monitor the 

progress of conversion. After 46 h, acetophenone (150) has been fully converted to a- 

chlorostyrene (152). NMR spectroscopy of the crude product indicated mostly a- 

chlorostyrene (152), showing resonances at 5.6 and 5.8 ppm, and a small amount of 

acetophenone (150), showing a resonance at 2.5 ppm. The crude yield was 83.1%. The
i

reaction was executed several times in which 1,1,1 -dichlorophenylethane (153) was also 

formed as product (Scheme 64). ' ^

The mixturp of a-chlorostyrene (152) and 1,1,1 -dichlorophenylethane (153) was
I

then treated with commercial sodium amide and allowed to reflux. This reaction was 

executed several times and clean elimination did not occur to form phenylactylene (70). 

Therefore, a fresh solution o f sodium amide was prepared using condensed liquid 

ammonia, with addition of sodium metal and iron (III) catalyst. The dark blue sodium 

amide solution was stirred for an hour after sodium metal addition. The crude mixture of 

a-chlorostyfene (152) and 1,1,1 -dichlorophenylethane (153) was then dissolved in THF 

and added dropwise by syringe. The reaction was worked-up and product was purified 

by column chromatography on silica using hexanes as an eluent to give an 80.1% yield of 

phenylacetylene (76) (Scheme 65).
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PCI.

benzene, reflux
+

150 152 153

Scheme 64. Conversion of acetophenone to a-chlorostyrene (152) and 1,1,1- 

dichlorophenylethane (153).

With an efficient synthetic route in hand, the synthesis of 13C labeled p- 

tolylphenylbutadiyne (143) was under taken. This synthesis began with commercially 

available acetophenone-methyl- 13C, 99 atom %. This material was diluted with unlabeled 

acetophenone (150) to obtain acetophenone with a 20% enhancement at the methyl 

position. The specific amount was determined by the strength o f the NMR spectroscopic 

signal, which would clearly differentiate itself from other signals, while not 

overwhelming the NMR spectrum.

13C Labeled-methyl-acetophenone (150) was converted to a-chlorostyrene (152) 

and 1,1,1 -dichlorophenylethane (153) using phoshorus pentachloride. The crude mixture 

of ,3C labeled a-chlorostyrene (152) and 1,1,1 -dichlorophenylethane (153) was then 

converted to phenylacetylene (76) by elimination with freshly prepared sodium amide to 

give a 71.4 % yield. The C1-13C labeled phenylacetylene (76) was then coupled with 4- 

iodo-2-methyl-3-butyn-2-ol (148) under the palladium catalyzed conditions that had been 

previously described that produced a 46.3% yield of 13C labeled 2-methyl-6-phenyl-3,5- 

hexadiyn-2-ol (147). However, the homocoupled side product, doubly labeled 

diphenylbutadiyne (124) was observed as the major product. At first, it was thought this
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was an undesired product, but after some reflection, we decided that very important 

preliminary FVP studies could be executed with thi? material. This will be described

’ I  c  Q 1 "2

later. Based upon previous published literature, C labeled 2-methyl-6-phenyl-3,5-

1 3hexadiyn-2-ol (147) was then coupled to 4-iodotoluene (149) to produce a C labeled p- 

tolylphenylbutadiyne (159) in a crude yield o f 46.5%. Unfortunately, this material 

resisted sufficient purification. Neither, column chromatography, rotary chromatography,

1 1 3  •nor preparative GC afforded adequately pure material. H and C NMR spectral analysis
I

invariably showed the desired product along with unknown impurities, which displayed 

resonances in the acetylenic region of the spectrum (Scheme 65). ^
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Scheme 65. Synthesis of 13C labeled/?-tolylphenylbutadiyne (159).
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Alternative Route to C1-13C labeled p-tolvlphenylbutdiyne (143)

1We decided, to pursue another path to (he synthesis of C labeled p- 

tolylphenylbutadiyne (143) (Scheme 66). This synthesis began, using unlabeled 

reagents, with the addition of trimethylsilylacetylene (154) to 4-methylbenzaldehyde in 

87.5% yield, followed by deprotection of the TMS group by the use of tert- 

butylammonium fluoride (TBAF) to give 1 -tolylpropyn-1 -ol (155). Excess TBAF proved 

to be difficult to separate from the product; therefore, another deprotection method was
t

investigated. A 3N solution of sodium chloride in methanol proved to be a very effective 

method of deprotecting the TMS group166 giving 1 -tolylpropyn-1 -ol ̂ (155) in 91.6% yield. 

This provided a n , attractive stable intermediate toward the desired product. Using 

previously published literature,167 the synthesis o f 160 was achieved. Tolylpropyn-l-ol 

(155) was doubly deprotonated with n-butyllithium at -78 °C and reacted with 20% 

enriched l3C labeled benZaldehyde (carbonyl position) to give l-p-tolyl-4-phenylbutyn- 

1,1-diol (156). Recrystallization from methanol gave 92.7% yield. The diol (156) was 

chlorinated using thionyl chloride to give 1,1 -p-tolylchloro-4,4-chlorophenylbutyne. 

After brief storage at 0 °C, the dichloride was dissolved in THE and added dropwise into 

a freshly prepared suspension of sodium amide in liquid ammonia which was maintained 

at -78 °C. The mixture was allowed to warm to room temperature while the liquid 

ammonia evaporated. The product, ,3C labeled p-tolylphenylbutadiyne (160), was 

extracted with hexanes and purified by column chromatography on silica gel using 

hexanes as eluent. The product was isolated as a crystalline solid in 35.5% yield. NMR 

spectroscopy confirmed the identity o f the desired compound (Scheme 66).

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I

154

155

1. n-BuLi

2. 4-methylbenzaldehyde

3. H

87.5%

157

92.7%

3N NaQH 
/  MeOH, rt 

91.6%

1. n-BuLi H 1. SOCl2

V / 2.NaNH,
35.5%

156

HoQ

Scheme 66. Alternate synthesis of 13C labeledp-tolylphenylbutadiyne (160).

160

FVP Experiments on Doubly Labeled Diphenvlbutadivne (124)

In the synthesis of 13C labeled jg-tolylphenylbutadiyne (159), doubly labeled 

diphenylbutadiyne (124) was formed as a side reaction product and separated and 

identified (Scheme 65). Initially, this homocoupled product (124) seemed undesirable, 

because it decreased yields of the desired product, l3C labeled /i-tolylphenylbutadiyne
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(159). However, we realized that a set o f FVP experiments would prove to be valuable in 

our investigation of atom topomerization.

1TQuantitative C NMR spectroscopy was first utilized to determine the isotopic 

enrichment of this sample. Due to their long relaxation times, (Tj), measurement of

1 o
quantitative C spectra for the sp resonances of butadiynes is challenging. This was 

facilitated by addition of chromium acetonylacetonate to the sample as a relaxation

1 9 T 1 T ITagent. Quantitative C spectra o f doubly labeled C diphenylbutadiyne (124) showed 

resonances of 81.6 ppm for C l and C4 and 73.9 ppm for C2 and C3, respectively. 

Experimentally determined integrations for C1,C4 and C2,C3 resulted in a 1 to 20.2 ratio, 

which was in good agreement with expectations (Figure 11).

O ^ - ^ O

1 TFigure 11. Doubly Labeled C Diphenylbutadiyne (124).

FVP experiments were carried out at different temperatures, but with a constant

1 Tpressure. The pyrolysate was isolated and analyzed by quantitative C NMR, as 

described above. FVP at 700 °C/0.01 torr resulted in approximately a 1 to 2 ratio o f I3C 

distribution at C1,C4 and C2,C3, respectively. FVP at 800 °C/0.01 torr resulted in 

approximately a 1 to 1 ratio of 13C distribution of C1,C4 to C2,C3, respectively (Figure 

12). These results lead to the conclusion that Brown Rearrangement occurred readily at 

700 -  800 °C. These experiments, conclusively demonstrates intrabond rearrangement
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(Scheme 67). It might be possible that interbond rearrangments occurred, but due to the 

symmetry o f diphenylbutadiyne no conclusion may be, drawn about these processes.

Carbon Number ( 8  ppm) 
C1,C4 C2,C3

' 1 (881.6) (873.9)
Unreacted 13C labeled 124 1.0 20.4
Pyrolysis at 700 °C 1.0 2.1

Pyrolysis at 800 °C ,1.0 1.3

13Table 4. C Label Distributions from Integration. 1

I C 2 ,C 3

C D C I3

No Pyrolysis

C 1 „C4

Pyrolysis @ 700°C'

22 |________| SI SO 19 1% 77 76 7 i \74____ . 73

Pyrolysis @ 800°C

Figure 12. Spectra of FVP of Doubly Labeled diphenylbutadiyne (124).
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Scheme 67. Interbond scrambling of C label of diphenylbutadiyne (124)
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FVP Experiments of 13C Labeled p-Tolvlphenvlbutadivne (160).

13 13Quantitative C NMR spectroscopy of j»-tolylphenylbutadiyne (160) at C 

labeled C4 showed resonances at 81.23, 74.06, 73.30, and 81.88 for C l, C2, C3, and C4, 

respectively. ,3C labeled jo-tolylphenylbutadiyne (160) showed integrals for the sp 

acetylenic carbons to be in an approximate ratio of 20:1:1:1, for C l, C2, C3, and C4, 

respectively (Figure 13).

■

Figure 13. C1-13C labeledp-tolylphenylbutadiyne (160).

The C1-13C enriched p-tolylphenylbutadiyne (160) was then subjected to a series 

of FVP experiments at different temperatures, but at constant pressure (Scheme 6 8 ). 

FVP of 13C labeled j9-tolylphenylbutadiyne (160) at 800 °C/0.005 torr resulted in 13C 

label scrambling from Cl to C2, exclusively, as shown in Figure 14. This data indicates 

that only 1,2-shifts occurred at this temperature, with nearly complete exchange between 

C 1 and C2 as shown by the NMR integration ratio of 1.5 to 1.

FVP of 13C labeled p-tolylphenylbutadiyne (160) at 900 °C/0.01 torr was carried 

out next. Analysis of the pyrolysate by 13C NMR showed 13C label scrambling at all four 

acetylenic carbons. At higher temperatures, labeling studies indicate that two processes 

are occurring. The lower-energy process, 1,2-shifts, results in the distribution of 13C 

labeling exchange from Cl to C2 (Intrabond Rearrangements). The isotopic distributions
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observed from pyrolysis at 800 or 900 °C demonstrate that both intrabond and interbond 

exchange process are operative with the former passing through a lower activation 

barrier.

At higher temperatures, the second process indicates that interbond 

rearrangements might be occurring for this higher energy process, which proceeds 

through the proposed intermediate, trialene (133), to achieve complete 13C scrambling. 

The 13C labeling distribution was found to be approximately 4:4:1:1 ratio. Integrals are 

measured relative to one well-resolved aromatic carbon.

Carbon Number (8 ppm)

C l C2 C3 C4

(8 81.23) ( 8  74.06) ( 8  73.30) ( 8  81.88)

Unreacted 143 20.8 0.72 0.88 1.4Q

Pyrolysis at 800 °C 11.6 7.37 1.16 0.89

Pyrolysis at 900 °C 8.79 8.76 3.99 3.01

13Table 5. C Label Distributions from Integration.
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No Pyrolysis

C3C2G4

21.1

Pyrolysis @ 800°C

O.S11 3

Pyrolysis @ 900°C

1 1 1 I 1 1 1 1 I 1 1 1 '"I I"'1 1 1 1 1 1 '  r""r  ............   1 1 y  I"1' ' '■..1
: 80 79 7S 77 76 75 f~Q.7~"|3

1--T

Figure 14. FVP of labeled p-tolylphenylbutadiyne (160).
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Scheme 68. Interbond and Intrabond Scrambling of C1-13C label p-tolylbutadiyne (160)
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Potential Reaction Mechanisms

Several potential mechanisms may explain the long-range atom topomerization in 

butadiyne. We first propose a mechanism, illustrated in Scheme 6 8 , that passes through 

alkynylvinylidenes and trialenes. Initial 1,2-shift in 160 can lead to carbene 161 and, 

subsequently, a second shift of the opposite a  bond leads to 159. This Brown 

rearrangement easily explains the intrabond atom transposition that is observed from 

pyrolysis of 124 at 800 °C. At higher temperature, closure o f the carbene 161 to trialene 

162 might be followed by bond-shift isomerization, as seen by 162 — > 164, via transition 

state TS 163, followed by reopening to carbene 165. This intermediate will rearrange to 

either 166 or 167. This multi-step process can achieve the entire transport of a carbon 

atom across the four-carbon chain. In general, 1,2-shifts should result in only alkyne 

intrabond atom interconversions, while trialene provides a clear mechanism for interbond 

atom rearrangement. An alternate route to interconnect structures 131 and 133 may be a 

synchronous “accordion-like”, n2s + Ji2a, mechanism that averts the carbene 132 

(Scheme 69).

Other routes pass through high-energy structures in which the central sp carbons 

of the diyne become structurally equivalent. Tetrahedrene (168) and cyclobutenyne (169 

or 171) both possess the requisite symmetry for interbond transposition. In principle, 

either structure might be formed directly from the diyne through a four-electron 

electrocyclic process. A reversible interconversion of 168 with vinylidenecyclopropene 

170 might be expected if their energetics are favorable (Scheme 70). Alternatively, a
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biscarbene such as 139 might result from two sequential shifts or a dyotropic process, i.e. 

one in which two a-bonds migrate simultaneously.

A A
-H

Scheme 69. Accordion-like mechanism (alternate mechanism).

Ri -R2 r
159

r/  168

\

1691
R?
/  170

R-i
167

\

O
171

Scheme 70. Potential carbon scrambling via tetrahedrene (168) (alternate mechanism).

Computational Studies

Several levels of theory were employed to investigate the energetics of potential 

C4 H2  reaction mechanism. The levels o f theory used were B3LYP and MP4//MP2 and 

these results have been summarized in Table 6 . In general, these two methods provided 

very similar structures and relative energetics.

Computations on the existence o f ethynylvinylidene (132), as with the parent 

vinylidene (130), provide inconclusive results. As a consequence, the surface for 1,2-
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shifts is dependent on the computational level of theory. Calculations with HF, TCSCF, 

CASSCF, and B3LYP/6-31G(d) theories all lopated an energy minimum for 

ethynylvinylidene (132).n 6 MP2 and B3LYP calculations that we executed did not 

locate an energy minimum; instead the structure descends to product 131. It is not certain 

if ethynylvinylidene (132) represents a true stationary point; however, it is predicted that 

the energy of 132 should lie slightly below the transition state (TS 163) for closure to 

trialene.
I

Trialene is predicted at all levels o f theory to have alternating peripheral ring 

bonds with an elongated central bond, which is cohsistent with previous lower level 

calculations by Deyvar.1160 The central a  bond length in 133 is dependent on the level of

I
theory due to the strong contribution from resonance structure 133a. Calculations 

indicate it is not a true diradical (Figure 15). The a  bonding and antibonding orbitals 

which describe the trans&nnular bond was predicted by CASSCF-(8,8)/6-31G* wave 

function to have occupation numbers of 1.88 and 0.126, respectively. A pure diradical 

would have equal values.

133 133a

Figure 15. Transannular bond prediction.
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Our calculations predict trialene (133) to lie in a shallow minimum at 61-65 

kcal/mol above butadiyne. Low energy pathways exist for both ring opening of 133 to 

132 via transition state TS1 or bond-switch isomerization through TS2. TS2 is predicted 

to be nonplanar with C211 symmetry and equal C-C bond lengths around the ring. 

Attempts to locate a synchronous transition state that directly connects 131 to 133 led to 

very high barriers and no true stationary points. Our predicted lowest energy pathway, 

which is in agreement with our experimental results, is illustrated in Figure 18. 

Ethynylvinylidene (132) is derived from a 1,2-shift from butadiyne (131), which is 

predicted to be in a shallow energy minimum at 52.2 kcal/mol. Ethynylvinylidene (132) 

then inserts into the adjacent k  bond via TS1 (66.8 kcal/mol) to generate trialene (133), 

which is predicted to be an energy minimum at 64.6 kcal/mol. Trialene proceeds through 

the delocalized transition state structure TS2 (69.0 kcal/mol) to regenerate the bond- 

switch isomer with the peripheral bonds transposed (Figure 16).

T S 2

133 133

0.0 kcal/mol H -------   H

131

Figure 16. B3LYP energetics along the trialene pathway.
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An intriguing' alternate mechanism for the; experimentally observed carbon 

scrambling is shown in Scheme 70. In principle, 159 might undergo four-electron 

pericyclic closure ' to 169, followed by rearrangement through 

cyclopropenylidenemethylene (170). Carbene 170 is approximately 70 kcal/mol above 

butadiyne (159) and might be energetically attainable if  structure 137 undergoes a 1,2- 

shift. The optimized structure for 137 displays one imaginary mode with B3LYP/6-
I

31+G(2d,p) theory but none at MP2/6-311+G(2d,p). Nevertheless, structure 137 is 89.3 

kcal/mol higher in energy than carbene 136, which plhces this species (structure 137) out 

of consideration as, an acceptable explanation for observed experimental results. Another

I
possible mechanism would be the formation o f the highly pyramidalized tetrahedrene 

(138). Our B3LYP and MP2 calculations predict tetrahedrene (138) to be an energy 

minimum. However, tetrahedrene (138) lies 167.2 (B3LYP) and 204.3 (MP2) kcal/mol 

above butadiyne, which excludes it from consideration, even if  there is a low barrier for 

rearrangement to butadiytte.

Another high-energy species that might be considered as a possibility along the 

C4 H2 surface is biscarbene 139, which could result from sequential or dyotropic hydrogen 

migrations. Our DFT calculations predict biscarbene 139 to be planar and lie 32.4 

kcal/mol above trialene 133. MP2 optimization on biscarbene 139 led to the transition

state for 1,2-migration o f both hydrogens to butadiyne. Sauer and coworker have also

1 22predicted biscarbene 139 to lie at very high energy relative to butadiyne.
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DFT and Moller-Plesset computations provide consistent predictions for a likely 

reaction mechanism (Table 6 ). We conclude from, these calculations that the lowest 

energy pathway for long-range atom topomerization in butadiyne is one which follows 

closure to trialene (133) followed by bond-switch isomerization, and ring opening occur. 

The lower energy Brown Rearrangement pathway accounts for intrabond atom 

transpositions.
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Structure B3LYP" ' E,,r N IM A G 5 M P 4 //M F ? ... E rer ....NIM A (

1,3-butadiync (131) -1 5 3 ,5 3 4 1 2 0.0 0........ -15 3 .1 4 0 1 6 0.0 0

etbynylvinylidene (132 )‘* -1 53 .45087 52.2 0

closure TS (TST) -1 5 3 .4 2 7 6 9 66.8 1 -15 3 .0 3 7 3 9 64.5 1

sing let trialene (133) -1 53 .43113 64 .6 0 -1 53 .04295 61 .0 0

bond-sw itch TS (T S2) -1 5 3 .4 2 4 1 0 69 .0 1 ■153.03246 67 .6 1

tetrahedrene (168) -15 3 .2 6 7 6 2 167.2 0 -15 2 .8 1 4 5 6 204.3 0

1,2.3-butatriene (137) -153.27741 161.1 1 ■152.90907 145.0 0

cyclopropenylidene (136) -1 5 3 .41968 71 .8 0 -153 .02043 75.1 0

butatrienylidene (135) -15 3 .4 6 8 6 8 41 .0 0 -1 5 3 .0 6 3 9 4 47 .8 0

triplet trialene -1 5 3 .4 0 3 6 9 SI . 8 0

biscarbene (139) -15 3 .3 7 5 9 7 99 .2 0 -1 52 .97663 102.6 1

bicyclobiscarbene (140) -1 5 3 .4 1 4 3 0 75 .2 0 -15 3 .0 1 8 8 2 76.1 0

" B 3L Y P  =  B3LY P/6-31 f+G (2d,p). b N IM A G  = number o f  im aginary vibrational m odes from  B 3L Y P  or M P2 calculations.
' M P 4 S D T Q /6 -3 1 1+G (2d ,p )//M P 2(F C )/6 -31 1+G (2d,p). d B L Y P /6-31G * optim ized geom etry. £ R elative energies in kcal/m ol, 
uncorrected for zero-point differences.
Table 6 . Sum m ary o f  C4H2 com putational results.



Our experimental and computational results provide the first evidence for long- 

range atom topomerization in a polyyne chain. We observe that carbon atoms can 

migrate can from one end of a 1,3-diyne to the other in a process that clearly passes 

through sequential stages of intrabond and interbond atom exchange. DFT and Moller- 

Plesset computations provide consistent predictions for a likely reaction mechanism. A 

lower energies lies a Brown rearrangement that accounts for intrabond atom 

transpositions. Along a slightly higher energy pathway, closure to singlet trialene (133), 

followed by bond-switch isomerization, and ring opening (Figure 16) presents what we 

believe to be the lowest energy mechanism for interbond carbon scrambling. The 

predicted reaction energetics are consistent with the temperature required for this 

rearrangement. Other logical but exotic intermediates such as 137, 138, or 139 lie at 

much higher energy than the trialene mechanism; therefore we believe these can be 

excluded. Preliminary calculations indicate that the energetics o f these processes are not 

significantly changed in longer polyynes. Consequently, in principle, extensive carbon 

scrambling might occur in an sp carbon chain of any length.
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CHAPTER 3

CHEMISTRY OF C4H4

t

The Cyclopropylidene to Allene Rearrangement 

The therma} interconversion of cyclopropylidenes and allenes, also known as the 

Doering-Moore-Skattlebol Rearrangement (DMS), is a reaction of great mechanistic and 

synthetic importance.124 This rearrangement was first investigated by Doering and 

LaFlame.125 Dihalocarbeties react with alkenes to give 1,1 -dihalocyclopropanes (172). 

Further reaction with sodium or magnesium forms the cyclopropylidene intermediate 

(174), which rearranges to allenes (175) in varying yields. Later, Moore126 and 

Skattlebol127 replaced the amalgam by alkyllithiums, in particular «-butyllithium. 

Lithium-halogen exchange of 1,1 -dibromocyclopropane (172) with n-butyllithium forms 

the lithiated compound (173). Further loss of lithium bromide gives the cyclopropylidene 

(174), which rearranges to the allene (175). In general, 1,1 -dibromocyclopropanes (172) 

are preferred over the corresponding dichloro analogs because of the complete absence of 

acetylenic by-products (Scheme 71).
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R2̂  r 4 r a r  R2  R4

174 , 175

Scheme 71. Doering-Moore-Skattlebol Rearrangement to form allenes.

Cyclopropylidene ring-cleavage reactions can lead to remarkably strained allenes 

by electrocyclic ring opening75 (Scheme 72). Treatment of 1,1 -dibromo[3.1 .OJhexane 

(176) with methyl lithium results in the initial formation of carbene 177 which isomerizes 

to cyclohexa-1,2-diene (178).128 This strained allene has been trapped in [2 + 2] and [4 + 

2] cycloaddition reations with 1,3-butadiene to give products 179,180, and 181. 

Compounds 179 and 180 undergo efficient thermal isomerization to 181. This is 

indicates that DMS rearrangements can have synthetic and preparative value.

I l l
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Scheme 72. DMS Rearrangement to Cyclic Allenes.

Cyclopropylidene lias shown to insert into geometrically proximate C-H bonds. 

In cases where the dibromocyclopropane is sterically crowded, as illustrated in Scheme 

73, both 1 -f-butyl-1 -methylallene (182) and 1 -t-butylbicyclof 1.1 .Ojbutane (183) are

1 1 'J A
formed in a combined yield of 70% and a 3:2 ratio, respectively. This illustrates the 

competition between allene formation and C-H insertion.

,CH •CH;

H

Scheme 73. Cyclopropylidene C-H insertion.

H 3C n ^C H a 

H3c '
H 3C

182

C H 3

H 3C - -CHa

183
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As previously noted, treatment o f gem-dihalocyclopropanes with alkyllithiums or 

other metals at temperatures above -80  °C, results in the formation of cyclopropylidenes. 

It has been found that when there is a vinyl group attached to the cyclopropylidene, as 

illustrated in Scheme 74, an alternative mode of ring-opening leads to the 

cyclopenylidene (184) which subsequently forms cyclopentadiene (185) through 1,2-H 

shifts.

Scheme 74. Cyclopropylidene vinyl C-H insertion.

Thermal Rearrangements of Butatriene

Our investigations of atom transitions in 1,3-butadiynes (Chapter 2) next led us to 

examine the thermal chemistry of other types of linear hydrocarbon chains. The question 

posed was whether the central sp carbon atoms in a butatriene might interconvert and by 

what mechanism could this occur? [Eq. 11]

184 185

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Equation 12 shows our initial plan for a reaction mechanism. Here, a reverse 

DMS rearrangement o f butatriene (186) gives the metfyyienecyclopropylidene (187), 

which closes to a bicyclobutene (188). This process makes the central carbon atoms 

symmetry equivalent and thus would scramble the central atoms (Figure 17).

R-k * ,F?2 A Ri. * Ro

/  \  /R( R2 Ri R2

* = 13C label
i i

[Eq. 11], Carbon automerization in butatrienes.

186 187 188

[Eq. 12], Proposed mechanism of butatriene carbon topomerization. 

Figure 17. Carbon Topomerization o f Butatriene and Mechanism.
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CM* Chemistry

The C4 H4  potential energy surface is of special interest to organic chemists and

1 TO 1^1  1 'X'Jhas been extensively investigated both experimentally ’ and theoretically. ■ ’ 

Vinylacetylene (44) is the thermodynamically most stable C4 H4  isomer, with a AH0/ of 

70.4 kcal/mol. 1 3 4 , 1 3 5  Butatriene (186) is the next most stable isomer, lying 13 kcal/mol

135above vinylacetylene (44). The four monocyclic isomers are methylenecyclopropene 

(189), 1,3-cyclobutadiene (190), 1,2-cyclobutadiene (191), and cyclobutyne (192). 

Methylenecyclopropene (189) and 1,3-cyclobutadiene (190) have been isolated in low-

136' 137 *temperature matrices. ' ’ ' Methylenecyclopropene (189) was also synthesized at low 

temperature, and was shown to be stable in solutions below -75°C. This substance was

1 -3/: 1 30
characterized by NMR spectroscopy. ’ There have been previous efforts by J. D. 

Roberts1 3 9  and Wittig1 4 0  to experimentally trap cyclobutyne (192), but then were, 

unsuccessful. 1,2-cyclobutadiene (191) was studied computationally by Johnson and 

Daoust. 141 The MCSCF(4,4)/6-31G* level o f theory predicts 1,2-cyclobutadiene (191) to 

be chiral with vinylic hydrogens twisted 6 ° out of plane. 1,2-cyclobutadiene (191) is best 

described as a diradical with singly occupied allyl-like tc nonbonding and the barrier for 

ring opening to vinylacetylene (44) is predicted to be low (Figure 18).

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



H H

H H
>— <

VH

H' 'H

44 186 189

H H
H

H

H H

190 193 192 191

Figure 18. C4 H4  structural isomers.

Tetrahedrane (193) is the only platonic hydrocarbon, which has not yet been 

prepared. As illustrated in Scheme 75, there have been many attempts to synthesize 

tetrahedrane (193), but it remains a challenge.142 There have also been many theoretical 

studies of this elusive structure.143 This may be due in part to the strain energy, which 

was calculated to be 132-140 kcal/mol using ab initio level of theory.144 However, it is 

believed that tetrahedrane or bicyclobutyl diradical is a possible fleeting intermediate in 

labeling experiments.145 Tetrahedrane substituted with tert-butyl groups at its vertices is

a stable solid at room temperature, prepared by Maier and coworkers 143b
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Scheme 75. A selection of unsuccessful attempts to synthesize tetrahedrane (193).

One key C 4 H 4  isomer in our proposed mechanism is bicyclo[l. 1.0.]but-l ,3-ene

(188). A number of molecular orbital calculations of varying levels o f complexity has 

been performed on bicyclo[1.1.0.]but-1,3-ene (188). MINDO/3 calculations by Dewar 

and coworkers predicted a planar structure.146 In contrast, ab initio methods consistently 

predict that bicyclo[ 1.1.0.]but-l ,3-ene has a singlet ground state with a bent 

geometry147,148 similar to that o f cyclobutane and bicyclo[ 1.1 .OJbutane, with a predicted 

barrier to ring inversion of 12 kcal/mol.147 Maier and Schleyer predicted the olefmic 

strain energy, defined as the difference in strain energy of the olefin and the saturated 

hydrocarbon, to be 58.7 kcal/mol. This value indicates that bicyclo[ 1.1.0]but-1,3-ene

(188) is a highly destabilized molecule and not expected to persist at room temperature.
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However, Hess and Schaad predict that bicyclo[ 1.1.O.jbut-1,3-ene (188) is likely to exist 

and might be observable in a low-temperature matrix147 (Figure 19).

H H H
H

H H H
H

188

Figure 19. Bicyclo[ 1.1.0.]but-1,3-ene (188).

The photochemistry of some matrix-isolated C 4 H 4  molecules was reported by

130Chapman and coworkers in 1974. Irradiation of methylenecyclobutenone (194) 

produced ketene (195). At shorter wavelength, irradiation gave butatriene (186) and 

methylenecyclopropene (189). Allenylcarbene (196) was deduced as the primary C4 H 4  

isomer that led to the formation o f butatriene (186) and methylenecyclopropene (189) via 

a 1,2-H shift or a vinylcarbene-cyclopropene rearrangement, respectively. Irradiation for 

long periods of time resulted in the formation of vinylacetylene (44) and acetylene (21). 

Vinylacetylene (44) was the major product of the irradiation o f methylenecyclopropene

131(189), which was later independently confirmed by Maier and coworkers (Scheme 76).
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Scheme 76. Photochemistry o f methylenecyclobutenone to produce matrixed-isolated 
C 4 H 4  molecules.
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Sander, Cremer and their coworkers have more recently investigated the 

photochemistry of butatriene (186) isolated in an argop matrix at 10K149 (Scheme 77). 

Butatriene (186) was irradiated at 248 mm to give vinylacetylene (44), the dimer of 

acetylene (21), and methylenecyclopropene (189) as the major products. The 

photochemical rearrangement o f butatriene (186) to methylenecyclopropene (189) 

involves a 1,2-H shift, which produces allenylcarbene (196) as the key intermediate. The 

structures, thermochemical data, and IR spectra of the C4 H4  isomers were calculated at
1

the MP2 and DFT/B3LYP level o f theory using an extended basis set. Vinylacetylene

(44) is the global minimum on the C4 H4  potential enerjgy surface, with a AH0/  o f 70.4

kcal/mol.134 The enthalpy of formation o f butatriene (186) was calculated to be 81.9

kcal/mol, which is in good agreement with experimental measure of 83.0 kcal/mol and

1with previous theoretical predictions. '
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186 H

H- H

131

J
H 196 H
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- 2  H

. 248  nm

4 2 0 1

H 189

Scheme 77. Irradiation of butatriene to give C4 H4  isomers.

Individual transformations between C4 H4  isomers have been investigated as well. 

In 1995, our research group reported a theoretical investigation o f the interconversion of

1 70cyclobutyne (192) and vinylidene cyclopropane (197), as illustrated in Scheme 78. 

Cyclobutyne (192) is predicted to rearrange to 197 with a barrier of 1.8 kcal/mol and a 

reaction enthalpy of -20 kcal/mol according to the MCSCF(4,4)/6-31G* level of theory. 

Cyclobutyne is predicted to be a true minimum according to MCSCF and MP2 

calculations, which contrasts the earlier calculations of Pople1 5 0  and Dewar151 where 

cyclobutyne (192) was predicted not be a true minimum. Johnson and Daoust found the 

barrier to ring opening of cyclobutyne (192) to butatriene (186) to be 62.0 kcal/mol; this 

is best described as a conrotary ring opening . 1 7 0  This data was in agreement with
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Schaefer’s estimated barriers . 1 5 2  It was concluded that cyclobutyne (192) exists in a very 

shallow minimum and will rearrange with little or no farrier to cyclopropylidene (197), 

but not open to butatriene (186).

192

Scheme 78. Interconversion of cyclobutyne (192) and cyclopropylidene (197).

Thermal Rearrangements of Butadienes

The most comprehensive theoretical investigation of the C 4 H 4  surface, as

1illustrated in Scheme 79, was reported by Dewar and coworkers in 1981. The singlet 

potential energy surface for C 4 H 4  species was extensively explored using the
i

semiempirical MINDO/3 level of theory. Three of the major C4 H 4  mechanistic pathways 

discussed were (1) the conversion of tetrahedrane (193) to cyclobutadiene (190), (2) the 

conversion of tetrahedrane (193) or cyclobutadiene (190) to methylenecyclopropene

(189) or vinylacetylene (44), and (3) the relationships of these species to acetylene (21). 

The MINDO/3 level of theory is considered inferior in reliability compared to the most 

current levels of theory; therefore, the results of this investigation will not be discussed in 

detail.
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Scheme 79. Dewar’s exploration of the C4 H4  surface.
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One especially relevant study was reported by Cong-Hao and Bing-Ze in 1991.154 

Isomerizations of methylenecyclopropylidene (187) wpre studied using the ab initio, 

RHF/6-31 G**//STO-3G level o f theory (Scheme 80). The intermediate 

methylenecyclopropylidene (187) was predicted to have two possible routes for 

isomerization. Path 1 is a 1,2-H shift, which has a predicted activation energy of 118 

kcal/mol and forms methylenecyclopropene (189). Path 2 involves ring opening of 

methylenecyclopropylidene (189) to butatriene (186), which has an activation energy of
I

24 kcal/mol. This level of theory is unlikely to yield accurate energetics and these values 

are almost certainly too high. 1 ^

path 2 H H

2 ------------- < .

187
!

Scheme 80. Ring opening and 1,2-H shift o f methylenecyclopropylidene (187).
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Results and Discussion

Computational Results

B3LYP and MP2 levels of theory were employed to assess the energetics of 

potential C 4 H 4  reaction mechanisms. Results of both levels of theory are summarized in 

Table 7. The two methods provide very similar structures and relative energetics.

Several different mechanistic pathways have been examined in order to determine 

the lowest energy pathway for long-range atom topomerization. Figure 20 illustrates our 

proposed reaction mechanism. The lowest energy pathway, starting from butatriene 

(186), proceeds through closure to methylenecyclopropylidene (187) by TS3, which lies 

64.0 kcal/mol above butatriene (186). Methylenecyclopropylidene (187) subsequently 

proceeds through TS4 to form bicyclo[l.1 .Ojbutene (188). The two sp atoms are now 

equivalent, hence ring opening interconverting them and leading to carbon 

topomerization. Alternatively, methylenecyclopropylidene (187) can possibly perform a

1,2-H shift leading to triafulvene (189) (Figure 21). Even though triafulvene (189) is 

thermodynamically more stable than bicyclo[1.1.0]butene (188) (47.7 kcal/mol), its 

formation is improbable due to the high transition state energy along this route.
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Figure 20. B3LYP/6-31G energetics o f butatriene to propellane pathway.
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Figure 21. B3LYP/6-31G energetics o f butatriene to fulvalene pathway.

Other rearrangements might compete with the proposed long-range atom 

transposition mechanism. Our calculations predict that a 1,2-H shift o f butatriene (186)
I

leads to allenylcarbene (196), which lies 60.8 kcal/mol above butatriene. Allenyl carbene 

(196) can subsequently insert into the adjacent allenyl it bond, which forms triafulvene 

(189). Butatriene (186) can form cyclobutyne (192) through an electrocyclic process. 

Cyclobutyne (192) lies 68.4 kcal/mol higher than butatriene. Allenylcarbene (196) can 

possibly insert into vinyl C-H bond of the allenyl system to form 1,2-cyclobutadiene 

(191), which lies 69.7 -  74.2 kcal/mol higher than butatriene (186). Sander and Cremer 

provided experimental evidence for a similar mechanistic pathway during photolysis of 

butatriene at 248 nm. They predicted a 1,2-H shift o f butatriene (186) forming the
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allenylcarbene intermediate (196) and leading to the formation of fulvalene (189). 

Scheme 81 illustrates additional higher energy processes that we have predicted, which 

leads to other mechanistic possibilities for thermal rearrangement o f butatriene

186  

A

_ /
H

H

H
\

H

H

\
196 H

H\
t >

H 189

H

191

Scheme 81. Alternate reaction mechanisms.
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S tru c tu re B 3 L Y P '1 Ere! N IM A G 1' M P 2 fi N IM 7

1,2 -cy c lo b u tad ien e  (191) 154.61067 74.2 1 -1 5 4 .0 7 6 8 6 69 .7 1

1,3 -cy c lo b u tad ie n e  (190) -15 4 .6 7 5 4 7 34.0 0 -1 5 4 .1 4 5 7 6 2 5 .6 0

A llen y lca rb en e  (196) -1 5 4 .6 2 9 3 2 60 .8 1 -1 5 4 .0 7 9 8 3 60 .8 0

l-b u ten -2 -y n e  (44 ) -1 5 4 .7 3 3 8 0 -2 .57 0 -1 5 4 .2 0 5 6 3 -11 .9 0
B icy c lo [1 .1 .0 ]b u te n e  (188) -154 .62691 65.3 0 -1 5 4 .1 0 8 0 4 51 .4 0

1,2 .3 -b u ta tr ien e  (186) -1 5 4 .7 3 0 7 3 0 0 -1 5 4 .1 8 6 5 8 0 0

C y c l o b u t y n e  ( 1 9 2 ) -1 5 4 .6 0 2 1 6 79 .7 0 -1 5 4 .0 8 3 4 9 6 8 .4 0

M eth y len e  c y c lo p ro p y lid e n e  (187 ) -154 .62491 64 .0 0 -1 5 4 .0 8 1 8 7 6 5 .0 0

T e trah e d ran e  (193) -15 4 .6 3 6 7 8 -57.5 0 -1 5 4 .1 0 7 7 2 49 .2 0

T ria fu lv en e  (1.89) -154 .70131 17.6 0 -1 5 4 .1 6 6 8 2 12.8’ 0
V in y lid en e  c y c lo p ro p a n e  (197) -154 .64741 51.5 0 -154.1 1054 4 8 .6 0

187  to 188 c lo su re  T S  (T S 4 ) -1 5 4 .6 1 2 6 2 72.8 1 -1 5 4 .0 7 5 8 8 69 .5 1

C y c lo p ro p en y l c arb en e  T S  (T S 3 ) -1 5 4 .6 2 4 4 3 64.1 1 -1 5 4 .0 9 0 7 6 ’ 58 .9 I

f,S 7 io  189 T S  (T S 5 ) -1 5 4 .5 9 2 5 5 82.8 1 -1 5 4 .0 5 3 0 9 81 .4 1

" B 3 L Y P  =  B 3 L Y P /6 -3 1 G * . h  M P 2  = M P 2 /6 -3 1 G * . ' N IM A G  = n u m b er o f  im ag in a ry  v ib ra tio n a l m o d es  
from  bo th  ca lcu la tio n s . d  R e la tiv e  en erg ie s  in k ca l/m o l, c o rrec ted  fo r  z e ro -p o in t d iffe ren ces .

T ab le  7. S u m m ary  o f  C 4H 4 c o m p u ta tio n a l re su lts .



Syntheses and FVP of Butatrienes 

Attempted Syntheses of Unsvmmetrical Butatrienes

It was first necessary to establish a suitable synthetic route to an unsymmetrical

butatriene to determine if each o f the four sp hybridized, cumulenic carbons can be 

1 ̂resolved by C NMR spectroscopy. The synthesis began with the reduction of 4,4’- 

dimethylbenzophenone (198) with sodium borohydride in ethanol. Purification by
I

recrystallization with hexanes led to a 78 % yield of 4,4’-ditolylmethanol (199). 4,4’- 

Ditolylmethanol (199) was then brominated using pho'sphorus tribromide in CCfi at 65 °C 

for 6 h to form a 63.1% crude yield of bromoditolylmethane (200), following a 

previously published procedure.159 Bromoditolylmethane (200) was reacted with 1,1- 

diphenyl ethylene in refluxing benzene for 6 h to yield 1,1 -diphenyl-3,3 -ditolylpropene 

(201). TLC of the crude reaction mixture indicated that a mixture of the two starting 

reagents, 200 and diphenylethylene, and desired product 201 had resulted. This reaction 

was repeated with a longer reaction time with the same results. The reaction conditions 

were altered, replacing benzene with glacial acetic acid, according to previous 

literature.160 The reaction was refluxed for 20 h. TLC showed a single spot and the 

product was recrystallized from hexanes, which resulted in 35.5% yield of 1,1-diphenyl-

3,3-ditolylpropene (201). It was our plan to cyclopropanate 1,1-diphenyl-3,3- 

ditolylpropene (201) with dichlorocarbene, followed by treatment with tert-butoxide in 

order to form the target compound, ditolyldiphenylbutatriene (203). However, generation 

of dichlorocarbene using chloroform, phase transfer catalyst (benzyltriethylammonium 

chloride), and aqueous sodium chloride and alkene addition did not afford adduct 202.
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All reaction conditions were modified such as varying the amounts o f PTC, alkene, 

chloroform, lengthening reaction times, and addition of heat. Although starting material 

slowly disappeared, the desired product was not isolated. The same reaction conditions 

readily cyclopropanated 1,1 -diphenylethylene resulting in a 49% yield of 

dichlorocyclopropanated product (Scheme 82).

Other methods were used in order to generate dihalocarbene. The formation of 

the dihalo compound 202 was tried using ethyltrichloroacetate and sodium methoxide, 

resulting in recovery o f starting material. An attempt to generate dibromocarbene and
i

subsequent addition was also attempted using bromoform and tert-butoxide in THF 

without success.
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Scheme 82. First attempted synthesis of diphenylditolylbutatriene (203).
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Another strategy- illustrated in Scheme 83, was devised in order to prepare the 

desired compound. Trimethylsilylacetylene (154) was, lithiated at -78 °C and treated 

with 4,4’-dimethylbenzophenone (198). Workup and purification by recrystallization 

from hexanes gave 49.4% of 4-methyl-a-(4-methylphenyl)~a-

[(trimethylsilyl)ethynyl]benzenemethanol (204) a white solid. This was desilylated with 

3N sodium hydroxide in methanol to give a 93.3% yield o f propargyl alcohol 205, based 

upon previously published literature.166 Alcohol 205 was then treated with two
i

equivalents o f n-butyllithium in THF at -78 °C, followed by addition o f benzophenone 

(206). Recrystallization of this product from chlorofofrn gave a 65 .j%  yield o f 207. 

Following previously published literature,168 diphenylditolylbutyne diol (207) was

i

subsequently reduced with tin(II) chloride dihydrate in concentrated hydrochloric acid to 

give a yield o f 7.9%, of 203, after recrystallization with hexanes. The low yield on this 

step could probably be substantially improved.
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Scheme 83. Synthesis of diphenylditolylbutatriene (203).
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The position in which the 13C label is incorporated is crucial to the experiments 

that detect carbon scrambling in butriene (Figure 22). 13C NMR spectroscopy of 

ditolyldiphenylbutatriene (203) shows four nicely resolved signals for the sp and sp 

hydridized carbons. Those corresponding chemical shifts are 150.71, 121.49, 123.12, and 

151.99 ppm for C l, C2, C3, and C4, respectively. The 13C NMR shifts of 203 were

IT 1
assigned in correlation with the C NMR of the parent structure 219.

CH

CH

Figure 22. Ditolyldiphenylbutatriene (203).

According to our proposed thermal rearrangements of an unsymmetrical 

butatriene, the 13C label should be incorporated at either o f the internal positions (C2 or

13C3) in order to test our hypothesis. Therefore, syntheses were designed so that C label 

can be incorporated at positions C2 or C3. We were able to prepare the desired 

compound 203 and establish its suitability as a substrate. Next, ljC label had to be

13incorporated into the synthesis. The limited selection and expense of C enhanced

1 3reagents influenced our synthetic strategies. Therefore, we decided not to incorporate ' C 

enhanced material in Scheme 83 but rather to pursue alternate routes.
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Other Attempts to Synthesize Unsvmmetrical Butatrienes

i I
, Ethyl acetate is available with 13C label and we designed a route beginning with 

this substrate. Diphenylmethane (208) was deprotonated with ra-butyllithium at -78 °C 

and treated with ethylacetate under reflux, which yielded 82.6% of 1,1 -diphenylacetone

(209), based upon a published method.161 Next, attempts were made to synthesize the 

aldol (210). 1,1 -Diphenylacetone (209) was deprotonated with sodium hydride in THF at 

room temperature. Once evolution of hydrogen gas ceased, n-butyllithium was added 

dropwise at room temperature over 30 min. The reaction mixture w^s cooled to 0 °C and 

a solution of 4,4’-dimethylbenzophenone (198) dissolved in THF was added dropwise, 

followed by stirring overnight. After workup, TLC and NMR spectroscopy indicated 

only very small amounts' of aldol (210) had formed. This reaction was ,tried several 

additional times with slight adjustments without significant increase of yields o f aldol

(210). Other attempts with EDA and freshly prepared sodium ethoxide solution, in hopes 

o f -driving the reaction to the a,p-unsaturated ketone (211), were also unsuccessful 

(Scheme 84).
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Scheme 84. Attempted Synthesis using aldol-chemistry.
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A different route was attempted starting from the previously prepared 1,1- 

diphenylacetone (209).161 1,1 -Diphenylacetone (209) was added to a suspension of 

sodium hydride and THF at 0 °C and allowed to warm to room temperature for 2 h. Tert- 

butyldimethylsilylchloride (TBDMSC1) in THF was added and the mixture was stirred at 

ambient temperature for 48 h. Workup and purification by vacuum distillation and 

column chromatography gave a 64.1% yield of the silylenolether (213) following a 

published method.169 9-Fluorenone (214) was chosen as the ketone because it would 

ultimately give an unsymmetrical butatriene (217) a§ a final product, which would give

1 Tfour different internal carbons by C NMR. The silylenolether (213) was added to LDA 

at 0 °C in THF followed by addition of 9-fluorenone (214). TLC and NMR showed a 

very complex mixture. Separation was attempted by column and rotary chromatography 

on silica gel with various solvent systems. This reaction gave only small amounts of 

allene alcohol (215) and allene diol (216). The untethered ketone, 4,4’- 

dimethylbenzophenone (198), was also used, but led to similar results. This route was 

abandoned (Scheme 85).
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Ph

Ph

217
i

Scheme 85. Attempted synthesis via allenediol (216).
I I

FVP Experiments of Allene. Butatriene. and Extended Cumulene Systems
I

As this work progressed, we explored the thermal stability of tetraaryl cumulenes. 

Tetraphenylallene (218) was pyrolyzed at 800 °C/0.03 torr. NMR spectroscopy showed 

mostly starting material with only minor products formed (Scheme 86).

F V P

800°c/0.03 ton-

starting Material + Minor Products

Scheme 86. FVP of tetraphenylallene (218).
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We next sought experimental evidence to test the hypothesis o f long-range carbon 

topomerization occurring in cumulenes. A series o f preliminary FVP experiments were 

carried out on cumulenic systems to detect rearrangements and thermal decomposition 

(Scheme 87). Tetraphenylbutatriene (219) was pyrolyzed at 700, 800, and 900 °C and 

0.01 torr. Pyrolysis at 700 and 800 °C led to good recovery of starting material.

Pyrolysis at 900 °C led to recovery o f tetraphenylbutatriene (219) and a significant 

amount of unidentified product. The crude mixture was purified by preparative thin-layer 

chromatography using hexanes, but we were unable to identify products. It was 

concluded that thermal rearrangements occur around 900 °C. This was an indication of 

the thermal limits in which might expect to observe atom automerization without 

extensive formation o f other products.

7 00°C

219

F V P

--------------------:-------------►

8 0 0 °C

900 °C  
---------------------------------- ►

Starting Material

Starting Material

Unidentifiable Products

Scheme 87. FVP experiments o f tetraphenylbutatriene (219).
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, FVP experiments were executed on ditolyldiphenylbutatriene (203) at 700, 800, 

900 °C and 0.01 torr. Pyrolysis and 700 and 800 °C gave mostly unreacted starting 

material (203), while pyrolysis at 900 °C gave starting material (203) and considerable 

amounts of other unidentified products (Scheme 88).

700°C
Starting Material

,CH'

Ph
F V P Starting Material

Ph

CH

900°C Starting Material +  
Unidentifiable Products

Scheme 88. FVP experiments of ditolyldiphenylbutatriene (203).
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Larger cumulenes were prepared for further study. Based upon previously 

published literature,'621,1 -diphenyl-2-propyn-2-ol (220) was coupled under an oxygen 

atmosphere using catalytic copper(I) iodide in acetone to give an 80.1% yield of 1,1,6,6- 

tetraphenyl-2,4-hexadiyn-1,6-diol (221), after recrystallization with toluene. The diol 

221 was reduced with tin(II) chloride dehydrate in concentrated hydrochloric acid to give 

49.8% yield of 1,1,6,6-tetraphenylhexapentatriene (222) as a red solid following a

published method (Scheme 89). 168

/  \
OH

r

Cul

OH OH

TMEDA 
0 2, acetone 
80.1%

\  ISnCl2 2H20
HC1 

49.8% '

220 221

/  \

222

Scheme 89. Synthesis of 222.
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1,1,6,6-Tetraphenylhexapentatriene (222) was set up for pyrolysis at 800 °C/0.005 

torr. A heat gun along with heat tape was employed tq assist in the sublimation of the 

solid and transport through the hot zone o f the FVP apparatus. Due to the high melting 

point o f the hexapentatriene (222), sublimation and transport did not occur and the solid 

carbonized to black soot. Pyrolysis o f this substrate will require a different apparatus.

Conclusions

Calculations support our proposed mechanism of long-range carbon 

topomerization in butatrienes. A low-energy process that interconverts butatriene to 

methylenecyclopropenylidene (187), and subsequent closure to bicyclo[ 1.1.0]but-1,3-ene
l

(188) has been found as true energy minima along this reaction pathway. DFT and 

Moller-Plesset computations provide consistent predictions for this likely process. The 

desired unsymmetrical butatriene (203) was synthesized and showed four well resolved 

carbons resulting from the inner sp and sp2 hybridized carbons. This result will allow us 

to follow the 13C label in future pyrolysis experiments with 13C labeled unsymmetrical 

butatriene. Control pyrolysis experiments of tetraaryl butatrienes were carried out and 

were found to have compound stability up to approximately 800 °C. A suitable synthesis

1 Tof a C labeled unsymmetrical butatriene needs to be established and subsequent 

pyrolysis experiments remain in order to support our calculations.
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EXPERIMENTAL SECTION

General Experimental

Instrumentation

JH NMR Spectra were recorded on a Brucker AM-360 fourier transform spectrometer 

operating at 360.13 MHz, a Varian Mercury 400 fourier transform spectrometer operating 

at 399.77 MHz, and/or a IN  OVA Varian 500 fourier transform spectrometer operating at 

499.76 MHz. All spectra were measured in C D C I 3  as solvent and ( C H 3 ) 4 S i  as internal 

reference unless otherwise noted. Chemical shifts were reported in parts per million 

(ppm) relative to (CH3)4 Si and coupling constants (J values) are in hertz (Hz).

13C NMR Spectra were recorded on a Brucker AM-360 fourier transform spectrometer 

operating at 90.55 MHz, a Varian Mercury 400 fourier transform spectrometer operating 

at 100.52 MHz, and/or a IN  OVA Varian 500 fourier transform spectrometer operating at 

125.67 MHz. All spectra were measured in CDC13 as solvent and (CH3)4 Si as internal 

reference unless otherwise noted. Chemical shifts were reported in parts per million 

(ppm) relative to (CH3)4 Si and coupling constants (J values) are in hertz (Hz).

Infrared Spectra (IR) were recorded on a Nicolet 205 fourier transform spectrometer. 

Absorptions were reported in wavenumbers (cm-1) with polystyrene (1601 cm'1) as the 

calibration peak.

Gas Chromatography Mass Spectra (GCMS) were obtained through the University of 

New Hampshire Instrumentation Center on a Hewlett-Packard 5988A-GC/MS
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quadrapolar spectrometer equipped with a 25 meter crosslinked methyl silicone capillary 

column. Electron impact (El) mass spectra were obtained with an ionization voltage of 

70 eV. Chemical ionization (Cl) mass spectra were obtained with methane as ionization 

gas.

Analytical Gas Chromatography (GC) was performed with a Hewlett-Packard 6890 

instrument equipped with a flame ionization detector connected to a Hewlett-Packard

3395 integrator. A 25 meter crosslinked methyl silicone capillary column was used.
)

Preparative Gas Chromatography was performed with a Varian 920 instrument 

equipped with a thermal conductivity detector connected to a Fischei^ Recordall 5000 

chart recorder. Th$ following columns were used: (a) 15% SE-30 20M on Supelcoport
l

80/100 mesh (10’,x Va ’ stainless steel) at specified temperatures, (b) 15% Carbowax 20M 

on Chromosorb W-HP 80/100 mesh (10’ x %’ stainless steel) at specified temperatures, 

and (c) 15% Carbowax 20M on Supelcoport 80/100 mesh (10’ x %’ glass) at specified 

temperatures.

Molecular Modeling calculations were performed using Spartan Pro or ’02, and 

Gaussian ’98 or ’03 using a Silicon Graphics O2  workstation or desktop PC.

Solvents:

The following chromatographic solvents (Reagent/ACS grade) were obtained from 

Fischer Scientific or VWR Scientific and used without further purification: n-pentane, n- 

hexane, ethyl acetate, and diethyl ether. The following solvents used for experimentation 

were freshly distilled from sodium benzophenone ketyl and used immediately: diethyl 

ether (Et20 ) and tetrahydrofuran (THF). Anhydrous dimethyl sulfoxide (DMSO) was 

purchased from Aldrich and used without further purification. Methylene chloride
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(CH2 CI2 ) and carbon tetrachloride ( C C I 4 )  were stored over 4A molecular sieves prior to

use. Acetonitrile was pesticide grade and N, V-dimethylformamide (DMF) was peptide 

synthesis grade, both were used without further purification. Diethylamine, • 

diisopropylamine, and pyridine were distilled from potassium hydroxide and stored over 

4A molecular sieves prior to use. HPLC grade methanol was used without further 

purification. The following deuterated solvents for NMR analysis were purchased from 

Cambridge Isotope Laboratories and stored over 4A molecular sieves: chloroform-J 

(CDCI3 ), benzene-t/ 6  (CeD6), and methylene chloridq-ck (CD2 CI2 ).

Reagents: All reagents purchased were o f sufficient quality and used as obtained from 

the following companies: Aldrich, Lancaster, Fischer (Acros), Farchan, Alfa Aesar, and 

Cambridge Isotopes Laboratories.

Column Chromatographv and Adsorbents:

Silica Gel: 80-200 mesh Fischer Scientific silica gel was used as obtained from the ' 

company. 200-425 mesh Fischer Scientific “flash” silica gel was used as obtained for the 

company. Where necessary, the silica gel was doped with Sylvania 2282 green phosphor 

to allow observation with ultraviolet light in quartz chromatography columns.

Alumina: 80-200 mesh Fischer Scientific alumina adsorption was used as obtained from 

the company.

Florisil: 100-200 mesh Fischer Scientific florisil was used as obtained from the 

company.

Thin Layer Chromatography (TLC) was performed using Whatman polyester plates 

coated with 250 pm layer silica gel doped with phosphor. Visualization was 

accompanied through the use of ultraviolet light or an iodine vapor stain.
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Flash Vacuum Pyrolysis Experiments (General Procedure)

Flash vacuum pyrolysis (FVP) experiments were performed using a Lindberg 

model 55035-thermolysis oven containing a 50 cm quartz column packed with quartz 

chips (Figure 23 - Flash Vacuum Pyrolysis Apparatus). One end of the quartz tube was 

fitted with a 50 mL round bottom tube containing the sample. The opposite end of the 

column was equipped with a cold trap maintained at -78 °C, which was connected to a
I

Welch Duo-Seal model 1400 vacuum pump. The sample was cooled using solid carbon

i2
dioxide while the pyrolysis apparatus was typically maintained at 10 torr while the 

sample was warmefi at room temperature and by a heat gun and evaporated. The sample

I
traveled through the pyrolysis oven (hot zone), which was held at a constant temperature 

before condensing in the cold trap. Experiments were performed in the 600 -  1100 °C 

range and 50 -  200 mg saffiples were typically pyrolyzed. Temperatures were initially 

started in the lower range and gradually increased depending on the particular 

rearrangement being studied.
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Experimental Procedures for Chapter 1

1 -Phenyl-6 -hepten-l -yne (65)

To a 125 mL three-neck round bottom flask containing THF (25 mL), 

phenylacetylene (70) (3.76 mL, 3.51 g, 34.3 mmol) was added and the mixture was 

cooled to -78 °C under a nitrogen atmosphere. n-Butyllithium (36.2 mmol, 14.4 mL) was 

added dropwise to the solution while it was stirred vigorously. The mixture was stirred 

for 2.75 h then warmed to -30  °C and hexamethylphosphoramide, HMPA, (6.45 g, 36.2
i

mmol) was added dropwise. After 10 min, 5-bromo-1 -pentene (5.37 g, 36.2 mmol) was 

added dropwise over a 20 min period. The reaction mixture was allowed to stir for 24 h 

and then cooled to 0 °C with an ice bath. The reaction mixture was quenched with 

saturated aqueous sodium chloride (25 mL) and the two layers were separated. The 

aqueous layer was extracted with diethylether (4 x 25 mL) and the organic extracts were 

combined and washed with water ( 3 x 1 5  mL), and dried over magnesium sulfate. The 

solvents were concentrated under vacuum and column chromatography (silica gel,

1 ' 7-1

hexanes) and vacuum distillation yielded 65 a yellow oil (3.83 g, 22.5 mmol, 65.7%).

]H NMR (360 MHz, CDC13) 5 1.75 (tt, 2H, J = 7.2, 7.2 Hz), 2.28 (dt, 2H, Jd = 7.2 Hz, J, = 

7.2 Hz), 2.49 (t, 2H, J = 7.2 Hz), 5.11 (d, 1H, J = 11.5) 5.18 (dd, 1H, J=  1.4, 17.1 Hz), 

5.81-5.98 (m, 1H), 7.22-7.39 (m, 3H), 7.41-7.52 (m, 2H); ,3C NMR (90 MHz, CDC13) 8  

18.8,27.9,32.8,80.8, 89.9, 115.2, 124.0,127.5, 128.2, 131.5, 137.9; IR (neat) 1491,914, 

756, 692 cm'1.
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Pyrolysis of 1 -phenvl-6 -hepten-1 -vne (65)

1 -Phenyl-6 -hepten-1 -yne (65) was weighed out and passed through a quartz tube 

packed with quartz chips, maintained at 640 °C at 0.02 torr. The product was collected in 

a cold trap (-78 °C) to give a yellow oil. The recovered material was taken up in CDCI3 

and passed through a plug of silica. The recovered material was observed by capillary 

GC and !H and 13C NMR. Mostly unreacted starting material was observed. Trace

1 13amounts of phenylacetylene was believe to be observed by GC and H and C NMR.

This may have been due to fragmentation of starting-material during the pyrolytic 

process. There was no observable evidence for cyclization. However, FVP at 750 ?C, 

there is evidence that cyclization of 1 -phenyl-6 -hepten-1 -yne (65) may form 2,3-lH- 

cyclopentanaphthalene (6 8 ) as an intermediate and further dehydrogenate resulting in 

benz[/]indene (69). Pyrolysis of 65 resulted in mostly unidentified products with small - 

amounts of starting material (65), fragmented product (70), and benz[/]indene (69). H 

NMR showed resonances from 6.92-6.95 ppm and 6.60-6.62 ppm which might result 

from vinyl protons of benz[/]indene (69). Resonances at 3.36-3.45 ppm where also 

present that might show evidence for methylene protons o f benz[/]indene (69).
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Experimental Procedures for Chapter 2

Synthesis o f Diphenylbutadiyne (124)

Diphenylbutadiyne (124) was prepared based on previously published 

literature . 1 6 2 Acetone (10 mL) was placed into a 125 mL round bottom flask surrounded 

by a water bath at 25 °C. Copper(I) chloride (0.187 g, 9.85 mmol) and N,N-N,N- 

tetramethylethylenediamine, TMEDA, (0.114g, 9.85 mmol) was added and then oxygen 

was bubbled through the solution while it was stirred vigorously. Once the system was 

fully purged with oxygen, phenylacetylene (70) (2.01 g, 19.7 mmol) was added dropwise 

to the stirred reaction mixture over a 15 min period. After the addition was complete, the 

reaction mixture stirred for an additional 20 min. The solvent was then removed under 

reduced pressure and dilute aqueous hydrogen chloride (10 mL) was then added until the 

solution was slightly acidic to pH paper. A colorless precipitate formed and was filtered 

in a Buchner funnel and washed with water (10 mL). The precipitate was allowed to dry 

and was recrystallized (hexanes) to yield 124 as a white solid (2.00 g, 19.7 mmol, quant.) 

’H NMR (360 MHz, CDCfi) 8  7.31-7.62 (m, 10H); 13C NMR (90 MHz, CDCfi) 8  73.92, 

81.56, 121.81, 128.45, 129.22, 132.52; mp 87-88 °C (lit. 1 7 4  87 °C).

Sythesis of n-Ditolylbutadivne (141)

jP-Ditolylbutadiyne (141) was prepared based on previously published 

literature . 16 2 Acetone (20 mL) was place into a 250 mL round bottom flask in a water 

bath at 25 °C. Copper(I) chloride (0.143 g, 1.44 mmol) and N,N-N,N- 

tetramethylethylenediamine, TMEDA, (0.172 g, 1.48 mmol) was added and then oxygen
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was bubbled through the solution while it was stirred vigorously. Once the system was 

fully purged with oxygen,/7-tolylacetylene (141) (3.57, g, 30.7 mmol) was added 

dropwise to the stirred reaction mixture over a 15 min period. After the addition was 

complete, the reaction mixture was stirred for an additional 20 min. The solvent was then 

removed under pressure and dilute aqueous hydrogen chloride (10 mL) was then added 

until until the solution was slightly acidic to pH paper. A colorless precipitate formed 

and was filtered in a Buchner funnel and washed with water (10 mL). The precipitate
I

was allowed to dry and recrystallized (hexanes) to yield a white solid (3.54 g, 30.7 mmol, 

quant.) ]H NMR (360 MHz, CDCfi) 5 2.38 (s, 3H), 7.15 (d, 2H, 7.6 kz); 13C NMR (90 

MHz, CDCfi) 8  17,51, 69.35, 77.43, 114.67, 125.11, 128.28, 135.38; mp 183-184 °C
I

(lit . 1 7 5  1 83 °C). ■

Synthesis of 1 -Bromo-2-phenvlacetvlene (144)

1 -Bromo-2-phenylacetylene (144) was prepared by a similar method . 1 5 5 A

solution of aqueous sodium hydroxide (16 mL of 1 M NaOH) was cooled at 10 °C and
:

liquid bromine (4.00 g, 1.29 mL, 50.1 mmol) was added using an addition funnel with 

vigorous stirring by a mechanical stirrer for 30 min. After the bromine dissolved, 1,2- 

dimethoxyethane ( 8  mL) and phenylacetylene (70) (2.01 g, 19.6 mmol) were added 

consecutively and the mixture was allowed to stir for 5 h under a nitrogen atmosphere. 

The reaction mixture was cooled to 0 °C and water (100 mL) was added. The mixture 

was extracted with diethylether (4 x 25 mL), washing with water (25 mL) and dried over 

sodium sulfate. Solvent was removed under pressure, assisted by a warm water bath, to 

yield an oil (1.58 g, 8.78 mmol, 44.5%) ]H NMR (360 MHz, CDCfi) 8  7.27-7.36 (3H,
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m), 7.42-7.48 (2H, m); 13C NMR (90 MHz, CDCI3 ) 8  49.7, 80.0, 122.7, 128.3, 128.7, 

132.0; IR (neat) 2203, 1485, 1443, 754, 689 cm '1.

Synthesis of 4-Iodo-2-methyl-3 -Butyn-2-ol (148)

4-Iodo-2-methyl-3-Butyn-2-ol (148) was prepared using the method described 

previously . 1 5 6  A mixture o f morpholine (24 mL) and benzene (24 mL) was slowly added 

to a solution of iodine (18.1 g, 74.1 mmol) in benzene (200 mL) while stirring vigorously 

using a mechanical stirrer. After 20 min, 2-methyl-3-butyn-2-ol (146) (4.01 g, 47.6 

mmol) was added to the dark orange morpholine complex and the reaction was allpwed 

to stir for 48 h at 45 °C. After cooling the reaction mixture to room temperature, the 

hydroiodide salt was removed by filtration and washed with diethylether. The combined 

filtrates were washed with a saturated aqueous sodium chloride solution (2 X' 100 mL), ■ 

10% sodium thiosulfate solution (2 x 100 mL), 5% sodium hydrogen carbonate solution 

(2 x 100 mL), and water (200 mL) and dried with sodium sulfate. The solvent was 

evaporated under pressure assisted with a warm water bath and trace amounts o f solvent 

was remove under pressure using high vacuum give an oil (7.48 g, 35.6 mmol, 74.8%)

’H NMR (360 MHz, CDCfi) 81.51 (br s, 1H), 2.50 (s, 6 H); 13C NMR (90 MHz, CDCfi) 8  

31.35,66.86, 99.12.
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Synthesis of 2-Metfayl-6^phenvl-3.5-hexadiyn-2-ol (147)

2-Methyl-6-phenyl-3,5-hexadiyn-2-ol (147) wqs prepared with slight variations

1 *57using the following procedure from the literature.

Bis(triphenylphosphme)palladium(II) dichloride (0.721 mmol, 0.506 g) and copper(I) 

chloride (0.721 mmol, 0.134 g) were added to a 500 mL three-neck round bottom flask 

and THF (150 mL) was added under a nitrogen atmosphere. A mixture of 4-iodo-2- 

methyl-3-butyn-2-ol (148) (24.0 mmol, 5.05 g) and phenylacetylene (70) (26.0 mmol,
t

2.66 g) in THF (20 mL) was added and the mixture was stirred vigorously surrounded by 

a room temperature water bath. Diisopropylamine (4.86 g, 6.74 mL,U8.1 mmol) was 

injected into the reaction flask by syringe and the reaction mixture was allowed to stir at

I
room temperature for 2 h. The reaction mixture was then diluted with diethylether (30 

mL), extracted with aqueous hydrochloric acid (20 mL of 1M solution), washed with
i \ 1

water (20 mL), aqueous saturated sodium chloride (20 mL) and dried over magnesium 

sulfate. Solvent was removed under pressure. Column chromatography (silica gel, 

methylene chloride/hexanes 1:1 ratio) gave 147 as a white solid (4.43 g, 24.0 mmol, 

49.4%). NMR (360 MHz, CDC13) 8  1.59 (s, 6 H), 2.04 (br s, 1H), 7.44-7.54 (m, 5H); 

13C NMR (90 MHz, CDC13) 5 30.7, 65.6, 73.1,78.6, 86.7, 121.4, 127.6, 128.3, 132.5; IR 

(neat) 3594, 3155, 2983, 2254, 1466, 1381, 1164, 1099 cm '1; mp 84-85 °C (lit. 1 7 6  8  5 °C).
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Synthesis of Phenyl-p-tolylbutadivne (143)

Phenyl-p-tolylbutadiyne (143) was prepared using the conditions described 

previously . 1 5 8  To a 250 mL three-neck round bottom flask was added copper(I) chloride 

(0.211 mmol, 0.040 g), aqueous benzyltrimethyl ammonium chloride (62 mL of a 50% 

aqueous solution, 0.171 mmol, 0.032 g) and bis(triphenylphosphine)palladium(II) 

dichloride (0.211 mmol, 0.148 g). The mixture was stirred vigorously under a nitrogen 

atmosphere at room temperature. A de-aerated mixture of 2-methyl-6-phenyl-3,5 - 

hexadiyn-2-ol (147) (5.27 mmol, 0.972 g) and 1 -iodo-4-methylbenzene (149) (5.27
4

mmol, 1.15 g) in benzene (15 mL) was added rapidly to the reaction mixture by syringe. 

Next, a de-aerated aqueous solution o f 5.5N sodium hydroxide solution (2.5 mL; 13.8 

mmol) was added by syringe and the reaction mixture was allowed to reflux for 48 h.

The reaction mixture was then quenched with saturated aqueous ammonium chloride and 

stirred at room temperature for 1 h after which was extracted with diethylether (5 x 25 

mL), filtered and concentrated under vacuum. Column chromatography (silica gel, 

methylene chloride/hexanes, 1:10) yielded 143 as a white solid (0.221 g, 1.02 mmol, 

19.3%). ]H NMR (360 MHz, CDC13) 5 2.38 (s, 3H), 7.15-7.55 (m, 9H); 13C NMR (90 

MHz, CDC13) 5 21.65, 73.32, 74.08,81.25,81.90, 118.67, 121.93, 128.44, 129.13, 

129.26, 132.44, 132.49, 139.64; mp 107-109 °C (lit. 1 7 7  110 °C).
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Preparation of 13C Labeled 1 -Chloro-1 -phenvlethvlene (152) and 1 J-Dichloro-1- 

phenylethane (153)

Acetophenone (lg ) labeled at C l with !3C (Aldrich, 99%) was diluted with four 

parts o f unlabeled acetophenone. Benzene (40 mL) was injected to a 100 mL round 

bottom flask under a nitrogen atmosphere. Phosphorus pentachloride (6.50 g, 31.2 

mmol) was added to the reaction flask and allowed to stir for 5 min. The reaction 

apparatus was set up for reflux and 20% I3C labeled acetophenone (150) (2.5 mL, 20.8
I

mmol) was injected into the solution and allowed to reflux for 45.5 h. Thin layer 

chromatography, (TLC), (silica gel, methylene chloridfe) was used to monitor the progress 

of the reaction. TLC was performed at 19, 25, and 45.5 h showing complete 

disappearance of the starting material and formation of two products. The reaction 

mixture was then poured into iced water (50 mL), extracted with diethylether (3 x 20 

mL), and dried over sodium sulfate. The solvent was removed under reduced pressure 

assisted by a warm water bath to yield 152 and 153 as an oil (2.39 g), which was used 

without any further purification. ]H NMR (360 MHz) 6  2.52 (s) indicating methyl group 

for 153 and ' 8  5.61 (d) and 5.84 (d) for methylene group for 152. 13C NMR (90 MHz, 

CDCI3) 8  56.11 indicating methyl group for 153 and 8  112.72 for methylene group for 

152.
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13Conversion of ~C labeled 1 -Chloro-1 -phenvlethvlene (152) and 1,1-Dichloro-l-

phenvlethane (153) to C1-13C labeled Phenvlacetvlene (76)

1 TA mixture o f C labeled 1 -chloro-1 -phenylethylene (152) and 1,1-dichloro-l- 

phenylethane (153) (2.29 g) was diluted with tetrahydrofuran (lOmL) and was added over 

a 5 min period to a suspension of excess sodium amide, which was generated from Na° 

(0.4 g, 17 mmol) in liquid ammonia (30 mL) at -78  °C. The mixture was stirred for 1.5 

h, ammonium chloride (2g) was added and the ammonia was allowed to evaporate. The 

solvent was removed under pressure, assisted by a warm water bath, and the residue was 

extracted with hexanes (3 x 20 mL). The concentrated extract was purified using column 

chromatography (silica gel, hexanes) to yield 76 as an oil (1.55 g, 15.2 mmol, 71.4% 

overall yield) ’H NMR (360 MHz, CDC13) 5 3.09 (s, 1H), 7.31-7.52 (m, 5H); IR (neat) 

3350 (s), 3070 (s), 2110 (w) cm '1.

Preparation of p-Tolvl-3 -silvl-pronvn-1 -ol (157)

A solution o f trimethylsilylacetylene (154) (59.5 mmol, 5.85 g) in THF (52 mL) 

was cooled to -78  °C under a nitrogen atmosphere. n-Butyllithium (45.8 mmol, 18.32 

mL of 2.5 M solution in hexane) was added dropwise by syringe and the mixture was 

allowed to warm to room temperature. The stirred solution was then cooled back down 

to -78 °C and 4-methylbenzaldehyde (45.8 mmol, 5.50 g) dissolved in THF (lOmL) was 

added dropwise by syringe over 15 minutes. The solution was allowed to stir for 2 h at 

room temperature. The reaction was then quenched with saturated ammonium chloride, 

extracted with diethylether (4 x 10 mL). Combined extracts were washed with saturated 

aqueous solution o f sodium chloride (20 mL), and a saturated aqueous sodium
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bicarbonate solution (20 mL) then dried with sodium sulfate. The solvent was removed 

under pressure, which resulted in a clear light brown qil (5.1 g, 93%). 'H  NMR (360 

MHz, CDCI3 ) 8  0.25-0.26 (m, 9H), 2.39 (s, 1H), ,2.56-3.00 (br s, 3H), 5.42 (s, 3H), 7.21 

(d, 2H, J = 7.96 Hz), 7.45 (d, 2H, J = 8.06 Hz).

Preparation of 4-Methyl-1 -phenyl-2-propvn-l -ol (155)

4-Methyl-1 -phenyl-2-propyn-1 -ol (155) was prepared based on upon previously
I

published literature . 1 6 6  />-Tolyl-3-silyl-propyn-1 -ol (157) (2.52 g, 11.5 mmol) was added 

to a solution of 3N sodium hydroxide in methanol (20'mL) and allowed to stir at room 

temperature for 3 h. The solution was quenched with 1M aqueous hydrochloric acid (10
I

mL), extracted successively with diethylether (3 x lOmL), saturated aqueous sodium 

chloride (10 mL), and water (10 mL). The solvent was then removed under pressure, 

which resulted in a yellow 'oil (1.54 g, 92.1%). ]H (360 MHz, CDC13) 5 2.40 (s, 3H), 

2.67-2.68 (m, 1H), 2.98 (br s, 1H), 5.41-5.42 (m, 1H), 7.22 (d, 2H, J = 8.06 Hz), 7.45 (d, 

2H, J = 7.93 Hz) 13C NMR (90 MHz, CDCI3 ) 8  21.22, 64.11, 64.15, 83.86, 126.69,

129.35, 137.32, 138.32; IR (neat) 3850, 2117 (w) cm"1.

Preparation of 13C labeled 4-(4-Methvlphenyl)-l-phenvl-2-butyn-L4-diol (156)

A 2.5 M solution o f n-butyllithium (31.4 mmol, 12.56 mL) in hexane was added 

by syringe over a period o f 30 min, to a stirred solution of 4-methyl-1 -phenyl-2-propyn- 

1 -ol (155) (2.30 g, 15.7mmol) in THF (17 mL) under a nitrogen atmosphere at -78 °C. 

The solution was allowed to warm to room temperature and cool back down to -78  °C. A

13mixture of benzaldehyde 20% C enhanced at the carbonyl position (1.53mL, 15.0
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mmol) diluted with THF (lOmL) was added over a 20 min period. The reaction mixture 

gradually warmed to room temperature was allowed to stir for 3 h. The reaction mixture 

was then treated with 2 M sulfuric acid until the solution was acidic and extracted with 

diethylether (3 x 20mL). Combined extracts were washed successively with saturated 

aqueous sodium chloride (20 mL) and saturated aqueous sodium bicarbonate solution (20 

mL), and then dried with sodium sulfate. Solvent removal under vacuum resulted in a 

thick, dark red oil (3.24 g, 82.2%). ]H NMR (360 MHz, CDC13) 8  2.36 (s, 3H), 2.91 (br 

s, 2H), 5.49 (s, 1H), 5.52 (s, 1H), 7.12-7.54 (m, 9H); 13C NMR (90 MHz, CDC13) 8  21.3, 

74.62, 74.81, 89.80, 90.6, 126.15, 126.38, 127.98, 128.55, 129.21, 137.99, 142.11,

145.61. An enhanced 13C resonance was observed at 8  74.81.
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Synthesis of C1-13C labeled Phenyl-n-tolvlbutadivne (160)

1 TC labeled Phenyl-p-tolylbutadiyne (160) was, synthesized according to slight

' 1 f t  7 13modification o f a previously published procedure. To a mixture o f C labeled 4- 

methyl-1 -phenyl-2-butyn-1,4-diol (156) (2.5 g, 9.91 mmol), pyridine (2.40 mL), and THF 

(25mL) at 0 °C, a solution of thionyl chloride (2.17 mL, 30.0 mmol) in THF (10 mL) was 

added dropwise over a 30 min period. The reaction mixture was allowed to warm to 

room temperature and crushed ice was then added. The reaction mixture was extracted
I

with diethylether (3 x 20 mL). The extract was washed successively with water (15 mL) 

and saturated aqueous sodium hydrogen carbonate (20 mL), and theii dried with sodium 

sulfate. The crude,dichloride (2.4 g) was obtained by evaporating the solvent under
I

pressure and was ,subjected to dehydrochlorination without further purification.

A solution of the crude dichloride (1 . 6 6  g, 5.74 mmol) in THF (10 mL) was added 

over a 5 min period to a suspension of sodium amide, which was generated from sodium 

metal (0.41 g, 17.22 mmol) in liquid ammonia (30 mL) at -78  °C. The mixture was 

stirred for 1.5 h, and then the ammonia was allowed to evaporate after the addition of 

ammonia chloride (2 g). The solvent was removed under reduced pressure. The residue 

was extracted with hexanes (3 x 25mL). The concentrated extract was purified using 

column chromatography (silica gel, hexanes) to give a white solid (0.31 g, 20.1%). !H 

NMR (360 MHz, CDC13) 8  2.39 (s, 3H), 7.15-7.57 (m, 9H); 13C NMR (90 MHz, CDC13) 

821.65, 73.30, 74.06, 81.23, 81.88, 118.67, 121.93, 128.44, 129.13, 129.26, 132.44, 

132.49, 139.64; mp 107-109 °C (lit. 1 7 7  110 °C). An enriched 13C resonance was observed 

at 8  81.23.
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Pyrolysis of C1-13C labeled Phenvl-p-tolylbutadiyne (160)

1 ̂The C l- C enrichedp-tolylphenylbutadiyne (160) was subjected to a series of 

FVP experiments at different temperatures and at constant pressure. !3C Labeled diyne 

160 (51.1 mg) was passed through a horizontal quartz tube packed with quartz chips, 

maintained at 800 °C and at a pressure of 0.005 torr. The product was collected in a cold 

trap (-78 °C) to give a yellow solid. The crude product was dissolved in CDCI3  and 

quantitative 13C NMR spectrum was taken (facilitated by addition of chromium 

acetonylacetonate to the sample as a relaxation agent) and showed 13C label scrambling 

from Cl to C2, exclusively. The integration showed a 11.6 : 7.37 : 1.16 : 0.89 ratio, for 

C l ( 8  81.23), C2(8 74.06), C3(8 73.30), and C4(5 81.88).

,3C Labeled diyne 160 (49.5 mg) was passed through a horizontal quartz tube 

packed with quartz chips, maintained at 900 °C and at a pressure of 0.005 torr. The 

product was collected in a cold trap (-78 °C) to give a dark yellow solid. The crude 

product was dissolved in CDCI3 and quantitative 13C NMR spectrum showed 13C label 

scrambling at all sp hydridized carbons. The integration showed a 8.79 : 8.76 : 3.99 : 3.01 

ratio for Cl(5 81.23), C2(8 74.06), C3(8 73.30), and C4(8 81.88), respectively.

Pyrolysis of Doubled 13C labeled Diphenylbutadiyne (124)

1 TDoubled C labeled Diphenylbutadiyne (124) was then subjected to a series of 

FVP experiments at different temperatures at constant pressure. Diyne 124 (50.8 mg) was 

passed through a horizontal quartz tube packed with quartz chips, maintained at 700 °C 

and at a pressure of 0.01 torr. The crude product was dissolved in C D C I 3  and quantitative

13C NMR spectrum was taken (facilitated by addition of chromium acetonylacetonate to
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the sample as a relaxation agent) and showed C label scrambling from C1,C4 to C2,C3. 

The integration showed 1 : 2.1 ratio for C1,C4 (881.6), and C2,C3 (873.9), respectively.

Diyne 124 (52.5 mg) was passed through a horizontal quartz tube packed with 

quartz chips, maintained at 800 °C and at a pressure of 0.01 torr. The crude product was

IT ITdissolved in CDCI3  and quantitative C NMR spectrum was taken, showed C label 

scrambling from C1,C4 to C2,C3. The integration showed 1 : 1.3 ratio for C1,C4 (881.6) 

and C2,C3 (873.9), respectively.
1

1 I
Experimental Procedures for Chapter 3

4.4’-Dimethvl-benzhvdrol (199)
1

4,4’-Dimethylbenzophenone (198) (2.01 g, 9.51 mmol) was dissolved in ethanol 

(24 mL) in a 100 mL round bottom flask. The solution was magnetically stirred while 

sodium borohydride (0.410 g, 10.5 mmol) was added slowly to the ethanolic solution at 

room temperature, which was then allowed to stir for 2 h. The solution was slowly 

poured in to 50 mL of iced water and 5 mL of concentrated hydrochloric acid. After
1

several minutes, the precipitated product was collected by vacuum filtration and washed 

with water ( 2 x 5  mL). Recrystallized from hexanes yielded 199 as white solid (1.551 g, 

77.55%). 'H NMR (400 MHz, C D C I 3 )  8  2.16 (m, 1H), 2.32 (s, 3H), 5.76 (m, 1H), 7.12 

(d, J = 2H, 7.78 Hz), 7.24 (d, 2H, J = 7.95); 13C NMR (100 MHz, C D C I 3 )  8  21.36, 76.15, 

126.69,129.36, 137.35, 141.37; IR (neat) 3355 (br), 2361 (s), 1508 (s) cm '1; mp 67-68 °C 

(lit. 1 7 8  67-68 °C).
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Synthesis of 4A'-Dimethvlbenzhydryl bromide (200)

4,4'-Dimethyl-benzhydryl bromide (200) was prepared by slight variation of a 

literature procedure . 1 5 9  4,4'-Dimethyl-benzhydrol (199) (5.001 g, 23.55 mmol) was 

dissolved in 8  mL of C C I 4  and phosphorus tribromide (0.963 mL, 10.241mmol) was 

added slowly at 0 °C. The mixture was allowed to stand for 42 h and then was heated to 

65 °C for 6  h. The reaction mixture was filtered and the solid was washed with 10 mL 

iced water then with 15 mL of dilute sodium acetate solution, dried over sodium sulfate. 

A white solid (2.9403 g, 45.37%) was collected and used without further purification. ]H 

NMR (400 MHz, CDCfi) 8  2.30 (s, 3H), 6.24 (s, 1H), 7.09 (d, 2H, J = 7.80 Hz), 7.31 (d, 

2H, J = 7.92); 1 3 CNMR(100  MHz, CDC13) 8  21.43, 56.06, 128.62,129.49, 138.16, 

138.66; IR (neat) 3620 (m), 1494 (s), 1449 (s) cm '1; mp 48-49 °C (lit. 1 7 9  48.5-49 °C).

3,3-Bis(4-methvlphenvl)-1.1 -diphenvlpropene (201)

3,3-Bis(4-methylphenyl)-1,1 -diphenylpropene (201) was prepared using a 

combination of literature methods . 1 6 0  A solution of 1,1 -diphenylethylene (1.37 mL, 7.75 

mmol) and 4,4'-dimethylbenzhydryl bromide (200) (2.13 g, 7.75 mmol) in 15mL of 

glacial acetic acid was refluxed under nitrogen for 20 h. The reaction mixture was 

allowed to cool to room temperature and 50 mL of water was added. The solution was 

extracted with diethyl ether (4 x 25 mL). Extracts were combined, dried and concentrated 

under reduced pressure using a water bath. A yellow solid resulted which was allowed to 

digest in a sodium hydroxide solution of ethanol of (1.003 g, 30 mL ethanol) for 30 min. 

The mixture was then placed into an ice bath and crystals precipitated and vacuum
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filtered to yield white solid (2.34 g, 80.7 %) ]H NMR (400 MHz, CDC13) 8 2.32 (s, 3H), 

4.74 (d, 1H, J = 10.74 Hz), 6.51 (d, 1H, J = 10.69 Hz); mp 135-136.5 °C (lit. 1 8 0  139-140 

°C).

Synthesis of 1,1 -Ditolvl-3 -trimethvlsilvl-2-nropyn-1 -ol (204)

A solution of trimethylsilylacetylene (154) (59.5 mmol, 5.85 g) in THF (52mL) 

was cooled to -78  °C under a nitrogen atmosphere. A 2.5 M solution of n-butyllithium
I

(45.8 mmol, 18.32 mL) in hexane was added dropwise by syringe and the mixture was 

allowed to warm to room temperature. The stirred solution was then cooled back down 

to -78 °C and 4,4’-dimethylbenzaldehyde (198) (45.8 mmol, 5.50 g) in THF (10 mL) was
I

added dropwise by syringe over 15 minutes. The solution was allowed to stir for 2 h at 

room temperature. The reaction was then quenched with saturated ammonium chloride, 

and extracted with diethylether ( 4 x 1 0  mL). Extracts were washed with saturated 

aqueous sodium chloride (20 mL), and a saturated aqueous sodium bicarbonate solution 

(20 mL) and dried with sodium sulfate. The solvent was removed under reduced 

pressure, which resulted in a clear light brown oil (5.1 g, 93.1%). !H NMR (400 MHz, 

CDCI3 ) 8  0.003 (s, 9H), 2.09 (s, 6 H), 2.49 (m, 1H), 6.89 (d, 2H, J = 8.02 Hz), 7.25 (d,

2H, J = 7.37); 13C (100 MHz, CDCI3) 8  0.005, 21.17, 74.50, 91.58, 108.21, 125.99, 

128.98, 137.38, 142.24.
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Synthesis of l.l-Ditolyb-2-propyn-l-ol (205)

1.1 -Ditolyl-2-propyn-1 -ol (205) was prepared y/ith slight modification of 

previously published method . 1 6 6  4-methyl-a-(4-methylphenyl)-a- 

[(trimethylsilyl)ethynyl]benzenemethanol (204) (2.52 g, 11.5 mmol) was added to a 

solution of 3N sodium hydroxide in methanol (20 mL) and allowed to stir at room 

temperature for 3 h. The solution was quenched with a 1M aqueous hydrochloric acid 

(10 mL), extracted successively with diethylether (3 x 10 mL), saturated aqueous sodium
I

chloride (10 mL), and water (10 mL). The solvent was then removed under pressure, 

which resulted in a yellow oil (1.54 g, 92.1%). ]H NMR (400 MHz, fcDCl3) 8  2.41 (s, 

6 H), 2.90 (s, 1H), 2.95 (s, 1H), 7.21 (m, 2H), 7.56 (m, 2H); 13C (100 MHz, CDC13) 8

I
21.39, 74.35, 75.55, 87.04, 126.25, 129.25, 137.78, 142.09.

Synthesis of 1.1 -Ditolvl-4.4-diphenvl-2-propyn-L4-diol (207)

1.1 -Ditolyl-4,4-diphenyl-2-propyn-1,4-diol (207) was synthesized with slight 

modification of previously published method . 1 6 7  1,1 -Ditolyl-2-propyn-1 -ol (205) (1.16 g, 

4.91 mmol) was dissolved in THF (20 mL) under a nitrogen atmosphere. The solution 

was cooled to -78 °C and a solution of 2.5 M of n-butyllithium (10.80 mmol, 4.32 mL) in 

hexane was added dropwise and the reaction mixture was allowed to warm to 0 °C for 20 

min then cooled back down to -78  °C. Benzophenone (206) (0.895 g, 4.91 mmol) was 

dissolved in THF (5 mL) and added to the reaction flask dropwise and stirred for 6  h at 

room temperature. The reaction mixture was cooled to 0 °C and quenched with water (15 

mL). Aqueous sulfuric acid (1M) was added to the mixture until the solution turned 

acidic to pH paper. The aqueous layer was separated and extracted with diethyl ether (3
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x 15 mL) and the organic layers were combined, washed with saturated aqueous sodium 

chloride solution (15 mL), water (15 mL) and then dripd using sodium sulfate. The 

solvent was removed under reduced pressure. Column chromatography (silica gel, 

hexanes/ethylacetate 10:1) yielded 207 as a white solid (2.051 g, 0.049 mmol, 62.93%)

*H NMR (400 MHz, CDClj) 6 2.30 (s, 6 H), 2.80 (s, 1H), 2.89 (s, 1H), 7.08-7.59 (m,

18H); 13C NMR (100 MHz, CDC13) 8  21.27, 74.60, 74.82, 89.83, 90.59, 126.12, 126.24, 

127.97, 128.51, 129.19, 137.67, 142.25, 144.99; mp 126-127 °C.
I

I
Synthesis of 1.1 -Ditolvl-4.4-diphenylbutatriene (203)

1,1 -Ditolyl-4,4-diphenylbutatriene (203) was synthesized according to previously
I

168published literature. A solution o f 1,1 -ditolyl-4,4-diphenyl-2-propyn-1,4-diol (207) 

(0.239 g, 0.571 mmol) was dissolved in diethylether (3 mL) in a 50 mL two-neck round 

bottom flask under a nitrogen atmosphere at -60 °C. Finely powdered tin (II) chloride 

dihydrate (0.918g, 4.07 mmol) was added slowly to the solution in portions. The reaction

was allowed to stir at -60  °C for 30 min. The reaction mixture was then extracted with

!

diethylether (3 x 10 mL). Extracts were washed with ice cold water (10 mL), ice cold 

saturated aqueous sodium hydrogen carbonate solution (10 mL), and dried with sodium 

sulfate and concentrated under reduced pressure at 0 °C. Recrystallization (hexanes) 

yielded l,l-Ditolyl-4,4-diphenylbutatriene (203) as a yellow solid (0.0174 g, 0.0452 

mmol, 7.921%). ]H NMR (400 MHz, CDC13) 5 2.40 (s, 6 H), 7.18-7.58 (m, 18 H); 13C 

NMR (100 MHz, CDCI3 ) 8  21.55, 121.49, 123.12, 127.92, 128.58, 129.34, 129.57,

129.62, 136.28, 138.20, 139.12, 150.71, 151.99; mp 215-215.5 °C.
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Synthesis of 1.1 -Diphenylacetone (209)

The preparation of 209 followed a previously published procedure with slight 

modifications . 161 In a 250-mL three-neck round bottom flask, diphenylmethane (208) 

(68.1 mmol, 11.3 mL) was added to 127 mL of THF. The mixture was cooled to -78  °C 

under a nitrogen atmosphere and 2.5 M n-Butyllithium (28.05 mL, 70.10 mmol) in 

hexane was added dropwise. After addition, the solution was allowed to warm to room 

temperature and the color gradually became a dark red-orange color. Ethylacetate (34.0 

mmol, 3.33mL) was placed in another 500 mL three-neck with THF (85 mL) at room 

temperature under nitrogen. The diphenylmethyllithium solution was added dropwise via 

cannula. After complete addition, the reaction mixture was allowed to stir for 10 min and 

was then refluxed for an additional 10 min and allowed to reach room temperature. The 

reaction mixture was quenched with saturated aqueous ammonium chloride (50 mL), 

extracted with diethylether (3 x 25 mL). The ethereal extracts were washed with water 

(20 mL), brine (20 mL), and dried using sodium sulfate. The solvent was removed under 

reduced pressure. Column chromatography (silica gel, hexanes) yielded 1,1- 

diphenylacetone (209) as a yellow oil (5.90 g, 28.1 mmol, 82.6 %). ]H NMR (400 MHz, 

CDCft) § 2.28 (s, 3H), 5.18 (s, 1H), 7.30-7.40 (m, 10H); 13C NMR (100 MHz, CDCI3) 8  

30.30, 65.29, 127.48, 128.95, 129.21, 138.53, 206.68; IR (neat) 1712 (s), 1600 (m) cm '1.

tert-Butyldimethylr(l-methyl-2.2-diphenvlethenvl)oxvlsilane (213)

tert-Butyldimethyl[(l-methyl-2,2-diphenylethenyl)oxy]silane (213) was 

synthesized according to previously published literature . 1 6 9  To a suspension of potassium
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hydride (8 . 8 6  mmol, 0.355 g) in in THF (20 mL) was added a solution of 1,1- 

diphenylacetone (209) (8.06 mmol, 1.69 g) in THF (l(j mL) at 0 °C. The color of the 

solution became orange-red and the evolution of hydrogen was observed. After stirring 

at 20 °C for 2 h, a solution of feri-butyldimethylsilylchloride (1.82 g, 8.06 mmol) in THF 

(5 mL) was added and precipitation o f LiCl was observed. The reaction mixture was 

stirred for 48 h at room temperature. The solvent was removed under reduced pressure 

and the remaining solid was extracted with hexanes (3 x 20 mL). The organic layer was
I

filtered through Celite and the solvent was removed under reduced pressure. Column 

chromatography (Florisil, hexanes) yielded 213 as a ydllow oil (1.68^g, 5.18 mmol, 

64.1%). ]H NMR,(400 MHz, CDC13) 5 0.001 (s, 6 H), 0.85 (s, 9H), 7.16-7.35 (m, 10H); 

IR (neat) 3075 (m), 3015 (m), 2965 (s), 2910 (m), 1615 (s), 1490 (s), 1440 (s), 1400 (m), 

1270 (s), 1230 (s), 1190 (s), 1105 (s) cm '1.

Pyrolysis of Tetranhenvlallene

Tetraphenylallene (218) ( 1 0 0 . 2  mg) was passed through a horizontal quartz tube 

packed witli quartz chips, maintained at at 800 °C and at a constant pressure o f 0.03 torr. 

The product was collected in a cold trap (-78 °C) to give a white solid. The product was 

dissolved in C D C I 3  and !H and 13C NMR spectroscopy showed mostly starting material 

with only formation of minor unidentified products. !H NMR (500 MHz, CDCI3 ) 8  7.29- 

7.48 (m, 20 H); 13CNMR(125 MHz, C D C I 3 )  113.98, 127.95, 128.92, 128.98, 136.72, 

208.75.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pyrolysis of Tetraphenvlbutatriene (219)

A series o f pyrolysis experiments were carried out on tetraphenylbutatriene (219). 

Exactly (100 mg) of tetraphenylbutriene was passed through a horizontal quartz tube 

packed with quartz chips, maintained at 700, 800, 900 °C and at a pressure of 0.01 torr 

for three separate experiments. The products were collected in a cold trap (-78 °C) to 

give a yellow solid in each case. Pyrolysis at 700 and 800 °C led to good recovery of 

starting material. Pyrolysis at 900 °C led to recovery of tetraphenylbutatriene (219) and 

the formation a significant amount o f unidentified products. Purification of the crude 

mixture by preparative thin-layer chromatography using hexanes did not afford good 

separation for spectroscopic identification.

Pyrolysis of Ditolyldinhenvlbutatriene (203)

A series of pyrolysis experiments were carried out on ditolyldiphenylbutatriene 

(203). Butatriene 203 was weigh out (50.2 mg, 52.3 mg, 51.6 mg) and passed through a 

horizontal quartz tube packed with quartz chips, maintained at 700, 800, 900 °C, 

respectively, at a constant pressure o f 0.01 torr. The products were collected in a cold trap 

(-78 °C) to give a yellow solid in each case. Pyrolysis at 700 and 800 °C led to good 

recovery of starting material. Pyrolysis at 900 °C led to recovery of 

ditolyldiphenylbutatriene (203) and the formation a significant amount of unidentified 

products. Purification of the crude mixture by preparative thin-layer chromatography 

using hexanes led to insufficient separation for identification.
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APPENDIX A 
SPECTRA FOR SELECTED COMPOUNDS
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APPENDIX B 
B3LYP OPTIMIZED GEOMETRIES
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