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ABSTRACT

OBSERVATIONS OF POCKMARK FLOW STRUCTURE 
IN BELFAST BAY, MAINE

by

Christina L. Fandel 
University of New Hampshire, May, 2013

Vertical current and CTD profiles were acquired over a small, spherical pockmark 

and a larger, more elongated pockmark in Belfast Bay, Maine in July 2011. These 

observations showed evidence for mixing within the pockmarks, a rotational pattern that 

resembles open cavity flow, and incipient motion along the rims. Over the center of each 

pockmark, observations of uniform temperature properties below 12 m are indicative of 

mixing within the pockmark. The observed complex rotational structure over each 

pockmark shows significant rotation with depth and a greater degree of rotation during 

ebbing tide. These observations are qualitatively consistent with circulation patterns 

predicted by cavity flow models. Critical Shields parameters for cohesive sediment were 

estimated at the rim and center of each pockmark and were only exceeded along the rim. 

During the infrequently observed upwelling events, and in the absence of flocculation, 

suspended sediment would be unable to settle through the water column.
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CHAPTER 1

INTRODUCTION

1.1 Belfast Bay

Penobscot Bay is situated along the central coast of Maine and is the largest 

estuarine embayment within the Gulf of Maine. Regional circulation is driven by tidal 

currents that are modified by wind-driven stress at the surface. Located within the 

northwestern quadrant of Penobscot Bay, Belfast Bay comprises a shallow (< 70 m), 

muddy environment that is fed by the Passagassawakeag River to the northwest and the 

Penobscot River to the northeast. Seafloor topography in Belfast Bay is riddled with 

hundreds of large, spherical to elongated depressions, referred to as pockmarks.

Andrews et al., 2010 simultaneously acquired backscatter, bathymetric, and 

seismic-reflection data within a 25 km2 region of Belfast Bay in 2006. The surveyed area 

ranged in depth from 7 to 49 m and consisted of an estimated 1,767 pockmarks. 

Pockmark morphology in Belfast Bay transitions from more spherical in the northern 

region to more elongated further south where the bay significantly constricts in size. This 

morphological transition to a more elongated shape with progression south is a 

characteristic that is also observed in other regional pockmark fields (e.g. Blue Hill Bay, 

ME; Passamaquoddy Bay, New Brunswick, Canada) and is suggested to be related to 

increased uni-directional, near-bed flow (Brothers, et al., 2012).

1



I

Methane-escape from Holocene estuarine sediment has been evoked as the 

primarily mechanism of pockmark formation in Belfast Bay based on multiple 

geophysical data observations of shallow natural gas within this sediment package 

(Bamhardt et al., 1997; Christian, 2000; Andrews et al., 2010). Historical bathymetric 

data dating back to 1872 document the presence of multiple pockmarks within Belfast 

Bay and suggest that at least a portion of the field existed about 140 years ago. 

Furthermore, the Belfast Bay pockmarks do not protrude below the Pleistocene/Holocene 

unconformity and are therefore suggested to be no older than 11,000 years. The present 

degassing activity within Belfast Bay remains controversial with evidence existing both 

for (e.g. Kelly et al., 1994; Bamhardt et al, 1997) and against (Ussier et al., 2003) an 

actively venting field. A recent pockmark presence/absence analysis of Belfast Bay 

indicated no change in macro-scale (> 5 m) pockmark frequency or distribution between 

the years 1999 and 2008, yet, long-term pockmark evolution and maintenance 

mechanisms remain uncertain. Although multiple studies have obtained geophysical data 

within the Belfast Bay pockmark field (e.g. Kelley, et al., 1994; Ussier, et al., 2003; 

Rogers et a l, 2006; Andrews, et al., 2010), none have investigated the flow stmcture and 

circulation patterns in the vicinity of these pockmarks. Analysis of the flow and sediment 

dynamics around pockmarks will lead to a better understanding of micro-scale pockmark 

evolution in Belfast Bay as well as provide valuable insight regarding the required 

frequency of repeat hydrographic surveys to properly characterize the regional 

bathymetry.

This study examines the vertical temperature, salinity, and current structure over 

two pockmarks in Belfast Bay, Maine to investigate the mechanisms of long-term, post

2



formation maintenance. Two pockmarks were studied: a spherical pockmark with a 45 m 

diameter and 12 m of relief located in 21 m water depth in the northern part of Belfast 

Bay and a more elongated pockmark with an 80 m diameter and 17 m of relief located in 

24 m water depth in the southern region of Belfast Bay. The time-varying structure of the 

water column was examined by completing multiple Conductivity, Temperature, and 

Depth (CTD) casts over the center of each pockmark for a complete tidal cycle. Vertical 

current profiles were measured using bottom-mounted Acoustic Doppler Current 

Profilers positioned at the rim and center of each pockmark. The results of these 

observations are summarized within three separate papers comprising Chapters 2 - 4 of 

this thesis. Each chapter is comprised of an independent abstract, introduction, methods, 

discussion, and conclusion section.

Chapter 2 presents the majority of the survey methods used in this study as well 

as summarizes the overall current observations. This paper investigates the evidence for 

mixing within these depressions and examines the influence of roughness-induced form 

drag on the local flow regime. Chapter 3 examines the rotational structure observed over 

the sampled pockmarks and introduces a conceptual flow model that may explain near

shore, pockmark circulation patterns, specifically in Belfast Bay, Maine. Chapter 4 

estimates periods of incipient motion from near-bed current observations and measured 

grain size characteristics. Maximum grain size estimations under terminal settling 

velocities are examined to infer whether or not sediment is expected to settle towards the 

seafloor or remain in suspension, specifically during periods of predicted incipient 

motion. Broad conclusions of all three studies are summarized in Chapter 5 and future 

research directions are discussed.
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CHAPTER 2

OBSERVATIONS OF POCKMARK FLOW STRUCTURE 
IN BELFAST BAY, MAINE, PART 1: 

MIXING

2.1 Abstract

Field observations of current profiles and temperature and salinity structure were 

used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The 

morphology of the sampled pockmarks is distinctly different, the first is nearly circular in 

shape and located in 21 m water depth with a 45 m diameter and 12 m of relief and the 

other is more elongated and located in 25 m water depth with an 80 m diameter and 17m 

of relief. Hourly-averaged current profiles were acquired from bottom-mounted acoustic 

Doppler current profilers (ADCPs) deployed on the rim and center of each pockmark 

over successive 42 hour periods in July 2011. CTD casts at the rim and center of each 

pockmark show warmer, fresher water with evidence of both active and fossil 

thermocline structure in the upper water column, about 5-8 m above the rim, and well- 

mixed water below to the bottom of each depression. Vertical velocity observations show 

up-welling and down-welling events that extend from above the rim and into the depths 

of each pockmark indicating active overturning of the water column and mixing of flow 

above and below the rim. An anomalous temperature rise was nearly simultaneously 

recorded by temperature sensors on both the rim and center ADCPs and occurs



coincident with an overturning event below the rim. Vertical profiles of horizontal 

velocities show depth variation both at the center and rim consistent with turbulent 

logarithmic layers, and suggests that form drag may be significantly influencing the local 

flow regime. Current and temperature and salinity observations obtained over the 

sampled pockmarks suggest active mixing and overturning within the pockmarks, and 

enhanced turbulence over these depressions from upstream bathymetric irregularities 

induced by other, distant pockmarks.

2.2 Introduction

Pockmarks are roughly conical depressions in the seafloor that are typically 

associated with sub-surface fluid and gas expulsion. These crater-like features are 

distributed in a variety of global geologic environments ranging from shallow coastal 

regions {e.g., Brothers et al., 2011; Wildish et al., 2008), to deep offshore settings {e.g., 

Hovland and Judd, 1988; Hovland and Svensen, 2006). Pockmarks range in size from 

less than 1 m to over a kilometer in diameter and are believed to be formed by the gradual 

or instantaneous release of underlying gas, groundwater, or pore-water {e.g., Scanlon and 

Knebel, 1989; Christodoulou, et al., 2003).

A major source of uncertainty in pockmark research relates to age estimation and 

mechanisms for long-term maintenance, specifically in non-actively venting fields. 

Observations of the current structure as well as the physical properties of the water 

column within and around these depressions are needed to improve our understanding of 

sediment transport within pockmarks. These observations will better constrain models for 

age approximation and offer insight into mechanisms of post-formation pockmark

5



maintenance. In addition, many pockmark fields are associated with abundant biological 

communities within individual pockmarks (e.g., Gay, et a l, 2005; Hovland, et al., 2005; 

Ritt, et al., 2011; Wildish, et al. 2008), and investigation of current flow in the vicinity of 

pockmarks will lead to more accurate estimations of faunal and nutrient distribution 

patterns in these seafloor depressions.

Belfast Bay is located in central Maine in the northwestern quadrant of Penobscot 

Bay and consists of an extensive pockmark field (Figure 2-1) (Scanlon and Knebel, 

1989). Belfast Bay is characterized as a shallow 10-50 m deep, estuarine environment 

with predominant fresh-water input by the small Passagassawakeag River to the 

northwest and the larger Penobscot River to the northeast (USGS, 2010). Belfast Bay 

contains over 1,700 pockmarks within a 25 km2 area (Andrews, et al., 2010). Pockmark 

morphology transitions from a nearly circular shape in the shallower, northern region to a 

more elongated shape in the deeper, southern region. Biogenically derived methane 

release from Holocene estuarine mud has been identified as the primary method of 

pockmark formation in Belfast Bay, yet the relative degassing activity and maintenance 

mechanisms of the pockmarks remain unresolved (Kelley, et al., 1994). Although much 

research has addressed pockmark formation, specifically in Belfast Bay (e.g., Scanlon 

and Knebel, 1989; Kelley, et a l, 1994; Rogers, et al., 2006; Brothers, et al., 2012), few 

studies have acquired physical current or temperature measurements in the vicinity of 

pockmarks.

This study presents field observations of the evolution of the vertical temperature, 

salinity, and current structure over two pockmarks in Belfast Bay, Maine. Both

6



pockmarks show evidence of active mixing of water within them, and a turbulent flow 

structure induced by internal pockmark circulation and upstream bathymetric 

irregularities.

7



;s £ , : ' ‘

Penobscot ‘ u 
re r J

z*
P
£
3

Passagassawakeag
Ifclyer

~ .*<<#

AwolWf
”  9*M i

.* . '*

« 4 'r <

IdeA on
Id u 4

.«■
5

ifi w*;

W. m. 
\  r v.

z
x
p
a

z
X
p

■?
3

.V  ;..

i i f

zX
p
ao
3

0 12S &5 13
I— I— I— I— I ■ Is .1 , - 4— i 

Kiiomrt& i
X  

W W
X X

iVTEQ

®°4,0"W «F S W W  <S8°52’0"W 68°48'0"W «8°44*0"W

Figure 2-1. Overview map of Belfast Bay, Maine, with the approximate location of 
each sampled pockmark are shown by a green box. Weather stations 1 and 2 are 
located approximately 1.5 miles east of Belfast and Searsport, Maine, respectively 
and are marked by blue triangles.
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2.3 Methods

Field observations of the temperature, salinity and current structure were obtained 

over the rim and center of two pockmarks in Belfast Bay with conductivity, temperature, 

and depth (CTD) casts and bottom-mounted acoustic Doppler current profilers (ADCPs). 

Candidate pockmarks were selected from a 5 by 5 m resolution bathymetric map of 

Belfast Bay produced from a multibeam survey conducted by the U.S. Geological Survey 

in cooperation with the University of Maine in 2006 and 2008 (Brothers et al., 2011). 

Pockmarks were selected based on proximity to other pockmarks, depth restrictions of 

the instrumentation, and characteristic morphology. The chosen pockmarks are both 

located within regions of high pockmark density and consist of a spherical pockmark in 

21 m water depth with a 45 m diameter and 12 m of relief located in the northern region 

of the bay and an elongated pockmark in 25 m water depth with a 80 m diameter and 17 

m relief located to the south (Figure 2-2). The northern pockmark is located near a 

complex convergence zone of tidal currents flowing around Islesboro Island, whereas the 

southern pockmark is located in a narrower channel to the west of Islesboro Island where 

tidal currents are stronger and more aligned with the direction of the channel. Data were 

obtained in the northern pockmark from 26 July 1500 EST through 28 July 1100 EST 

(Julian days 207.8-209.6), and in the southern pockmark from 28 July 1700 EST through 

30 July 1000 EST (Julian days 209.9-211.6) during a rising spring tide.

9
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Figure 2-2. Color-filled contour plots show bathymetric data collected over the 
northern (upper) and southern (lower) pockmark with x and y axes showing the 
estimated distance from the center of each pockmark. The white dots denote the 
approximate location of each current meter mount along the rim and center of each 
pockmark with associated uncertainty denoted by the size of each dot. Elevations 
are referenced to mean sea level.
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Wind speed, direction, and gust speed were obtained from meteorological stations 

located on shore near the townships of Belfast and Searsport, Maine (Weather 

Underground Organization, 2011) (Figure 2-1). Observations were made about 30 m 

above mean seal level at the Belfast weather station and 15 m above mean seal level at 

the Searsport weather station. Wind speed, direction and gust data were collected and 

distributed by Weather Underground, Inc., and averaged over 1 hr intervals. Although 

winds were variable over Belfast Bay, the general agreement between the two distant 

sites suggests that the length scales of the variability would not greatly influence the 

interpretation of our results. Wave heights were generally small, with limited swell in 

Penobscot Bay and with low energy (order 0.25 m significant wave heights), high- 

frequency sea waves with short periods (order 1-3 s) that were spun up and down by the 

local diurnal wind patterns.

2.3.1 Bathymetry

A high-resolution bathymetric survey was conducted over each pockmark for a 

complete tidal cycle by making many (of order 50) criss-crossing transects using the R/V 

Cocheco (Figure 2-2). Bathymetric data were acquired using a side-mounted ODOM 

THP 200 single-beam echo sounder operating at 200 kHz. Sub-meter positioning 

accuracy was achieved using an Omnistar 8200 HP differential GPS system that 

continually received differential GPS corrections via satellite transmission. Bathymetric 

data were post processed and gridded to 2.5 m resolution using Computer Aided 

Resource Information System (CARIS) Hydrographic Information Processing System 

(HIPS) 7.0 software. Tidal observations were acquired from NOAA tidal station 8418150



located to the south in Portland, Maine, and used to reference bathymetric data to the 

mean sea level. Temporal corrections were applied to account for the known offset in the 

tidal wave arrival time between Portland and Belfast.

2.3.2 Current Observation

Three-component current velocity profiles were concurrently acquired at the rim 

and center of each pockmark over the 48 hr sampling period. Upward-looking RDI 

Workhorse 300 kHz ADCPs were installed on triangular aluminum frames about 1 m on a 

side with height of 0.52 m and 0.63 m above bottom in the rim and center of the 

pockmarks, respectively (Figure 2-3). Velocity profiles were sampled in regularly spaced 

0.5 m bins through the water column beginning 2.37 m (rim location) and 2.24 m (center 

location) above the seafloor. The ADCPs sampled currents in each bin at 1.6 s intervals 

and recorded averaged currents over 5 min periods. The center current meter mount 

additionally housed a Nortek Aquadopp acoustic current meter positioned 0.7 m above 

the seafloor that sampled at 1 Hz and recorded near-bed mean currents over 1 min 

periods. Currents were further averaged after data collection over 1 hr intervals and over 

4 adjacent vertical bins to yield mean three-component current profiles with better than 

0.0025 m/s accuracy. All ADCP and Aquadopp data were synchronized to within 1 s 

UTC during sampling.

Current meter mount locations at the center and rim of each pockmark were 

estimated by calculating a time-average of the recorded GPS data over a time interval 

within ± 2 minutes of the recorded deployment time (Figure 2-2). Rim current meter 

mounts were visible within single-beam echo sounder backscatter data at each pockmark

12



site and their location was approximated by obtaining a mean position from manual 

inspection of multiple backscatter profiles. The relative offset between the time-averaged 

and the backscatter-delineated position of the rim current meter mount was applied to the 

time-averaged position at the center and designated as the location of the center current 

meter mount. The associated uncertainty of each estimated ADCP location was 

approximated by calculating the quadratic sum of the individual uncertainty sources, and 

estimated to be within about +/- 3.5 m horizontally at the northern pockmark and within 

about +/- 1.8 m horizontally at the southern pockmark. The approximated position of the 

center current meter mount in both pockmarks is along the northeastern sidewall which is 

consistent with internally measured orientation angles recorded by the ADCPs.

Pitch and roll angles were measured internally by each ADCP with accuracy of 

+/- 0.5 deg. The rim ADCPs were deployed on approximately level ground, with a tilt 

angle of about 2 deg and 7 deg for the northern and southern pockmarks, respectively. 

The center ADCPs were oriented at a significant angle of about 24 deg and 17 deg within 

the northern and southern pockmarks, respectively. However, these tilt angles were 

internally accounted for within the RDI sensors when resolving the orthogonal velocity 

components and were consistent with the bathymetric slopes at the estimated location of 

the ADCPs. Because each ping, 0.35 s was adjusted for orientation, there are no adverse 

effects in the estimated current structure as a result of the non-leveled position of the 

ADCPs. The same is true for the single-point Aquadopp current meter.

13



Figure 2-3. Image of current meter mount deployed in the center of each pockmark. 
The various parts labeled by letters are the (A) acoustic release, (B) RDI Workhorse 
300 kHz ADCP and (C) Nortek Aquadopp acoustic current meter.

14



The estimated ADCP locations and approximate beam angles based on observed 

tilt angles are shown in Figure 2-4 along a north-south cross-sectional view of the 

bathymetry collected over each pockmark. These bathymetric profiles are relative to 

mean sea level and indicate the nearly symmetrical shape of both pockmarks, yet more 

elongated morphology of the southern pockmark (length-to-width ~ 2.2) than the 

northern pockmark (width-to-length ~ 1.2). The rim pockmark ADCPs, deployed on 

nearly level ground, have all four acoustic beams that reach the sea surface at the same 

bin elevation, and thus can accurately observe current structure within a short distance of 

the surface. The ADCPs deployed at the center of each pockmark, however, were 

positioned at a significant angle that results in individual acoustic beams that extend to 

different elevations within the water column. Measurements obtained beyond the 

maximum elevation sampled by all beams were eliminated. This maximum elevation was 

around 4 m and 8 m below the surface over the northern and southern pockmark, 

respectively.
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Figure 2-4. N-S cross-sectional view of bathymetry across each pockmark with the 
x-axis indicating the distance from the approximate pockmark center and the y-axis 
indicating elevation referenced to mean sea level. The approximate location of each 
current meter mount is marked by a gray triangle. The extension of the acoustic 
beams from the current meter mounts are marked by solid and dashed lines. Note, 
current data collected at ranges greater than the maximum distance reached by all 
acoustic beams were eliminated.
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2.3.3 CTD Observations

CTD casts were obtained near the center of each pockmark at 2 hr intervals for a 

single tidal cycle to assess the time-varying structure of the water column over each 

pockmark. Data were acquired using a Seabird 19 CTD profiler and post-processed using 

the SeaBird data processing software. The density structure over both pockmarks was 

impacted by salinity and temperature variations with depth. Accuracy of the conductivity, 

used to derive salinity, and temperature sensors of the Seabird profiler were estimated to 

be within 0.001 S/m and 0.01°C, respectively based on manufacturers specification. 

Additionally, seawater temperature was measured over 5 min periods at the ADCP 

transducer locations in both RDI instruments and the Nortek Aquadopp. Temperature 

sensor accuracy of the Nortek Aquadopp and RDI ADCPs is 0.1 °C and 0.4 °C, 

respectively. These observations were calibrated in situ using the Seabird CTD 

observations.

In the following, a right-handed coordinate system is adopted with vertical datum 

at mean sea level and z coordinate positive upwards.
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2.4 Results

2.4.1 Environmental Conditions and Depth-averaged Currents

Depth-averaged current data and wind conditions observed during the field 

experiment are displayed in Figure 2-5. Hourly averaged wind speed, direction, and 

gusts are indicated for both wind stations in Belfast and Searsport. Observed winds 

showed oscillations related to the diurnal sea breeze with speeds increasing in the late 

afternoon. Wind directions were determined by weak frontal systems that caused abrupt 

180 deg changes every couple of days. Winds rotated from northeast to southwest during 

the northern pockmark deployment period and oscillated between northeast and 

southwest during the southern pockmark sampling period.

Current magnitude and direction data are depth-averaged over 3 layers including 

the surface layer from the surface to the approximate average depth of the thermocline, 

about 8 m, the mid-water layer from 8 m to the depth of the rim, and the deep layer from 

the rim depth to the bottom of the pockmark (Figure 2-5). Current direction data 

represent the direction that the current is flowing. Tidally-oscillating surface flow is 

modified by wind-driven currents and ranges in magnitude from 0 to 0.25 m/s, but is 

typically in the range 0.05 to 0.10 m/s.
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The mid-water column currents (8 m < z < rim depth) are more strongly tidally 

dominated, particularly in the southern pockmark where current oscillations closely 

follow tidal phases. Mid-water column currents over the northern pockmark are more 

variable and influenced by wind-driven stress at the surface as well as converging tidal 

currents around Islesboro Island. Current magnitudes range from 0 to 0.20 m/s in this 

layer, and are typically stronger than the surface or deep currents indicating a sub-surface 

maximum in the current vertical structure due to the high-velocity tidal flow. Similar 

current observations at the rim and center of each pockmark suggest a nearly uniform 

horizontal variation in the flow from the rim to the center at mid depths.

The currents in the deep layer (z < rim depth) are much weaker, ranging from 0 to 

0.05 m/s, and do not always show strong tidal oscillations. Rotational structure in the 

deep layer is complex with currents rotating both clockwise and counter-clockwise over 

depth and varying in structure through time.
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Figure 2-5 (Previous Page). Tide, wind and depth-averaged currents during the 
northern and southern pockmark sampling periods with time (Julian Days) on the 
x-axis. Upper panel shows mean sea surface elevation from bottom pressure data 
and the times (circles) of the CTD casts. Wind speed and direction obtained from 
meteorological stations near Belfast (light gray) and Searsport (dark gray) are 
shown in the next 2 panels. Triangles indicate hourly wind gusts. Lower 3 panels 
show hourly-averaged current magnitude directions depth-averaged over the 
surface, mid, and deep layers, respectively, delineated by the average depth of the 
thermocline (8 m) and depth of the pockmark rim (21 and 24 m). Data displayed in 
blue were obtained from the current meter mount located along the rim of either 
pockmark and data displayed in teal were obtained from the current meter mount 
located at the center of either pockmark.
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2.4.2 Salinity and Temperature Observations

Variation of salinity and temperature profiles show strong density structure over 

the northern and southern pockmarks. The time-varying salinity and temperature 

structure of the water column was observed from multiple CTD casts acquired over the 

center of each pockmark (Figure 2-6). Salinity profiles show a general increase in salinity 

with depth near the surface and constant salinity below about 10-13 m depth. Sharp 

excursions in the salinity profiles of about 0.5 psu occur around 5 m and 12 m depths 

below the surface. These salinity variations may represent an advected flow from a 

previous mixing event.

Temperature profiles show diurnal thermal heating and cooling effects throughout 

the day with a characteristic deepening of the thermocline around mid day. Uniform 

temperatures are observed to extend from a few meters above the rim to the bottom of the 

pockmark, suggesting a homogeneous, well-mixed deep layer throughout the depression. 

An increase in temperature is observed in the last two casts obtained over the northern 

pockmark and was also recorded by the bottom-mounted ADCP temperature sensors. 

The observed rise in temperature evolved uniformly across the profile and extended to 

the bottom of the pockmark.
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Figure 2-6. Salinity and temperature profiles acquired over the center of the 
northern (left panel) and southern pockmark (right panel). The upper panel shows 
tidal observations during the moored current meter sampling period where gray 
dots along the tidal wave indicate the time at which the individual CTD casts were 
acquired. Horizontally dashed gray and black lines denote the depth of the rim and 
bottom of each pockmark, respectively.
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The time evolution of the near-bottom temperature recorded by the rim and center 

ADCPs is displayed in Figure 2-7. A 0.3°C rise in temperature beginning at Julian Day 

208.8 occurs over an approximately 6 hr time period. The apparent time lag in 

temperature recorded at the rim and center of each pockmark is related to the relative 

location of the temperature sensor within the two ADCPs. At the rim, the ADCP 

temperature sensor is located internally, whereas at the center, the ADCP temperature 

sensor is located externally and therefore more quickly responds to changes in 

temperature. Depth-averaged vertical velocities below the rim from the center mounted 

ADCP show up and down-welling events, with magnitude of about 0.1- 0.15 m/s 

coincident with the rise in temperature and suggest a strong vertical mixing event 

extended from the center of the pockmark to above the rim (Figure 2-7). The initial rise 

in temperature occurred coincident to relatively strong upward-directed vertical velocities 

below the rim and is followed by a similarly strong down-welling event that decreases in 

magnitude as the temperature stabilizes. At the southern pockmark, a similar gradual rise 

in temperature was measured at both the rim and center ADCP locations, and was 

associated with a weak, net downward velocity over the duration of the deployment 

period.
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Figure 2-7 (Previous Page). Tidal, temperature and depth-averaged vertical velocity 
observations as a function of time (Julian Day) on the x-axis. The upper panel shows 
sea surface elevation from bottom pressure data. The middle panel shows 
temperature data acquired from temperature sensors along the rim (blue) and 
center (teal) current meter mounts. The solid and dashed lines denote temperature 
data acquired by the RDI Workhorse ADCPs and Aquadopp current meter, 
respectively. The lower panel shows depth-averaged vertical velocities below the rim 
averaged over 1 hr intervals. The dashed red line denotes 0 m/s.
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2.4.3 Mean Current Vertical Structure

The temporal evolution of the vertical structure of hourly-averaged vertical 

velocities measured from the center ADCP in both the northern and southern pockmarks 

is shown in Figure 2-8. Typical vertical velocities are in the range of ± 0.02 m/s and show 

strong vertical structure and temporal variability. The data indicate strong up and 

downwelling events over the center of each pockmark that extend from above the rim and 

well into the pockmark.

Three distinct up-welling events were observed during the northern pockmark 

sampling period, each occurring around slack low tide and into the rising flood. The first 

event occurs coincidently with the observed temperature rise recorded by the CTD casts 

and fixed temperature sensors, discussed above, and is followed by a relatively strong 

downwelling period. Vertical velocities over the southern pockmark indicate a more 

tidally modulated pattern of up and downwelling periods that extend over a greater 

portion of the water column. Upward-directed vertical velocities typically occur during 

flooding tides and downwelling currents during ebbing tide.

Figures 2-9 and 2-10 show the observed spatial and temporal variation in current 

magnitude and direction from both the rim and center ADCPs at the northern and 

southern pockmarks, respectively. Greater variability in vertical structure was observed 

over the northern pockmark where horizontal current velocities show a less tidally-driven 

component.
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Figure 2-8. Hourly-averaged vertical velocity data over the northern (left panel) and 
southern pockmark (right panel) with the x-axis indicating time in Julian days and 
the y-axis denoting elevation relative to mean sea level. Vertical velocities range 
from -0.02 -  0.02 m/s where positive values indicate upward-directed flow and 
negative values denote downward-directed flow. The rim and bottom of each 
pockmark are marked by orange and black dashed lines, respectively.
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Overall current velocities decrease in magnitude with depth and show increased 

complexity in rotational structure below the rim. Surface currents are strongly influenced 

by transient changes in wind speed and show substantial spatial variability in rotational 

structure over the northern pockmark. Upper water column flow on Julian Day 208.8- 

209.0 is offset approximately 130 deg between the rim and the center of the northern 

pockmark. This spatial offset may be a result of increased wind speed or converging tidal 

flows influencing the vertical current structure. High-velocity mid-water column currents 

show a strong tidal dependence and a tidally-modulated sub-surface maximum over both 

pockmarks. This sub-surface maximum oscillates between 5 to 15 m depths and surface 

and mid-depth currents often extend down into the pockmarks, specifically at the 

southern location.

Low-velocity flow below the rim does not exceed 0.10 m/s and shows significant 

spatial and temporal variability in rotational structure. Current direction below the rim 

rotates both clockwise and counter-clockwise with depth and often exceeds 90 deg of 

rotation from the rim to the bottom of the pockmark. A counter-clockwise directional 

pattern is more consistently observed over the southern pockmark, whereas the 

directional structure over the northern pockmark is more variable. Flooding tidal 

conditions typically show a near-northerly flowing surface current that rotates 50- 90 deg 

with depth. During ebbing tidal conditions, directional changes with depth are greater and 

occur more abruptly, typically on the order of 180 deg around 10 m above the seafloor.
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Figure 2-9. Hourly-averaged current magnitude (upper panel) and direction (lower 
panel) data acquried over the northern pockmark at the rim (left pannel) and center 
(right pannel) current meter mounts. The x-axis denotes time (Julian Day) and the 
y-axis shows elevation relative to mean sea level. Rim and bottom depths are 
marked by orange and black dashed lines, respectively.
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Figure 2-10. Hourly-averaged current magnitude (upper panel) and direction (lower 
panel) data acquried over the southern pockmark at the rim (left pannel) and center 
(right pannel) current meter mounts with the same layout as Figure 2-9.
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2.5 Discussion

2.5.1 Mixing

Evidence of mixing and overturning over the sampled pockmarks comes from 

observations of uniform temperature and salinity structure below 15 m, a nearly 

simultaneous rise in temperature recorded at the rim and center of the northern pockmark, 

and strong vertical velocity events extending from above the rim and down into the 

pockmark. CTD observations reveal uniform temperature and salinity properties below 

15 m which is indicative of a well-mixed water column and the interaction of flow above 

and below the rim (Figure 2-6). The absence of vertical temperature gradients over this 

depth allows for small changes in mixing to strongly affect the vertical structure of the 

water column. Therefore slight turbulent perturbations below 12 m can easily and rapidly 

mix this layer well down into the pockmark.

A nearly-simultaneous 0.3 °C temperature rise was recorded by temperature 

sensors along the rim and center current meter mounts of the northern pockmark and 

occurred coincidently with a strong upwelling event followed by a downwelling event 

below the rim (Figure 2-7). This mixing event is similar in character to observations 

reported by Manley, et al. (2004) of overturning within a pockmark in Burlington Bay, 

Lake Champlain, Vermont. They observed increased wind stress at the surface that 

resulted in rapid cooling of the entire water column due to the replacement of warm, 

surface water by cold, deep water. This decrease in temperature was associated with 

strong negative vertical velocities that circulated water throughout the pockmark to create 

a homogeneous profile. These observations of temperature changes above and below the
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rim of sampled pockmarks occurring concurrently with strong vertical velocity events 

indicate active mixing and overturning within these depressions.

Further evidence for mixing within pockmarks is provided by observations of 

strong upwelling and downwelling events that extended from above the rim down into 

the pockmark (Figure 2-8). Highest magnitude vertical velocities (order 0.15 m/s) 

typically occur slightly below the rim of the pockmark, presumably due to inner- 

pockmark circulation patterns. These vertical velocity observations are similar to 

numerically modeled results of flow over a pockmark obtained by Hammer, et al. (2009). 

They observed highest vertical velocities within the modeled pockmark that decreased in 

magnitude towards the surface and were induced by the geometry of the depression. 

These strong vertical velocity observations within the sampled and previously modeled 

pockmarks suggest internal pockmark mixing is most likely enhanced by pockmark 

geometry.

2.5.2 Mean Current Vertical Structure

Current structure is subdivided into three distinct layers at upper, mid, and deep

regions marked by the average depth of the thermocline and the depth of the rim (Figures

2-5, 2-9 and 2-10). Upper-water column currents were influenced by wind stress at the

surface and fluctuate in magnitude and direction in response to transient changes in wind

speed. Mid-water column currents were the most strongly tidally-dominated layer and

show a sub-surface maximum that oscillates with the tide and extends over a large

portion of the water column. Deep water-column structure was highly complex and

varied both temporally and spatially over each pockmark. Ebbing tidal conditions
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typically show complete flow reversal at 10 m above the bed, whereas flooding tidal 

conditions show a lesser degree of rotation from surface to depth, typically on the order 

of 50 -  90 deg. Current observations over the northern pockmark show greater vertical 

and temporal variability that may be influenced by the geometry of Belfast Bay and the 

convergence of currents around Islesboro Island.

Xue, et al. (2000) developed a three-dimensional circulation model of Penobscot 

Bay to examine local circulation and temperature patterns within the bay. The modeled 

trajectories of particles released south of Deer Island show both clockwise and 

counterclockwise circulation around Islesboro Island during summer 1998 conditions at 

surface (6-10 m) and mid-water (30-40 m) depths (Xue and Brooks, 2000). These 

observations suggest converging tidal currents around Islesboro Island may describe the 

circulation pattern within Belfast Bay as well as explain the more complex vertical 

structure observed over the northern pockmark. The more-northern location of the 

northern pockmark is subjected to converging tidal currents entering the bay from the 

east and west of Islesboro Island to create a complex flow pattern over the pockmark. 

Conversely, the proximity of the southern pockmark to the narrow channel to the west of 

Islesboro Island results in more unidirectional, tidally-driven current observations.

2.5.3 Form Drag

Individual horizontal velocity profiles over each pockmark were investigated to 

assess the influence of pockmark geometry on the local flow structure. Current velocities 

past large roughness elements are often retarded due to contributions from skin friction 

and form drag. Skin friction refers to the tangential stress at the boundary, whereas form
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drag results from pressure differences across the object and is produced by flow 

separation and internal wave generation (McCabe, et al., 2006). Chriss and Caldwell 

(1982) were among the first to describe observations of form drag within subaqueous 

horizontal velocity profiles. Their observations of multiple logarithmic regions with 

slopes that increased with distance from the bed suggest that turbulent stress farther from 

the bed was greater than it was closer to the bed and concluded that boundary layer flow 

was significantly influenced by form drag.

The influence of form drag on the local flow regime in Belfast Bay was 

investigated by examining the hourly-averaged horizontal velocity profiles obtained from 

the bottom-mounted current meter observations at the center of each pockmark (Figure 2- 

9). The nature of the vertical structure in horizontal flow can be examined by looking for 

periods of logarithmic current structure near the seabed. A fully turbulent boundary layer 

forms due to the development of turbulent eddies close to the seafloor as a result of the 

overriding flow experiencing friction with the bed. A turbulent boundary layer flow can 

be characterized by a logarithmic velocity profile extending from the seafloor, assuming 

a no slip condition at the bed (Tennekes and Lumley, 1972). This logarithmic velocity 

profile is modeled as a function of friction velocity (u*) and height (z) above the bottom, 

with

where U(z) is the velocity at height z above the bottom, k = 0.41 is the von Karman 

coefficient, and z0 is the roughness length scale that varies with grain size and bedform

(2 .1)
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characteristics. Logarithmic regions were identified in this study using a simple, semi

automated algorithm that compared the observed velocity profile to a linear modeled 

profile in logarithmic space. The skill, S, of the model fit was determined by

where U (z)  and U(z)modei are the horizontal velocity profiles of the observed and modeled 

data, respectively, and N  is the number of depth-averaged measurements within the 

profile. Modeled profiles comprised of three or more data points, with a positive slope, 

and with skill less than two standard deviations from the skill mean were defined as 

having a logarithmic region near the bed; all other profiles were characterized as non- 

logarithmic. For profiles with a logarithmic profile, a second model was applied to data 

further up in the water column beginning at the highest velocity observation of the first 

logarithmic layer. In this manner, a second log layer could be observed. The presence of 

a second logarithmic layer is indicative of form drag resulting from turbulent processes 

generated by roughness elements located upstream of the velocity measurements (Arya, 

1975). Form drag was observed to be significant in the vicinity of the sampled pockmarks 

based on observations of dual logarithmic layers occurring within individual horizontal 

velocity profiles. The form drag component of the total boundary layer stress in this 

region of Belfast Bay most likely originated from turbulent processes occurring over 

nearby, upstream pockmarks.

Horizontal velocity profiles over the northern and southern pockmarks indicate 

periods of no observable logarithmic region, a single logarithmic region, and a dual

Y>{U(z )model U(z )model) /N (2.2)
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logarithmic region (Figure 2-11). A greater frequency of single logarithmic regions are 

observed within the hourly-averaged horizontal velocity profiles over the northern 

pockmark, yet a second logarithmic region is more regularly observed over the southern 

pockmark (Figure 2-12). The second logarithmic region consistently occurs during 

flooding tidal conditions over both pockmarks and may be related to the higher velocity 

tidal flows during this time.

Similar to observations obtained by Chris and Caldwell (1982), the vertical 

gradient of the upper logarithmic region over the sampled pockmarks is always greater 

than the lower logarithmic region and suggests that roughness-induced form drag 

significantly contributes to the total boundary stress over the sampled pockmarks. 

Extending over a large portion of the water column, these logarithmic regions suggest the 

presence of enhanced turbulence and active mixing in the vicinity of pockmarks. 

Furthermore, observations of strong vertical velocity events and uniform temperature 

observations extending from above the rim down into the pockmark in conjunction with 

multiple logarithmic regions within the horizontal velocity profiles provide evidence for 

mixing and recirculation over both pockmarks.
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Figure 2-11. Example hourly-averaged horizontal velocity profiles obtained over the 
southern pockmark and displayed in semi-logarithmic space. The y-axis denotes 
elevation relative to mean sea level on a logarithmic scale and the x-axis shows 
current magnitude ranging from 0 to 0.25 m/s. Profiles show observations of no 
logarithmic region (left panel), a single logarithmic region (middle panel), and a 
dual logarithmic region (right panel).
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Figure 2-12. Observations of single and dual logarithmic regions over the center of 
the northern and southern pockmark. Profiles observed to have a single logarithmic 
region are denoted by a gray square and profiles with dual logarithmic regions are 
denoted by a black square. Note, a second logarithmic region was only defined 
during time periods over which the semi-automated algorithm defined a single 
logarithmic region.

2.6 Conclusions

Temperature, salinity, and current observations acquired over two pockmarks in 

Belfast Bay, Maine indicate a well-mixed vertical structure over a large portion of the 

water column and suggest form drag significantly influences boundary layer flow over 

pockmarks. Mean current vertical structure shows three distinct regions that are separated 

by the thermocline and rim depth. Variations in surface current magnitude and direction 

are primarily controlled by temporary changes in wind speed, whereas mid-water column 

flow is mainly tidally-modulated. A sub-surface maximum occurs around 5 to 15 m depth 

below the surface and fluctuates with the tide. Low-velocity currents below the rim show 

complex rotational changes with depth that are typically greater and in excess of 90 deg 

during the ebbing tide.
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Temperature and salinity profiles in conjunction with vertical velocity 

observations over each pockmark suggest mixing and overturning are actively occurring 

over these depressions. Uniform temperature and salinity observations with depth are 

indicative of a well-mixed water column and are observed over each pockmark from 12 

m depths to the bed. Furthermore, observations of a nearly simultaneous temperature rise 

recorded at the rim and center of the northern pockmark occurring with strong vertical 

velocities below the rim suggest active overturning of the water column. Observations of 

vertical velocity events extending from above the rim to down into the pockmark indicate 

active exchange of fluid within the pockmark.

The influence of form drag in the vicinity of the sampled pockmarks was 

investigated by examining hourly-averaged velocity profiles. Many velocity profiles 

showed multiple logarithmic regions which suggests form drag significantly influences 

the local flow regime. These observations of mixing and enhanced turbulence over the 

sampled pockmarks are consistent with field observations and modeled results of flow 

over pockmarks (Manley, et al., 2004; Hammer, et a l, 2009; Brothers, et a l,  201 lb).

Future studies should include long-term monitoring of the temperature and current 

patterns over multiple pockmarks to assess the influence of storm events on the vertical 

stmcture above pockmarks and better constrain circulation patterns within these 

depressions.
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CHAPTER 3

OBSERVATIONS OF POCKMARK FLOW STRUCTURE 
IN BELFAST BAY, MAINE, PART 2: 

RECIRCULATION AND CAVITY FLOW

3.1 Abstract

Pockmark flow circulation patterns are investigated through current 

measurements along the rim and center of two pockmarks in Belfast Bay, Maine. 

Observed time-varying current profiles have a complex vertical and directional structure 

that rotates significantly with depth and is strongly dependent on the phase of the tide. 

Observations of the vertical profiles of horizontal velocities in relation to relative 

geometric parameters of the pockmark are consistent with circulation patterns described 

qualitatively by cavity flow models (Ashcroft and Zhang, 2005). The time-mean behavior 

of the shear layer is typically used to characterize cavity flow and was estimated using 

vorticity thickness to quantify the growth rate of the shear layer horizontally across the 

pockmark. Estimated positive vorticity thickness growth rates are qualitatively consistent 

with cavity flow predictions, but occur at largely different rates between the two 

pockmarks. Previously modeled flow patterns over pockmarks of similar geometry to 

those examined herein (Brothers, et al., 2011b), are also conceptually consistent with 

cavity flow circulation. Therefore, Belfast Bay pockmarks of similar geometry to those
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sampled in this study may also be characterized by circulation patterns predicted by open 

cavity flow.

3.2 Introduction

Pockmarks are crater-like depressions in the seafloor that are globally distributed 

and ubiquitous in nearshore environments (e.g., Kelley, et al., 1994). These depressions 

are believed to form from fluid and gas escape from underlying, unconsolidated sediment 

and range in size from a few meters to several kilometers in diameter (Hovland and Judd, 

1988). The interaction of currents with seafloor depressions is poorly understood, but is 

of primary importance to circulation, mixing, and sediment transport within pockmarks. 

Current observations in the vicinity of pockmarks will improve ecological models that 

estimate faunal and nutrient dispersion patterns around pockmarks as well as better 

constrain sedimentation and erosion rate estimations within and around these prominent 

seafloor features.

Three previous studies have investigated current circulation within pockmarks. 

Manley, et al. (2004) conducted a long-term field study over a nearly circular pockmark 

with length-to-depth ratio (L/D) of approximately 10 in Burlington Bay, Vermont. 

Observations of strong, upward-directed vertical velocity events and flow recirculation 

within the pockmark are suggested to be consistent with back-eddy formation or the 

development of a cyclostrophic flow within the pockmark. Three-dimensional numerical 

modeling completed by Hammer, et al. (2009) examined current flow over a pockmark 

(L/D -5.7) with similar dimensions to those found naturally in the Inner Oslofjord, 

Norway pockmark field. Modeled results showed contour-following currents with strong
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upward-directed velocities in the center and along the downstream edge of the pockmark 

that conceptually agreed with the cyclostrophic flow model proposed by Manley, et al. 

(2004). Brothers, et al. (2011b) numerically modeled incompressible flow over a 

simplified pockmark in two and three dimensions. Their results show both contour- 

following and recirculating flow patterns within the pockmark as the relative length-to- 

depth ratio of the pockmark is altered and indicate that pockmark flow circulation is 

strongly influenced by the geometry of the depression.

In Chapter 2 of this thesis, we described field observations obtained in two 

pockmarks in Belfast Bay, Maine. These observations indicate active mixing and 

overturning throughout the pockmarks and the influence of roughness-induced form drag 

on the overall flow structure. This study investigates the relationship between pockmark 

geometry and internal circulation patterns using the same field observations obtained 

along the rim and center of the two sampled pockmarks (Figure 3-1).

Belfast Bay is located in the northwestern Gulf of Maine and is characterized by 

an extensive pockmark field in a shallow, estuarine environment with tidally-driven 

currents. Greater complexity in flow structure is observed over the northern pockmark 

due to converging tidal currents around Islesboro Island (Xue, et al., 2000). The closer 

proximity of the southern pockmark to the narrow channel to the west of Islesboro Island 

results in more tidally-driven, unidirectional flow over the pockmark. This paper shows 

that a conceptual open cavity flow model (Ashcroft and Zhang, 2005) qualitatively 

predicts recirculation patterns within the two sampled pockmarks in Belfast Bay.
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Figure 3-1. Overview map of Belfast Bay, Maine (left panel). Weather stations are 
denoted by gray triangles. The approximate locations of the northern and southern 
pockmarks are outlined by gray boxes. Bathymetric maps of the northern and 
southern pockmarks are shown in the upper right panel and lower right panel, 
respectively. The black/white circles and range bars denote the approximate 
location of the center and rim current meter mounts and their associated 
uncertainty.
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3.3 Methods

Bathymetric and current measurements were obtained in July 2011 along the rim 

and center of two pockmarks in Belfast Bay (Figure 3-1). The field setting and 

observational methods are described in detail in Chapter 2 of this thesis and are only 

summarized here.

High resolution bathymetry was measured with a shipboard single beam echo 

sounder and gridded to 2.5 m resolution to define the geometry of the pockmarks (Figure

3-1). The pockmarks are located in the northern and southern regions of Belfast Bay and 

differ in relative geometry. The nearly-circular, northern pockmark is about 45 m in 

diameter and located within 21 m water depth with a length-to-depth ratio of 3.7. The 

more elongated, southern pockmark is approximately 85 m in diameter along the major 

axis dimension with a length-to-depth ratio of 4.7 in 25 m water depth. Tidal phases were 

determined from observations at a NOAA Tide gauge in Portland, Maine, to the south, 

and corrected for tide phase lags from Portland to Belfast.

Current velocities were measured by the center and rim bottom-mounted ADCPs 

in 0.5 m successive bins. Mean current data are reported as hourly-averaged velocities 

with 2 m vertical bin resolution. ADCP velocity accuracy is greater than 0.0025 m/s in 

all three dimensions.

The location of bottom-mounted ADCPs deployed on the rim and in the center of 

each pockmark was determined within about +/- 3.5 m accuracy. The center ADCPs 

were positioned slightly north of the pockmark center along the northeastern sidewall at a 

tilt angle of about 18-25 deg. This slightly offset position of the center current meter 

mounts to the northeast of each pockmark center is a distinction that is important to the



interpretation of the circulation pattern and growth of the shear layer across the pockmark 

that is predicted qualitatively by open cavity flow.

Currents behavior described in Chapter 2 show strong vertical structure and were 

sub-divided into three sections, the surface, middle, and deep water column delimited by 

the average depth of the thermocline, about 8 m below the surface, and the depth of the 

rim. Surface tidal flows range from 0 to 0.25 m/s and are modified by local wind-driven 

currents. Upper water column flow over the northern pockmark is further influenced by 

converging tidal flows around Islesboro Island. Mid water column currents are typically 

stronger than the surface flow and show greater tidal-dependency. A sub-surface 

maximum is observed over each pockmark around 12 m depth and fluctuates with the 

tide. Directional structure above the rim is tidally-modulated but rotates with depth 

clockwise and counter-clockwise depending on modification by wind-driven currents. 

Low-velocity currents below the rim range from 0 -  0.05 m/s and show a tidally-varying 

rotational structure. The time-mean behavior of rotational structure below the rim is the 

focus of this paper.

3.4 Results

Figure 3-2 shows the observed temporal evolution of the horizontal current 

rotational behavior with depth over each pockmark. Over the northern pockmark, the 

rotational structure is generally tidally-varying but has high temporal variability with 

horizontal currents that rotate both clockwise and counter-clockwise with depth and 

exhibit additional complexity below 10 m. Currents typically show a greater degree of 

rotation during the ebbing tide where flows below the rim often rotate more than 90 deg
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from near-surface flow. Significant rotation with depth is also observed during the 

flooding tide, but to a lesser degree, on the order of 50 - 90 deg. A similar, tidally-varying 

rotational pattern is observed over the southern pockmark, but with less vertical and 

temporal variability perhaps due to the higher-velocity currents in the narrower region of 

the bay. Directional changes from surface to depth over the southern pockmark typically 

rotate in a counter-clockwise direction on the order of 90 - 180 deg during the ebbing tide 

and 50 - 90 deg during the flooding tide. At slack tides reversal of flow near the bottom 

of each pockmark leads the surface flow, consistent with typical boundary layer behavior 

where weaker near-bottom flows have less inertia and respond more quickly to changes 

in the forcing (Kundu and Cohen, 2008).
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Figure 3-2 (Previous Page). Color-filled contour plots of current direction data 
obtained at the center of the northern and southern pockmark. Horizontal axis 
denotes time (Julian Day) and vertical axis shows depth relative to mean sea level. 
The dotted orange and black lines indicate the rim and bottom depth, respectively. 
Observed tidal oscillations are displayed over current observations as a solid black 
line.
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Horizontal current direction profiles over 1 hr periods during maximum flooding and 

ebbing tidal phases are shown in Figure 3-3. As before, the overall vertical rotational 

structure shows a tidally-varying pattern over both pockmarks. Near-northerly directed 

flow above the rim is observed during the maximum flooding tides and rotates nearly 180 

deg during maximum ebbing tidal conditions. Below the rim, significant and abrupt 

changes in rotation are observed that are typically greater during the ebbing tide. The 

sense of rotation from surface to depth varies over each pockmark. Over the northern 

pockmark, currents rotate both clockwise and counter-clockwise with depth, whereas 

over the southern pockmark, currents always rotate in a counter-clockwise direction 

during these maximum flow events. Flow over both pockmarks during maximum 

flooding tidal conditions is nearly northward at the surface and rotates approximately 50 - 

100 deg with depth. As the tide ebbs, a greater degree of rotation is observed as currents 

rotate from 180 ± 50 deg near the surface to 0 ± 50 deg at depth. These significant 

directional changes below the rim typically occur at about 10 m above the seafloor, 

approximately mid-way between the rim and bottom of the pockmark. The observed 

rotation below the rim generally occurs more abruptly during the ebbing tide, especially 

over the southern pockmark. During the flooding tide, the rotation from surface to depth 

is less and occurs more gradually. These tidally-varying rotational patterns over both 

pockmarks resemble circulation patterns qualitatively predicted by open cavity flow and 

will be discussed later.
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Figure 3-3. Hourly-averaged horizontal velocity direction profiles during maximum 
flooding (blue) and ebbing (red) tidal conditions from the center current meter 
mount in the northern (upper) and southern (lower) pockmark. Observed tidal 
oscillations are shown in the top panel. Highlighted bars along the tidal cycle with 
representative roman numerals each correspond to the hourly-averaged horizontal 
velocity direction profile shown in the lower panel. The horizontal axis of the lower 
panel denotes current direction where 0 deg, northerly flow, is marked by a 
vertically dashed gray line. The horizontally dashed orange and black lines in the 
lower panel denote the rim and bottom pockmark depth, respectively.
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3.5 Discussion

The complexity of the horizontal velocity structure over the northern and southern 

pockmarks may be partly explained by the geographic location of the pockmarks within 

the bay (Figure 3-1). Relatively higher velocity tidal flow enters Belfast Bay through a 

narrow channel to the west of Islesboro Island. The proximity of the southern pockmark 

to this channel yields more strongly tidally-driven current observations than over the 

northern pockmark where increased complexity in horizontal current structure may be 

attributed to converging tidal currents around Islesboro Island (Xue and Brooks, 2000).

Vertically-varying rotational structure observed over the pockmarks show abrupt 

directional changes during the ebbing tide that are consistent with open cavity flow and 

the formation of a recirculation cell within the pockmark (Rockwell and Naudasher, 

1978). Cavity flow patterns have been well-studied through multiple theoretical, 

empirical, and numerical investigations (e.g. Sarohia, 1977; Rockwell et al., 1978; Ahuja 

and Mendoza, 1995). These studies have shown cavity flow circulation to be strongly 

influenced by numerous flow parameters including boundary layer thickness, freestream 

velocity, turbulence, and the geometry of the cavity. The time-mean behavior of the shear 

layer is typically used to characterize cavity flow and is described as the layer that forms 

as the overriding flow separates at the upstream rim of the cavity due to the geometry of 

the depression. The time-mean behavior of the shear layer is strongly dependent on the 

length-to-depth ratio of the cavity and subdivides cavity flow into two flow regimes: 

closed cavity flow and open cavity flow. Closed cavity flow predominantly occurs in 

shallow cavities (L/D > 9) and is characterized by the shear layer flowing into the cavity, 

reattaching along the base, and then separating again before the downstream wall.
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Conversely, open cavity flow typically occurs in deeper cavities (L/D < 6) and is 

described by the shear layer passing over the cavity and reattaching along the trailing 

edge. Figure 3-4 shows a schematic that illustrates this point. The relatively small length- 

to-depth ratios of the northern (L/D == 3.7) and southern (L/D ~ 4.7) pockmarks suggest 

that circulation patterns within these depressions should resemble open cavity flow.

Ebbing TideFlooding Tide

N

Ebbing TideFlooding Tide

i u

0.40.6

Figure 3-4. Schematic diagram of open cavity flow circulation and shear layer 
growth with distance downstream. The approximate location of the ADCPs within 
the pockmark is denoted by yellow triangles with relative distance downstream 
from the leading edge marked in red. The upper panel illustrates the predicted open 
cavity flow circulation patterns within the sampled pockmarks during the flooding 
and the ebbing tide. The lower-panel shows the temporally varying horizontal 
velocity direction profiles across a modeled cavity during flooding and ebbing tidal 
conditions and approximate shear layer growth with distance downstream (shaded 
orange region). The horizontal velocity direction profiles are centered on 0 deg 
which is marked by a dashed gray line. This figure was modified from Ashcroft and 
Zhang’s (2005) Figure 3.
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The time-mean development of the shear layer increases with distance downstream 

in open cavity flow and can be estimated using vorticity thickness (Ashcroft and Zhang, 

2005). Vorticity thickness (<5a)) is given by

c  _  u 2 ~  u i  n  n

w a<t/>/dz|ma*z

where U\ is the velocity at the bed (assumed to be 0 m/s), Ui is the freestream velocity 

and (U) is the time-mean velocity profile of the shear layer that varies with depth. 

Vorticity thickness was calculated at two length scales within each pockmark based on 

the relative location of the current meter mount with respect to the leading edge of the 

pockmark during the flooding (0.6L) and ebbing (0.4L) tide, where L is the diameter at 

the rim (Figure 3-4).

Figures 3-5 and 3-6 are sub-divided into three panels that show the temporally 

varying freestream velocity and maximum velocity gradient in the upper two panels used 

to calculate the vorticity thickness illustrated in the lower panel. The white regions in 

each panel denote slack tide, during which vorticity thickness was not estimated. The 

upper panel shows the temporal evolution of the horizontal current magnitudes acquired 

at the rim. The dashed gray lines outline the upper 8 m of the water column delimiting the 

depth range over which the maximum velocity was determined and denoted as the 

freestream velocity (Ui). The middle panel displays the vertical velocity gradient 

calculated from the hourly-averaged horizontal velocity data acquired by the center 

mounted current meter. The gray circle denotes the maximum gradient within the 

observed shear layer, which is outlined by the gray error bars. The lower panel shows the
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temporal evolution of estimated vorticity thicknesses and is overlain by the observed tidal 

oscillations. Greater vorticity thicknesses were estimated during flooding tidal conditions 

and signify the growth of the shear layer with distance downstream. However, the rate at 

which the estimated vorticity thickness increased across the pockmark largely differed 

between the two pockmarks. Mean vorticity thickness estimations at the northern 

pockmark increased from 13.34 m during ebb tidal flow to 13.95 m during flood tidal 

flow at a spreading rate (dSm / dx ) of 0.061. Estimated mean shear layer growth rate over 

the southern pockmark was much greater (0.36) and nearly doubled from ebbing (8.62 m) 

to flooding (16.07 m) tidal conditions.

Spreading rate estimates across the sampled pockmarks are qualitatively compared 

to those obtained by Ashcroft and Zhang (2005) over a modeled deep cavity (L/D = 4) 

(Figure 3-7). Ashcroft and Zhang (2005) observed linear shear layer growth across the 

modeled cavity at a spreading rate of 0.14. The variability in spreading rates observed 

over the modeled deep cavity and the sampled pockmarks may be attributed to the 

geometric differences between these depressions. Modeled cavity geometry is defined by 

vertical sidewalls and a flat base whereas the Belfast pockmarks were conical in nature 

with an approximate 30 deg sidewall slope. The influence of non-vertical sidewalls as 

well as proximity and influence of flow over other regional cavities are unaccounted for 

in this model and may account for some of the differences in spreading rate estimates. 

Although large variability in spreading rates were observed over the sampled pockmarks, 

observations of flow reversal near the base of the pockmarks and downstream growth of 

the shear layer are consistent with open cavity flow and suggest cavity flow may describe 

the nature of pockmark flow circulation in the pockmarks in Belfast Bay.
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Figure 3-5 (Previous Page). Vorticity thickness estimations over the northern 
pockmark. Vorticity thickness was not estimated during slack tide so data during 
this time interval are not displayed. The horizontal axis denotes time in Julian Days 
and the horizontal dashed orange and black lines in the upper two panels denote the 
rim and bottom pockmark depth, respectively. The upper panel shows current 
magnitude data acquired at the rim. Dashed gray lines outline the upper 8 m of the 
water column from which a maximum velocity was chosen and denoted as the 
freestream velocity (gray dot). The middle panel denotes the vertical velocity 
gradient over the center of the pockmark. The maximum gradient in velocity within 
the shear layer is marked by a gray dot, where vertical gray error bars denote the 
depth range over which the shear layer was defined. The lower panel shows 
estimated vorticity thicknesses during the flooding (blue) and ebbing (red) tide and 
are overlain by tidal observations. Note vorticity thickness was only estimated when 
a shear layer was observed in the hourly-averaged velocity profile.
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Figure 3-6. Vorticity thickness estimations over the southern pockmark. This figure 
has the same layout as Figure 3-5.
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Figure 3-7. Vorticity thickness relative to pockmark length estimated over the 
northern and southern pockmark during flooding (blue) and ebbing (red) tidal 
conditions. Man vorticity thicknesses during flooding and ebbing tidal conditions 
are represented as black squares and displayed in the lower right corner of each 
graph.

Hydrodynamic modeling of flow within a pockmark obtained by Hammer, et al. 

(2009) and Brothers, et al. (201 lb) were qualitatively compared to the cavity flow model 

to further assess the applicability of this model in predicting pockmark flow circulation 

patterns. Hammer, et al. (2009) conducted three-dimensional numerical simulations of 

flow within a pockmark (L/D = 5.7) and found contour-following horizontal velocity 

currents that decreased in magnitude with depth, representative of closed cavity flow. 

Their length-to-depth ratio of the modeled pockmark is close to the theoretical threshold 

of open cavity flow (L/D <6) and may explain the observed inconsistencies.

Numerical simulations conducted by Brothers, et al. (2011b) examined circulation 

patterns arising from two-dimensional turbulent flow over a shallow pockmark (L/D = 

18) and three-dimensional laminar flow over a deep pockmark (L/D = 4.7). Modeled
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results indicate contour-following currents within the shallow pockmark and the 

formation of a large circulation cell within the deep pockmark that bridges the pockmark 

opening and circulates throughout the depression. These results are consistent with cavity 

flow circulation that predicts contour-following currents in shallow (L/D <6) cavities and 

recirculation cell formation within deep cavities (L/D > 9). The consistency between 

modeled and empirical results of Belfast Bay pockmark flow patterns and cavity flow 

circulation suggest that cavity flow circulation may be a good first-order model of 

pockmark flow circulation.

2.6 Conclusions

Horizontal current direction profiles acquired over the near-center of two pockmarks 

in Belfast Bay show significant rotation with depth that exhibits a tidally-modulated 

pattern, specifically below the rim. During the flooding tide, nearly northward surface 

currents gradually rotate 75 ± 25 deg with depth. Larger directional changes are observed 

during ebbing tidal flow on the order of 180 ± 50 deg and typically occur abruptly around 

10 m from the bottom. These observations of a greater degree of rotation with depth 

during ebbing tidal conditions are qualitatively consistent with circulation patterns 

predicted by open cavity flow.

Open cavity flow typically occurs in deep cavities (LTD < 6) and is characterized by 

shear layer growth with distance downstream. Shear layer growth rates were 

approximated using vorticity thickness and are positive across both pockmarks. These 

observations of near-bed flow reversal and shear layer growth with distance downstream
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are consistent with open cavity flow patterns and suggest that pockmark flow circulation 

in Belfast Bay may be represented by cavity flow.

Future pockmark circulation studies should complete long-term measurements of the 

horizontal and vertical velocity structure at multiple locations within the depression in 

order to better resolve three-dimensional flow patterns within pockmarks. Modeling 

efforts should investigate the influence of varying pockmark geometry (e.g. symmetry 

and L/D ratios.), pockmark density, and internal pore water and gas excavation on 

regional and local flow patterns of pockmarks.
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CHAPTER 4

OBSERVATIONS OF POCKMARK FLOW STRUCTURE 
IN BELFAST BAY, MAINE, PART 3: 

IMPLICATIONS FOR SEDIMENT TRANSPORT

4.1 Abstract

Current observations and sediment characteristics acquired within and along the rim 

of two pockmarks in Belfast Bay, Maine, were used to characterize periods of incipient 

motion and to investigate conditions favorable to the settling of suspended sediment. 

Observations were obtained over a 4-day period in late July of 2011 during average tidal 

and benign wave and wind conditions in water depths ranging 21 (32) to 25 (41) m at the 

rim (center) of each respective pockmark. The critical Shields parameter was 

approximated with the theoretical model of Dade, et al., (1992) that characterizes the 

cohesive forces between individual sediment grains using the yield stress of the sediment. 

Hourly-averaged Shields parameters determined from horizontal current velocity profiles 

within the center of each pockmark never exceed the critical Shields parameter. However, 

stronger currents along the pockmark rims are consistent with conditions that support 

incipient motion and sediment suspension near the bed. The critical Shields parameter 

was periodically exceeded along the rim of each pockmark during maximum ebb and 

flood tidal flows, particularly at the southern pockmark where higher-velocity horizontal 

currents were observed. Depth-averaged vertical velocities at the ADCP below the rim in
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the near-center of each pockmark were less than zero (downward) nearly 60% (55%) of 

the time in the northern (southern) pockmark and are often comparable in magnitude to 

corresponding depth-averaged horizontal velocities below the rim. At the rim of each 

pockmark, depth-averaged vertical velocities over the lower 8 m of the water column are 

also primarily negative, but of much lower magnitude than the corresponding depth- 

averaged horizontal velocities. Therefore suspended sediment may be moved to a distant 

location, resulting in bed erosion at the rim. Although infrequent, during periods of 

positive depth-averaged vertical velocities over the rim and center of each pockmark, 

estimated maximum grain sizes capable of remaining in suspension under terminal 

settling flow conditions, were much greater than the observed median grain diameter at 

the bed. Therefore, during upwelling flow within the pockmarks, and in the absence of 

flocculation, suspended sediment would not settle through the water column and may be 

moved downstream. The greater frequency of observed conditions that predict incipient 

motion along the rim of the southern pockmark is consistent with pockmark morphology 

in Belfast Bay which transitions from more spherical to more elongated with distance 

offshore. Observations of both incipient motion along the rim and conditions that support 

both deposition or continued suspension of sediment in the center of either pockmark 

suggest near-bed sediment transport may contribute to post-formation pockmark 

evolution during average, benign conditions in Belfast Bay.

4.1 Introduction

Pockmarks are large, circular to elongate seafloor depressions and are globally 

distributed in a wide-range of settings including estuaries (Scanlon and Knebel, 1989; 

Bamhardt, et a i, 1997), lakes (Pickrill, 2006; Manley, et al., 2004), and offshore
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environments (King and MacLean, 1970; Pauli, et al., 2002). Pockmarks range in size 

from a few meters to several kilometers in diameter and form from a sudden or gradual 

release of fluid and gas from underlying sediment (Judd and Hovland, 2007). In 

minimally-venting pockmark fields, flow-induced turbulence and low sediment input are 

typically invoked as mechanisms of post-formation pockmark maintenance, yet few 

studies have numerically modeled current flow within pockmarks (e.g., Hammer, et al., 

2009; Brothers, et al., 2011b) or obtained physical measurements within these 

depressions (e.g., Manley, et al., 2004).

Field observations and numerical modeling of current flow over a spherical 

pockmark (Hammer, et al., 2009) indicate upwelling and flow recirculation within the 

depression that is qualitatively consistent with a theoretical model proposed by Manley, 

et al. (2004). The model describes the formation of a cyclostrophic rotational flow within 

the pockmark due to the elongation of the water column over the depression. This 

circulation pattern may prevent the settling of fine-grained material within the pockmark 

(Hammer, et al., 2009), which is consistent with observations of coarser-grained deposits 

within the center of many pockmarks (e.g. Manley, et al., 2004; Webb, et al., 2009). A 

subsequent study (Brothers, et al., 201 lb) examined uni-directional flow over a spherical 

pockmark through numerical modeling and flume-tank experiments and observed 

enhanced turbulence along the rim and base of the depression. Recent field observations 

obtained in estuarine pockmarks located in Belfast Bay, Maine, show that strong 

overturning events extending from the rim to the bottom of the pockmark occur 

periodically (Chapter 2 of this thesis), and that horizontal circulation and shear layer 

thickness evolution across the pockmark are qualitatively consistent with open cavity
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flow (Chapter 3 of this thesis). These observations suggest that near-bed turbulence 

induced by bottom shear stresses and circulation in the pockmark may lead to net 

sediment transport and contribute to long-term maintenance of pockmarks in Belfast Bay.

This study examines hydrodynamic processes and sediment properties within and 

around two pockmarks in Belfast Bay using field observations of currents and sediment 

characteristics obtained within the center and along the rim of these depressions during a 

rising high tide (Figure 4.1). Belfast Bay is located in the northwestern Gulf of Maine, 

approximately 20 km southwest of the Penobscot River (346 m V  mean discharge; 

PEARL, 2011) and is characterized as a shallow, estuarine environment. Pockmark 

morphology in Belfast Bay varies from more circular in the north to more elongated in 

the south where the bay constricts in width from 8.5 km to 2.6 km. Evidence exists both 

for and against an actively venting pockmark field in Belfast Bay. Observations of 

acoustic turbidity (Brothers, et al., 2011a), sidewall angles in excess of the angle of 

repose (Brothers, et al., 2011b), and material being ejected from a pockmark (Kelley, et 

al., 1994) provide evidence for actively degassing pockmarks in Belfast Bay. However, a 

recent geochemical survey of Belfast Bay reported no evidence of active methane or 

pore-fluid excavation and concluded that the Belfast Bay pockmarks may be inactive 

(Ussier, et al., 2003). This paper shows that flow-induced stress may act to modify the 

Belfast Bay pockmarks in conjunction with, or in the absence of natural gas and pore- 

water excavation.
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Figure 4.1. Locations of the sampled northern and southern pockmarks in Belfast 
Bay, Maine. Right panel shows the north-south bathymetric profile (black line) 
across the northern (upper) and southern (lower) pockmark with x-axis indicating 
distance from the pockmark center and y-axis showing elevation relative to mean 
sea level. The dashed blue line denotes the surface. Gray triangles represent the 
approximate locations of the ADCP mounts with extended dashed lines showing the 
acoustic beam angles. Note, current measurements were eliminated at depths that 
were not reached by all acoustic beams.
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4.1.1 Sediment Transport

Sediment transport of unconsolidated sediments on the seafloor is often 

parameterized by the Shields parameter, 6\ given by

where p  is the density of water, ps is sediment density, g is gravity, dso is the median 

grain diameter, and u t is the friction velocity. The Shields parameter characterizes the

sediment, ip-p^g . Under turbulent flow conditions, as observed over the sampled 

pockmarks (Chapter 2), a logarithmic velocity profile is typically used to characterize the 

near-bed, time-averaged horizontal velocity profile and to estimate the temporarily 

varying friction velocity. Following Whitehouse, et al., (2000), under hydrodynamically 

smooth flow conditions, as are typically found in muddy estuaries (with dn < 62.5 pm) 

like Belfast Bay, the logarithmic velocity profile varies as a function of u , and height, z, 

above the bottom, and is given by the equation,

i.Ps~P)ddso
(4-1)

ratio of the quadratic bed shear stress gradient, -7 -̂ =  p u }, to the immersed weight of the
« 5 0

V
(4-2)
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where U(z) is the mean horizontal velocity profile above the bed, u is the kinematic 

viscosity of water, and ks = 2.5dso is the Nikuradse roughness. Estimates of u* can be 

obtained from (4.2) through iteration and using the value of U(z) at the closest near-bed 

location (assuming a logarithmic profile extending from the bed).

Incipient motion represents the instant when an individual sediment grain begins to 

move. For incipient motion to occur, the Shields parameter must exceed a critical value, Q 

> 0cr, where

0  =  pu*V. ( 4 _ 3 )

( .P s ~ P )g d  SO

and u„cr is the critical friction velocity. The critical Shields parameter is typically 

estimated using the empirically-based Shields diagram. However, when sediment exhibits 

cohesive properties, the critical Shields parameter must account for the cohesive bonds 

between individual sediment grains. Dade, et al. (1992) formulated a theoretical model to 

approximate the critical Shields parameter for cohesive sediment as a ratio of the 

gravitational, frictional, and cohesive properties acting to keep a grain stationary in the 

presence of lift and drag forces imposed by the overriding, near bed flow. In their model, 

the cohesive force between particles per surface area of grain is represented by the yield 

stress, which has been empirically correlated to the critical bed shear stress by Mignoit 

(1968). Assuming the viscous region of the overriding turbulent flow is large relative to
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the spherical grain size, Dade, et al. (1992), showed that the critical Shields parameter 

{dcr) for mud may be approximated by,

^ = 1+0.iC lw (i+l )-(fie-)<3 < 4 - 4 >

where

-  ^ 1 ~ R2 
^  R 1/ 3 cos-1 R

and Re* is the Reynolds number given by its critical value, (/?e*)cr ,

( Re>)cr =  0 ( 4 . 5 )

The angle of repose (<p) of the sediment was approximated as 20 deg, typical of fine

grained marine sediment (Booth, et al., 1985). The shape factor b\ relates the drag force 

acting on the particle relative to the drag force acting on a sphere of equivalent volume, 

under the assumption that R, the characteristic aspect ratio of cylindrical grains, is less 

than one. The characteristic aspect ratio (R = 0.8) was estimated from scanning electron 

microscope images of sediment collected in the western Gulf of Maine by Mazzullo, et
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al. (1988). The shape factor is also a function of the characteristic aspect ratio, R, and 

accounts for the platiness of the particle. The ratio F/JFg relates the net interparticle 

cohesive force acting in the vertical (Fa) to the submerged particle weight induced by 

gravity (Fg), and is a function of the yield stress, ty, of the surficial, fine-grained 

sediment. The yield stress of remolded sediment is typically and most directly measured 

using a controlled stress rheometer (Van Kessel and Blom, 1998), and was empirically 

related to the measured moisture content of the soil, W, by Hoepner, et al., (2001) by

Ty  =  5.75 -  1.84W  (4-6)

Substitution of (4.5) into (4.4) and using (4.3) -  (4.6) yields a cubic equation in 

u ,cr that can be solved analytically, with the single real root being the solution of interest. 

The critical friction velocity can then be substituted into (4.3) to yield the critical Shields 

parameter that defines a threshold over which cohesive sediment is expected to move.

For sediment to settle out of suspension, the sediment settling velocity must be 

greater than the depth-averaged vertical velocities, w, near the bed. When depth- 

averaged vertical velocities are negative and comparable in magnitude to the depth- 

averaged horizontal currents, suspended sediment will settle at a rate that varies with 

sediment grain size and density. Conversely, when depth-averaged vertical velocities are 

positive, settling will only occur if the settling velocity of an individual particle is greater 

than the upwelling vertical velocities. The terminal settling velocity of a particle is 

reached when the downward force induced by gravity is counteracted by the resistive
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force induced by the fluid’s drag. Stoke’s law (Winterwerp and Van Kesteren, 2004) 

defines the terminal settling velocity, Vs, in terms of the particle diameter dn,

CPs~ P)9dn 
18(1

(4-7)

where p. is the dynamic viscosity of water. The maximum grain diameter capable of 

remaining in suspension under the observed flow conditions, dnmax, can be determined 

by substituting the observed depth-averaged vertical velocities, w, for the terminal 

settling velocity, Vs, and solving for dHmax, where,

Comparison of dnjnax to the observed median grain size, dso, of the bed sediment 

provides some indication whether sediment would be expected to settle out in the 

presence of the observed vertical velocities.

It should be noted that (4.8) was developed for non-cohesive sediments, and does 

not account for fine-grained sediment deposition through flocculation. The degree of 

flocculation is controlled by a variety of sediment and flow characteristics including the 

size, concentration, and physical and chemical properties of the suspended material as 

well as the dimensions of the smallest turbulent eddies within the flow (Van Leussen, 

1988; Manning, et al, 2011). Nonetheless, when depth-averaged vertical velocities are 

greater than 0  m/s (i.e., upwelling conditions), the likelihood of unconsolidated sediment

■max (4-8)
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settling out of suspension can be qualitatively evaluated by estimating dnmax from (4.8) 

and comparing these values to the observed dso-

4.2 Methods

The theoretical development above indicates that estimations of the critical Shields 

parameter and maximum grain size under terminal settling conditions requires 

observations of the local horizontal and vertical currents (U(z) and w(z)) and sediment 

characteristics (W  and dn). The vertical profile of the horizontal and vertical currents as 

well as sediment water content and grain size distribution were measured at the rim and 

center of two pockmarks in Belfast Bay to characterize periods of incipient motion and 

sediment settling over a 48 hr sampling period in late July 2011. The sampled pockmarks 

consist of a shallow, nearly circular, 45 m diameter pockmark with 12 m of relief located 

in the northern region of the bay and a deeper, more elongated, 85 m diameter pockmark 

with 17 m of relief located further south (Figure 4.1). Current velocity profiles were 

obtained at the rim and center of each pockmark using upward-looking 300 kHz RDI 

Workhorse Acoustic Doppler Current Profilers (ADCPs) mounted on an aluminum 

frame. Data were collected through a vertical column beginning 2.37 m (rim) and 2.24 m 

(center) above the seafloor and averaged spatially over 4 successive 0.5 m bins and 

temporally over 1 hr intervals. The center current meter mount additionally housed a 

Nortek Aquadopp current meter positioned 0.7 m above the seafloor that sampled hourly- 

averaged near-bed currents. Details of the ADCP deployments and survey methods are 

described in detail in Chapters 2 and 3 of this thesis. This study will focus on the 

horizontal and vertical current velocities averaged over the mid-water column, from 8 m
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to the rim depth, and the deep-water column, from the rim depth to the bottom of the 

pockmark.

Sediment samples were obtained from the center and rim of each pockmark using a 

Shipek grab sampler and were placed in sealed, quart-sized plastic bags. After 

acquisition, samples were analyzed for water content and grain size. Water content 

measurements were made in July 2012 by measuring the loss of mass between a wet, 

mweh and then oven-dried, m ^ , sample, following standard procedures (ASTM 

Standards, 2010). Data are presented as a percentage of the sample’s dry mass (W = (mwel 

- mdry)lmdry). Although water content measurements were completed nearly 12 months 

after data collection, the effects of evaporation are expected to be minimal due to the 

placement of the sediment samples in sealed, plastic bags and a controlled environment. 

Next, sediment samples were prepared for sediment grain size analysis and placed in 100 

mL beakers filled with a 3% Hydrogen Peroxide solution for 60 days to decompose all 

organic matter. Prior to analysis, individual sediment samples were disaggregated using 

an ultrasonic disintegrator. Particle size distribution was then measured using the LS 13 

320 laser diffraction particle size analyzer at the Woods Hole Oceanographic Institution 

Reinhart Coastal Research Center.
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4.3 Results

4.3.1 Sediment Characteristics

Water content measurements were made from 4 sediment samples obtained at the 

rim and center locations of each pockmark (Table 1). Measured water content values 

ranged from 155 -  212% by weight and typically, in 3 of 4 cases, varied by less than 5% 

between the two samples obtained from the same location. Although a larger variation 

(about 30%) in water content values was observed from samples obtained at the center of 

the southern pockmark, the fractional error is within about 15%. These measurements are 

comparable to values of water content made by Hoepner, et al. (2001) from sediment 

with similar characteristics to the Belfast Bay sediment. Yield stress (Ty) estimates were 

calculated from mean water content values at each location using (4.6), following 

Hoepner, et al., (2001), and are also summarized in Table 1.
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Table 4-1. Water content (W), yield stress (r )̂, median grain diameter (d$o) and 
critical Shields parameter (0cr) estimates obtained at the rim and center of the 
northern (upper panel) and southern pockmark (lower panel). Uncertainty 
measurements represent the range of variability observed between measured water 
content values from sediment obtained at the same location.

W(%) Tv (N/m) dso(iun) &cr
Northern
Pockmark

Rim 155.64 ±1.06 2.88±0.03 7.65 0.19± 0.001
Center 154.89 ± 0.98 2.90 ±0.01 7.28 0.20 ± 0.001

Southern
Pockmark

Rim 167.56 ±4.27 2.67± 0.08 7.06 0.19 ±0.004
Center 212.35 ±30.11 1.84±0.56 6.33 0.15± 0.04
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Sediment grain size distribution was measured at both the rim and center of each 

pockmark, and is shown in Figure 4.2 as a function of grain size (in pim) and percent 

volume concentration. Median grain size (dso), shown in Table 4-1, ranged from 6.33 -

7.65 fxm and is representative of fine, silty muds. Sampled sediments are assumed to 

have a sediment density {ps) of 2173 kg/m3 based on sediment density measurements 

acquired from near-by sediment in Sommes Sound, Mt Desert Island by Gschwend and 

Hites (1981). Total organic matter measurements were not made in this study.
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Figure 4-2. Sediment distribution of samples collected at the rim (gray) and center 
(black) of the northern (circle) and southern (square) pockmarks as a function of 
grain size and percent volume. Grain size classification and delineation is according 
to Wentworth (1922).
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4.3.2 Currents

Figure 4.3 shows the observed hourly and depth-averaged horizontal and vertical 

velocities as a function of tidal phase at the rim and center of each pockmark. Current 

data were acquired during the rising high tide and therefore represent average tidal 

conditions. Mid-water currents are averaged over the depth interval ranging from 8 m 

below the surface to the depth of the rim and deep-water currents are averaged over the 

depth interval ranging from the depth of the rim to the bottom of the pockmark. Mid

water flow is strongly tidally modulated with maximum velocities occurring during mid 

tidal phases. Mid-water horizontal currents are typically of the same order of magnitude 

during maximum flooding and ebbing tidal conditions and range from 0.03 - 0.17 m/s. 

Mid-water vertical velocities are nearly always less than zero, with maximum currents 

reaching -0.01 m/s. Positive vertical velocities are temporarily observed during maximum 

flooding tide, but do not exceed 0.005 m/s. Overall, mid-water column vertical velocities 

are less than zero 85% of the time and are consistently much less than the corresponding 

depth-averaged horizontal velocities.

Depth-averaged horizontal velocities below the rim range in magnitude from 0.01-

0.08 m/s and reach maximum velocities at mid-tidal phases. Compared to depth-averaged

horizontal velocities above the rim, deep-water currents are weaker and less tidally

influenced. Vertical velocities below the rim are comparable in magnitude to the deep-

water horizontal flows and range from -0.02  -  0.02  m/s, with a tidally modulated pattern

that shows periods of strong upwelling and downwelling (discussed in more detail in

Chapter 2). Hourly-averaged deep-water vertical velocities are negative 72% of the time

during the northern pockmark sampling period and 81% of the time during the southern
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pockmark sampling period. Therefore, vertical flow conditions below the rim at the 

location of the center current meter mounts may be primarily characterized by 

downwelling current velocities.
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Figure 4.3. Depth-averaged mid-water and deep-water current magnitudes and 
vertical velocities observed at the rim (gray) and center (black) of each pockmark 
with time (Julian Days) on the x-axis. Upper panel shows mean sea surface elevation 
from bottom pressure data. Panels 2 and 3 show magnitude and vertical velocities 
measurements observed over the rim and depth-averaged from 8 m below the 
surface to the depth of the rim. Panels 4 and 5 show magnitude and vertical velocity 
measurements observed over the center and depth-averaged from the rim depth to 
the bottom of the pockmark.
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The ratio of the depth-averaged vertical currents (w) to the corresponding horizontal 

currents (Vtf2 +  v 2) over the rim and center of each pockmark are displayed in Figure 

4.4 as a function of depth. When -1 < ^ < 1, the depth-averaged horizontal current

Wmagnitude is greater than the corresponding vertical velocities, and when -1 > j u2+v2 >

1, the opposite is true. Overall, the ratio of the depth-averaged vertical velocities relative 

to the corresponding horizontal currents increases and becomes more negative with 

depth. Above the rim, depth-averaged horizontal current magnitudes are typically much 

stronger than the corresponding vertical velocities, but decrease with depth relative to the 

negatively increasing vertical velocities. At the near-center ADCP location, above the 

rim, depth-averaged horizontal currents are strong relative to the corresponding vertical 

velocities. Below the rim, ^ ^  y2 negatively increases. Within about 10 m of the bed,

vertical velocities significantly increase relative to the corresponding horizontal current 

velocities and become comparable in magnitude. Multiple hourly-averaged periods are 

characterized by stronger depth-averaged vertical velocities relative to the corresponding 

horizontal flows below the rim. The reason for the observed inconsistency between 

current measurements made by the ADCP relative to the Aquadopp at the near-center 

mount location (closest, near-bed measurement) is most likely due the presence of the 

acoustic release influencing the current measurements made by the Aquadopp current 

meter.
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Figure 4.4. Depth-averaged vertical velocities relative to horizontal current 
magnitudes as a function of depth over the rim (left panel) and center (right panel) 
of the northern (upper panel) and southern (lower panel) pockmark. Black dots 
represent hourly-averaged ratios of the vertical velocities relative to the horizontal
current magnitudes at each depth. Red dots show mean , ™ , . The vertically

Vu2+wz
dashed dark gray line show when , = 0 and light gray vertically dashed lines
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Hourly-averaged friction velocities, u*, were iteratively calculated using (4.2) and 

the observed time-averaged horizontal velocity closest to the bed. These friction 

velocities, in conjunction with the measured median grain size (dso) and estimated 

sediment density (ps) are used in (4.1) to estimate the Shields parameters, 9, for all time 

periods at both the rim and center positions of each pockmark when a logarithmic profile 

was observed in the hourly-averaged horizontal velocity profile (Figure 4.5). The 

estimated critical Shields parameter (9cr) was calculated using (4.3) -  (4.5) as a function 

of the measured d50 and Ty. Critical and hourly-averaged Shields parameter estimates at 

the rim and center of each pockmark are displayed in Figure 4.5 as a function of time. 

Critical Shields parameter estimates at each location are displayed in Table 4-1 with 

range estimates based on the range of measured water content values obtained from the 

sampled sediment at each location. Estimates of 0at the rim exceed the critical Shields 

parameter (9cr) several (9) times on the rising and falling tides, approximately 

corresponding to periods of maximum flow. The critical Shields parameter is more 

consistently exceeded at the rim of the southern pockmark on 5 out of 7 rising and falling 

tides, whereas at the rim of the northern pockmark, 9cr is only exceeded on 1 out of 7 

rising and falling tides. In total (including both sites), the critical Shields parameter is 

exceeded during 43% of the observed maximum flooding and ebbing tidal conditions. At 

the center current meter mount locations, 9  is always much less than 9cr and thus 

incipient motion is not predicted to occur in the near-center of the pockmarks during the 

observed tidal flows.
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Figure 4.5. Shields parameter estimates for each hourly averaged period at the rim 
(gray) and center (black) of each pockmark as a function of tidal phase (upper 
panel. Dashed lines in the lower panel indicate the estimated critical Shields 
parameter at each location with error bars representing the range in critical Shields 
parameter estimates based on observed range in water content measured at each 
location. Note, hourly-averaged shields parameter estimates were only calculated 
when a logarithmic profile was observed in the corresponding hourly-averaged 
horizontal velocity profile.
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Figure 4.6 shows the maximum grain diameter (dnmax) capable of remaining in 

suspension given the observed positive mid-water and deep-water depth-averaged 

vertical velocities (w) at the rim and center mount locations, respectively. Mean median 

grain diameter (djo = 7.05 fxm) is also shown in figure 4.6. When negative vertical 

velocities are observed, all grains are predicted to settle towards the bed and dnmax were 

not estimated. During upwelling events, the estimated dnjnax was always much larger 

than the median grain diameter, dso and suggests that in the absence of flocculation, all 

entrained grains less than the maximum grain diameter (d Tlmax) will remain in 

suspension.

Flocculation, unaccounted for in the analysis completed in this study, is expected 

to strongly influence the flow regime and sediment characteristics within Belfast Bay 

based on the observed sediment grain size distribution and anecdotal evidence for 

significant organic matter within the sediments. Flocculation would result in enhanced 

sediment sizes and increased settling rates, particularly during prolonged periods of 

downwelling currents. Therefore, effective in situ grain diameters of suspended material 

are most likely larger than the median grain diameter used herin, and suggests that a 

greater amount of sediment deposition would be expected in the vicinity of the observed 

pockmarks under similar flow conditions to those observed during this field experiment.
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Figure 4.6. Estimated maximum grain diameters predicted to remain in suspension 
during observed positive vertical velocity events at the rim (gray) and center (black) 
of each pockmark as a function of time (upper panel). The dashed red line in the 
lower panel denotes the average median grain diameter of 7.05 pm. Highlighted 
regions indicate periods during which incipient motion is predicted to occur. Note, 
maximum grain diameter estimates under terminal settling conditions were 
calculated at the rim from positive depth-averaged mid-water vertical velocities and 
at the center from positive depth-averaged deep-water vertical velocities.
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4.4 Discussion

Incipient motion occurs when the Shields parameters (6) exceeds the critical value 

(0cr) and thus depends on the parameters that determine 6cr. The estimated critical Shields 

(0cr) parameter is a function of many variables (cp, R, g, ps, p, dn, ty, u, u.), but in this 

study based on directly measured parameters, is most sensitive to variation in yield stress 

(ty,) approximations. The linear equation used to calculate yield stress (ty) in this study 

was developed by Hoepner, et al. (2001). Their model is based on an empirical 

comparison of measured yields stresses, obtained using a rheometer, and water content 

values measured from estuarine sediment samples similar in grain size and water content 

to the sampled Belfast Bay sediment. Differences in water content observed between two 

measurements obtained at the same location (rim or center) of either pockmark agree to 

within 15% error. The range in measured water content values at each location is 

translated to estimates of the critical Shields parameter and is shown with error bars in 

Figure 4.5. However, because the estimated Shields parameters are often much greater 

than the critical value, our general conclusions regarding incipient motion remain 

unchanged.

4.4.1 Rim Sediment Transport

Estimates of 0  along the rims of the northern and southern pockmarks are tidally 

modulated and greatest during the mid-tidal cycle periods (Figure 4-5). The overall 

weaker, less tidally-driven currents in the northern bay result in infrequent exceedance of
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the critical threshold for incipient motion along the rim. A more consistent pattern of 

critical threshold exceedance is observed along the rim of the southern pockmark where 

stronger tidal currents were observed. Although tidal currents are stronger during the 

flooding tide, maximum bed shear stresses along the rim more consistently occur during 

the ebbing flow. This asymmetry may be related to the local circulation pattern and 

relative location of the current meter mounts (northern rim) with respect to the primary 

tidal direction. Field observations of pockmark rotational structure indicate flow reversal 

near the base of the pockmark and a greater degree of rotation during the ebbing tide 

(Chapter 3), consistent with open cavity flow models (Ashcroft and Zhang, 2005). 

Stream-wise (horizontally varying) velocity structure over an open cavity predicts greater 

shear at the upstream edge of the cavity than at the downstream location. Thus, a greater 

bed stress would be expected during the ebbing tidal flow due to the location of the 

current meter mount on the northern rim of either pockmark.

The maximum grain diameter under terminal settling conditions was estimated to 

assess the largest grain diameter capable of remaining in suspension under the observed 

positive depth-averaged vertical velocities and was always greater than the median grain 

diameter. This suggests that when incipient motion occurs simultaneously with a strong 

upwelling event above the rim, a large proportion of non-flocculated sediment eroded 

from the rim of the pockmark would stay in suspension. Such an event was recorded over 

two individual, hour-long periods at the rim of the southern pockmark and may 

characterize a period during which sediment is unable to settle through the water column. 

Conversely, simultaneous observations of incipient motion along the rim with downward- 

directed depth-averaged currents over the rim of the pockmark would characterize
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periods during which sediment settles towards the bed and were observed 78% of the 

time during this sampling period. However, above the rim, the ratio of the depth- 

averaged vertical velocities to the corresponding horizontal currents negatively increases 

with depth and rarely exceeds ±1. Therefore, close to the bed, the flow structure is 

primarily characterized by weak negative vertical velocities and stronger horizontal 

flows. As a result, during periods when incipient motion occurs simultaneously with 

downward-directed vertical velocities below the rim, suspended sediment may be 

transported downstream a distance before it is deposited.

4.4.1 Center Sediment Transport

In the center of each pockmark, 0  never exceeded 0cr, and near-bed sediment 

transport is not expected to occur during these average tidal flows. Furthermore, deep- 

water vertical velocities, comparable in magnitude to the depth-averaged horizontal 

velocities below the rim, are less than 0 (down-welling currents) 75% of the time. This 

suggests that on average, suspended sediments in the water column would tend to settle 

towards the bed. However, observations over the center of the pockmark of the ratio of 

the depth-averaged vertical velocities to the horizontal currents being greater than 1 at 

various depths below the rim in conjunction with estimated maximum grain diameters 

much greater than the median grain diameter at the bed, suggest that any suspended 

sediment below the rim during these time periods may potentially be transported out of 

the pockmark as a result of these strong upward-directed velocities .

88



4.4.3 Pockmark Maintenance

Pockmark morphology in Belfast Bay transitions from more spherical in the north to 

more elongated in the south and suggests that pockmark shape may not be exclusively 

controlled by vertical fluid escape. Maximum grain size estimations under terminal 

settling velocity conditions in excess of the median grain diameter in conjunction with 

observed periods of incipient motion along the rim of the southern pockmark, suggest 

that pockmark size and shape may be modified by near-bed sediment transport. The 

greater frequency of excess bed shear stress along the rim of the more southerly located 

pockmark is consistent with the elongated morphology of the pockmarks in the southern 

region of Belfast Bay. Similar observations of pockmark morphology transitioning from 

spherical to more elongated with distance offshore are found in Blue Hill Bay, Maine, 

and Passamaquoddy Bay, New Brunswick, Canada (Brothers, et al., 2012) and may be 

related to fine-grained sediment erosion induced by excess bed shear stress along the rims 

of the pockmarks.

Although near-bed sediment transport is observed along the rims of each pockmark,

incipient motion is never predicted to occur at the near-center of the pockmarks.

Observations at the center of each pockmark of primarily negative (downward-directed)

vertical velocities below the rim in conjunction with the critical Shields parameter never

being exceeded suggest that the sampled pockmarks would fill in over time under similar

conditions. However, these pockmarks have persisted for up to 11,000 years (Brothers, et

al., 2010). Potential mechanisms to explain the preservation of these large depressions

over long time periods, may be related to the influence of strong upwelling events or

local storm events enhancing sediment transport within pockmarks. Strong upwelling
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events below the rim, as observed in this study, may advect suspended sediment out of 

the pockmark and more or less balance the net sediment deposition occurring during 

downwelling periods below the rim. Alternately, pockmark maintenance may be 

primarily controlled by sediment transport induced by higher-velocity flow due to spring 

tides or storm events, rather than during the average tidal current conditions during our 

sampling period. The influence of these higher flow conditions is not considered herein, 

but is the subject of ongoing research.

4.5 Conclusions

Observations of time-averaged horizontal and vertical velocity profiles were 

obtained with bottom-mounted ADCPs at the rim and in the near-center of two 

pockmarks in Belfast Bay, Maine, over a 48 hour period in late July 2011. Additionally, 

sediment grab samples were obtained at the rim and center of each pockmark to estimate 

the water content and median grain size at each location. The Dade et al. (1992) model 

predicts 9cr for cohesive sediment using many physical properties of the sediment {e.g., 

<p, R, ps, dn, Ty). This study estimated cp, R, ps, from data documented in the literature 

(Booth, et al., 1985; Mazzullo, et al., 1988, Gschwend and Hites, 1981). Future studies 

should obtain direct measurements of these variables to better constrain estimates of the 

critical Shields parameter. Observed currents were further averaged over the mid-water 

column, ranging from 8 m below the surface to the depth of the rim, and over the deep- 

water column from the rim to the bottom of the pockmark. Water content measurements 

ranged from 155 - 212% and were used to estimate sediment yield strength based on 

empirical formulations by Hoepner, et al. (2001). Sampled sediments, assumed to have a
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density of 2173 kg/m3 (after Gschwend and Hites, 1981), have mean grain diameters of

7.65 jtm and are classified as silty muds. These current and sediment observations were 

used to estimate periods of incipient motion and to assess whether or not suspended 

sediment in the water column would settle under the observed flow conditions.

Shields parameter estimates, assuming hydrodynamically smooth flow, were made 

from observations of the near-bottom horizontal currents and the observed median grain 

size following Whitehouse, et al., (2000). The critical Shields parameter was predicted 

using the estimated yield stresses and the observed median grain diameter observed at the 

rim and center of each pockmark, following the theoretical model developed by Dade, et 

al. (1992) for cohesive sediments. Observed Shields parameters suggest that incipient 

motion regularly occurs during maximum flood and ebb tidal periods at the rim of each 

pockmark. The critical Shields parameter was more consistently exceeded at the rim of 

the southern pockmark where higher velocity flows were observed. Shields parameter 

estimates at the center of each pockmark were small and always less than the critical 

value, indicating that near-bed stress imposed by the overriding currents within the 

pockmarks was not significant enough to move sediment.

The relative magnitude of the horizontal and vertical velocities will determine the 

rate, distance, and direction that suspended sediment will be transported. Mid-water 

column vertical velocities are primarily negative and small relative to the observed 

horizontal velocities over this depth range. Therefore, sediment suspended at the rim is 

likely to be transported downstream. Below the rim, depth-averaged vertical velocities 

are negative 77% of the time and are comparable in magnitude to the horizontal flows.
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Therefore, during down-welling periods below the rim, a large proportion of the 

suspended sediment would settle towards the bed.

During the infrequently observed positive vertical velocity events, sediment will 

remain in suspension unless the settling velocity exceeds the upward-directed flow. 

Using Stokes Law for grain settling (Winterwerp and Walther, 2004), the maximum grain 

diameter capable of remaining in suspension under the observed positive vertical 

velocities was calculated and was always greater than the median grain diameter at the 

bed. This suggests that in the absence of flocculation and during upwelling periods, 

sediment entrained into the flow would remain in suspension while the flow conditions 

persisted. It is important to note that the influence of flocculation is unaccounted for in 

this analysis and a greater degree of deposition is expected in the vicinity of the 

pockmarks due to the flocculation of material in the water column.

The greater frequency of critical Shields parameter exceedance observed at the rim 

of the southern pockmark qualitatively agrees with the observed pockmark morphology 

in Belfast Bay which becomes more elongated with progression southward. However, the 

majority of the sampling period is characterized by negative, depth-averaged vertical 

velocities and weak horizontal currents below the rim and strong mid-water horizontal 

currents. This suggests that a large proportion of the sampling period is characterized by 

the settling of suspended sediment in the center of the pockmark. Long-term pockmark 

maintenance may therefore be related to a larger amount of sediment being transported 

out of the pockmark during upwelling periods than is deposited during downwelling 

periods; however, this cannot be verified from the data collected in this study. 

Alternately, maintenance may be controlled by sediment transport induced by higher
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velocity flow due to spring tides or storm events, rather than by the average tidal, wind, 

and wave conditions observed in this field experiment. Although this work presents 

evidence of incipient motion along the rim of the pockmarks during fairly mild 

conditions, longer term field observations such as these are needed to better determine the 

nature of the sediment transport in post-formation pockmark maintenance.
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CHAPTER 5

CONCLUSIONS

Current and temperature and salinity observations over two sampled pockmarks in 

Belfast Bay, ME show evidence for internal mixing and overturning within the 

pockmark, circulation patterns that resemble open cavity flow, and incipient motion 

along the rims. Vertical current profiles were acquired at the rim and near-center of each 

pockmark using bottom mounted ADCPs over a 48 hour sampling period in late July 

2011. Additionally, multiple CTD casts were acquired approximately every two hours 

over the near-center of each pockmark for a complete tidal cycle to examine the tidally- 

varying vertical structure over each pockmark. Sediment samples were also obtained at 

the rim and center of each pockmark to examine the grain size distribution and obtain 

water content measurements at each location. The sampled pockmarks consisted of a 

circular pockmark with a length-to-depth ratio of 3.7 and 45 m diameter in the northern 

region of the bay and a more elongated pockmark with a length-to-depth ratio of 4.7 and 

85 m diameter in the southern region of the bay.

The observed vertical current structure over each pockmark was characterized by 

three distinct regions, the surface, middle, and deep layers, which were delineated by the 

average depth of the thermocline and rim depth. Surface and mid-water column currents 

are primarily tidally-driven, but show slight modifications by wind-driven flow. Below
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the rim, low-velocity horizontal currents show significant rotational changes with depth. 

Depth-averaged vertical velocities over the near-center of each pockmark show strong 

upwelling and downwelling events that extend from above the rim down into the 

pockmark. These events are indicative of the interaction of flow above and below the rim. 

Evidence for mixing was further documented by salinity and temperature observations 

obtained from CTD casts over the near-center of each pockmark which showed uniform 

properties below 12 m. Individual, hourly-averaged horizontal velocity profiles over the 

center of each pockmark show multiple logarithmic regions. These observations are 

consistent with those obtained by Chriss and Caldwell (1982) and suggest form drag 

significantly influences the local flow regime. These vertical velocity and temperature 

observations suggest that the water column over the sampled pockmarks is characterized 

by active mixing and overturning of flow above and below the rim, while individual 

horizontal velocity profiles indicate that roughness-induced form drag significantly 

influences the local flow regime in the vicinity of the sampled pockmarks.

The tidally-varying rotational structure over the near-center of each pockmark is 

qualitatively consistent with circulation patterns predicted by open cavity flow. 

Significant directional changes were observed from surface to depth over each pockmark, 

specifically below the rim. During ebbing tidal conditions, abrupt directional changes 

were observed around 10 m from the bed and were typically on the order of 180 ± 50 deg. 

A more gradual change in direction from surface to depth was observed during flooding 

tidal conditions and was typically around 75± 50 deg. These observations of more abrupt 

and significant directional changes with depth during ebbing tidal flow are qualitatively 

consistent with open cavity flow and the formation of a recirculation cell within the
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pockmark. Open cavity flow occurs in deep cavities, with length-to-depth ratios less than 

6 and is characterized by shear layer growth with distance downstream. Because the 

current meter mounts positioned within the pockmark were located slightly north of the 

center, the thickness of the shear layer is expected to be greater during flooding tidal 

conditions. The time-mean behavior of the shear layer, approximated using vorticity 

thickness, was estimated from horizontal current magnitudes acquired over the near

center of each pockmark. Although the rate at which the shear layer grew across the 

depression differed between pockmarks, mean vorticity thickness estimates were greater 

during flooding tidal conditions and are therefore qualitatively consistent with open 

cavity flow. Numerical simulations completed by Brothers, et al. (2011b) examined 

circulation patterns within pockmarks and are qualitatively consistent with circulation 

patterns predicted by cavity flow. Our observations of rotational structure over each 

pockmark in conjunction with estimated shear layer growth across each depression 

suggest that cavity flow circulation may be a good first-order approximation of pockmark 

flow circulation.

Post-formation pockmark evolution and maintenance were investigated by 

characterizing periods of incipient motion and estimating conditions favorable to the 

settling of suspended sediment over each pockmark. Temporally-varying Shields 

parameter estimates were made assuming a hydrodynamically smooth flow and compared 

to the critical Shields parameter, estimated using the theoretical model proposed by Dade, 

et al. (1992) for cohesive sediment. A critical Shields parameter was estimated for the 

rim and center locations of each pockmark based on measured grain size and water 

content values obtained from sampled sediment at each location and estimated sediment
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density, shape, and angle of repose. The critical Shields parameter was exceeded several 

times at the rim of each pockmark, typically during maximum velocity tidal periods and 

more consistently at the southern pockmark rim. At the center, the critical Shields 

parameter was never exceeded. The majority of the sampling period is characterized by 

downwelling below the rim and corresponding low-velocity horizontal currents. This 

suggests that the settling of suspended sediment within each pockmark would 

characterize the majority of the sampling period. At the rim, although also primarily 

characterized by downwelling flow, the corresponding horizontal currents are much 

stronger than the vertical velocities. Therefore, any suspended sediment is likely to be 

transported to a distant location. During the infrequent observations of upward-directed 

flow below the rim and directly above the rim, estimated maximum grain diameters 

capable of remaining in suspension under the observed vertical velocities are always 

much greater than the median grain diameter. This suggests that in the absence of 

flocculation, sediment would remain in suspension as long as these upwelling currents 

persisted. The more frequent exceedence of the critical Shields parameter at the rim of 

the southern pockmark is consistent with observations of more elongated pockmark 

morphology in Belfast Bay with progression seaward. Although multiple time periods are 

characterized by incipient motion, the majority of the sampling period is characterized by 

flow conditions favorable to deposition. Therefore, long-term pockmark maintenance in 

Belfast Bay may be more controlled by sediment transport induced by higher-velocity 

flows due to spring tides or storm events, rather than the average flows sampled in this 

study.
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Future work should include long-term monitoring of the current and temperature 

structure at multiple locations within and around pockmarks in order to better understand 

the three-dimensional flow structure around these depressions. Field measurements 

should be conducted during storm events and spring and neap tides to assess the influence 

of these varying environmental conditions on the vertical structure over pockmarks and 

near-bed sediment transport. Sediment transport studies within the vicinity of pockmarks 

should acquire current measurements closer to the bed, floe size and settling rate 

estimates, as well as more detailed measurements of the physical properties of the 

sediment (e.g., 9 , R, ps) in order to better constrain pockmark sedimentation and erosion 

rates. Measurements of floe size and settling velocity as well as the parameters that 

influence them may be achieved through use of multiple instruments including a digital 

floe camera, video settling column, optical backscatter sensor and current meter as 

described by Mikkelsen et al. (2004) and Fennessy et al., (1994).
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