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ABSTRACT
A Statistical Analysis for Estim ating Fish Num ber D ensity  

with the U se of a M ultibeam  Echosounder
by

MADELINE L. SCHROTH-M ILLER
University of New Hampshire, September, 2013

Fish number density can be estim ated from the  normalized second moment of 

acoustic backscatter intensity [Denbigh et al., J. Acoust. Soc. Am. 90, 457-469 

(1991)]. This method assumes th a t the distribution of fish scattering amplitudes is 

known and th a t the fish are randomly distributed following a Poisson volume dis­

tribution within regions of constant density. It is most useful a t low fish densities, 

relative to the resolution of the acoustic device being used, since the estim ators quickly 

become noisy as the number of fish per resolution cell increases. New models th a t 

include noise contributions are considered. The m ethods were applied to an acoustic 

assessment of juvenile Atlantic Bluefin Tuna, Thunnus thynnus. The data  were col­

lected using a 400 kHz multibeam echo sounder during the summer months of 2009 in 

Cape Cod, MA. Due to the high resolution of the m ultibeam  system used, the large 

size (approx. 1.5 m) of the tuna, and the spacing of the fish in the school, we expect 

there to be low fish densities relative to the resolution of the multibeam system. Re­

sults of the fish number density based on the normalized second moment of acoustic 

intensity are compared to fish packing density estim ated using aerial imagery th a t 

was collected simultaneously.



C H A PT E R  1 

IN TR O D U C TIO N

Understanding the impacts or effects of natural and anthropogenic influences on 

fish populations is critical to the ecosystem the fish is a p art of, the well-being of 

the species itself and the fishery dependent upon it. Intended and incidental im­

pacts such as habitat destruction and m ortality of non-target species have resulted 

in overexploitation of fish populations and degradation of pivotal ecosystems tha t 

provide for the fish communities (Pikitch et. al. 2004) [30]. M aintaining the stabil­

ity of an exploited resource is crucial and can be achieved w ith specific information 

about the stock. Modern fisheries stock assessments provide extensive information 

and technical advice to maintain the productivity of fish stocks and allow for more 

effective fisheries and enhanced management of endangered species (Cadima 2003) 

[4]. Understanding the trend of how school sizes change over time is a simple way of 

estimating the effects on a fish population. This can be done multiple ways through 

a fish stock assessment. Stock assessment methods incorporate a variety of tools tha t 

are both fishery dependent and independent. D ata collected from recorded landings 

(amount of fish caught and sold per year), portside sampling, and vessel-monitoring

1



surveys are reliant on the fishery; whereas trawls, seines, video and acoustic surveys 

can all be conducted without any fishing activity (Cooper 2006) [9]. Since it is more 

difficult for scientists than  for fisherman to  collect large amounts of samples in expan­

sive areas continuously over time, fishery-independent surveys are greatly depended 

upon (Wallace and Fletcher 2001) [42]. Also, fishery-dependent surveys may possibly 

have insufficient and biased catch information which is undesirable by the scientific 

community (Patterson et. al. 2001) [27]. In particular, the use of acoustic surveys in 

fisheries has become widespread to  circumvent the lim itations of traditional survey 

methods and to provide additional information about fish density, spatial distribu­

tion, and behavior of fish schools (Gurshin et. al. 2009) [20]. Acoustic instrum ents 

th a t transm it and receive sound waves are more capable of detecting fish than  any 

visual system since the penetration of sound in water is exceptionally greater than  

light (Fernandes et. al. 2002) [15]. Of the techniques used in fisheries acoustics, multi­

beam echo sounders (MBES) are a relatively new tool being implemented. Due to  the 

potentially high cost and lack of dynamic range associated w ith multibeams, they are 

not traditionally used in fisheries science but have great potential. Traditional echo 

sounders used in acoustic fish surveys are limited in the estim ation of geometrical pa­

rameters of the fish school due to the possible effects of vessel avoidance (Soria et. al. 

2003 and C utter and Demer 2007) [34, 10], inaccurate volume estimations (Gerlotto 

et. al. 1999) [19], and restrictions to  a two-dimensional plane (Mayer et. al. 1999)
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[25]. Studies have been conducted to  determine the usefulness of implementing a 3D 

sonar system (including a MBES) in estim ating the shape and biomass of fish schools 

without experiencing the disadvantages of traditional sonars and have had promising 

results (Weber et. al. 2009 and Gurshin et. al. 2009) [44, 20]. Fish school surveys 

using multibeam sonars have been conducted in shallow waters with the use of video 

image analysis to estimate school structure and behavior (Gerlotto et. al. 2000) [17], 

estimates of the distribution of densities within a  school have been explored (Gerlotto 

and Paramo 2003) [18], and a description of the capabilities of a MBES in estim ating 

target strength and volume backscattering strength through analytical and empirical 

methods has been done (Cochrane et. al. 2003) [8]. New methods of data  acquisition 

have been explored (Brehmer et. al. 2006) [3] and the effects of a new MBES specifi­

cally intended for fisheries assessment has been examined (Trenkel et. al. 2008) [39]. 

Most of these studies have shown improvements on the estim ates being found when 

using a multibeam echosunder, however the use of such tools does not provide precise 

measurements and biases still exist due to potential noise complications, calibration 

issues, irregular school shapes, and a potential lack of knowledge about fish location 

and orientation within a  beam.
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1.1 Traditional M ethods for Estim ating Fish Number D en­

sity

Two commonly used methods for estim ating the number density of fish aggrega­

tions with acoustic sonar systems are echo-counting and echo-integration (Simmonds 

and McLennan 2005) [33]. If the individual echoes on an echogram can be distin­

guished from one another and the assumptions th a t each echo is produced by one 

fish and the fish are randomly distributed are satisfied, then the number of fish in 

a given area can be determined by counting the to ta l number of echoes present, i.e. 

echo-counting. If the density of fish is too high to  detect individual echoes then 

echo-integration is a comparable alternative th a t is frequently used. An estim ate for 

the density of fish from echo-intensity is determined by summing or integrating the 

energy, or equivalently the echo intensity, over certain parts of the echogram. The 

energy for a given time period is equal to the integral of the magnitude of the volt­

age, produced by the echosounder, squared. The fish number density (fnd) is then 

found from the average of the echo-integrals from a collection of transm itted pings 

(Simmonds and McLennan 2005) [33].

As addressed by Simmonds and McLennan [2005] [33], there are certain draw­

backs and limitations in using the traditional methods for estim ating fish abundance. 

Calibration of the transducer and the instrum ents used to convert pressure ampli­

tude measurements to electrical signals is needed. In order to  obtain more accurate 

estimates of fish number density, the m ethod of calibration proposed by Foote et. al.
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[1987] [16] should be implemented. Also, an estim ate of the target strength of a fish 

in their natural environment, defined as the ratio of scattered intensity a t a reference 

of 1 m to  the incident intensity (Pierce 1981) [29], may have a variable amount of 

uncertainty associated with it due to  the  possible presence of multiple species, the 

sporadic changes in orientation of the fish in the beam (Urick 1983) [40], and the 

conceivably large range of fish sizes resulting in a wide spread of the target strength 

distribution. Various methods for estim ating fish number density have been examined 

in order to circumvent the drawbacks of conventional methods.

Statistics of acoustic backscatter have been explored in depth  and used to estimate 

density of scatterers in a number of fashions. The statistical analysis of non-Rayleigh 

echo amplitudes from seafloor backscatter has been examined (Stanic and Kennedy 

1993 and Lyons and Abraham 1999) [36, 24] with extensive research conducted in 

determining possible distributions to  describe the echo statistics of reverberation 

(Abraham and Lyons 2002) [1]. Such m ethods have been utilized to describe the echo 

statistics of patch scatterers and individual scatterers from both fish and seafloor 

contributors (Stanton and Clay 1986, Chu and Stanton 2010, and Stanton and Chu 

2010) [38, 5, 37]. Estimating density of acoustic point scatterers in volume rever­

beration has been done using recursive algorithms (Ehrenberg 1972) [13], empirical 

estimations (Jobst and Smits 1974) [14], and by examining level crossing d a ta  (Spin- 

del and McElroy 1973) [35]. The concepts of fluctuations in single-interval statistics
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have the potential for application in medical tissue characterization (Waag et. al. 

1982) [41] and have been used to  estim ate density of scatterers, such as light scatter­

ers (Pusey et. al. 1974) [31], within mediums similar to and including course-grained 

glass (Bluemel et. al. 1972) [2], Fish estim ation models involving fluctuations of the 

returned signal defined by high order (power of 2 or more) statistical moments of 

backscattered intensity have been examined (Wilhelmij and Denbigh 1984 and Den­

bigh et. al. 1991) [45, 11] and will be used frequently in this paper. The established 

model for the estimate of fish number density th a t is the basis of this research will 

be referred to as the DSH model which is explored in depth in Denbigh et. al. [1991] 

[11].

1.2 DSH M odel

W hen the number of independent contributors in the returned acoustic pressure 

signal is small there is a deviation from Gaussian statistics. Estim ates of fish number 

density can be made under the assum ption of non-Gaussian statistics. The estimate 

of fnd is defined as the number of fish per m eter cubed, p. This is found by taking 

the estimate for the average number of fish per resolution cell, <  N  > , and dividing 

out by the volume considered in the estimation. The scatterers contributing to a 

resolution cell are within the hemi-spherical shell determined by some range value, 

the speed of sound in the medium, and the pulse length of the system being used. 

The volume th a t encompasses the scatterers is determined by the boundaries of the



school at some range and will be used to  estim ate the fish number density. This setup 

can be seen in Figure 1 . Knowledge of the second normalized moment of intensity, 

, he. the scintillating index (SI), is needed in order to  determine the average

fluctuation of intensity of the scatterer in time and /o r space. W ithin the DSH model 

for estimating fish number density, the SI describes the fluctuations of fish scatterer 

intensities by way of variations in fish location and a ttitude  in the sonar beam. The 

acoustic echo, P, contains the random  amplitude and phase, A  and 9 respectively, 

scattered from a to tal of N  fish:

The model in Wilhelmij and Denbigh [1984] [45] was redefined as the DSH model by 

introducing multiple factors in the amplitude, A. In Eq. (1.1) A? is a function of 

three components: (a) the effects of fish scattering, cij ,  (b) beam pattern  fluctuations, 

bj, and (c) pulse envelope changes, cy, such th a t Aj = ajbjCj. The beam pattern  itself 

does not fluctuate but it is determined by the random locations of the fish within the 

beam and the area of ensonification. Since the location of the  scatterer with respect 

to the main response axis of the beam is random, the angles th a t determine the beam 

pattern  value (i.e. rotational angle, v, and elevation angle, (p) a t the fish’s location 

are therefore random, thus defining the beam pattern  contribution from the j th fish

number of fish for a resolution cell of an ensonified volume. The SI represents the

N

( 1.1)
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to be a random variable. The angle definitions can be seen in Figure 2. For simplicity 

purposes, the effects of the random locations of fish on the beam  pattern  values will 

be referred to as the beam pattern  fluctuations. Intensity for each resolution cell is 

found by obtaining the square of the magnitude of the pressure (Eq. 1.2):

/  =  p p *  = |P |2. ( 1 .2)

In estimating how many contributors there are in the signal, the first and second 

moments of intensity are found and m anipulated to produce the average number of 

fish per resolution cell, < N  > (Denbigh et. al. 1991) (See Appendix A):

< N  >
< A 4 > < I 2 >

< I  > 2
2

- l

(1.3)
<  A 2 > 2

The components of the amplitude are random  variables w ith assumed or empirically 

derived distributions. The probability density functions (pdf) of the components of 

the signal amplitude and phase for a fish scatterer are discussed in depth later and 

explicitly derived in Appendix B.

The success of this model is contingent on divergence from Gaussian statistics in 

the return signal. On the basis of the Central Limit Theorem, Gaussian statistics 

occur when the scattered signal contains the sum of many independent contributions 

(Pusey et. al. 1974) [31]. Information about the average fish number density cannot
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be extracted from the statistics in the Gaussian limit. If the pressure signal returned 

is complex Gaussian,

P  = X  + i Y  where X ,  Y  ~  N fa ,  a) (1.4)

then the resulting intensity,

I  = PP* = x 2 +  y 2, (1.5)

will be Chi-squared distributed w ith two degrees of freedom. In such a case, the 

second normalized moment of intensity will equal two and therefore cause the model 

to diverge. In order to obtain estim ates for the average num ber of fish th a t have 

small associated variances, the scintillating index of the intensity must differ from 

two which requires the number of fish per resolution cell to  be low. Since higher 

order moments are being considered in the estim ation of <  N  > a large amount of 

samples in space and/or time must be used in order to get a better description of 

the pdf. If only a few samples have been taken to  estim ate the  moments of a heavily 

peaked distribution there may be a resulting bias in the estim ate of the moments 

since the peak may or may not be accurately represented in the calculation. Another 

possible source of error in the DSH model may come from the  assumption th a t all 

noise is negligible. However, the information needed to implement this statistical 

method (DSH model) may be more attainable than  the information th a t is needed
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for other techniques, such as scattering information and target strength of a particular 

species. Along with this, the drawbacks of the DSH m ethod (i.e. the possible incorrect 

noise assumption, the required low number count and the need for a large amount 

of samples) can be addressed by using a  different transducer to image the fish school 

and by making different assumptions. The requirement to know the target strength 

for traditional methods is un-necessary for the DSH model and the system used to 

ensonify the school does not need to be calibrated due to the  normalization of the 

moments. Additionally, the difficulty in satisfying the requirement of a low number 

of fish can be m itigated with a multibeam echosounder, or a  narrow beam system in 

general. Since the area of maximum sensitivity is small for a  narrow beam system, 

the number of contributions to  the signal will inherently be small. In general, if the 

system’s pulse length is small compared to the fish length, an expected low number 

of fish will be seen within an individual pulse since the m any individual scattering 

points along the fish will some together and be considered as one scatterer. Using 

a MBES along with a small pulse length can achieve good range resolution as well. 

Thus a MBES would be a suitable complement to the DSH model.

1.3 Goal of Paper

In this paper the assumptions made for the random  variables of the DSH model 

will be addressed and modified for the purposes of this research. The hypotheses 

further developed in this paper regarding the fish scattering am plitude distribution,
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beam pattern  fluctuation, and pulse envelope effects on the estim ate of the average 

number of fish per resolution cell will be discussed. The DSH model assumed that 

the contribution from noise components in the signal was negligible. Possible sources 

of noise may include scatterers other than  the targets of interest in the ensonified 

volume, electrical interference, mechanical boat noise, bubble build up on the trans­

ducer face, wind and surface effects and volume reverberation. The contributions to 

the signal from such sources could be im portant factors to  consider depending on the 

circumstances of the experiment. Due to  the range of possible noise source contri­

butions, a modified DSH model th a t includes random white noise will be presented. 

In order to preserve the benefits of the DSH m ethod (such as an uncalibrated sys­

tem and minimal assumptions of the fish scattering characteristics) in conjunction 

with obtaining more accurate estim ates of fish number density a t high noise levels, 

variations of the complete noise model will be considered. Simulations of each model 

will be implemented in order to estim ate the uncertainty associated w ith each model. 

The models will then be tested using A tlantic Bluefin Tuna da ta  collected w ith a 

400 kHz multibeam echosounder w ith a beam width of 1° by 0.5°. Estim ates of the 

average number of fish per resolution cell and fish number density will be found and 

the uncertainty associated w ith such estim ates and other sources of error will then 

be discussed.



C H A PT E R  2 

EXPLORATION OF DSH  MODEL A SSU M PTIO N S

Assumptions about the distributions of each of the random  variables present in 

the received pressure signal are made in the DSH model in order to determine the 

average number of fish per resolution cell and the resulting fish number density. Since 

the number of fish takes on discrete non-negative integer values, the total number is 

assumed to follow a Poisson distribution. Along w ith this, since an individual fish 

contributor is assumed to be anywhere within the scattering volume and independent 

of the other scatterers, the phase, which is independent of the  amplitude, is assumed 

to be uniform on the interval [0, 2t t ] (Pusey et. al. 1974) [31]. In order for the spatial 

structure of the school to affect the distribution of the phase contributions, the fish 

would need to maintain spatial organization on the order of a  wavelength or less. A 

change from the uniform assumption would require the im plem entation of much lower 

frequencies than those used here. Described in Clay and Medwin [1977] [6], if the 

number of scatterers along an individual fish body is large then the fish scattering 

amplitude distribution, A, is assumed to be Rayleigh, or in some cases Rician (Den­

bigh et. al. 1991) [11], since the convergence of the Central Limit Theorem creates

12
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a complex Gaussian pressure signal (Wilhelmij and Denbigh 1984) [45]. The DSH 

model assumes the number of contributors to be low and thus inherently assumes a 

contributor is equivalent to one fish even though a sonar system with a wavelength 

smaller than the fish size would produce multiple scattering points along the body. 

According to Rice [1945] [32] and Clay and Heist [1984] [7], the  Rician pdf is derived 

from the superposition of many random disturbances (narrow band passed noise) with 

sinusoidal components. Coherent backscatter from the swim bladder contributes to 

the sine wave, while the distributed component is due to scattering centers on the 

body and skeleton of the fish (Denbigh et. al. 1991) [11]. The underlying parameter, 

7 , of the Rician distribution is a ratio  of the sine wave power to  noise power (Eq. 2.1) 

where crc is the concentrated scattering component, ad is the distributed scattering 

component, and obs, the sum of the two, is the backscattering cross section (Clay and 

Heist 1984) [7]:

7  =  — , where abs =crc + ad. (2 .1)

This ratio describes the fish echoes and is dependent on the morphology and 

behavior of an individual within the area of ensonification. The ratio of the length of 

the fish to acoustic wavelength along with the fish movement can be directly related 

to the Rician param eter 7 . According to  Clay and Heist [1984] [7], if the length 

of the fish is relatively large to the wave length, i.e. L /X  > 16, the distributed
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component will be the dominating factor resulting in a very small param eter 7 . The 

experiments conducted in Clay and Heist [1984] [7] showed th a t as the movement of 

the fish increased, the param eter would decrease towards zero. A convergence to zero 

would reduce the Rician distribution to  a  Rayleigh distribution. Huygens wavelet 

theory (Clay and Medwin 1977) [6] help reinforce the Rayleigh assumption. At high 

frequencies, the phases of the wavelet sources depend on the a ttitude  of the fish in the 

wavefield. If the fish is alive there will be many fluctuations in the signal. Compared 

to the whole fish, the swimbladder will not be a  substantial contributor to the signal 

if the frequency is much higher than  the resonance frequency (Love 1978) [22]. For 

the reasons stated above and prior knowledge about the  relative size and schooling 

behavior of the fish present in the d a ta  collected, a Rayleigh distribution is assumed 

for the fish scattering statistic, a, thus resulting in a fourth normalized moment of 

two.

The characteristics of the pulse envelope do not influence the estim ate of <  N  >  for 

the research done here. A detailed description of the moments of the pulse envelope 

can be found in Denbighel al. [1991] [11]. However, since the fourth normalized 

moment of a short rectangular pulse envelope is equal to one, and a similar pulse 

was used in the work done here, the estim ate of <  N  >  for the d a ta  simulated and 

collected does not include the statistical moments of the pulse envelope.
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As mentioned earlier, the beam pattern  itself does not fluctuate, however, it is 

determined by the random locations of the fish within the  beam and the area of 

ensonification. The importance of the beam pa tte rn  comes from understanding the 

differences between the returned signal from varying fish locations within the ensoni- 

fied volume. A large fish located in the direction of a side lobe may produce the same 

signal strength as a small fish located in the main lobe. Thus, understanding the pdf 

of the beam pattern  can provide insight into the  backscattering strength and /or fish 

location within the volume. Depending on the sonar system used, an analytical form 

for the pdf of the beam pattern  may not exist. The DSH model utilized an approx­

imate formulation of the nth moment derived in Lozow [1981] [23] to determine the 

standardized moments under the assum ption th a t the distribution of fish within the 

ensonified volume is uniform. A m ethod for empirically determining the pdf of the 

beam pattern  with axial symmetry about the main axis is first presented in Peterson 

et. al. [1976] [28] and further discussed in Clay and Medwin [1977] [6]. An extended 

formulation of the distribution of a beam pa tte rn  w ith two angle dependencies can be 

found in Appendix B. To estim ate the effects from a beam p a tte rn  th a t is similar to 

a MBES setup a Mills Cross, 1° by 0.5°, sonar system is simulated with a frequency 

equal to 400 kHz. A Mills Cross setup requires the two separate transducer arrays (i.e. 

transm it and receive array) to be perpendicular to one another. The sound emitted 

from each array will be narrow in one direction and wide in the other with the output
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of the two producing a small directed area of sensitivity in post-processing. The beam 

pattern  of a Mills Cross transducer will be the same as a rectangular array of similar 

dimensions (Urick 1983) [40]. Since the combined transm it and receive beam ( 1° by 

0.5°) used in this paper is much narrower than  the beam formed in Denbigh et. al. 

[1991] [11], the fourth normalized moments will randomly vary. The to tal area of 

ensonification and the assumption th a t scatterers are uniformly distributed heavily 

influence the outcome of the standardized moments of the beam pattern , b(v, <f>). The 

assumption in the DSH model is th a t the fish scatterers are uniformly distributed over 

a hemispherical shell. For the narrow beam simulated in this paper, under the above 

assumptions, a fourth normalized moment is determined to  be 15,472 differing by 

a factor of 65 from the DSH formulation of 237. This is consistent with the results 

expected from analyzing a very narrow beam. As the num ber of sidelobes increases 

the likelihood of seeing a small value in b(v, <ft) increases resulting in high probabili­

ties. Conversely, large values of b(v, d) are less frequent and therefore associated with 

small probabilities. Under these circumstances high peaks and a heavy tail are formed 

in the creation of the b(v,<f>) pdf of a Mills Cross 1° by 0.5° transducer. As found 

above, the fourth normalized moment emphasizes such peaks therefore resulting in 

very large values such as 15,472. This can be seen in Figure 3a.

Estim ating fish number density w ith a Mills Cross 1° by 0.5° transducer can be 

difficult to  do and error prone depending on the volume being ensonified. Since sound
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spreads spherically, the volume covered by the MBES is the entire hemispherical shell 

determined by the distance from the scatterer, the pulse length of the sonar system, 

and the sound speed. However, the backscattered signal comprising of fish scattering 

may not have originated from every point within the hemispherical shell. In fact, 

for the studies conducted here, it is known th a t the fish are not present within the 

entire hemispherical shell. Determining the volume in which the fish are present is 

im portant to help ensure an estim ate of < N  > w ith a smaller variance. The fnd 

estimates are determined by dividing the estim ate of <  N  > by the ensonified volume. 

Since the fourth normalized moment of the beam pa tte rn  is directly related to  the 

volume by the elevation angle <j>, the changes in volume coverage affect the estim ate 

of fnd which is proportional to the ratio of the fourth normalized moment of the beam 

pattern to the volume. Figure 3b dem onstrates such changes w ith varying coverage 

along with a comparison to a 7° Piston transducer. For both  transducers, the ratio 

described is compared against varying volumes th a t are defined by the angle, <j>, from 

the main response axis. The areas of concern are where the  curves display steep 

slopes. For both transducers, changes in angle where the elevation angle is less than  

10 will produce increasingly different ratios. For example, a  1° difference from an 

elevation angle of 60° would produce a 0.45% change in the ratio  described, whereas 

a 1° difference from an elevation angle of 4° would produce a 1.8% change in the 

value of the ratio. Also, as seen in Figure 3a, the difference in the fourth normalized
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moment of the beam pattern  of the Mills Cross transducer is much greater at small 

elevation angles resulting in the sharp changes and steep slopes in the ratio described 

(Figure 3b). The differences in fnd described by the ratio of the fourth normalized 

moment of the beam pattern  to the volume are much more im pacting with changes 

in volume defined by small elevation angles than  with volumes determined by large 

elevation angles. Thus, understanding the spatial distribution of the fish and the total 

volume ensonified is im portant in estim ating the effects of beam  pattern  fluctuations 

on the average number of fish per resolution cell and therefore fish number density. 

Finally, the DSH model assumes th a t all possible sources of noise are negligible in 

the estimation of average number of fish.



C H A PT E R  3 

DSH MODEL W ITH  NOISE

The DSH model assumes th a t interference from noise contributions such as volume 

and sea-surface reverberations, and electrical interference are negligible. In order to 

address the potential presence of noise for a given situation, we derive a new model 

th a t includes a complex Gaussian white noise component. This new model will be 

referred to as the DSH-N model. The noise contribution can stem from multiple 

sources and can be environmentally produced and /o r m anufactured within the sonar 

system used. It is assumed th a t the  noise follows a complex Gaussian distribution 

since it is believed th a t it is constructed from a large num ber of random processes. 

The new backscattered pressure signal including noise takes the following form,

where N  is the number of contributors (assumed to  be the to ta l number of fish), 

and 9j are the signal amplitude and phase of the j th contributor, and M  is a single 

noise component uncorrelated to  the scattered pressure signal from the fish. The first

N

(3.1)
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and second moments of intensity are then  found to help determine an estim ate for 

the average number of fish, < N  >. The derivation of the first moment of intensity,

< I  > = < PP* > = < N  >< A 2 > + < M M *  >, (3.2)

and the second moment of intensity,

< I 2 > = < ( P P *)2 > =  < N  >< A 4 > +2 < N  >< A 2 >< N  >< A 2 >
(3-3)

+2 <  N  >< A 2 >< M M *  > + < ( M M *)2 >,

can be found in Appendix A. A new normalized param eter including the first and 

second moments of backscattered intensity and noise are m anipulated to  find the the 

average number of fish per resolution cell for the DSH-N model:

< N  >
< A 4 > < M M *  >
< A 2 > 2 +  <  A2 >

< I 2 >  -  <  ( M M *)2 > 
( < / > - <  M M *  > ) 2

-  2
- l

(3.4)

Although the new noise model accounts for multiple, possibly unknown, sources 

of noise th a t are unaccounted for in the DSH model, there are some disadvantages in 

using the DSH-N model, Eq. (3.4). As mentioned earlier, an appealing aspect of the 

DSH model is tha t it doesn’t require information of the fish target strength and tha t 

an uncalibrated sounder can be used. If in Eq. (3.4) the noise is considered to be non- 

negligible, these advantages of the DSH model would disappear. Embedded within
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the received amplitude of the signal are the aforementioned random variables of fish 

scattering amplitude, transm itted and received beam pattern  fluctuations and pulse 

shape fluctuations. However, transm itted  and received calibration coefficients needed 

to correct for errors when transforming voltage measurements to pressure measure­

ments are also present in the signal. Due to the nature of the signal and depending 

on the type of noise embedded w ithin the signal, these coefficients may cancel out in 

the normalization of the intensity. If the noise is due to volume reverberation, then 

the calibration coefficients in the pressure signal am plitude of the scatterers are also 

present in the noise component and are therefore canceled out in the normalization. 

However, if the noise comes from a different source (i.e. electronic self-noise), then it 

is im portant to either use a calibrated system, or be able to quantify the uncertainty 

in the estimates due to the coefficients’ presence (since the noise is considered strictly 

electrical noise). For the purposes of this research, the noise is considered to  be vol­

ume reverberation and and the calibration coefficients can therefore be disregarded. 

This new noise model also requires more knowledge about the  fish scattering statis­

tics. In the numerator of Eq. (3.4), due to  the presence of the second moment of the 

signal amplitude, <  A 2 > , in the la tter portion of the numerator, an estimate of the 

parameters of the distribution for the fish scattering statistic would need to be made. 

Obtaining this estimate may be just as difficult as acquiring the target strength of
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the fish and would most likely negate the benefits gained from using the DSH model 

to estimate fish number density.

3.1 Noise M odel Variations

In order to incorporate some aspect of noise within the DSH model w ithout negat­

ing its benefits, variations of the model are developed and simulated. The simulations 

are conducted to estimate the average number of fish per resolution cell for varying 

values of noise contributions. The true average is specified to  be 25 fish. The school 

is set 45 meters away from the sonar encompassing an 11° by 11° hemi-ellipsoidal 

shell with thickness determined by the pulse length and speed of sound, c r / 2 . As 

mentioned earlier, this setup can be seen in Figure 1 . The Mills Cross 1° by 0.5° 

beam is centered towards the middle of the school and calculations of the pdf of 

the beam pattern  are empirically found by restricting the elevation angle 4> to 5.5°, 

which is determined by the dimensions of the school. Since the fourth normalized 

moment of the Rayleigh distribution is equal to 2 regardless of the param eter used, 

the contribution of the fish scattering statistic  is set to  be 2. The estim ate for the 

SI and resulting average number of fish per resolution cell, <  N  > , is derived from 

20 ensembles containing 10,000 simulated sam ples/pings each. The DSH model (Eq.

1.3), the DSH-N model (Eq. 3.4) and two “variants” of the noise model (Eq. 3.5 and 

Eq. 3.6) are compared using signal to noise ratio (SNR) in order to determine the
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most suitable method to implement w ith the tools utilized. SNR is defined as the 

ratio of intensities measured in decibels. The model defined by Eq. 3.5,

< N  >
< A 4 >
< A 2 > 2

<  I 2 > -  < ( M M *)2 >
2

- l
(3.5)

( < / > - <  M M *  >)2 

is the first variant model considered. It contains the noise components in the denomi­

nator of the complete noise model (Eq. 3.4), but disregards the  second portion of the 

numerator, This variant model, (Eq. 3.5), will be utilized most frequently

after the DSH model (Eq. 1.3) and applied to the da ta  collected since an estim ate of 

<MM.1> is difficult to obtain in our situation due to  the unknown param eter needed 

for the second moment of the fish scattering am plitude random  variable, <  A 2 >. 

Eq. 3.5 is based on our claim th a t the estim ator is driven by the fourth normalized 

moment of the signal am plitude and th a t the second part of the num erator in Eq. 

3.4, which may be difficult to obtain, is making a negligible contribution to the over­

all model when compared to the original num erator in the DSH model (Eq. 1.3).To 

understand the implications of this underlying assumption the  num erator of Eq. 3.4 

is discussed. Recall th a t the fish scattering amplitude, A,  is composed of three ran­

dom variables: the beam pattern  modulation, the pulse envelope effects, and the fish 

scattering component. Acquiring the second moments of the beam  pattern  and pulse 

envelope distributions may be a challenge bu t can be done. However, given tha t the 

param eter describing the Rayleigh distributed amplitudes is determined to be the
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mode, it can be seen in Appendix B th a t the normalized fourth moment of the ampli­

tude, ~~fr~2 j will equal two and the second moment will be twice the mode squared, 

i.e. < a2 > =  2cr2 where a  is the mode. Thus, if four times the ratio of the expecta­

tion of the magnitude of the noise to the  second moment of the am plitude is much 

less than the fourth normalized moment of the amplitude, i.e. 4 «  <£2>2,

then the claim th a t the num erator of the estim ator <  N  > is driven by the fourth 

normalized moment of the signal am plitude will hold true. However, knowing the 

estimate for the mode of the Rayleigh distribution is a possible challenge th a t may 

need to be addressed. In the simulations conducted to estim ate the effects of the 

beam pattern  contribution in this paper, the factor of 4 <^ ^ > is much smaller than  

the fourth normalized moment of the am plitude for most values of SNR considered. 

As the noise levels increase the factor of 4 <^ 'f ^ > begins to dom inate the estim ate of 

< N  >. This result is verified by comparing a revised model,

< N  >■
< A 4 > < M M *  >

+  4 < I 2 >
< 7 > 2

2
-1

(3.6)
<  A 2 >2 < A 2 >

of the DSH-N model (Eq. 3.4), w ith Eq. (1.3). The model defined by Eq. (3.6) 

has been modified from the DSH-N model (Eq. 3.4) by removing the moments of 

the noise contributions in the denominator. Comparisons between all models will be 

discussed in detail later on.
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Due to  a restricted number of iterations in empirical estim ations and a limited 

amount of data collected, there will be an associated error in the scintillating index of 

the intensity in both the simulations conducted and the da ta  analysis. This variance in 

SI (which results in an estimated error of <  N  >  and p) can be empirically estimated 

for the simulations and data and then compared to  expected errors found from an 

analytical form. Denbigh et. al. (1991) [11] derived an expression for the Var  (SI):

Var
< I 2 >
< I  > 2

<i4>. _  4  ( <i3> \  ( <i2> \  + 4  
< />4 *  V < / > 3)  \ < i > 2)  +  ^

< l i > V  
</>2)

(  <i2> V</>2
n

, (3.7)

where n  is the number of independent samples taken. If the fourth normalized moment 

of the pulse envelope is equal to  one an estim ate of Var(< N  >):

Var(< N  >) = <  N  >2 Var
< I 2 > \ 1/2 <  a4 > < b4 >

< a2 > 2 <  b2 > 2
(3.8)< / > V

can be found in Denbigh et. al. (1991) [11]. New formulations of Var(< N  > ) are 

made for the variant model (Eq. 3.5) to include noise contributions and can be seen in 

Appendix C. For all four models in the simulations, variance estim ates of the average 

number of fish per resolution cell are found by creating a num ber of ensembles for 

each SNR value, each containing a  set of samples, and then  estim ated across the 

ensembles. Along these same lines, variance estim ates of SI and <  N  > in the data 

are found by applying a bootstrapping method. Since the d a ta  set is comprised of
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a small number of samples, an estim ate for the variance in <  N  > can be made 

by resampling the small da ta  set, a process also known as bootstrapping [12]. The 

results from these experiments are presented below and can be seen in Figure 4.

In the simulations conducted, estim ates of the average number of fish are found 

for signal to noise ratios (SNR) between -40 dB and 60 dB as seen in Figure 4. As 

mentioned above, a variance estim ate is empirically found a t each SNR value for all 

four models and is used to measure the standard error in the <  N  > estimator. 

For signal to noise ratios of 20 dB or greater all four models accurately estim ate the 

average number of fish per resolution cell with only small variations from the tru th  

and a maximum (among all four models) margin of error of 0.94 fish per resolution 

cell. Our estimate of the margin of error is calculated by 1 . 9 6 where m  is the 

sample size and is equal to 2 0 . The estim ate may not be normally distributed, but we 

still feel comfortable with this margin of error calculation. Around 20 dB the models 

began to diverge away from each other. As expected, the DSH-N model continues 

to vary slightly around the tru th  (with a  margin of error ranging between 0.35 fish 

and 8 fish) for SNR down to -20 dB. The DSH model (Eq. 1.3) becomes increasingly 

inaccurate (standard deviations higher than  3.2 fish) for SNR of about 14 dB and 

lower; whereas the variant model (Eq. 3.5) continues to approxim ate small variations 

of the tru th  for signal to noise ratios as low as 9 dB with a maximum margin of error 

equaling 1.6 fish. Figure 5a and 5b illustrate the differences between all four models
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considered. The variances of the estim ates calculated from the true mean for each 

noise level are determined for all the models considered and are presented in Figure 

5a. The variance estimates of <  N  > associated w ith the DSH model (Eq. 1.3) grow 

at a faster rate than the estim ates for the variant model (Eq. 3.5) as the noise level 

increases. At approximately 17 dB, the ra te  of change in the  variance estimates of 

(Eq. 1.3) increases by a  factor of 5. However, (Eq. 3.5) doesn’t  experiece such an 

increase until a signal to  noise ratio of 11 dB has been reached thereby resulting in 

marginal improvements of the estim ate of the average num ber of fish per resolution 

cell. This result confirms th a t, at least in this scenario, the num erator of the DSH- 

N model (Eq. 3.4) is primarily dom inated by the fourth normalized moment of the 

signal amplitude, and the contribution of the second portion of the numerator,

4 <<a^>> , *s insignificant in comparison and can therefore be ignored. Thus, to avoid 

the complications of using the DSH-N model (Eq. 3.4), Eq. (3.5) may be a viable 

option to use for estimating fish number density along with the  DSH calculation (Eq.

1.3). In order to  calculate the average number of fish, <  N  > , using Eq. (3.5), the 

first and second moments of the noise contributions, <  M M *  > and <  { M M *)2 > , 

respectively, must be found and can be obtained by analyzing target-absent data. 

This may require user intervention and scrutinization of the da ta  in practice. The 

differences between all four models can also be considered by viewing the absolute 

change of each from the true average for all noise levels. As seen in Figure 5b, at



approximately 14 dB, there is a 9% deviation from the tru th  in the DSH model (Eq.

1.3) th a t seems to increase as SNR decreases. However, the variant model (Eq. 3.5) 

differs from the tru th  by approximately 9% only when a signal to noise ratio of 10 dB 

has been reached. From this it appears th a t using the variant model, (Eq. 3.5), may 

result in less error at smaller SNR values than  the DSH model, (Eq. 1.3). This may 

be attributed to  the presence of the moments of noise, the differing assumption of 

the fish scattering statistic, or any combination of the differences implemented. Due 

to the difficulties of obtaining the param eter for the fish scattering statistic, only the 

DSH model (Eq. 1.3) and the variant model (Eq. 3.5) are considered when analyzing 

the example data  collected.



C H A PT E R  4 

EXAM PLE W ITH JUVENILE ATLANTIC BLUEFIN  
T U N A

The DSH model (Eq. 1.3) and the variant model derived (Eq. 3.5) are applied 

to a specific case of juvenile Atlantic Bluefin tuna fish schools (ABFT). We have 

reasonable information about the fish regarding their size and schooling tendencies 

and are therefore able to hypothesize about which distributions are more suitable 

to use for the components of the signal am plitude and phase. The use of a MBES 

allows us to obtain more complete pictures of the school shape due to the embedded 

directional capabilities and range resolution of the system as well as be able to quantify 

the limitations associated with it. The smallest hypothesized dimension of the fish 

length considered, at most 1.5 m, is much larger than  the wavelength of the sonar 

system, ~  0.0037 m. Also, the resonant frequency of the swim bladders of the fish 

explored,< 1 k Hz (Love 1978 and Nero 1996) [22, 26], is orders of m agnitude smaller 

than the frequency used for transmission, 400 kHz. Together, these two aspects, along 

with a narrow beam, give us the ability to make fair assumptions and estimations of 

the needed pdfs for the resulting overall model and allow for confidence in the use of 

the DSH method (Eq. 1.3) and the variant m ethod (Eq. 3.5) with a MBES.

29
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4.1 Experiment Description

During the summer months of 2009 over the course of five days, ABFT fish 

schools were surveyed with both  a MBES and aerial photography. The multibeam 

echosounder data  and aerial imagery were being acquired simultaneously (Figure 6 ). 

The aircraft would direct the vessel towards the schools and photograph them  (Fig­

ure 6a). As the vessel kept pace w ith the school, sonar imagery was collected from a 

sideways looking sonar mount on the side of the vessel (Figure 6b) during the time 

the aerial imagery was being acquired. The photographs from the flight provided a 

horizontal dimension of the fish school th a t could not be obtained from the sonar 

data. The fish schools imaged contained individuals estim ated to be approximately 

1.5 meters long with tendencies to stay about half a body length away from each 

other based on the observations made from the commercial spotter pilot and work 

done by Lutcavage [unpubl. date]. From the da ta  collected, images where the vessel 

was not affecting the schools (more than  20 m  from the fish) were analyzed in order 

to avoid the potential impacts on the shape of the school. To estim ate fish number 

density using the previously mentioned models, sample sets of fish present data  are 

considered where the main axis of the transm it and receive beams is thought to be 

within the school limits and not directed a t a school edge. If the main response 

axis of a beam was pointed at the edge of the school the fluctuations in the signal 

would be attributed to the presence and absence of the fish which could contaminate
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the results. The large differences between signals w ith fish and w ithout fish would 

cause the scintillating index of intensity to converge to  two and therefore impact the 

estimate of <  N  >.

The modified assumptions of the DSH model (Eq. 1.3) are used when analyzing 

the data. As mentioned earlier, since the fourth normalized moment of a rectangular 

pulse is equal to one, the effects of the pulse envelope do not influence the estimate 

and can therefore be disregarded. Following the simulations, a Rayleigh distribution is 

chosen for the fish scattering statistic  since the ratio of the fish length to  wavelength 

is large. Thus the fourth normalized moment of the fish scattering distribution is 

equal to two. It is reasonable to  assume, as in the DSH method, th a t the fish are 

uniformly located over some area and th a t the number of fish in a region of constant 

density is Poisson distributed. However, since the to ta l area encompassing all fish 

locations at an average distance of 35 m from the boat is similar to the 11° by 11° 

hemi-ellipsoidal shell created in the simulations, the assum ption of constant density 

within a hemispherical shell defined by an elevation angle of 90° is altered. The fourth 

normalized moment of the beam pattern  is found using the same m ethod as in the 

simulated data  with the restricted area and is approximately equal to  40. The effects 

of the location of the beam within the school are also tested. As seen in Figure 7, 

the pdf of a beam centered in the middle of the school is similar to the distribution 

of a beam centered at the top of the school resulting in a  fourth normalized moment
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th a t differs only by a factor of 2. This is consistent w ith w hat is expected from 

using a narrow beam system. As mentioned earlier, the heavy peaks in the pdf are 

determined by the number of side lobes present. Regardless of where the narrow main 

lobe is located within the school, the number of side lobes encompassing the rest of 

the school will be large. Thus the directional changes in the  main beam will not 

produce large inconsistencies in the estim ate of <  N  > when using a narrow beam 

system. After all assumptions are incorporated into the model an estim ate for fish 

number density can be found.

4.2 Estim ate Fish Num ber D ensity

Estimating fish number density requires knowledge of the average number of fish 

per resolution cell, < N  >, and the volume of the area being ensonified. The volume 

found by using the 11° by 11° hemi-ellipsoidal shell is estim ated using the volume of 

a spherical cap shell with an elevation angle of 5.5° and is approximately equal to 

9.88 m3. In order to  find the average number of fish per resolution cell, < N  > , for 

the juvenile Atlantic Bluefin Tuna da ta  collected, a series of consecutive sonar images 

(124 pings) containing fish are analyzed from August 16, 2009. For a given beam 

and sample number (defined as the resolution cell) a scintillating index of intensity, 

SI =  is calculated for the time series. Contributions to  the signal other than

actual fish targets are considered noise contributions. Since a threshold has not been 

imposed on the data, certain signal reflectors different from the fish targets are still



present within the image such as m ultipath reflections (the image school created 

by reflections from the surface). Influences from these noise contributions on the 

resulting estimate of fish number density will be discussed in depth later. Estim ates 

of Var(< N  >) are obtained by applying a  bootstrapping technique to  the data  

set. The number of bootstrap samples taken is 25. Figure 8 a shows the raw second 

normalized moment of intensity for all resolution cells over a period of approximately 

33 seconds with a ping rate of 0.27 seconds. In order to produce a smoothed estimate 

for the SI of intensity, a box car filter (moving average) was applied to the data. 

A box shaped pulse of 200 samples by 2 beams is convolved w ith the scintillating 

index of intensity to generate smoothed images as can be seen in Figure 8b. To 

better understand the physical interpretation of the SI of the intensity within the 

fish school, the image is transformed into cartesian coordinates of range and depth 

as seen in Figure 9. The black line indicates the hypothesized surface while the 

band of noise described by the horizontal blue band directly below the black line is 

attributed to electrical interference related to  the construction of the sonar system. 

Due to the roll and heave of the vessel and the offset in depth of the transducer, there 

may be some variability in the placement of the surface. Since depth is positive, the 

“real” scintillating indices of the fish intensities (not from the  m ultipath reflections) 

are within the positive range of depth. The simplest version of the boundary of 

the school can be determined by the smallest rectangle encompassing the school in
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the beam and sample number space. From our estimation, this boundary can be 

determined by beams 115 to 126 and samples between 1221 and 2458 (the red box 

in Figure 8b). The small area of higher scintillating indices in Figure 8b, (i.e. beams 

between 129 and 142 and samples between 1540 and 1921), can be partially attributed 

to an artifact of the noise such as sea surface turbulation. Figure 10 is a compiled 

image of the scintillating index of the noise component, 2>~ This index is

calculated over 124 pings of fish-absent data. Along with the  electrical noise band 

found in Figure 10, a cluster of high-intensity patches are present within four meters 

above the hypothesized surface. This artifact may be due to surface reflections caused 

by the natural roughness of the surface. The presence of these surface intensities will 

conceivably affect the scintillating indices of the overall signal and cause them to  be 

biased high as can be seen in Figure 8 . However, since this band of surface intensities 

does not lie within the proposed fish school, it can be analyzed in depth a t a later 

time. Thus, the average scintillating index of intensity for all cells considered as part 

of the school (i.e. beams between 115 and 126 and samples between 1221 and 2458) 

is approximately 20. The scintillating index is a normalized param eter and therefore 

has no units associated with it. It is im portant to  note th a t the location of the beam 

within the school boundaries is irrelevant since there is a lack of differences in the 

observed scintillating indices of intensity across the school vertically.



From here, an average number of fish for a given resolution cell is calculated using 

both the DSH model (Eq. 1.3) and the variant model (Eq. 3.5). Recall th a t the 

fourth normalized moment of the fish scattering statistic is equal to  two and the 

fourth normalized moment of the beam pattern  statistic  is equal to  79.47 for a beam 

whose main lobe is in the direction of the center of the school and has a  maximum 

elevation angle of 5.5°. Figure 11a and l i b  illustrate the estim ates for both  models 

using the smoothed data  respectively. The moments of noise, <  (M M *)2 >  and 

<  M M *  > 2, used for the variant model (Eq. 3.5) are found from the fish-absent 

data  collected on August 16, 2009. The mean estim ate for the average number of 

fish in the DSH model is approximately equal to  9.01 fish per resolution cell differing 

from the variant model which produces approxim ately 7.04 fish per resolution cell 

within the school (i.e. beams between 115 and 126 and samples between 1221 and 

2458). The average SNR value within the school is found to be approximately 13 

dB. The difference in average number of fish per resolution cell between the two 

models seems comparable to the results found when comparing the difference in the 

models from the simulated data. At 13 dB the DSH model (Eq. 1.3) and the variant 

model (Eq. 3.5) differ by 1.97 fish per resolution cell. After applying a bootstrapping 

technique to the observed data, estim ates of the variance in <  N  >  are obtained. 

As seen in Figure 11a, the estimates of the DSH formulation along the edges of 

the school are extremely variable and have associated standard  deviations reaching
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up to values of 20 or more fish per resolution cell. However, within the school, 

the estimates appear to  be more accurately estim ating the average number of fish 

with small standard deviations ranging between 0 and 15 fish per resolution cell. 

In Figure l ib ,  the edges of the school derived found from the variant model, (Eq. 

3.5), appear to be less variable (by two orders of m agnitude) than  the DSH model 

and the artifact discussed above th a t is found in the noise is accounted for more 

accurately in the variant model. W ithin the school standard deviations range between 

0 and 5 fish per resolution cell for the variant model. To better understand the 

differences between the two models, the ratio of variances is considered in Figure 12 

(i.e. Var(< N  >£<7.3.5)/V ar{<  N  >£<7.1.3)). Resolution cells where the ratio is less 

than or equal to one help indicate th a t the variant model, (Eq. 3.5), is estim ating the 

average number of fish with less variability than  the DSH model, (Eq. 1.3). Inside 

the bounds of the school, (i.e. beams between 115 and 126 and samples between 1221 

and 2458), the average of the ratios is approximately equal to  0.3. To verify th a t the 

results from both methods are accurately estim ating the  average number of fish per 

resolution cell, outside of considering the variance of the  estim ates, the fish number 

density is found and compared to  the expected average num ber of fish (in the school) 

determined by the observations made by the aircraft pilot.

Found from both the aerial and multibeam data  collected, the shape of the ob­

served fish school can be modeled by an ellipsoid w ith dimensions of 31 m for the



major axis, 13 m for the minor axis, and 9 m for the vertical axis, as described in 

Weber et. al. [2012] [43]. Thus producing a to tal volume of 1899 m3 for the entire 

fish school. From the aerial imagery, the maximum to tal number of individual fish 

counted in Weber et. al. [2012] [43] is equal to  263 fish. Since this estim ate of the 

total number of fish is derived from the photographs which collapse the image of the 

school onto a two-dimensional plane and do not account for individuals being hidden 

by the surface layer of fish and the maximum depth  the  school may have, the true 

total number of fish is expected to be larger than this estim ate. In determining fish 

number density using the methods outlined in this paper, the  estim ates of < N  > 

for each resolution cell are normalized by the 11° by 11° hemi-ellipsoidal shell volume 

(9.88 m3) producing average densities approximately equal to  0.91 fish/m 3 for the 

DSH model (Eq. 1.3) and 0.71 fish/m 3 for the variant model (Eq. 3.5). Given the 

volume of the whole school, 1899 m3, the resulting estim ate for the average number 

of fish in the school would approximately be 1732 and 1353 fish for the DSH model 

and the variant model respectively. Both models vary, by more than a factor of 5, 

from the hypothesized estimate for the to tal number of fish (263 fish). This could 

be a byproduct of a few issues th a t have not been thoroughly addressed as well as 

incorrect assumptions made.

The current estimate for the number of fish per resolution cell, <  N  > , and 

consequently the fish number density, p, does not account for possible m ultipath
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effects. It is plausible th a t due to the geometry of the experiment conducted, false 

targets th a t appear above the surface can be included in the backscattered signal. If 

the image school tha t appears above the surface is making a  significant contribution 

to the resulting estimates, every fish may appear to have multiple copies of itself th a t 

will increase the estimate and thus need to be accounted for. A single fish could 

be counted multiple times a number of ways in one pulse. However, considering the 

setup of the experiment, there are four paths th a t are of particular interest to  us 

(Figure 13). As seen in Figure 13a and 13b, a fish below the  surface could appear 

on the direct path as well as the path  th a t hits the surface first and then scatters 

off of the fish back towards the sonar. Along with this, the partner image fish would 

have two associated paths: 1) a path  to  the fish then to the surface and back to the 

sonar, and 2 ) a path  to the surface then to the fish then again back to  the surface and 

finally back to  the sonar as seen in Figure 13c and 13d, respecively. Therefore, every 

fish within the hypothesized school may have an intensity value four times higher 

than the true value. To adjust for this bias the estim ate of <  N  >  can be divided 

by four. However, the fourth normalized moment of the beam  pattern  also needs 

to be reconsidered. If there are m ultipaths and the image school is influencing the 

estimate, the beam pattern elevation angle needs to be widened so th a t the image 

school is included within the volume of ensonification. To include these changes, a 

first order estimate of <  N  > can be made by doubling the volume and recalculating
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the fourth normalized moment of the beam patte rn  over a wider range of angles. The 

main response axis of the beam is still centered towards the middle of the real school 

while the elevation angle in one direction is increased to include the image school. 

The modified estimate of the fourth normalized moment of the  beam pattern  is equal 

to 302.98. This change, along with the doubled volume and the  increased number of 

multipaths, results in a modified estim ate of <  N  > equaling 34.45 and 26.83 fish 

per resolution cell for the DSH model (Eq. 1.3) and the variant model (Eq. 3.5) 

respectively. From here the fish number density for the DSH m ethod is found to  be 

0.44 fish/m 3 reflecting a total number of fish in the school to  be 825.49 on average. 

The fish number density for the variant m ethod is equal to  0.34 fish/m 3 implying 

that, on average, the total number of fish within the school is 644.81. Although both 

estimates now appear to be much more plausible given the hypothesized number of 

fish within the school, both are still off by a t least a  factor of 2 . Another source of 

error th a t can somewhat be accounted for in the simulation is the assumption of the 

beam pattern calculation.

Although the Mills Cross setup appears to be the most accurate setup for sim­

ulating a multibeam system in this situation, knowing and implementing the actual 

beam pattern  and side lobe levels used in the experiment can be difficult. The esti­

mates for the fourth normalized moment of the beam p a tte rn  have been found with 

a Mills Cross array setup defined by Chebyshev windows w ith side lobe levels of 30
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dB. In other circumstances this choice for the simulation of the sonar system may be 

accurate, however after further analysis the Reson 7125 multibeam sonar system used 

for the experiment can be better represented w ith side lobe levels of 20 dB (Lanzoni 

and Weber 2010) [21]. W ith this change, the fourth normalized moment of the beam 

pattern  becomes 230.49 and the estim ate for the average number of fish per resolution 

cell changes to  26.13 for the DSH m ethod and 20.4 for the variant method. This will 

result in a fish number density for the DSH m ethod of 0.33 fish/m 3 and 627.98 fish 

in the entire school. For the variant model, the fish number density is equal to 0.26 

fish/m 3 and 490.53 fish within the school. A lthough both estim ates appear to  be 

biased high relative to the hypothesized true number of fish (263 fish), the observed 

number is known to be biased low due to the projection of the school onto a two 

dimensional plane. There may also be other unknown sources of error within the 

assumptions and /o r the estimates.



C H A PT E R  5 

DISCUSSIO N

Estimating fish number density using traditional techniques can be difficult due to 

the limitations and uncertainties associated w ith such methods. First, calibrating the 

system used can prove to be tedious, costly and time consuming. Second, measuring 

target strength values can be challenging and the uncertainty associated with the 

values remains a significant source of error in estim ating number density (Simmonds 

and McLennan 2005).

The DSH model developed is a useful tool th a t can help m itigate the disadvantages 

of traditional techniques. Since the model is based on normalized moments, calibrated 

backscatter measurements are un-necessary as they would cancel out in the formula­

tion of the scintillating index of intensity. Also, estim ates of target strength do not 

need to  be made in order to implement this model. The assumptions and components 

of the DSH model, however, may need to  be reviewed depending on the situation. The 

only information required describing the fish being considered are the distribution of 

scatterer amplitudes and the spatial distribution of the fish, determined by regions of 

density and areas of ensonification. Such assumptions will greatly affect the outcome

41
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of the fish scattering statistic and beam pattern  fluctuation and thus the resulting 

signal amplitude as well as the phase of the contributors. The Rayleigh assumption 

of the amplitude scattering hasn’t been discussed deeply and can be difficult to test, 

but can easily be altered with the use of this model if needed as long as the statistics 

stay out of the Gaussian limit. The assumptions made about uniform density within 

a volume should be carefully examined when the tendencies of the observed school 

are to cluster in certain areas and the model used should be modified to include the 

possible effects. The volume being ensonified will greatly affect the estim ate of fish 

number density when using the DSH model. As discussed earlier and seen in Figure 

2 , the ratio of the fourth normalized moment of the beam pattern  to  the area of 

coverage will have larger associated error w ith small volumes of ensonification than  

with larger volumes. Close proximity to the school can help alleviate this issue.

Although many of the DSH assumptions can be modified to  the situation a t hand, 

in order to  obtain accurate estimates of <  N  > and fnd the model requires a low 

number of fish to be ensonified, or equivalently a scintillating index much greater 

than two. The effects of scintillating indices close to two can possibly be addressed 

by using a different transducer and modifying the. assum ptions of the model. The 

noise contribution may be an im portant aspect to consider as well. If the sonar 

system used and the environment being worked in produce signal to noise ra tio ’s 

greater than  20 dB then the DSH model will produce an accurate estim ate of fish
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number density with a calculated maximum margin of error equal to  0.94 fish per 

resolution cell. However, as mentioned earlier, as the noise levels increase the model 

diverges from the true estim ate a t a fast ra te  (Figure 4). This can be expected since 

the estim ator is inherently noisy incorporating higher order moments derived from 

heavily peaked distributions. The effects of these normalized higher order moments 

on the estimate of < N  > can be tem pered with the use of a narrow beam system 

as well as the ensonification of a low number of fish. The use of a MBES can help 

achieve this small number density as well as provide adequate range resolution and 

directionality.

In order to  improve upon the estimates of the DSH model for high noise situations, 

a version of a modified noise model (Eq. 3.5) can be implemented. Although the use 

of the complete noise model (Eq. 3.4) would achieve the best estim ates for all noise 

levels, the difficulty in obtaining the information needed could negate the benefits of 

the DSH model. The DSH model (Eq. 1.3), the complete noise model referred to 

as the DSH-N model (Eq. 3.4), and two variations of the noise model (Eq. 3.5 and 

Eq. 3.6), were simulated here in order to determine the most suitable method to use 

in the circumstances presented. Since the information needed for the complete noise 

model would be difficult to  obtain here, the  variant model (Eq. 3.5), and the DSH 

model (Eq. 1.3), were chosen to use w ith observed juvenile Atlantic Bluefin Tuna 

data. For a sample set of pings collected on August 16, 2009, the estimates of fish
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number density were calculated for both models and compared w ith the observations 

made from the aerial imagery obtained simultaneously. A lthough there were observed 

differences between the hypothesized number of fish within the  school and the original 

estimates made using the DSH m ethod and the variant m ethod, there are promising 

results when certain assumptions are modified and various param eters accounted for. 

As seen in the results, m ultipath reflections make a  significant impact on the estimates 

made. Extending the volume of interest to  include the m irror school may change the 

assumption th a t the fish are uniformly distributed since there will be some volume 

between the image school and the real school th a t is absent of fish but is still used in 

the calculation. Knowing the details of the beam pattern  of the  sonar system used are 

very im portant as seen in the work done here. Difficulties may come from trying to 

simulate the sonar and not knowing true side lobe levels or which window functions to 

use. Understanding the implications of the beam location within the school could also 

be an im portant parameter to  account for since the fourth normalized moment can 

be significantly different for a  beam directed towards the middle of the school versus 

a beam in the direction of the boundary of the school. The assumption of the fish 

scattering statistic may need to be reconsidered as well. It is possible th a t multiple 

contributions may be coming from one fish due to  the orientation and curvature 

of its body within the ensonified volume, thus the assumption th a t a scatterer is 

one fish may need to be addressed. Also, since the school has changed location



and orientation in every ping, assuming the  school shape is approximately ellipsoidal 

every time may be an issue to consider. Another obstacle th a t cannot be addressed 

is knowing the exact number of fish. Even though the hypothesized true  number of 

fish may be somewhat accurate, it will be biased low due to  the projection onto a 

two dimensional plane. Although the estim ates found here are on the same order of 

magnitude as the hypothesized average number of fish within the school, it is possible 

th a t there are a number of other unknown param eters th a t have not been accounted 

for here. However, our promising results suggest th a t the use of the DSH model 

and the variant model in estimating fish number density with backscattered pressure 

signals prove to be very successful.
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F ig u re  6 - 1 . Environmental setup for the simulations conducted and data  analyzed. 
The number of contributors for a given resolution cell are determined by the hemi- 
ellipsoidal shell encompassing the school at some range r  w ith a thickness determined 
from the pulse length, r ,  and sound speed, c. On average, the  shell can be approxi­
mated by an 11° by 11° hemi-ellipsoidal shell.
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Figure 6-2. Geometry of the backscattering measurements. The change in volume 
is represented by d V  =  B 2sin((p) dR  d(f) d,v where <fr is the elevation angle and v  is the 
rotational angle.
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F ig u re  6-3. (a) Change in fourth normalized moment of b(v, <f>) for varying elevation 
angles ((/>). (b) Ratio of the fourth normalized moment of b(v. <p) to volume for varying 
elevation angles. The blue curves represent the Mills Cross 1° by 0.5° transducer and 
the red curves represent the 7° transducer. For small elevation angles in (a), numerical 
error arises.
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F ig u re  6-4. Estimates of the average number of fish per resolution cell, < N  > . A 
Mills Cross 1° by 0.5° transducer is simulated with an elevation angle, 4>, equal to 
5.5°. The true estimate of <  N  >  is equal to 25 fish per resolution cell.
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Figure 6-6. Experimental setup for the da ta  collected, (a) Aerial image of the ABFT 
school with the side-looking 400 kHz MBES. (b) A single ping from the mulibeam 
showing a vertical cross-section of the school.
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F ig u re  6-7. Probability Density Function of b(v, 0) from a Mills Cross 1° by 0.5° 
transducer. The rotational angle, v, ranges from 0 to 360°. The elevation angle, 0, 
is restricted between 0 and 5.5°. A centered beam (red line), a 1.83° steered beam 
(yellow line), a 2.75° steered beam (green line), a 3.67° steered beam (magenta line), 
and a 5.5° steered beam (blue line) are simulated. The fourth normalized moments 
of each beam are represented.
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F ig u re  6-8. Scintillating index of intensity (SI) over 124 pings, (a) Raw estim ates of 
SI. (b) Smoothed estimates of SI w ith a box car filter over 100 samples and 2 beams. 
SI is a unitless parameter. The red box represents the boundary of the fish school.
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F ig u re  6-9. Smoothed scintillating index of intensity represented in cartesian coor­
dinates (over 124 pings). The hypothesized surface is represented by the horizontal 
black line.



B
ea

m
#

55

~ |5 0 0 0  

4 5 0 0

-  4 0 0 0

-  3 5 0 0

-  3 0 0 0

-  2 5 0 0  

- 2 0 0 0  

- 1 5 0 0

1000  

50 0

Jo
1 0 0 0  1 5 0 0  2 0 0 0  2 5 0 0  3 0 0 0  3 5 0 0

Sample #

F ig u re  6-10. Unsmooted scintilating index of the  noise contribution, 
found over 124 pings of target-absent data.
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F ig u re  6-11. (a) < N  >  estim ate from the DSH model (Eq. 1.3). (b) < N  > 
estimate from the variant model (Eq. 3.5). Both are found over a smoothed SI. The 
red box represents the boundary of the fish school. Units of < N  >  are in fish per 
resolution cell.
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F ig u re  6-13. Multiple sound paths between the sonar and fish, (a) Direct path, (b) 
Reflection from the surface to the fish and back to the sonar, (c) Reflection from the 
fish to the surface and back to the sonar, (d) Reflection to th e  surface, then the fish, 
back to surface, with a return to the sonar.



B IBLIO G RAPH Y

[1] D.A. Abraham and A.P. Lyons. Novel physical interpretations of k-distributed 
reverberation. IE E E  Journal o f Oceanic Engineering, 27:800-813, 2002.

[2] V. Bluemel, L.M. Narducci, and R.A. Tuft. Photon-count distributions and 
irradiance fluctuations of a log-normally distributed light field. Journal o f Optical 
Society o f America, 62(11):1309-1314, 1974.

[3] P. Brehmer, T. Lafont, S. Georgakarakos, E. Josse, F. Gerlotto, and C. Collet. 
Omnidirectional multibeam sonar monitoring: applications in fisheries science. 
Fish and Fisheries, 7:165-179, 2006.

[4] E.L. Cadima. Fish stock assessment manual. FAO, 2003.

[5] D. Chu and T.K. Stanton. Statistics of echoes from a directional sonar beam 
insonifying finite numbers of single scatterers and patches of scatterers. IE EE  
Journal o f Oceanic Engineering, 35:267-277, 2010.

[6] C. Clay and H. Medwin. Acoustical Oceanography: Principles and Applications. 
John Wiley and Sons, New York, USA, 1977.

[7] C.S. Clay and B.G. Heist. Acoustic scattering by fish-acoustic models and a 
two-parameter fit. Journal o f Acoustical Society o f America, 75(4):1077-1083, 
1984.

[8] N.A. Cochrane, Y. Li, and G.D. Melvin. Quantification of a multibeam sonar 
for fisheries assessment applications. Journal o f Acoustical Society o f America , 
114:745-758, 2003.

[9] A.B. Cooper, University of New Hampshire. Sea G rant Program, National Sea 
G rant College Program (U.S.), United States. National Oceanic, and Atmo­
spheric Administration. A guide to fisheries stock assessment: from  data to 
recommendations. University of New Hampshire, Sea G rant College Program, 
2006.

59



60

[10] G.R. J r  C utter and D.A. Demer. Accounting for scattering directivity and fish 
behaviour in multibeam-echsounder surveys. IC E S Journal o f Marine Science, 
64:1664-1674, 2007.

[11] P. Denbigh, Q. Smith, and I. Hampton. Determ ination of fish number density 
by a statistical analysis of backscattered sound. Journal o f Acoustical Society of 
America, 90(l):457-469, 1991.

[12] B. Efron and R.J. Tibshirani. A n  Introduction to the Bootstrap. Chapm an and 
Hall/CRC, Boca Raton, FL, first edition, 1993.

[13] J.E. Ehrenberg. A method for extracting the fish target strength distribution 
from acoustic echoes. In Proceedings IE E E  Conference Engineering in the Ocean 
Environment, volume 1, pages 61-64, 1972.

[14] J.E. Ehrenberg. M athematical model for volume reverberation: experiment and 
simulation. Journal o f Acoustical Society o f America, 55(2):227-236, 1974.

[15] P.G. Fernandes, F. Gerlotto, D.V. Holliday, O. Nakken, and E.J. Simmonds. 
Acoustic applications in fisheries science: the ices contribution. IC ES Marine 
Science Symposia, 215:483-492, 2002.

[16] K.G. Foote. Fish target strengths for use in echo integrator surveys. Journal of 
Acoustical Society o f America, 82:981-987, 1987.

[17] F. Gerlotto, S. Georgakarakos, and P.K. Eriksen. The application of multibeam 
sonar technology for quantitative estim ates of fish density in shallow water acous­
tic surveys. Aquatic Living Resources, 13:385-393, 2000.

[18] F. Gerlotto and J. Paramo. The three-dimensional morphology and internal 
structure of clupeid schools as observed using vertical scanning multibeam sonar. 
Aquatic Living Resources, 16:113-122, 2003.

[19] F. Gerlotto, M. Soria, and P. Freon. From two dimensions to  three: the use of 
multibeam sonar for a new approach in fisheries acoustics. Canadian Journal of 
Fisheries and Aquatic Sciences, 56:6-12, 1999.

[20] C.W.D. Gurshin, J.M. Jech, H. Howell, T.C. Weber, and L.A. Mayer. Measure­
ments of acoustic backscatter and density of captive atlantic cod with synchro­
nized 300-khz multibeam and 120-khz split-beam  echosounders. IC ES Journal 
o f Marine Science, 66:1303-1309, 2009.

[21] J.C. Lanzoni and T.C. Weber. High-resolution calibration of a multibeam echo 
sounder. In Proceedings M T S /IE E E  Oceans 2010 Conference, 2010.



61

[22] R.H. Love. Resonant acoustic scattering by swimbladder-bearing fish. Journal 
o f Acoustical Society o f America, 64(2):571-580, 1978.

[23] J.B. Lozow. Transducer directivity: A simple calculation of its spatial averages. 
In J.B. Suomala, editor, Meeting on Hydroacoustical Methods fo r  the Estimation  
of Marine Fish Populations. 25-29 July 1979. II: Contributed Papers, Discussion 
and Comments, Charles Stark D raper Laboratory, Cambridge, MA, 1981.

[24] A.P. Lyons and D.A. Abraham. Statistical characterization of high-frequency 
shallow-water seafloor backscatter. Journal o f Acoustical Society o f America, 
106:1307-1315, 1999.

[25] L. Mayer, J.H. Clarke, and S. Dijkstra. M ultibeam sonar: potential applications 
for fisheries research. Journal o f Shellfish Research, 17(5):1463-1467, 1999.

[26] R.W. Nero. Model estimates of acoustic scattering from schools of large yellowfin 
tuna. Technical Report NRL/MR/7174-95-7708, Naval Research Laboratory, 
Stennis Space Center, MS, 1996.

[27] K. Patterson, R. Cook, C. Darby, S. Gavaris, L. Kell, P. Lewy, B. Mesnil, A. Punt, 
V. Restrepo, D.W. Skagen, and G. Stefansson. Estim ating uncertainty in fish 
stock assessment and forecasting. Fish and Fisheries, 2(2):125-157, 2001.

[28] M.L. Peterson, C.S. Clay, and S.B. Brandt. Acoustic estim ates of fish density 
and scattering function. Journal o f Acoustical Society o f America, 60(3):618-622, 
1976.

[29] A.D. Pierce. Acoustics: An introduction to its principles and applications. Acous­
tical Society of America, Melville, NY, 1 edition, 1981.

[30] E.K. Pikitch, C. Santora, E.A. Babcock, A. Bakun, R. Bonfil, D.O. Conover, 
P. Dayton, P. Doukakis, D. Fluharty, B. Heneman, E.D. Houde, J. Link, P.A. Liv­
ingston, M. Mangel, M.K. McAllister, J. Pope, and K.J. Sainsbury. Ecosystem- 
based fishery management. Science, 305:346-347, 2004.

[31] P.N. Pusey, D.W. Schaefer, and D.E. Koppel. Single-interval statistics of light 
scattered by identical independent scatterers. Journal o f Physics A: Mathemat­
ical, Nuclear and General, 7(4):530-540, 1974.

[32] S.O. Rice. Mathematical Analysis o f Random Noise. Bell System Technical 
Journal, New York, N.Y., 1945.

[33] J. Simmonds and D. MacLennan. Fisheries Acoustics: Theory and Practice. 
Wiley-Blackwell, Oxford, UK, second edition, 2005.



62

[34] M. Soria, T. Bahri, and F. Gerlotto. Effect of external factors (environment 
and survey vessel) on fish school characteristics observed by echosounder and 
multibeam sonar in the m editerranean sea. Aquatic Living Resources, 16:145- 
157, 2003.

[35] R.C. Spindel and P.T. McElroy. Level and zero crossings in volume reverberation 
signals. Journal of Acoustical Society o f America, 53(5): 1417-1426, 1973.

[36] S. Stanic and E.G. Kennedy. Reverberation fluctuations from a smooth seafloor. 
IEEE Journal of Oceanic Engineering, 18:95-99, 1993.

[37] T.K. Stanton and D. Chu. Non-rayleigh echoes from resolved individuals and 
patches of resonant fish at 2-4 khz. IE E E  Journal o f Oceanic Engineering, 
35:152-163, 2010.

[38] T.K. Stanton and C.S. Clay. Sonar echo statistics as a remote-sensing tool: 
volume and seafloor. IE E E  Journal o f Oceanic Engineering, 11:79-96, 1986.

[39] V.M. Trenkel, V. Mazauric, and L. Berger. The new fisheries multibeam ech- 
sounder me70: description and expected contribution to  fisheries research. IC ES  
Journal o f Marine Science, 65:645-655, 2008.

[40] R.J. Urick. Principles o f Underwater Sound. McGraw-Hill, New York, 1983.

[41] R.C. Waag, P.P.K. Lee, H.W. Persson, E.A. Schenk, and R. Gramiak. Frequency- 
dependent angle scattering of ultrasound by liver. Journal o f Acoustical Society 
of America, 72(2):343-352, 1982.

[42] R.K. Wallace and K.M. Fletcher. Understanding Fisheries Management: A 
manual for understanding the Federal Fisheries Management Process, Including 
Analysis of the 1996 Sustainable Fisheries Act. Mississippi-Alabama Seagrant 
Consortium, 2 edition, 2000.

[43] T.C. Weber, M.E. Lutcavage, and M.L. Schroth-Miller. Near resonance acous­
tic scattering from organzied schools of juvenile atlantic bluefin tuna  ( Thunnus 
thynnus). 2012.

[44] T.C. Weber, H. Pena, and J.M. Jech. Consecutive acoustic observations of an a t­
lantic herring school in the northwest atlantic. IC E S Journal o f Marine Science, 
69:000-000, 2009.

[45] P. Wilhelmij and P. Denbigh. A statistical approach to  determining the number 
density of random scatterers from backscattered pulses. Journal o f Acoustical 
Society o f America, 76(6):1810-1818, 1984.



A P P E N D IX  A

DERIVATION OF AVERAGE N U M B E R  OF FISH (PE R  
RESOLUTION CELL)

1. N ew  P ressure M odel

In order to  obtain the DSH model let M  equal zero in the following derivation. 
Measuring pressure amplitudes:

N

= A je W i+ M
3= 1

2. M odel A ssum ption s

y4 j rs-/ Rayleigh(s)
6j  ~  Uniform{Q,2'K)
N  Poisson(X)
M  ~  Complex Gaussian, M  =  A  +  iY  where A , Y

(a) E xten ded  N o tes  on M od el A ssu m p tion s
A ~  Rayleigh  = >  < A  > =  s ^ / f ,  <  A2 >  =  2s2, <  A4 >  =  8s4 
M  =  (A  +  ?F) ~  C om plexG aussian  =*► M M *  =  A 2 +  y 2 ==>
{m m *)2 =  a 4 +  2A 2y 2 +  y 4

A  ~  N orm al = >  < A  > =  /r, < A 2 > =  /r2+ a 2, <  A 4 > =  y-A+6/r2a 2+ 3 a 4 

So if A , y  ~  iV(/x, cr), then <  M M *  > =  2(p2 +  a 2) and 
<  (M M *)2 >=  2(/x4 +  6^2ct2 +  3a4) +  2{p.2 + a 2)2
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3. F ind In ten sity  I

I  ~  \P 2m\ = PmP*m 

/  =  ^  Aje*0* +  ^  AJe~** +  M * j

N  N  N  N

/  = EE A jA kei{e’- 0k) + M* E V '  +  m E  A je ~i0i +  M M *
j = i  fc=l j= i  j = l

4. F ind th e  E xp ecta tion  o f In ten sity  < I>

< I  > = <  E jL i E H i  A j A ^ - 0̂  > + < M * > <  £ *  A jei6i >
+  < M  > <  E j l i  >  +  <  M M * >

since the noise is independent of the signal

Consider F [E ^L i A3el6]] =  E jL i E [A jel0j] since each are independent

=  E ^ l i  E[Aj\E[el9j] since A j  is independent of 9j 

=  E f= i  E[Aj} Jo* since 9j ~  C (0, 2tt)

=  E f = 1^ ] H ^ r ]  =  o

So,

F[/ie*e] =  0 for any h and 9 U (0, 2 t x )  if h and 9 are independent (A .l)

N  N<'>=<E4+EE A j A ^ - f A  > +  < MM* >
j —1

N

< I  >=< '^ 2  A 2j > + < M M * >
j = i

since <  ^2 Y lj^k  A jA hel(-0̂ 0k) > — 0 by Eq. 1



Note < X /Jlj A 2 > is Compound Poisson Random Variable, i.e. N and each 
is a random variable.

So, <  I  > = < <  I \ N  »

<  I \ N  >  = <  A j \ N  =  n  >  +  <  M M *  >  
W ald’s Identity: N independent of A j

=  n  <  A \ \ N  =  n  >  +  <  M M *  >
Each A j  is iid and there are n  A?

=  n  <  A \ > + <  M M *  >
A \  doesn’t depend on n

«  I \ N  »  =  E " = i  <  J \N  >  p (N  =  n)  
since n is discrete

= <  N  > <  A 2 >  +  <  M M *  >
let A  represent A \  since all A j  are identically distributed

<  I  > = <  N  > <  A 2 >  +  <  M M *  >

Im p o r ta n t  N o te s

(a) N o te  A  
Recall,

(b) N o te  B
Consider,

< E j - i  Aj > =  < T . U ^ \ N = n >

=  <  N  X  A 2 >

z a ) )  =  ( z a ) + ( z z w )
<3=1  /  /  \ j = l  /  \  j f t k  /
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N

We can see tha t EE A2A | i  = (N 2—N ) < A 2 > 2 since each A, are iid
\ i¥=k /

So,

^  ^  A2̂  ^  = <  N  >< A 4 > + < N 2 >< A 2 >2 — < N  >< A 2 >2

(c) N o te  C  
Consider,

/  n  n  \

( ' H I l Y I Y I  A jA kA aA tei{ei - dk)ei{-e° -et) \
\ j^k  s^t /

Most terms will equal zero except when (9j + 9S) — {9k + 91) =  0
So, we need to consider Case 1: s= j and k = t, Case 2: s= t and j= k , and
Case 3: s=k and j= t.
Casel: s=j and k = t

Here we have 29S — 2Qt =  0, but s /  t  and so there is nothing to consider. 

Case 2: s= t and j= k

We made the rule th a t this cannot happen and thus there is nothing to 
consider.

Case 3: s=k and j= t  

Here we have the following:

< E  E£* E  ES* A j A t A ' A t e W - W - - * )  >  =  

=  E  E i t  ( A t A Z e M - W e W - - * ) )

=  E  Ei# < A l A l  >

= (n 2 — n) < A 2 ><  A2 >

—< N 2 >< A 2 >2 -  < N  > <  A2 > 2
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6. F ind  In ten sity  Squared I2 Recall,

'  =  E 4 + £ X >  jA kei{dj~9k) +  M *  A 3ei6i + M  23 AJe~l6j + M M *
j —1 j ^ k  j = 1 j = 1

f  N  \ 2 /  N  \  2  / T V  '

/2 = 123 ) + (2 3 2 3  A3Akei{9i~6k)) + (m*)2 j j r  a ,-^
S . J  =  1  /  V  /  \ J ' = l  /

Pi Pi p3
/  N  \  2

N2+ M2 23 A 3 e ~ i6j +
^ j=1 '  V KT

+ 2

v “
Pi

N  N  N  N

E A i I 2 E A  j A ke i(e^ dk) +  M *  £ 4 £ ^ ‘
j = 1 j = 1 j ' = l^  v-  V V ...........................................

P(i P i
N  N  N  N  N

+  M  5 > ? £  A j e ~ i&i +  M M *  A j  +  M * E ^ ^ ' E E w 1 "
j = l  j = l  j - 1 j =1 j^kv.............. ... - .... •' v  '   ̂ ___ _

P& Pa P io
N  N  N

+  m Y A j e ~i9j 53 2 3 A 3A kei{ei~0k) + M M *  E E a -  Akei{f>i~9k)
j= l  j jtk jjtk

P l l  P 12
N  N  N  N

+ m *m y  A3elB] 23 Ai e~l6i+ (m *)2m 23 A^ 0] + m 2 m * 23 Ai e~l6
3= 1  3 =  1 3= 1  J = 1' v ' > w ' ' ^ -

^ 1 3  P l4  P lS
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7. F ind th e  E xp ecta tio n  o f In ten sity  Squared <I2 > W ant to find E [Px\ 

Va; € [1, 2 , 1 5 ] .  To condition on N:

<  Pi  > =  ^  ^  =  n  <  A 4 > + n ( n  — 1) <  A 2 > 2 by Note B

<  P-z > =  ^  Syyfc ^  =  n ( n  — 1) < A 2 > 2 by Note C

< P3 > =  ( ( M ' f  ( e " ,  V " ' ) * )  = <  (M*)2 > <  E " ,  E t !  A /U e«»PA ) > =  

0 by Eq. 1

< P4 > =  ( V  ( E " ,  -4je-"’' ) 2)  = <  M 2 > <  E " „  E f e .  > =
0 by Eq. 1

<  P5 > =  ( ( M M * ) 2)

< a  > =  ( E " , A2E E " * = <  £ £ *  „ A ' A i A ^ - v  >
by Eq. 1

<  p 7 > =  ( M ' E ^ A f E j - i  V " ' )  = <  a t  > <  E 7 - , E " , i  A 2.V " > *  > =

0 by Eq. 1

< ft >= (M E j'..24?Ej'l. V " ' )  =< m  >< E it .  E it i  >=
0 by Eq. 1

< P9 > =  ( m m - ,1ĵ ) = <  MM* > (n < ,42 > ) by Note A

< P10 >=  ( m -  E "  t A e ‘»- E  E £ *  A i A ^ - * ^ )

= <  M* X  E " .i E  E j%  A - A j > =  0 by Eq.  1
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< Pn > = ( * E ? . i  - V " '  E  E " #* A,Ake“-»>-™)
=< M  ><  E ™ , E  E f #t  > =  0 by Eq. 1

< Pn > =  ( MM-  E E 7 y *  A j A i e ' l W )
= <  MM* > <  J2 Y ,& k A 3A kei{ei~ek) > =  0 by Eq. 1

<  P 13 > =  ( M * M E f =1 E f= i
= <  MM* > <  E f= i E J L i  A j A . e ^ A  >

= <  MM* > (n < A 2 >) by Note A

< P14 > =  /  (M*)2M  EyLi A je iei \  =<  (M *)2M  > <  E f= i  4,-e"* > =  0 by Eq. 1

< P 15 > =  ( M 2M* E " i  A^e” ^  = <  M 2M* > <  A^e"** > =  0 by Eq. 1

So,
< / 2|iV =  n >  =  n  <  A4 >  + 2n(n  — 1) <  A2 > 2

+  <  (M M *)2 >  + 4n  <  M M * > <  A2 >

<  I 2 > = <  N  ><  A4 >  + 2  < N 2 > <  A2 > 2 - 2  < N  > <  A2 > 2 
+  <  ( M M *)2 >  + 4 < N > <  M M *  > <  A2 >

Recall: N  ~  Pm sson = »  P[iV] =  Var[N) =  P[iV2] -  P [A ]2 
So, < N  > = < N 2 > — < N  >2 = >  < N 2 > = < N >  + < N >2

< I 2 > = < N  >< A 4 > + 2 < N  > 2< A2 > 2 +  < (M M *)2 > 
+4 < A  > <  M M* > <  A2 >

=< N  >< A 4 > + 2 < N  >< A 2 > 

+  <  (M M *)2 >

< N  > <  A2 >  +2 < M M * >

8. F ind th e  A verage N u m b er o f F ish  < N >
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Note: Since <  I  > = < N  >< A 2 > + < M M *  > 
= >  < I  > -  < M M *  > = <  N  >< A 2 > 
= > ( < / > - <  M M * >)2 =< N  > 2< A 2 >2

So,

(</>—<MM*>)2 —
< N x A 4 >

< N > 2< A 2> 2
I 2 < N > 2 < A 2 > 2 , 4 < N x A 2> < M M * >  

< N > 2 < A 2 > 2 ' < N > 2 < A 2> 2

< A 4>  t O  i A < M M * >  
< N x A 2> 2 ' ' < N x A 2>

< I 2 > -  < {M M *)2 > 
( < / > - <  M M *  > ) 2

2 =
< N  >

< A 4 > < M M * >
< a 2 > 2 +  < A 2 >

< N > = < A 4> 
< A 2> 2 +  4 <MM*>

< A 2>



A P P E N D IX  B 

DERIVATION OF PR O BA BILITY  D E N SIT Y  FU N C TIO N  
OF THE FISH SCATTERING STATISTIC A N D  BEAM  

PATTERN M ODULATION

A p p e n d ix  B - l :  Derivation of Fish Scattering Effects
For this research the fish scattering statistic, a , is assumed to follow a Rayleigh 

distribution with param eter a  representing the mode. The Rayleigh pdf is

p{x-a) = f 2e~x2^ 2,

for x > 0. Thus the raw moments are given by:

<  ak > = a k2%T(l +  §)

such that:
< a > =

< a2 > =  2a 2
< a3 >  =  3 ^ /1 a 3
< a4 > =  8cr4.

Thus, the fourth normalized moment of the fish scattering statistic, a, is equal to,

<  a4 > /  <  a2 >2 =  8<t4/(2 (j2)2 
=  8a 4/4 a 4 
=  2 .
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A p p e n d ix  B -2: Derivation of Beam P atte rn  Effects (As seen in Peterson et. al.

(The setup for the work done in this research is the th ird  scenario)

1. Setup for a  transducer with axial sym m etry about the z-axis (As seen in Ap­
pendix Figure 1.1):

Here r > 0 and 0 < 0  <  7t / 2 . The goal is to find the probability density of 
the location of the fish producing single echoes. Thus, given some range, r , the 
random variable is <f>.

This method assumes th a t the fish are uniformly distributed in space

= >  A ratio of volumes can be considered to find p<s>{4>). The num erator is the 
volume of the cylindrical shape w ith some radius, r' , and height, dr. The 
denominator is the volume of the hemi-spherical shell.

To find VcyHnder, the area of the small sector is subtracted  from the area of the 
large sector (Appendix Figure 1.2) and then multiplied by 2ixr ', where r' is the 
radius of the cylinder. This can be done due to the axial sym m etry of the setup.

[1976])

V h e m i—s p h e r ic a l s h e l l ^ h e m i —s p h e r ic a l  s h e l l

Thus A V  = Vcyiinder = 2nr'(Jr^2rdr) =  2r;r'rdq>dx 

Notice th a t r' = r sin <fi = >  A V  =  2ixr2 sin 4>d(f)dr.

(Large Sector) — (Small Sector) =  [7r(r -I- ^-)2(|^ )] — [7r(r — y ) 2(f^)]

Thus

Vhemi— spherical shell

2-nr2 sin <fidrd<j) 
2-Kr2dr[— cos«^|^2]

=  2tt r 2dr

Therefore
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, A V  2irr2 sin <pd(j)dr .
/ W J  =  T}--------------------- = ------ o—  =  sm(Pd(P

vhemispherical shell ZTTT^ar

is the pdf of the fish scatterer position in space.

In order to estimate the effects of the beam pattern  on the estim ate of the 
average number of fish, a “beam pattern  probability density function” needs to 
be found. Since the beam pattern  is dependent on a random variable, $ , the 
beam pattern  itself is considered a  random variable.

The typical transformation would be: pe(b) =  for 0 <  b < 1 where B
represents the random variable of the beam pattern.

In this situation the pdf can be represented by

PB(b) =  J  P*(<fi'), 

where A<f>' represents the limits for all the angles for which b is bounded by
b ±  f .

2. Setup for a transducer with two angle dependencies (As seen in Figure 2 of the 
main document):

Here 0 > r , 0 <  v  < 2ir, 0 < (f> < n /2 . Again, want to find the probability 
density of the location of the fish producing echoes. Given a  range, r , the two 
random variables are T  and <E>.

As before, it is assumed th a t the fish are uniformly distributed in space.

= >  A ratio of volumes can be considered to  find p<s>,r(4>iv )- Although the 
denominator is the same volume as considered in the previous setup, the volume 
in the numerator is found from the cube seen in Figure 2 (main document) due 
to the addition of a second angle dependency.

= >  P* X {<P, V) =  y-----------  =  y-------^ --------
v h e m i—s p h e r ic a l  s h e l l  v h e m i —s p h e r ic a l  s h e l l
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Vcube = r  sin (pdvrdcpdr 
= r 2 sin (j)d(f)dvdr

Vhemispherical shell =  Jq Jq ^cube

— J 2n J J ''2 (r2 sin 4>dr)d(j)dv 
=  r 2 dr j 2n dv f ^ 2 sin cfidcj) 
=  r 2dr27r[—cos0 |o /,2j 
=  2 t t  r 2dr

Therefore,

. AV r 2 sin 4>d<fidvdr sm<fi

P4>'T ,V  Vfiemi—spherical shell 2lXT2d r  2?T °

Note: This can be verified by applying the axial sym m etry assumption and 
comparing the results to number 1.

If there is axial symmetry in the setup then p ^ r  can be integrated w ith respect 
to v  from 0 to  27r.

Thus,

f 27T 11 \ f 27r sin 4> 11 i sin j . ./ P$,r{<P,v ) =  /  - 7;— d<pdv = 2ir—— dq> =  sm  <pd(p =  p$(0) v
Jo Jo 2.1r 2tt

The following transform ation can then be applied to find the “beam pattern  
pdf:”

P s ( b )  =  ^  f Av, f A<p, P*,r(<f>, v )
J  f  r  s m £ d  , , , ,
A6 J A t)' J Atf>' 2jt a ty

where A</>' and At;' represent the limits for all the angles for which b is bounded 
by b ±
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3. Setup for a transducer with two angle dependencies w ith an added stipulation 
(As seen in Appendix Figure 2):

It is assumed th a t the fish have a uniform distribution in some restricted area 
in space (rather than being uniform on 0 <  v  < 2n  and 0 <  <  n / 2, the fish
are now uniform on 0 <  v  < 2tt and 0 < <p < a). Only angles within the “cone” 
defined by a  are considered to be part of the uniform spatial distribution.

A ratio of volumes can be considered where the num erator is the volume of the 
cube and the denominator is the volume of the cone.

Recall th a t the volume of the cube is V ^e  =  r 2 sin 4>d(frdvdr, thus,

w here
’ ' 'c o n e

So Jo Vcube
fn fn 7r(r'2 sin (pdr'jdvdcp 
2irr2dr [ - cos 4>\d]
27rr2dr[l — cos a]

Therefore,

r 2 sin (pd&dvdr
27rr2dr[l — cos a] 2tx{ \ — cos a)jone



76

dr

2.

dq>

AV

F ig u re  B - l .  1. Geometry of backscattered pressure signal for setup number one. 2. 
Vertical slice of cylindrical shape used to  find area.

x

a.

F ig u re  B -2. Geometry of backscattered pressure signal for setup number three.



A P P E N D IX  C 

VARIANCE OF < N  >

< / 2>A general expression for the variance of the scintillating index of intensity, </>2, 
with negligible noise was derived in Denbigh et. al. [1991] to be:

E a r  (SI)

_  x  r </4> _  4 ( <i3> <i2> \ , 4  ( ( <i2> y  _  ( <i2> y
m  < / > 4 ^ < / > 3 < / > 2 y ' I \ < 1 > 2 )  \ < I > 2 J

where m  is the number of independent samples. 
Var{< N  >):

Var(<  N  >) = <  N  > 2 V ar

This was used to  determine

<  a4 > < b4 >
< a2 > 2 < b2 > 2

< 1 2 > \ 1/2 
< I > 2)

where ^ 2^2 <$^2 is assumed to be constant. It is im portant to note tha t, for this 
model, the fourth normalized moment of the pusle envelope is equal to one.

To account for possible noise contributions, a new estim ate for V ar(<  N  > ) is 
derived below for the variant model, (Eq. 9).

As done in Denbigh et. al. [1991], let

X  = <  /" > — <  (MM*)n >,  Y  = <  /  >  -  <  MM*  >,  and n =  2 

such tha t 

z  =  [< In >  -  < (MM*)n > ] [ < / > - <  MM*  > ]-"  =  X Y ~ n

Then,

77
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V a r ( x ) + { ^ ) 2 V a r { Y ) + 2 { ^ d  { w ) C m ( x ' Y )

where Var (A) is the variance in the random variable A, and C ov(A , B ) is the covari­
ance of A  and B  (Papoulis 1965).

= *  V a r(Z ) = (Y ~ n)2V a r (X ) +  { - n X Y - ^ n+^ ) 2V a r(Y )
+ ( - 2 n X Y - ( 2n+V )C au(X , Y )
_  Var(X)  \ Z n r ( Y \  ( n « I n > - < ( M  M*)n »  \  2
~  ( < / >  —< M M * > ) 2n -r v J ^ (</>-<m m *»KD J

2n«/">-<(MM*)n»  r  f Y y \

It is im portant to note tha t

V a r (X ) =  V ar(<  I n > -  < (M M *)n >)
=  Var{< I n > ) +  Var{<  { MM*) n >) -  2Cov{< I n >, < ( M M* ) n >) 
=  i ( <  I 2 n > -  < I n > 2) +  i ( <  ( M M * ) 2n > -  < ( MM* ) n >2) 
-2 C o v(<  I n > , <  ( M M* ) n >)

and

F a r (F )  =  Var{<  I  > -  < M M * >) 
= Var{< I  >) +  Var(< M M *  >) -  2Cov{< I  > ,<  M M * >) 
= £ ( <  I 2 > — < I  > 2) +  d-(< {M M *)2 >  -  < MM* > 2) 
—2Cov{< I  > , < M M *  > f

since Var(A)  =  F^A2) — ( E ( A ))2 for a random variable A. For two random variables 
A  and B  the covariance term is equal to the following:

Cav{A, B ) = E { A B )  -  E{A)E{B) .

Recalling th a t if A  and B  are uncorrelated, then  C o v ( A ,B )  =  0.
For the purposes of this research, the moments of intensity are assumed to be 

uncorrelated to the moments of noise. Thus,

V a r ( X ) =  J-(<  I 2n > -  < I n > 2) +  £ ( <  (M M *)2n >  -  <  (M M *)n > 2) 
V a r ( Y ) = T { <  I 2 > -  < I  > 2) +  T (<  (M M *)2 > -  <  MM* > 2)

and
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Cov(X,  Y )  =  Cov(< I n > -  <  (M M *)n > , < / > - <  MM* >) 
=  £ [(<  I n > -  <  ( M M * ) n > )(<  I  > -  < M M *  >)] 
- £ [ <  I n > -  < ( M M* ) n > ]£ [<  /  >  -  < M M * >] 

=  £?[(< I n > -  < (M M *)" > )(<  /  > -  <  M M * >)] 
- ( <  I n > -  < (M M *)" > )(<  I  > -  < M M *  > ) 

=  £■[< / n > <  / > - < / "  > <  M M * > -  <  I  >< ( MM*) n > 
— < MM *  ><  (M M *)n >] 
- ( <  I n > -  < (M M ’ j* > )(<  /  >  -  <  M M * >)

can be used to find Var(Z)  and therefore the estim ate of Var(< N  >) using the 
formula derived in Denbigh et. al. [1991].
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