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ABSTRACT

ECOLOGY AND MANAGEMENT OF MOOSE IN NORTHERN NEW ENGLAND

By

Haley A. Andreozzi 

University of New Hampshire, September 2013

This study examined three facets of moose ecology in northern New England: 

impact of moose browsing on forest regeneration, physical characteristics of harvested 

bull moose, and winter habitat use. Forest regeneration was not considered a major 

problem in northern Vermont based on stocking levels of commercial tree species. 

Increasing dominance of softwood species coupled with suppressed growth of hardwoods 

suggests possible local shifts in composition. Bull moose in Maine had stable body 

weight and antler spread, and selective harvest of trophy bulls was not apparent over 30 

years. Winter locations from aerial surveys indicated that moose preferentially used 

deciduous/mixed forest proximate to cuts; wetlands and conifer stands were used less. 

Good physical condition of harvested moose and similarities in habitat use at multiple 

scales indicates that commercial timber harvesting provides long-term, high quality 

moose habitat in northern Maine.
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INTRODUCTION

Moose (Alces alces) populations have experienced a regional increase in New 

England over the last several decades, making them an increasingly valuable wildlife 

resource. Their population growth has created new economic and recreational 

opportunities associated with tourism, as well as the establishment of regulated hunting 

seasons in Maine, Vermont, and New Hampshire. Management of moose is necessary to 

maintain an acceptable balance among sustainable population levels, recreational and 

economic benefits, and forest health.

Moose, specifically high density populations, have the ability to damage woody 

plants and alter plant communities (Renecker and Schwartz 1997). For example, repeated 

browsing can suppress height growth and recruitment of saplings into the canopy 

(Risenhoover and Maass 1987), and moose can drastically alter localized species 

composition, (e.g., Isle Royale, Michigan, Snyder and Janke 1976). Additionally, there is 

a strong relationship between moose habitat quality and abundance and commercial 

forest management, and moose show preference for clearcut and early-successional 

habitat that is typical of the managed landscape of the northeast (Westworth et al. 1989, 

Scarpitti et al. 2005). In New Hampshire Bergeron et al. (2011) found low regeneration in 

specific cutover sites adjacent to traditional moose wintering areas, and predicted that 

such sites could change from hardwood to softwood dominance.

Habitat use in winter is influenced by environmental conditions and declining 

food resources related to snow depth and foraging intensity. While relatively mobile in 

the conditions typical of northern New England winters, moose minimize energy 

expenditure and reduce home range in winter, indirect evidence of the importance of
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winter habitat relative to individual and population productivity. At the fine scale, 

cut/regeneration habitat is used more than other habitat types during winter in New 

Hampshire, presumably because of high forage availability and preference (Scarpitti 

2006). Areas where moose concentrate in high seasonal density are typically associated 

with forest damage globally (Heikkila et al. 2003); therefore, to best manage moose in a 

landscape dominated by commercial forests, it is critical to evaluate winter habitat use 

and associated impacts on forest production.

It is usually assumed that a direct relationship exists between habitat quality and 

physical condition of moose; measurement of physical characteristics of harvested moose 

provides the opportunity to assess temporal trends and relative condition of a moose 

population. Additionally, hunting has the ability to influence moose populations by 

altering age and social structure, sex-ratio, and population dynamics (Milner et al. 2006); 

it is important to assess if selective harvest pressure (specifically towards older, trophy 

bulls) has resulted in any negative effects. A recent >20 year temporal analysis (1988- 

2009) of physical parameters of harvested moose in New England indicated that body 

weight and ovulation rate of yearling cow moose in both New Hampshire and Vermont 

are trending downward, yet remain stable in adult cows; similarly, body weight and most 

antler measurements of bulls declined (Bergeron et al. 2011). In New Hampshire, 

parasitism by winter ticks (Dermacentor albipictus), not habitat quality, is believed to 

most influence survival and growth of moose calves and subsequent productivity of 

yearlings (Musante et al. 2010, Bergeron 2011). To date, there has been no similar 

analysis of bull harvest data in Maine despite a continuous data set of -30 years. Of 

consequence is whether Maine adult and yearling bulls reflect a similar trend as measured
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in Vermont and New Hampshire, and if selective harvest and decline of older bulls 

occurs in the largest and longest harvested population in the northeastern United States.

Northern New England is home to the largest regional moose population in the 

continental United States. Therefore, it is important to understand how habitat use, 

impacts on forest production, and population characteristics are linked in high-density 

populations within the region. Together, the three facets of this research provide insight 

into moose management in northern New England through analysis of impacts to forest 

regeneration, winter habitat use, and the physical characteristics of the population.
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CHAPTER 1

IMPACT OF MOOSE BROWSING ON FOREST REGENERATION 
IN NORTHEAST VERMONT

Introduction

Moose (.Alces alces) populations have experienced a regional increase in northern 

New England over the last several decades, making them an increasingly valuable 

wildlife resource. They play an important role ecologically and economically in Vermont, 

with 78% of the state open to regulated moose hunting and 406 hunting permits issued 

statewide in 2011 (VTFWD 2008, 2011). With forests also covering 78% of Vermont’s 

landscape, the state generates over $1.5 billion annually from forest-based manufacturing 

and forest-related recreation and tourism (NEFA 2007). The majority of forestland, 4 

million acres, is owned privately or by timber investment management organizations 

(TIMO); local, state, and federal government owns -19%  (919,440 acres) (NEFA 2007). 

Forest and wildlife management aimed at sustainable forest production is critical for the 

long-term stability of both Vermont’s economy and moose population.

With adult moose weighing 300-600 kg, substantial browse is required to 

maintain such large body size (Bubenik 1997), estimated at daily dry matter intake of 2.8 

kg/moose/day in January (Pmss and Pekins 1992). Moose have the ability to substantially 

alter plant communities and are capable of damaging woody plants (Renecker and 

Schwartz 1997); repeated browsing can suppress height growth and recruitment of 

saplings into the canopy (Risenhoover and Maass 1987). Moose browsing has the
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capability to affect the structure and dynamics of forest ecosystems over the long-term 

(Mclnnes et al. 1992), which has important implications for the management of forests 

where moose populations are regulated. Moose show preference for forage in clearcut 

and early-successional habitat that is typical of the commercially managed forests of the 

northeast (Westworth et al. 1989, Scarpitti et al. 2005). For example, productive moose 

habitat in New Hampshire was linked directly to the early successional forage created by 

commercial forest harvesting and early-successional browse is a dietary component year- 

round (Scarpitti et al. 2005, Scarpitti 2006). Clearcuts 5-20 years old provide suitable 

early winter habitat, as regenerating hardwood and softwood species provide both browse 

and cover for moose (Thompson and Stewart 1997). While the impact of moose browsing 

on forest regeneration has received substantial attention elsewhere, little attention has 

been paid to the potential and actual effects in northern New England (Scarpitti 2006, 

Bergeron et al. 2011).

To manage moose and forest resources with respect to moose density and damage 

to regeneration, it is important to have extensive ecological knowledge of the 

relationships among moose, the ecosystems they inhabit, the plants they use as forage 

(Edenius et al. 2002), and the associated impacts on forest production such as timber 

quality impairment. As moose populations have increased in northern New England, land 

managers have implied that a relationship exists between high population density and 

reduced forest regeneration in clearcuts. On Isle Royale, Mclnnes et al. (1992) found that 

moose browsing affected the structure and dynamics of forest ecosystems on a long-term 

scale; however, in larger landscapes such impacts are usually more localized and often 

relate to high seasonal density. For example, in New Hampshire Bergeron et al. (2011)
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found specific cutover sites with low regeneration adjacent to traditional wintering areas, 

and predicted that such sites could change from hardwood to softwood dominance.

By the early 2000s, there was anecdotal evidence that the moose population in 

northeastern Vermont, specifically wildlife management unit (WMU) E, was causing 

measurable damage to forest regeneration; moose densities in WMU E were thought to 

be well over 1.5 moose/km (4 moose/mile ) (C. Alexander, VTFWD wildlife biologist, 

pers. comm.). To achieve the desired population level, hunting permit numbers were 

dramatically increased by the Vermont Department of Fish and Wildlife (VTFWD) from 

440 to 833 permits in 2004, when it was believed moose had approached their biological 

carrying capacity (VTFWD 2008). The number of hunting permits rose to 1046 in 2005 

and continued to increase until 2009, when 1223 permits were issued statewide in an 

effort to accelerate population reductions to protect forest habitat. By 2008, the 

population density was approaching the goal set by the 10-year moose management plan 

(0.7 moose/km2 [1.75 moose/mile2]) and the number of permits was reduced to 765 in 

2010 and 405 permits in 2011. In response, this study was designed to evaluate the 

impact of moose browsing on regeneration of commercial tree species in WMU El in 

northeast Vermont.

Study Area

The study area was located in northeast Vermont and encompassed all of VTFWD 

WMU El, covering an area of 682 km2 bordered by New Flampshire and Quebec (Fig. 1- 

1). It was delineated from the flight lines/area used in moose aerial surveys conducted in 

winter 2010. Elevation ranges from -250-1,130 m, and it is dominated by maple (Acer
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Figure 1-1. The location of the study area in Vermont used to assess the impact of 
moose browsing on forest regeneration, 2012. The area included all of WMU El in 
northeast Vermont.
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saccharum, A. pensylvanicum, A. rubrum) and birch {Betula alleghaniensis, B. 

papyrifera) hardwoods, and conifer stands of balsam fir (Abies balsamea) and red spruce 

(Picea rubens). While heavily forested, timber harvesting is common throughout as the 

majority of the land is privately owned and commercially harvested (NEFA 2007). The

y 'y2011 moose density was estimated at 0.77 moose/km (1.96 moose/mi ) based on a 

rolling 3-year average of moose sightings by November deer hunters, and was previously 

estimated in 2010 as 0.93 moose/km2 (2.41 moose/mile2) based on aerial surveys 

(Millette et al. 2011).

Methods

Regeneration surveys (Leak 2007, Bergeron et al. 2011) were performed to 

measure the impact of moose browsing on forest regeneration in clear-cuts 3-20 years 

old. Clear-cuts were separated into 4 age classes (3-5, 6-10, 11-15 and 16-20 years old) to 

assess temporal changes during both the period of typical browsing (0-10 years) and at 

least 10 years post-browsing. In each age class, 8-10 clear-cuts were located using aerial 

photography; each was a minimum of 4.1 ha (10 acres) and a maximum of 16.2 ha (40 

acres) in size to reflect the typical range in size of clear-cuts in the region (M. Langlais, 

Vermont Department of Forests, Parks & Recreation County Forester, pers. comm.). In 

certain cases, clear-cuts >16.2 ha were used to achieve appropriate sample sizes within an 

age class; a section <16.2 ha was surveyed.

Small plot surveys (milacre, ~2.3 m diameter circle) were evenly spaced on 

equidistant transects throughout each clear-cut (Fig. 1-2). In each milacre plot, the 

dominant stem was recorded as a commercial or non-commercial tree species. If the 

dominant stem was non-commercial, the plot was searched for the presence of
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20.1 nt

20.1 m

2*3 m

Figure 1-2. Example of the sampling design used to measure browse damage in 
clearcuts in northeast Vermont, summer 2012. Equidistant transects were established 
upon which 100-400,2.3 m diameter plots were established to measure the presence 
of dominant commercial stems, stem quality, and relative height; modeled after 
Bergeron et al. 2011.
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Figure 1-3. The 3 qualitative browse categories used to describe browsing damage of 
dominant stems in milacre sample plots (Bergeron et al. 2011).
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commercial species (Appendix A); commercial species included yellow and white birch, 

sugar and red maple, American beech (Fagus grandifolia), aspen (Populus spp.), black 

cherry (Prunus serotina), balsam fir, red and black spruce (Picea mariana), and tamarack 

(Larix laricind). Stem damage was assessed on a qualitative basis as fork, broom, or 

crook (Fig. 1-3). The height of the damage above or below breast height (approximately 

1.4 m) was recorded, as well as the number of forks and crooks, and the severity of 

crooks based on angle. Light crooks were those <30°, moderate crooks were those 30- 

60°, and severe crooks were those >60° from the dominant stem. The relative height of 

the dominant stem was estimated to the nearest foot when <3.05 m (10 ft), or as >3.05 m.

Broomed stems and multiple forks above breast height were considered browse 

defects indicative of a severely damaged tree, otherwise, damage was considered light or 

moderate. Trees with lesser damage are expected to recover during future growth 

(Switzenberg et al. 1955, Carvell 1967, Trimble 1968, Jacobs 1969). A fully stocked 

stand at 80 years was assumed if a minimum of 40-60% of plots (threshold) contain a 

commercial tree without severe damage (Leak et al. 1987). To evaluate relative height 

between age classes and further assess browse impact, comparisons were made of the 

proportion of plots containing a dominant commercial stem >3.05 m without severe 

damage, as vegetation >3.05 m was presumed to be above the typical height of moose 

browsing (Bergstrom and Danell 1986).

Temporal comparisons were made to assess if younger age classes with high 

initial browse pressure recover to fully stocked stands after 10-15 years. Analysis of 

variance (ANOVA) and pairwise Tukey’s test were used to look for differences in
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browse damage between clear-cuts and age classes. Significance for all tests was 

assigned a priori at a = 0.05. Results are presented throughout as X ± SE.

Results

A total of 37 clearcuts were surveyed: 11, 8, 8, and 10 in the 3-5, 6-10, 11-15, and 

16-20 year age classes, respectively. There were 1709, 1291, 1442, and 1585 milacre 

plots surveyed in the 4 age classes, respectively. Stocking rate of commercial trees was 

high in all age classes, and increased with age class (Table 1-1); it ranged from 74-76% 

in the 3-5, 6-10, and 11-15 year age classes, increasing to 86% in the 16-20 year age 

class. The proportion of commercial trees with severe damage was low overall, with 

<10% damaged severely in all age classes except in the 16-20 age class (11%, Table 1-1).

The proportion of plots containing a commercial tree without severe damage was 

above the defined threshold stocking level of 40-60% in all age classes (Table 1-1, Fig. 1- 

4), ranging from 67-68% in the 3-5, 6-10, and 11-15 year age classes, and increasing to 

75% in the 16-20 year class. The proportion of dominant commercial trees >3.05 m 

without severe damage increased with age class with 1, 25, and 39% in the 6-10, 11-15 

and 16-20 year age classes, respectively. The proportion of plots containing a commercial 

hardwood stem declined with age class, averaging 62, 51, 43, and 40% in the 4 age 

classes, respectively. Conversely, the proportion of plots containing a commercial 

dominant softwood stem increased with age class, averaging 12, 24, 33 and 46% in the 4 

age classes, respectively (Fig. 1-5). The highest stocking rates (>80%) were restricted to 

softwood-dominated stands. The majority of plots with a dominant non-commercial stem 

also contained commercial stems (70-81% across age classes).
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Table 1-1. Summary values indicating the stocking of commercial tree species, stocking of commercial trees with and without 
severe damage, the proportion of commercial trees >3.05m in height without severe damage, and the proportion of dominant 
commercial hardwood and softwood stems in clearcuts in northeast Vermont. Rows with the same letter within columns are not 
statistically different (P>0.05).

Stocking rate of 
Age dominant
Class commercial trees

(o/

Stocking rate of 
dominant

Stocking rate of 
dominant

commercial trees commercial trees
w/o severe 

damage (%)
w/ severe 

damage (%)

Proportion of 
dominant 

commercial trees 
w/o severe 

damage and >3.05 
m tall (%)

Proportion of 
dominant 

commercial 
hardwoods (%)

Proportion of 
dominant 

commercial 
softwoods (%)

3-5 74* 67 6 N/A 83a 17a

6-10 75ab 68 7 la 69ab 31ab

11-15 76ab 67 9 . 25b 58ab 42ab

16-20 86b 75 11 39b 49b 51b
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Figure 1-4. Stocking guide for main crown canopy of even-aged hardwood and mixed- 
wood stands. Shows basal area, number of trees per acre, and mean stand diameter. The 
A-line is fully stocked, the B-line is suggested residual stocking (-60%), and the C-line 
is minimum stocking (-40%) (Leak et al. 1987). The proportion (%) of commercial 
trees without severe damage are plotted by age class; stocking is projected to a 4” mean 
stand diameter.
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softwood stems by age class.
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The stocking rate of dominant commercial trees was lower (P  = 0.02) in the 3-5 

year age class than in the 16-20 year age class, although stocking rate was above the 

threshold stocking level in all age classes. The proportion of dominant commercial 

hardwoods was higher (P = 0.014) and the proportion of dominant commercial softwoods 

lower (P = 0.015) in the 3-5 year age class than in the 16-20 year age class. The 

proportion of plots beyond browse height (>3.05 m) and without severe damage in the 6- 

10 year age class was lower than the 11-15 year (P = 0.022) and the 16-20 year age 

classes (P <0.001).

At least 3 commercial species accounted for >50% of the species composition 

within each age class (Appendix B). The majority of these species were classified with 

light to no damage, and the proportion of non-commercial species declined as age class 

increased (Table 1-1, Appendix B). The proportion of dominant commercial stems 

classified as hardwood declined with age class, averaging 83 ± 7.6, 69 ± 8.5, 58 ± 8.5 and 

49 ± 7.2% in the 4 age classes, respectively; the opposite occurred with the proportion of 

dominant commercial stems classified as softwood that averaged 17 ± 7.6, 31 ± 8.5, 42± 

8.5, and 51 ±7.2%.

Red maple and yellow birch accounted for 24 and 20% of total species 

composition in the 3-5 year age class; no other commercial species accounted for more 

than 6%. In the 6-10 year class, red maple, balsam fir, and yellow birch accounted for the 

highest proportion of species composition (14-16% each) and in the 11-15 year age class, 

these 3 species accounted for 11-17% each, and red spruce 11%. Red maple, balsam fir, 

and red spruce accounted for the greatest proportion of dominant commercial stems (21- 

23% each) in the 16-20 year age class; yellow birch fell to 6% (Appendix B).
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Discussion

Overall, regeneration of commercial tree species due to impacts from moose 

browsing was not considered a major problem in northeast Vermont. The stocking rate of 

commercial trees without severe damage was acceptable in all age classes based upon the 

minimum threshold stocking level of 40-60%, and severe damage from browsing was 

low in all age classes in regards to acceptable levels, ranging from 6-11% (Table 1-1). 

While damage was low in all age classes, site-specific severe browsing can shift species 

composition (Edenius et al. 2002). Moose drastically altered localized species 

composition on Isle Royale, Michigan; browsed sites exhibited lower overall tree density 

than unbrowsed sites due to a decrease in balsam fir and mountain ash {Sorbus 

americana) and increase in white spruce (Picea glauca) densities (Snyder and Janke 

1976).

The increasing proportion of dominant softwood stems with age indicates a 

possible shift to softwood-dominated stands due to selective browsing of hardwood 

species. The highest stocking rates (>80%) were restricted to softwood-dominated stands, 

and stands experiencing the highest levels of damage were stocked predominantly with 

hardwood species that had much higher damage relative to the softwood species 

(Appendix B); softwood species will likely dominate these stands as they mature. The 

most commercially valuable hardwood species in the study region are yellow birch and 

sugar maple; they were dominant species in the youngest 2 age classes, but accounted for 

only 6 and 5% of dominant stems in the 16-20 year class.

Conversely, the commercial softwood species, balsam fir and red spruce, were 

minimal in the youngest age classes, but accounted for a large proportion of the dominant
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stems (21% each) in the 16-20 year class. Red maple, a less valuable commercial species, 

was dominant in all age classes ranging from 13-24% of dominant stems (Appendix B).

A similar trend occurred in New Hampshire (Bergeron et al. 2011) where the proportion 

of dominant commercial hardwood stems also declined with age class (Fig. 1-6). While 

previous site compositions are unknown, it is possible a shift from hardwood to softwood 

dominated stands may be the natural successional trend for these sites; browsing pressure 

could potentially accelerate successional development by arresting or retarding the height 

development of preferred browse species in the region (Mclnnes et al. 1992, Davidson 

1993).

The proportion of dominant commercial trees >3.05 m (beyond browse height) 

without severe damage increased with age class, peaking at 39% at 16-20 years; such 

stems are expected to recover during future growth without browsing. In contrast, 

average values in adjacent northern New Hampshire were 36, 60, and 71% in the 3 older 

age classes (Fig. 1-7), suggesting that growth was more suppressed in Vermont. Intense 

browsing in areas of high moose density can arrest or retard growth of preferred browse 

species (Bergerud and Manuel 1968, Angelstam et al. 2000). A study with exclosures on 

Isle Royale, Michigan indicated that repeated browsing by moose retarded vertical 

growth of palatable species such as aspen and paper birch, and prevented stems from 

growing beyond browsing height resulting in a more open canopy (Risenhoover and 

Maass 1987). Although heavy browsing of the same species in successive years can result 

in hedgy growth and lower height potential (Peek et al. 1976, Peek 1997), such stems can 

compensate if browsing declines or if removed in successive years. For example, after 

release of a dominant stem in forked stems (Jacobs 1969) and the straightening of
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crooked stems with secondary growth over time (Switzenberg et al. 1955, Trimble 1968). 

A clipping study on Isle Royale indicated that the site-dependent survival and growth of 

balsam fir were related to suppression brought about by severe browsing in previous 

years (McLaren 1996). Accurate prediction of damage is complicated by this dynamic 

process that is likely influenced by local site conditions, and seasonal moose density and 

site fidelity.

In studies assessing browse damage in both southern and northern New England, 

time since harvest was negatively correlated with foraging intensity (Faison et al. 2010, 

Bergeron et al. 2011) which may allow compensatory growth by desirable hardwood 

species beyond the 16-20 year age class. However, an increasing dominance of softwood 

species coupled with suppressed growth of hardwood species indicates a possible shift in 

species composition in WMU El. Several studies have indicated change in forest 

composition due to heavy moose browsing. In Finland, Heikkila et al. (2003) measured 

reduced height of preferred species resulting in the release of conifers from competition. 

On Isle Royale, moose prevented aspen, birch, and balsam fir from growing into the 

canopy, with little impact to spruce, resulting in a forest with fewer trees in the canopy, a 

well-developed understory of shrubs and herbs, and an increase in spruce biomass 

(Mclnnes et al. 1992). Similarly, selective pressure resulted in rapid occupation of spruce 

(Picea spp.) as the dominant species in study stands in Russia (Abaturov and Smirnov 

2002). A similar trend is possibly occuring in northeast Vermont where coniferous 

species account for >50% of total species composition in the 16-20 year age class 

(Appendix B). A reduction in moose density, as implemented in the study area, may also 

reduce future browsing pressure and provide for the release of preferred hardwood
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species. A population reduction in Newfoundland in the early 1960s resulted in dramatic 

decline in the proportion of white birch and balsam fir stems browsed in 6-11 and 12-17 

year old stands (Bergerud et al. 1968).

High-density moose populations have the potential to damage preferred plant 

species (Peek 1997), but the negative impacts of over-browsing can be minimized if 

moose density is kept at low-moderate levels (Brandner et al. 1990). In Russia, a density 

of 0.3-0.5 moose/km2 retarded growth of preferred forage species such as aspen, whereas 

normal stand development occurred at 0.2-0.3 moose/km2 (Abaturov and Smimov 1992). 

In Sweden, simulated densities of 0.8-1.5 moose/km2 did not impact winter browse 

availability; impact was predicted at >2.0 moose/km (Persson et al. 2005).

Both northern Vermont and New Hampshire are classified as a combination of 

spruce-fir, northern hardwood, and mixed forest types (DeGraaf and Yamasaki 2001), 

and measurable differences in forest regeneration presumably reflect different moose 

density. Bergeron et al. (2011) found a correlation between moose density and browse 

damage in 3 regions with different moose density in northern New Hampshire; the region 

with highest density had more damage. Densities in northeast Vermont were estimated at 

1.2-1.8 moose/ km2 in 1999-2009 and were higher than those in his highest density 

region, estimated at 0.8-1.5 moose/km in the same time period (C. Alexander, pers. 

comm., K. Rines, NHFG wildlife biologist, pers. comm.).

In both states significant differences were found in the stocking rate of dominant 

commercial trees, and the proportion of both dominant hardwood and softwood 

commercial tree species between the youngest and oldest age classes. However, the 

comparisons among age classes indicate that sites with high initial browse pressure are
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often released from that pressure and recover to commercially valuable stands. In both 

Vermont and New Hampshire, stocking rate increased and damage declined over time 

with relative differences seemingly influenced by local moose density (Fig. 1-7). 

Compensatory growth in the region was measurable in the 16-20 year age class, but 

likely begins earlier when stems grow beyond browsing height. However, heavy 

browsing pressure on preferred tree species may result in lower stand height as measured 

in Vermont and a possible shift in forest composition to coniferous species. Further 

assessment is warranted to best evaluate the extent of compensatory tree growth in 

response to reduction in browsing due to forest aging and/or moose population density.
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CHAPTER 2

ANALYSIS OF PHYSICAL CHARACTERISTICS OF BULL MOOSE 
HARVESTED IN MAINE, 1980-2009

Introduction

Measurement of physical characteristics of harvested moose provides an 

opportunity to assess temporal trends and relative condition of a moose population; it is 

usually assumed that a direct relationship exists between habitat quality and physical 

condition. Age-specific body weight of male and female moose should reflect health and 

production (Schwartz and Hundertmark 1993), and antler measurements are used 

similarly because of the correlation between antler size and nutritional condition 

(Bubenik 1997). Adams and Pekins (1995) concluded that yearling moose are useful to 

estimate overall herd health because their potential growth rate reflects variance in body 

weight and onset of ovulation.

Antler morphology in cervids is determined by nutrition and genetics, and antler 

growth and size are strongly influenced by forage availability, quantity, and quality 

(Schmidt et al. 2007). Age also influences the size and formation of antlers as larger, 

older males invest less in body growth and allocate more resources toward antler growth, 

symmetry, and size (Stewart et al. 2000, Bowyer et al. 2001). As body size and age are 

strongly correlated with antler size and mating success (Clutton-Brock 1982), dominant 

males have the ability to limit the mating opportunities of younger males (Van 

Ballenberghe and Miquelle 1996).
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Hunting has the ability to influence ungulate populations by altering age and 

social structure, sex-ratio, and population dynamics (Milner et al. 2006). Mortality 

patterns in harvested populations commonly deviate from those in non-harvested 

populations, often with an increase in the mortality of prime-aged males (Ginsberg and 

Milner-Gulland 1994, Milner et al. 2006). Selective harvest is often applied as a 

management technique throughout North America to protect adult cow moose and 

maximize productivity (Timmermann 1987); lower harvest of adult cows can transfer 

pressure to other portions of the population, often adult bulls. High harvest of older bull 

moose has the potential to impact normal age structure and reduce average body size and 

antler spread in a population over time (Solberg et al. 2000); younger, smaller males are 

eventually predominant in harvest (Schmidt et al. 2007).

Although hunting for older, large antlered moose can be a local economic 

stimulant and management tool (Monteith et al. 2013), an increasing focus and popularity 

of trophy hunting further concentrates harvest pressure on prime bulls (McCullough 

1982, Timmermann and Buss 1997). Selective effects o f trophy hunting include genetic 

selection of smaller antlers as well as negative demographic consequences due to other 

fitness-related genetic traits of trophy males; however, few studies have explored such 

implications (Festa-Bianchet and Lee 2009).

Initially, the Maine Legislature set the moose hunting seasons and harvest levels 

based on goals developed during a 1985 planning process. The overall goals were to 

maintain the moose population at the 1985 level, increase harvest, and maintain viewing 

opportunities; permits were either sex prior to 1999. Since 2001, the Maine Department 

of Inland Fisheries and Wildlife (MDIFW) set the moose hunting seasons and harvest
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levels under a Moose Management System (Morris 2002) that describes the decision 

process and actions necessary to meet population goals and objectives set by a public 

working group. Desired levels of hunting opportunity, viewing opportunity, and road 

safety were assessed to categorize each Wildlife Management District (WMD) into a 

Management Area type: Recreation Management, Road Safety, or Compromise Area. 

Meeting population goals in a WMD includes determining age and sex composition from 

moose sightings reported by deer and moose hunters, the age of harvested animals, and 

more recently from helicopter surveys. Among other measures, both the proportion of 

bulls and the percentage of mature bulls (>5 years old) in each WMD are examined 

annually and harvest levels are adjusted to achieve desired levels. This system reflects a 

significant management change because bull composition was not a prior management 

criteria.

A recent >20 year analysis (1988-2009) of physical parameters of harvested 

moose in New England indicates that body weight and ovulation rate of yearling cow 

moose in both New Hampshire and Vermont are trending downward, yet remain 

relatively stable in adult cows; conversely, harvested yearling cow moose in Maine show 

an increase in body weight. Body weight and most antler measurements of harvested 

bulls in New Hampshire and Vermont have also declined (Bergeron et al. 2013). Given 

declines in physical characteristics of yearling bull moose in New Hampshire and 

Vermont over the last 2 decades, there is reason to investigate baseline and trend data for 

Maine’s moose population. There is a >30 year history of modem moose hunting in 

Maine with harvest increasing from 636 in 1980 to 2,582 in 2011, and permit allocations 

continue to increase (MDIFW 2011); importantly, age, antler spread, and body weight
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have been measured since 1980. This study provides a temporal assessment of these 

physical characteristics to identify trends in the relative growth and condition of bull 

moose harvested in Maine from 1980-2009. The primary objectives were to assess trends 

in body weight and antler spread within age class, the relative proportion per age class, 

and trophy bulls (spread >137cm), in the harvest.

Study Area

Harvest data were analyzed for 12 Wildlife Management Districts (WMD; 1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 11, and 19) in a 45,793 km2 area, roughly the northern half of Maine 

(Fig. 2-1). This area contains a high proportion of suitable moose habitat in the form of 

active commercial forestlands, has had relatively consistent harvest over the study period 

(1980-2009; L. Kantar, MDIFW wildlife biologist, pers. comm.), and these WMDs 

represent the core of Maine’s moose population (MDIFW 2013).

Northern Maine is located at the extreme northeast comer of the United States, 

above 44° 38’ N. It is bordered by Quebec and New Brunswick to the north, New 

Hampshire to the west, and the Atlantic Ocean to the south and east. Maine is 90% 

forested and commercial timber harvesting is common throughout the northern portion of 

the state (Hoving et al. 2004). The sub-boreal Acadian forest has a mixture of spruce 

(Picea spp.) and fir (Abies balsamea) stands and northern hardwood forests (Irland 

1999); common species include beech (Fagus grandifolia), maple (Acer spp.), hemlock 

{Tsuga canadensis), birch (Betula spp.), spruce, and balsam fir (Hoving et al. 2004).

Methods

Biological data collected at moose check stations in 1980-2009 were used to 

assess temporal trends in the physical characteristics of bull moose. Data were broken
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into 4 time periods (1980-1987, 1988-1998, 1999-2004, and 2005-2009) to maintain 

similarity with recent assessments of regional harvest data (Adams and Pekins 1995, 

Musante et al. 2010, Bergeron 2011, Bergeron et al. 2013). Data were also analyzed by 

individual year; data were unavailable for 1981 (no harvest) and 1985 (data not age- 

specific). Specific measurements were field-dressed body weight, antler spread, and age. 

Field-dressed body weight was defined as the entire carcass weight minus the heart, liver, 

lungs, and rumen-reticulum and was measured on certified scales at registration stations. 

Antler spread was measured as the greatest measurement (cm) of the antlers on a plane 

perpendicular to the skull. Age was determined from cementum annuli counts on cross­

sectioned canines (Sergeant and Pimlott 1959) performed by MDIFW biologists. Trophy 

bulls were defined as those with spreads >137cm (54 in); this is similar to minimum entry 

for Canada moose in Boone and Crockett Club’s trophy record-book (Boddington 2011).

Analysis of variance (ANOVA) was used to test for age-specific differences in 

physical parameters between years and time periods including body weight-age 

relationships, antler spread-age relationships, age class distribution, and relative condition 

of the population over time. Age classes were 1.5, 2.5, 3.5, 4.5, 5.5, and >6.5 years. 

Tukey’s test was used to make pairwise comparisons; significance for all tests was 

assigned a priori at a = 0.05.

Results

Total age class records ranged from 1169 (5.5 years) to 2860 (>6.5 years), with 

continual increase in sample size across time periods; 1619 and 1625 in 1980-1987 and 

1988-1998, and 3789 and 4533 in the 1999-2004 and 2005-2009 time periods, 

respectively. Overall, there was an upward trend in mean body weight of harvested bull

29



moose over the 30-year period. Between 1980-1987 and 2005-2009, a 4-10% increase in 

mean body weight occurred in the youngest 4 age classes (1.5-4.5 years old, P  <0.024); 

minimal change (1-2%, P  >0.05) occurred in the >5.5 year classes in the same periods 

(Appendix C). The current (2005-2009) mean body weight is higher than the 30 year 

mean in all age classes. There was no difference (P >0.05) in mean body weight among 

any time periods in the >6.5 year age class. The maximum mean weight occurred in the 

1999-2004 time period for the 2.5-5.5 year old age class; mean weights in this time 

period were higher than in other time periods for 2.5 (P <0.002) and 3.5 year old bulls (P 

<0.005) (Fig. 2-2, Appendix C). Maximum mean weight of yearlings (225 kg) occurred 

in the 2005-2009 time period (P <0.02).

The four youngest age classes (1.5-4.5 years) had an overall increase (4.0-8.3%, P 

<0.014) in mean antler spread between 1980-1987 and 2005-2009, though some variation 

occurred in intermediary time periods; harvested bulls >5.5 years showed little change 

(<3.6%, P  >0.05) between these time periods (Fig. 2-3, Appendix D). Yearlings were the 

only age class in which the current (2005-2009) mean spread (60 ±15.9 cm, x ± SD) 

exceeded the 30 year mean; this age class had the most substantial increase in spread 

between 1980-1987 and 2005-2009 (8.3%, P  = 0.013). Though no difference (P >0.05) 

existed between the 1980-1987 and 2005-2009 time periods in the >6.5 year age class, 

antler spread declined (5%, P <0.000) between 1988-1998 and 2005-2009. The maximum 

spread occurred in the 1999-2004 time period for 2.5-5.5 year old bulls; mean spreads in 

this time period were higher than in other time periods for 2.5 (P  <0.003) and 3.5 year old 

bulls (P <0.000) (Fig. 2-3, Appendix D).

There were no differences (P >0.05) in the proportion of harvested bulls within
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Figure 2-2. Mean (±SE) field-dressed body weight (kg) of harvested bull moose in 
Maine, 1980-2009. Within age classes, bars with a letter in common were not 
significantly different.
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Figure 2-3. Mean (±SE) antler spread (cm) of harvested bull moose in Maine, 1980- 
2009. Within age classes, bars with a letter in common were not significantly different.
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each age class between the 1980-1987 and 2005-2009 time periods; some variation 

occurred between intermediary time periods (Fig. 2-4). A significant decrease within the 

yearling age class occurred between 1988-1998 and 2005-2009 (64%, P  = 0.0003); the 

only other significant change within any age class across that same time period was an 

increase within the 4.5 year age class (28.5%, P = 0.027).

The proportion of trophy bulls (spread >137 cm) declined in successive time 

periods from 8.8% in 1980-1987 (n = 152) to 5.9% in 2005-2009 (n = 319), 

approximately a 33% overall reduction (P = 0.053) (Fig. 2-5). Similarly, the annual 

proportion of trophy bulls had a negative relationship with increasing years (r2 = 0.14, P 

= 0.03). The mean spread of trophy bulls in each time period declined 2% (P  = 0.003) 

from 145.7 (SE = 0.56) to 143.3 (SE = 0.39) cm between 1980-1987 and 2005-2009. The 

mean age of trophy bulls was between 7 and 8.5 years of age for all time periods; 85-93% 

were >5 years old. Trophy bulls between 5.5 and 12.5 years old accounted for 86-92% of 

all trophy bulls across time periods, averaging 89% for all time periods (Fig. 2-6).

Discussion

There was no statistical evidence of a measurable decline in the physical 

parameters of bull moose harvested in northern Maine from 1980-2009. A minimal 

upward trend occurred in mean body weight during the 30-year time period as the 2005- 

2009 mean body weight exceeded the 30-year mean in all age classes (Fig. 2-2).

Similarly, a slight overall increase occurred in the mean spread of the 4 youngest age 

classes across the 30-year time period, with some variability but no clear trend in bulls 

>5.5 years old. The lack of declining trends in adult physical characteristics is similar to 

that measured in nearby Vermont and New Hampshire and presumably indicates
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2009.
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adequate habitat quality (Bergeron et al. 2013). However, unlike in Vermont and New 

Hampshire, where declines occurred in both body weight and productivity measures in 

the yearling age class, the physical characteristics of Maine yearlings increased slightly 

indicating some variability within the northeastern United States.

The downward trend in the proportional harvest within the yearling age class 

between 1988-1998 and 2005-2009 could indicate a reduction in the proportion of 

yearlings in the population possibly due to a lower recruitment (Fig. 2-5). However, this 

decline was not coupled with reduced physical parameters that are indicative of a decline 

in relative health and nutritional status; both body weight and spread increased in 

yearlings during the 30-year period.

Numerous factors can influence physical parameters of moose including habitat 

quality, weather, and disease and parasites. In nearby New Hampshire, parasitism by 

winter ticks is considered a primary influence in the decline in survival and growth of 

moose calves and subsequent productivity of yearlings (Musante et al. 2010, Bergeron 

2011). Declining trends in the yearling body weight and antler spread in New Hampshire 

and Vermont bulls from 1988-2009 suggest such impact (Fig. 2-7, (Bergeron et al. 2013). 

Conversely, lack of measurable decline and slight increase in physical characteristics of 

yearling bulls in Maine from 1980-2009 suggests that parasitism by winter ticks could be 

less of a problem in Maine. The majority of the Maine study area lies above 44° 38’ N 

extending as far north as 47° 28’ N, an area further north than the entirety of New 

Hampshire and Vermont, both below 45° 18’ N. Because abundance of winter ticks and 

their annual impact are largely determined by length of winter and snow cover
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Figure 2-8. Total annual moose harvest in Maine, 1980-2009 (MDIFW 2011).
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(Samuel and Welch 1991), the core of Maine’s moose population may be less influenced 

by this parasite.

The lower proportion of trophy bulls and increasing total annual harvest over time 

may reflect the potential for harvest pressure to impact antler size in the older portion of 

the population (Fig. 2-5, Fig. 2-8). However, the 2% decrease in antler spread is minimal 

biologically and variation in antler size can be explained by annual weather influences, 

variation in population density, and population sex ratios (Solberg and Saether 1994). 

Additionally, the relatively stable proportion of bulls >5 years old in the harvest across 

time periods (30-44%) does not indicate excessive selective harvest pressure towards 

older, trophy bulls (Fig. 2-4). The majority of trophy bulls (86-92%) are between 5.5 and 

12.5 years old in all time periods, with an average age between 7 and 8.5 years (Fig. 2-6). 

A study of antler characteristics in Alaska showed spread reaching a maximum in prime 

age bulls (7-11 years) and declining as senescence appeared at around 12 years (Bowyer 

et al. 2001). The high proportion of trophy bulls >5 years old and the declining 

proportion beginning at age 12 in Maine indicates the proportions of trophy bulls in each 

age class are likely not influenced by harvest pressure, but occur at the same age that 

natural maximum growth and senescence would be expected.

Most studies with empirical evidence of the effects of trophy hunting on growth 

of hom-like structures occurs outside of the moose literature; for example, targeted 

hunting on bighorn trophy rams (Ovis canadensis) over a 30-year period resulted in 

smaller-horned, lighter rams, and fewer trophies (Coltman et al. 2003). Hundertmark et 

al. (1998) simulated selective harvest for bull moose based on antler size (>127 cm 

spread) and showed a significant decrease in the frequency of favorable antler alleles;
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however, empirical evidence of the genetic impact of trophy hunting is rare and such 

changes are assumed to be undetectable for many generation lengths (Harris et al. 2002).

Because many hunters are willing to pay more to harvest larger antlered males, 

integration of trophy hunting into wildlife management programs can be used as an 

effective conservation tool (Hofer 2002). For example, the North American bighorn 

sheep population has more than tripled in the past 30 years, primarily due to the 

application of revenue raised from hunters towards conservation (Festa-Bianchet and Lee 

2009). In Maine, general moose permits and the permit auction provide substantial 

revenue to the state, $1,487,214 in FY 2012 (L. Kantar, pers. comm.). Maine Public Law 

Chapter 370, LD 291 (2011), mandates that $100 from each non-resident permit be 

deposited into a Moose Management and Research Fund, and an additional $25,000 may 

also be deposited from application fees to carry out MDIFW moose research (Maine 

State Legislature 2011). As hunters often base harvest participation and decisions on 

antler size (Schmidt et al. 2007), temporal declines in the proportion of trophy bulls in the 

population or the associated mean spread could influence financial resources for moose 

conservation and research in Maine. The data reported here would not warrant 

elimination of the auction program or presumably cause hunter disinterest.

It is known that age distribution can shift toward younger age classes as harvest 

intensity increases (Jenks et al. 2002). Selective hunting that targets older, larger males 

can result in increased breeding by younger bulls and alter age structure of the population 

by reducing mean bull age and size over time (McCullough 1982). MDIFW maintains 

desired levels of bull composition by analyzing the age of harvested animals combined 

with sightings by deer and moose hunters, and more recently from aerial surveys (Kantar
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and Cumberland 2013). For example, in WMDs 1-10 and 19, the goal is to maintain 17% 

mature (>5 years old) bulls, whereas in WMD 11 it is to maintain 38% bulls (60 bulls : 

100 cows) (Morris 2002). Harvest levels and permit types (i.e. sex-specific) are adjusted 

annually to maintain desired bull composition levels and limit over-harvest of prime age 

and mature bulls. Despite fourfold higher harvest after 30 years of moose hunting in 

Maine (MDIFW 2011), the northern population has maintained consistent age structure 

(Fig. 2-4). Specifically, there has been no measurable decline in the proportion of 

harvested bulls >6.5 years that would indicate an overall younger age structure due to 

selective harvest of larger, trophy males (Fig. 2-4).

Maine’s current moose population estimate is ~76,000 moose, and annual harvest 

has risen from 816 to >2000 moose from the 1980-1987 to 2005-2009 time periods 

(MDIFW 2011, 2012). Current harvest is only about 3% of the current population 

estimate, but will probably increase as hunting interest and moose conflicts increase. 

While this study indicates that to date physical characteristics of bull moose in Maine 

have not changed appreciably after 30 years of harvest, understanding the potential and 

realized influences of harvest on age structure and physical parameters of moose 

populations is fundamental to proper management. Similar harvest analyses have 

indicated recent declines in body weight, antler measurements, and reproductive rate in 

moose in nearby Vermont and New Hampshire (Bergeron et al. 2013). These productivity 

measurements have been collected in Maine since 2010 in combination with Potvin 

double-count aerial surveys and age-sex composition flights. Integration of these 

techniques with harvest data will provide the essential data necessary for managing 

moose under the 3 primary management goals in Maine. Continued monitoring of
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physical parameters of harvested moose, especially trophy bulls and adult cows, is 

warranted to monitor the relative condition and best manage the largest and longest 

harvested moose population in the northeastern United States.
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CHAPTER 3

USING AERIAL SURVEY OBSERVATIONS TO IDENTIFY WINTER HABITAT 
USE OF MOOSE IN NORTHERN MAINE

Introduction

Moose exhibit patterns of habitat use that indicate generalist behavior but often 

have seasonal preference for specific habitat variables. Peek (1997) considered moose 

“selective generalists” due to their ability to use habitat variables in higher proportion 

than available when seasonally advantageous. Habitat selection in all seasons is primarily 

driven by food abundance and quality (Vivas and Saether 1987) and access to adequate 

thermal cover (Kams 1997, Dussault and Ouellet 2004). In northern New England, 

commercial timber harvesting typically provides heterogeneous forests with stands of 

varying age that provide high quality cover and browse for moose (Miller 1989, Scarpitti 

et al. 2005).

Although moose are reasonably mobile in typical winter conditions in northern 

New England, habitat use can be influenced by snow depth, forage availability, and 

foraging intensity. Moose minimize energy expenditure and reduce home range in winter 

(Peek 1997, Renecker and Schwartz 1998), indirect evidence of the importance of winter 

habitat relative to individual and population productivity. At the fine scale, 

cut/regeneration habitat is used more than other habitat types during winter in New 

Hampshire, presumably because of high forage availability and preference (Scarpitti 

2006). Areas where moose concentrate habitually in high seasonal density are often
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associated with forest damage globally (Heikkila et al. 2003). For example, high winter 

densities of moose in Newfoundland are associated with heavy browsing and limited 

growth and regeneration of birch (Betula spp.) (Bergerud and Manuel 1968). In New 

Hampshire, Bergeron et al. (2011) found specific cutover sites with low regeneration 

adjacent to traditional wintering areas, and predicted that such sites could change from 

hardwood to softwood dominance. Heavy winter browsing pressure on preferred tree 

species in northeast Vermont resulted in reduced stand height and a possible shift in 

forest composition to coniferous species (see Chapter 1). Therefore, to best manage 

moose in a landscape dominated by commercial forests, it is important to evaluate winter 

habitat use.

Double-count aerial surveys were conducted by The Maine Department of Inland 

Fisheries and Wildlife (MDIFW) during winter 2011 and 2012 to measure moose 

abundance in specific northern Wildlife Management Districts (WMD) with presumed 

high moose density, and additional surveys were flown in 2012 to determine sex-age 

composition in select WMDs. GPS location data were collected when moose were 

observed, providing the ability to identify and assess general habitat use by moose during 

the survey period. While habitat use patterns are generally known for moose throughout 

their range, and specifically in New Hampshire (Miller 1989, Scarpitti et al. 2005, 

Scarpitti 2006) and Maine (Leptich and Gilbert 1989, Thompson et al. 1995), it is 

important to continually examine how these patterns are expressed on a local scale and 

respond to habitat (forest) change (Peek 1997). Identifying the seasonal habitat use of 

moose should provide information on the relative proximity and dispersion of forage and
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cover resources (Hundertmark 1997) and provide regional insight about the relationship 

between forest harvest practices and moose.

This GIS analysis was conducted to measure habitat and landscape characteristics 

associated with locations of moose observed during aerial surveys in winter in northern 

Maine. The primary objectives were to identify the habitat associated with locations, 

determine if locations were random relative to habitat availability, and identify land cover 

characteristics related to locations.

Study Area

The study area in Maine encompassed those WMDs flown in each survey year; 

WMD 2, 3 and 6 were flown in winter 2010-2011 and WMD 1, 2, 3, 4, 5, 8, 11 and 19 

were flown in winter 2011-2012 (Fig. 3-1). The survey area totaled -32,950 km2 and 

included Aroostook County and northern portions of adjacent Franklin, Hancock, 

Penobscot, Piscataquis, Somerset, and Washington Counties dominated by commercial 

forests comprised primarily of spruce (Picea spp.), balsam fir {Abies balsamea), northern 

white cedar {Thuja occidentalis), and white pine {Pinus strobus), with mixed hardwoods 

of aspen {Populus spp.), birch {Betula spp.), beech {Fagus grandifolia) and maple {Acer 

spp.) (Kantar and Cumberland 2013). The forest composition in each WMD was 

described by 7 forest habitat variables (Maine Office of Geographic Information System 

2004). Each survey block was representative of the proportional availability of the 7 

habitat variables within a WMD. Most blocks were dominated by uncut (>50% 

combined) and cut (>20%, various treatments) forest; recent cuts and regenerating habitat 

were available in all survey blocks (Table 3-1, Appendix F, L. Kantar, MDIFW, pers. 

comm.).
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Figure 3-1. Maine Wildlife Management Districts (shaded) used for double­
count aerial surveys and composition cotint surveys, winter 2011 and winter 
2012, Maine, USA.
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Table 3-1. Forest composition (%) of survey blocks within Wildlife Management Districts (WMD) flown in 
double-count and age-sex composition aerial moose surveys, winters 2011 and 2012, northern Maine, USA.

WMD
Mixed
Forest

(%)

Deciduous
Forest

(%)

Coniferous
Forest

(%)

Partial Cuts 
(%)

Recent Cuts/ 
Regenerating 

Forest/ 
Scrub-Shrub

(%)

Wetland
(%)

Crops/Grasslands
(%)

1 21.7 10.4 35.9 21.4 6.7 4.0 0.0

2 40.7 17.8 14.1 12.9 9.9 4.5 0.1

3 30.5 18.1 23.9 3.3 10.3 7.1 6.9

4* 17.4 16.3 21.7 18.0 17.6 8.9 0.1

4* 15.5 25.8 14.6 20.3 16.9 6.7 0.1

5 42.2 4.9 23.3 15.6 7.8 6.0 0.1

6 33.0 12.0 20.0 4.7 4.0 10.0 15.6

8 15.2 21.0 29.7 20.6 10.9 2.6 0.1

11 42.8 7.0 20.0 15.4 4.1 9.5 1.2

19 30.4 6.8 34.0 11.3 7.6 9.6 0.4

*multiple survey blocks were located in WMD.



Methods

The WMDs with highest moose density based on hunter sighting rates and highest 

harvest rates and permit allocations were prioritized for the aerial surveys; WMD 11 was 

surveyed to evaluate the reliability of the technique at lower moose density (Kantar and 

Cumberland 2013). Survey blocks were 15 x 24 km rectangles selected by assessing the 

proportion of habitat variables within each survey block and prioritizing the block that 

was most representative of the overall habitat of the WMD (Kantar and Cumberland 

2013). The double-count surveys required that moose mobility was unrestricted, when 

snow depth was <61 cm and ambient temperature was cold (<-12°C), and there was no 

obvious evidence of grouping (Kantar and Cumberland 2013); conditions during 

composition surveys also met these criteria (L. Kantar, pers. comm.). Moose locations (n 

= 481; >1 moose/location) were acquired from double-count aerial surveys in winter 

2011 (28 January -  1 February) and 2012 (13 December 2 0 1 1 -8  February 2012), and 

composition count surveys in winter 2012 (13 December 2011 -  3 February 2012; Table 

3-2). The GPS coordinates were collected at each sighting location; the number of moose 

at each location ranged from 1 moose (n = 215) to 16 moose (n = 1), with groups >5 

restricted to composition surveys.

Habitat Use

All GPS locations of moose were defined as used locations and were mapped with 

ArcGIS (ESRI2010) to identify habitat characteristics in a use-availability analysis. An 

equal number of random points were generated using the “Generate Random Points” tool 

(ESRI 2010) to represent available locations within each flight survey block.
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Table 3-2. Survey dates and number of locations collected during aerial double-count and 
composition count surveys by WMD in northern Maine, winter 2011 and 2012.

Date WMD Locations
(n)

Double-Count

28-Jan-ll 2 33
31-Jan-11 3 24
1-Feb-11 6 13

13-Dec-11 2 27
8-Jan-12 5 11
9-Jan-12 4 40
11-Jan-12 1 26
22-Jan-12 19 21
26-Jan-12 8 17
2-Feb-12 4 31
8-Feb-12 11 4

Composition Count

13-Dec-11 2 66
28-Dec-11 3 63
22-Dec-11 4 55
3-Feb-12 8 50

50



Because most moose were moving from the disturbance of the helicopter, and to 

evaluate a reasonable spatial scale of habitat use, a circular buffer (4.91 ha) was placed 

around each used and available location as a conservative estimate of diurnal habitat use 

(Fig. 3-2); this buffer also accounted for any GPS error in moose locations. The ~5 ha 

scale is representative of a circular polygon with a radius of 125 m; Becker (2008) 

determined 125 m as the average distance moved by moose in a 2-hour period in 

northwest Wyoming. Additionally, a larger buffer (706.9 ha) was applied to used and 

available locations that represented a circular polygon with radius of 1.5 km (Fig. 3-2), a 

value reflecting the daily movement and core area of moose in early winter. Specifically, 

the average daily winter movement by cow moose was 1.45 km in northwest Wyoming 

(Becker 2008), and 1.66 km for cow and bull moose in central and western Massachusetts 

(Wattles 2011). The core area of cow moose in early winter in New Hampshire was 3.7 

km2 (Scarpitti 2006), which yields an estimated radius of 1.09 km assuming a circular use 

area.

Land cover types were identified using the Maine Landcover Dataset 2004 

(Maine Office of Geographic Information System 2004), and were identified for used and 

available units at all spatial scales. Cover types that were not utilized or did not occur in 

the study area or flight paths were not used in analysis. Relevant cover types were 

aggregated into 7 habitat variables previously used in the selection of survey blocks for 

the aerial surveys: 1) mixed forest, 2) deciduous forest, 3) coniferous forest, 4) partial 

cuts, 5) recent clearcuts/regenerating forest/scrub-shrub, 6) wetlands, and 7) 

crops/grasslands (Kantar and Cumberland 2013). Additionally, recent clearcuts, partial 

cuts, regenerating forest, and scrub-shrub were analyzed as a combined variable to reflect
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Figure 3-2. Circular polygons created at two landscape scales surrounding 
winter moose locations and random points used to describe used and available 
habitat units in Maine.
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an overall regenerating land cover class providing typical winter browse. A separate 

habitat variable was created combining recent clearcuts, heavy partial cuts, and light 

partial cuts to evaluate the proximity of used and available units to forest cuts in general. 

Used and available units were also analyzed for proximity to mature conifer, using the 

coniferous forest land cover classification from MELCD. National Elevation Data (NED) 

from U.S. Geological Survey was used to assess elevation, slope, and aspect.

Application of buffers at the 707 ha scale created overlap among units that 

resulted in continuous extents, some of which spanned the width of a survey block. This 

scale analysis was subsequently dropped because the commonality in coverage areas 

made comparisons between used and available units meaningless.

Statistical Analysis

General linear mixed model (GLMM) analysis was performed using JMP . 

software (SAS Institute, Cary, NC, USA) to identify individual habitat variables that 

differed between used and available units at all landscape scales. These individual 

hypothesis tests were used to inform variable selection for use in eventual model 

selection under an information-theoretic approach (Anderson et al. 2001). Land cover 

classes, elevation, slope, aspect, proximity to cuts, and proximity to mature conifer were 

treated as fixed-effects for individual analyses; WMD was treated as a random effect in 

all analyses to remove variation due to differences in habitat variable values by WMD. 

Habitat variables with significant difference (P  <0.05) between used and available units 

were used as inputs for model selection.

Model selection was performed with a mixed effects logistic regression model 

using R statistical software (R Development Core Team 2013) using the lme4 package
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(Bates et al. 2012); this model selection analysis was used to identify those combinations 

of habitat variables that most influence moose presence. Significant habitat variables 

from the individual GLMM analyses were treated as fixed effects; WMD was treated as a 

random effect in all models. Model comparisons were made using the Akaike 

Information Criterion (AICc) scores; top competing models were those with AAIC0 <2 

and the best fitting model was determined by identifying the model with the lowest AICc 

score and highest Akaike weight (Burham and Anderson 2002). Model parameter 

coefficients were averaged for top competing models (i.e., AAICc <2) using the MuMIn 

package (Barton 2013) in R. Significance values were not reported for model parameter 

coefficients as they are considered inappropriate when using the information-theoretic 

approach (Anderson et al. 2001). Results are presented throughout a s  X  ± SE.

Results

Habitat composition (-95%) of used units was dominated by 5 habitat variables 

that were similar (0-4% different) at the location and 5 ha scale. The primary composition 

of used units at the location scale was 35.1% mixed forest, 19.1% deciduous forest,

14.5% coniferous forest, 15.2% partial cuts, and 11.8% recent cuts/regenerating 

forest/scrub-shrub. Similarly, habitat composition of used units at the 5 ha scale was 

31.3% mixed forest, 20.7% deciduous forest, 17.56% partial cuts, 14.5% coniferous 

forest, and 11.4% recent cuts/regenerating forest/scrub-shrub.

Significant differences between used and available units for locations and the 5 ha 

scale were found in the individual GLMM analyses of habitat variables. Used locations 

included more deciduous forest (7.3%, F = 8.92, P  = 0.003) than was at available 

locations; conversely, wetlands (3.3%, F = 5.64, P = 0.018), crops/grassland (2.1%, F =
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7.64, P = 0.006), and coniferous forest (3.7%, F = 3.11, P  >0.05) were less common at 

used than available locations (Fig. 3-3). At the 5 ha scale, used areas included more 

deciduous forest (6.3%, F = 8.18, P = 0.004) and partial cuts (4.1%, F = 4.50, P = 0.034) 

than in available areas; coniferous forest (3.7%, F = 4.58, P = 0.033), wetlands (2.2%, F 

= 4.56, P = 0.033), and crops/grassland (1.9%, F = 9.85, P = 0.002; Fig. 3-3) were used 

less than available. There was no detectable difference (P >0.05) between used and 

available units in the combined regenerating habitat variable (recent clearcuts, partial 

cuts, regenerating forest, and scrub-shrub) at either scale. Similarly, there was no 

detectable difference in mixed forests that represented the largest proportion of used and 

available units at both scales (28.8-35.1%; Fig. 3-3).

Used locations were in closer proximity to cuts (X = 299.4 m ±66.8) than 

available locations (X = 410.4 m ±66.8, P <0.0001); similarly, at the 5 ha scale (P 

<0.0001; Fig. 3-4) used units were closer (X = 215.1 m ±62.2) to cuts than available units 

(X = 319.1 m ±62.2). There was no detectable difference (P >0.05) in proximity to 

mature conifer between used and available units at either scale.

Elevation was higher at used (X = 291.6 m ±39.4) than available locations (X = 

280.1 m ±39.4; P = 0.012), and at the 5 ha used (X = 291.3 m ±39.6) than available areas 

(X = 280.1 m ±39.6) (P = 0.014; Fig. 3-5). Directional aspect was not different (P >0.05) 

at either scale, with the exception of northeast-facing slopes at locations used less than 

available (4.0%, F = 3.86, P = 0.049). Flat aspects accounted for <3% of available units 

and had no data points at used units; this aspect class was removed from analysis. There 

was no detectable difference in slope (P >0.05) at either scale.
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Figure 3-3. Proportion (%) of cover types within used and random units for locations and the 5 ha landscape scale during winter 
2011 and winter 2012 in Maine. Units that are different (P <0.05) within each cover type for the location and 5 ha scale are starred 
(*).
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Figure 3-4. Mean distance (m) to cuts of used and available units for locations and the 
5 ha landscape scale during winter 2011 and winter 2012 in Maine. Distance was less 
(P <0.05) for both used; bars show standard error.
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■ L ocation  ■ 5 ha

A vailab le

Figure 3-5. Mean elevation (m) of used and available units for locations and the 5 ha 
landscape scale during winter 2011 and winter 2012 in Maine. Elevation was higher (P 
<0.05) for both used; bars show standard error.
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The habitat parameters used in the logistic regression mixed effects models were 

deciduous forest, coniferous forest, wetlands, distance to cuts, and elevation; WMD was 

included as a random effect in all models. The model that best explained (lowest AICc 

score) moose presence included deciduous forest, distance to cut, and wetlands at both 

the location and 5 ha scales (Table 3-3). Specifically, moose locations were most 

influenced by a higher proportion of deciduous forest (P = 0.516, SE = 0.179), shorter 

distance to cuts (P = -0.269, SE = 0.072), and smaller proportion of wetlands (P = -0.596, 

SE = 0.318); likewise, at the 5 ha scale used areas were most influenced by deciduous 

forest (P = 0.180, SE = 0.066), distance to cuts (P = -0.197, SE = 0.054), and wetlands (p 

= -0.107, SE = 0.069; Table 3-3). Models with AAICc <2.00 also included smaller 

proportion of coniferous forest and elevation at both the location (P = -0.209, SE = 0.184 

and p = -0.029, SE = 0.071, respectively) and 5 ha scales (P = -0.086, SE = 0.069 and P = 

-0.044, SE = 0.072, respectively; Table 3-3).

Discussion

This modeling exercise indicates that proximity to regenerating forests in the form 

of recent clearcuts, light partial cuts, and heavy partial cuts is an important predictor of 

the location of moose during winter in northern Maine (Table 3-3, Fig. 3-4). In previous 

research, 87% of winter observations in Maine were in areas that had been logged within 

10-30 years (Thompson et al. 1995). Similarly, cut/regeneration habitat was used more 

than expected in early winter and dictated habitat use at the fine scale in New Hampshire 

(Scarpitti 2006), and regenerating stands were used more than available in early winter in 

Massachusetts (Wattles 2011). Unlike in summer when high quality forage is available in 

more habitat types (Scarpitti 2006), regenerating forests are preferentially used in winter
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Table 3-3. The total number of parameters (K), log likelihood statistic (logLik), AICc 
score, delta AICc, and model weight for top competing location and 5 ha landscape scale 
models (i.e., delta AICc scores <2), and the estimates and standard error (SE) for the 
model-averaged coefficients.

L o ca tio n s

M odel Selection based  on A IC c K logL ik A IC c D elta W eight

D eciduous +  D istance to  Cut +  W etlands 5 -652.41 1314.87 0 0.40

C oniferous +  D eciduous +  D istance to  C u t + 
W etlands

6 -651.76 1315.61 0.73 0.28

D eciduous +  D istance to Cut 4 -654.26 1316.55 1.68 0.17

D eciduous + D istance to  C ut +  E levation + 
W etlands

6 -652.32 1316.73 1.86 0.16

M odel-averaged coefficients E stim ate SE

(Intercept) -0.060 0.081

D eciduous 0.516 0 .179

D istance to  C ut -0.269 0 .072

W etlands -0.610 0.318

Coniferous -0.209 0 .184

Elevation -0.029 0.071

5 h a  L a n d sc a p e  S cale

M odel Selection b ased  on A IC c K logL ik A IC c D elta W eight

D eciduous +  D istance to C ut +  W etlands 5 -653.79 1317.65 0 0.24

D eciduous + D istance to Cut 4 -654.96 1317.96 0.31 0.21

C oniferous +  D eciduous +  D istance to C u t +  
W etlands

6 -652.96 1318.00 0.36 0.20

C oniferous +  D eciduous +  D istance to C ut 5 -654.27 1318.60 0.95 0.15

D eciduous +  D istance to Cut +  E levation + 
W etlands

6 -653.64 1319.36 1.72 0.10

C oniferous +  D eciduous +  D istance to C u t + 7 -652.73 1319.57 1.92 0.09
E levation + W etlands

M odel-averaged coefficients E stim ate SE

(Intercept) -0.032 0 .066

D eciduous 0.180 0 .070

D istance to  C ut -0.197 0.054

W etlands -0.107 0.069

C oniferous -0.086 0 .069

Elevation -0.044 0.072
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because concentrated, abundant browse allows moose to forage efficiently (Belovsky 

1981, Miller 1989, Scarpitti 2006).

While the distance to cut was shorter for used than available units at both the 

location and 5 ha scales (Fig. 3-4), the combination of habitat variables reflecting 

regenerating forest habitat (recent clearcuts, partial cuts, regenerating forest, and scrub- 

shrub) was used in proportion to availability at both scales. It is possible that partial cuts 

have a shorter distance to edge that provides both browse and cover in closer proximity, 

and therefore are more influential in moose use. For example, moose in Ontario showed 

preference for edge provided by strips (100-200 m) of uncut timber over locations within 

clearcuts without edge (Mastenbrook and Cumming 1989). However, caution should be 

taken in examining narrowly-defined habitat variables in use:availability analysis; 

variables don’t necessarily describe behavioral recognition or choice, and importance 

could reflect high/low availability and not absolute use. For example, moose may seem to 

be specialists under certain variables (i.e., distance to cut) and generalists under others, 

particularly as they are combined or made coarser (i.e., regenerating/foraging habitat). 

Additionally, high availability of a habitat can mask the importance of its use; for 

example, despite being used in proportion to its availability, mixed forest was the most 

used land cover type at both the location and 5 ha scales (35.1% and 31.3%, respectively; 

Fig. 3-3).

Winter habitat use is based primarily on food availability until snow depth 

becomes restrictive, and moose are commonly located where there is sufficient hardwood 

browse (Morris 1999). Deciduous forests were preferentially used and were important in 

predicting locations (Fig. 3-3, Table 3-3). Moose feed mostly on deciduous vegetation
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(Renecker and Schwartz 1997) and seek out the highest biomass of dormant shrubs and 

palatable forage during the period of time after the rut and into winter (Peek 1997). While 

not included in the top competing model at either landscape scale, locations were 

associated with a smaller proportion of coniferous forest (Table 3-3). While forage is 

likely more accessible and nutritious in deciduous, mixed, and regenerating forests during 

early winter, cover provided by coniferous forest is probably an important habitat 

variable when snow depth impedes movement or as thermal cover in later winter/early 

spring as ambient temperature rises, conditions avoided in this study. Moose in New 

Brunswick showed preference for more open and deciduous forest types in early winter 

and preference for dense conifer stands in late winter (Telfer 1970), and radio-collared 

moose in central Massachusetts showed increasing selection for conifer stands as winter 

progressed (Wattles 2011). Abundance of food resources, not availability of cover, is 

likely the most important factor in predicting habitat use in early winter in Maine, but a 

heterogeneous forest that provides both forage and shelter probably increases in use as 

winter progresses.

Elevation, while not included in the best fitting model, was higher on average for 

used units, than available units throughout the study area (Fig. 3-5). Previous research in 

Maine found moose moved from lowland (<305 m) into mid-elevation areas (367-327 m) 

in early winter, and occurred at slightly higher elevations later in winter (Thompson et al. 

1995). The slightly higher elevations (11.2-11.5m, Fig. 3-5) may reflect avoidance of 

wetlands in winter as locations had a smaller proportion of wetlands than available 

habitat (Table 3-3). Wetland habitats that occur at lower elevations may be important 

predictors in determining moose presence between late-spring and autumn when insects

62



and thermoregulation are a concern and aquatic forage is available, but do not play a role 

in habitat selection during winter (Peek et al. 1976, Peek 1997). Identifying those 

elevations with highest seasonal use could aid in prioritizing survey areas or habitat 

management. However, as used units were only ~1 lm  higher than available units at both 

landscape scales, it is likely the difference in elevation may not be biologically significant 

in the survey area.

Trends in used habitat variables were similar for locations and the 5 ha scale; 

specifically, the majority of used units were found in mature (mixed, deciduous and 

coniferous) and regenerating forest (recent clearcuts, partial cuts, regenerating forest, and 

scrub-shrub, Table 3-4). The used proportion of these coarser habitat variables (i.e., 

mature and regenerating forest) were similar to those defined for each survey block, and 

ultimately the respective WMD (Table 3-4). Habitat in northern Maine is considered high 

quality with stands of varying age and size distributed throughout providing adequate 

forage and cover as a result of commercial timber harvesting; this heterogeneous forested 

habitat likely helps support high moose numbers that are ultimately limited by habitat 

availability (Morris 1999, Scarpitti 2006).

Moose browsing can substantially alter plant communities and affect the structure 

and dynamics of forest ecosystems (Mclnnes et al. 1992, Renecker and Schwartz 1997) 

and there are important implications for forest management since moose prefer forage in 

clearcut and early-successional habitat (Westworth et al. 1989, Scarpitti et al. 2005). 

Browse consumption is strongly determined by its spatial distribution (Vivas and Saether 

1987) and forage availability is an important factor in moose foraging behavior, 

irrespective of spatial scale (Dussault et al. 2005, Mansson et al. 2007). Integrated
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Table 3-4. Mean proportion (%) ±SE of coarse cover types (i.e., mature and regenerating 
forest) within used units for locations and the 5 ha landscape scale during winter 2011 
and winter 2012 in Maine compared to the proportion within survey blocks.

Proportion Mature Forest (%)

WMD Location (Used) 5 ha (Used) Survey Block
1 73.1 ± 8.9 70.7 ± 6.8 68.0
2 73.0 ± 4.0 75.8 ± 3.1 72.6
3 80.5 ± 4.3 77.5 ± 3.1 72.4
4 57.8 ± 5.2 57.8 ± 4.2 55.4
4 54.8 ± 9.1 50.0 ± 7.3 55.9
5 90.9 ± 9.1 70.1 ±11.5 70.4
6 53.8 ± 14.3 62.6 ±11.6 65.0
8 52.8 ± 5.9 52.4 ± 4.5 65.9
11 100.0 ± 0.0* 80.2 ± 7.7 69.8
19 76.2 ± 9.5 73.9 ± 7.9 71.2

Proportion Regenerating Forest (%)

WMD Location (Used) 5 ha (Used) Survey Block
1 26.9 ± 8.9 25.7 ± 6.9 28.1
2 24.6 ± 3.9 22.3 ± 3.0 22.8
3 17.2 ± 4.1 17.6 ± 3.0 13.6
4 41.1 ± 5.2 40.9 ± 4.2 35.6
4 35.5 ± 8.7 42.9 ± 7.5 37.2
5 9.1 ± 9.1 23.2 ± 11.0 23.4
6 15.4 ± 10.4 9.6 ± 6.1 8.7
8 40.3 ± 5.8 40.5 ± 4.4 31.5
11 0.0 ± 0.0 18.1 ± 8.0 19.5
19 19.0 ± 8.8 20.9 ± 6.9 18.9

*sm all sam ple size (n  =  4) likely  in fluenced  proportions
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management of an abundant moose population (MDIFW 2012) and commercial 

forestlands in northern Maine requires balancing the well-being o f an economically and 

culturally important species (moose) that preferentially forages in and can impede 

regeneration in cutover and partially cut stands.

Extensive use of cutover areas by female moose in Maine is indicative of how 

forest harvesting practices create beneficial interspersion of food and cover (Leptich and 

Gilbert 1989). According to MDIFW’s Moose Assessment, the best moose habitat in 

Maine is associated with commercially harvested forest (Morris 1999), and >25% of the 

study area was classified as some form of cut habitat. However, there are economic, 

political, and social issues associated with forest harvest practices and mandated changes 

could influence the relative abundance of moose in northern Maine (Morris 1999). 

Concern over the effects of heavy clearcutting in the 1970s and 1980s, particularly in 

response to the massive spruce budworm (Choristoneura fumiferana) outbreak (Griffith 

and Alerich 1996), resulted in the Maine Legislature passing The Maine Forest Practices 

Act in 1990 (Maine Forest Service 1999). This act limited the size of clearcuts (<250 

acres) and led to a dramatic shift from clearcutting to partial cuts beginning in the early 

1990s; for example, -93% of the 444,339 acres harvest in Maine was defined as partial 

cuts in 2011 (Maine Forest Service 2011). These harvest practices will presumably result 

in patchily distributed, smaller clearcuts and partial cuts that provide increased 

availability of browse and cover in closer proximity than created by larger clearcuts. The 

relatively high moose density estimates in much of the study area (2.0-4.0 moose/km2; 

Kantar and Cumberland 2013) may reflect such habitat change. Similar analysis as 

performed here should identify temporal changes in moose abundance and distribution
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with forest succession.

Some limitations exist in modeling with data of this nature that provides single 

locations of individuals rather than continuous locations from radio-collared animals; 

results are not necessarily applicable at a larger scale or through time. However, 

measuring habitat use in this way can provide insight into how moose respond to 

individual habitat variables and can allow for the testing of predictions of moose habitat- 

use (Peek 1997), especially if surveys are repeated and cover a reasonable time period. 

The number (n = 481) of locations and 5 ha areas analyzed in this study over a ~2 month 

time period is reasonable when compared to traditional studies. Thompson et al. (1995) 

assessed winter habitat use of cow (n = 10) and bull (n = 4) moose in Maine with a 

seasonal mean of 5.8 and 5.4 observations, respectively. In New Hampshire, Scarpitti 

(2006) evaluated seasonal habitat use of cow moose using 42 and 54 core areas (2.6-3.7 

km2) in early and late winter, respectively.

The collection of accurate moose locations during aerial surveys in Maine 

resulted in a robust dataset that, while time-specific, was efficient, relatively cheap 

compared to radio-collaring efforts, and repeatable. This preliminary analysis provided 

habitat use information that was analogous with other regional studies. Expansion of such 

analyses should prove useful in examining the spatial distribution of moose across the 

landscape, the concentration of moose in cut areas that may result in forest regenerations 

problems, and temporal relationships between moose population responses and timber 

harvesting practices in northern Maine.
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CONCLUSIONS

Chapter 1: Impact of moose browsing on forest regeneration in northeast Vermont

1. Regeneration was not considered a problem based on stocking rates of commercial 

trees in northeast Vermont. Stocking rate without severe damage increased from 67- 

68% in the youngest 3 age classes (3-5, 6-10, and 11-15 year) to 75% in the 16-20 

year class. Severe damage from browsing was low (6-11%) in all age classes. 

Temporal comparisons among age classes indicate that sites with high initial 

browsing pressure are typically released from that pressure and recover to 

commercially valuable stands based on stocking rate.

2. At least 3 commercial species accounted for >50% of the species composition within 

each age class, the majority of which were classified as light to no damage. The 

proportion of non-commercial species declined as age class increased.

3. The proportion of plots containing a dominant commercial tree classified as 

hardwood declined with age class from 83 to 49%. Conversely, the proportion of 

plots containing a commercial dominant softwood stem increased with age class from 

17 to 51%, possibly indicating a shift to softwood-dominated stands from selective 

over-browsing of hardwood species. It is possible a shift from hardwood to softwood 

may be the natural successional trend for these sites.

4. The proportion of dominant commercial trees >3.05 m (beyond browse height) and 

without severe damage (expected to recover during future growth) increased with age 

class to 39% in the 16-20 year age class; however, these values were less than in 

nearby New Hampshire where the average value was 71% in the oldest age class.

This growth rate is likely reflective of higher moose density in Vermont.
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5. Further assessment is warranted to evaluate compensatory tree growth in response to 

a reduction in browsing due to forest aging and/or moose population density.

Chapter 2: Analysis of physical characteristics of bull moose harvested in Maine, 
1980-2009

6. There was no evidence of a measurable decline in the physical parameters (body 

weight and antler spread) of adult bull moose harvested in Maine from 1980-2009, as 

also measured in Vermont and New Hampshire.

7. Between 1980-1987 and 2005-2009 there was a 4-10% increase in mean body weight 

in the 4 youngest age classes (P <0.024), and minimal change (1-2%, P >0.05) in the 

>5.5 year old classes.

8. There was a slight increase (4.0-8.3%, P  <0.014) of mean antler spread in the 4 

youngest age classes, with some variability but no clear trend in bulls >5.5 years old.

9. Maximum mean weight of yearlings (225 kg) occurred in the 2005-2009 time period 

(P <0.002). Yearlings were the only age class in which the current (2005-2009) mean 

antler spread (60 ±15.9 cm, x ± SD) exceeded the 30 year mean. The slight increase 

in physical characteristics of yearlings differs from the trend in New Hampshire and 

Vermont where it is speculated that parasitism by winter ticks affects recruitment and 

growth rate. Moose in northern Maine may be less affected due to longer winters that 

temper tick impact and density.

10. The proportion of trophy bulls (spread >137 cm) in the harvest declined somewhat as 

harvest increased from 1980-1987 to 2005-2009 (8.8 to 5.9%). The mean spread of
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trophy bulls declined by only 2% (P = 0.003) from 1980-1987 to 2005-2009, which 

presumably is biologically irrelevant.

11. There were no differences (P >0.05) in the proportion of harvested bulls within each 

age class between the 1980-1987 and 2005-2009 time periods; some variation 

occurred in the intermediary time periods.

12. The relatively stable proportion of mature bulls (>5 years old) in the harvest across 

time periods (30-44%) does not indicate increasing selective harvest towards older, 

trophy bulls. The majority (86-92%) of trophy bulls were between 5.5 - 12.5 years old 

in all time periods, indicating that the proportion of trophy bulls in each age class is 

likely not influenced by harvest pressure, but corresponds with expected maximum 

growth and senescence.

13. In the face of the declining regional population, continued monitoring of harvested 

moose is warranted to best manage the largest and longest harvested population in the 

northeastern United States.

Chapter 3: Using aerial survey observations to identify winter habitat use of moose
in northern Maine

14. Habitat variables associated with locations of moose collected during aerial surveys 

were compared to available habitat at multiple landscape scales; variables included 

land cover classes, elevation, slope, aspect, proximity to cuts, and proximity to 

mature conifer. Mixed forest was the most used land cover type at both the location 

and 5 ha scales (35.1% and 31.3%, respectively).
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15. Proximity to recent clearcuts, light partial cuts, and heavy partial cuts was an 

important predictor of moose location. However, regenerating forest habitat (recent 

clearcuts, partial cuts, regenerating forest, and scrub-shrub) was used in proportion to 

availability, although cut areas represented -25% of the landscape overall.

16. Model selection performed with a mixed effects logistic regression model indicated 

moose presence was associated with a higher proportion of deciduous forest, shorter 

distance to cut, and smaller proportion of coniferous forest; this indicates abundance 

of food resources, not availability of cover, is likely the most important factor in 

predicting habitat use during the study period.

17. Elevation was higher (-1 lm), on average, for used units than available units. This 

may reflect avoidance of wetlands in winter as locations were associated with a 

smaller proportion of wetlands in comparison to available habitat. However, this 

minimal difference in elevation is likely biologically insignificant in the survey area.

18. The used proportion of coarse habitat variables (i.e., mature and regenerating forest) 

were similar to those available in each survey block, indicating that heterogeneous 

and good moose habitat is widely available across the commercial forest landscape of 

northern Maine.

19. Using moose locations derived from aerial surveys could provide further insight 

about the spatial distribution across the landscape, local density in areas with concern 

about forest regeneration, and temporal relationships between population responses 

and commercial forest management.
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APPENDIX B. SPECIES COMPOSITION (%) AND BROWSE DAMAGE CATEGORY OF 
DOMINANT STEMS BY AGE CLASS IN CLEARCUTS IN NORTHEAST VERMONT.

A g e
C la ss

S p e c ie s
S e v e re

D a m a g e
M o d e ra te
D a m a g e

L ig h t
D a m a g e

N o
D a m a g e

T o ta l

3-5 A m e r ic a n  b e e c h 0 0 2 1 3
A s p e n  spp . 0 0 3 0 3
B a ls a m  f ir 1 0 2 3 6
B la c k  c h e rry 1 0 0 0 1
R e d  m a p le 0 0 15 8 2 4
R e d  sp ru c e 0 0 1 3 5
S u g a r  m a p le 0 0 4 2 6
T a m a ra c k 0 0 0 1 2
W h ite  ash 0 0 0 0 1
W h ite  b irc h 1 0 1 1 3
Y e llo w  b irc h 1 0 13 5 20
N o n  c o m m e rc ia l N A N A N A N A 26

6 -1 0 A m e r ic a n  b e e c h 0 0 2 1 3
A s p e n  spp . 0 0 1 0 2
B a ls a m  f ir 1 1 4 9 15
R e d  m a p le 1 1 12 3 16
R e d  sp ru c e 0 0 0 9 9
S u g a r  m a p le 0 0 8 2 10
W h ite  ash 1 0 0 0 1
W h ite  b irc h 2 0 2 0 4
Y e llo w  b irc h 1 0 11 3 14
N o n  c o m m e rc ia l N A N A N A N A 25

11-15 A m e r ic a n  b e e c h 1 0 1 0 3
A s p e n  spp . 0 0 3 2 6
B a ls a m  f ir 2 1 7 7 17
B la c k  sp ru c e 0 0 0 1 1
R e d  m a p le 3 2 8 0 13
R e d  sp ru c e 0 0 1 9 11
S u g a r  m a p le 1 0 3 0 4
W h ite  b irc h 4 1 4 0 9
Y e llo w  b irc h 2 0 8 1 11
N o n  c o m m e rc ia l N A N A N A N A 2 4

16-20 A m e r ic a n  b e e c h 1 1 3 2 6
A s p e n  spp . 0 0 0 1 1
B a ls a m  f ir 2 0 5 14 21
B la c k  sp ru c e 0 0 0 1 1
R e d  m a p le 7 1 14 1 23
R e d  sp ru c e 0 0 1 2 0 21
S u g a r  m a p le 0 0 4 1 5
W h ite  b irch 1 0 1 0 1
Y e llo w  b irc h 3 0 3 0 6
N o n  c o m m e rc ia l N A N A N A N A 14
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APPENDIX C. MEAN (±SD) FIELD-DRESSED BODY WEIGHT (kg) OF BULL MOOSE HARVESTED IN MAINE BY TIME 
PERIOD AND AGE CLASS, 1980-2009.

1.5 yr 2.5 yr 3.5 yr 4.5 yr 5.5 yr >6.5 yr

Time
Period n Mean

Weight n Mean
Weight n Mean

Weight n Mean
Weight n Mean

Weight n Mean
Weight

m O -
1987 196 217±29.0 269 253±43.5 219 302±45.3 226 329±48.4 174 353±49.7 535 374±50.1

1988-
m s 410 214±25.7 264 268±38.1 245 298±40.6 193 339±43.5 152 360±40.7 361 372±45.8

1999-
2004 573 218±28.6 1035 285±35.4 657 323±37.0 433 351±43.0 337 366±42.2 754 374±44.5

2005-
2009 420 225±36.2 896 279±35.0 805 316±37.3 696 346±39.5 506 360±40.2 1210 374±41.3



APPENDIX D. MEAN (±SD) ANTLER SPREAD (cm) OF BULL MOOSE HARVESTED IN MAINE BY TIME PERIOD AND 
AGE CLASS, 1980-2009.

1.5 yr 2.5 yr 3.5 yr 4.5 yr 5.5 yr >6.5 yr

Time
Period n Mean

Spread n Mean
Spread n Mean

Spread n Mean
Spread n Mean

Spread n Mean
Spread

1980-
1987 196 56±13.1 269 73±16.6 219 89*17.6 226 99*21.0 174 109*22.3 535 123*19.3

1988-
1998 410 55±12.0 264 79±14.7 245 92±16.9 193 107±18.6 152 118*17.3 361 128*19.3

1999-
2004 573 59*12.7 1035 82±14.1 657 97±14.9 433 109±18.8 337 120*16.9 754 125*18.6

2005-
2009 420 60*15.9 896 79±13.0 805 92±14.9 696 104*16.0 506 113*17.3 1210 122*18.6



APPENDIX E. CRITERION C (POPULATION COMPOSITION) OF THE MAINE 
MOOSE MANAGEMENT SYSTEM (MORRIS 2002).

CRITERION C: population composition
The third step needed to meet population goals is to determine if the composition of the 
herd is at the desired level. Two levels have been specified. WMD 11 is to have at least 
38% bulls (60 bulls : 100 cows). In WMDs 1-10, 12-14, and 18, 19, 28, and 29 the 
population is to have 17% mature (over 4 years old) bulls.

Determine the composition of the moose herd from moose sightings reported by deer 
hunters and the ages of harvested animals using the following equations.

Eq. 5 S= (B/(B+C))100

Eq. 6 A= (F/T)100

Eq. 7 P= (B/(B+C))(F/T)xl00

For equations 5-7,

S= Percentage of bulls in the population. Initially, use proportion of bulls to cows 
in sightings by deer hunter (pers. com. Bontaites and Gustafson).

A = Percentage of mature bulls6 among antlered bulls.
B= number of bulls seen by deer hunters
C= number of cows seen by deer hunters
T= number of bulls over 2 in the harvest
F= number of bulls over 5 in the harvest 
P= Percentage of mature bulls1 in population.

Determine the status of the population structure.

For WMD 11:

If S < 38% there are too few bulls in the population.

If S > 38% the sex composition of the population is acceptable.

For WMDs 1-10,12-14, and 18, 19, 28 and 29:

If P < 17% there are too few mature bulls in the population.

If P > _17% the sex and age composition of the population is acceptable.

1 Ideally , this is the percent o f  bulls ov er 4 years o f  age am ong  adu lt and  yearling  bulls. H ow ever, because 
hunters select against yearlings, the percen t o f  2+  bu lls  in the harvest tha t are over 5 years o ld  w ill be used 
as an estim ate.
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APPENDIX F. DESCRIPTION OF THE 7 LAND COVER CATEGORIES/HABITAT 
TYPES USED FOR ANALYSIS OF MOOSE LOCATIONS IN EARLY WINTER IN 
NORTHERN MAINE (MELCD 2004).

Land Cover/ 
Habitat Category Description

C ro p s /G ra s s la n d s / A re a s  o f  g ra s s e s ,  le g u m e s  o r  m ix tu re s  p la n te d  fo r  g ra z in g
B lu e b e rry o r  c ro p  p r o d u c tio n ;  a re a s  d o m in a te d  (> 8 0 %  to ta l 

v e g e ta tio n )  b y  g ra s s e s  o r  h e r b a c e o u s  v e g e ta t io n , f ie ld s  
d o m in a te d  b y  p ro d u c t io n  o f  lo w -b u s h  b lu e b e r r ie s

D e c id u o u s  F o re s t D o m in a te d  b y  tre e s  g re a te r  th a n  5 m e te r s  ta ll  a n d  g re a te r  
th a n  2 0  p e r c e n t  o f  to ta l  v e g e ta t io n  c o v e r ; m o re  th a n  7 5 %  
d e c id u o u s  tr e e s ;  f re q u e n t sp e c ie s  in c lu d e  m a p le  (Acer 
s p p .) , h ic k o ry  (Carya s p p .) ,  o a k s  (Quercus sp p .) , a n d  
a s p e n  (Populus tremuloides)

C o n ife ro u s  F o re s t D o m in a te d  b y  tr e e s  g r e a te r  th a n  5 m e te r s  ta ll  a n d  g re a te r  
th a n  2 0  p e rc e n t  o f  to ta l  v e g e ta t io n  c o v e r ; m o re  th a n  7 5 %  
c o n ife ro u s  tre e s ; f re q u e n t s p e c ie s  in c lu d e  p in e  (Pinus 
sp p .) , s p ru c e  (Picea  s p p .) ,  a n d  b a ls a m  f ir  (Abies 
balsamea)

M ix e d  F o re s t D o m in a te d  b y  tr e e s  g r e a te r  th a n  5 m e te r s  ta ll a n d  g re a te r  
th a n  2 0  p e r c e n t  o f  to ta l  v e g e ta t io n  c o v e r ; n e ith e r  
d e c id u o u s  n o r  c o n ife ro u s  sp e c ie s  a c c o u n t  fo r  m o re  th a n  
7 5 %  o f  to ta l  tr e e  c o v e r

R e c e n t C u ts / R e g e n e ra tin g A re a s  h a r v e s te d  w ith  > 9 0 %  c a n o p y  c o v e r  re m o v a l a n d
F o re s t/S c ru b -S h ru b e x p e c te d  to  r e g e n e ra te  to  fo re s t;  r e g e n e ra tin g  fo re s t 

in d ic a te s  p r e v io u s ly  h a r v e s te d  fo re s te d  a re a s  th a t h a v e
b e g u n  to  r e g e n e ra te  a n d  m a y  in c lu d e  s e e d lin g  to  s a p lin g  
s iz e d  tr e e s  w ith  s o m e  r e s id u a l  t r e e s  p re s e n t  ( fo re s t  lo s s  
a n d  s u b s e q u e n t re g ro w th  m u s t  h a v e  o c c u r re d  a f te r  199 5 ); 
s c ru b -s h ru b  a re a s  a re  d o m in a te d  b y  sh ru b s  le s s  th a n  5 
m e te rs  ta ll  w ith  s h ru b  c a n o p y  ty p ic a l ly  g re a te r  th a n  2 0 %  
o f  to ta l  v e g e ta tio n

W e tla n d P a lu s tr in e  s c ru b - s h ru b /e m e rg e n t  w e tla n d s ,  e s tu a r in e  
s c ru b - s h ru b /e m e rg e n t w e tla n d s ,  a n d  n o n - tid a l  w e tla n d s  
d o m in a te d  b y  w o o d y  v e g e ta tio n

P a r tia l  C u ts L ig h t p a r t ia l  c u ts  (< 5 0 %  o v e r s to ry  re m o v a l)  in c lu d in g  
im p ro v e m e n t th in n in g , l ig h t s h e lte rw o o d , a n d  lig h t 
s e le c tio n  h a rv e s ts ;  h e a v y  p a r t ia l  c u ts  (> 5 0 %  o v e rs to ry  
re m o v a l)  in c lu d in g  h e a v y  s h e l te rw o o d  a n d  h e a v y  se le c tio n  
h a rv e s ts ;  fo re s t  lo s s  m u s t  h a v e  o c c u r re d  a f te r  1995
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