
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Fall 2013

Development of analytical and experimental tools
for magnetic pulse welding
Ethan Hunter Thibaudeau
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Thibaudeau, Ethan Hunter, "Development of analytical and experimental tools for magnetic pulse welding" (2013). Master's Theses and
Capstones. 826.
https://scholars.unh.edu/thesis/826

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/826?utm_source=scholars.unh.edu%2Fthesis%2F826&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


DEVELOPMENT OF ANALYTICAL AND EXPERIMENTAL TOOLS FOR

MAGNETIC PULSE WELDING

BY

ETHAN HUNTER THIBAUDEAU 

B.S., University of New Hampshire, 2011

Submitted to the University of New Hampshire 

In Partial Fulfillment of 

The Requirements for the Degree of

Master of Science 

in

Mechanical Engineering 

September, 2013



UMI Number: 1524460

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Di!ss0?t&iori Piiblist’Mlg

UMI 1524460
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



This thesis has been examined and approved.

Thesis Director, Dr. Brad Lee Kinsey, 
Professor and Chair of Mechanical Engine?

Dr. Todd Grtass, )
Professor of Mecjianical Engineering

Dr. Marko Knezevic,
Assistant Professor of Mechanical Engineering

Date



DEDICATION

To Memere for inspiring me to be inquisitive from an early age,

And to my parents and grandparents for their loving support and encouragement.



AKNOWLEDGEMENTS

Funding from the U.S. National Science Foundation (CMMI-0928319) is 

gratefully acknowledged.

I would like to thank Dr. Brad Lee Kinsey for his constant guidance and positive 

support. It was previledge to work with him on such an interesting project that 

involved both theoretical and experimental work.

I would also like to acknowledge Reid VanBenthysen and Brad Turner for their 

previous work in this research area. Finally, I'd like to thank the friends I've met 

along the way, who made all the hours in Kingsbury a bit easier.

IV



TABLE OF CONTENTS

DEDICATION............................................................................................................Ill

ACKNOWLEDGEMENTS....................................................................................... IV

TABLE OF CONTENTS............................................................................................V

TABLE OF TABLES.............................................................................................. VII

TABLE OF FIGURES............................................................................................ VIII

ABSTRACT............................................................................................................. XII

CHAPTER I: Introduction.......................................................................................1

1.1 Thesis Overview.......................................................................................4

CHAPTER II: Tube To Shaft Welding..........................................   7

2.1 Introduction & Motivation......................................................................... 7

2.2 Experimental Setup...................................................................................8

2.3 Results...................................................................................................... 9

2.4 Discussion................................................  12

CHAPTER III: Uniform Pressure Actuator: Analytical Design..................... 14

3.1 Introduction & Motivation....................................................................... 14

3.2 Actuator Design Process....................................................................... 17

3.3 Model Results for Coil Design................................................................34

3.4 Model Assumption Validation................................................................ 42

3.5 Summary................................................................................................48

CHAPTER IV: Uniform Pressure Actuator: Experimental Validation 50

4.1 Introduction.............................................................................................50

4.2 Actuator Construction............................................................................ 50

V



4.3 Experimental Setup.................................................................................54

4.4 Photon Doppler Velocimetry..................................................................55

4.5 Results.................................................................................................... 58

4.6 Summary................................................................................................ 70

CHAPTER V: Fiber Optic Displacement Sensor..............................................72

5.1 Introduction............................................................................................. 72

5.2 Sensor Characterization........................................................................ 73

5.3 Sensor Implementation.......................................................................... 79

5.4 Discussion.............................................................................................. 86

5.5 Summary................................................................................................ 89

CHAPTER VI: Conclusions and Future Work................................................... 91

6.1 Conclusions............................................................................................91

6.2 Future Work............................................................................................ 93

REFERENCES........................................................................................................ 94

APPENDIX A: ADDITIONAL EQUATIONS......................................................... 97

APPENDIX B: MATLAB CODE ..................................................................98

VI



TABLE OF TABLES

TABLE PAGE

Table 2.1: Tube to shaft MPW results.................................................................. 12

Table 3.1: EMF machine and coil parameters..................................................... 35

Table 3.2: Key magnetic and mechanical response parameters........................36

Table 3.3: Johnson-Cook parameters for AI-6061-T6 [24]..................................43

Table 3.4: Mechanical FE analysis parameters................................................... 44

Table 3.5: Mechanical FE analysis parameters................................................... 47

Table 4.1: Heat treatment specifications for UNS C18000 after brazing of

leads [26].............................................................................,.........................53

Table 4.2: Various workpiece thickness and a ratios with a skin depth of

S = 1.2mm..............................................................................................................66

Table 4.3: Material properties for workpiece conductivity experiments..............69

VII



TABLE OF FIGURES

FIGURE PAGE

Figure 1.1: Sample assemblies joined by MPW from PST Products a.) 

crimping of stranded copper wire, b.) dissimilar material drive 

shafts, and c.) Copper sheet welded between two Aluminum sheets 

[3].....................................................................................................................2

Figure 1.2: Diagram of the EMF & MPW [4]............................................................ 3

Figure 2.1: Impact process during MPW [5]............................................................ 7

Figure 2.2: Experimental setup for a tube to shaft MPW, showing a.) the '

shaft concentric with the tube, and b.) the six turn coil, Magneform 

leads, and insulating Kapton tape.................................................................9

Figure 2.3: Welded assembly, showing cuts to examine whether welding

occurred.................  9

Figure 2.4: Micrographs of the tube/shaft welded interface, at

magnifications of a.) 50x, b.) 100x, and c.) 200x....................................... 11

Figure 2.5: Wavelength and amplitude map for Explosive Welding (EXW),

MPW, and Laser Impact Welding (LIW). Wavelengths and

amplitudes are normalized by flyer workpiece thickness, t. Adapted

from [2]...........................................................................................................13

Figure 3.1: Cross-section of the Uniform Pressure Actuator [9]...........................15

Figure 3.2 Ohio State University UPA coil, second generation (left) and

third generation (right) [12]........................................................................... 17

Figure 3.3: Schematic of analytical solving process.............................................19

Figure 3.4: EMF circuit diagram [13]......................................................................21

Figure 3.5: Normalized current density for Cu 110 and SS321........................... 22

VIII



Figure 3.6: 2D magnetic field geometry imposed on actual geometry (left), 

and 2D magnetic field representation, showing a single conductor 

and workpiece (right).................................................................................... 28

Figure 3.7: Predicted current and voltage, showing the half cycle time.............. 35

Figure 3.8: Predicted magnetic pressure and workpiece velocity........................36

Figure 3.9: Effect of k value [9] on the predicted magnetic pressure

compared to the upper and lower bound solutions [20]............................. 37

Figure 3.10: Aerodynamic effects on the workpiece acceleration, showing 

the drag ratio and mass ratio are more than two orders of 

magnitude smaller than the dominating effects.......................................... 38

Figure 3.11: Peak pressure and velocity generated for a given turn count 40

Figure 3.12: Predicted pressure distribution across workpiece width

varying with time........................................................................................... 41

Figure 3.13: FE analysis mesh and symmetry of workpiece, with 10mm

die case shown............................................................................................. 43

Figure 3.14: Dynamic FEA comparison for center workpiece velocity with

two die radii values........................................................  45

Figure 3.15: Deformed workpiece with velocity resultant vectors from

dynamic FE analysis. 10mm die case shown, at time t  = 64fxs................ 46

Figure 3.16: Von Mises stress from SolidWorks static mechanical FE

simulation, showing fixed boundary conditions in green, and applied 

pressure in orange........................................................................................48

Figure 4.1: Pictures of a.) coil, and b.) the complete UPA assembly with

PDV probe.....................................................................................................51

Figure 4.2: Dimensioned drawing of coil geometry (dimensions in mm) 52

Figure 4.3: Dimensioned drawing of return path geometry (dimensions in

mm)................................................................................................................53

IX



Figure 4.4: Coil potted in return path..................................................................... 54

Figure 4.5: Experimental setup showing a.) the exterior and b.) the interior

(i.e., in the forming box) details.................................................................... 55

Figure 4.6: Schematic of a PDV system with target [27]...................................... 56

Figure 4.7: Experimental fit to current waveform during a 3.6k j  discharge

and 1mm AI-6061-T6.................................................................................... 59

Figure 4.8: Comparison of initially predicted and experimental electrical

parameters.................................................................................................... 60

Figure 4.9: Electrical parameters' error on analytical model output of peak

current and maximum velocity..................................................................... 61

Figure 4.10: Modified experimental setup for measuring induced current

in workpiece.................................................................................................. 62

Figure 4.11: Primary and induced currents in the coil and workpiece.................62

Figure 4.12: Predicted velocities for varying k, with a 6k j  discharge and

1mm 6061-T6 workpiece..............................................................................63

Figure 4.13: Experimental velocity results from a 3.6kj, 6kj,  and 8.4k j  

discharge and 1mm Al 6061-T6 sheets, with the analytical model 

predictions shown for comparison............................................................... 64

Figure 4.14: Deformed 1mm 6061-T6 workpieces from a 3.6k j ,  6k], and 

8AkJ discharge energies, showing a.) front view (i.e., view normal 

to coil axis) and b.) side view (i.e., coil turns across photograph) 65

Figure 4.15: Workpiece velocity with varying workpiece thicknesses and

analytical model prediction. Discharge energy was 6k j .............................67

Figure 4.16: Workpiece velocity with varying workpiece conductivity and

analytical model prediction. Discharge energy was 6k j .............................69

Figure 5.1: Reflectance dependant, fiber optic sensor operation

schematic [30]............................................................................................... 73

X



Figure 5.2: Experimental setup for sensor characterization.................................74

Figure 5.3: Calibration curve for flat, mill-finish aluminum surface....................... 74

Figure 5.4: Experimental setups for angular effects: a.) flat surface, b.)

horizontal Cylinder, and c.) vertical cylinder................................................75

Figure 5.5: Gap distance error induced from angular effects for three

experiments: flat surface, horizontal cylinder, and vertical cylinder......... 76

Figure 5.6: Calibration to flat surface with retroreflective tape applied and

a with mill-finish Aluminum surface..............................................................78

Figure 5.7: Angular effects on flat surface with retroreflective tape applied

and a mill-finish Aluminum surface.............................................................. 79

Figure 5.8: Experimental setup for UPA flat sheet forming tests......................... 80

Figure 5.9: Velocity results for 1mm sheet Al 6061-T6 forming at 3.6kj,

6kj, and 8AkJ discharge energies, measured with the fiber optic 

sensor and the PDV system.........................................................................81

Figure 5.10: a.) Front view and b.) side view of deformed workpiece with 

a 6.0k ]  discharge, with the location of the fiber optic sensor 

indicated........................................................................................................82

Figure 5.11: a.) Experimental setup for tube/shaft welding in forming box 

and b.) Cross section view of single turn coil (dimensions are in 

mm)............................................................................................................... 84

Figure 5.12: Velocity results for 25.4 mm diameter, .89 mm wall, 2024-T3 

tubes at various energy levels, measured with a.) the fiber optic 

sensor and b.) the PDV system................................................................... 85

Figure 5.13: Deformed workpiece with a 9.6k j  discharge, with the location

of the fiber optic sensor indicated................................................................ 86

Figure 5.14: Translation calibration with deformed specimen and

damaged retroreflective tape........................................................................88

XI



ABSTRACT

DEVELOPMENT OF ANALYTICAL AND EXPERIMENTAL TOOLS FOR

MAGNETIC PULSE WELDING

By

Ethan Hunter Thibaudeau 

University of New Hampshire, September 2013 

Degree Advisor: Brad Kinsey

A key process parameter in magnetic pulse welding (MPW) is the workpiece 

velocity, and while some Finite Element Analysis (FEA) packages exist that are 

capable of modeling these processes, there is a lack of simplified analytical 

modeling efforts, which are attractive for their simplicity and cost. In this work, an 

electromagnetic actuator, named a Uniform Pressure Actuator (UPA), is 

analyzed, designed, constructed, and tested experimentally. The analytical 

model is shown to predict workpiece velocities accurately and produce an 

efficient forming and a robust design. Additionally, an alternative method to 

measure workpiece velocity is presented, implementing a fiber optic, reflectance 

dependent sensor. The sensor is shown to be an attractive low cost solution to 

measurement of high velocities in high voltage, magnetic environments, through 

experimental measurement in parallel with a Photon Doppler Velocimetry (PDV) 

system.
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CHAPTER I

INTRODUCTION

Electromagnetic forming (EMF) is a high-speed metal forming process that uses 

pulsed magnetic fields to create non-contact plastic deformation of metallic 

workpieces during the acceleration process. Typical workpiece velocities on the 

order of 100-300 m/s are produced, and when impacted into a die, large impact 

pressures further deform the workpiece. Benefits of EMF include improved 

formability, uniform strain distributions, reduction in wrinkling, active control of 

springback, and the possibility of local coining and embossing [1].

The need for both strong and lightweight components and assemblies exists in 

several industries (e.g., automotive, aerospace, electronics, etc.). For individual 

components, this can be achieved through composites, lightweight alloys, 

Advanced High Strength Steels, etc. But for assemblies, the joining of 

components with vastly different material properties (e.g., melting temperature) 

by fusion welding is not feasible. An alternative means to create a welded joint is 

through solid state Magnetic Pulsed Welding (MPW).

If a second, stationary workpiece is impacted at a critical impact velocity and 

angle, a solid state weld is produced at the interface through this MPW process. 

Joining can be achieved even between base metals of vastly different material 

properties, and bond strength is typically stronger than the parent components 

[2]. This allows joined components in an assembly to be tailored to a specific
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function according to material properties, and assembly weight is reduced from 

removing fasteners. The final assembly's overall dimensional accuracy is 

controlled by fixturing of the individual components. However, in the weld region, 

joint strength is typically more of a concern than final geometry (e.g., the final 

diameter of a crimped section of a tube that has been welded to a shaft).

MPW is well suited for large series production of assemblies that require a weld 

for strength and/or a permanent seal. Examples of this include enclosures for 

automotive filters and pressure capsules. MPW can be implemented to join 

torque transmitting assemblies, where the end components may be a different 

material than the middle component. MPW can also implemented to join sheet 

metal components for electrodes in batteries and capacitors [3]. Figure 1.1 

shows examples of assemblies created with this process. Other processes that 

use the same joining mechanism, include Laser Impact Welding (LIW) for smaller 

length scale components, and Explosive Welding (EXW) for larger scale 

components [2],

Figure 1.1: Sample assemblies joined by MPW from PST Products a.) crimping of 
stranded copper wire, b.) dissimilar material drive shafts, and c.) Copper sheet welded

between two Aluminum sheets [3].

In EMF and MPW, a pulsed power supply discharges into coil which creates a 

magnetic field in close proximity to the workpiece. Eddy currents are induced in
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the workpiece, and a repulsive Lorentz force is created from the magnetic field - 

eddy current interaction which causes the workpiece to accelerate away from the 

coil and plastically deform. Typical measurements of the processes include 

primary and induced currents in the coil and workpiece, respectively, and 

workpiece displacement and velocity. Figure 1.2 shows a schematic of the 

EMF/MPW process [4].

Switch
Outer WorkpieceCharger

Magnetic 
FieldCapacitor

Bank

Inner Workpiece

Figure 1.2: Diagram of the EMF & MPW [4].

The reported efficiency of EMF & MPW processes varies widely, depending the 

forming and welding geometry, and the coil design. Energy that is initially stored 

in the capacitors is eventually transformed into deformation energy of the 

workpiece by the end of the process, however losses occur from intermediate 

energy transfers. From the initially stored energy, Joule heating reduced the 

amount of available electrical energy, e.g., heating in the lines connecting the 

capacitor bank to the coil, in the coil, and in the workpiece. Magnetic losses 

occur from leakage of magnetic flux further decrease the energy available to 

accelerate the workpiece, e.g., due to imperfect coupling between the coil and 

workpiece.



1.1 THESIS OVERVIEW

In Chapter II, a tube to shaft welding process is presented to observe the wavy 

interface that forms in a MPW. Disposable coils are implemented as a cost 

effective, proof-of-concept for MPW. Large currents, and thus large magnetic 

pressure is developed in these coil, which creates the impact pressure necessary 

for welding, but also destroys the coil in the process. Micrographs are taken of 

the welded region to observe the wavelength and amplitude of the weld, as well 

as the impact angle necessary for welding.

In Chapter III, a coil design and analysis procedure developed at The Ohio State 

University is modified and extended through an analytical model, with some 

stages of analysis verified with FEA. The coil, named a Uniform Pressure 

Actuator (UPA), offers increased forming efficiency and repeatability, as well as a 

robust design. Coil design parameters such as the number of turns and 

conductor cross section are determined for a given workpiece. Magnetic 

pressure applied to the workpiece and workpiece velocity are predicted to ensure 

impact velocities are sufficient for MPW.

In Chapter IV, the UPA was constructed and tested experimentally to validate the 

accuracy of the analytical model, as well as verify the remaining assumptions 

made during modeling. Experiments to compare the predicted electrical 

parameters of the UPA were conducted, and show sufficient accuracy for the 

purpose of predicting workpiece velocity. The coupling coefficient introduced in 

the magnetic analysis is experimentally determined and compared to previous
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researcher's values. Workpiece velocities for various energy levels, workpiece 

thicknesses, and materials with various conductivities and densities are 

compared to analytical predictions and show good agreement for the initial 

acceleration process which lasts approximately to peak velocity. Workpiece 

velocity measurements are performed with Photon Doppler Velocimetry (PDV), 

which provides a robust method for measuring velocities with submicron 

displacement resolution and temporal resolution in the nanosecond range. 

Uniformity of the workpiece deformation is also examined, which is an advantage 

of the UPA.

In Chapter V, an alternative method for high velocity measurements is presented, 

implementing a fiber optic, reflectance dependent displacement sensor. The 

sensor is shown to be an attractive low cost solution to measurement of high 

velocities in high voltage, magnetic environments. Data is shown with respect to 

sensor characterization including various surface reflectivity values, curvatures, 

and misalignments; implementation in two forming/welding processes; and 

verification with high velocity measurement in parallel with PDV. The sensor 

system is one twentieth the cost of a PDV system, and yet measures velocities 

accurately to at least 150 m/s provided that local deformations do not cause 

excessive curvatures. Sensor performance is also enhanced by the use of 

retroreflective tape, which is shown to increase the displacement range by 9x, 

decrease sensitivity to misalignment, and increase repeatability and ease of 

implementation.
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The major outputs/findings from this research are:

• An analytical model for designing a UPA for sheet metal forming/welding 

(e.g., the number of coil turns) and predicting workpiece velocity,

• Measurement of a magnetic coupling coefficient for the UPA, which is 

independent of material thickness and conductivity, provided the 

workpiece thickness to skin depth ratio is near unity,

• Implementation of a UPA with validated velocities compared to analytical 

model results,

• Alternative method for high velocity measurement using a fiber optic 

displacement sensor which is a fraction of the cost, safer, and easier to 

implement.
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CHAPTER II

TUBE TO SHAFT WELDING

2.1 INTRODUCTION & MOTIVATION

In order to investigate MPW, an initial process was implemented where a 

Aluminum tube was crimped and welded to a Aluminum shaft. The axisymmetric 

geometry allows for a simpler work coil design, where coils were hand wound 

from thin copper wire. This provided an inexpensive, proof-of-concept 

experimental setup to produce a MPW for the given geometry.

The coil does not survive the process due to the high mechanical and electrical 

loads applied. Disposable coils are advantageous since larger instantaneous 

powers can be achieved. This produces the large workpiece acceleration and 

impact velocity required for MPW. Another key parameter in MPW is the impact 

angle between the flyer and stationary workpiece, as shown in Figure 2.1).

Flyer 

Target

Figure 2.1: Impact process during MPW [5].

Col 1iding 
direction

Part ic les
of

impuritie

^ M S ta tio n ary  c o r e j B M
Jetting
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The drawback to this method is that the setup time for each test is increased 

from hand winding and insulating work coils. Additionally, the long term cost is 

greater for disposable coils than it is for robust coils that last many welding 

operations.

2.2 EXPERIMENTAL SETUP

A 25.4mm diameter, 1mm thick Al 6061-T6 tube was placed over a 20.9mm 

diameter Al 2024 shaft. 10 AWG magnet wire was hand wound around a mandrel 

to produce a tight fit when positioned around the 25.4mm tube. The magnet wire 

used was Cu101 solid wire, with a insulative enamel coating pre-applied. A 6 turn 

coil resulted in an axial coil length of 15.5mm. The outer surface of the shaft and 

inner surface of the tube were sanded with 200 grit sandpaper, and cleaned with 

isopropyl alcohol. See Figure 2.2 for an image of the experimental setup.

Kapton tape was used to insulate the workpiece from the high voltages produced 

in the work coil, and to position the shaft concentric with the tube. A 10.8k]  

discharge was applied to the coil, which created magnetic forces that accelerate 

and impact the tube into the shaft. A 12k j  capacity Maxwell Magneform 7000 JA 

was used to generate the electrical discharge.
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Tube Kapton
Tape

Figure 2.2: Experimental setup for a tube to shaft MPW, showing a.) the shaft concentric 
with the tube, and b.) the six turn coil, Magneform leads, and insulating Kapton tape.

2.3 RESULTS

Results show that welding occurs at a critical impact angle during the 

deformation. This forming geometry produced two axial welding locations where 

the correct impact angle was created. The assembly was examined for welds by 

making two cuts, as shown in Figure 2.3.

Figure 2.3: Welded assembly, showing cuts to examine whether welding occurred.

A third cut was made to create quarter sections, that were polished, etched, and 

micrographed to examine the tube/shaft interface. At all locations where the tube 

was welded to the shaft, a wavy interface was produced. Figure 2.4a shows a

Tube

Shaft

9



micrograph of one quarter section, with two axial welding locations. The largest 

amplitude observed in the weld was 33p ,  and the largest wavelength was

212 fxm.

As an artifact of the etching process, the axial center of the interface shows black 

regions where the etchant remained trapped and removed additional material 

(these regions were not observed before etching). In this view, the impact angle 

that was formed during impact is shown, and welding occurred at this angled 

interface. Figure 2.4b and Figure 2.4c show additional magnification levels of one 

of the welding locations.
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Tube impact direction
Weld#1 Weld #2

- v -*r,

f^ y N

Tube

Shaft

Tube
- , v  ■

Shaft

Tube

100 um Shaft

Figure 2.4: Micrographs of the tube/shaft welded interface, at magnifications of a.) 50x, b.)
100x, and c.) 200x.

The impact angle was formed during the tube impact due to the non-uniform 

magnetic pressure distribution in the coil. Larger pressure was generated in the 

center turns of the coil, so the axial center of the tube was accelerated at a 

higher rate, which impacted and plastically deformed the shaft. As the plastic 

deformation of the shaft proceeded, it created the impact angle necessary for 

welding the outer axial regions. The angle of the weld relative to the shaft axis 

was measured from the micrographs in Adobe Photoshop. Table 2.1 lists the 

weld locations and their corresponding angle.
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Table 2.1: Tube to shaft MPW results.

Axial Location

Weld #1 Weld #2
Circumferential

Location Weld Angle (°) Weld Angle (°)

1 Yes 2.3 No -

2 Yes 1.9 Yes 3.2

3 Yes 4.8 Yes 3.3

4 Yes 2.7 No -

2.4 DISCUSSION

As an initial investigation, a simple and inexpensive experimental setup produced 

a MPW on a tube/shaft interface. This setup shows that the required impact 

angle can be created during the process by the magnetic pressure distribution 

and the deformation. Therefore, geometrical modification of workpieces is not 

necessary to achieve a MPW, but continuous welding along the axis (as shown 

in Figure 2.4) will not be achieved.

When normalized by the tube thickness, the observed wavelength and amplitude 

agree with previous research [2]. Figure 2.5 shows these normalized parameters 

for various impact welding processes, adapted from [2] to include our 

experimental results.

12



030  T

♦
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■ MPW
^ 0.20
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Figure 2.5: Wavelength and amplitude map for Explosive Welding (EXW), MPW, and Laser 
Impact Welding (LIW). Wavelengths and amplitudes are normalized by flyer workpiece

However, there are some disadvantages to this experimental setup. Due to the 

geometry of coil, and its disposable nature, measurements of impact velocity 

could not be performed. Additionally, only the final interface angle can be 

observed, which may vary from the actual impact angle during the process due to 

plastic deformation. Axisymmetric welding/crimping joints are also difficult to 

access, since a destructive test is required to observe the presence of a weld.

These disadvantages present additional motivation for research in sheet metal 

welding. In the two following chapters, a new coil is designed and constructed to 

form and weld sheet metal. The robust design allows for a high level of 

repeatability, and if a weld is produced, its location between two sheets allows 

easy assessment of the strength of the weld.

thickness, t. Adapted from [2].
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CHAPTER III

UNIFORM PRESSURE ACTUATOR: ANALYTICAL DESIGN

3.1 INTRODUCTION & MOTIVATION

Axisymmetric crimping and welding of tubes and shafts have experienced the 

most implementation of EM processes. However, for lightweight automotive 

applications, forming and welding of flat sheets is of interest. Development of 

work coils and process analysis for sheet forming has been limited due to its 

complexity [1]. According to Daehn, a gap exists between experts in sheet metal 

forming and in pulsed power applications [6]. Therefore, simplified modeling acts 

to bridge this gap and promote EM applications in manufacturing.

In past research, forming and welding of flat sheet workpieces was achieved with 

a few different coil designs. Flat spiral coils have been implemented, where a 

wire is wound in a flat spiral, in a plane parallel to the workpiece. However, they 

typically fail after a small number of forming operations [7], Additionally, the 

pressure distribution across the workpiece is non-uniform with the peak pressure 

at half of the coil planar radius which leads to ripples in the workpiece 

deformation [1],

Single or half turn coils have also been used for welding sheets, but the pressure 

distribution is localized in a small region [8]. Kamal et al. [9] developed a coil 

design, i.e., a Uniform Pressure Actuator (UPA), which has a more uniform

14



pressure distribution over a larger area and is robust enough to last hundreds of 

forming operations. The design consists of a helical coil with a rectangular cross- 

section. A surrounding conductive channel allows induced eddy currents in the 

sheet to form a closed circuit around the coil. A cross-section schematic of this 

assembly is shown in Figure 3.1.

Clamping Force g
Conductive 
Outer Channel

Primary Coil 
Workpiece 
Die

Clamping Force

Figure 3.1: Cross-section of the Uniform Pressure Actuator [9].

The return path integrated into the coil design has multiple advantages. Since 

eddy currents generated in the workpiece flow in a closed circuit, edge effects of 

the sheet are eliminated as eddy currents flow throughout the workpiece. Also, 

additional eddy currents are generated from the coil and return path, which 

create a higher magnetic pressure. By including the return path, the magnetic 

field generated around the entire coil is put to use in the forming process 

increasing the efficiency of the process [9], Finally, repusive forces generated 

between the helical coil and return path help to resist the radial forces generated 

by the coil on itself, thus increasing the strength of the actuator.

In order to model the transient EMF/MPW process, and thus design the coil, 

analytical and FE analysis have been used. For example, Zhang et al. [2] used
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the commercial finite element (FE) code, LS-DYNA to solve the electromagnetic, 

mechanical, and thermal problem, in a fully coupled manner for the magnetic 

fields, induced eddy currents, workpiece acceleration, and high velocity impact of 

the workpiece. Other commercially available packages are capable of solving the 

electromagnetic and mechanical problem, such as ANSYS [10] and ABAQUS

[113-

Kamal et al. [12] presents an EMF model focusing on coil design and is 

comprised of an analytical model and FE magnetic modeling in 2D. The 

deformation of the workpiece was solved separately in LS-DYNA. The analytical 

model predicted rigid body workpiece acceleration, and is attractive for its 

simplicity and cost in effectively determining a optimal coil design.

As shown by Kamal [12] a large coil turn count results in a stronger magnetic 

field, and thus higher magnetic pressure. However, a small turn count allows for 

a shorter rise time to peak current. Therefore, it is important to specify whether 

the coil design is aimed at creating maximum pressure or maximum sheet 

velocity. Forming shallow features or embossing requires larger pressures, 

whereas deep features and larger deformations require higher velocities to 

create large inertial effects and high impact pressures [9],

In this chapter, the design analysis for a UPA was modified and extended [9] 

through an analytical model in order to maximize the magnetic pressure and 

workpiece velocity. The pressure distribution over the workpiece and a rigid body 

motion assumption were investigated. Also, finite element (FE) analysis was
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used to access the robustness of the coil design. Finally, the coil was constructed 

and implemented in a free forming process.

3.2 ACTUATOR DESIGN PROCESS

Prof. Glenn Daehn's group from The Ohio State University developed multiple 

generations of UP actuators, shown in Figure 3.2. Initially, their construction 

consisted of soft copper windings around an insulating mandrel. Further 

generations moved to a stronger design, with a thicker coil cross section, 

machined out of a solid block of high strength copper alloy. The coils were then 

potted in urethane for electrical insulation.

Figure 3.2 Ohio State University UPA coil, second generation (left) and third generation
(right) [12].

Kamal et al. [12] presented an EMF model focusing on coil design and is 

comprised of an analytical model and FE magnetic modeling in Maxwell 2D. The 

deformation of the workpiece was solved separately in LS-DYNA. The analytical 

model predicted rigid body workpiece acceleration, and is attractive for its 

simplicity and cost in effectively determining an optimal coil design.
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A large coil turn count results in a stronger magnetic field, and thus higher 

magnetic pressure. However, a small turn count allows for a shorter rise time to 

peak current [12]. Therefore, it is important to specify whether the coil design is 

to create maximum pressure or maximum sheet velocity. Forming shallow 

features or embossing requires larger magnetic pressures, whereas deep 

features with large deformations requires higher velocities to create large inertial 

effects and high impact pressures [9].

The research by Kamal et al. [12] is the basis of the model presented here. The 

goal is to determine, for a given sheet geometry, a coil geometry that maximizes 

pressure or sheet velocity, while maintaining structural integrity.

Compared to Kamal et al., an alternative design process is conducted that 

consists of an analytical model and a FEA structural analysis. The analytical 

model calculates the initial workpiece acceleration of the EMF/MPW process. 

Magnetic pressure and rigid body workpiece acceleration are solved for a given 

UPA geometry, workpiece length, and coil turn count. A FE mechanical analysis 

determines if the resultant geometry is strong enough to withstand the predicted 

magnetic pressure. If the mechanical simulation shows material failure, the 

analytical model is used to modify the geometry. For a given workpiece length, a 

larger conductor cross-section, and thus lower turn count, produces a more 

robust coil.
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3.2.1 ANALYTICAL MODEL

The analytical model used in this research can be divided into stages based on 

the type of physical interaction involved. First, electrical theory is used to 

determine the current out of the EMF machine and through the coil. Second, 

electromagnetic analysis determines the magnetic field distribution and the 

effective magnetic pressure that is developed on the workpiece. Lastly, classical 

mechanics theory is used to find rigid body motion of the workpiece caused by 

the magnetic pressure. The magnetic and mechanical processes are loosely 

coupled in this model (i.e., at each increment in time, the magnetic field geometry 

is updated from the workpiece displacement). See Figure 3.3 for a schematic of 

this solving process.

Electrical Magnetic

Loose Coupling

Mechanical
Sheet

Position
Sheet

Velocity

Electrical
Current

Magnetic
Field

Magnetic
Pressure

Coil
Parameters

Sheet
Acceleration

Figure 3.3: Schematic of analytical solving process 

In terms of geometry, the coil turn count and required spacing for electrical 

insulation act as inputs to the model, and the conductor width is the output. The 

effect of the number of turns in the coil was determined by running the analytical 

model with varying numbers of coil turns. Maximum magnetic pressure and 

maximum sheet velocity are both affected by the number of turns [12], which can 

be observed in the results. Pressure variation on the workpiece can also be
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observed from this model, (i.e., the necessary spacing of turns for an even 

pressure distribution).

3.2.2 ELECTRICAL THEORY

The primary electrical circuit, consisting of a capacitor bank, coil, and workpiece, 

can be represented by ideal electrical elements (i.e., resistors, capacitors, and 

inductors). Past researchers have presented electrical models of varying degrees 

of complexity. Bauer [13] presented a series RLC (Resistance-lnductance- 

Capacitance) circuit that included a mutual inductance, M, between the coil and 

workpiece, as shown in Figure 3.4. The mutual inductance, in the case of 

imperfect magnetic coupling, can be found from [14]:

M = kVLcLw (3.1)

where Lc and Lw are the inductance of the coil and the workpiece, respectively, 

and k is the geometric dependant coupling coefficient. The coupling coefficient 

represents the leakage of magnetic flux from the alignment of the two inductors, 

with a value between 0 <  k <  1. Jablonski [15] reduced the mutually coupled 

model by assuming that the workpiece inductance was negligible (i.e., Lw » 0). 

This simplification is valid when the inductance of the workpiece is small, which is 

the case for typical tubular and sheet workpieces.

The EMF machine is largely represented by a capacitance, but internal 

resistance and inductance are also included. Conversely, the coil is primarily an 

inductance element, but an internal resistance is also included. Resistance and 

inductance values of the EMF machine, (Rm and Lm) can be determined
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experimentally by recording the electrical response to a shorted load. Resistance 

and inductance values for the coil (Rc and Lc) are calculated from the geometry 

for the purposes of UPA design, but they can also be determined in the same 

manner as the EMF machine once the coil exists (i.e., Rc =  R -  Rm), since the 

resistive elements are in series.

Main
Switch

Capacitor
Bank r>

EMF
Machine

Work
Coil

Workpiece
i

Figure 3.4: EMF circuit diagram [13].

The inductance of the coil can be calculated as that of a rectangular current 

sheet, with corrections for non-conducting space and finite conductor cross 

section [16]. A working formula for a rectangular coil can be found in Appendix A, 

Equations 7.1 and 7.2. The inductance is determined from that of the coil 

geometry only; therefore, effects of the return path and workpiece are neglected 

[15].

Since the current is oscillating, the skin effect produces an exponentially 

decaying current density distribution, /, from the surface current density, Js, in the 

conductor cross section. The distribution is governed by [17]:

J = J se~d/s (3.2)
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where d is the depth into the conductor, and the skin depth, S, is defined as [17]:

8 =
2 p (3.3)

where co is the frequency of the current through a conductor of resistivity p, pr is 

the relative magnetic permeability of the conductor, and p0 is the magnetic 

permeability of free space. To illustrate the skin effect, the current density is 

shown on the geometry of a Cu 110 and SS 321 cylindrical conductor in Figure 

3.5, with a) =  8 .1x l04 ra d /s , pr = 1, and a 5mm  radius. Although typical MPW 

geometries are rectangular, a cylindrical geometry is the simplest to illustrate the 

skin effect. Additionally, the current density in this example is normalized with a 

surface current density of Js =  1.

Cu 110 SS 321

(^>Current Density, — Skin Depth

Figure 3.5: Normalized current density for Cu 110 and SS321.

The exponential distribution of current density causes a reduction in the effective 

conductor cross section. The resistance of a conductor subjected to alternating 

current, RAC, can be determined by substituting an effective cross sectional area, 

Ae ff, into the resistance of a conductor when subjected to direct current [17]:
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L (3.4)

where L is the conductor length and Aeff is the cross-sectional area contained 

from the skin depth (8) to the surface of the conductor (i.e., all of the current 

flows within one skin depth). This approximation is valid as long as the skin depth 

is small compared to the conductor thickness [17]. Otherwise, corrections are 

available for when the skin depth is of comparable length to the thickness of the 

conductor [18].

The transient response of the primary circuit is determined by measuring EMF 

machine circuit parameters, calculating coil parameters, applying initial 

conditions, and solving the governing differential equation. Applying Kirchhoffs 

voltage law [19] and summing the voltages around the circuit, a differential 

equation is obtained with respect to time, t:

where R, L, and C are the respective total resistance, inductance, and 

capacitance in the circuit and ip is the current in the primary circuit.

Initial conditions of the differential equation are found from the charged capacitor 

with main switch closing at t  = 0. When the current is initially zero, there is no 

voltage drop across the resistor. Therefore the voltage across the inductor will 

become that of the capacitor, so the initial conditions are:

(3.5)

(3.6)

where Vco is the initial voltage on the capacitor.
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By solving the differential equation, Equation (3.5), with the initial conditions in
r

Equation (3.6), the primary circuit current, ip(t), is obtained as [19]:

where con is the natural frequency of the circuit:

1
co„ =

(3.7)

n VIC

and (  is the damping ratio of the circuit:

(3.8)

R £  (3-9)
L

To check the accuracy of the predicted total parameters, R, L ,and C, tests can be 

performed experimentally where $ and the damped natural frequency, o)d, can be 

determined by measuring the current waveform. That is, <■ is determined from the 

exponential decay of current amplitude through the log decrement method [19], 

and cod is simply the frequency of the current waveform. The following relation 

allows us to determine o)n from cod and £:

(Or °>d (3.10)
"  V w ?

With the capacitance of EMF machine known, Equation (3.8) can be rearranged 

to determine L:

L = — L =  (3.11)

and with L known, R can be determined by rearranging Equation (3.9):
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(3.12)

Lastly, capacitor voltage, Vc, can be calculated by integrating the current out of 

the capacitor:

3.2.3 MAGNETIC THEORY

The magnetic field produced from a given coil geometry and electrical current 

can be determined with respect to the physical location along the coil, time, and 

the gap distance between the coil and workpiece. The calculation of the magnetic 

field strength is simplified by assuming a super conducting workpiece. Al Hassani

[20] states that this is an appropriate approximation for highly conductive metals 

typically used in EMF, such as copper or aluminum. However, to account for 

finite workpiece resistance, an experimentally determined correction coefficient 

[9], k, which represents the magnetic coupling shown in Figure 3.4.

The magnetic flux density, B, produced by the coil induces eddy currents in the 

workpiece to produce a current density, / .  A Lorentz force is created which acts 

as a volume force, F, [1]:

It is this Lorentz force acting as a body force that creates workpiece acceleration 

and deformation. Since we are concerned with the force in the thickness

(3.13)

F = ]  x  B (3.14)
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direction, y, the current density, /, is related to the magnetic field, H, through a 

partial derivative in that direction [1]:

- __ dH _  (3.15)
^ dy

In non-magnetic materials, a constitutive relation exists between the magnetic 

field, H, and the magnetic flux density, B, such that:

B =  {J.H (3.16)

where p is the permeability of the material. Therefore, the Lorentz force becomes 

[1]:

^ d H  1 d (H 2)

<3 - i 7 >

The body force, F, is integrated through the thickness of the workpiece to 

determine an effective pressure acting on the workpiece surface, (i.e., a 

magnetic pressure), Pm, [1]:

fV2  _ \
Pm = J Fdy = —fJ-̂ Hgap — Hpen) (3.18)

where the integration limits, yx and y2 are the workpiece thickness edges, and 

Hgap and Hpen are the gap region and penetrated magnetic field strengths, 

respectively. For simplification, the workpiece can be approximated by either a 

superconducting (p =  0) or highly resistive half space (p =  oo). With a 

superconducting workpiece, the penetrated field strength is neglected due to the 

skin effect [1], so that the magnetic pressure is:

Pm =  i / lH ja *  (3 '19>

26



To simplify the calculation of Hgap, the coupling coefficient, k, is introduced (see 

Equation (3.1)) to account for the level of magnetic coupling between the coil and 

workpiece. The magnetic pressure now becomes [9]:

<3 ' 2 0 >

The coupling coefficient was determined experimentally by Kamal et al. [9] for 

various workpiece materials for their UPA (i.e., k = 0.7 for an Aluminum 

workpiece, and k = 0.55 for a stainless steel workpiece). Alternatively, Xu et al.

[21] determined k = 0.09 for a flat spiral coil with no return path, and a Aluminum 

workpiece.

Experimentally, k can be determined by measuring the primary and induced 

currents in the coil and workpiece, respectively. The coupling coefficient can be 

found from [9]:

k = —  (3.21)
n ip

where i t is the induced current in the workpiece, and n is the number of turns in 

the coil.

Additionally, the air space and insulation material between the coil and workpiece 

is not considered in the magnetic calculation. Their respective relative 

permeability are close to that of free space, so their effect on the magnetic field is 

negligible. The effect on the magnetic field from the return path is also not 

included for simplicity.
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The magnetic field strength, Hgap, is the resultant field of a superposition of 

magnetic field strength from many current carrying differential elements, dHgap. 

Each element is assumed to be in proximity to that of an infinitely conducting half 

space (p = 0), which represents an upper bound for the magnetic field prediction. 

With this geometry, He is purely tangential to the workpiece surface, so only the x 

component is of interest (i.e., Hex). Hex was determined by Al-Hassani [20]:

H e x  =  e'x 2-rt
g - y g + y

.(g -  y)2 + x2 (g + y)2 + x2 

where, x  and y  are coordinate dimensions, and g is the gap between the 

conductor and sheet shown in Figure 3.6. The current in each element, i, is 

assumed to be spatially uniform through each of the differential elements. 

Diagrams of the coil and workpiece 3D geometry and 2D representative 

geometry are shown in Figure 3.6.

T
a
1

(3.22)

I

Coil

dy
dx

Hx(x’V) B
’7 V / / / / / / / / 7 / / / / / / / / / / / / / / / / / / /

Workpiece surface

Figure 3.6: 2D magnetic field geometry imposed on actual geometry (left), and 2D 
magnetic field representation, showing a single conductor and workpiece (right).

Al-Hassani also showed the effect of exchanging the infinitely conducting half 

space (p = 0) to a infinitely resistive half space (p =  oo). Hex was determined for 

this case [20]:
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This represents a lower bound for the magnetic field.

To determine the contribution to the magnetic field from a single conductor, 

differential elements are integrated to determine the x component of the 

magnetic field. For an element of height, dy, and width, dx, each element has the 

current:

where a is width and height of a square conductor.

Integrating Equation (3.22) over the entire conductor determines the magnetic 

field due to a single conductor, Hcx:

This integral is evaluated numerically in MatLab using the 'dblquad' function 

which implements the adaptive Simpson's method for computing definite 

integrals.

However, the geometry of the coil includes many conductors along the x-axis. 

Superposition of many conductors determines the entire x component of the 

magnetic field, Hgap x:

i = ipd x d y /a 2 (3.24)

a a
(3.25)
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where n is the number of conductors (i.e., the coil turn count) [20]. Hgapx can 

now be substituted into the relationship for magnetic pressure, Equation (3.20).

3.2.4 MECHANICAL THEORY

Applying the magnetic pressure to the workpiece, Newton's second law is used 

to predict rigid body motion of the workpiece. Assuming rigid body motion of the 

workpiece greatly simplifies the model, and will be verified in a later section.

Incremental changes in acceleration, velocity and position are calculated, so the 

magnetic pressure can be recalculated as the sheet changes position. This is 

important since the magnetic field depends on the gap distance between the coil 

and the workpiece. In this way, the electromagnetic-mechanical problem is 

solved in a loosely coupled manner, as was represented in Figure 3.3.

Applying Newton's second law to the workpiece of mass, m:

where the sum of the forces, £  F, is magnetic pressure exerted on the area of the 

workpiece, and A is the acceleration of the workpiece. The pressure distribution 

across the width of the workpiece is averaged and applied to the surface. Since 

the area that Pm acts on is also in the workpiece volume term, the area terms 

cancel. So applying Newton's second law and solving for acceleration, A, of the 

workpiece gives:

(3.27)

A (t) =
mean (Pm)  

WhPw
(3.28)
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where wh and pw are the sheet thickness and density, respectively. The 

integration of A (t) with time yields velocity:

V (t) = f  A dt +  VQ (3-29)
h i

where V0 is the initial velocity. The integration of V (t) yields the position with 

respect to time:

f t2
y (t) = I Vdt + y0 (3.30)

h i

where y Q is the initial position. The incremental change in position of the 

workpiece is then used to calculate a new magnetic pressure to apply.

The workpiece is initially at rest at t  = 0, so the initial conditions for velocity and

position are:

K(0) = 0, y(0) = 5o (3.31)

where g0 is the initial gap between the coil and workpiece. This gap is required 

for electrical insulation.

3.2.5 AERODYNAMIC EFFECTS

Two aerodynamic effects, the pressure drag on the workpiece and the 

aerodynamic added mass are considered to determine their effects, if any, on the 

workpiece velocity. Their respective magnitudes are compared to the workpiece 

acceleration process.

The force, Fd, due to aerodynamic pressure drag in steady flow acting on a bluff 

body, e.g., a flat sheet is:
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Fd = \ c dpdV2Ad (3.32)

where pd is the fluid density, V is the fluid (i.e., air) velocity, Ad is the cross 

sectional area of the plate normal to the flow direction, and Cd is the drag 

coefficient. The relative velocity of the workpiece to the stationary air is used as 

the velocity, V, in this case.

Taking compressibility into account, the drag coefficient for a square plate, Cd, is 

found from [22]:

Cd = 1.13 + .85(1 + .25M2) (3.33)

where M is the Mach number. The Mach number is a measure of the effect of

compressibility of the fluid, and is defined as:

M = — (3.34)
c

where c is the speed of sound in the fluid. The area of the plate is used to find 

the pressure applied and is compared to the magnetic pressure to determine 

whether this effect can safely be neglected.

As a second method for including aerodynamic effects in this model, added mass 

is used to approximate the inertial response of the air. This process takes the 

volume of space entrained by the workpiece as it is displaced and adds the 

equivalent mass of air to the mass of the workpiece [23]. Since the mechanical 

calculation is solved in a loosely coupled manner, the displacement at each step 

can be used to add mass to the workpiece.
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3.2.6 STRUCTURAL & ELECTRICAL DESIGN

While the analytical model described above can develop the theoretically optimal 

coil geometry, a robust design is limited to mechanical and electrical 

requirements. For example, high voltages in the EMF process require space for 

insulation, and the mechanical loads on the coil from accelerating the workpiece 

require additional support.

Voltage potentials are generated between each turn of the coil from the transient 

current, as well as between the coil and surrounding return path. This requires 

adequate spacing for insulation, which was determined from the thickness and 

dielectric strength of the insulator. Assuming a linear relationship, the required 

spacing, bs, is found from:

where d is the dielectric strength of the insulator, and e is the voltage potential 

that is being insulated.

The coil must withstand the forces used to accelerate the sheet, as well as forces 

generated by the coil on itself. A static mechanical FE simulation was performed 

in SolidWorks to estimate the stresses and deflections of the coil geometry 

loaded by a simplified case of the magnetic pressure predicted in the analytical 

model.

The loading for the FE analysis was the magnetic pressure generated from the 

workpiece interaction. Other forces are generated by the coil on itself, but were 

not included for simplicity. An attractive force exists between each of the parallel



sections of the coil, where current is flowing in the same direction. Since this 

would create a compressive force on the insulation, it would not likely lead to 

failure, but could contribute to failure stresses. Additionally, a repulsive force 

exists in each turn itself across the coil where current is flowing in the opposite 

direction. Due to the greater distance, this is a weaker force than that of the 

workpiece magnetic pressure, and acts in the opposite direction.

3.3 MODEL RESULTS FOR COIL DESIGN

The final coil design was driven by the analytical model initially, where an 

efficient design for the coil geometry to achieve maximum forming pressure or 

maximum workpiece velocity was predicted. However, coil designs were also 

limited by electrical and mechanical requirements.

3.3.1 ANALYTICAL MODEL

Results from the analytical model are presented here, which include electrical, 

magnetic, and mechanical predictions. These results are those of the final coil 

design, before any modifications are made based on experimental results (e.g., 

tuning coil resistance and inductance parameters from an experimentally 

measured primary current). Additionally, a 1 mm  thick, Al 6061-T6 workpiece is 

assumed in the analysis results.

Electrical analysis determines the electrical parameters of the final coil geometry, 

and the electrical response of the EMF machine and coil circuit. The EMF 

machine and coil parameters are shown in Table 3.1.
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Table 3.1: EMF machine and coil parameters.

Machine Parameters

Inductance (fiH) 0.1

Capacitance (fiF) 360

Resistance (mil) 4.4

Coil Parameters

Inductance (nH) 0.9

Resistance (mil) 1.2

For the Aluminum 6061-T6 workpiece, the skin depth was 1.1mm. The predicted 

circuit response at 100% energy for the Maxwell Magneform 7000 JA is shown in 

Figure 3.7, with key response parameters shown in Table 3.2.

20
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Figure 3.7: Predicted current and voltage, showing the half cycle time.

The magnetic and mechanical analysis predicts the magnetic field between the 

coil and workpiece, the pressure exerted on the workpiece, and the workpiece 

velocity. The mean magnetic pressure across the workpiece and the workpiece 

velocity are shown in Figure 3.8, and key parameters are also shown in Table 

3.2.
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Figure 3.8: Predicted magnetic pressure and workpiece velocity. 

Table 3.2: Key magnetic and mechanical response parameters.

Machine Parameter

Energy (kj (% of total)) 12 (100%)

Response Parameters

Peak Current (kA) 146.8

Rise Time (ps) 28

Peak Pressure (MPa) 23.2

Peak Velocity (m /s) 432

The experimentally determined coupling coefficient, k, acts on the magnetic 

pressure prediction to correct for the infinitely conducting workpiece assumption 

(i.e., p -* 0). Effects of k, as well effects from the upper and lower bound 

magnetic analysis are shown on the magnetic pressure in Figure 3.9.
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Figure 3.9: Effect of k value [9] on the predicted magnetic pressure compared to the upper

3.3.2 AERODYNAMIC EFFECTS

The predicted workpiece velocity and geometric parameters listed in Table 3.4 

were used to show the ratio of pressure drag to the mean magnetic pressure. As 

shown in Figure 3.10, the pressure drag (i.e., Fd from Equation (3.32) divided by 

area, A, is only significant when the magnetic pressure is temporarily zero due to 

the oscillating current.

To show the inertial response of the air mass during the process, the ratio of 

added mass to the original mass of the workpiece is presented. As shown in 

Figure 3.10, the added mass remains greater than two orders of magnitude 

smaller than the mass of the plate.

and lower bound solutions [20].
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Figure 3.10: Aerodynamic effects on the workpiece acceleration, showing the drag ratio 
and mass ratio are more than two orders of magnitude smaller than the dominating

effects.

Since the EMF/MPW process is inertially dominated, resulting velocity is 

sensitive to workpiece mass. Therefore, it is important to retain the aerodynamic 

effects if the workpiece is modified such that greater velocities are produced. 

Therefore, the pressure drag and added mass effects remain incorporated in the 

model.

3.3.3 DESIGN OPTIMIZATION

As the ratio of turns per unit length of the coil is increased, the magnetic field 

becomes more uniform and a uniform pressure distribution is created. This ratio 

can be increased by either decreasing the spacing of turns, or a decreasing the 

conductor width, both of which lead to a larger turn count for a given workpiece 

length. Since the magnetic pressure is proportional to the square of the magnetic 

field, the ratio of turns per unit length must be kept to a minimum. The minimum 

spacing is limited by the dielectric strength of the insulator, so larger dielectric
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materials allow a smaller spacing, and a more uniform pressure distribution. The 

minimum conductor width is limited by the ability of the coil to withstand the 

pressure it generates. Additionally, the electrical response of the coil is greatly 

influenced by the coil turn count, since the inductance of the coil is proportional to 

the square of the turn count.

To optimize the coil for maximum sheet velocity, and thus MPW, the effect of turn 

count was investigated for a given coil design and workpiece length. This is 

important in MPW since the impact pressure that creates the weld is generated 

by the impact velocity. To allow for various turn counts, the conductor width was 

varied such that the total length of the coil equals the workpiece length. Figure 

3.11 shows both predicted peak velocity and pressure during the process against 

the coil turn count. The pressure shown is the temporal maximum of the average 

pressure across the workpiece width, which occurs a different turn count than 

peak velocity. This is occurs since pressure (and therefore acceleration) is 

integrated to determine velocity.
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Figure 3.11: Peak pressure and velocity generated for a given turn count.

For low turn counts (e.g., less than 10 in Figure 3.11), the effect of superposition 

of the magnetic field from individual conductors is small, which reduces the total 

magnetic field strength and therefore, mean magnetic pressure across the 

workpiece. Although peak current is highest with a low turn count, because of the 

low inductance, the increase in current is not enough to compensate for the 

superposition effect, and results in a smaller magnetic pressure being generated.

As turn count increases, superposition of each individual conductor causes a 

larger total magnetic field, and magnetic pressure increases. However, a larger 

turn count also increases coil inductance, which produces a slower rise time and 

lower peak current. At a critical value for both the maximum pressure and 

velocity, inductance increases and peak currents are reduced to such an extent 

that forming efficiency is reduced from any additional turns (e.g., more than 15 in 

Figure 3.11).
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The final design however, consists of only six turns, which is notably smaller than 

the optimal value for maximum velocity of 14 turns. Coil strength is the limiting 

factor in the design, so six turns was the maximum for the workpiece length 

before the coil failed the structural FE simulation. As stated previously, the 

pressure developed from the workpiece interaction was the only pressure 

included in the FE analysis since it is the most likely to cause failure. Coil 

strength is discussed in the following below in Section 3.4.2.

With the six turn coil, the magnetic pressure distribution was predicted along the 

workpiece width (x-axis in Figure 3.6). The pressure distribution varying with time 

is shown in Figure 3.12.

Norvuniform pressure 
due to coii turns

tO is)

Figure 3.12: Predicted pressure distribution across workpiece width varying with time. 

The pressure distribution across the workpiece is not completely uniform 

because of insulation requirements between the turns. The non-uniformity 

however, can be quantified and used in the future as input for a FE simulation to 

predict whether non-uniform plastic deformation would result. Additionally, the 

distribution becomes more uniform as the distance from the coil increases (at the



cost of a lower mean pressure), as shown in Figure 3.12 at the second and third 

pressure peaks.

3.4 MODEL ASSUMPTION VALIDATION

3.4.1 VERIFICATION OF RIGID BODY ASSUMPTION  

Since EMF/MPW generates large plastic deformations, it is necessary to verify 

that the rigid body motion assumption in the mechanical analysis does not result 

in a loss of accuracy. A dynamic mechanical FE model was created in Dassault 

Systemes Abaqus 6.11 to show that in our transient case of sheet metal forming, 

inertial effects dominate compared to bending forces. A workpiece thickness of 

1mm and material properties of Al 6061-T6 assuming the Johnson-Cook 

constitutive material model were used [24]:

where a is the effective stress, e is the effective plastic strain, i  is the effective 

stain rate, f 0 's a reference stain rate, 6 is the homologous temperature, n is the 

work hardening exponent, and A, B, C, and m are material constants. These 

parameters for Al 6061-T6 are listed in Table 3.3 [24]. Simulations were stopped 

at strains of 100%. The mean pressure at each time step, determined in the 

analytical model, was applied across the entire workpiece surface. Due to the 

high strain rate, adiabatic heating was assumed with a inelastic heat fraction of 

1.0 [24],

(3.36)
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Table 3.3: Johnson-Cook parameters for AI-6061-T6 [24].

A (MPa) B (MPa) n C m ^0 @melt (.K) ®transition CK)
324 114 .42 0.002 1.34 1 925.37 294.26

Taking advantage of symmetry, a quarter model was implemented to reduce 

computation time. The workpiece was fixed on one edge, to simulate the 

clamping force of the return path. Linear brick elements were used in the mesh 

shown in Figure 3.13. Element size was 0.1mm to 1.0mm with a maximum 

aspect ratio of 6.1, and the mesh contained 24528 elements. The workpiece 

dimensions were: 1mm thickness, 76mm width, and 102m m  length. Two cases 

were chosen to show the effect of die radius on the rigid body assumption, i.e., 

die radii of 2mm and 10mm. Geometric and mesh parameters are given in Table 

3.4.

Figure 3.13: FE analysis mesh and symmetry of workpiece, with 10mm die case shown.
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Table 3.4: Mechanical FE analysis parameters.

Geometric Parameters

Workpiece Thickness (mm) 1

Workpiece Width (mm) 76

Workpiece Length (mm) 102

Die Radii (mm) 2, 10

Mesh Parameters

Max. Element Size (mm) 1

Min. Element Size (mm) 0.1

Max Aspect Ratio 6.1

Total Elements 24528

Velocity of the workpiece was compared at the center of the sheet, where it is 

least affected by the clamped edge conditions. Decreasing the die radius 

increased the stress concentration at the edge of the sheet, and excessive 

strains were generated earlier in the forming event. However, for both die radii in 

the FE simulations, the velocity matches almost exactly with the data from the 

analytical model as shown in Figure 3.14. Therefore, the FE simulation validates 

the rigid body motion assumption at the center of the sheet in the analytical 

model.
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Figure 3.14: Dynamic FEA comparison for center workpiece velocity with two die radii
values.

To determine if the rigid body assumption holds over the length of the workpiece,
/

a deformed plot with resultant velocity is shown in Figure 3.15. Since the mean 

pressure was used as the load case, no effect of the widthwise (turn to turn) 

distribution is observed. This could be included with additional model complexity, 

but would not affect the rigid body assumption validation. The workpiece velocity 

is uniform except near the die region.
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Figure 3.15: Deformed workpiece with velocity resultant vectors from dynamic FE

3.4.2 STRUCTURAL ANALYSIS

The coil must be designed to withstand the large forces that are generated in the 

process, which include the repulsive force between the coil and workpiece, the 

repulsive forces between each side of the coil, and the attractive forces between 

each turn. As with the previous sections, the results shown are that of the final 

coil design.

In the FEA module of SolidWorks, a static pressure was applied to the coil equal 

to that of the peak magnetic pressure of 29AMPa as determined in the analytical 

model for a coil with 6 turns. To restrain the coil, a fixed boundary condition was 

applied to the opposite side of the coil. The coil was meshed with quadrilateral 

tetrahedral elements, and the coil material is UNS C18000, which is a Ni-Si-Cr- 

Cu alloy [25]. For a further list of FE model parameters, see Table 3.5. Since all 

that was of interest in this model was yielding, a linear elastic model in 

Solidworks was an acceptable solution.

analysis. 10mm die case shown, at time t =  64fis.
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Table 3.5: Mechanical FE analysis parameters.

Geometric Parameters

Coil Height (mm) 45

Coil Width (mm) 95

Coil Length (mm) 104
Conductor Cross
Section Width (mm) IZ.o

Material Properties [25]

Modulus (GPa) 130

Yield Strength (MPa) 607

Mesh Parameters

Max. Element Size (mm) 3.2

Min. Element Size (mm) 1.1

Max. Aspect Ratio 4.0

Total Elements 52666

Results show that in this simplified case, the coil can withstand the forming 

pressure, with a safety factor of 1.32 based on the yield stress of the material. 

Since the repulsive force between each side of the coil is not included, this 

creates a conservative estimate, even with a small safety factor. See Figure 3.16 

for the von Mises stress in the coil, and the locations of the boundary condition 

(shown in green) and applied load (shown in orange).

47



von Mises (MPa)

— ►
Yield strength: 607

Figure 3.16: Von Mises stress from SolidWorks static mechanical FE simulation, showing 
fixed boundary conditions in green, and applied pressure in orange.

3.5 SUMMARY

In this chapter, analysis and design of a Uniform Pressure Actuator was 

presented that captures the key physics of the EMF workpiece acceleration 

process. Magnetic pressure developed on the workpiece, and workpiece 

velocities are predicted, which is useful in predicting impact velocities for MPW. 

Additionally, the analytical model also developed an efficient and robust design 

for a UPA, while maintaining its simplicity and cost effectiveness.

The analytical modeling contained electrical, electromagnetic, and mechanical 

stages, with assumptions and simplifications implemented to balance ease of 

calculation and accuracy. Aerodynamic forces are shown to a little effect on the 

acceleration process with the velocities predicted for typical workpieces. 

However, they remain in the model since they are simple to implement, and may 

become significant with very thin workpieces.
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Specifically, the assumption of rigid body motion was verified with dynamic, 

mechanical FEA which showed the inertia forces dominate in the initial 

acceleration process, and that bending and clamping forces have little effect. Coil 

strength was verified with static, mechanical FEA, and showed the coil material 

can withstand the magnetic reaction forces. The simplified forces applied to the 

coil were conservative, and allowed a safety factor on the yield stress of the 

material of 1.32. Further validation of the analytical model is shown 

experimentally with a constructed UPA in Chapter IV.
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CHAPTER IV

UNIFORM PRESSURE ACTUATOR: EXPERIMENTAL VALIDATION

4.1 INTRODUCTION

The analytical model for the Uniform Pressure Actuator (UPA) described in 

Chapter III provides a simple and cost effective method designing a efficient coil 

and predicting workpiece velocities for Magnetic Pulse Welding (MPW). In this 

chapter, the UPA is constructed, and the analysis is verified by comparing 

analytical predications to experimental results. First, the electrical stage of the 

modeling is examined, where primary current and coil parameters are measured 

experimentally. Then the magnetic and mechanical stages are evaluated, where 

the coupling coefficient, k, and the workpiece velocity is measured 

experimentally. Last, the effects of workpiece thickness, conductivity, and density 

are investigated.

4.2 ACTUATOR CONSTRUCTION

Based on the design analysis in Chapter III, but also considering other electrical 

and mechanical considerations, a UPA was constructed. The actuator consists of 

the coil, coil leads, return channel, and epoxy potting. Clamp plates hold the 

assembly together and allow for mounting of sensors to measure workpiece 

displacement and velocity. Images of the hardware are shown in Figure 4.1a, 

and the following sections describe each part of the assembly.
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a.) fifl /m m b.) PDV Probe

Workpiece

25.3mm Die with 
10mm Radius

Return Path

Clamp Plate

G-10 Insulation

G-10 Insulation

Figure 4.1: Pictures of a.) coil, and b.) the complete UPA assembly with PDV probe.

4.2.1 COIL GEOMETRY & CONSTRUCTION

The coil consists of six full turns and a spacing between each turn of 3mm. Wire 

Electric Discharge Machining (EDM) was used to cut the coil from a solid billet of 

UNS C18000 (2Ni-1Si-1Cr-96Cu) by Vaupell Rapid Solutions (Nashua, NH), 

shown in Figure 4.1. This high performance copper alloy was selected for its high 

yield strength (607MPa) and low electrical resistivity (3 .592xl0-8n  ■ m ) [25].

A deformable workpiece area of 48.1mm x 127mm was selected for the UPA 

geometry, but the actual workpiece width is larger to contact the return path. The 

cross section of the conductor is 12.3mm x 12.3mm, which was determined in the 

static FE mechanical simulation to withstand the forming pressures. A 

dimensioned drawing is provided in Figure 4.2.
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Figure 4.2: Dimensioned drawing of coil geometry (dimensions in mm).

Two Cu 110 leads extend from the coil for attachment to the capacitor bank, with 

a 25.4mm x 4.8mm cross section and extend 175mm from the coil. The leads 

were bent to accommodate connections to the capacitor bank and were attached 

with press fit pins to secure them during the brazing process. Since the brazing 

process would soften the material, a heat treatment is required after brazing to 

increase the strength and conductivity of the C18000 alloy. Refer to Table 4.1 for 

heat treatment specifications.

Brazing and heat treating of the coil and leads assembly was performed by 

Brazecom Industries (Weare, NH). Pure silver brazing filler metal was used, and 

a vacuum furnace was employed to prevent oxidation.
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Table 4.1: Heat treatment specifications for UNS C18000 after brazing of leads [26].

Process Temperature Time

Solution Treatment 930°C 30 min.

1 st Aging 540°C 3 hr.

2nd Aging 425°C 3 hr.

4.2.2 RETURN PATH & POTTING

The return path consists of an AI-6061 T6 channel, with a 3mm  gap between 

itself and the coil to allow for electrical insulation. The geometry of the return path 

allows eddy currents generated in the sheet to flow in a circuit, and its close 

proximity to the coil allows for further eddy current generation. This increases the 

forming efficiency of the coil and provides a surface to clamp the workpiece in 

place [9]. A dimensioned schematic is shown in Figure 4.3.

R25.40
63.50 j  
50.63 j

25.23 }-----

127t x

-•O
cs
CM fO  QO CS

Figure 4.3: Dimensioned drawing of return path geometry (dimensions in mm).

To provide electrical insulation and support for the coil, a clear epoxy from MG 

Chemicals (8321C) was used to pot the coil into the return path. Transparency of 

the epoxy allows for visual inspection of cracking and arcing damage. Figure 4.4 

shows the coil potted in the return path and the corresponding dimensions.
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Figure 4.4: Coil potted in return path.

Steel plates and eight 3 /8  in  bolts provided a clamping force between the 

workpiece and return path, as shown in Figure 4.1b. Phenolic G-10 sheets were 

inserted between the steel plates to insulate them from the high voltages 

produced. Free forming G-10 dies with a 25.4mm height and 10mm radius were 

placed under the workpiece to allow the sheet to accelerate away from the coil.

4.3 EXPERIMENTAL SETUP

Once designed and constructed, the UPA was connected to a Magneform 7000 

JA series, 12k j capacitor bank to generate the large currents necessary for 

EMF/MPW. Six 60ixF capacitors are connected in parallel for a total of 360//F, 

which can be charged to a maximum 8.3/cV. Six coaxial cables connect the 

capacitors to the coil clamping mechanism at the forming box. The clamping 

mechanism uses four 5/8  in. bolts to apply contact pressure to the coil leads.

A Powertek CWT 3000B Rogowski coil was implemented in the coil clamping 

mechanism to measure the primary circuit amperage. The Rogowski coil 

encircles one lead from the Magneform, (see Figure 4.5a) and a voltage is 

induced in it from the current in the lead. This voltage is integrated and amplified



with external circuitry. From the amplifier, a waveform is produced linearly 

proportional to the amperage in the lead, with a 0 -  6V output corresponding to a 

measurement range from 0 -  600kA.

For workpiece velocity measurements, a Photon Doppler Velocimetry (PDV) 

probe is implemented in the clamping fixture to observe the center of the 

workpiece as it deforms away from the coil (see Figure 4.5b).

\  ^
Coil leads

Figure 4.5: Experimental setup showing a.) the exterior and b.) the interior (i.e., in the
forming box) details.

4.4 PHOTON DOPPLER VELOCIMETRY

4.4.1 OPERATING PRINCIPLES

PDV is a laser interferometric technique for measuring large target velocities. 

PDV provides a robust method for measuring velocities with submicron 

displacement resolution and temporal resolution in the nanosecond range [27], 

This technique has been previously implemented to measure workpiece velocity 

during MPW, and is considered a standard in high target velocity measurement 

techniques [1],

Clamp Bolts

Forming Box

From Magneform Rogowski Coil
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A laser is aligned normal to the target, which reflects off the surface with a shifted 

frequency. The frequency shift is proportional to the velocity of the target, which 

is known as the Doppler effect. When the shifted beam is mixed in a optical 

circulator with the original beam, a beat frequency that is also proportional to the 

target velocity is produced. Figure 4.6 shows a typical schematic for a PDV 

system.

The beat frequency is many orders of magnitude smaller, such that it is capable 

of being recorded by high speed optical detectors and a oscilloscope. The beat 

frequency, f beat is determined by [27]:

fb ea t =  * / ( £ )  (4 -1)

where v is the target velocity, and A is the laser wavelength.

Splitter Circulator

ProbeLaser

Detector

Scope

Attenuator

Figure 4.6: Schematic of a PDV system with target [27].
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4.4.2 CAPABILITIES

The PDV system available in the author’s laboratory was designed and built by 

the Ohio Manufacturing Institute [28], The system is capable of measuring target 

velocities up to 500m/s, at a working distance of 100mm. A 2W, 1550nm 

wavelength laser is split into two beams; one for each of two probes. Each probe 

uses a lens with a 99mm working distance and a displacement range of about 

20mm, centered at the working distance (although this can be extended by 

applying reflective tape to the target).

Maximum velocity is limited by the bandwidth of the optical detectors and the 

oscilloscope. The oscilloscope for this system is a LeCroy WaveSurfer 64MXs-B. 

With a 600MHz bandwidth, the oscilloscope limits the maximum velocity of the 

system to approximately 500m/s.

4.4.3 CALCULATION OF VELOCITY

To determine the target velocity, we need to determine the frequency content as 

it changes with time in the recorded beat frequency. A short time Fourier 

transform (STFT) can be performed on the recorded beat frequency which 

provides information about both when and what frequencies occurred in the 

signal (i.e., a spectogram). The STFT performs a Fourier Transform on a 

overlapped, windowed portion of the signal, and returns the strength of each 

frequency for that window in time. The maximum strength frequency is selected 

for each window, and the target velocity can then be found from Equation (4.1).
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4.5 RESULTS

4.5.1 ELECTRICAL RESULTS

The accuracy of the electrical analysis of the model can verified by experimental 

measurement of the coil parameters. Electrical parameters were determined from 

the response of the primary current through the circuit comprised of the pulsed 

power supply, leads, and coil. Before the coil parameters can be determined 

however, the Magneform pulsed power supply must be characterized.

The electrical parameters of both the Magneform pulsed power supply and the 

UPA were determined by measuring the primary circuit's response with a 3.6k j  

discharge. For characterization of the Magneform, the clamping mechanism 

where the coil is typically located was electrically shorted. The values of the 

machine resistance, Rm, and the machine inductance, Lm, can be determined 

experimentally with a known capacitance by calculating the damped natural 

frequency and damping ratio of the series resistance-inductance-capacitance 

(RLC) circuit.

After charging the capacitor, the main switch is closed, and a exponentially 

decaying, sinusoidal waveform is produced. Measurements are taken of the 

wavelength, A, the first positive peak amplitude, Ax, and the n-th positive peak 

amplitude, An. With these parameters, the damped natural frequency, cod, is 

determined from Equation (3.10), and Lm and Rm are determined from Equation 

(3.11) and (3.12) respectively. For the Magneform with C = 360fiF, the 

experimentally determined parameters are Rm = 4.4mfi and Lm = 0.1/xH.
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The electrical parameters of the UPA were to determined in a similar manner, 

since the coil resistance, Rc, and coil inductance, Lc, adds in series with the 

Magneform circuit. Therefore, Rc = R -  Rm and Lc =  L — Lm, where R and L are 

the total resistance and inductance measured in Magneform-UPA circuit. A 1mm 

AI-6061-T6 workpiece was formed with the UPA connected to the Magneform, 

and a 3.6k j (30%) discharge was applied. Current measured with the Rogowski 

coil is shown in Figure 4.7, with a predicted discharge using the experimentally 

measured circuit parameters.

150
♦ Experimental 
—  Parameter Fit100

50

0

-50

100
50 150 2000 100

Time (p.s)

Figure 4.7: Experimental fit to current waveform  during a 3 .6k] discharge and 1m m  A l-

6061-T6.

Figure 4.7 shows the experimentally measured response varies slightly from the 

second order RLC response later in the forming process. This is due to 

deformation of the workpiece, which slightly changes the circuit parameters [12]. 

The experimentally determined electrical parameters are compared to the 

predicted parameters from the analytical model in Figure 4.8.
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Figure 4.8: Comparison of initially predicted and experimental electrical parameters.

The experimentally measured electrical response of the UPA showed the coil's 

inductance is smaller than the analytical prediction. This is expected since the 

return path and workpiece which are not included in the calculation act to shield 

the magnetic field around the coil. This reduction area that the magnetic field is 

contained in reduces the inductance of the coil [12]. The predicted resistance is 

significantly smaller than the experimentally measured resistance, which could 

be due to a change in the coil material's resistivity during the heat treatment, or 

possibly from the added resistance from the brazed joints in the coil. While the 

relative error in electrical parameter prediction appears large, it was still 

sufficiently to reasonably predict velocities accurately (see Figure 4.9).

The predictions of current through the coil and workpiece velocity are based of 

coil inductance and resistance values, so any error in these parameters 

propagate through the analytical model. To show extent of the parameters 

prediction error and the models sensitivity to this error, peak current and 

maximum velocity for both sets of electrical parameters are shown in Figure 4.9.
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Figure 4.9: Electrical parameters' error on analytical model output o f peak current and

maximum velocity.

While the relative error in electrical parameter prediction appears large, it was 

still sufficiently accurate to predict velocities accurately, which is the purpose of 

the modeling.

4.5.2 COUPLING COEFFICIENT

In Chapter III, a coupling coefficient was introduced in the magnetic stage of the 

model to account for the simplification that the workpiece was assumed to be 

superconducting. This simplification over-predicts the magnetic field produced in 

the coil-workpiece gap region, so a coupling coefficient was included which can 

range from 0 < k <  1 [9,21]. Alternatively, if the coil and workpiece are 

considered a transformer with imperfect coupling, the coupling coefficient can be 

thought of as modifying the ratio between the primary current and the induced 

current. Both currents can be measured experimentally to provide a direct 

measurement k from Equation (3.21).

A slightly modified experimental setup was necessary for measurement of the 

induced current in the workpiece. A 1mm 6061-T6 workpiece was manually
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deformed to create a small channel for the Rogowski coil to surround the 

workpiece. Photographs of this experimental setup are shown in Figure 4.10. 

Measurements of the primary and induced currents were recorded with this setup 

and a 3.6k j discharge. Higher energy tests were not performed due to concerns 

of deforming the workpiece and damaging the Rogowski coil. The average of 

three experiments shown in Figure 4.11, with bars representing the range of 

values from the three experiments.

BWHSS
BE39

Figure 4.10: Modified experimental setup fo r measuring induced current in workpiece.
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Figure 4.11: Primary and induced currents in the coil and workpiece.

From the ratios of the primary and induced currents, a best fit with the least 

squares method was used with Equation (3.21) to determine k = 0.45. This is in
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contrast to Kamal's k = 0.70 for a UPA and Aluminum workpiece. They termed 

the parameter f 2, and in their experimental setup the Rogowski coil passed 

through the coil, such that a artificially deformed workpiece was not necessary. 

Alternatively, Xu et al. determined k = 0.09 for Aluminum. They termed the 

parameter A, which was equivalent to k 1/2 since is acted on Hgap rather than Pm. 

This however was for a flat spiral coil with no return path [21], which is known to 

be less efficient with respect to inducing eddy currents in the workpiece.

To show the sensitivity that k has on predicting workpiece velocities, the 

analytical model was rerun with k = 0.35 and k = 0.55. A 1mm 6061-T6 

workpiece was used with a 6k ] discharge. The velocities are shown with k = 0.45 

in Figure 4.12.

200

150

>  50

50 
Time (jis)

100

Figure 4.12: Predicted velocities for varying k, with a 6kj  discharge and 1mm 6061-T6
workpiece.
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4.5.3 VARYING DISCHARGE ENERGY

To verify the analytical model in Part I for workpiece velocity prediction, three 

energy levels of 3.6k j, 6k j, and 8.4k j  were used to accelerate and deform 1mm 

thick 6061-T6 workpieces (see Figure 4.13). The analytical model predictions 

shown are those with the modified electrical parameters (see Figure 4.8a) and 

k =  .45. Experiments were repeated three times at each energy level, with the 

average shown in Figure 4.13. The bars represent the range of values from the 

three experiments.

250

200 8.4kJ

6kJ150

S 100

3.6kJ

80 100
Time (jis)

— Analyical, Electical Mod., k=.45 
♦ Experimental

Figure 4.13: Experimental velocity results from a 3.6kj, 6kj, and 8.4kj  discharge and 
1mm Al 6061-T6 sheets, with the analytical model predictions shown for comparison.

The analytical model is shown to accurately predict workpiece velocity during the 

initial acceleration, up to approximately the first plateau in velocity. However, the 

model is limited in the inability to predict velocity later in the forming process, as 

the rigid body motion assumption is invalided and bending forces overcome the 

inertial forces in the workpiece.
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Photographs of the deformed workpieces are shown in Figure 4.14 for the three 

energy levels. The side view in Figure 4.14b shows the relative uniformity of the 

deformation across the six turns of the coil, which is where the UPA gains its 

name. Some increased deformation is observed on the outer edges of the 

workpiece in Figure 4.14b, which is due to increased current density on the edge 

from the skin effect [29].

y
A

— > z

y
A

 > X

Figure 4.14: Deformed 1mm 6061-T6 workpieces from a 3.6kj, 6kj, and 8.4k] discharge 

energies, showing a.) front view (i.e., view normal to coil axis) and b.) side view (i.e., coil
turns across photograph).

4.5.4 VARYING THICKNESS

If the skin depth in the workpiece (Equation (3.3)) is large compared to the 

workpiece thickness, the magnetic field will penetrate through the thickness, and 

less magnetic pressure will be developed. In the analytical model, an assumption

Original

Coil position relative to workpiece
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was made that the magnetic field does not penetrate completely through the 

workpiece, due to the skin effect. This allowed a straightforward determination of 

the magnetic pressure acting on the workpiece.

For this simplification to be valid however, it was recommended by past 

researchers that the ratio of workpiece thickness to skin depth, a, should be at 

least 1.5 to 2.0 [1]. In order to verify this assumption for our experimental case, a 

series of forming tests was performed with the UPA, while varying the a ratio by 

changing the thickness of the workpiece. The skin depth remains constant since 

it is material, not thickness dependant. AI-6061-T6 sheets where formed with a 

6k j discharge. The thickness and corresponding a ratio are listed in Table 4.2.

Table 4.2: Various workpiece thickness and a  ratios with a skin depth of 8 = 1.2mm.

Thickness a

0.5mm 0.57

1mm 1.1

2mm 2.3

At the ringing frequency of the discharge circuit, AI-6061-T6 has a skin depth of 

8 =  1.2mm. Velocity results for the average of three experiments at each 

thickness were measured with PDV are shown in Figure 4.15. The bars 

represent the range of values from the three experiments. The corresponding 

analytical predictions with the modified electrical parameters and k =  .45 are also 

shown in Figure 4.15 for comparison.
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Figure 4.15: Workpiece velocity with varying workpiece thicknesses and analytical model
prediction. Discharge energy was 6kj.

The 1 mm and 2mm thicknesses show no change from the analytical model 

during the initial acceleration. Therefore, even a a  ratio as low as a =  1.1 is 

acceptable for determining the magnetic pressure with the aforementioned 

assumption. This is lower than the a ratio of 1.5 to 2.0 recommended in past 

research, which is useful for predicting thinner workpiece velocities. This also 

shows that the magnetic coupling (and therefore, k) remains constant above 

some critical value of a. The a = 0.57 experiment produce a slower velocity from 

the analytical prediction, which demonstrates that smaller a  ratios do not fully 

contain the magnetic field, and thus the forming pressure are velocity are 

reduced.

4.5.5 VARYING MATERIAL CONDUCTIVITY

The coupling coefficient, k, was measured experimentally with an Aluminum 

workpiece, however, the magnetic coupling may change with workpiece
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conductivity, since the skin depth depends on conductivity. For example, 

previous research with a UPA showed a coupling coefficient of k =  0.70 for 

Aluminum, and k = 0.55 for stainless steel (having resistivity's of 5.9n£lcm and 

69.5^iQcm respectively) [9]. However, a =  .57 for the Aluminum workpiece, and 

a  =  .15 for the stainless steel workpiece in their experimental setup. Therefore, 

the difference in k can be attributed to low a ratios.

To show that magnetic coupling is not material dependent for a greater than 

some critical value, two other materials were formed with the UPA, and their 

velocities were compared to the analytical prediction with k = .45 to observe any 

significant difference. Materials with conductivities both higher and lower than 

Aluminum 6061-T6 were chosen. The alloys and their material properties are 

listed in Table 4.3. All workpieces were 1 mm  in thickness. Each material was 

formed three times, with a 6k j discharge, and the average velocity values 

measured with PDV are shown in Figure 4.16 along with the analytical model 

prediction with k =  .45. The bars represent the range of values from the three 

experiments.
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Table 4.3: Material properties for workpiece conductivity experiments.

Material Resistivity
(Dm)

Conductivity 
(% IACS)

Density
(kg/m3) a

Cu 110 1.72 x  10-8 100 8890 1.7

Al 6061-T6 3.99 x 10-8 43 2660 1.1

Cu 230 6.15 x 10-8 27 8530 0.91

Cu 510 11.9x 10~8 ' 15 8860 0.66

SS 321 12x 1(T8 2.4 8000 0.27
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Figure 4.16: Workpiece velocity with varying workpiece conductivity and analytical model
prediction. Discharge energy was 6kj.
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Results show accurate velocity prediction during the initial acceleration with 

a >  0.66, which shows that the magnetic coupling is constant when varying the 

workpiece material above a critical a ratio. However, the measured velocity is 

lower than predicted for the stainless steel experiment, where a  = 0.27. Since the 

materials also have large differences in densities, this series of experiments also 

shows that rigid body motion captures the initial acceleration well, and that the 

acceleration process is highly dependent on inertial forces. For example, with the 

lighter Aluminum, the velocity decreases rapidly in the later part of the forming 

process due to decreased inertial forces.

4.6 SUMMARY

In this chapter, a UPA was constructed based on the analytical model presented 

in Chapter III. Electrical parameters of a commercial Magneform pulsed power 

supply and the constructed UPA were measured and compared to analytical 

predictions. Electrical parameter prediction was shown to have sufficient 

accuracy for the purpose of predicting workpiece velocities. Experimental 

measurement of the magnetic coupling coefficient, k, was performed and 

k = 0.45 for our UPA.

Measurements of the workpiece velocity for various energy levels was 

performed, with the analytical model showing a high level of accuracy with the 

experimentally determined electrical parameters and k = 0.45. The workpiece 

thickness to skin depth ratio, a, was investigated experimentally to observe its 

effects on the magnetic coupling. The a  ratio was first varied by changing the



workpiece thickness. The analytical model predicted workpiece velocity 

accurately for a > 1.1, but decreased coupling was observed for a = 0.57. The a 

ratio was then varied by changing the workpiece resistivity. The analytical model 

predicted workpiece velocity accurately for a > 0.66 but decreased coupling was 

observed for a = 0.27.
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CHAPTER V

FIBER OPTIC DISPLACEMENT SENSOR

5.1 INTRODUCTION

PDV was implemented in the UPA for workpiece velocity measurement, which is 

considered a standard in high target velocity measurement techniques [1]. 

However, the system is expensive and contains a Class IV laser which requires 

additional safety precautions. As an alternative workpiece velocity measurement 

technique, a fiber optic displacement sensor was investigated. Compared to a 

PDV system, the fiber optic sensor is less expensive by a factor of 20, safer, and 

similar in ease of implementation.

The fiber optic, reflectance-based sensor used in this research was a Philtec 

D63-C6H2T3 with an included analog amplifier (see Figure 5.1: for a schematic 

of the sensor). Therefore, displacement resolution is only limited by the analog to 

digital converter of the data acquisition system. The - 3 dB bandwidth of the 

amplifier is 2MHz, and the amplifier output is a 0 -  SV signal proportional to 

displacement. A 3.2mm (0.125in ) nonconductive sensor tip provides electrical 

isolation, and the beam angle is 66°. The displacement range for mill-finish 

aluminum is approximately 3mm, but in this research this parameter was 

extended to 27mm with the use of reflective tape. PDV systems are not limited in
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displacement ranges, so it may be necessary to implement PDV in large 

displacement applications.

AMPLIFIER
Sensor

Tip
TargetLignt

Source^

Fiber Optic cableD etec to r^

Target
MotionPower Analog

In Voltage
Out

Figure 5.1: Reflectance dependant, fiber optic sensor operation schematic [30].

5.2 SENSOR CHARACTERIZATION

5.2.1 LINEAR AND ANGULAR DISPLACEMENT

Some limitations exist for the fiber optic sensor. Since displacement is correlated 

to the reflected light intensity, any change in surface reflectivity, alignment, or 

curvature produces an apparent displacement which cannot be discerned from 

the normal translation of interest. Therefore, the sensor response was 

characterized for surface misalignment, curvature, and reflectivity values 

observed in EMF and MPW.

In order to characterize the fiber optic sensor for possible surface effects during 

high velocity EMF and MPW multiple tests and experiments were performed. 

Many of the tests describe effects from incidence angle, i.e., the difference 

between a surface and the line normal to that surface. This angle is of interest in 

impact processes such as MPW; however, it is not possible to discern a change 

in incidence angle (which may occur during deformation) from translation.
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For simplicity, the sensor characterization tests are performed as static 

calibrations. A two axis translation stage was used for movement in the normal 

and tangential directions, as shown in Figure 5.2.

Sensor Mount

Two Axis 
Translation 

Stage
Probe Tip

Figure 5.2: Experimental setup for sensor characterization.

A calibration curve for translation from a flat, mill-finish aluminum surface was 

obtained. The surface was then displaced from the sensor and a voltage reading 

was taken at each 0 .0 2 5 4  m m  (O .O O lin )  distance increment. The calibration 

curve is shown in Figure 5.3.

> 3■«->rjQ_

Translation (mm)

Figure 5.3: Calibration curve for flat, mill-finish aluminum surface.
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There is a peak in sensor output at 0.2 mm  (0.008in) due to near field effects. 

Therefore, in order to eliminate ambiguity, only the displacement range contained 

in the far-field (> 0.2mm) was used. This represents the initial stand-off distance 

from the target if the target is moving away from the sensor.

Angular effects were investigated for flat sheet and axisymmetric EMF 

processes. A flat, mill-finish aluminum surface and two mill-finish aluminum 

cylinders were used as target surfaces as they were either rotated or displaced. 

Angular changes for the flat surface (Figure 5.4a) and the horizontal cylinder 

(Figure 5.4b) were achieved using a rotating stage, and translational changes on 

a vertical cylinder were achieved using a two axis translation stage (Figure 5.4c).

Figure 5.4: Experimental setups for angular effects: a.) flat surface, b.) horizontal Cylinder,
and c.) vertical cylinder.

For the flat surface and the horizontal cylinder, the sensor was located 

1 mm (0.039in) from the surface. The surface was then rotated using the 

rotational stage in one degree increments between ±7°. The sensor outputs were 

converted to gap distance values using the calibration curve and compared with 

the actual gap to compute an error from misalignment, shown in Figure 5.5.

For the vertical cylinder, the two axis translation stage was used to traverse the 

fiber optic sensor location across the diameter. The theoretical gap distance and
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incident angle were calculated for a circular geometry. The sensor outputs were 

converted to gap distance values using the calibration curve (Figure 5.3) and 

compared with the theoretical gap to compute an error from misalignment, also 

shown in Figure 5.5.

a
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o
lD
<DOc
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Q
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5
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Incidence Angle (deg)

-e—Vertical Cylinder 
Flat Surface 
Horizontal Cylinder

Figure 5.5: Gap distance error induced from angular effects for three experiments: flat 
surface, horizontal cylinder, and vertical cylinder.

Based on the complex geometry of the work pieces that were used in EMF 

processes, the horizontally oriented cylinder will help to quantify the error during 

tube/shaft EMF .For flat sheet EMF, the flat surface tests will help to quantify 

possible error.

As is evident in Figure 5.5, an increasingly large error occurs with increasing 

incidence angles for all three surfaces. Also, the working range for the sensor is 

relatively small (< 3mm). Finally, while not shown here, the surface roughness 

affects output values from the fiber optic sensor.



5.2.2 RETROREFLECTIVE SURFACE

These limitations of the fiber optic sensor, i.e., large errors at small incident 

angles and sensitivity to surface roughness, can be alleviated with the use of 

retroreflective tape. Retroreflective surfaces, popular on roadway signs and 

markings, reflect light back to the light source, which is advantageous for 

minimizing changes in surface reflectivity due to roughness, misalignment, and 

curvature changes. Applying retroreflective tape to target surfaces also has the 

advantage of increasing and maintaining the reflectivity of any target surface. 

This increases the sensor range and repeatability of measurements. However, 

proper adhesion of the tape is required, including light sanding, cleaning with 

isopropyl alcohol, and allowing 24 hours for the adhesive to fully bond.

A linear displacement calibration was performed with a retroreflective tape 

(Nikkalite 48000 series) applied to a target surface and the flat surface aligned 

perpendicular to the sensor tip (see Figure 5.2). As shown in Figure 5.6, the 

superior reflectivity of the tape compared to the original aluminum flat surface 

increases the sensor range by 9x to 27 mm (every 5th data point shown for 

clarity).
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o Al Surface 
°  Retroreflective Tape

10 20 
Translation (mm)

30

Figure 5.6: Calibration to flat surface with retroreflective tape applied and a with mill-finish
Aluminum surface.

Ideally, the retroreflective tape reflects all of the light back to the sensor tip 

regardless of misalignment, but some scattering does occur. To quantify this, an 

angular calibration was performed by rotating a flat target surface from a 

perpendicular starting point (i.e., the experimental setup in Figure 5.4a).

As shown in Figure 5.7, retroreflective tape decreases the sensitivity to 

misalignment, represented as a percent error from the original displacement 

reading. Calibrations were performed at various gap lengths to show the 

misalignment error decreases slightly at longer gap lengths. Note that longer gap 

lengths allowed larger angular rotations due to less interference with the sensor 

mount.
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Figure 5.7: Angular effects on flat surface with retroreflective tape applied and a mill-
finish Aluminum surface.

5.3 SENSOR IMPLEMENTATION

The fiber optic sensor was implemented in two EMF processes to evaluate the 

potential for its use in axisymmetric tube welding and flat sheet forming. In both 

of these processes, a direct comparison with a laser PDV system was performed.

5.3.1 FLAT SHEET FORMING

The fiber optic sensor was implemented in a EM sheet forming process to 

measure the velocity of 1mm thick, 76x103mm Al 6061-T6 sheets using the 

Uniform Pressure Actuator (UPA) described Chapter III and IV. Retroreflective 

tape was applied to the surface of the workpiece and translation calibration (see 

Figure 5.6) was used.
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The fiber optic sensor was incorporated into the clamping fixture to observe the 

center of the workpiece as it deforms away from the coil. The UPA assembly is 

shown in Figure 5.8. A HP 5481OA oscilloscope with a 500MHz bandwidth and 

lGS/s sampling rate captured displacement data. The experiments were 

conducted on a Maxwell Magneform 7000JA with a rated capacity of 12k j. EMF 

processes are controlled by input energy, based on a percentage of the 

maximum machine energy.

Steel Clamp 
Plate

G-10 Insulation
Return Path

Workpiece
10mm Die
Displacement 
Sensor

Figure 5.8: Experimental setup for UPA flat sheet forming tests.

Three forming tests were performed at three energy levels of 3.6kJ, 6kJ, and 

8.4kJ. An order 50 polynomial (randomly selected) was fit to the retroreflective 

displacement curve (Figure 5.6) with a least squares method, which provides a 

continuous curve to differentiate. Polynomial fits of the displacement data fit well 

during displacement, but some error was observed at low velocities. Velocity was 

determined from differentiation of this polynomial. For comparison, three tests at 

the specified energy level were repeated with the PDV system. Velocity results 

for the three tests at each energy level were averaged and are shown in Figure
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5.9. Error bars, representing the range of values for a given energy level, are 

included.

a.)

100
to

o 50 o
<L>>

3.6k J

=1

0 ^
0 50 100

oo
0)>

c.)

to
E

250

200

150

g 100
<D
>  50

200

100

50

0,
50 100

8.4kJ

: =^_3T3-X

I
K
.................... * T ......=•*

sas

_£

3C
sec

-*ac

0 50 
Time (p.s)

100

Experimental, FO * Experimental, PDV

Figure 5.9: Velocity results for 1mm sheet Al 6061-T6 forming at 3.6kj, 6k), and 8.4k] 

discharge energies, measured with the fiber optic sensor and the PDV system.
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Velocity results are consistent for each experimental run during the initial 

acceleration. Larger error is observed during the later deceleration for the two 

higher energy cases, where a combination of the retroreflective tape failing and 

the workpiece surface deforming caused a loss in reflectance. This loss in 

reflectance is not distinguishable from actual workpiece displacement with the 

fiber optic sensor, which results in a lower velocity measurement. For the QAkJ 

case, only the initial slope of the curve is comparable to the PDV data, with lower 

velocities afterwards. Figure 5.10 shows a photograph of the deformed 

workpiece from a 6.0k j discharge, with the location of the sensor indicated.

Sensor Tip

b.) Retroreflective 
Tape

Figure 5.10: a.) Front view and b.) side view of deformed workpiece with a 6. OkJ 

discharge, with the location of the fiber optic sensor indicated.

5.3.2 TUBE CRIMPING

To further evaluate the fiber optic sensor in another application, a assembling 

process for crimping an Aluminum 2024-T3 tube to an Al 6061-T6511 shaft was 

implemented. The tube outer diameter was 25.4 mm (1”) and its wall thickness 

was 0.89 mm (0.035”). The shafts were machined to a diameter of 21.84 mm
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(0.86”), creating a gap equal to one thickness of the tube. The experiments were 

conducted on the same Maxwell Magneform 7000JA machine.

A single-turn coil was constructed of Cu-Cr-Zr alloy C18150 with an outer 

diameter of 205.2mm (8 in), an inner diameter of 27.4mm (1.04m), and a 

thickness of 38.1mm (1.5in). A taper angle of 45° on the inner landing of the coil 

was used to concentrate the magnetic field at the welding location. A 

3.175mm (0.125m) radial slot was cut and leads brazed on either side to create a 

connection to the capacitor bank, (see Figure 5.11a). The sensor was located 

opposite of this slot by drilling a hole, and was secured with nylon bolts. A cross 

sectional view of the single turn coil is shown in Figure 5.11b.
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Figure 5.11: a.) Experimental setup for tube/shaft welding in form ing box and b.) Cross 

section view of single turn coil (dimensions are in mm).

As shown in Figure 5.11 a, a pair of three jaw chucks was used to hold the tube 

and shaft in place and aligned during welding. A Powertek CWT 3000B 

Rogowski coil was implemented on the incoming lead to measure the current 

through the capacitor bank - coil primary circuit. A Tektronix TDS 2012 

oscilloscope with a 100MHz bandwidth and lG S /s  sampling rate captured the 

displacement and current data.
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Three experiments were performed at 7.2, 9.6 and 12k j  discharge energies. For 

each power level, a translation calibration for this tube material and geometry 

was performed in the same manner as described in the sensor calibration 

section. The linear range of the sensor was used to determine the displacement 

during the deformation, and an order 15 polynomial (randomly selected) was fit to 

the displacement curve with a least squares method. Polynomial fitting produces 

a smooth curve to differentiate, and fits the displacement data during 

deformation. Some error in the fit at low velocities was observed. Velocity is 

determined from the differentiation of this polynomial.

For comparison, the three sets of experiments were repeated with the PDV 

system. The PDV probe was positioned in the same hole in the coil to observe 

the workpiece velocity. Velocity results for the tests are compared in Figure 5.12,
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Figure 5.12: Velocity results for 25.4 mm diameter, .89 mm wall, 2024-T3 tubes at various 
energy levels, measured with a.) the fiber optic sensor and b.) the PDV system.

Considering the PDV measurement to be accurate, the fiber optic sensor shows 

much greater error in the tube crimping process, in large part due to the 

increased local deformation relative to the size of the fiber optic sensors light
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beam. Figure 5.13 shows a photograph of the deformed workpiece form a 9.6k j  

discharge, with the typical location of the sensor indicated.

Figure 5.13: Deformed workpiece with a 9.6kj discharge, with the location of the fiber
optic sensor indicated.

Artifacts of the curve fitting are evident in the waviness before and after the 

launch since the high order polynomial required to fit the transient data did not fit 

the steady state regions of the displacement data well (i.e. where the velocity is 

near zero and should have been flat). Additionally, limits bit resolution and signal 

to noise ratio limit the quality of the original displacement data and the ability to 

accurately fit data in this region. Since displacement data must be differentiated, 

original data quality is important for more accurate curve fitting.

5.4 DISCUSSION

5.4.1 RETROREFLECTIVE SURFACE

By implementing retroreflective tape with the fiber optic sensor, significant 

improvements were achieved. The retroreflective tape was successful in 

increasing the displacement range by 9x, as well as decreasing the sensor's 

sensitivity to misalignment. Having a consistent surface reflectivity by applying
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the tape to a given surface eliminates the need to calibrate the sensor for each 

type of surface and improves repeatability.

When deformation increased in the workpiece surface, the retroreflective tape 

began to fail producing small cracks in the tape surface. This is only a minor 

effect since the light beam illuminates an area of the tape at a 66° beam angle, 

so the overall decrease in reflectivity is small. A larger displacement 

measurement error is expected from the workpiece deformation itself, which 

decreases the light intensity reflected back to the sensor for a convex surface. A 

concave surface could have the opposite effect, reflecting more light back to the 

sensor.

5.4.2 LOCALIZED DEFORMATION

After the 1mm Al 6061-T6 sheet forming experiments, the specimens were 

placed back in the translation calibration setup to quantify the error in 

displacement measurement from the tape failing and the surface deforming. The 

results of the translation calibration are presented as a percent error from the 

original calibration in Figure 5.14.
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Figure 5.14: Translation calibration with deformed specimen and damaged retroreflective
tape.

The combination of the workpiece surface deforming and the retroreflective tape 

cracking yields a lower effective reflectivity and causes an apparent decrease in 

distance. As this occurs during deformation of the workpiece, measured velocity 

would be lower than the actual velocity. This is a limitation of the reflectance- 

based sensor, so care should be taken to implement the sensor where local 

deformation (i.e., in the area illuminated by the infrared beam) of the surface is 

minimal. Additionally, since only static characterization of the sensor is possible 

before and after the workpiece is deformed, no quantitative error for the 

measurement of velocity can be determined during the process.

Velocity results are comparable for flat sheet forming for the initial acceleration, 

until the workpiece surface deformation causes a change in reflectance. This 

error is larger for tube crimping since the deformation is more localized with the 

single turn coil. If tube crimping was performed with a multi-turn coil (where a
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longer axial section of tube was deformed), sensor performance would be similar 

to the sheet forming process in the center of the deformation away from the 

curvature.

Coincidently, the error in fiber optic sensor data showed slower velocities for both 

forming processes when compared to PDV measurements. Although the 

workpiece deformation caused opposite changes in reflected light (i.e., convex 

for the flat sheet forming versus concave for tube crimping), the sensor observed 

opposite directions of displacement as well. For example, in the tube crimping 

experiment, the workpiece displaced away the sensor, so reflected light intensity 

decreased. However, the concavity slightly increased the reflected light during 

the displacement, so it appeared the surface has deformed slightly less at a 

lower velocity.

5.5 SUMMARY

In this chapter, a fiber optic sensor was characterized and implemented in two 

EMF processes. The sensors response to linear and angular displacement was 

quantified both with a mill-finish Aluminum surface, and with retroreflective tape. 

Retroreflective tape was shown to improve the linear range of the sensor by 9x, 

and to greatly reduce its sensitivity to misalignment. Retroreflective tape also 

increases repeatability, since a consistent surface reflectivity eliminates the need 

to recalibrate for each surface condition of various workpieces.

The sensor was implemented in a tube crimping and a sheet forming experiment, 

where velocity measurements were taken in parallel with PDV. Flat sheet forming
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showed the sensor had good accuracy with velocities up to 150m /s  accurately 

for the 6.0k j case. However, some error was seen at higher velocities, where 

larger deformations of the workpiece changed the effective reflectivity of the 

surface.

This effect was larger with tube crimping, where the deformation of the surface 

was much larger, relative to the sensor diameter. The larger deformation 

changed the effective reflectivity of the surface, and larger error was observed 

when compared to PDV velocities.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

6.1.1 UNIFORM PRESSURE ACTUATOR

The analytical model's ability to predict workpiece velocity based on discharge 

energy level, and workpiece thickness, density, and conductivity was verified 

experimentally. Also, the analytical model's ability to generate an efficient and 

robust actuator design for accelerating workpieces electromagnetically was 

demonstrated. Therefore, the analytical model is a simple and cost effective 

solution to efficient design of electromagnetic forming actuators and prediction of 

workpiece velocity for EMF and MPW. Predicting workpiece velocity is a key 

parameter in MPW, so this modeling helps eliminate the empirical investigation to 

produce a MPW joint or EMF process.

Major findings from this research are that the magnetic coupling coefficient, k, 

remains constant for workpiece thickness to skin depth ratios of a >  0.66. 

Therefore, when a > 0.66, the magnetic coupling is only determined from the 

geometry of the coil and workpiece, and the analytical model's accuracy in 

predicting workpiece velocity will remain constant for a large range of workpiece 

thickness and resistivity. Smaller a ratios, e.g., a = .57, show decreased 

magnetic coupling, and therefore, decreased magnetic pressure and workpiece
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velocity. The a ratio is a key parameter when adapting an EMF or MPW process 

to a given workpiece, and this research shows that the previous 

recommendations of a >  1.5 -  2.0 can lowered. The analytical model will show 

the same accuracy in predicting workpiece velocity for a larger range of 

workpiece types, i.e., thinner and more highly resistive workpieces.

The physical interactions of the acceleration process were simplified to solve for 

workpiece velocity analytically, while still maintaining sufficient accuracy. The 

predictive power of the model has possibilities for improvement, e.g., determining 

a coupling coefficient without physical experimentation. Electromagnetic 

simulations could provide insight into this but is difficult based on its complexity 

and cost. The simplified modeling presented aims to bridge the gap between 

experts in pulsed power and electromagnetism, and sheet metal and 

manufacturing experts. This will allow for increased implementation and 

leveraging of the advantages of EMF and MPW.

6.1.2 FIBER OPTIC DISPLACEMENT SENSOR

The fiber optic displacement sensor was shown to be a viable solution for 

workpiece velocity measurement in the EMF and MPW processes. It is attractive 

for its low cost, ease of implementation, and safety. Characterization was 

performed to quantify the error in displacement measurements for typical surface 

effects observed during seen these forming processes. Through implementing 

retroreflective tape with the sensor, an increased displacement range of 9x was 

obtained, as well as decreased sensitivity to misalignment. Repeatability of the 

sensor is also improved, since a consistent surface reflectivity can be applied to
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any target surface. Retroreflective tape is limited by its ability to remain adhered 

and strain with the target.

Verification of the sensor with high speed deformation was shown with the 

experiments comparing results to the PDV system. Major findings from this 

research are that the sensor is an acceptable solution to measuring high 

velocities, especially if the target is remains relatively flat locally. In the sheet 

forming process, the sensor was shown to be capable of measuring velocities of 

at least 150 m/s accurately.

Even with the negative impact of localized deformation, the cost and ease of 

implementation of the fiber optic sensor are main driving advantages for this 

velocity measurement technique. In the future, an array of sensors could be 

implemented at different locations to provide a deformation and velocity profile 

for various EMF and MPW processes.

6.2 FUTURE WORK

In the future, the predictions and measurements of the workpiece velocity can 

used to inform welding tests, where the optimal gap distance between the flyer 

and stationary workpiece can be determined so that the flyer impacts at 

maximum velocity. Various energy levels (and therefore impact velocities), 

impact angles, and workpiece materials will be used to determine which set of 

parameters produce a weld, and strength of these welds will be observed (e.g., a 

peel test).
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APPENDIX A: ADDITIONAL EQUATIONS

The inductance of a coil, wound in a rectangular form can be found from [16],

asinh asinh

asinh asinh atan

(  a2\  b [  a \  1 /  a2\  b f  ai \
( 1 — —7  ) —  asinh [ —  — —I 1 — —  ) — asinh I — ----------- 1

1 bU \ 2[ b,a (>f%J

w/ g2 = a2 + a\ 7.2

where a and a1 are the cross sectional width and height, requiring a > a±, and b 

is the length of the coil. In the direction of the length b, there are n turns, and g  is 

diagonal length of the coil cross section [16].
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APPENDIX B: MATLAB CODE

ANALYTICAL MODEL

MAIN CODE

%% EMF/MPW Research 
%% Process Model & Coil Design

%% Initialize

clear all; close all; clc;

%% Parameters 
% {

- List of initial, known, parameters
- Options for analysis and plotting

%}

% ***** Options *****
% Aerodynamic effectsop t .aero = ' o n ' ; %

opt.magfieldplot = 'o f f '; %
opt.legends = 'o f f '; o

o

opt.bound = ' f 2 ' ; %
' f 2 '
opt.elec override = 'o f f '; %

Magnetic field assumption: 'low', 'high',

% Magnetic Permeability of Free Space
uo = 1.2566370614e-6; % H/m

% ***** Machine Parameters *****
Lm = 0.0721e-06; % H
Rm = 4 . 3 8 e - 3; % ohm
C = 6*60e-6; % F

% Energy Stored
E = 12e3; % j
E = E*1;

% Initial Charge Voltage 
Vco = sqrt(2*E/C);

% ***** Workpiece Dimensions / Properties *****
wrho_d = 2 660; %
kg/mA3
wh = 2e-3; % m
wl = 4*.0254; % m
ww = 3*.0254; % m
woff = 6.4e-3; % Workpiece overlap % m
f2 = 0.70;
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% ***** Coil Dimensions / Properties *****
crho_r = 4.8e-8; % ohm*m

% Number of Turns 
n = 6;

% Required conductor spacing
b = .003; % m

% Conductor Width 
a = (wl-woff* 2 - (n-1)*b) / n;

% Pitch 
p = a+b;

% Coil Dimensions (Defined on mid CS)
ch = 0.020+a; * m
cw = 2*.0254+ch; % m
cl = wl-woff*2-a;

% Coil Outer Dimensions 
ch_o = ch+a; 
cw_o = cw+a;
cl_o = (cl+p)+a; % Adds half turn on each end for lead attachment

% Conductor Locations (lower) 
nl = woff+(a/2); 
n2 = wl-woff-(a/2); 
cond_loc = linspace(nl,n2,n ) ;

% ***** Time Constants *****
t_step = le-6; % s
t_end = 30e-6; % s

t = 0:t_step:t_end-t_step; 
nt = length(t);

% ***** Initial Conditions *****
% Starting Gap
gO = .003; % m

% ***** Discretization Constants *****
% Length Constants 
nx = n*20; 
ny = 3; 
ni = 500;

%% Coil Resistance 
%{

- Analysis of the coil resistance, based on DC resistance with an 
effective area due to the skin effect

o , \•5 }
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% Nominal Frequency 
f = 8.9e3; 
w = 2*pi*f;

% Hz

% Skin Depth
sd = sqrt(2*crho_r/w/uo);

% Effective Area
Aeff = aA2 - ((a/2 - sd)*2)A2;

% Coil Resistance
Rc = crho_r*(2*cl-ch + pi*ch)*n / (Aeff);

% Total Circuit Resistance 
R = Rm + Rc;

%% Coil Inductance (Grover) (Implemented)
%{

- Analysis determines the coil inductance based on formula for 
inductance

of a single layer coil, on a rectangular form
- Correction for wire insulating space applied
- Assumption: Conductor cross section is round

% }

% Inductance of Single Layer Coil on Rectangular Winding Form 
Lc = inductgrover(cw,ch, cl_o,p,a,n);

% Total Circuit Inductance 
L = Lm + Lc;

%% Coil Inductance (Kamal) (Not Implemented - For Comparison)
%{

- Analysis of coil inductance based on section of infinitely 
long solenoid

%}

Lc3 = (uo*nA2*cw*ch)/ (cl_o);

%% Electrical Simulation 
% {

- Analysis of the primary current, based on series RLC circuit
- Analytically solution for current. Capacitor voltage is 

then solved for by integrating current through the capacitor
%}

if strcmp(opt.elec_override,'on')
R = 8.6e-3;
L = .418e-06; 
end

% Natural frequency 
wn = s q r t (1/(L*C));
% Damping Ratio
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z = R/2*sqrt(C/L);
% Damped Natural Frequency 
wd = wn*sqrt (l-z/'2) ;

% Circuit current
Ip = Vco*sqrt(C/L)/sqrt(l-z^2) ...

.* exp(~z*wn.*t) ...

.* sin(wn*sqrt(l-zA2 ).*t);

del = wn*z;
Itest = Vco*sqrt(C/L).*exp(-del*t).*sin(wn.*t);

% Capacitor Voltage 
V = 1/C .* cumtrapz(t,-Ip) + Vco ;

% Find peak current 
[pks,locs] = findpeaks(Ip);

%% Magnetic Pressure & Acceleration

% Workpiece Mass 
m = wh*wl*ww*wrho_d;

% x and y locations 
x = linspace(0,wl,nx); 
y = linspace(0,.020,ny);

% If magnetic field plot is not generated, only determine magnetic 
field
% at the workpiece surface 
if strcmp(opt.magfieldplot, 'off') 
ny = 1; 
y = 0; 
end

% Find x index of workpiece width for mean pressure 
for i=l:nx

if x (i ) <= 0
x_ind_l = i;

end
end
for i=l:nx

if x(i) >= wl
x_ind_2 = i ; 
break;

end
end

% Preallocate matrices 
integ=zeros(ni,ni);
Hx=zeros(ny,nx,nt);
Hy=zeros(ny,nx,nt);
Hx_mean=zeros(1,n t );
Pm=zeros(x_ind_2-x_ind_l+l, nt ) ;
Pm mean=zeros(l,nt) ;
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acc=zeros(1,n t ); 
vel=zeros(1,n t ); 
pos=zeros(1,n t ); 
drag_ratio=zeros(1,n t ); 
mass_ratio=zeros(1,n t );

% Initial sheet position 
g = gO; 
pos (1) = g;

% For each time step 
for q=2:nt

% For each filament 
for k=l:n

% For each y position 
for j=l:ny

if y(j)<=g;
% For each x position 
for i=l:nx

xO = cond_loc(k); 
xl = x(i)-x0-a/2; 
x2 = xl+a; 
g = pos(q-1); 
y3 = y (j );
% H Field, x component 
if strcmp(opt.bo u n d , 'low')

% Evaluate contribution of each element 
integ = @(x3,gl) Ip(q) / (2*pi*a/'2) * ...

( .  .  •

+ (g+gl+y3)./((g+gl+y3).~2 +(x3).A2) );
Hx (j , i, q) = Hx (j , i, q) + 

dblquad(integ,xl, x2, 0, a, le3) ;
else

% Evaluate contribution of each element 
integ = 0(x3,gl) Ip(q) / (2*pi*a/v2) * ...

( (g+gl-y3) . / ( (g+gl-y3) .<'2+(x3) .^2) . . .
+ (g+gl + y3) ./( (g+gl+y3) •/'2+(x3) ./'2) );

H x (j , i,q) = H x (j ,i, q) + 
dblquad(integ,xl,x2, 0, a, le3) ;

end
end

end
end

end

% Coupling Coefficient 
if strcmp(opt.bound,'high') 

f 2 = 1;
end

% Mean Magnetic Field
Hx_mean(q) = mean(Hx(1, x_ind_l:x_ind_2,q ) ); 
if strcmp(op t .aero, 'o n 1)

% Magnetic pressure
Pm(:,q) = .5*f2*uo*Hx(1,x_ind_l:x_ind_2,q).~2 - drag_ratio(q); 
% Mean magnetic pressure
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Pm_mean(q) = m e a n (P m (:,q ) );
% Workpiece acceleration
acc(q) = Pm_mean(q)*wl*ww/(m+mass_ratio(q));

else
% Magnetic pressure
Pm(:,q) = .5*f2*uo*Hx(1, x_ind_l:x_ind_2, q) .~2;
% Mean magnetic'pressure 
Pm_mean(q) = mean (Pm (: , q) )
% Workpiece acceleration 
acc(q) = Pm_mean(q)*wl*ww/(m);

end
% Workpiece velocity
vel(q) = vel(q-l) + t r a p z ([t(q-1),t (q)] , [acc(q-1),acc(q)]); 
% Workpiece position
pos(q) = pos(q-1) + t r a p z ([t(q-1),t(q)] , [vel(q-1),vel(q)]);

% Aerodynamic Drag 
M = vel(q)/34 3;
Cd = 1.13 + .85*(1+.25*M"2); 
ro_air = 1.2; 

kg/mA3
drag_ratio(q) = ((Cd*.5*ro_air).*vel(q).* 2 ) / Pm_mean(q);

% Aerodynamic Added mass
mass_ratio(q) = (wl*ww*(pos(q-1)-min(pos))*ro_air) / m;

% Print solution status 
clc
fprintf('%.f of %.f\n',q,nt)

end

%% Post Processing

Pm_max = m a x (Pm_mean); 
vel_max = max(vel);

% drag_ratio = drag_ratio / Pm_max;
% mass ratio = mass ratio / m;

% Output for Abaqus simulation 
abq.t = t';
abq.Pm = Pm_mean'./max(Pm_mean); 
abq.Pm_max = m a x (Pm_mean);

% Load Abaqus results
[abq_2mm] = importdata('abaqus_velocity_2mm.txt'); 
[abq_10mm] = importdata('abaqus_velocity_10mm_2mm.txt');

% Cut Abaqus data to <100% strain 
abq_2mm = abq_2mm(1:57,:); 
abq_10mm = abq_10mm(l:146,:);

% m/s 

% m

%

% Pa
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SUBFUNCTION

function [ Lc ] = inductgrover( a, al, b, p, d, n )
%INDUCTGROVER Determines inductance of a coil wound on a rectangular 
form
% Parameters:
% coil width, coil height, coil length, pitch, conductor width, #
turns

a = a * 100 ; % cm
al == al * 100 ; % cm
b = b * 100; % cm
P = p * 100 ; % cm
d = d * 100; % cm

g = sqrt(aA2 + alA2);

Lc == 0.008*nA2*(a*al/b) * (( ...
l/2*b/al*asinh(a/b) ... % 1

+ l/2*b/a*asinh(al/b) ... % 2
- 1/2* (l-alA2/bA2) *b/al*asinh(a/b/sqrt (l+alA2/bA2) ) ... . % 3
- 1/2* (l-aA2/bA2) *b/a *asinh<al/b/sqrt(l+aA2/bA2 )) . . % 4
- l/2*al/b*asinh(a/al) ... % 5
- l/2*a/b *asinh(al/a) ... % 6
+ pi/2 - atan (a*al/b/'2/sqrt (l+gA2/b^2) ) . . . % 7
+ l/3*bA2/a/al*sqrt(l+gA2/bA2) * (l-l/2*gA2/bA2) ... % 8
+ l/3*bA2/a/al ... % 9
- l/3*bA2/a/al*sqrt(l+aA2/bA2) * (l-l/2*aA2/bA2) ... % 10
- l/3*bA2/a/al*sqrt(l+alA2/bA2)*(1-1/2*alA2/bA2 ) ... % 11
+ l/6*b/a/al*((gA3-aA3-alA3)/bA2) ... % 12
)) / le6; % H

% Correcting for Wire Insulating Space 
G = 5/4 - log(2*p/d); 
load H.mat
del_Lc = .002*(a+al)*n*(G+H(n)) / le6; % H
Lc = Lc - del_Lc; % H

end
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EXPERIEMENTAL VALIDIATION

PDV POST PROCESSING FOR 1MM AL-6061-T6. FORMED A T  6.0KJ

%% Initialize

clear all; close all; clc;

%% Read Data (PDV)

% Raw data
data_inl = dlmread('Raw Data\ClUPA_pdv_50per_l.txt', 5, 0) ;
data_in2 = dlmread('Raw Data\C2UPA_pdv_50per_l.txt', 5, 0) ;

% Downsample 
downSampleN = 3;
data_inl = downsample(data_inl, downSampleN); 
data_in2 = downsample(data_in2, downSampleN); 
fs = 5e9 / downSampleN;

% End Time 
t_end = 200e-6;

% Rename data
t = data_inl(:,1);
cur = data_inl(:,2) * le5;
pdv = data_in2(:,2);

% Fit sine wave, least squared error fit 
downSampleN = 100; 
t_end_fmin = 75e-6;
save('sinFitlnput','t ','c u r ','t_end_fmin','f s ','downSampleN') 
res = fminsearch{@sinfit, [8.13e4,175e3, .118,0e-6], ...

optimset('Display','iter') );
wn = res(l); A  = r e s (2); z = res (3); toff = res(4);

% Determine Circuit Parameters 
t_rise = ((wn/(2*pi))^-1)/4; 
t = t + tOff;
cur_fit = heaviside(t) .* A . * s i n {(t).*wn) .* exp(-z.*wn.* (t));
C = 6*60e-6;
L = 1/(wn A 2 * C );
R = 2*z*sqrt(L/C); 
wd = wn * sqrt (l-z/'2) ;

% Truncate Fit Data
tl = (find(t>-10e-6,1 first1)); t2 = (find(t>t_end,1, 1 first1));
t = t(tl:t2); cur = cur(tl:t2);
cur_fit = cur_fit(tl:t2); pdv = pdv(tl:t2);

%% PDV

% Filter parameters
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lowVel = .5; highVel = 200;
cutoff = [lowVel/775e-9/(fs/2) , highVel/775e-9/(fs/2)];
[b,a] = butter(1,cutoff) ;
% Bandpass filter PDV data 
pdv_filt = filtfilt(b,a,pdv);

% Window length, samples 
wind = 2 A11;
% Window length, seconds 
windTimeLength = wind/fs;
% Input frequencies to perform STFT
Fin = linspace(lowVel/775e-9,highVel/775e-9,2A9);

% Perform STFT on unfiltered PDV data
[S,F,T] = spectrogram(pdv, wind,wind/2, Fin,fs,'yax i s ');
S = 10*log(abs(S)) - max(max(10*log(abs(S))));
T = T + t (1) ;

% Perform STFT on bandpass filtered PDV data
[S,F,T] = spectrogram(pdv_filt, wind,wind/2, Fin,fs, 'y a x i s ');
S = 10*log(abs(S)) - max(max(10*log(abs(S))));
T = T + t (1) ;

% Velocity from laser wavelength 
V = F*775e-9;

windowPerTEnd = round(((t_end * fs) / wind * 2) - 1);

% Maximum strength frequency selection 
vel=zeros(size(S,2),1); 
for i=l:size(S,2)

[C, I] = max (S (:, i) ) ; 
vel(i) = F(I)*775e-9;

end

%% Position

% Integrate velocity to determine position 
pos = cumtrapz(T,vel)';
pos = pos - pos(find(T>0,1,'first')-1);

% Maximum Velocity 
[C, I] = max(vel);
fprintf( ' Peak Velocity = %.lf (m/s)\n\n',vel (I))
fprintf( ' Pos at Peak Vel = %.lf (mm)\n\n’,p o s (I )*le3)

%% Acceleration

acc = diff(vel)./diff(T ');
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