
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Winter 2006

Comparing the XAM API with file system
programming
Stephen J. Todd
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Todd, Stephen J., "Comparing the XAM API with file system programming" (2006). Master's Theses and Capstones. 829.
https://scholars.unh.edu/thesis/829

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNH Scholars' Repository

https://core.ac.uk/display/215516468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/829?utm_source=scholars.unh.edu%2Fthesis%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

COMPARING THE XAM API WITH FILE SYSTEM PROGRAMMING

BY

STEPHEN J. TODD

B.S.C.S., University of New Hampshire, 1987

THESIS

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Computer Science

December, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1439296

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1439296

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis has been examined and approved.

Thesis Dfredor, Dr. Philip Hatcher
Professor of Computer Science

Dr. Robert Russell
Associate Professor of Computer Science

r)

(I
Scott A. Valcourt
Research Project Manager

3 . 0 , SLOOCp
Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION

To my grandfather, William Todd

to my father, James Todd

to my mother, Mary Todd

and with great affection to my own wife and family,

Katy, Becky, Matthew, and Boomer Todd.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would like to thank my company, EMC Corporation (and before that, Data General),

for funding my Master’s Degree. Thanks also to my EMC co-workers: Zoran

Cakeljic, Scott Ostapovicz, Tom Teugels, and Mike Kilian.

I would also like to thank my Thesis Advisor, Phil Hatcher, for being present for all

twenty years of my quest to finish my Master’s Degree!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

DEDICATION... ill

ACKNOWLEDGEMENTS.. iv

LIST OF TABLES.. vi

LIST OF FIGURES... vii

ABSTRACT..viii

CHAPTER PAGE

INTRODUCTION.. 1

1. THE CREATION OF XAM..3

2. THE XAM API... 5

3. REQUIREMENTS FOR A XAM SIMULATION.. 19

4. THE DESIGN OF A REFERENCE VIM... 27

5. COMPARING XAM TO THE FILE SYSTEM API...37

6. XAM BENEFITS VERSUS THE FILE SYSTEM API.......................................61

7. CONCLUDING REMARKS...69

LIST OF REFERENCES...71

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 1 - Supported XAM AMI Routines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1 - XAM Architecture.. 20

Figure 2 - Application Write... 39

Figure 3 - Application Read...42

Figure 4 - Dump Statistics... 45

Figure 5 - Application Delete... 48

Figure 6 - XAM Error Handling.. 50

Figure 7 - XSET Retention.. 63

Figure 8 - XSET Participating..65

v i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

COMPARING THE XAM API WITH

FILE SYSTEM PROGRAMMING

by

STEPHEN J. TODD

University of New Hampshire, December 2006

XAM is an application programming interface (API) currently being

standardized by the Storage Networking Industry Association (SNIA). XAM stands

for “extensible Access Method”. The XAM API will allow application developers to

store content on a new class of storage systems known as “fixed-content” storage

systems. This new class of storage system is optimized for the storage and retrieval

of unstructured data that changes infrequently.

While it is anticipated that SNIA will eventually ratify a XAM application

programmer’s interface (API), it is important that the new API presents an interface

that is useful yet offers the richness of the XAM protocol to the developer. An ideal

goal for the XAM API would be to become as ubiquitous and familiar to developers

as the block file system function calls such as fread(), fwrite(), remove(), etc.

This thesis will describe a XAM simulation framework that allows for the

building of XAM applications without the need for actual XAM hardware. It will also

compare the XAM API to the familiar block file system API. The XAM simulation can

form the basis of a robust framework for continuing XAM research; the results of

comparing XAM to file system applications will be fed back into the SNIA community.

v ii i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INTRODUCTION

The data storage industry has experienced tremendous growth in innovation

in the past twenty years. Starting with the introduction of RAID technology in the late

1980s, storage technologies began to develop a complex and robust feature set,

including intelligent caching technologies, snapshots, remote mirroring, fiber channel

and storage area networks (SANs), internet SCSI (iSCSI), storage virtualization, and

others. Storage has gone from being a peripheral to being a central consideration in

any company’s data center.

Innovation in the storage industry continues. In particular, storage

technologies that deal with the handling of fixed content are on the rise. Fixed

content has been defined by the Storage Networking Industry Association (SNIA) as

inactive and unchanging content, as opposed to active and changing information

(XAM FAQ, 2006). Consider a medical X-RAY image that is being placed on a

storage system. Is it likely that this medical image will be subsequently opened,

edited, and written back out again? The answer is no. An X-RAY, therefore, can be

considered fixed content. Other examples include scanned check images or email.

The storage industry has begun building innovative storage systems designed

specifically for fixed content.

SNIA has recognized the importance of fixed content storage systems and is

attempting to ratify a new application programmer’s interface (API) for fixed content

called XAM - the extensible Access Method. Developers that code to the XAM API

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can store their fixed content on storage systems that are designed with fixed content

in mind.

The adoption of XAM by application developers is the focus of this research.

How does the XAM API look? How can the API be evaluated? How does the API

compare with the block file system API? The starting point for the research begins

with the evolution of the XAM specification and its introduction into the SNIA

community.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

THE CREATION OF XAM

In 2002, EMC Corporation began shipping a storage system called Centera.

Centera is designed specifically for fixed content. The data written to Centera is

fixed in nature (not likely to be modified), and the following features are present in

the storage system:

• Content Addresses - when content is stored to Centera it is assigned

a unique handle based on a hash of the content. This content

address provides location independence (the application has no

control over or knowledge about the physical placement of the

content), and content authentication (the hash value guarantees that

the fixed content has not been tampered with or corrupted).

• Associated Metadata - When storing fixed content, Centera allows for

additional metadata to be stored along with the content. Metadata can

be both application-generated and Centera-specific.

• Retention - When storing fixed content, Centera also allows for an

application to specify a length of time for which the content must be

retained (i.e. delete is disallowed until the retention expires).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to take advantage of these innovative features, a new and proprietary

application programmer’s interface (API) was created known as the Centera API

(EMC Centera, 2006). The Centera API allows an application to store content,

receive a content address in return, and associate application-specific metadata with

content. The API can also associate retention values with specific content.

As the storage industry recognizes the importance of fixed content storage

systems, several vendors (including EMC) have united to create an industry

standard API known as XAM (extensible Access Method). Beginning in 2004, EMC

and IBM began working on a specification. In early 2005, several other vendors

joined the effort, including Hewlett-Packard, Hitachi, and Sun. Subsequently a joint

proposal was made (XAM Version 1.1) to certain independent software vendors, and

finally in late 2005, XAM Version 1.2 was proposed to SNIA under SNIA’s intellectual

property rules. The Fixed Content Aware Storage Technical Working Group

(FCASTWG) was formed with the goal of creating and ratifying a formal XAM

interface.

The input from the different vendors has resulted in a description of a system

which is similar to Centera. However, there are significant differences. Chief among

those differences is the fact that content need not be strictly fixed content. Flexibility

has been built into XAM for participating and non-participating content. Participating

content is hashed, and the resulting hash value participates in the construction of the

object identifier. Non-participating content does not contribute in any way to the

object identifier. This feature of XAM allows application developers more flexibility in

keeping the same identifier for an object if they so wish.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

THE XAM API

The XAM API will ultimately be implemented as a set of header files and a

shared library that will be linked in by user-space applications. XAM presents

several new concepts with which an application developer must become familiar,

including SYSTEMS, XSETS, properties and streams (also referred to as “blobs”),

and XU IDs (also referred to as XSET names). The material in this section is a short

summary of the version 1.2 specification currently being analyzed by SNIA (XAM

Specification, 2006).

SYSTEMS

A SYSTEM in XAM represents a fixed content storage subsystem, and is

a repository for fixed content. The XAM API will provide a connection string

which will allow XAM applications to connect to one or more SYSTEMS. A

SYSTEM has properties and capabilities that can be queried and/or set via the

XAM API. An example of a property would be an ASCII name. An example of a

capability would be retention, that is, the ability of the SYSTEM to disallow the

deletion of certain fixed content items.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An example of a SYSTEM would be the Centera system described in the

previous chapter.

It is not necessary to think of a SYSTEM as one piece of hardware. XAM

provides for multiple pieces of hardware to work together to form one SYSTEM. In

this sense a SYSTEM is a logical construct and can also be defined as a repository

forXSETs, which are described below.

XSETS

An XSET is the main programming construct in XAM. It represents

content that is written to a SYSTEM. The XSET can be made up of zero or more

streams, which roughly translate into files. (Note that in the 1.2 version of the

XAM Specification, streams are referred to as blobs). The XSET is also made up

of zero or more properties. Properties are name/value pairs that can be used to

describe content (e.g. metadata:data about the data) or can be used to describe

policies about the XSET (e.g. FixedRetentionPeriod=”1 year”, meaning disallow

deletes on this XSET for one year). Every XSET has default properties, such as

creation time.

XSETs also provide for describing fixed and non-fixed streams or

properties within an XSET. These attributes are referred to as Participating or

Non-participating in the XAM specification. Participating fields contribute to the

naming of the XSET (see XUID). If an XSET is retrieved from a SYSTEM and a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

participating field is modified, the XSET will receive a different name (XUID)

when it is re-written back to the SYSTEM.

XUIDS

A XUID is the name of an XSET (the version 1.2 specification exclusively

uses “XSET name” and not XUID, which has been adopted post version 1.2).

Unlike filenames, a XUID is generated by the SYSTEM, not by the application.

Also, a XUID does not present any location information to an application in the

same way that an absolute pathname does. Within XAM, all XSETs (and the

XUIDs that reference them) live in a flat namespace within the SYSTEM. When

an application wishes to access an XSET, the XUID that maps to the XSET must

be presented to the SYSTEM.

The creation of XUIDs in XAM has a specific set of rules, including the

participating versus non-participating rule mentioned previously. If any property

or stream is stored to an XSET as participating, the XUID created must be

formed by using the content of the property or stream (e.g. run an MD5 hash

over the value). If that property or stream is subsequently modified, the XUID

must change. If a new participating property or stream is added to an existing

XSET, the XUID must also change.

In version 1.2 of the XAM specification, there is not a formal XAM naming

proposal. The XUID will likely consist of a naming version, vendor information,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an XSET specific identifier, and potential vendor-specific extended information

(see section 3.3 of the XAM specification).

XAM FUNCTION CALLS

Before describing the individual XAM routines, the relationships between

the SDK, SYSTEMs, XSETs, and streams merit description.

The following is the general hierarchy of XAM function calls:

• A complete sequence of SYSTEM, XSET, or stream calls must

begin with a call to SDK_lnitialize() and end with a call to

SDK_Shutdown();

• A complete sequence of XSET or stream calls must begin with a

call to SDK_OpenSystem() and end with a call to

SYSTEM_Close();

• A complete sequence of stream calls must begin with a call to

either SYSTEM_OpenXSET() or XSET_Create(), and end with a

call to XSET_Store(), followed by a call to XSET_Close().

XSET manipulation is the heart of XAM. XSETs are initially created within

the context of a SYSTEM via the XSET_Create() call. Streams are created

(Stream_Create()), filled (Stream_Write()), and closed (Stream_Close() in the

context of the XSET handle. Name/value pairs are added to the XSET within the

context of this handle.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is critical to note that none of the streams or name/value pairs are

officially persisted until the XSET_Store() routine is called and a XUID is created.

Equally important is that the XSET_Close() routine should never be called before

the XSET_Store() operation because streams and properties will be lost if this

happens.

Note that all XAM routines are synchronous, with the exception of the

XSET_Query() routine. The reason for this routine's asynchronous behavior is

that the XSET_Query() routine may take a long time to run due to the potential

for the routine to iterate over millions of XSETs within the XAM SYSTEM.

The full set of XAM function calls are described below.

SDK InitializeO

This function is called by an application in order to initialize the XAM API. The

rationale for having this routine includes auto-loading of vendor-specific shared

libraries (see architecture section).

SDK GetO

This function is called in order to fetch the current parameters and settings

from the SDK such as the version of the SDK, a description of the XAM SYSTEMs

that the SDK is currently managing, and the format of the connection string that will

connect the application to a specific XAM SYSTEM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SDK SetO

This function is called in order to set name/value pairs in the SDK in whatever

future way an application developer might wish to use.

SDK Shutdown!)

This function shuts down the XAM API and causes the SDK to release any

resources that it has allocated. After calling SDK_Shutdown(), no other XAM

function calls can be made until SDK_lnitialize() is called once again.

SDK QpenSYSTEMO

This function is called after SDK_lnitialize(). The function accepts a

connection string identifying the SYSTEM with which the application wishes to

communicate. The connection string format is returned in the SDK_Get() function

call. This SYSTEM should be capable of storing and retrieving XSETs.

SYSTEM GetO

This function fetches properties and policies from the SYSTEM, such as

whether or not the system supports specific features like retention.

SYSTEM Close!)

This function closes an open SYSTEM. No operations can be performed on

the SYSTEM unless a subsequent call to SDK_OpenSystem() occurs.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SYSTEM XSETExistsfl

This function accepts a XUID as an argument and returns whether or not the

XSET exists on the SYSTEM.

SYSTEM DeleteXSETO

This function removes an XSET from a SYSTEM.

SYSTEM ImportXSETO

This function imports an existing XSET (which was previously exported from

another SYSTEM) and stores the XSET into the given SYSTEM.

SYSTEM ExportXSETO

This function fetches an XSET from a SYSTEM for the purpose of importing it

into another SYSTEM.

SYSTEM QpenXSETO

This function accepts a XUID as an argument and opens an XSET for

subsequent processing by the application.

XSET Created

This function is called when the application wishes to create a new XSET that

it will ultimately store on a SYSTEM.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XSET Getn

This function allows the application to retrieve XSET name/value pairs, such

as default XSET parameters (i.e. creation time) as well as user-defined name/value

pairs.

XSET SetO

This function allows the application to set XSET name/value pairs. These

name/value pairs can be application-defined (i.e. color-’red”) or XAM-defined

(FixedRetentionPolicy=”3 years”).

XSET StoreO

This function commits the XSET to the SYSTEM. Upon a successful

completion of this API, call a XUID will be returned to the application. The

application can then use this XUID to refer to this specific XSET.

XSET CloseO

This function ends all processing on the currently open XSET. Any

subsequent processing on this XSET must be accomplished via an open call.

XSET DeleteStreamO

This function removes a stream (blob) from an XSET.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XSET QuervO

This function specifies query or search criteria. The SYSTEM, upon receiving

the query, returns a list of XUIDs representing XSETs that satisfy the search criteria.

The list of XUIDs is returned as a stream within the XSET; aborting the query

operation is accomplished by either closing the XSET or telling the stream to abort

the query. This call is asynchronous and is evaluated in a subsequent section.

XSET QpenStreamO

This function opens a specific stream within an XSET. The stream is

identified via a name that is passed as an argument to this routine.

Stream Created

This function is called in the context of an XSET, and it prepares the XSET to

associate a subsequent stream of data (a series of bytes) with a name that the

application assigns to the stream.

Stream ReadO

This function accepts a buffer as an argument and XAM will place contiguous

bytes of content from the particular XSET stream into the buffer.

Stream WriteO

This function passes a buffer to XAM in the context of an XSET stream, and

XAM temporarily stores the data until a subsequent XSET_Store() operation.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stream StopQuervO

This function halts a query which was previously submitted via the

XSET_Query() routine. The stream contains a list of XUIDs that satisfied the

XSET_Query(); but by calling this routine the stream is destroyed.

Stream CloseO

This function closes a previously opened stream.

XSET System PROPERTIES

The XSET_Get() routine allows an application to fetch predefined XSET

name/value pairs (called properties). These names and their meanings are

described below.

svstem.xset.class

For version 1.2, this field is always set to “Default”. In the future, it is

anticipated that standard classes will be defined which require strict metadata

formats, and the class will describe the metadata type, such as “email”, or “legal”.

svstem.xset.version

For version 1.2 of the standard this field is always set to “1.0”.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

svstem.xset.parent

XSET name (XUID) of a parent from which this XSET was derived (if any).

This field is non-NULL if a previously existing XSET is modified and results in a new

XUID being generated.

svstem.xset.name

This field represents the name of this XSET (the XUID).

svstem.creator.vendor

This field represents the name of the storage vendor providing the storage for

this SYSTEM (e.g. IBM).

svstem.creator.version

This field represents the version of software running on the SYSTEM that

initially stored this XSET.

svstem.creator.user

This routine stores the name of the user/application that originally created this

XSET.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

svstem.ctime

This field represents the time of initial XSET creation.

svstem.mtime

This field represents the last time the XSET was modified (i.e. XSET_Store()

was called).

svstem.stime

This field represents the time the XSET was initially stored (or imported) into

the current SYSTEM.

svstem.etime

This field represents the time of a retention event. Retention events, as

defined in version 1.2, determine whether or not an XSET can be deleted.

XSET POLICIES

The XSET_Set() routine allows an application to set predefined XSET

name/value pairs that map to policies supported by the underlying SYSTEM. These

names and their meanings are described below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FixedRetentionPeriod

This XSET parameter is set if the application wishes to retain a given XSET

for a particular amount of time. The SYSTEM must prevent deletion if the

FixedRetentionPeriod has not expired.

FixedRetentionClass

This parameter is similar to FixedRetentionPeriod except a retention class is

actually a string that the SYSTEM maps to a numeric retention period. It allows an

administrator to modify a retention period without having to modify every individual

XSET that holds said value.

VariableRetentionPeriod

This parameter is similar to FixedRetentionPeriod except the retention period

clock begins ticking from the time when a retention event occurs. Refer to the XAM

Specification version 1.2 for a more detailed description or retention events.

EBRStateEnabled

When set to TRUE, this parameter means that the XSET is a candidate for

Event Based Retention. Retention is only measured after the occurrence of a given

event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EBRState

When set to TRUE, this parameter means that an event has occurred and the

current time should be recorded in the XSET (as a name/value pair tagged

specifically EBRState), and all retention activities should be based on this time.

RetentionHold

When set to TRUE, this parameter means that the XSET should be

permanently retained.

Delete

When set to TRUE, this parameter means that the XSET should be deleted

after its retention period has expired.

Shredding

When set to TRUE, this parameter means that the XSET should be

electronically shredded after it has been deleted. This assumes that any and all

copies of the XSET are overwritten on the original medium where the XSET was

stored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

REQUIREMENTS FOR A XAM SIMULATION

In order to evaluate XAM application code, a XAM simulation environment

must first be created. There are currently no XAM systems or software available to

help with an evaluation effort. Indeed, there won’t be any XAM systems or software

available until the XAM specification has at least been ratified.

A full-scale XAM simulation is certainly valuable beyond this thesis. It would

allow many developers to try their hand at writing XAM applications without the need

for XAM hardware. In addition, if a full-scale XAM simulation was endorsed by SNIA

as a functionally correct implementation of XAM, it would allow application

developers to write their software and be assured that the code that runs against the

XAM simulator would most likely run against an actual XAM system (so long as the

XAM system was compliant). Such a XAM simulator should run as part of the XAM

architecture which is listed in Figure 1 (XAM Specification, 2006).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XAM API Java
Bindings

A
Reference VIM

VIM Interface

File System(?) DR550 Centera

Figure 1 - XAM Architecture (from XAM Specification)

The XAM architecture shown in Figure 1 has multiple levels. At the bottom

level are two XAM-compliant hardware systems. EMC’s Centera product and IBM’s

DR550 system are shown as examples of systems that could support the XAM API.

One level up from the hardware systems are software modules known as VIMs, or

Vendor Interface Modules. These modules have a standard interface that converts

XAM requests into native requests supported by the underlying hardware systems.

For example, a XAM API call that is routed to the Centera VIM will be converted to

the Centera protocol and sent over a TCP/IP network to the Centera. The IBM

DR550 VIM will behave in a similar manner.

The level above the VIMs is known as the XAM SDK. The SDK is envisioned

to be a user-space library that can dynamically load any VIM that is present in the

system. The SDK has a set of header files which declare the set of XAM function

calls described previously. The implementation of these function calls lives within

the SDK library; most of the calls will undoubtedly be mapped to a VIM.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At the very top level of the XAM architecture live the applications that will

ultimately use XAM. The goal of this thesis is to write XAM applications that

function in the context of this architecture. Note that SNIA is also discussing other

pieces of the architecture, such as extensions to XAM, vendor-unique extensions to

XAM, and different language bindings such as Java-to-C (XAM Specification, 2006).

Finally, the architecture shows a reference VIM that does not interface to any

remote hardware, but rather interfaces to a local store such as a file system. The

purpose of the reference VIM is to fully support all XAM API calls such that a XAM

application developer could write XAM test code that uses the local store to simulate

a SYSTEM that is capable of XSET operations.

This thesis implements a subset of a reference VIM. A reference VIM enables

the writing of XAM applications which in turn can be compared to traditional file

system applications. It is not necessary to simulate the entire XAM API, but it is

more important to simulate those XAM function calls that have to deal with the

creation, reading, writing, and deletion of XSETs. Other XAM operations, such as

the setting and getting of SYSTEM properties, are less important and need not be

implemented for this thesis.

Table 1 lists the entire set of XAM API calls, the section of the XAM

specification where the function can be found, and whether or not the routine is

supported as part of this thesis. The table also describes the required behavior of

the reference VIM for supported routines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1 - Supported XAM API Routines

XAM Routine Spec Supported? Implementation Strategy
SDKInitialize() 6.4.2 YES The reference VIM must read a

configuration file describing the
SYSTEM name, directory
location, and authorization
privileges (i.e. user=”steve”).

SDK Get() 6.4.3 NO
SDK SetO 6.4.4 NO
SDK_Shutdown() 6.4.5 YES The reference VIM must cleanly

shut down.
SDKOpenSYSTEMO 6.4.6 YES The reference VIM must verify

the existence of the SYSTEM,
and verify the existence o f a
proper directory to store/retrieve
XSETs.

SYSTEM GetO 6.4.7 NO
SYSTEM_Close() 6.4.8 YES The reference VIM must close

an open SYSTEM.
SYSTEM XSETExistsO 6.4.9 NO
SY STEMDeleteXSETO 6.4.10 YES The reference VIM must allow a

XAM application to delete an
XSET for a given XUID.

SYSTEM ImportXSETO 6.4.11 NO
SYSTEM ExportXSETO 6.4.12 NO
SYSTEM_OpenXSET0 6.4.13 YES The reference VIM must accept

a XUID and return a handle to
the corresponding XSET.

XSET_CreateO 6.4.14 YES The reference VIM must create
a data structure that tracks a
new XSET.

XSET_Get() 6.4.15 YES The reference VIM must
support fetching policies and
properties from an XSET.

XSET_SetO 6.4.16 NO The reference VIM must
support the setting of policies
and properties to an XSET .

XSET_StoreO 6.4.17 YES The reference VIM must
persistently store the XSET (and
stream) that was recently
created and/or modified, and
return a XUID to the application

XSET_CloseQ 6.4.18 YES The reference VIM must close
any resources associated with
the XSET.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1 Continued

XSET DeleteStream() 6.4.19 NO
XSET QueryO 6.4.20 NO
XSETOpenStreamO 6.4.21 YES The reference VIM must return

a stream (file) handle for a
given XSET and stream name.

Stream_Create() 6.4.22 YES The reference VIM must create
a byte stream for the XSET and
give it a name.

Stream_Read() 6.4.23 YES The reference VIM must allow a
XAM application to read from a
specific XSET stream.

Stream_Write() 6.4.24 YES The reference VIM must allow a
XAM application to write bytes
to a given XSET stream.

Stream StopQueryO 6.4.25 NO
Stream_Close() 6.4.26 YES The reference VIM must free

the byte stream created by either
the create or open method.

Not all details of the Version 1.2 specification are covered in the above table.

Additionally, Version 1.2 of the XAM spec is not complete in its treatment of certain

topics. Therefore, the prototype reference VIM implemented for this thesis will have

certain limitations.

VIM Auto-Load - Section 5.1

There is no description of the specific algorithm that XAM will use to

dynamically locate and auto-load VIMs. Therefore, this prototype will simply assume

that the reference VIM is available and will always load it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Storage Pools - Section 4.3.1

There is no description of exactly how an application XSET gets stored into a

XAM storage pool. There is no description on how to limit applications to write/read

to and from their own storage pool. Therefore, the reference VIM will present one

flat, globally accessible XSET name space for this thesis.

XAM Naming Model - Section 3.3

The version 1.2 specification, while describing a general structure of XSET

names (XUIDs), does not provide specific details on the structure of XSET names.

Therefore, the prototype reference VIM will create random XUIDs based on

timestamps and sequence numbers. Algorithms for modifying XUIDs based on

participating and non-participating properties and streams are also not fully

described. The prototype reference VIM will not support participating streams

because they are not necessary for the comparison to the file system API.

Multiple Application Threads

The application threading model for XAM is not described. Given that threads

are not necessary to compare XAM to a file system API, support for multiple threads

will not exist in the prototype VIM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Error Handling

Version 1.2 of the XAM specification defers description of specific error

values and error-handling behavior (until implementation). Therefore the prototype

reference VIM will simply return two error codes (success or failure) and not attempt

to categorize specific types of XAM errors.

Credential String

The specification describes a credential string which allows an application to

supply a specific value that authenticates the application and allows for the creation

and manipulation of XSETs. The specification does not provide any details on the

structure of the credential string. The specification also does not provide any details

on applications being granted specific access rights for writing versus reading or

creating versus deleting. Therefore, the reference VIM will expect the credential

string to contain a user name. If the user name is allowed to access a given

SYSTEM, then the application will be allowed to access any and all XSET

operations.

Retention Library - Section 4.2

The XAM specification describes building an extension library to XAM that

implements retention. This library is not implemented, but an example of one

retention feature (FixedRetentionPeriod) will be supported via the XSET_Set()

routine to demonstrate the retention features of XAM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CloseO Semantics

The specification is unclear on how to handle close operations (on either the

SYSTEM or XSET level) should streams and/or XSETs be left open by the

application. On close operations, the prototype reference VIM will not check to see if

all other open handles have been properly closed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

THE DESIGN OF A REFERENCE VIM

The reference VIM, hereafter noted as the RVIM, can be implemented using a

hierarchical set of directories and files as described below.

The RVIM Confia File fRCF)

The first file to consider in the implementation of an RVIM is a configuration

file loaded by the RVIM at system startup. The RCF can be located in the current

working directory, or an environment variable can be set to instruct the RVIM of the

location (and perhaps the name) of the RCF.

In order to implement a prototype RVIM, the RCF should contain the following

information:

• The name of a SYSTEM (an ASCII string, i.e. “xam-system-T’);

• The XAM SYSTEM Base Directory (XBD, defined below); and

• The names of the users allowed to access the SYSTEM (as specified in the

SDK_OpenSYSTEM() call).

Note that these items are sufficient for the purpose of writing a subset of XAM

code. This file is read-only for the RVIM as there is no need to support the setting of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SYSTEM properties as part of this project. In order to more fully implement XAM,

the following could be added to the RCF:

• The maximum number of allowable XSETs (in order to simulate a “full”

SYSTEM;

• SYSTEM properties (i.e. name/value pairs such as “retention=true”);

• Multiple SYSTEM names (and base directories) that allow an application to

simulate simultaneous use of multiple SYSTEMS, including importing XSETs

from one SYSTEM and exporting to another; and

• The number of XSETs currently in the SYSTEM Base Directory. Dynamically

keeping this information for every new XSET would allow the RVIM to

simulate XSET capacity restrictions.

The SYSTEM Base Directory and XSET subdirectories

The XAM SYSTEM base directory (XBD) is used as a working directory when

a XAM application connects to a given SYSTEM name. The XBD contains one type

of object: directories that represent XSETs. If an XBD is currently empty, that

means the SYSTEM currently contains no XSETs. If the XBD contains one or more

subdirectories, then these subdirectories store XSETs that are contained by the

SYSTEM. The name of the subdirectory that stores XSET information will be the

actual XUID for that XSET.

XSET subdirectories (which have the XUID as the name) contain two types of

files: (1) an XSET XML file which contains the names of all properties, policies, and

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

streams that are associated with the XSET, and (2) the actual streams (files) stored

as part of the XSET.

The XSET XML file has the following XML structure:

• A properties tag which contains all properties/policies of the XSET,

which encloses an individual property containing the name/value

pair for a given property or policy within the XSET; and

• A streams tag which contains all streams of the XSET, which

encloses an individual stream tag containing the name of the

stream that was stored into the XSET.

The XSET subdirectory also contains files that represent the streams stored

as part of the XSET. The names of the files are the names given to the stream

when stored to the XSET.

By way of example, if a XAM application developer wishes to create an XSET

of an X-RAY (with a stream named “x-ray”) for a patient named “Steve”, the RVIM

would take the following steps:

• create an XSET subdirectory with a temporary name,

• within that subdirectory, store the X-RAY in a file named “x-ray”,

• store the following XML on an “XSET_Store()”

<xml>
<properties>

<property name-’creation.time” ...
o
o “/>

<property name-’Patient” value=”Steve”/>
</properties>
<streams>

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<stream name=”x-ray”/>
</streams>

</xml>

• change the name of the subdirectory to match the returned XUID

The last step of naming the subdirectory takes into account that the prototype

reference VIM names XUIDs based on timestamps and sequence numbers, which

are known ahead of time. Future reference VIMs will have to consider that the

XSET directory will need to be created before all properties and streams are known,

as well as participating and non-participating parameters, and the initial directory

name will likely be temporary and may require a rename once the XUID is known.

Directories that use the XUID as a name need not be created at all for an

implementation that uses a database to map XUIDs to directories. For the sake of

this project, however, a database will not be used, but XUIDs will intrinsically map to

directories, as will be described in the “Algorithms” section below.

RVIM Algorithms

Given the directory and file structure described above, this section describes

the algorithms that are implemented by the RVIM. VIMs plug into a larger XAM SDK

framework that is not yet in existence. Therefore, the VIM API for this prototype was

coded as a straight one-to-one mapping of the XAM SDK API to a VIM API. What

follows is a listing of all VIM APIs and the design of the functions based on the files

and directories described above.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VIM SDK Initialized

This routine initializes the RVIM. It loads the RVIM Config File (RCF) and

parses the XML that contains the names of SYSTEMS, the base directory for each

SYSTEM, and the users permitted to access the SYSTEM. These values are then

placed in an RCF memory structure for future access. This RCF memory structure

contains all of the information for the different SYSTEMS.

VIM SDK Shutdown^

This routine shuts down the RVIM by simply freeing the memory associated

with the RVIM Config File (RCF).

VIM SDK QpenSYSTEMO

This routine accepts a connection string and security credentials and then

returns a handle to a SYSTEM. The connection string for the RVIM should be the

name of a SYSTEM found in the RVIM Config File. The security credentials for this

project will simply be a string containing a user name. The RVIM scans the RCF in

memory data structure that contains the RCF information, locates the appropriate

SYSTEM, and verifies the security credentials. If the credentials match, the RVIM

returns a handle pointing to an offset in the RCF in-memory data structure that

contains the information for this SYSTEM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VIM SYSTEM CloseO

This routine closes a SYSTEM for XSET operations. The algorithm accepts a

SYSTEM handle and converts it to a previously allocated in-memory SYSTEM data

structure, and frees that data structure.

VIM SYSTEM DeleteXSETO

This routine attempts to delete an XSET. The algorithm examines the in

memory data structure for the SYSTEM and extracts the SYSTEM base directory

pathname. Then it appends the XUID name onto this pathname and determines that

the XSET directory exists. Upon success, the RVIM prototype must first check the

XSET data structure on disk to determine if the “FixedRetentionPeriod” parameter is

set. If "FixedRetentionPeriod" is set, and the creation time plus retention period is

not greater than the current time, the delete request must be rejected. If it is not set,

the RVIM removes the on-disk XSET XML file, removes any streams (files) in the

directory, and then removes the XSET directory itself. The XSET no longer exists

within the context of that SYSTEM.

VIM SYSTEM QpenXSETO

This routine accepts a SYSTEM handle and a XUID and returns an XSET

handle (if the XSET exists within the SYSTEM). The algorithm maps the SYSTEM

handle to the in-memory SYSTEM data structure and extracts the SYSTEM base

directory. The XUID is concatenated to the base directory string and verifies that the

XSET directory exists. If the directory exists, an attempt is made to open the

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

standard XSET XML file that should be present in the XSET directory. A parser is

then used to populate an in-memory XSET XML file with property and stream

information present in the file. The address of the in-memory XSET XML file is

converted into an XSET handle and returned to the application.

VIM XSET CreateO

This routine accepts a handle to a SYSTEM and returns a handle to a new

XSET. The routine maps the SYSTEM handle to the SYSTEM offset in the RVIM in

memory data structure, and from this information it can locate the SYSTEM base

directory where it should store the new XSET. At this point, in a more robust RVIM

implementation, the number of XSETs can be incremented and checked against the

maximum allowable.

The next step for the RVIM is to create a directory for the new XSET. As

mentioned previously, the name of the XSET directory will map to the XUID. The

algorithm described here creates a directory name that will ultimately be used as the

XUID. The algorithm concatenates the current counter of XSETs in this system with

a timestamp such as the one returned from the time() system call. So the fifth XSET

written to a SYSTEM at a given time may have a XUID of “005-1152654373”, and

the RVIM creates a subdirectory of the same name. Note that the format of this

XUID is not necessarily standard, however the XUID is opaque to the application

and therefore it serves the purpose for an RVIM.

Once the XSET subdirectory has been created, an in-memory version of the

XSET XML file is created, and the number of streams is set to zero. The “system

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

properties” are given default values and added to the in-memory XSET structure. A

handle is then returned to the application which maps to this in-memory version.

VIM XSET GetO

This routine accepts an XSET handle and a character string for a specific

property or policy within the XSET, as well as a pointer to a string that will eventually

contain the value of that property or policy, if it exists. The algorithm maps the XSET

handle to the in-memory XSET XML file and searches for the specified property. If

the property name is found, it copies the value into the character string supplied by

the caller.

VIM XSET SetO

This routine accepts an XSET handle and a name/value pair of character

strings. It maps the XSET handle to the in-memory XSET XML file and either

changes or inserts the name/value pair in the in-memory XSET XML file.

VIM XSET StoreO

This routine accepts an XSET handle and returns a XUID. As mentioned

previously, this version of the RVIM will never modify an existing XUID because

participating streams and properties are not supported. The algorithm that this

routine will use is to map the XSET handle to the in-memory XSET XML data

structure, and then create (or overwrite) the in-memory XML file (which contains all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

stream names and property tags) into an actual XML file in the XSET directory. The

XUID for the XSET is then returned to the application.

VIM XSET CloseO

This routine accepts an XSET handle and closes the XSET so that no more

operations can be performed on it. The algorithm simply frees the in-memory data

structure being used to track the XSET XML file. For this prototype, no checks are

made as to whether all streams have been closed, because the XAM specification

does not specify how to handle unclosed streams.

VIM XSET QpenStreamO

This routine accepts an XSET handle and a stream name and attempts to

open an existing stream for the application. The XSET handle is mapped to the

XSET XML in-memory data structure to find the XUID and the pathname to the

XSET directory. The stream name passed into this routine is then concatenated and

an attempt is made to open the file. If the open succeeds, the file handle is

converted to a stream handle and returned to the application.

VIM Stream Created

Once an application has created an XSET, a next logical step would be to

create a stream, a series of bytes that will be given a name and stored as part of the

XSET. This routine accepts an XSET handle and a stream name. The XSET

handle will point to the in-memory version of the XSET XML file, which contains the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XSET base directory and the XUID name, which allows an absolute pathname to be

built. The name of the stream is concatenated to this pathname. A file can then be

opened for writing, and if this call succeeds, the stream name is added to the in

memory XSET XML file, and a handle to the file is returned to the application.

VIM Stream ReadO

This routine accepts a stream handle, a buffer, length, and offset, and

attempts to read from the open file into the buffer. The stream handle is converted to

a file descriptor and the operation is attempted by the RVIM.

VIM Stream WriteO

Once the application has a stream handle, it can issue writes to the stream by

passing the stream handle along with a buffer and length. The RVIM converts the

stream handle to a file handle and attempts to write the buffer to the file.

VIM Stream CloseO

This routine simply closes the stream handle by converting it to a file

descriptor and issuing the close command.

Given the file system layout, configuration files, and RVIM algorithms

described above, application code can now be written to exercise and evaluate the

XAM API.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

COMPARING XAM TO THE FILE SYSTEM API

Now that a framework has been put in place to enable the writing of XAM

applications, XAM applications can be written. These XAM applications can be

placed side by side with similar applications written using a file system API. This

exercise will point out areas of XAM that need improvement in order to move toward

a goal of the XAM API becoming ubiquitous.

This thesis will use the POSIX file system API as a basis for comparison. In

particular, comparisons will be made against file system routines described in the

Open Group Base Specification, which is freely available for reading on the

www.ODenarouD.ora website (Open Group).

There are five general points of comparison when XAM code is written and

compared to file system code. These comparison points are (1) creation of an

XSET, (2) reading data from an XSET, (3) reading metadata from an existing XSET,

(4) deleting an XSET, and (5) the error handling infrastructure. Note that these

comparisons are made against functionality that is already supported by the POSIX

file system API. Areas where XAM provides functionality not supported by the

POSIX file system API will be covered in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ODenarouD.ora

Coding Criteria

The XAM and file system software that will be written will adhere to the same

coding styles so as to facilitate comparison. In particular, (1) programs will only

include comments that delineate major sections of code (e.g. “open”, “write” “close”),

(2) error values will not be inspected by the application (this results in a reduced

amount of code to compare), (3) comparable programs will accept similar input when

applicable, and (4) programs will be written in C. Note that ignoring error values

completely is not a good idea, so a code sample will be included that does evaluate

XAM error handling.

Creation of an XSET

This application creates an XSET using XAM, and creates a file using the file

system API. The application code simply writes the alphabet into a file. In both

cases the file name is called alphabet. Figure 2 shows the two sets of code side by

side.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XAM

1 #include "stdio.h"
2 #include "xamapi.h"
3
4 main (int argc, char *argv[])
5 {
6 // declare variables
7
8 STATUS_TYPE status;
9 SDKHandle sdkhandle;
10 SYSTEMHandle systemhandle;
11 XSETHandle xset;
12 STREAMHandle stream;
13 char xuid_array[XAM_STRING_LENGTH];
14
15 char WRITEJ3TRING[) =
16 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
17 int bytes_written;
18
19 if (argc != 3)
2 0 {
21 printf("\nUsage: write system username\n");
22 exit(-1);
23 }
24
25 // open
26
27 status
28 status
29
30
31
32 status
33 status
34
35
36 // write
37
38 status * Stream_Write(stream,
39 sizeof(WRITE_STRING),
40 WRITE_S TRING,
41 &bytes_written);
42 status = XSET_Store(xset, &xuid_array[0]);
43
44 // close
45
46 status = Stream_Close(stream);
47 status - XSET_Close(xset);
48 SYSTEM_Close(systemhandle);
49 status « SDK_Shutdown(sdkhandle);
50
51 printf("%s\n”, xuid_array);
52)

FILE SYSTEM

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 main(int argc, char *argv(3)
5 {
6 // declare variables
7
8 FILE *fp;
9 char WRITE_STRING[] =

10 ’’ABCDEFGHI JKLMNOPQRSTUVWXYZ ’’ ;
11 int bytes_written;
12
13 if (argc != 1)
14 {
15 printf("\nUsage: fs_write\n");
16 exit(-1);
17 }
18
19
20
21
22
23
24
25 // open
26
27 fp * fopen("alphabet”,"w");
28
29
30
31
32
33
34
35
36 // write
37
38 bytes_written - fwrite(WRITE_STRING,
39 sizeof(WRITE_STRING),
40 1,
41 fp);
42
43
44 // close
45
46 fclose(fp);
47
48 printf ("\n");
49 }

= SDK_Imtialize (Ssdkhandle);
= SDK_OpenSYSTEM(sdkhandle,

argv[l),
argv[2],
ssystemhandle);

= XSET_Create(systemhandle, &xset);
= Stream_Create(xset, "alphabet", 0,

&stream);

Figure 2 - Application Write

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

What are the items that stand out from the side by side comparison?

Number of Handles

The XAM application code requires four handles for this simple exercise

(SDK, SYSTEM, XSET, and stream). The file system code requires only one (FILE).

Number of Routines

The XAM application code requires ten routines to create an XSET, while the

file system code requires three.

Program and Function Arguments

The main XAM application code requires two arguments: the name of the

XAM SYSTEM and the security credentials string. The main file system code

requires no arguments. The XAM code requires no flags when opening an XSET,

while the file system code requires permissions such as "w".

Return Value

The XAM application code returns a XUID. The file system code returns

nothing.

General Comments on Creating an XSET

A subtle difference that is not apparent in XSET creation is that the XAM code

specifies location via a SYSTEM, while the file system code specifies location via its

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

current working directory. For file systems the environment of a process always

contains the root directory location T and the current working directory. XAM does

not have this paradigm, and it asks the application to specify a physical storage

subsystem as a target.

Reading an XSET

Figure 3 shows code that reads the alphabetical string.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XAM

1 #include "stdio.h"
2 #include "xamapi.h"
3
4
5
6 main(int argc, char *argv[])
7 {
8 // declare variables
9

10 STATUSJTYPE status;
11 SDKHandle sdkhandle;
12 SYSTEMHandle systemhandle;
13 XSETHandle xset;
14 STREAMHandle stream;
15
16 char READ_STRING[XAM_STRING_LENGTH];
17 int bytes read;
18
19 if (argc != 4)
20 {
21 printf("\nUsage: read system user xuid\n");
22 exit(-1);
23 }
24
25 // open
26
27 status - SDK_Initialize(Ssdkhandle);
28 status - SDK OpenSYSTEM(sdkhandle.
29 argv[l],
30 argv[2],
31 fisystemhandle);
32 status « SYSTEM_OpenXSET(systemhandle,
33 argv[3j,
34 &xset);
35 status = XSET OpenStream(xset,
36 "alphabet",
37 &stream);
38
39 // read
40
41 status = Stream Read(stream,
42 0,
43 sizeof(READ STRING),
44 READ_STRING,
45 &bytes read);
46
47 // close
48
49 status = Stream Close(stream);
50 status = XSET Close(xset);
51 SYSTEM Close(systemhandle);
52 status = SDK Shutdown(sdkhandle);
53
54 printf ("%s\n", READ STRING);
55 }

FILE SYSTEM

1 ^include <stdio.h>
2 ^include <stdlib.h>
3
4 #define MAX_BUF 512
5
6 main(int argc, char *argv[])
7 {
8 // declare variables
9

10 FILE *fp;
11 char READ_STRING[MAX_BUF];
12 int bytes read;
13
14 if (argc != 1)
15 {
16 printf("\nUsage: fs_read\n");
17 exit(-1);
18)
19
20
21
22
23
24
25 // open
26
27 fp = fopen("alphabet”,"r");
28
29
30
31
32
33
34
35
36
37
38
39 // read
40
41 bytes read = fread(READ STRING,
42 sizeof(READ STRING),
43 1,
44 fp) ;
45
46
47 I I close
48
49 fclose (fp);
50
51 printf("%s\n", READ STRING);
52 }

Figure 3 - Application Read

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of Handles

The XAM code again uses many more handles (found on lines 11-14). The

file system code only uses one (found on line 10).

Number of Routines

The XAM code in this case uses nine function calls as opposed to three for

the file system. Starting on line 27 both applications execute open() logic, but it

takes the XAM application four routines to execute an open(), whereas the file

system code accomplishes an open() using one line of code.

Program and Function Arguments

The XAM application in this use case requires three parameters: the XAM

SYSTEM, the credentials, and the XUID of the XSET that contains the alphabetical

string. The file system code still requires no program arguments. Again, the file

system code requires a flag on its open call such as "r".

General Comments on Reading an XSET

Again, the XAM application must specify the context of the read command by

specifying a SYSTEM on the command line. Similarly, the file system application

assumes the context is its current working directory.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Properties of an XSET

Figure 4 shows code that dumps XSET statistics. Note that the equivalent in

the file system API is the “stat” routine, which takes a file name and returns a

structure which contains attributes about a file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XAM

1 #include "stdio.h"
2 #include "xamapi.h"
3
4
5
6
7 main(int argc, char *argv[])
8 {
9 // declare variables

10
11 STATUS_TYPE status;
12 SDKHandle sdkhandle;
13 SYSTEMHandle systemhandle;
14 XSETHandle xset;
15 STREAMHandle stream;
16 xset_prop_list_t props;
17
18 int i;
19
20 if (argc !“ 4)
21 {
22 printf("\nUsage: dump sys user xuid\n");
23 exit (-1);
24 }
25
26 // open
27
28 status = SDK_Initialize(Ssdkhandle);
29 status = SDK_OpenSYSTEM(sdkhandle,
30 argv[l],
31 argv[2],
32 Ssystemhandle);
33 status = SYSTEM_OpenXSET(systemhandle,
34 argv[3],
35 Sxset);
36
37 // fetch attributes
38
39 status = XSET_GetProperties(xset, Sprops);
40
41 // print attributes
42
43 for (i=Q;i < props.n_properties;i++)
44 {
45 printf ("%s: %s\n”, props.name[i],
4 6 props.value [i]);
47 }
48
49
50
51
52
53
54
55
56 // close
57
58 status = XSET_Close(xset);
59 SYSTEM_Close(systemhandle);
60 status = SDK_Shutdown(sdkhandle);
61 }

Figure 4 -

FILE SYSTEM

1 linclude <stdio.h>
2 #include <stdlib.h>
3 #include <sys/types.h>
4 tinclude <sys/stat.h>
5 #include <unistd.h>
6
7 main(int argc, char *argv[])
8 {
9 // declare variables

10
11 struct stat buf;
12 int err;
13
14 if (argc != 2)
15 {
16 printf(”\nUsage: fs_dump filenameNn");
17 exit(-l);
18)
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 // fetch attributes
38
39 err - stat(argv[l],Sbuf);
40
41 // print attributes
42
43 printf("st_dev: %d\n", buf.st_dev);
44 printf(”st_ino: %d\n", buf,st_ino);
45 printf("st_mode: %d\n", buf.st_mode);
46 printf("st_nlink: %d\n", buf.st_nlink) i
47 printf("st_uid: %d\n", buf.st_uid);
48 printf(”st_gid: %d\n", buf.st_gid);
49 printf("st_rdev: %d\n”, buf.st_rdev);
50 printf("st_size: %d\n", buf.st_size);
51 printf("st_blksize: %d\n”, buf,st_blksize);
52 printf(Mst_blocks: %d\n", buf.st_blocks);
53 printf(”st_atime: %d\n", buf.st_atime);
54 printf("st_mtime: %d\n", buf.st_mtime);
55 printf("st_ctime: %d\n", buf.st_ctime);
56 }

Statistics

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of Handles

The XAM code again uses many handles. The file system routine uses no

handles.

Number of Routines

The XAM code in this case uses seven function calls as opposed to one for

the file system. Note that the primary reason for the amount of function calls in XAM

is that the application must drill down to the XSET level before it can acquire XSET

statistics, while the file system application simply calls stat() and passes the

pathname of the file it is interested in.

Program and Function Arguments

The XAM application again requires three parameters: the XAM SYSTEM, the

credentials, and the XU ID of the XSET. The file system code requires the name of

the file. Note also that the file system code requires a struct that has pre-defined

fields. The XAM code requires an array containing a list of name/value pairs in the

form of strings.

Return Value

The XAM protocol returns an array of name/value pairs, which are then

printed out by the application. The file system protocol returns a struct stat and the

application must print out each individual field of the structure. XAM gives the

application developer flexibility in viewing new XSET properties without having to

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rewrite any code.

Deleting an XSET

Figure 5 shows the code that deletes an XSET.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XAM

1 ♦include "stdio.h"
2 #include "xamapi.h"
3
4
5
6
7 main(int argc, char *argv[J)
8 {
9 // declare variables

10
11 STATUS TYPE status;
12 SDKHandle sdkhandle;
13 SYSTEMHandle systemhandle;
14 XSETHandle xset;
15 STREAMHandle stream;
16
17 if (argc != 4)
18 {
19 printf("\nUsage: delete sys user xuid\n");
2 0 exit(-1);
2 1 }
22
23 // initialize
24
25 status « SDK_Initialize(&sdkhandle);
26
27 status = SDK OpenSYSTEM(sdkhandle,
28 argv[1],
29 argv[2],
30 Ssystemhandle);
31
32 // perform delete
33
34 status = SYSTEM DeleteXSET(systemhandle,
35 argv{3]);
36
37 // close
38
39 SYSTEM Close(systemhandle);
40
41 status = SDK Shutdown(sdkhandle);
42 }

FILE SYSTEM

1 #include <stdio.h>
2 #include <stdlib.h>
3 ♦include <sys/types.h>
4 ♦include <sys/stat.h>
5 ♦include <unistd.h>
6
7 main(int argc, char *argv[])
8 {
9 // declare variables

10
11 struct stat buf;
12 int err;
13
14 if (argc != 2)
15 {
16 printf ("\nUsage; fs delete filename\n");
17 exit(-1);
18)
19
20
21
22
23
24
25
26
27
28
29
30
31
32 // perform delete
33
34 err = remove(argv[1]);
35 }

Figure 5 - Application Delete

Number of Handles

The XAM code for deleting uses many handles. The file system routine uses

no handles.

Number of Routines

The XAM code in this case uses five function calls as opposed to one for the

file system.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Program and Function Arguments

The XAM application again requires three parameters: the XAM SYSTEM, the

credentials, and the XUID of the XSET. The file system code requires the name of

the file.

Return Value

Neither the XAM nor the file system library returns any value other than the

status of the delete command.

Evaluating XAM error handling

Figure 6 shows two XAM applications. The first application (copied from

Figure 2) does not check status values, while the second application does check

error values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XAM NO ERROR HANDLING

1 finclude "stdio.h"
2 #include "xamapi.h"
3
4 main(int argc, char *argv[])
5 {
6 // declare variables
7
8 STATUS_TYPE status;
9 SDKHandle sdkhandle;
10 SYSTEMHandle systemhandle;
11 XSETHandle xset;
12 STREAMHandle stream;
13 char xuid_array[XAM_STRING_LENGTH];
14
15 char WRITE_STRING[] -
16 "ABC DE FGHIJKLMNOPQRS TUVWXYZ";
17 int bytes_written;
18
19 if (argc != 3)
20 {
21 printf("\nUsage: write system username\n");
22 exit (-1);
23 }
24
25 // open
26
27 status
28 status
29
30
31
32 status
33 status
34
35
36 // write
37
38 status
39
40
41
42 status
43
44 // close
45
46 status = Stream_Close(stream);
47 status = XSET_Close(xset);
48 SYSTEM_Close(systemhandle);
49 status = SDK_Shutdown(sdkhandle);
50
51 printf ("%s\n", xuid_array);
52 }

» Stream_Wnte (stream,
sizeof(WRITE_S TRING),
WRITE_STRING,
Sbytes_written);

- XSET_Store(xset, Sxuid array[0]);

= SDK_Initialize(Ssdkhandle);
= SDK_OpenSYSTEM(sdkhandle,

argv(l],
argv[2 3,
Ssystemhandle) ;

■ XSET__Create (systemhandle, Sxset);
= Stream_Create(xset, "alphabet", 0,

&stream);

XAM WITH ERROR HANDLING
1 finclude "stdio.h"
2
3

finclude "xamapi.h"

4
5

main(int argc, char *argv[3)
6 // declare variables

8 STATUS_TYPE status;
9 SDKHandle sdkhandle;

10 SYSTEMHandle systemhandle;
11 XSETHandle xset;
12 STREAMHandle stream;
13 char xuid_array[XAM_STRING_LENGTH];
14
15 char WRITE STRING[] -
16 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
17 int bytes_written;
18
19 if (argc !■ 3)
2 0 {
21 printf ("\nUsage: write system username\n");
22 exit(-1);
23)
24
25 // open
26
27 status = SDK Initialize(Ssdkhandle);
28
29 if (status != STATUS TYPE NO ERROR)
30 {
31 printf("SDK_Initialize 0");
32 exit(-1);
33 }
34
35 status = SDK_OpenSYSTEM(sdkhandle,
36 argv[l],
37 argv[2],
38 ssystemhandle);
39
40 if (status !« STATUS TYPE NO ERROR)
41 {
42 printf("SDK_OpenSystem()");
43 close_handles(ssdkhandle,NULL,NULL,NULL);
44 exit(-1);
45 }
46
47 status = XSET_Create(systemhandle, &xset);
48
49 if (status !- STATUS TYPE NO ERROR)
50 (
51 printf("XSET_Create()");
52 close handles(Ssdkhandle, Ssystemhandle,
53 NULL, NULL);
54 exit (-1);
55 }
56
57 status - Stream Create(xset, "alphabet", 0,
58 Sstream);
59
60 if (status !* STATUS TYPE NO ERROR)
61 {
62 printf("Stream_Create()");
63 close handles(Ssdkhandle,Ssystemhandle,
64 sxset, NULL);
65 exit (-1);
66 }
67
68 // write
69
70 status “ Stream Write(stream,
71 sizeof(WRITE STRING),
72 WRITE_STRING,
73 Sbytes_written);
74
75 if (status 1= STATUS TYPE NO ERROR)
76 {
77 printf("Stream Write ()");
78 close handles(ssdkhandle,Ssystemhandle,
79 Sxset, Sstream);
80 exit(-1);
81)
82
83 // close
84
85 status = Stream Close(stream);
86
87 if (status != STATUS TYPE NO ERROR)
88 {
89 printf("Stream Close()\n");
90 close handles(Ssdkhandle,Ssystemhandle,
91 Sxset, NULL);no i - 1\ .

Figure 6 - XAM Error Handling

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

General Comments On Error Handling in XAM

The XAM error handling application in Figure 6 is roughly three times longer

than the same code without error handling. Lines 97-156 of the coding sample were

eliminated for the purpose of fitting the coding sample on one page. A simple

application that creates XSETs has ten routines that return error values. Each of

these routine return a value that must be processed by the application; this explains

the increase in lines of code.

The number of handles required by XAM causes the application to come up

with a strategy for closing open handles in the face of errors. The example above

displays this behavior by calling a close_handles() routine. The calling of this routine

is a burden for the application programmer, but it is required because the XAM

version 1.2 specification is silent regarding the exit behavior of the XAM SDK.

Finally, the lack of error code descriptions listed in the XAM specification do

not currently allow XAM applications to perform any specific error handling

procedures. There is no way to tell if an error occurred at the VIM layer, at the XAM

SYSTEM layer, because of bad application logic, or for some other reason.

Coding Analysis and Recommendations

The coding samples listed above now allow for a more in-depth analysis of

XAM and how it compares to traditional file system programming. Given the ubiquity

of the file system API, XAM is clearly going to fall short in a comparison of this

nature. Recommendations will be made based on this comparison (subsequent

sections will compare XAM in a more favorable light).

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Addressing the Number of Handles

The number of handles required to program XAM is clearly a disadvantage.

For most operations a XAM application has to keep track of (1) a handle to the XAM

SDK, (2) a handle to the XAM system, (3) a handle to an XSET, and (4) a handle or

handles to underlying files within the XSET. Having this many handles adds lines of

code and complexity to XAM applications.

XAM could cut the number of handles in half by making the SDK handle and

SYSTEM handle implicit by using common techniques. For example, why not have

the XAM library itself keep track of the SDK handle during the SDK_lnitialize() call?

Similarly, the SDK_lnitialize() routine can map the application process to a given

default XAM system. This mapping could occur, for example, by use of an

environment variable or configuration file to map an application to a default XAM

System. By using techniques such as this, the application is no longer required to

keep track of a handle to call SDK_lnitialize(), and the need to call both

SDK_OpenSystem() and SYSTEM_Close() disappears. Similarly, XSET operations

no longer need to occur within the context of a SYSTEM handle, which further

reduces the complexity of XAM application code.

One could argue that such an approach limits the application to the use of

one and only one SYSTEM. It is true that certain applications (those that wish to

move XSETs between SYSTEMS using XSET export and import routines) need to

distinguish specific SYSTEMS. For example, a customer might wish to migrate from

one XAM SYSTEM because a lease has expired; another customer might wish to

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

migrate to another XAM SYSTEM because it is a higher performing system. Other

applications might wish to request the specific policies and properties of a SYSTEM.

These can also use the existing API. However, many applications will simply want

to manipulate XSETs without regard for the underlying hardware (similar to how

many applications use file systems without regard for the hardware underneath).

For these applications, eliminating SDK and SYSTEM handles would be beneficial.

Addressing the Number of Routines

For most XAM applications there can be at least twice as many function calls

as an equivalent file system application. This is due to the fact that at the lowest

level XAM has streams and file systems have files, but XAM then layers XSET

routines on top of streams.

XAM could reduce the number of routines by providing macros that provide

implicit XSET operations underneath the covers when the XSET details are not

important to the application. For example, the reading of an XSET stream requires

five operations: (1) the opening of an XSET, (2) the opening of a stream within an

XSET, (3) the read of the stream, (4) the close of the stream, and (5) the closing of

the XSET. If the goal of the application is to simply read from an XSET stream, then

steps (1) and (5) can be eliminated. A version of the XSET_OpenStream() routine

could accept a XUID and a stream name and allow direct access to a stream without

directly addressing the XSET. One might argue that this approach does not allow

for advanced XSET techniques (viewing XSET properties), but certainly more

macros can be written that provide more advanced features.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Addressing the Program Arguments

Each XAM application displayed above accepts the XAM SYSTEM name and

credential string as arguments.

As mentioned previously, application knowledge of specific XAM SYSTEMS

may not be desirable. Indeed file system applications are typically unaware of

underlying hardware configuration and/or location. Therefore application knowledge

about XAM SYSTEMS can be made unnecessary through the use of techniques

such as environment variables.

The credentials string at first seems to be a similar disadvantage. The file

system API does not have an equivalent mechanism to authenticate user access,

but instead uses the user/group/other technique. The credential string may seem a

burden to the enablement of XAM application programming by individual users who

simply want to manipulate XSETs. However, there have been complaints in the file

system community that the user/group/other concept is too simplistic for file sharing

and ownership. This provides the XAM community an opportunity to implement a

robust security model.

Addressing the Return Values

XAM presents a new paradigm to applications wishing to store data; the

application does not have control over naming. With file systems the application

creates the name of the file. Upon writing and closing the file the file name is

unchanged. XAM streams work the same way; the application gets to assign names

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the streams. However, when the XSET is stored, or committed, a XUID is

returned. What to do with this XUID presents some unique challenges to XAM

applications.

One option for a XAM application is to store the XUID in a database along

with certain keywords that assist in the eventual lookup of this XUID. This approach

seems wasteful because having the application keep this information is a duplication

of information already stored within the XSET. It also places a burden on the

application to create and maintain a database. How then can a XAM application

open an XSET for a given XUID if it doesn’t keep track of all XUIDs?

The XAM answer to this question is to use XSET_Query (), but version 1.2 of

the XAM specification is lacking in details about the specific implementation of

query. The stated plan is for an application to provide certain metadata

tags/keywords to the system and for XSET_Query() to provide an XSET in return.

This XSET will then contain a list of any and all XUIDs that satisfy the search criteria

specified by the metadata tags/keywords.

This technique for discovering a XUID seems overly complicated when

compared to opening an existing file using file system techniques. A XUID is similar

to an i-node value in that it means nothing to an application but it means everything

to the file system. The level of a XUID in this sense is too-low and not convenient to

an application developer. A file system application, however, provides metadata

tags/keywords in the form of an absolute pathname, and it gets back one (and only

one) file handle. Is there a way for XAM to add something similar?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One suggestion would be for XSETs to be given location tags that are similar

to absolute pathnames that lead to files. This location tag can be a system attribute

of an XSET. A XAM application would call XSET_SetProperty() to set the attribute

and subsequently call a (proposed) new routine such as

OpenXSETUsingTag(absolute_pathname). This allows a XAM application to open

up an XSET using techniques familiar to a file system programmer.

Addressing File System Routines

At the lowest level, XAM and file systems both manipulate streams or files.

XAM uses an open stream command, file systems use fopen(). XAM uses stream

read, write, and close routines, file systems use fread(), fwrite(), and fclose(). So in

many ways, XAM and file systems are similar in this regard.

File systems, however, have a much larger toolkit when it comes to

manipulating files. For example, the fopen() routine has the ability to open files in a

variety of different modes (read, write, append, etc). XAM has no such equivalent.

File systems also have a long list of utility routines that can be used on files.

Examples include fgetpos(), fseek(), fsetpos(), ftell(), fgetc(), fgets(), fflush(), fstat(),

and fsync(), among others. The version 1.2 XAM specification is silent on this

functionality. If these routines are valuable to file system applications, their

implementation should be considered as part of XAM as well.

The fstat() command likewise contains a large amount of information about

files, and should be considered for XAM streams as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XSETs do not need to support routines such as fgetpos(), but XAM should

consider how these routines apply to low-level streams.

Addressing File System StatO

Evaluating the list of options returned by the file system stat() command is

illuminating when compared to XAM.

The st_dev field, which identifies the device containing the file, does not have

an equivalent in XAM. There may be a certain class of XAM applications (e.g.

focused on migration XSETs from a given system to another) that would care to

know what XAM device currently holds a given XSET.

The stjn o field provides a unique identifier for this file within the context of a

given device. XAM does provide this information in the form of the XUID (the

system.xset.name property).

The st_mode field is used for a variety of purposes in the file system,

including the file type and access permission information. The file type information

(is the file a directory, regular file, character device, etc.) is generally not applicable

to XSETs. The access permission information, however, is a different story. File

system applications can get/set permissions such as read, write, delete, and

execute. These permissions limit accessibility to different users and groups.

The XAM version 1.2 specification does not cover this area. Can applications

have read permission on XSETs but not write permission? If so, how does an

application modify the permissions of a given XSET? The specification briefly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

touches on this topic with its discussion of storage pools, but not to the level of

sharing given XSETs among different applications.

The st_nlink field describes the number of hard links to this file. The XAM

spec need not address links because XAM applications are divorced from location

information about how XSETs are actually stored on a XAM system.

The st_uid and st_gid fields are group and user permission information, and

related to the st_mode description above. XAM does not distinguish individual

users and groups.

The st_rdev field is related to special devices and not applicable to XAM.

The st_size field describes the length of the file. There is no equivalent in

XAM. It would be a very useful field for XAM to supply, because currently there is no

way to access the size of an XSET.

The st_blocksize and st_blocks fields relate to the block size of the

underlying storage device and the number of blocks that the file actually occupies.

XAM had no such equivalent.

The st_atime field reveals the last access of this file (i.e. the last read

request). XAM has no equivalent. Note that this may be a good thing for XAM.

Implementing atime is complicated for file system developers because it causes

additional disk accesses to update the atime field.

The st_mtime field reveals the last modification to this file. XAM’s equivalent

is the system.mtime property of an XSET. However, system.mtime does not have

the granularity to differentiate between modification of XSET streams and

modification of XSET properties (see st_ctime).

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The st_ctime field reveals the last time the attributes of a file were changed.

XAM has no equivalent.

Addressing File System Error Handling

XAM avoids the convoluted file system errno methodology by always

returning a status code that contains the equivalent of errno. Many POSIX routines

also follow this approach. The XAM 1.2 specification has currently deferred a

discussion of error codes. Generating robust, sensible error codes is a critical step

for subsequent versions of the XAM specification.

Minimizing the number of routines by creating macros is also a sensible way

to cut down on the amount of application error handling logic currently caused by the

large number of XAM routines.

The number of handles currently required by XAM will be problematic for

XAM error handling. Consider an application that receives a XAM stream error. If

the application wishes to exit, or if it wishes to cease XAM processing, it must

potentially close a stream handle, an XSET handle, a SYSTEM handle, and the SDK

handle. This amount of layered handle closing adds complexity to the code. The

XAM specification should specify SDK exit functionality that ensures that handles

are automatically closed by the SDK upon application exit.

Query Discussion

The XSET_Query() routine has not been implemented in this version of the

RVIM, but it needs evaluation. The routine is extremely important because it allows

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an application to discover XSETs that contain certain searchable keywords. The

current XAM query mechanism is confusing because queries are started via an

XSET function call, but a query is aborted using a stream function call.

The XAM specification itself refers to the query API as "convoluted" (XAM

Specification, 2006). It attempts to use XSETs to store query results, but

implementing an abort request via an XSET stream is too confusing. A separate API

which submits a QUERY and aborts a QUERY via a SYSTEM function call makes

more sense.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

XAM BENEFITS VERSUS THE FILE SYSTEM API

Certainly it has been shown that the XAM API, in its initial form, needs

improvement in several areas when compared to file systems. There are several

things that the file system API can do that the XAM API cannot.

The XAM API, however, can do some things that the file system API cannot.

In order to evaluate the benefits of XAM, it is necessary to discuss what type of

application would rather use XAM than the file system API.

For the purpose of illustration this paper will examine the use case of email

archiving, and in particular the U.S. Security and Exchange Commission’s rule 17a-

4. One of the reasons for the growth of fixed-content storage systems has been for

new laws in place which mandate how companies manage their emails. Rule 17a-4

presents several rules which make XAM an attractive option (Cincinnati College of

Law, 2003).

Information on the Securities and Exchange Act of 1934 can be found at the

U.S. Security and Exchanged Commission’s website at www.sec.aov. With the

introduction of this act the United States government began to strictly regulate

activities in financial markets. As these activities began to take a more electronic

form, the SEC decided to place requirements on “preservation” of any email relating

to financial transactions. SEC rule 17a-4 spells out these preservation requirements

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sec.aov

in detail. A complete summary of rule 17a-4 can be found at the University of

Cincinnati College of Law website at http://www.law.uc.edu/CCL/34ActRls/rule17a-

4p5203.html.

Archiving and preservation of email is an attractive use case for a fixed-

content storage system. Therefore email archiving should be a candidate

application for the XAM API. Rule 17a-4 contains at least three important

requirements that are suited for XAM: (1) retention, (2) non-rewritable, and (3) the

accuracy of the storage media recording process. For each of these cases the XAM

API will be discussed and compared to a traditional file system.

Retention of Content

The text of rule 17a-4, in section (b-4), state that “every such broker and

dealer shall preserve for a period of not less than three years Originals of all

communicationsrelating to his business as such”. An application that wishes to

be compliant with this requirement needs to be able to specify a three-year retention

period as part of the archiving of the email. Nowhere in the file system API is there a

method to accomplish this. However, the XAM API allows the setting of a retention

value before the XSET is committed. Consider the code sample listed below in

Figure 7 (which is a modified version of the “XAM Write” example listed in Figure 2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.law.uc.edu/CCL/34ActRls/rule17a-

XAM

1 finclude "stdio.h"
2 #include "xamapi.h"
3
4 main(int argc, char *argv[])
5 {
6 STATUSJFYPE status;
7 SDKHandle sdkhandle;
8 SYSTEMHandle systemhandle;
9 XSETHandle xset;

10 STREAMHandle stream;
11
12 char WRITE_STRING[1 =
13 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
14
15 char xuid_array[XAM_STRING_LENGTH];
16
17 int bytes_written;
18
19 if (argc !« 3)
20 {
21 printf ("\nUsage: write system usernameW);
2 2 exit(-1);
23 }
24
25 status = SDK_Initialize(Ssdkhandle);
26
27 status = SDK_OpenSYSTEM(sdkhandle,
28 argvfl],
29 argv[2],
30 Ssystemhandle);
31
32 status = XSET_Create(systemhandle, Sxset);
33
34 status = Stream_Create(xset, "alphabet", 0, sstream);
35
36 status = Stream_Write(stream,
37 sizeof(WRITE_STRING),
38 WRITE_STRING,
39 sbytes_written);
40
41 status = Stream_Close(stream);
42
43 status = XSET_SetPolicy(xset,
44 "FixedRetentionPeriod”,
45 365 * 3);
46
47 status » XSET_Store(xset, Sxuid_array[0]);
48
49 status = XSET_Close(xset);
50
51 SYSTEM_Close(systemhandle);
52
53 status “ SDK_Shutdown(sdkhandle);
54
55 printf(”%s\n", xuid_array);
56 }

Figure 7 - XSET Retention

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lines 43-45 of Figure 7 display the XSET_SetPolicy() routine, which is the

key routine for an application wishing to set a retention policy for content. In this

example we are using a policy set in days (365 *3 = 3 years); the XAM API will

eventually formally specify how to specify retention lengths. As a result of receiving

a XUID during the XSET_Store() command, the application and the XAM storage

system now have a contract stating that this XSET cannot be erased for a total of

three years. The contents of this XSET, for the example listed above, would be one

or more emails containing information relating to a broker’s business.

An equivalent function call to retain files for a given period of time does not

exist in the file system API.

Non-Rewriteable Content

Another rule mandated by the SEC is that archived email cannot be

overwritten, meaning that it cannot be opened and edited, and it cannot be

overwritten by another email. Certainly both XAM and file systems have the ability

to open content and modify it, but XAM has a feature that prevents edits and

overwrites. This capability of XAM was previously described as participating or non

participating fields. When archiving an email as part of an XSET, for example, the

application can specify everything in the email to be participating. This forces the

XUID to be constructed based on the content of the email. An example of the XAM

API to set a field to participating is shown in Figure 8, which is a modification of the

XAM code listed in Figure 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XAM

1 finclude "stdio.h”
2 #include "xamapi.h"
3
4 main(int argc, char *argv[])
5 {
6 STATUSJTYPE status;
7 SDKHandle sdkhandle;
8 SYSTEMHandle systemhandle;
9 XSETHandle xset;

10 STREAMHandle stream;
11
12 char WRITE STRING[] »
13 "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
14
15 char xuid_array[XAM_STRING_LENGTH];
16
17 int bytes_written;
18
19 if (argc != 3)
20 {
21 printf("\nUsage: xam_write system username\n");
22 exit(-1);
23 }
24
25 status = SDK__Initialize (Ssdkhandle);
26
27 status = SDK OpenSYSTEM(sdkhandle,
28 argv[l],
29 argv[2],
30 Ssystemhandle);
31
32 status = XSET__Create (systemhandle, &xset) ;
33
34 status » Stream_Create(xset, "alphabet", 0, sstream);
35
36 status = Stream Write(stream,
37 sizeof(WRITE STRING),
38 WRITE_STRING,
39 Sbytes written);
40
41 status = Stream_Close(stream);
42
43 status - XSET_SetParticipating(xset,
44 "alphabet",
45 "true");
46
47 status = XSET_Store(xset, &xuid_array[0]);
48
49 status = XSET_Close(xset);
50
51 SYSTEM_Close(systemhandle);
52
53 status = SDK_Shutdown(sdkhandle);
54
55 printf("%s\n", xuid array);
56)

Figure 8 - XSET Participating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Line 43 contains the SetParticipating() call. When the XSET is stored

(XSET_Store()) a XUID is returned. If the application wishes to fetch this email, it

uses the XUID. The application can then open the email and overwrite the contents.

When the XSET is committed to the storage system via the XSET_Store() routine,

however, a new XUID is returned, and the original remains intact. The XAM system

must return a new XUID because a participating field within the XSET has been

changed. In this way XAM is able to support the 17a-4 requirement for being non-

rewritable.

File systems have no such implicit functionality. The ability to overwrite a file

is dependent on permissions that are beyond the control of an email archiving

application. If the email archiving can write a file to a file system, what prevents it

from overwriting the same file? As long as permissions can be compromised, the

file can be compromised, and protection against file system overwrites cannot be

guaranteed.

The Accuracy of Content

Another important rule found in 17a-4 is the accuracy of the storage media

that is recording an email. Has the email become corrupt? Another important

question relates to overwrites: how can an application guarantee that an email has

not been overwritten? The SEC is looking for proof that the data that was originally

written is indeed the content that was retrieved.

XAM handles this situation nicely via the same property of participating

versus non-participating. If an email is stored using all participating fields in the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XSET, then the XAM system is using a specific algorithm to calculate the XU ID (e.g.

an MD5 hash algorithm). When an XSET is retrieved based on a certain XUID,

these algorithms can be re-run (by the client-side VIM for example) to validate that

the bytes in the XSET correctly map to the XUID.

This authenticity checking is indeed an algorithm already used by EMC’s

Centera product. Network transfers from the Centera storage system are verified at

the application side via MD5 checking within the Centera SDK. XAM VIMs are well-

positioned, therefore, to use the same type of technique. Note that third party

entities could also become involved in checking for this authentication (even the

application itself could do it).

File systems cannot offer the same guarantee. It is true that file systems can

be mounted upon storage infrastructures that have strong data integrity guarantees.

The application, however, cannot call any file system routine to guarantee that this is

so. Applications can certainly perform their own checksums and naming techniques,

but this may be more of a burden than an application is willing to take on.

Other Use Cases

There are other legal use cases that place requirements on a company’s fixed

content. The Health Insurance Portability and Accountability Act (HIPAA) of 1996,

listed at http://www.legalarchiver.org/hipaa.htm, places legal requirements on fixed

content in the medical community. Section 1173 of HIPAA contains a

SAFEGUARDS section which states “Each person who maintains or transmits

health information” must “ensure the integrity and confidentiality of the information”.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.legalarchiver.org/hipaa.htm

XAM is clearly on the right track in this regard, as it has the ability to verify integrity

(via the participating flag) and it is on track to maintain confidentiality (with the

credential string).

There are other non-legal use cases for XAM as well. There are many

scientific projects throughout the world that must process fixed content, and they

need to verify the integrity of the fixed content so that the results are accurate.

Consider the SETI@home project, described at http://setiathome.berkeley.edu.

This project uses computers around the globe to analyze radio telescope data

(fixed content).

Finally, proposals have been made which use fixed content storage

repositories as the center of an individual’s collective fixed content life, including

music, video, health records, bank records, etc. XAM is well suited for this type of

fixed content, which requires guaranteeing the integrity of data as well as the

security of who can view that data. One such proposal is the “My World

Information Brokerage Built on CAS” concept listed at http://www.cascommunity.org.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://setiathome.berkeley.edu
http://www.cascommunity.org

CHAPTER 7

CONCLUDING REMARKS

This paper has described a new technology in the storage industry: fixed-

content storage systems. XAM is a new software API that will allow application

access to fixed-content records. The XAM API has been explained and a XAM

simulation environment has been proposed and a prototype has been implemented

(the reference VIM). This reference VIM was then used to develop XAM

applications, and these applications were then compared to equivalent file system

applications. The comparison to file systems yielded the following set of

recommendations for the industry leaders developing the XAM specification:

• Reduce the number of handles required to program XAM.

• Eliminate the need for addressing XAM systems directly.

• Introduce macros to reduce the number of XAM functions required

to accomplish certain tasks

• Consider enhancing XAM stream functions to support traditional file

system functionality, such as fstat().

• Fully describe XAM security techniques (storage pools) and XSET

sharing (i.e. user and group permissions that are “better” than listed

in POSIX file system API).

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Fully describe a robust set of XAM error codes

• Describe SDK exit behavior, especially the closing of any

handles.

• Design an alternative query API.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF REFERENCES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cincinnati College of Law. “Rule 17-4 - Records to be Preserved by Certain
Exchange Members, Brokers, and Dealers”. Securities Lawyer’s Deskbook.
May 2, 2003
//www.law.uc.edu/CCL/34ActRls/rule17a-4p5203.html.

EMC Centera Software Developer’s Kit. “Centera_SDK_3[1].0_API_Ref_Guide.pdf.
Centera Developer’s Portal. May 30, 2005.
lighthouse.emc.com/portal/modules.php?name=ContentEditor&mode=show_
content&target=45

Health Insurance Portability and Accountability Act (1996)
www.leaalarchiver.org/hipaa.htm

Open Group Base Specification Issue 6. (Version 3, 2004)
www.openqroup.org/onlinepubs/009695399.

SETI@home Project (October 2006)
http://setiathome.berkeley.edu

United State Securites and Exchange Committee. “Securites and Exchange Act of
1934”. March 25, 2005. www.sec.aov.

Van Riel, Jan. “My World Information Brokerage built on CAS”, November 2005.
http://www.cascommunitv.orq/portal/read.php?ca=e7aebe9e1df16bd452cedf9
dc887b8c0

XAM Team: “XAM Genesis”, Storage Networking Industry Association Data
Management Forum (September 20. 2006)
www.snia-dmf.org/xam/qenesis.shtml

XAM Team: “XAM Frequently Asked Questions”, Storage Networking Industry
Association Data Management Forum (September 20. 2006)
http://www.snia-dmf.org/xam/faa.shtml

XAM Team. “XAM Specification Version 1.2”. Storage Networking Industry
Association Data Management Forum (September 19, 2005)
www.snia-dmf.org/xam.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.law.uc.edu/CCL/34ActRls/rule17a-4p5203.html
http://www.leaalarchiver.org/hipaa.htm
http://www.openqroup.org/onlinepubs/009695399
http://setiathome.berkeley.edu
http://www.sec.aov
http://www.cascommunitv.orq/portal/read.php?ca=e7aebe9e1df16bd452cedf9
http://www.snia-dmf.org/xam/qenesis.shtml
http://www.snia-dmf.org/xam/faa.shtml
http://www.snia-dmf.org/xam

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 2006

	Comparing the XAM API with file system programming
	Stephen J. Todd
	Recommended Citation

	tmp.1520441287.pdf.WRl0_

