
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

12-12-2018

Performance Evaluation of Competing Data Structures Performance Evaluation of Competing Data Structures

Mohsen Tavakoli
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Tavakoli, Mohsen, "Performance Evaluation of Competing Data Structures" (2018). Electronic Theses and
Dissertations. 7626.
https://scholar.uwindsor.ca/etd/7626

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7626&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7626?utm_source=scholar.uwindsor.ca%2Fetd%2F7626&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Performance Evaluation of Competing
Data Structures in Pathfinding

By

Mohsen Tavakoli

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science
at the University of Windsor

Windsor, Ontario, Canada

2018

c©2018 Mohsen Tavakoli

Performance Evaluation of Competing Data Structures in Pathfinding

by

Mohsen Tavakoli

APPROVED BY:

M. Hlynka

Department of Mathematics and Statistics

M. Kargar

School of Computer Science

S. Goodwin, Advisor

School of Computer Science

Dec 12, 2018

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my

thesis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

III

ABSTRACT

Pathfinding is an essential part of many applications, including video games and

robot navigation. A pathfinding algorithm usually finds a path from the given starting

point to the endpoint. Many different implementations of pathfinding solutions exist

in the industry. One of the most known and used of these algorithms is A*. A* will

find the shortest path from the starting point to the endpoint. Classic A* algorithm

can guarantee the shortest path to the desired destination which was introduced in

1968 by Hart, Nilsson, and Raphael. A* is widely used in the game industry to solve

the shortest path problem. The A* algorithm utilizes two data structures. A* explores

the nodes in the graph from the start position one by one and assign them a value

of F which is the sum of G cost and H cost. G Cost is the actual cost of exploring

the node from the starting position to the current node, and H cost is the estimation

of the cost of from the current node to the goal node. The Open List keeps all of

the nodes that are not explored at each iteration of the algorithm. In each iteration,

the algorithm removes the node with the least value of F cost and run the algorithm.

If the node is not the goal, it will be added to the closed list. Interactions with the

open list, which are insert (current node) and remove Min, are costliest part of the

algorithm. It is well known that using a priority queue will increase the performance

of this algorithm. A number of priority queues have been used to implement A* and

improve the performance of this algorithm. We propose to use a Lazy binary heap

and evaluate its performance compare to other data structures. We expect that due

to decreasing the size of current open list, it will outperform other binary heaps.

IV

AKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Dr. Goodwin

for being patient with me and helping me to come up with the idea of the Partial

Min-Heap. Thanks to his plenty of guidance and encouragement, I had a great time

to research the field of pathfinding. It is my great pleasure to be his student and

work with him.

I would also like to thank my committee members Dr. Kargar and Dr. Hlynka for

taking the time to review my paper and attending my thesis proposal and defense.

Thanks for their valuable guidance and suggestions to improve this thesis.

The time that I spent on this thesis has been very intense. To anyone reading this

paper, I will say that with hard work and commitment, you can achieve your goal in

life.

Finally, I would like to thank my parents, my dear brothers Ahmad and Ehsan

and finally my friends for their support over the years.

V

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

ABSTRACT IV

AKNOWLEDGEMENTS V

LIST OF TABLES VIII

LIST OF FIGURES IX

1 Introduction 1
1.1 Thesis Claim . 1
1.2 Pathfinding . 1

1.2.1 Pathfinding Problem . 1
1.3 Graph Representations . 2

1.3.1 Waypoints . 2
1.3.2 Navigation Mesh . 2
1.3.3 Grids . 3

1.4 Heuristic . 4
1.4.1 Manhattan Distance . 5
1.4.2 Euclidean Distance . 5

1.5 Pathfinding Algorithms . 6
1.6 A* Algorithm . 7

1.6.1 Heuristic Consistency . 10
1.6.2 Problem Statement . 11
1.6.3 Min-Heap Example . 12

1.7 Thesis Contribution . 13
1.8 Thesis Organization . 14

2 Literature Review 16
2.1 A* Data Structure . 16
2.2 Closed Set . 17
2.3 Open Set . 17

2.3.1 Array . 18
2.3.2 Hash Table . 18
2.3.3 Binary Min-Heap . 19
2.3.4 Fibonacci Heap . 21
2.3.5 Multilevel Buckets . 22
2.3.6 MultiQueues . 22
2.3.7 Heap On Top Priority Queues 23

2.4 Summary . 24

VI

3 Cached Min-Heap and Partial Min-heap 26
3.1 Motivation . 26
3.2 Cached Min-Heap . 29

3.2.1 Cached Min-Heap Operations 30
3.3 Partial Min-Heap . 36

3.3.1 Partial Min-Heap Operations 36
3.4 Partial Min-Heap Case study . 39

3.4.1 Partial Min-Heap Success . 39
3.4.2 Partial Min-Heap Failure or Sub-optimallity 41
3.4.3 Summary . 41

4 Experiments and Results 42
4.1 Implementation Methods . 42
4.2 Experimental Environment . 43
4.3 Experiment Setups . 44
4.4 Performance Evaluation . 45

4.4.1 Success . 45
4.4.2 Time . 45
4.4.3 Path Length and Cost . 46
4.4.4 Nodes Expanded . 46
4.4.5 Operations . 46

4.5 Experiment Results and Analysis . 49
4.6 Number of operations . 51
4.7 Runtime . 62
4.8 Summary . 64

5 Conclusion 68

6 Future Work 70

APPENDICES 71

REFERENCES 87

VITA AUCTORIS 90

VII

LIST OF TABLES

1 Time Complexity Comparison of Different Data Structures 24

2 Summary of experiments . 50

3 Map Size 120*120 using K=6 Full Data 72

4 Map Size 120*120 using K=7 Full Data 73

5 Map Size 120*120 using K=8 Full Data 74

6 Map Size 200*200 using K=6 Full Data 75

7 Map Size 200*200 using K=7 Full Data 76

8 Map Size 200*200 using K=8 Full Data 77

9 Map Size 200*200 using K=9 Full Data 78

10 Map Size 300*300 using K=8 Full Data 79

11 Map Size 300*300 using K=9 Full Data 80

12 Map Size 400*400 using K=8 Full Data 81

13 Map Size 400*400 using K=9 Full Data 82

14 Map Size 400*400 using K=10 Full Data 83

15 Map Size 512*512 using K=9 Full Data 84

16 Map Size 512*512 using K=10 Full Data 85

17 Map Size 512*512 using K=11 Full Data 86

VIII

LIST OF FIGURES

1 Waypoint Map . 3

2 Navigation-Mesh Map . 3

3 Square-Grid Map . 4

4 Manhattan & Euclidean Distance . 6

5 A* algorithm on the left & Best-First search in the middle & Dijkstra’s

algorithm on the right finding the same path 8

6 Current Min-heap . 12

7 Problem Itteration 1 . 12

8 Current Min-heap . 13

9 Problem Itteration 2 . 13

10 Current Min-heap . 13

11 Problem Itteration 3 . 13

12 Implementation of Min-Heap using an Array 19

13 Inserting to Min-Heap . 20

14 Remove Min - Min-Heap . 21

15 Fibonacci-Heap Insert Example . 22

16 Example of search environment . 27

17 Example of search environment (Exploring a node) 27

18 Example of search environment (Exploring a node) 28

19 Cached Min-Heap Data Structure d=3 30

20 Cached Min-Heap Data Structure Example d=3 31

21 Cached Min-Heap Data Structure Example d=3 32

22 Cached Min-Heap Data Structure Example d=3 32

23 Cached Min-Heap Data Structure Contains 34

24 Cached Min-Heap Data Structure Replenish Cache Failure Using Heap

Sort . 35

IX

25 Partial Min-Heap Data Structure Insert Example d=3 38

26 Partial Min-Heap Data Structure Remove Min Example d=3 38

27 Pathfinding Example . 40

28 Pathfinding Example . 40

29 Pathfinding Example . 41

30 Map Size 45*45 - Obstacle chance 10% 43

31 Map Size 60*60 - Obstacle chance 10% 49

32 Map Size 120*120 using K=6 Full Data in Table 3 52

33 Map Size 120*120 using K=7 Full Data in Table 4 53

34 Map Size 120*120 using K=8 Full Data in Table 5 54

35 Map Size 200*200 using K=6 Full Data in Table 6 55

36 Map Size 200*200 using K=7 Full Data in Table 7 56

37 Map Size 200*200 using K=8 Full Data in Table 8 57

38 Map Size 200*200 using K=9 Full Data in Table 9 58

39 Map Size 300*300 using K = 8 Full Data in Table 10 59

40 Map Size 300*300 using K = 9 Full Data in Table 11 60

41 Map Size 400*400 using K=8 Full Data in Table 12 61

42 Map Size 400*400 using K=9 Full Data in Table 13 62

43 Map Size 400*400 using K=10 Full Data in Table 14 63

44 Map Size 512*512 using K=9 Full Data in Table 15 64

45 Map Size 512*512 using K = 10 Full Data in Table 15 65

46 Map Size 512*512 using K = 11 Full Data in Table 16 66

47 Run Time Map Size 400*400 using K=9 & 10 67

48 Run Time Map Size 512*512 using K=10 & 11 67

X

CHAPTER 1

Introduction

1.1 Thesis Claim

In this thesis, we present two new data structures for the A* search algorithm which

implement the open set Partial MinHeap, and Cached MinHeap. Test results in

comparison to traditional data structures used for this algorithm, such as unsorted

list, min-heap and heap-on-top priority queue (Hot Queue), show improvements in

runtime. Additionally, because of the distributed architecture of this data structure,

the number of operations is often reduced.

1.2 Pathfinding

Pathfinding is the task of finding a traversable path from the starting position to the

ending position. A universal problem which exists in multiple areas such as games,

robotics and computer networks. These problems require a reliable solution. In this

thesis, we focused on improving the A* algorithm performance in fully connected

grids.

1.2.1 Pathfinding Problem

A specific problem of RTS (Real Time Strategic) for games is pathfinding. By the

nature of RTS games, players are not concerned with agents in the game and their

movements. Developers determine each unit’s actions and their behaviors[23]. Many

solutions exist for the problem of single source shortest problem such as Dijkstra’s

1

1. INTRODUCTION

algorithm, A*, Hierarchical and Cooperative pathfinding algorithms. This research

aimed to find a better solution for A* Open set, which has a significant impact on

runtime. In this research, we treat operations and time as a performance variable.

We came up with a solution that delivers suboptimal path, using less memory and

time which could be a better solution in the right circumstances.

1.3 Graph Representations

In pathfinding, we need a representation of the search space for our algorithm to find

a correct path from our starting point to our ending point. A pathfinding algorithm

tries to find a path using a simplified representation of the search space. Common

ways of representing the maps are Waypoints, Navigation Meshes, and Grids.

1.3.1 Waypoints

Using a collection of linked and fully connected nodes for navigation is the way-

point(Fig. 1) system. Each waypoint refers to a physical space or coordinates in

the map. AI agents are capable of traveling from one waypoint to another waypoint.

Game engines such as Unity3D, Unreal Engine support waypoints. The advantage

of using waypoints is that it will decrease the amount of memory usage since it uses

fewer nodes [13]. The disadvantage of waypoints is that the path found is unrealistic

and sub-optimal. Waypoints are usually created manually by the developer to have

the highest performance.

1.3.2 Navigation Mesh

Navigation meshes(Fig. 2) or nav-mesh are a way of representing the map with a

group of polygons connected within the map. Each polygon can have attributes such

as the cost of traversing, type of terrain, require a tool to pass, etc. We do not need

to store the obstacles in navigation mesh. Agents are free to roam from polygons to

another. The pathfinding algorithm finds a series of polygons for the agent to cross to

2

1. INTRODUCTION

Fig. 1: Waypoint Map

reach the desired destination. Using polygons to represent nodes in the map results

in using less memory, but the path quality will suffer.

Fig. 2: Navigation-Mesh Map

1.3.3 Grids

A* algorithm is designed to work with arbitrary graphs. Grids are one of the more

commonly used ways of representing the map. Grids divide the search space into

uniform, regular shapes tiles. Each tile can inherit multiple characteristics such as

3

1. INTRODUCTION

walkable or cost. Grids will cover all of the game maps such as obstacles. Nav-mesh

and waypoints only addressed areas that are traversable. Commonly used forms are

squares, triangles and hexagonal.

Fig. 3: Square-Grid Map

Square tiles are the most common grid(Fig. 3). Each tile in the map uses the fa-

miliar X, Y coordinates. Most of the commercial games such as Warcraft III, Dragon

Age: Origins are using grids in their games. Each grid has three different parts: tiles,

edges, and vertices. Faces are a 2D surface surrounded by the edges. Lines that are

enclosed by two vertices are edges. Each vertex is the point where each tile’s edges

meet to form the desired shape.

In this research, we ran experiments using squared grids since they are easy to

visualize and implement. We ran our tests on randomly generated maps with a chance

of blocking grid cells. Based on the suggestion [23] we ran our experiments using an

implementation of A* on fully connected squared grids so that other scientists can

compare their results to our results.

1.4 Heuristic

Classic search algorithms such as Dijkstra’s algorithm explore the search space to

find the shortest path. The heuristic function guides the algorithm into the direction

of the correct location of the goal node, which may result in finding optimal path

4

1. INTRODUCTION

faster[19]. The heuristic value is an estimation of the path cost from any given node

and represented as h(n). If our heuristic has a value of 0, our A* algorithm will act as

Dijkstra’s algorithm. If the returned value by our heuristic function is smaller or equal

than the actual cost of reaching the goal, A* is guaranteed to find the optimal path. If

the value is greater than the actual cost of the path, A* is not guaranteed to find the

optimal path. If our heuristic function is not admissible, which means that it will not

overestimate or underestimate the cost of the actual path, our pathfinding algorithm

is guaranteed to find the optimal path, which means that if our heuristic is accurate,

it will result in that our pathfinding algorithm only expanding the nodes along the

path. The developer can pre-compute the heuristic value the shortest path between

any pair of nodes in the map. This approach is not suitable for large maps since

that the precalculated heuristic values occupy more memory than the search space

representation [4]. There are three well-known heuristics functions for calculating the

shortest distance between two given nodes namely, Manhattan distance and Euclidean

distance.

1.4.1 Manhattan Distance

This heuristic is standard for squared grids that movement is only allowed non-

diagonally. Manhattan distance is not admissible since it overestimates the cost of

diagonal movements.

ManhattanDistance = |dX|+ |dY | (1)

1.4.2 Euclidean Distance

Euclidean distance is the mathematically calculated straight-line distance between

two points in the search space. Euclidian distance is accurate when there are no

obstacles in the search space since it is the cost of direct movement from the starting

position to the end position. This heuristic function will result in finding the shortest

path exploring the fewer number of nodes. Since that calculating Euclidean distance

5

1. INTRODUCTION

requires computational power, in some of the cases not using the heuristic function

might result in less number of operation to find the correct path [14].

EuclideanDistance =
√
dX2 + dY 2 (2)

Fig. 4: Manhattan & Euclidean Distance

In our research, we designed our agent to be able to move in eight directions

and our map representation was squared grids. We used squared grids since that

it was easy to implement and understand. Also, most of the commercial games use

this representation, and we wanted to compare our results compare to actual game

maps. We selected our heuristic function as Euclidean distance based on our map

representation and our agent’s movements. We fixed our non-diagonal movement cost

to 10 and our diagonal movement to 14.

1.5 Pathfinding Algorithms

The single source shortest path problem is searching for a traversable path with the

least path cost from a given source to the desired destination. Existing solutions for

this problem divide to two categories: informed and un-informed search. Breadth-

first Search and Depth-first search do not use the heuristic information available

based on the map, so their performance suffers since they blindly search for the goal

node. Not using the existing data will result in exploring multiple unnecessary nodes,

hence increasing the time of the algorithm to find a path [2]. Another approach

6

1. INTRODUCTION

of finding a solution to the shortest path problem is using the given information

to optimize the process of finding a solution. Information such as the location of

the goal node in the search space, the relative cost of reaching the goal node might

help our pathfinding algorithm to perform better in terms of the number of nodes

expanded. A* algorithm [15] and Dijkstra’s algorithm [9] are two of the most popular

solutions for solving this problem. Game industry mostly used A* to develop and

solve their pathfinding problems since it requires less computational power and it

has better performance compare to Dijkstra’s algorithm. Researchers and developers

proposed different versions of A* algorithm to increase the performance of it [4] and

mostly tailor it to their need. Researchers suggested that improvements are possible

in terms of performance by pre-calculating and processing of the map in Partial

Pathfinding[22] for A* algorithm. Algorithms such as Hierarchical Pathfinding A*

[3] proposed a clustering solution to divide the search space into local and global

clusters. Iterative Deepening A*[17] combined the depth-first search algorithm with

A* algorithm which uses the heuristic function to guide the search algorithm in the

correct path.

Our primary focus in this research paper is the widely explored and popular A*

pathfinding algorithm. We analyzed the performance of the A* algorithm’s data

structures and believed that we could improve its performance.

1.6 A* Algorithm

A combination of the Dijkstra’s algorithm and greedy Best First Search is A* search

algorithm. Dijkstra’s algorithm is guaranteed to find the shortest path, but it explores

all the directions in the search space and will allow us to find the path to multiple

locations. Best First Search explores in the goal direction to find the shortest path,

but it is not guaranteed to find the optimal path. A* algorithm combines the idea of

using the actual cost of reaching the goal and the estimated cost of reaching the goal

to find the optimal path to the goal.

Dijkstra’s algorithm uses f(n) = g(n) which is the actual cost from the starting

7

1. INTRODUCTION

Fig. 5: A* algorithm on the left & Best-First search in the middle & Dijkstra’s
algorithm on the right finding the same path

node, to find the shortest path to the goal node. Best-First search uses f(n) = h(n),

which is the estimated cost from the current node to the goal node, to find the shortest

path. A* algorithm combines these two values to find the shortest path to the goal

node.

A* search algorithm constructs a path from the starting node to the goal node by

following the nodes with the lowest f cost. This algorithm keeps track of alternative

path nodes with their f cost. In each state, A* algorithm will expand the node with

least f value till it reaches the goal node.

A* algorithm maintains two data structures to function. A* keep the nodes that

have been visited but not expanded in the openset. These nodes are a queue of nodes

that are possible to be the shortest path. Closedset contains already expanded nodes

that have been extracted from the openset and examined.

A* algorithm initially inserts the starting node into the openset. Then the al-

gorithm will explore all of the traversable neighbours of the current node with the

smallest f cost in the openset, calculate their f cost and insert them into the openset.

Since it is required to keep track of each node’s path to the current location, each node

also holds a pointer to its parent. The algorithm chooses the node with the smallest

f cost from the openset. If the current node is not the goal node, the algorithm will

insert the node to the closed set, and it will repeat the process till that either to find

the goal or the openset is empty, which means that the algorithm failed to find a

8

1. INTRODUCTION

path.

f(n) = g(n) + h(n) (3)

Calculating the current f cost of node n is the total of g(n) and h(n). The actual

cost of reaching the node n from the starting node is g(n) and the estimated of cost

of reaching the goal node from the node n is h(n).

A* Algorithm.3 is fairly simple to implement and understand. Initially our open

set is empty, so we add the start node to the open set and calculate the f cost for the

start node. Our main loop, extract the current node with the least value of f cost

from the open set in each iteration and examine it. If the current extracted node is

our goal node, then the algorithm will return the path from the starting node to the

goal node. To find the path from the start node and to our goal node, each node

also keeps a pointer to its parent node. If the current node is not our goal node, the

algorithm will remove the current node from the open set, insert it to the closed set

and it will explore all of it’s neighbours. If the neighbour is not in our closed set,

and it is not a member of the open set, then the algorithm will insert it to the open

set and set the current node as the parent node for it. If the neighbour node already

exists in the open set the algorithm will calculate a new f cost for the neighbour node.

If the new f cost is greater equal to the current f cost, the node will be discarded.

Otherwise, the new f cost will replace the old f cost and set the current node as

the new parent for the neighbour node. The reason for this if statement is that we

do not want to insert duplicate nodes that have been already explored back into our

open set.

A* search algorithm is guaranteed to find a solution if there is one which means

that it is complete. Pathfinding solutions are exponential problems which means that

the size of the search space and its complexity has an evident impact on the execution

time[10]. Optimal pathfinding solutions in Real time strategy games have different

definitions. Some games require to find a solution relatively fast but not necessarily

the shortest path that exists since the goal is efficiency, not accuracy. Usually in

9

1. INTRODUCTION

Algorithm 1 A* Algorithm

1: Start:
2: open set = {start}
3: f(start) = h(start)
4: closed set = { }
5: while open set is not empty do
6: current = extract the node with lowest f cost from open set
7: if current = goal node then
8: return “Path found”
9: end if
10: open set.remove(current)
11: closed set.insert(current)
12: for each neighbour of current do
13: if neighbour in closed set then
14: continue
15: end if
16: if neighbour not in open list then
17: open set.insert(neighbour)
18: end if
19: if g(current) + distance(current, neighbour) < g(neighbour) then
20: g(neighbour) = g(current) + distance(current, neighbour)
21: f(neighbour) = g(neighbour) + heuristic function(neighbour, goal)
22: neighbour.setParent(current)
23: end if
24: end for
25: end while
26: return “Failed to Find the Path”

RTS games, as long as the path introduces to the agent is close enough to the actual

shortest path and it is not irrational in terms of movement, it is an acceptable path.

1.6.1 Heuristic Consistency

A* algorithm chose the best node to explore from the open set using the cost function

which is f(n) = g(n) + h(n) where g(n) is the actual distance or cost of travesing

to node n and h(n) is the estimated cost of reaching the goal node. If our heuristic

function is consistent the cost of traversing from our node x to the next node y will

be [15]:

h(x) ≤ d(x, y) + h(y) (4)

10

1. INTRODUCTION

This means that by moving from x to y, our overall cost of reaching the goal cannot

be reduced more than the estimated cost of traversing from node x to the node y. If

the node that our agent is exploring is the neighbour of the node x, the value of f

is consistent since the g(n) will increase as much as the h(n) decreases[20]. We can

define our consistent heuristic as:

|h(x)− h(y)| ≤ d(x, y) (5)

Based on those mentioned above, we can state that if our heuristic function is

consistent while exploring the neighbours of the node x, our neighbour’s f value

is equal or smaller to the current node’s f value. Using this information, already

explored nodes in the closed set will not be revisited [16].

Theorem 1 A consitent heuristing will garantee a non-decreasing f value while ex-

ploring along the path.

Based on the Theorem 1, our A* algorithm will not revisit the nodes that are

already explored, and we can skip the nodes that are already explored once in Algo-

rithm 1 line number 16. Also, we can obtain that if our heuristic function is consistent

and admissible, our number of expanded nodes is optimal [15]. If our heuristic func-

tion is not consistent but admissible, nodes in the closed set can be revisited [18] to

find the path. Based on the theorem we can state that, if our heuristic is admissible

and consistent, the A* search algorithm only expand the nodes that their f value is

either smaller or equal to the current expanded node in the open set.

1.6.2 Problem Statement

Majority of the computational power required to find a path in A* algorithm happens

in inserting of a new node to the data structure and removing the node with the lowest

f cost from the open set. Although updating the f cost which also called as decrease

key for the nodes that already exist in the open set requires operations as well, but

this operation is not as frequent as inserting and removing nodes from the open set

11

1. INTRODUCTION

if our heuristic function is consitent[24]. The data structure of the open set is a

critical section of this problem, and it will help the algorithm to perform better or

worst based on the solution. One of the widely used solutions for this problem is the

binary Min-Heap. Heap data structure is sensitive to the inserted values and requires

operations to maintain the min-heap properties. We assume that pathfinding data

may be closer to worst case operations and the heap is required O(log n) operations

to function, and we wanted to find a better data structure for this problem.

1.6.3 Min-Heap Example

In our example, we showcase a small pathfinding problem which proves our point

that the heap data structure mostly requires worst-case operations to maintain the

properties of a min-heap.

Fig. 6: Current Min-heap Fig. 7: Problem Itteration 1

In the example given in Fig.7, A* is trying to find the path from the start location

to the goal location. After inserting the start node, A* will explore the neighbours of

this node, and it will select the node with the lowest f cost which is shown as “Node

A”. The current state of our Min-Heap is also is represented in Fig.6.

In the second iteration A*, extract the current minimum from the min-heap and

expand the neighbours of “Node B”(Fig.9). The current state of Min-Heap is shown

in Fig.8.

In this iteration, A* algorithm extracts the node with the minimum f value, Since

that the “Node C” (Fig. 11) is the goal node, the path is found and the algorithm

12

1. INTRODUCTION

Fig. 8: Current Min-heap Fig. 9: Problem Itteration 2

Fig. 10: Current Min-heap Fig. 11: Problem Itteration 3

will stop. Each time that a new insertion was made to the Min-Heap, based on

the data structure algorithm, the new node was inserted to the last place on the

data structure. After that, it was compared to its parent, and in case of having a

smaller value, the node swapped its location with its parent till that it finds its correct

location. The same function happened when we removed the minimum node from the

data structure. Based on the algorithm we swapped the last node’s location with the

node on top of the data structure, then checked if the node has a higher value than

its children, we swapped its location with them, till the nodes are in their correct

locations.

1.7 Thesis Contribution

As you can see in the given example, the number of operations was high due to the

depth of our Min-Heap, since that we were keeping all of the nodes that A* algorithm

13

1. INTRODUCTION

expanded and they were not expanded during our search to find the shortest path. If

we limit the size of our data structure by limiting the depth of our Min-Heap, we could

have performed less number of operation such as Swap operations and comparisons

required by the Min-Heap to find the same path.

A* algorithm performance is limited due to the inserting a new node and remov-

ing the node with lowest f value operations. The algorithm inserts the expanded

neighbours of the current node if they are not in the closed set and it will remove the

node with least f value in the open set. Hence the performance of the data structure

has a direct impact on the performance of the algorithm. Already existing solutions

for this problem is using a priority-queue which usually is a Min-Heap. A Min-Heap

requires O(log n) number of operations to maintain the properties of a min-heap.

In this research, we introduced two new solutions based on the min-heap, which

result in better performance in terms of operations and runtime in the right circum-

stances. The first solution is called Cached Min-Heap, which we took the idea from

the Heap On-Top Priority Queues, but based on our own implementation and is our

newly introduced algorithm. The second data structure that we implemented is the

Partial Min-Heap, which is an optimistic solution for this pathfinding problem which

under the right circumstances is able to find the correct optimal path with less number

of operation and better runtime in comparison to the Min-Heap.

1.8 Thesis Organization

This thesis paper is organized into 6 chapters. The first contains introductory in-

formation about the pathfinding algorithms and necessary information regarding the

A* algorithm and provides a small background about our work. The second chapter

mainly focuses on the previously introduced solutions to the A* data structure. In

the third chapter, we introduce our proposed data structures Cached min-heap and

Partial min-heap and provide detailed functions of these data structures and analysis

them. Our fifth chapter is a summary of our experiments combined with our test

criteria and the analysis of the results. In the fifth chapter, we also compared our

14

1. INTRODUCTION

results to the other existing solutions to the open set. The sixth chapter provides a

summary of our analysis and concludes our work and the seventh chapter provide a

possible blueprint of what can be the continuation of this research and how it might

be improved uppon.

15

CHAPTER 2

Literature Review

2.1 A* Data Structure

The functionality of A* search algorithm is dependant on two data structures that

are utilized in the main loop of this search algorithm. A* repeatedly extracts the

node with the lowest f cost from it’s open set, examine its neighbours to find the

best subsequent node to explore till it finds the goal node. The main loop of this

algorithm maintains its operations using two data structure open set and closed set,

which their implementation is essential to the algorithm’s performance. A* algorithm

needs a data structure to maintain its open set to perform more efficiently. A*

algorithm does not need to revisit the already expanded nodes from its closed set if

the heuristic function is consistent.

A* search algorithm operations on open set data structure are as follows: “Insert”,

“Remove min”, “Contains”, and “Update Node”. In each iteration, the algorithm

removes the node with the lowest f value from the open set and explore all of the

adjacent neighbours to the current node. Then the algorithm move the current node

from the open set to the closed set. The algorithm will check if the neighbours of the

current node are members of the open set. This operation is the contains operation.

If they are not already a member of our open set, they will be inserted into the open

set. In case of the nodes being members of the open set, the algorithm will decide

based on their f value the next course of action. If the new f value is larger than

the existing f value, the node will be discarded. Otherwise, the existing node f value

need to be updated, and since the path reaching the node has been changed, the

16

2. LITERATURE REVIEW

node’s parent should be changed too.

In this chapter, we discuss the already existing solutions of the open set and closed

set implementations for the A* algorithm and their time complexity based n which

is the number of members in each data structure.

2.2 Closed Set

If the heuristic function used in the A* algorithm is consistent, the implementation

of the closed set will not have a direct impact on the performance of the algorithm.

The algorithm already expanded the nodes that are members of the closed set and

the purpose of keeping these nodes are preventing our algorithm to enter an infinite

loop state [David Rutter]. The closed set can be implemented as an array or a hash

table.

Operations required in the closed set is mainly membership tests. Implementation

of the closed set using an array requires O(n) operations to return the membership

and using a hash table requires O(1) operations. In this research, we used hash tables

to implement our closed set since we were looking for an optimized solution and better

performance to our pathfinding problem.

2.3 Open Set

Since that the majority of operations in A* search algorithm occur on the nodes in

the open set, the algorithm is heavily dependant on the performance and efficiency

of this data structure and researchers mainly focused on many solutions for the open

set. Since that mostly each solution focuses on a particular problem, it is hard to

compare them to each other. We mainly focused on inserting a new node, removing

the min, contains, and update operation time complexity.

17

2. LITERATURE REVIEW

2.3.1 Array

Using an array to implement the open set, one solution is that the elements in the

array are not sorted and the other solution is to be sorted.

Unsorted Array

Inserting a new node to an unsorted array takes O(1) operation. We add the node

at the last possible location in the array without any operations. Removing the node

with the lowest f value requires O(n) operations since we need to scan the array to

find the node with lowest f value. Contains is the same as removing a node from

the array and requires O(n) operations. Updating a node’s f value requires O(n)

operations as well since it needs to first find the node in the array, then change its f

value.

Sorted Array

Since that the array requires to be sorted at any time during the operation, inserting

a new node requires O(n) operations. At first, the array needs to be scanned to find

the correct locations of the inserted node based on the f value; then the subsequent

nodes needs to be shifted to the new location. Removing the node with the lowest f

value requires O(1) operation since that the array is sorted and the node at the index

or last location in the array is the minimum node. Finding the node in the array can

be implemented using different methods. Using binary search to find the node in the

array requires O(log n) operations. Update method requires O(n+ log n) operations

since that we need to find the node then locate the correct position of the node in

the array.

2.3.2 Hash Table

Using hash tables to implement the open set was suggested in this study [6] since it

allows the algorithm an instant accessing time. Inserting a new node, update and

contain functions need O(1) operations to return the result, but the data structure

18

2. LITERATURE REVIEW

requires O(n) operation to find the node with the lowest f value. The data structure

should still follow the properties of a priority queue.

The main issue using a hash table is the indexing problem. In each search, items

in the hash table need to acquire a hash key which requires computational power

to calculate for each node. The developer needs to use the right hash algorithm to

prevent duplicated keys.

2.3.3 Binary Min-Heap

Min-heap is one of the most popular solutions to implement the open set which

was introduced in 1964 by Williams[1], is a complete binary tree which follows the

properties of a priority queue. Each item in the min-heap required to have an index

which allows the data structure to locate each node’s location in the tree. Using

an array (Fig.12) is one of the most popular ways to implement a binary min-heap.

Nodes in the min-heap must have smaller or equal value than their children nodes.

Min-Heap implements “Insert” and “Remove Min” functions.

Fig. 12: Implementation of Min-Heap using an Array

19

2. LITERATURE REVIEW

Insert

To insert (Fig. 13) a new node to the heap, this data structure inserts the new node

to the last available location in the heap. Then it will check if the node is in the

correct location by checking if the node’s value is higher than its parent. If the node

has a smaller value, the location of the newly inserted node will be swapped with

its parent node. This operation usually is called the sort-up or bubble up operation.

Adding a new node requires O(log n) operations.

Fig. 13: Inserting to Min-Heap

Remove Min

To Remove the node with the min f value in the Min-Heap, this data structures

remove the node at the top of the tree, replace it with the node at the last index in

the tree. Then it will check if the node has a smaller value than any of its children.

The node with the least value will be swapped with the node on top till the node find

its correct location in the tree. This process also is called sort-down or bubble down

operation. Removing the minimum node requires O(log n) operations.

Contain and Update

To find the node which is the Contain operation in the min-heap, firstly we need to

traverse the array which requires O(n) operations. If the node needs to be updated,

first we find the node in the heap, then we update its value. Since that the node’s

value is changed, we have to check if our data structure is not breaking the properties

20

2. LITERATURE REVIEW

Fig. 14: Remove Min - Min-Heap

of a Min-Heap and find the correct location of the node in the heap which requires

O(log n) operations.

2.3.4 Fibonacci Heap

Despite the promising time complexities of Fibonacci heap [11], this data structure

is not a popular solution to the A* shortest path problem due to the implementation

complexities of the Fibonacci heap. This data structure mainly developed to improve

the time complexity of Dijkstra’s algorithm but the authors mentioned that it could

be used as a priority queue in any problem. Fibonacci heap is a combination of

heap-ordered trees. Each sub tree is a non-binary min-tree which has a pointer of

its minimum member to a root list. Root list will keep track of all of the minimum

members of the sub trees and has a pointer to the minimum member in the entire

heap.

Insert and Remove

To add a new node to the Fibonacci heap, first, we create a singleton tree using that

node then we insert the new singleton tree into the root list. If the new singleton

tree is smaller than the current minimum member, we update the root list pointer.

In the case of the given Example (Fig. 15), Adding the 21 element to the Fibonacci

will result in the following figure. Fibonacci-heap insert requires O(1) operation.

Removing the node with the least value from the Fibonacci-heap requires the

21

2. LITERATURE REVIEW

Fig. 15: Fibonacci-Heap Insert Example

following operations. First, the algorithm extracts the minimum node, then meld its

children to the root list then consolidate the remaining trees so that no two roots

have the same rank.

2.3.5 Multilevel Buckets

Multilevel buckets [12] is using the bucket data structure which maintains an array

of buckets. In a data structure with K bucket levels, K = 0 is the lowest level, and K

= K-1 is the highest level of the bucket, in which each bucket only keeps the nodes

with certain value of f . The algorithm will use the ith bucket at the time and expand

the nodes correspond to that bucket. If the current bucket is empty, the algorithm

will use the next bucket with the values of f . In case of updating a node, the node

will be removed from its current bucket, and it will be moved to the new bucket

of its corresponding f value. Since that this data structure was introduced to work

with Dijkstra’s algorithm, there was no definition of the contain method. Based on

the implementation of this data structure, inserting and removing a node will take a

constant time based on the number of buckets used and the number of nodes.

2.3.6 MultiQueues

MultiQueues [21] is an array Q of multiple lock protected priority queues. In this data

structure, accessing each priority queue requires that the priority queue is not locked.

22

2. LITERATURE REVIEW

Inserting a new node, will Lock the Q[i] priority queue and insert the element into

the priority queue. Since that the priority queue follows the properties of a binary

tree, Insert requires O(log n) + 1 operations where n is the number of node in the

Q[i]th priority queue. Operations required to delete the node with the lowest value is

similar to the insert functions with the difference that the node will be removed from

the priority queue with the smallest value. Operations required for the delete-min

operation in this data structure is O(log n) + 1 where n is the number of nodes in the

Q[i]th priority queue and plus one is the fixed operation of choosing the ith priority

queue.

2.3.7 Heap On Top Priority Queues

A combination of Multi-level bucket data structure of Denardo and Fox [8] with binary

min-heap data structure was introduced to improve the performance of Dijkstra’s

algorithm which is called heap on top priority queue [5]. Hot priority queue, is a data

structure combination of a heap H and the k-level bucket data structure B. Elements

of this data structure are either a member of H or B. Size of the heap section is

finite and is set to a n element which we assumed that is defined by the developer

based on the right circumstances since that the author did not mention a method

of calculating the n. Buckets are required to have a fixed size of K as well, and

they are unsorted arrays that are keeping the node with a specific value range. Since

that H is following the properties of a min-heap, Inserting a new node into the H

require O(log n) where is n is the number of nodes currently in the heap section and

if the value of the inserted node is outside of the specific range, insert requires O(1)

operation to complete the insertion process. Removing a node from the Hot queue

requires O(log n) operations where n is the number of nodes in the H. If the heap

section is empty, the algorithm uses the next unsorted bucket and convert its members

to a min-heap which it requires O(log k) operations to create a new heap where K is

the number of the elements in the current bucket. Contain operation requires O(n)

operation to traverse the data structure to find the node. Update method needs O(n)

operations to find the node and If the node is in the first bucket, it will be moved to

23

2. LITERATURE REVIEW

the heap section and it requires O(log n) operation to locate it in the correct position.

If the node is in ith bucket, the node will be removed and it will be inserted into the

correct bucket.

2.4 Summary

Each data structure that was mentioned in this chapter has its own advantages and

disadvantages. Based on the information gathered we could report the following

table (Table. 1) as a mean of comparison for these data structures in the primary

four operations needed for A* algorithm to operate.

Data Structures Insert Remove Min Contains Update

Unsorted Array O(1) O(n) O(n) O(n)

Sorted Array O(n) O(1) O(log n) O(n) + O(log n)

Hash Table O(1) O(n) O(1) O(1)

Min-Heap O(log n) O(log n) O(n) O(n) + O(log n)

Fibonacci Heap O(1) O(log n) O(1) O(1)

MultiQueue O(log n) + 1 O(log n) + 1 O(n) O(n) + O(log n)

Hot Queue O(log n/k) O(log n/k) or O(n) O(n) + O(log n/k)

or O(1) O(n/k) or O(n)

Table 1: Time Complexity Comparison of Different Data Structures

Performance of these data structures under the right circumstance is different.

Since that search algorithms belong to the NP-hard family problems, size of the

problem has a direct impact on the complexity of the solution. Performance of these

data structures might not be significantly different in small size problems. Another

important remark is the use of these data structures in the game industry. Although

that Fibonacci heap is better in terms of time complexity than the min-heap, due

to outstanding implementation challenges most of the games use min-heap instead.

Hash tables offer remarkable performance as well, but developers often do not use

24

2. LITERATURE REVIEW

them since that it requires hashing operations and prevent any key collisions. Heap

on top priority queue it could perform better under the right circumstances but since

that the author’s explanations were not clear we did not use it in our research. In

our study, we proposed our implementation of the Hot queue as cached min-heap and

also proposed our data structure partial min-heap and compared their result to the

binary min-heap and the unsorted array.

25

CHAPTER 3

Cached Min-Heap and Partial

Min-heap

3.1 Motivation

Based on our studies in the field of pathfinding we explored multiple solutions re-

garding the A* search algorithm performance. Some of the solutions mainly focused

on the representation of the map, and they suggested that by decreasing the size

of the map and partially representing the map can increase the performance of this

algorithm. Some of the algorithms suggested different solutions based on single agent

or multiple agent pathfinding solutions. The operations that are related to the Open

set are the most resource consuming operations of this algorithm. Researchers intro-

duced a number of solutions for this problem, and each of these solutions relates to a

type of problem. Data structures such as the Hot queue, MultiQueue, and Multilevel

buckets suggested that by distributing the load of nodes into multiple sections and

data structures, our algorithm performs more efficiently which this idea motivated

us to exploit this research. Our experiments showed us that in a normal pathfinding

problem in a large fully connected graph, using an admissible and consistent heuristic,

the majority of the nodes inserted into the open set are not a part of the solution,

but the data structure performs a vast number of operations to keep them.

In our research, the agents were allowed to move in any direction with the set cost

of 10 for non-diagonal and 14 as the diagonal movement. The heuristic function used

was the Manhattan distance, and the white space is representing a traversable node.

26

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

Fig. 16: Example of search environment

The green node is the start location and red is our goal location. Each cell has three

values written inside which the top-left value is the G cost, top-right is the H cost,

and the bottom value is the summary of given values as F cost as given in the Fig.16.

In the following examples, nodes in light green color are representing the nodes in the

open set and the nodes in blue are the nodes in the closed set. In our experiment we

used a min-heap to implement our open set.

In the first iteration, our A* search algorithm extract our start node from the

open set and explore its children and insert them into the open set. The algorithm

then extracts the node with the least f(Node A) cost and explore its children.

Fig. 17: Example of search environment (Exploring a node)

A* algorithm inserts the children of Node A into the open set and then extract

the node with the least cost till it finds the correct path. If we look at the members

of the min-heap (Fig. 18) before finding the goal node, we can make an important

27

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

observation. The f value of the nodes that directed us to the correct path was 42,

and they did not change in the pathfinding process.

Fig. 18: Example of search environment (Exploring a node)

Data structure before finding the goal node has 16 members. Most of the members

in the current heap were not explored, but the data structure kept them as members.

Since that these nodes are members of this heap, the current depth of this min heap

is 5. In case that we want to remove the minimum node from this data structure,

min-heap will return the current minimum node, and it will replace it with the last

node in the heap, and perform the required operations to find the correct location of

it.

Since that the current heap has 16 members and the time complexity of the

min-heap is O(log n), removing the minimum node requires four operations. In a

pathfinding problem, children of the current node have the same f value or f + d

values where d is the distance of the current node to the next node if our heuristic is

consistent. Based on the aforesaid, binary heap expects values smaller or relevantly

small values in comparison to the nodes at the bottom part of the heap. In the

following example, you can see that the nodes at the bottom of the heap have values

of “62” whereas the nodes inserted have values of “48” and “42”. The worst case

operation for inserting a new node into the heap is O(log n), and in this example, it

requires “4” operations to locate the newly inserted node into the heap.

Based on the given example we can observe that:

- The pathfinding data (Inserted nodes and Remove min) in each iteration result

28

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

in the worst case complexity of the min-heap which is O(log n).

- The majority of the inserted nodes are irrelevant to the pathfinding solution.

These nodes only increase the size of the heap, hence expanding the time complexity

of the algorithm.

It is clear that if we decrease the size of our data structure, we decrease the time

complexity of our min-heap and increase its performance. Based on our second obser-

vation we came up with a theory that our pathfinding algorithm might be successful

to find the correct optimal path if we limit the memory size of our data structure.

Based on our observations and the concept of multiqueues combined with multi-level

bucket data structure, we came up with two new data structures to implement the

open set for the A* search algorithm, Cached min-heap and Partial min-heap.

Our cached min-heap divide the data structure into logically two sections in one

array, where each element of the array has an index which we took the original idea

from the heap on top priority queue. The cached min-heap first section follows the

properties of a min-heap and the second section is an unsorted array. The first section

of this data structure serves the A* algorithm till there are no new nodes inside, If this

section is empty, then our algorithm will use quick sort to build the heap section using

the members in the reserved section. Our partial min-heap is an optimistic min-heap

data structure which helps the A* algorithm to find the solution performing fewer

operations since it limits the search space by eliminating nodes that have a higher f

value. Both data structure are explained in detail in the following sections.

3.2 Cached Min-Heap

Based on the idea of Hot queues and Multilevel buckets, we proposed a data structure

called Cached min-heap. This data structure logically separates itself to two sections

(Fig.19). The first part of this data structure follows the properties of a min-heap

and the reserved part is an unsorted array. We assigned an index to each element in

the data structure to maintain their location. We separate the cached section and the

heap section using a value of d which is the depth of our data structure. The number

29

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

of elements in the heap is 2d − 1 elements.

We designed cached min-heap in a way that the elements inside the heap always

have values smaller than the reserved section. To achieve this goal since that we want

our algorithm to function correctly, we keep a pointer to the minimum element in our

cached section. Also, we keep a pointer to the maximum node in our heap section as

well.

Fig. 19: Cached Min-Heap Data Structure d=3

3.2.1 Cached Min-Heap Operations

Cached min-heap is designed to improve the performance of A* algorithm data struc-

ture and satisfies the main four operations required. In the following we explained

and analysed the required operation which are Insert, Remove-Min, Contains, and

Update based on n where n is the number of nodes in the data structure.

Insert

For Inserting an element, cached min-heap follow certain steps to insert the new node

into the data structure. If the heap has empty space and the reserved section is also

empty, the new nodes will be inserted into the heap section. If the inserted node has

a higher f value, the max pointer will be updated to the new node. For example

30

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

in Figure 20, inserting the new node with the value of 62 the node will be inserted

to the last space available in the heap section. The new node has a higher value in

comparison to its parent, so it is in the correct location. Since that the new node has

higher f value than the node with the index of “4” (old max node), the max pointer

will be set to the new node in the heap.

Fig. 20: Cached Min-Heap Data Structure Example d=3

If the heap has empty space but our reserved section has elements inside, the data

structure checks if the new nodes f value is smaller than the current min item in

the reserved section. If it has smaller value, the node will be inserted into the heap

section. Otherwise, it will be inserted into the reserved section. For example in the

Figure 21, the reserved section has “70 & 80” as members and 70 is the min member

of our reserved section and our heap section has empty space. The algorithm will

check the new member f value and compare it to the min member in the reserved

section. Since that it has a higher value than our current min the node will be

inserted to the reserved section.

If the heap is full and we are inserting a new node, the data structure will compare

the current nodes f value, if it is smaller than the current max node in the heap

section, the new node will replace the current max node in the heap and then the

old max will be inserted into the reserved section. Since that we replaced the old

max node, the algorithm will scan the leaf nodes in order to find the new max node

31

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

Fig. 21: Cached Min-Heap Data Structure Example d=3

and change the pointer to that node. For example in Figure.22, the new node has

f value of “48” which is smaller than the current max node with the value of “62”.

The algorithm will replace the new node with the old max node and insert the old

max into the reserved section.

Fig. 22: Cached Min-Heap Data Structure Example d=3

In this example (Fig. 22), the algorithm will check if the newly inserted node

into the reserved section is smaller than the current min or not if it is smaller it will

replace the current min with the newly inserted node. Since that we replaced the old

max node, the algorithm will scan the leaf nodes to find the new max node which is

32

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

the node in the index “6” in the heap section and change the max pointer to the new

max node.

Since that cached min-heap data structure follows the mentioned steps to insert

a new node, it is guaranteed that at any stage, the element of the heap section has

smaller f value than the reserved section. The time complexity of our insert operation

is O(log n) if the heap has empty space, O(1) if the heap is full and the node has

higher f value than the max value in the heap. If the heap is full and the new node

has smaller f value, inserting the node needs O(log n) + 1 operations to replace the

node in the heap and place it in the reserved section and it needs O(n/2) operations

to find the max node in the leaf nodes of the heap section.

Remove Min

Cached min-heap requires O(log n) operations to remove a node from the heap section

since it follows the properties of a min-heap in the top section. In case that the top

section of our data structure is empty, our algorithm will perform the Quicksort

algorithm on the reserved section and replenish our heap section using the nodes

from our reserved section. We understand that this operation is computationally

heavy and requires O(n log(n)) average operation to sort the data and insert them

to the heap and then it needs O(log n) operations to remove the minimum node.

A* algorithm usually inserts more nodes and extract less number of nodes during

a pathfinding problem, and if our algorithm requires to perform this operation, the

performance will suffer heavily. We expect that this operation does not happen many

times during a pathfinding solution.

Contains

Elements in the data structure are representing objects of a node. During the op-

erations of the A* algorithm, if the algorithm calls the contains function, the data

structure is required to scan the entire entity to find the same node to find a duplicate

node. Since that we are using a single array to implement our cached min-heap data

structure, it requires O(n) operation to check the data structure to find a duplicate

33

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

for the new node. For example in Figure.23 the algorithm needs to scan each element

at the indexes to find out the new node is a duplicate node or not.

Fig. 23: Cached Min-Heap Data Structure Contains

Update

In our cached min-heap data structure we logically separate the data, so the nodes

are either in the heap section of data structure or they are in the reserved section of

our data structure. First, we need to locate the node in our data structure which is

the same operation as the contains operation which requires O(n) operations. If the

located node is in our heap section, we treat it as a min-heap operation which requires

O(log n) operation to find the correct location for the new node in the heap. If the

node is located in our reserved section, we first change the f value then compare it

with the max node in our heap section. If the new f value is smaller than the current

max, we replace the max node with the current node and check to find the new max

value in our heap section. Since that we inserted a new node into the reserved section

we check if the new node is smaller than the current min or not, if it is we update

the new min pointer to the new min node.

Replenish Cache

During a pathfinding problem, if our heuristic function is consistent and our search

environment is clear of obstacles along the way, the expanded nodes of the current

node are guaranteed to have smaller f values. If our search environment contains

multiple path blocks along the optimal path suggested by our heuristic, the nodes

along the way are mostly won’t lead us to the shortest optimal path. Aforementioned

34

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

will result in inserting nodes with a higher value than the current min node and

performing more remove-min operations from the heap section and inserting a node

in the reserved section. Since that this series of operations are a regular part of

a pathfinding problem, we implemented our method to refill the cache section of

our data structure. Our first solution to this problem was to perform a build-heap

operation which only takes O(log n) operations. After implementing the replenish

cache method using heap sort we noticed that of our A* algorithm is not functioning

correctly. We noticed that using the heap sort to replenish our cached part and slicing

our data structure to two sections is not guaranteed to work correctly since we might

have a node with smaller values in the reserved section that they belong to the heap

part. You can see in the given example below (Fig. 24) that slicing the data structure

to a depth of 3; we will have nodes that are smaller in the reserved section, so we

decided to use the Quicksort algorithm to implement our replenish cache method.

Fig. 24: Cached Min-Heap Data Structure Replenish Cache Failure Using Heap Sort

35

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

Summary

Based on our analysis of the operations of cached min-heap, we can state that the

performance of this data structure depends on two main components. First is the

depth of the data structure and second is the replenish cache operation. If the depth

of this data structure is small, the data structure will save some operations since

that the size of the heap is smaller than a min-heap but the numbers of calling the

replenish cache will be increased.

3.3 Partial Min-Heap

Based on our experiments we observed that a majority of nodes in the data structure

are not related to the path that A* algorithm finds. Our second observation was

that the depth of the min-heap has a direct impact on the performance of the data

structure. We proposed a new data structure called partial min-heap which is an

optimistic data structure for the A* algorithm. We estimated that this data structure

performs better than min-heap under the right circumstances with a high chance of

successfully returning an optimal path. Same as cached min-heap we assigned an

index to each element in the data structure, and we also set a maximum size for this

data structure as well. The maximum number of elements in this data structure is

2d − 1 where d is the depth of the data structure.

3.3.1 Partial Min-Heap Operations

Partial min-heap is an optimistic data structure which aims to limit the search space

of the A* algorithm while following the properties of a min-heap. This data structure

performs the main operations required by the A* algorithm. In the following section,

we explained and analysed all four main operations of the partial min-heap.

36

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

Insert

Since that this data structure only contains a limited number of nodes at the time,

First the algorithm checks if the data structure is full or has empty space. If the data

structure is empty, the first inserted node will be inserted into the heap, and its value

will be set to the max value and the index of that node will be saved. If the data

structure is not full, the nodes that the A* algorithm insert them into the heap will

be added to the partial min-heap same as the min-heap. In each insertion operation,

we check if the current node f value is higher than the current max node. If it is

higher, after that we locate the correct position of the node, we will set the pointer

of the new max node to the newly inserted node. If our data structure is full, we

compare the f value of the inserted node to the current max nodes f value. If the

new node has a higher f value, we discard the new node and if it has a smaller f value

compare to the current max node, we replace the new node with the current max

node’s location which is O(1) operation to replace the node and O(log n) operations

to relocate the inserted node to its correct location. Since that we replace the max

node, we need to find the new max node in the heap so we scan the leaf nodes to find

the new max location which requires O(n/2) operations.

For example in the Figure. 25, the new node has a f value of “48” which is smaller

than the current max node with the value of “60”. The algorithm will replace the

new node with the old max node and discard the old max node. Then the algorithm

will scan the leaf node in the current heap and find the new max item which is the

node in the index “3”.

Remove Min

Partial min-heap requires O(log n) operations to remove a node from the heap section

since it follows the properties of a min-heap. Same as the min-heap the top node will

be extracted, and it will be replaced by the last node in the heap. Then it will be

compared to its children and swap its location if it is smaller until it finds the correct

location in the min-heap.

37

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

Fig. 25: Partial Min-Heap Data Structure Insert Example d=3

Fig. 26: Partial Min-Heap Data Structure Remove Min Example d=3

For example in the Figure. 26, first partial min-heap extract the minimum node

with the value of “42”, then replace that node with the last node in the index of “6”

in the heap. Then compare its value with its children, since that the node has a value

equal to its children no operation is required, and the node is in the correct location.

Contains

The same as the cached min-heap data structure, elements that are members of the

partial min-heap are objects of type node. To locate a node in the data structure, we

need to compare the node in the matter with each node in the heap to ensure if the

node is already a member of the data structure or not. This operation takes O(n) to

scan the data structure.

38

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

Update

Scanning the entire data structure requires O(n) operation to find the node that we

need to update, then we change the f value of the updated node. Since that the new

value might not be in the correct position in the heap and violate the properties of

the min-heap, we need O(log n) operations to locate the updated node in its right

location in the heap.

3.4 Partial Min-Heap Case study

Partial min-heap is designed to decrease the size of the memory in our A* pathfinding

algorithm. Since that we are techinically limiting the search space for our algorithm

we will face the risk of losing the optimallity of the path or failure of finding the path.

3.4.1 Partial Min-Heap Success

In the following example, we set the depth of the partial min-heap to d = 3. Based on

the formula that we provided, Partial min-heap at most will accept 23−1 = 7 elements

at most. Since that we limited the number of nodes so in each insert operation and

remove min operation we will save extra operations compare to d = 5 depth. In

the example given bellow we can see the final iteration of A* algorithm finding the

path using a min-heap as open set. In this example, our min-heap accepts all of the

inserted nodes. Our assumption was that using the correct d and limiting the size of

the data structure will result in an optimal or sub-optimal path. If we set the limit

of size of the data structure to d = 3 in figure 27, our pathfinding algorithm intially

inserts neighbours of the starting node, since that the data structure will be filled

out with the neighbours of the start node, The node with the f value of “70” will be

discarded from the data structure in the first iteration.

In the second iteration shown in Figure.28, A* algorithm will chose the node “A”

and explore its children. Expanding the child node, partial min-heap will discard the

nodes that are already in the min-heap and replace them with higher f values and

39

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

Fig. 27: Pathfinding Example

replace them with the new nodes with smaller f values.

Fig. 28: Pathfinding Example

In the last iteration shown in Figure. 29 you can see that A* algorithm was able

to find the optimal path using the partial min-heap data structure while discarding

nine extra nodes. Our pathfinding performed less number of compare operations since

that worst case for each insert and remove operation was O(log 8) compare to the

O(log 15) operations in a normal min-heap in the last iteration of this pathfinding

example. So our expectation is that the partial min-heap will let us to be able to find

an optimal or suboptimal path under the right circumstances.

40

3. CACHED MIN-HEAP AND PARTIAL MIN-HEAP

Fig. 29: Pathfinding Example

3.4.2 Partial Min-Heap Failure or Sub-optimallity

Same rule applies if we slice our data structure too small and set a small size data

structure for a problem. If our data structure is too small, our A* algorithm might

try to re-insert the already discarded nodes into the data structure which might result

in finding a path to the goal node. In case of this issue ocurring, our solution to this

problem will be suboptimal since we might have missed the branch in our graph that

was resulting in the shortest path. If our data structure is smaller than a certain size

or our map has large blocks along in the path, our data structure will compeletly fail

to find an answer since it already discarded the nodes that will result in finding a

path out of the blockage.

3.4.3 Summary

Our proposed partial min-heap is an optimistic data structure for the open set for

the A* pathfinding algorithm. Our analysis of this data structure is that if the depth

of the data structure which represents the size of it, has a crucial role in the success

or failure of the pathfinding algorithm. Limiting the size of the data structure to

small depths will limit the pathfinding algorithm to be able to find only small size

paths. Also increasing the depth of our data structure higher than a certain depth

depending on the pathfinding problem will result in changing our data structure to

perform as a min-heap and it will act the same as a min-heap.

41

CHAPTER 4

Experiments and Results

4.1 Implementation Methods

We implemented A∗ algorithm using C# programming language, and we used the

Unity3D game engine to present our work visually. Each system and class will keep

track of number of operations and time in order to enable us to evaluate performance

of our algorithms. Our system is designed to find the single-source shortest path

from the location of our starting node to our goal node. In each test, we change the

location of our start and goal node to a walkable spot in the map.

We used the A* search algorithm as our pathfinding algorithm. In each iteration,

based on the same start and goal location, A* will try to find an optimal path using

four different data structures that we implemented. To have consistent and fair results

in each test case, we gathered the results using all four data structures. In this class

we stored primary attributes in each test case such as Type of data structure, success,

number of operations, time, cost of the path that was found, chance of obstacles,etc.

Since that the focus of our research was improving the performance of the open list,

we implemented the close list as HashSet which contains object type of class Nodes.

The data structure that we compared our new algorithms cached min-heap and

partially min-heap is the unsorted array and min-heap. Due to the nature of A*

algorithm, while loop continues its operations till there are no other nodes to expand.

We implemented the unsorted array using a List that contains object type of nodes.

Using an array we manipulated a min-heap in a way that each node in the data

structure has a property of heap-index. By using this property, we maintained the

42

4. EXPERIMENTS AND RESULTS

structure of a tree and a min-heap. Our new approach to min-heap, partial min-heap

and cached min-heap was implemented using the same technique. Cached min-heap

logically separates inserted data into a min-heap and an unsorted-array. Partial min-

heap follows the property of a min-heap but logically decides if the inserted data

might be valuable to the algorithm or not.

4.2 Experimental Environment

Our data structure has no limitation for any search space or any condition. Since

we wanted our work to be clear and useable by other researchers we implemented

our search space using a fully connected squared-grid map. Based on the suggestions

of [23] we used specific map sizes, and we set the Euclidian distance as our heuristic

function. Agents were allowed to move in 8 directions(diagonally and non-diagonally).

Cost of diagonal movements is 14, and the non-diagonal movement is 10. We generate

each map with a pseudo-random percentage of obstacles, ranging from 0 to 55 percent.

Typically, the possibility of finding a path is slightly less when the chance of having

obstacles is higher than 45 percent.

Fig. 30: Map Size 45*45 - Obstacle chance 10%

We ran our experiments on conventional map sizes that were used by commer-

cial games such as Warcraft III and Dragon Age: origin. Our map sizes varied from

120*120 to 512*512 nodes which is actually the same size as Warcraft III map size.

43

4. EXPERIMENTS AND RESULTS

In each experiment, our system generated a new map, placed obstacles based on the

obstacle chance. Then our program randomly changed the location of our pathfinder

agent and goal location to a walkable node on the map. Then our pathfinding algo-

rithm will use these tools to run the A* algorithm separately using our implemented

data structures. In each test case, the chance of obstacle will increase by 5 percent

after every 100 iterations. We defined each iteration as 100 different pair locations in

each map size with a certain chance of obstacles. Our test method will automatically

increase the obstacle chance, and repeat the algorithm for each map size.

4.3 Experiment Setups

Our test method was implemented to function with minimal user input. The system

generates parameters such as obstacle chance and distribution. First, we set the

plane size to our test scenario in Unity3D which help us to test our algorithms with

commercial game’s map sizes. Our Grid script scans the plane to generate a graph of

nodes which are used by our A* script to use it run the tests. We implemented our

benchmarking system in a way that user can insert obstacles on the map manually

as well in case that they wanted to experiment with different ideas.

We also implement a Unity GUI for our benchmark system in case that user wanted

to add new data structures or in case that they wish to run multiple tests with only

some of the data structures implemented, not all of them. Due to the implementation

of our newly developed data structure, the user must define the depth of the partial

min-heap manually in each test. It is the same case for our cached min-heap data

structure as well, which requires user input to logically separate its min-heap and the

unsorted data structure from each other. We set a depth of our partial min heap to 8

(28 - 1 nodes) by default in case that the user forgot to define this value, preventing

the test to fail. Also, we set our default size of our cached min-heap to a depth of

“8” and depth “8+3” for the cached section to prevent any user input failures.

So in an experiment, the user can define the number of iterations, size of the map,

the chance of obstacles, showing the path found using different data structures, type

44

4. EXPERIMENTS AND RESULTS

of the data structure, number of iterations. In order so that user can have more data

from the test scenario we implemented the “Map” method. This method is useful

since it gives the user the ability to import a specific map to experiment with or

export the existing map using a text file.

4.4 Performance Evaluation

In each iteration, we gathered information that our program reported us to compare

the performance of these algorithms with each other. Since that partial min-heap is

not guaranteed to find the path, we collected that if the A* was successful to find the

path, the time is taken to find a path, path length, cost of the path, nodes expanded,

and operations in each test scenario for each data structure.

4.4.1 Success

Our proposed partial min-heap data structure is a greedy solution to the A* star

algorithm. Our experiments showed us that under the right circumstances our algo-

rithm performs better than min-heap, but in cases that the partial min-heap does

not have the correct depth tailored to the search space, this algorithm will fail to find

a path. To keep track of this result, we made sure that in each iteration how many

times partial min-heap was successful and how many times it was not.

4.4.2 Time

We defined a stopwatch in each method to calculate the time in each iteration. We

used the “System.stopwatch” to measure the elapsed time. Our stopwatch starts

measuring the elapsed milliseconds after that all of the classes are initiated. We stop

the stopwatch once the pathfinding method returns a path or the open set is empty

which shows that the algorithm failed to find the path. We also kept track of all the

iterations in parallel to the ones that were successful, to have a fair comparison.

45

4. EXPERIMENTS AND RESULTS

4.4.3 Path Length and Cost

Since that our main test method places the starting node and the goal destination

randomly on the map, we wanted to keep track of the path length to compare our

results with other data structures. The second reason for keeping the path distance

in each iteration was that our partial min-heap might result in finding a sub-optimal

path. Since that this algorithm only keep track of nodes that have a higher chance of

resulting in finding a path, it might result in finding a suboptimal path with a smaller

number of operations. For example, the path that min-heap will find has smaller F

cost, but the number of operations is higher, but partial min-heap will find another

path which might have higher Fcost but in less time and number of operations. We

kept track of each data-structure path to make sure that our algorithms will find the

same path as well. We calculate the path cost as well by adding up the node’s Fcost

in the path to measure the path cost.

4.4.4 Nodes Expanded

Our implementation of A* algorithm works using a while loop and perform by first

in first out. A* algorithm will extract the first node in the open set and perform

the operations needed to find the path to the goal node. Since our algorithms use

different properties to determine the best node in the open set to the algorithm, we

kept track of the number of nodes expanded in each iteration so that we have an extra

point of measurement.

4.4.5 Operations

Based on our implementation of A* algorithm and using Unity3D as our game en-

gine, we considered to keep track of number of internal operations that each data

structure performed to maintain the properties of a min-heap. In each class of data

structure implemented we kept track of number of Inserts, Removes, Sort-downs,

Sort-ups, Contains, and Update-Items. Based on the architecture of partial min-heap

we counted special operations that this data structure performs which is swap oper-

46

4. EXPERIMENTS AND RESULTS

ation. Cached min-heap logically separates inserted data into two different sections

and keep track of maximum node in the current min-heap and minimum node in the

cached section. If extras are full it will add nodes to the cache section and if the heap

is empty it will use quick sort to replenish the heap section. In different cases based

on the Fcost of the inserted node, different operations take place as well. During

the process, we counted Cached Inserts, Swaps, and the number of operations needed

in case of the Replenish-Cache method required to maintain a min-heap, including

operations needed in the quick-sort algorithm.

Unsorted Array

In our unsorted array data structure, anytime the algorithm inserted a new node to

the open list we count it as one operation. Removing the minimum from the unsorted

array takes n number of operations since that it will compare the F cost of each node

to one another to find the least F cost and counted it as one operation per each

comparison. Contains searches the open set, comparing the new node with the nodes

that are already in the open set. We counted each comparison as one operation. If the

node’s F cost needs to be updated, since the data structure is unsorted no operations

will occur and we did not count the update-item as an operation.

Min-heap

Insertion and Removing first item in min-heap takes O(log n) operations. Nodes

that were inserted in our min-heap take a property of heap index. Using this heap

index we maintain the properties of a binary min-heap. Each insertion count as one

operation since it needs to get the properties of a heap. The algorithm compares

the inserted item’s value to its parent’s value, if the added item is smaller then the

item’s swap location with its parent until the item is in its correct location in the

min-heap. Removing the first item returns the first item and replace the last item in

the heap with the location of the minimum item. Then compare it with its children

and in case of higher f cost item need to be swapped. We counted each operation

and comparison as one operation. Update-item and Contains methods need to scan

47

4. EXPERIMENTS AND RESULTS

the min-heap to find the item and compare the items with each other, so we counted

each comparison as one operation. In case of update item, sort-up or sort-down might

be required, so we counted the required operations as well.

Cached Min-heap

We divided our data structure section into a min-heap and an unsorted array and

created a new data structure named Cached min-heap. This data structure follows

the properties of a min-heap in the top section of data, but keeps the rest of the

data as well in case that it might be required to finish the pathfinding algorithm.

Adding a new node into the cached min-heap takes certain amount of comparison

and operations. If our heap section is not empty, nodes are inserted into our heap

section without any hesitation and comparisons which is O(log n) operations, the

same as a min-heap, but we keep track the maximum node in the heap. If the heap

section is full, new nodes are compared to the maximum member of the heap. If they

have a smaller F cost than the maximum node, they replace the current max. Since

we replace the maximum node, we run the find-max method to find the current max in

the tree. Find max searches the leaf nodes to find the new maximum. This operations

takes (n−n/2) where n is the number of current nodes in the tree operations. Cached-

insert operation takes O(1) operations since it is an unsorted array, and we keep track

of the Minimum node in the unsorted array as well. If the new inserted node has a

smaller f cost than the current minimum in the cached section, we insert that node

into the extras and that takes O(1) operation. Removing the first item is the same as

a min-heap which takes O(logn) operations. We implemented our update item same

as the min-heap with a different condition. If the node that needs to be updated is

not in the tree section, we check with the maximum node’s f cost. If it has a smaller

f cost, we will simply replace that node since that it has a higher chance of getting

used by the pathfinding algorithm.

Assuming that our min-heap section is empty, and we have nodes present in our

cached part, we will run the Replenish-Cache method. This method first sorts the

data in our cached section using the ”quick-sort” algorithm which takes O(N2) worst

48

4. EXPERIMENTS AND RESULTS

case operations and inserts the nodes in the tree.

Partial Min-heap

Partial min-heap is our greedy proposed solution to solve the A* pathfinding algo-

rithm. Partial min-heap implementation has the same operations as a standard binary

heap, but it is different in the insertion process. Since we have a limited amount of

memory in our implementation, we keep the maximum node in our min-heap. When

we run out of memory, which means that our heap is full, we check the f cost of

the current node; if it is smaller than our current max, we discard the current maxi-

mum node and replace it with the current node. After doing this operation, we will

run the Find-Max method to find the current maximum node which takes O(N2) of

operations.

Fig. 31: Map Size 60*60 - Obstacle chance 10%

4.5 Experiment Results and Analysis

Using the benchmark system that we implemented, we ran tests and changed multiple

variables in our iterations to understand how our proposed data structure performs

in different situations. Since that we use random locations in our map to run our

49

4. EXPERIMENTS AND RESULTS

pathfinding algorithm, we did not have control over the path length, but we found out

that for each certain map size, the depth of our partial min heap which we use K to

represent it in our graphs, had better performance. We ran over 260,000 experiments

using our implemented data structure to find out, under what circumstances our

proposed data structure perform better or worst than other existing solutions.

In our experiments we used conventional map sizes which were more popular in

games. Map sizes that we used were: 120*120, 200*200, 300*300, 400*400, and

512*512 nodes. We increased the obstacle generation chance by 5 percent after 800

experiments. Our obstacle chance varied from 0 percent up to 55 percent. In each

experiment with the mentions map size, we generated a new map with different ob-

stacle distribution and different locations for our pathfinding agent and goal location.

Since we were trying to find the best value of K (depth of our partial min-heap) in

our data structure and its effect on the performance, with each value of K we ran

9600 number of tests. After each batch of tests we changed the value of K and ran

the experiments again. In total, we generated more than 62000 maps, with different

obstacle chance and distribution and map size. Using our four data structures we ran

A* pathfinding algorithm, 200 times. A summary of our test plan is shown in table

2.

Obstacle Chance Number of tests Map Size Data Strutcure

0
5
...
50
55

200

120*120
200*200
300*300
400*400
512*512

Unsorted Array
Min-heap

Cached Min-heap
Partial Min-heap

Table 2: Summary of experiments

We presented our results in the following order, Based on the gathered information,

we compared our data structure’s performance using the number of operations and

the number of times that our Partial min-heap data structure was successful to find

a path using a value of K. We also completely presented our gathered data in the

appendices. We presented our data in the following, a chart will present the number

50

4. EXPERIMENTS AND RESULTS

of operation that it took to find a path using an unsorted array, min-heap, cached

min-heap, and partial min-heap, and another chart will present the percentage of

success using each data structure.

4.6 Number of operations

Results For Map Size 120 * 120

This chart (Fig 32) presented results for the map size of 120*120 nodes and using the

K=6 as the depth of our partial min-heap. Based on the gathered results we found

out that, using k=6 will result in finding the path with less operation but a small

success rate.

Since we experienced a large number of failures by using K with a value of 6, we

changed the k with a value of 7. The charts (Fig 33) show that in this environment

using K=7 we saw better success rate to compare to k=6. In most cases, partial min-

heap performed with less number of operations which shows that this data structure

performs better compared to other data structures. Cached min-heap performed

better than heap when the obstacle density was higher than 45%. In most cases,

partial min-heap performed better than all other data structures with an acceptable

rate of success.

In this set of experiments, we used k with the value of 8 in our partial min-

heap. The charts in (Fig 34) shows that partial min-heap had a higher success rate in

comparison with k=7. Results show that the unsorted array executed more operations

than the min-heap. In this test scenario, cached min-heap performed more operations

than the min-heap and partial min-heap. Our results show that partial min-heap had

better performance than the other data structures. We concluded that using the K

of 8 as the depth of our data structure, will guarantee in the best performance in this

particular map size.

51

4. EXPERIMENTS AND RESULTS

Fig. 32: Map Size 120*120 using K=6 Full Data in Table 3

Results For Map Size 200 * 200

We initially experimented on map size of 200 * 200 nodes, using K = 6 as the depth

of our partial min-heap data structure, but we faced large numbers of failures as seen

in Fig. 35 even though that partial min-heap performed better than min-heap and

cached min-heap. We assumed the reason for such a small number of operations is

that the partial min-heap was successful to find the path in small search spaces with

less number of nodes.

We ran our experiment and used 7 as the depth of our partial min-heap. It

can be seen that the percentage of partial min-heap success increased compare to

52

4. EXPERIMENTS AND RESULTS

Fig. 33: Map Size 120*120 using K=7 Full Data in Table 4

K = 6. Based on the number of operations we can state that partial min-heap

still performed better than min-heap and cached min-heap in most case, but our

pathfinding algorithm failed to find the path more than 50% of times.

If we increase the depth of our partial min-heap to 8, we can see that the per-

formance of partial heap regarding operations is still better than the min-heap and

cached min-heap (Fig. 37). We can see in the graph that partial min-heap executed

the pathfinding algorithm using less number of operations.

Since that we still have a large number of failures, we increased the depth of our

partial min-heap data structure to 9. Using k as 9, we observed that the success rate

increased exponentially. Based on our results, partial min-heap with the depth of 9

53

4. EXPERIMENTS AND RESULTS

Fig. 34: Map Size 120*120 using K=8 Full Data in Table 5

in this map size, our pathfinding algorithm performs almost as good as a min-heap

with less number of operations. Our proposed data structure perform better when

the chance of having obstacles is higher since it will separate the nodes with a high

value of f cost apart from the other nodes.

We also increased the size of our data structure to k = 10, and we observed that

our data structure would act as a min-heap since that the memory size is larger than

what is required to find the correct path and The number of operations were the same

as a min-heap. For this map size, our experiments brought us to this conclusion that

k = 9 is the best depth for this map size.

54

4. EXPERIMENTS AND RESULTS

Fig. 35: Map Size 200*200 using K=6 Full Data in Table 6

Results For Map Size 300 * 300

We initially started our experiments on this map size using the k = 6 and found

out that our partial min-heap performed poorly. Results showed us that in the best

pathfinding samples, Partial min-heap found the correct path in 15% of iterations.

This indicated us that to increase the k to 7. Using k with the size of 7 for this map

size did not improve the success of partial min-heap to find the path as well, and it

was only successful 33% of the times to find a path. We used k equal to 8 and nine

as the depth of our partial min-heap.

On average, partial min-heap success rate using k = 8 was 51% which indicated

55

4. EXPERIMENTS AND RESULTS

Fig. 36: Map Size 200*200 using K=7 Full Data in Table 7

us that k = 9 could perform better. Using k = 9 as the depth of our partial min-heap

result in an average of 83% percent which is only five percent less than the min-heap

in this particular iteration. We accepted this k equals 9 as the best performance of

depth of partial min-heap for this map size. In every obstacle chance, partial min-heap

had less number of operations compare to the min-heap. Our second proposed data

structure, cached min-heap performed with more number of operations in comparison

to min-heap and partial min-heap in test scenarios where the obstacle chance is less.

Cached min-heap executed less operations in comparison to other data structures

when the obstacle chance was higher to find the correct path. We also ran our

experiments using k = 10 as the new depth which turned our partial min-heap to

56

4. EXPERIMENTS AND RESULTS

Fig. 37: Map Size 200*200 using K=8 Full Data in Table 8

a min-heap and the performance of our data structures were the same in number of

operations. Cached min-heap still performed better in number of operations. It is

obvious that unsorted array needs the most number of operations required to find the

path. Based on our experiments, we found out that partial min-heap using k=9 as

the depth will result in high number of success and less number of operations compare

to the min-heap, which means that it has a better performance in terms of executed

operations.

57

4. EXPERIMENTS AND RESULTS

Fig. 38: Map Size 200*200 using K=9 Full Data in Table 9

Results For Map Size 400 * 400

Our test results indicated that using partial min-heap using k = 6 & 7 was not

successful to find the path more than 14% and 35% percent of the times respectively.

Experiments using k = 8 as the new depth for this map size showed us (Fig. 41)

that although the number of operation was less than other data structures on average

partial min-heap was successful only 37% of the times.

Based on our experiments, on average partial min-heap was able to find the correct

path with less number of operation in comparison to min-heap with success rate of

75% (Fig. 42). Cached min-heap executed less number of operations in comparison

58

4. EXPERIMENTS AND RESULTS

Fig. 39: Map Size 300*300 using K = 8 Full Data in Table 10

to other data structure to find the path when the number of obstacles was higher

than 40%.

We used k = 10 as the depth of partial min-heap with this map size, and our results

were improved compared to k = 9 by an average of 20%. Figure 43 shows us that

partial min-heap performs better in number of executed operations in comparison to

min-heap in this map size with all of different obstacle densities. Cached min-heap

also performed better than partial min-heap when our obstacle chance was higher

than 30%. As expected, using k=10 as the depth of partial min-heap for this map

size will turn our data structure into a min-heap, and the performance of our data

structure will be almost similar regarding operations.

59

4. EXPERIMENTS AND RESULTS

Fig. 40: Map Size 300*300 using K = 9 Full Data in Table 11

Results For Map Size 512 * 512

The number of existing nodes in a map with the size of 512 * 512 is 218 nodes,

which make our search space very large. Our pathfinding algorithm mostly requires

to expand a large number of nodes to find the correct path. We expected the highest

number of operations in this map size. We initially started our experiments using

k equal to 6 and 7, which resulted in poor performance of at most 6% and 20%

success in finding a path respectively. We increased our k to 8 which had adequate

performance rate when the chance of having obstacles are either low or high. Partial

min-heap had 45% success rate when there were no obstacles in the map with 50%

60

4. EXPERIMENTS AND RESULTS

Fig. 41: Map Size 400*400 using K=8 Full Data in Table 12

less number of average operations compare to min-heap. Partial min-heap had only

25% success rate in this map size with the depth of 8.

Partial min-heap on average was 57% of the times successful to find the cor-

rect path using k equals to 9. Cached min-heap performed better in the number of

executed operations in comparison to min-heap when the number of obstacles was

higher than 40%. The unsorted array had the most number of performed operations

in comparison to other data structure in all of the test cases.

We ran multiple numbers of test iterations using partial min-heap using k equals

to 10 and 11 on this map size to get a better understanding of our data since this

map size is one of the most common map sizes in most of the commercially developed

61

4. EXPERIMENTS AND RESULTS

Fig. 42: Map Size 400*400 using K=9 Full Data in Table 13

games. Based on the results that we gathered, Partial min-heap using k=10 performs

better in the number of executed operations in comparison to min-heap and will

achieve the success rate of 89.5% to find the correct path.

Results in figure 45 show that using k = 11 turns our partial min-heap to a normal

min-heap and the success rate of this data structure is the same as a min-heap.

4.7 Runtime

We also gather the runtime information that on average how much our pathfind-

ing algorithm was able to find the correct path and present this information in the

62

4. EXPERIMENTS AND RESULTS

Fig. 43: Map Size 400*400 using K=10 Full Data in Table 14

following section based on each map size.

Experiments show that partial min-heap and min-heap run time was almost similar

but in some cases, partial min-heap found the path faster by a small margin. Although

that cached min-heap found the path executing less number of operations as shown

in the Fig 45 but it took more time to find the path. Using smaller value for k as

the depth of our partial min-heap will result in having a better time compared to

min-heap, but our pathfinding algorithm will not find the path in the majority of

iterations.

63

4. EXPERIMENTS AND RESULTS

Fig. 44: Map Size 512*512 using K=9 Full Data in Table 15

4.8 Summary

Based on our analysis on this certain map size, using different chance and distribution

of obstacles, we came to this conclusion that Partial min-heap mostly performs better

in term of number of operations in comparison to other data structures in most of the

cases, with a chance of not finding a path. Using the correct K in each map size will

result in better performance than the min-heap data structure with a small chance of

failure. Cached min-heap perform better in terms of number of operations when the

chance of obstacles are higher than certain percentage in each map but runtime of this

data structure is higher than min-heap and partial min-heap. In general, unsorted

64

4. EXPERIMENTS AND RESULTS

Fig. 45: Map Size 512*512 using K = 10 Full Data in Table 15

array performed worst in terms of operation and runtime compare to other three

data structures. Based on our observations and experiments, we do not recommend

using unsorted array as the data structure for the finding the shortest path using A*

algorithm. Min-heap performance is guaranteed to find the path in any situation and

map size. Cached min-heap is designed to logically separate data into two sections

that might will help the pathfinding the algorithm faster in some cases. The issue

with cached min-heap is Replenish-cache which is time consuming. Replenish-cache

operations consume a lot of operations and times since it uses an average case o(n log

n) operations to re-fill the min-heap section of the data structure. Partial min-heap

performs better in the number of executed operations in most of the iterations and

65

4. EXPERIMENTS AND RESULTS

Fig. 46: Map Size 512*512 using K = 11 Full Data in Table 16

obstacle chances. Partial min-heap runtime is better than min-heap in most of the

cases, but it requires a correct estimation of the depth of the tree to correctly find the

correct path. In cases that the memory is limited, we recommend using partial min-

heap since it limits the search space for the A* algorithm and delivers an acceptable

success rate.

66

4. EXPERIMENTS AND RESULTS

Fig. 47: Run Time Map Size 400*400 using K=9 & 10

Fig. 48: Run Time Map Size 512*512 using K=10 & 11

67

CHAPTER 5

Conclusion

In this thesis, we tried to explore a way to improve the efficiency of A* pathfinding

algorithm’s data structure. We found out that A* algorithm open set contains a

number of unnecessary nodes that only increase the number of operations required

for this algorithm to find an optimal path which they are mostly not useful information

to our algorithm. We proposed two new data structures called partial min-heap which

is a optimistic approach to find a solution for this algorithm and cached min-heap

which is based on the already existed approach of Heap on top Priority queues. We

also compared the performance of these data structure with already existing solutions

for this problem and analyzed them in different map sizes and density of obstacles.

In partial min-heap, we limited the size of the data structure for this algorithm and

kept track of the location of our node with the max f cost in the heap so that in case

of an overflow the newly inserted node with the smaller f cost to replace the current

maximum node. Our approach to this problem resulted in better performance in time

and number of executed operations, but the take away was success rate. We found

out that partial min-heap performed poorly when the size of the suggested memory

was too small, and it was only successful in a small number of problems which we

found out that in those cases the size of the path was small too. So we suggested

that in our performance evaluation chapter that which size of partial min-heap will

result in better performance in terms of both number of operations and time based

on each map size.

Our second proposed data structure, Cached min-heap was our approach devel-

oping a distributed data structure based on the heap on top priority queues. This

68

5. CONCLUSION

data structure logically separated the inserted data into two parts in one single array.

First part follows the properties of a min-heap and the second part of it is an unsorted

array. This solution is guaranteed to find the best path, but the performance of it

is not stable. In some cases, cached min-heap performs better than min-heap and

in some instances performs worst than min-heap in terms of operations, but since

that insert operation will require multiple comparisons, it will not perform as quick

as min-heap in runtime.

In conclusion, our proposed data structures could perform better in term of opera-

tions and runtime. Our partial min-heap, under the right circumstances, out-perform

min-heap in runtime and number of operations with an only small number of failures

which still give us the time to run the algorithm with min-heap to find the correct

path in case of failures.

69

CHAPTER 6

Future Work

Our proposed Cached min-heap data structure helps us to limit the size of used

memory to find the path to the goal node with less number of operations, but it

suffers in runtime. Based on our experiments this data structure suffers the most

when the replenish cache is getting called, and it needs to sort the unsorted array and

fill the empty heap. Also, since that comparison operations for this data structure

in the insert method is time-consuming, we still think that this data structure can

still be better than partial min-heap and min-heap if we can further optimize these

operations.

One of the solutions that we can propose for future work is detailed research in

further distribution in the second part of the data structure. This act will limit

the size of the nodes that it needs to be sorted and can save valuable number of

operations. The second solution could be further improving the implementation of

the insert method in Cached min-heap to increase the time efficiency.

70

APPENDICES

In this chapter we presented all of our results in test cases.

71

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 5252 5252 3216.834752 37.44708362 13223 394 0 Cached Min Heap

5 100 0 7980 7980 10494.22827 58.78702424 50526 116 0 Cached Min Heap

10 100 0 8599 8599 8728.924213 59.34646702 38086 34 0 Cached Min Heap

15 100 0 17046 17046 33953.96953 60.69591414 223115 176 0 Cached Min Heap

20 100 0 13671 13671 20515.34408 54.65256995 148564 83 0 Cached Min Heap

25 100 0 9811 9811 14047.89105 39.57316302 89743 95 0 Cached Min Heap

30 100 0 20667 20667 25355.00307 52.0602432 115948 80 1 Cached Min Heap

35 100 0 21642 21642 26151.02081 40.5316326 107321 98 2 Cached Min Heap

40 99 1 16369 16534 18424.15689 38.89475197 93766 93 1 Cached Min Heap

45 100 0 23047 23047 25411.81854 61.4206515 117963 320 2 Cached Min Heap

50 95 5 27058 22233 19240.32637 43.93865072 83488 655 4 Cached Min Heap

55 80 20 25543 19854 19995.5112 87.42063689 88121 131 4 Cached Min Heap

0 100 0 3586 3586 1677.000313 40.95119428 6647 450 0 Heap

5 100 0 4318 4318 3703.993418 60.86044214 21618 127 0 Heap

10 100 0 5504 5504 4208.449096 64.87256042 19877 36 0 Heap

15 100 0 8817 8817 10583.60635 102.876656 70053 199 0 Heap

20 100 0 9254 9254 9169.9957 95.76009451 52943 94 0 Heap

25 100 0 8353 8353 7821.33645 88.43832003 35929 103 0 Heap

30 100 0 15700 15700 13879.49713 117.8112776 51732 88 1 Heap

35 100 0 18915 18915 18325.89238 135.3731597 68102 111 1 Heap

40 99 1 16820 16990 15319.21413 123.7708129 65801 106 1 Heap

45 100 0 24877 24877 22379.02279 149.5961991 98141 375 2 Heap

50 95 5 33393 26826 20494.18479 143.1579016 90346 795 3 Heap

55 80 20 35127 26955 26971.60156 164.2303308 116310 149 4 Heap

0 100 0 8321 8321 5671.052388 75.30639009 23211 354 1 List

5 100 0 12704 12704 15915.86294 126.1580871 84689 91 1 List

10 100 0 16822 16822 17070.27345 130.6532566 87158 31 2 List

15 100 0 32395 32395 54851.90039 234.2048257 387112 154 4 List

20 100 0 33103 33103 43037.4304 207.4546466 262315 82 4 List

25 100 0 26471 26471 33344.10124 182.6036726 156033 82 3 List

30 100 0 58986 58986 66747.18494 258.3547657 303631 85 7 List

35 100 0 68712 68712 82011.02499 286.3756711 334703 103 8 List

40 99 1 56624 57196 64248.18274 253.4722524 302366 103 6 List

45 100 0 88219 88219 103316.45 321.4287634 507322 412 10 List

50 95 5 113037 88730 84294.24458 290.3347113 368977 1141 13 List

55 80 20 98612 75180 88899.6521 298.1604469 392508 159 11 List

0 34 66 2461 2536 1402.284072 37.44708362 5015 442 0 Partial Min Heap

5 43 57 2687 2818 3455.91422 58.78702424 16747 125 0 Partial Min Heap

10 35 65 3181 3466 3522.003148 59.34646702 12938 35 0 Partial Min Heap

15 27 73 3182 2683 3683.993993 60.69591414 18735 195 0 Partial Min Heap

20 29 71 3011 2388 2986.903402 54.65256995 15002 90 0 Partial Min Heap

25 26 74 3717 2450 1566.035231 39.57316302 5924 102 0 Partial Min Heap

30 27 73 4067 2686 2710.268922 52.0602432 8662 85 0 Partial Min Heap

35 26 74 4733 2643 1642.813241 40.5316326 6606 107 0 Partial Min Heap

40 26 74 5149 1955 1512.801731 38.89475197 5908 102 0 Partial Min Heap

45 25 75 6765 5187 3772.496431 61.4206515 14697 363 0 Partial Min Heap

50 26 74 8936 5296 1930.605027 43.93865072 8675 765 0 Partial Min Heap

55 39 61 11834 7561 7642.367755 87.42063689 25673 145 1 Partial Min Heap

Table 3: Map Size 120*120 using K=6 Full Data

72

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 5400 5400 4014.142212 39.38956713 19901 280 0 Cached Min Heap

5 100 0 8337 8337 10060.53355 56.7165168 71174 430 0 Cached Min Heap

10 100 0 12586 12586 21781.11611 84.55455934 165461 160 0 Cached Min Heap

15 100 0 14016 14016 19451.94703 74.42694437 124156 322 0 Cached Min Heap

20 100 0 14445 14445 25129.04071 68.55881544 195586 278 0 Cached Min Heap

25 100 0 11329 11329 17215.50019 72.28116706 110302 38 0 Cached Min Heap

30 100 0 16185 16185 26562.86461 73.41395635 191277 34 1 Cached Min Heap

35 99 1 16901 15285 21528.47288 91.49851672 129597 89 1 Cached Min Heap

40 99 1 21298 19747 29123.27539 89.50319731 189616 116 2 Cached Min Heap

45 100 0 16637 16637 17433.8548 104.5536029 69705 324 2 Cached Min Heap

50 97 3 19918 17662 16597.35908 128.5160127 72217 59 3 Cached Min Heap

55 83 17 25959 22899 20775.14819 129.9964688 108133 45 4 Cached Min Heap

0 100 0 3500 3500 1868.569565 43.22695415 8144 320 0 Heap

5 100 0 4830 4830 3449.18119 58.72973003 18920 504 0 Heap

10 100 0 6743 6743 7208.668396 84.90387739 49636 178 0 Heap

15 100 0 7793 7793 6856.424155 82.80352743 35432 364 0 Heap

20 100 0 9476 9476 9714.559681 98.56246588 58650 316 0 Heap

25 100 0 9111 9111 9560.571186 97.77817336 43668 40 0 Heap

30 100 0 12900 12900 15722.6408 125.389955 109239 36 1 Heap

35 99 1 16272 13796 13329.11828 115.4518007 69212 98 1 Heap

40 99 1 21140 18716 20905.67976 144.5879655 112812 129 2 Heap

45 100 0 18948 18948 17522.99261 132.3744409 63801 385 2 Heap

50 97 3 26187 22916 20836.96656 144.3501526 96700 65 3 Heap

55 83 17 35165 30632 27722.83271 166.5017499 146637 51 4 Heap

0 100 0 8497 8497 7024.30378 83.81111967 30121 233 1 List

5 100 0 14183 14183 14469.45556 120.2890501 81637 434 2 List

10 100 0 22418 22418 33229.50266 182.2896121 246122 127 3 List

15 100 0 27172 27172 32623.41235 180.6195237 183168 304 3 List

20 100 0 33095 33095 47385.92035 217.6830732 345290 286 4 List

25 100 0 29866 29866 40144.19451 200.360162 207113 31 3 List

30 100 0 47427 47427 80266.13201 283.3127812 638914 30 5 List

35 99 1 57185 47733 62480.37898 249.9607549 346041 99 6 List

40 99 1 80395 68997 103186.4697 321.2265085 649893 89 9 List

45 100 0 61452 61452 70099.46347 264.7630327 275964 395 7 List

50 97 3 80854 69497 75941.20896 275.5743257 345908 59 9 List

55 83 17 105082 90999 102628.0736 320.3561668 580671 69 11 List

0 68 32 3705 2811 1551.537999 39.38956713 6198 313 0 Partial Min Heap

5 72 28 4686 4171 3216.763278 56.7165168 16418 492 0 Partial Min Heap

10 73 27 6403 6305 7149.473505 84.55455934 42383 174 0 Partial Min Heap

15 59 41 6613 5711 5539.370048 74.42694437 28365 358 0 Partial Min Heap

20 65 35 7133 5456 4700.311175 68.55881544 22273 311 0 Partial Min Heap

25 73 27 7223 5610 5224.567112 72.28116706 25461 39 0 Partial Min Heap

30 68 32 8387 5959 5389.608987 73.41395635 23657 35 0 Partial Min Heap

35 73 27 11607 8678 8371.978561 91.49851672 33646 94 1 Partial Min Heap

40 75 25 11943 9169 8010.822329 89.50319731 47939 125 1 Partial Min Heap

45 75 25 14696 11216 10931.45587 104.5536029 46442 375 1 Partial Min Heap

50 83 17 23283 17382 16516.36553 128.5160127 94263 63 2 Partial Min Heap

55 73 27 29978 22950 16899.08189 129.9964688 69348 47 4 Partial Min Heap

Table 4: Map Size 120*120 using K=7 Full Data

73

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 5425 5425 4398.036197 38.94219529 19107 204 0 Cached Min Heap

5 100 0 7417 7417 7002.994166 50.38775676 29989 256 0 Cached Min Heap

10 100 0 14094 14094 31969.19346 110.9191938 291472 120 0 Cached Min Heap

15 100 0 17862 17862 27070.76922 101.4107962 164172 193 1 Cached Min Heap

20 100 0 18293 18293 29408.08836 98.53283475 222633 93 1 Cached Min Heap

25 100 0 19410 19410 34666.95004 100.5579776 295468 200 1 Cached Min Heap

30 100 0 14328 14328 18257.44973 113.9010316 89706 245 1 Cached Min Heap

35 100 0 20009 20009 23479.27461 114.6450611 110760 26 1 Cached Min Heap

40 100 0 21605 21605 22712.35249 125.8265357 102951 84 2 Cached Min Heap

45 99 1 22307 22532 22016.28515 134.8304297 116028 242 2 Cached Min Heap

50 98 2 21192 18442 19887.27622 151.7364614 125621 125 3 Cached Min Heap

55 81 19 27986 21074 20952.51666 166.8248212 98468 476 5 Cached Min Heap

0 100 0 3390 3390 1892.30576 43.50064092 8512 222 0 Heap

5 100 0 4164 4164 2727.630805 52.22672501 12726 292 0 Heap

10 100 0 7462 7462 13172.30006 114.7706411 125584 132 0 Heap

15 100 0 9408 9408 10521.70641 102.5753694 59235 218 0 Heap

20 100 0 11246 11246 10586.67483 102.8915683 59651 102 1 Heap

25 100 0 12870 12870 13698.91775 117.0423759 86845 227 1 Heap

30 100 0 12374 12374 13181.49436 114.8106892 69718 270 1 Heap

35 100 0 16813 16813 14640.46231 120.9977781 66382 30 1 Heap

40 100 0 21232 21232 17746.97921 133.2177886 78253 95 2 Heap

45 99 1 23949 24191 19214.14551 138.6150984 87797 280 2 Heap

50 98 2 27034 23407 23598.79796 153.6190026 130460 135 3 Heap

55 81 19 38502 28648 28591.96548 169.091589 134148 580 5 Heap

0 100 0 8088 8088 7299.564141 85.43748674 32331 148 1 List

5 100 0 11999 11999 11868.62429 108.9432159 47019 214 1 List

10 100 0 28325 28325 80276.214 283.3305737 785465 92 3 List

15 100 0 35385 35385 50393.94687 224.4859614 298211 171 4 List

20 100 0 41053 41053 55367.55723 235.3031178 404188 86 5 List

25 100 0 49300 49300 76714.95379 276.9746447 590823 212 6 List

30 100 0 42478 42478 55268.18694 235.0918691 294579 273 5 List

35 100 0 61131 61131 69234.90432 263.1252636 364288 28 7 List

40 100 0 74866 74866 78883.22231 280.8615714 362225 99 8 List

45 99 1 83276 84116 84017.49761 289.8577196 402876 319 9 List

50 98 2 86831 73003 91902.14662 303.1536683 563683 125 9 List

55 81 19 109640 83086 104053.5136 322.5732685 493281 725 12 List

0 92 8 3780 3003 1516.494574 38.94219529 7194 217 0 Partial Min Heap

5 92 8 4522 3799 2538.926031 50.38775676 12584 285 0 Partial Min Heap

10 99 1 7347 7234 12303.06756 110.9191938 115669 129 0 Partial Min Heap

15 96 4 9283 8863 10284.14958 101.4107962 58261 213 0 Partial Min Heap

20 96 4 11163 10296 9708.719524 98.53283475 54192 100 0 Partial Min Heap

25 96 4 11935 10995 10111.90687 100.5579776 52854 222 1 Partial Min Heap

30 99 1 12200 12116 12973.445 113.9010316 68232 266 1 Partial Min Heap

35 98 2 16133 15615 13143.49004 114.6450611 56172 28 1 Partial Min Heap

40 97 3 20768 19448 15832.31708 125.8265357 66701 91 2 Partial Min Heap

45 98 2 23182 23115 18179.24476 134.8304297 85816 273 2 Partial Min Heap

50 98 2 26318 22800 23023.95372 151.7364614 127406 133 3 Partial Min Heap

55 81 19 37326 27826 27830.52098 166.8248212 130552 564 4 Partial Min Heap

Table 5: Map Size 120*120 using K=8 Full Data

74

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 9887 9887 11008.94745 41.31842231 51014 774 0 Cached Min Heap

5 100 0 22097 22097 37790.99425 91.87713388 285640 277 1 Cached Min Heap

10 100 0 33653 33653 64298.08834 76.0464564 394500 92 2 Cached Min Heap

15 100 0 38525 38525 67233.92183 74.89063931 385115 823 2 Cached Min Heap

20 100 0 34047 34047 57062.43382 56.57735876 345339 1050 2 Cached Min Heap

25 100 0 64152 64152 130081.0977 43.76159936 803904 685 4 Cached Min Heap

30 100 0 47248 47248 78690.45145 42.49230976 512218 135 4 Cached Min Heap

35 100 0 48354 48354 62360.94783 45.81713248 383033 349 5 Cached Min Heap

40 100 0 43235 43235 53360.75942 47.22930699 287356 294 5 Cached Min Heap

45 99 1 49279 49776 62202.85715 54.35768298 312906 30 6 Cached Min Heap

50 96 4 54349 42563 45390.13864 48.90818346 273640 202 8 Cached Min Heap

55 83 17 65515 58423 71998.71268 64.26153388 354229 210 12 Cached Min Heap

0 100 0 5579 5579 3184.549434 56.43181225 14705 885 0 Heap

5 100 0 9728 9728 8677.859688 93.1550304 57315 318 0 Heap

10 100 0 14975 14975 14393.69023 119.9737064 61492 100 1 Heap

15 100 0 20711 20711 20179.29136 142.0538326 98916 971 2 Heap

20 100 0 21661 21661 22351.96778 149.505745 90190 1263 2 Heap

25 100 0 33465 33465 38360.0597 195.8572432 150618 798 3 Heap

30 100 0 32181 32181 34483.58778 185.6975707 137602 151 3 Heap

35 100 0 41042 41042 37050.06585 192.4839366 155766 406 4 Heap

40 100 0 43870 43870 41315.3177 203.2616976 170545 338 5 Heap

45 99 1 52995 53531 50878.37142 225.5623449 215562 33 6 Heap

50 96 4 70669 54162 50164.1579 223.9735652 241573 229 9 Heap

55 83 17 92103 81644 102216.1406 319.7125907 501324 240 11 Heap

0 100 0 18117 18117 16919.29387 130.074186 86069 954 3 List

5 100 0 44915 44915 60431.84969 245.8289033 408802 238 7 List

10 100 0 76725 76725 97678.86804 312.5361868 470361 85 11 List

15 100 0 107630 107630 135442.9893 368.0257998 701466 1268 15 List

20 100 0 112044 112044 145152.247 380.988513 560843 1830 15 List

25 100 0 201270 201270 307051.3777 554.1221685 1601601 871 25 List

30 100 0 177557 177557 237249.4403 487.0825805 1212204 147 22 List

35 100 0 213989 213989 244428.6415 494.3972507 1240607 440 26 List

40 100 0 212545 212545 253490.2913 503.4781934 1164280 350 25 List

45 99 1 259247 261865 323715.7643 568.9602484 1473964 29 30 List

50 96 4 319652 236216 287403.0936 536.0998915 1498788 227 36 List

55 83 17 355602 316125 487395.6369 698.1372622 2379069 266 40 List

0 36 64 2824 3527 1707.212022 41.31842231 6631 868 0 Partial Min Heap

5 23 77 3660 7195 8441.407731 91.87713388 41006 311 0 Partial Min Heap

10 15 85 3023 4738 5783.063531 76.0464564 18947 99 0 Partial Min Heap

15 13 87 3850 5259 5608.607856 74.89063931 20688 955 0 Partial Min Heap

20 13 87 3648 4243 3200.997525 56.57735876 12894 1237 0 Partial Min Heap

25 15 85 3551 3234 1915.077579 43.76159936 7027 786 0 Partial Min Heap

30 22 78 3472 1878 1805.596389 42.49230976 6649 148 0 Partial Min Heap

35 15 85 4583 3077 2099.209629 45.81713248 7558 399 0 Partial Min Heap

40 11 89 5836 3099 2230.607439 47.22930699 8003 332 0 Partial Min Heap

45 16 84 6820 4289 2954.757699 54.35768298 11955 31 0 Partial Min Heap

50 15 85 8613 3846 2392.01041 48.90818346 10140 224 0 Partial Min Heap

55 19 81 13016 6219 4129.544737 64.26153388 13928 234 1 Partial Min Heap

Table 6: Map Size 200*200 using K=6 Full Data

75

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 12631 12631 11817.62101 49.53283464 49428 170 0 Cached Min Heap

5 100 0 20711 20711 28716.31292 90.45868229 150670 140 1 Cached Min Heap

10 100 0 26687 26687 49819.15647 108.6604412 382349 327 1 Cached Min Heap

15 100 0 45250 45250 95562.51149 95.30008361 659178 230 3 Cached Min Heap

20 100 0 48403 48403 120355.8356 66.11251834 954659 194 3 Cached Min Heap

25 100 0 44283 44283 78346.05123 82.80529087 396904 216 3 Cached Min Heap

30 100 0 40602 40602 77007.67791 76.56781804 494209 68 3 Cached Min Heap

35 100 0 52251 52251 71801.28698 83.51478298 428922 148 5 Cached Min Heap

40 100 0 57284 57284 71552.47932 97.86830855 357976 220 6 Cached Min Heap

45 100 0 50753 50753 54365.02079 97.55218962 273770 241 7 Cached Min Heap

50 95 5 62375 51995 49865.3197 125.4315987 240883 393 10 Cached Min Heap

55 90 10 53318 47910 47172.11778 149.190263 261259 771 9 Cached Min Heap

0 100 0 6409 6409 3238.538515 56.90815859 12888 192 0 Heap

5 100 0 10095 10095 9012.156901 94.93238068 48687 153 0 Heap

10 100 0 14049 14049 14261.54274 119.4217013 81470 358 1 Heap

15 100 0 23780 23780 25379.43652 159.3092481 138885 253 2 Heap

20 100 0 26313 26313 28674.96685 169.3368443 167813 225 2 Heap

25 100 0 27220 27220 25214.87766 158.791932 139763 247 3 Heap

30 100 0 29019 29019 32705.66981 180.8470896 155261 77 3 Heap

35 100 0 42359 42359 40990.41131 202.4608883 173359 166 4 Heap

40 100 0 55158 55158 51157.87613 226.1810694 256671 255 6 Heap

45 100 0 57435 57435 50155.73262 223.9547557 183730 277 6 Heap

50 95 5 83360 68301 60163.12704 245.2817299 252265 473 10 Heap

55 90 10 73442 65271 62113.80991 249.226423 319265 942 9 Heap

0 100 0 22716 22716 17366.83195 131.7832765 67062 133 4 List

5 100 0 46900 46900 57141.58039 239.0430513 280937 119 7 List

10 100 0 66814 66814 88047.78789 296.728475 503045 307 10 List

15 100 0 132904 132904 193020.0152 439.3404321 1167835 213 18 List

20 100 0 143307 143307 220168.9576 469.2216508 1522408 212 19 List

25 100 0 142049 142049 184341.3208 429.3498816 1147189 234 18 List

30 100 0 148277 148277 221776.2879 470.9312985 1014027 56 18 List

35 100 0 221493 221493 267933.8248 517.623246 1302878 175 27 List

40 100 0 283593 283593 333873.4596 577.8178429 1694061 265 34 List

45 100 0 281176 281176 303069.8593 550.5178102 1253473 387 32 List

50 95 5 377184 303943 338608.3818 581.9006632 1507122 524 43 List

55 90 10 292133 259278 325470.6825 570.5003791 1902103 1388 32 List

0 51 49 5023 4462 2453.501707 49.53283464 9653 187 0 Partial Min Heap

5 43 57 7308 8675 8182.773201 90.45868229 32180 151 0 Partial Min Heap

10 37 63 8568 10100 11807.09148 108.6604412 62980 354 0 Partial Min Heap

15 38 62 9835 8746 9082.105936 95.30008361 33526 250 0 Partial Min Heap

20 34 66 10549 6136 4370.865081 66.11251834 17951 218 0 Partial Min Heap

25 32 68 10239 7460 6856.716197 82.80529087 26475 242 0 Partial Min Heap

30 40 60 11033 6846 5862.63076 76.56781804 21841 74 0 Partial Min Heap

35 36 64 12624 9104 6974.718977 83.51478298 27244 163 1 Partial Min Heap

40 32 68 16668 10924 9578.205819 97.86830855 39078 249 1 Partial Min Heap

45 42 58 18698 12144 9516.4297 97.55218962 39694 267 2 Partial Min Heap

50 42 58 32181 20171 15733.08596 125.4315987 67436 456 3 Partial Min Heap

55 52 48 37964 25899 22257.73458 149.190263 105954 910 4 Partial Min Heap

Table 7: Map Size 200*200 using K=7 Full Data

76

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 11590 11590 12351.22461 52.0402304 57277 342 0 Cached Min Heap

5 100 0 20374 20374 27388.72944 92.38403779 161793 802 1 Cached Min Heap

10 100 0 22743 22743 33631.24892 108.1182462 247184 904 1 Cached Min Heap

15 100 0 61188 61188 117122.307 142.5036528 907643 181 3 Cached Min Heap

20 100 0 32207 32207 61619.78666 123.5417462 376097 4 2 Cached Min Heap

25 100 0 46263 46263 100759.4695 136.4286628 775947 240 3 Cached Min Heap

30 100 0 52410 52410 71510.73033 141.3549399 308416 343 4 Cached Min Heap

35 100 0 47572 47572 56380.72622 166.4761571 266625 545 5 Cached Min Heap

40 100 0 55338 55338 68279.98818 155.137069 418055 46 6 Cached Min Heap

45 99 1 57686 53649 61942.14792 190.7744502 306196 273 7 Cached Min Heap

50 96 4 54040 43229 42595.49625 207.8113202 253057 210 9 Cached Min Heap

55 90 10 64454 52816 45741.53274 248.7733947 257920 1438 11 Cached Min Heap

0 100 0 5937 5937 3242.054191 56.93903926 15037 392 0 Heap

5 100 0 9892 9892 8257.080898 90.86848132 55274 917 0 Heap

10 100 0 13577 13577 13373.79866 115.6451411 69926 1104 1 Heap

15 100 0 25733 25733 29691.81072 172.3131182 205100 211 2 Heap

20 100 0 21130 21130 23670.1046 153.8509168 135998 5 2 Heap

25 100 0 28753 28753 31279.14581 176.8591129 180485 272 3 Heap

30 100 0 35928 35928 29841.19753 172.7460493 126760 402 4 Heap

35 100 0 43642 43642 36204.32336 190.2743371 149804 648 5 Heap

40 100 0 51665 51665 43773.63337 209.2214936 192728 51 6 Heap

45 99 1 65932 59819 53452.90375 231.1988403 203770 326 8 Heap

50 96 4 73822 58095 54560.98842 233.5829369 270499 247 9 Heap

55 90 10 90125 73177 64093.76872 253.1674717 365553 1758 11 Heap

0 100 0 20675 20675 18461.43778 135.8728736 84609 315 3 List

5 100 0 44923 44923 51578.91649 227.1099216 308188 1067 7 List

10 100 0 66866 66866 87389.93013 295.6178786 449824 1500 9 List

15 100 0 151754 151754 233406.5823 483.1217055 1844975 154 21 List

20 100 0 107456 107456 172674.0823 415.5407107 1081030 5 14 List

25 100 0 153993 153993 241109.1746 491.0286902 1662105 250 20 List

30 100 0 190883 190883 208686.3584 456.8220204 843536 429 24 List

35 100 0 214532 214532 222279.2622 471.465017 1002744 791 26 List

40 100 0 263446 263446 290558.7719 539.0350377 1549643 53 31 List

45 99 1 325810 294575 333553.9653 577.5413104 1507999 403 37 List

50 96 4 324497 249284 309449.6804 556.2820151 1657643 335 36 List

55 90 10 360014 291266 312250.2109 558.7935316 1834580 2638 40 List

0 81 19 6459 5006 2708.18558 52.0402304 13160 383 0 Partial Min Heap

5 76 24 10260 9274 8534.810439 92.38403779 50824 910 0 Partial Min Heap

10 80 20 13092 11765 11689.55517 108.1182462 57542 1082 1 Partial Min Heap

15 67 33 20602 17836 20307.29106 142.5036528 86688 205 2 Partial Min Heap

20 75 25 17981 16196 15262.56306 123.5417462 70230 4 1 Partial Min Heap

25 75 25 22804 18982 18612.78003 136.4286628 73177 267 2 Partial Min Heap

30 69 31 27059 23114 19981.21904 141.3549399 83596 394 2 Partial Min Heap

35 78 22 34829 31787 27714.31088 166.4761571 115369 632 3 Partial Min Heap

40 71 29 39549 29637 24067.51018 155.137069 100700 49 4 Partial Min Heap

45 81 19 54249 41534 36394.89084 190.7744502 167290 316 6 Partial Min Heap

50 92 8 66183 50374 43185.54482 207.8113202 246809 237 8 Partial Min Heap

55 89 11 87019 70131 61888.2019 248.7733947 356634 1718 11 Partial Min Heap

Table 8: Map Size 200*200 using K=8 Full Data

77

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 5748 5748 5026.765811 57.8829359 35373 136 0 Cached Min Heap

5 100 0 8523 8523 9289.540758 94.71872054 55212 320 0 Cached Min Heap

10 100 0 12890 12890 12817.93791 122.8770919 64395 488 1 Cached Min Heap

15 100 0 19622 19622 27869.42984 147.5174516 239391 410 2 Cached Min Heap

20 100 0 25419 25419 21528.66775 165.5438832 88523 489 3 Cached Min Heap

25 100 0 39479 39479 70298.84734 190.5957954 657790 376 4 Cached Min Heap

30 100 0 38107 38107 65049.81851 194.4316699 542528 108 4 Cached Min Heap

35 100 0 38674 38674 41669.55093 188.7252195 250950 322 5 Cached Min Heap

40 99 1 50937 46443 44321.07429 216.9423278 257120 280 8 Cached Min Heap

45 100 0 40530 40530 36755.86476 222.6709175 169408 46 6 Cached Min Heap

50 92 8 70129 43438 42044.81979 239.5891925 200233 466 14 Cached Min Heap

55 90 10 68241 56598 46137.82743 251.7629127 204923 193 13 Cached Min Heap

0 100 0 6076 6076 3243.843661 56.954751 13471 153 0 Heap

5 100 0 9412 9412 9046.430423 95.11272482 70400 352 0 Heap

10 100 0 15367 15367 15236.60632 123.436649 82378 547 1 Heap

15 100 0 23044 23044 23942.49371 154.7336218 120111 471 2 Heap

20 100 0 32651 32651 27905.40852 167.0491201 116163 559 3 Heap

25 100 0 43109 43109 41057.66306 202.6269061 200986 439 5 Heap

30 100 0 41511 41511 45653.97841 213.6679162 222659 118 4 Heap

35 100 0 46778 46778 40343.049 200.8557915 182781 375 5 Heap

40 99 1 66161 59370 50586.92733 224.9153781 188184 334 8 Heap

45 100 0 55165 55165 50605.70717 224.957123 234555 50 7 Heap

50 92 8 98531 59746 58666.45577 242.211593 279230 549 13 Heap

55 90 10 95774 78707 64903.88788 254.7624146 288782 230 13 Heap

0 100 0 20722 20722 16862.3298 129.8550338 72300 94 3 List

5 100 0 41170 41170 57738.265 240.2878794 478633 280 6 List

10 100 0 79734 79734 107135.7271 327.3159438 582211 533 11 List

15 100 0 130150 130150 176332.8609 419.9200649 1070355 389 18 List

20 100 0 187226 187226 198136.9922 445.1258162 836959 566 24 List

25 100 0 256605 256605 343773.0576 586.3216332 2277250 448 33 List

30 100 0 253977 253977 388691.8273 623.4515437 2442070 115 33 List

35 100 0 257925 257925 296172.2458 544.2170943 1522742 482 33 List

40 99 1 364121 326427 369713.6384 608.0408197 1624697 392 45 List

45 100 0 271695 271695 315777.6008 561.9409229 1553529 50 32 List

50 92 8 471084 266057 356278.0398 596.890308 1801056 807 61 List

55 90 10 388638 316936 326683.8494 571.5626382 1604685 283 48 List

0 100 0 6053 6053 3350.434269 57.8829359 16254 149 0 Partial Min Heap

5 99 1 9454 9276 8971.636021 94.71872054 69488 349 0 Partial Min Heap

10 99 1 15350 15209 15098.77972 122.8770919 81340 542 1 Partial Min Heap

15 99 1 22591 21778 21761.39852 147.5174516 118512 461 2 Partial Min Heap

20 99 1 32222 31807 27404.77726 165.5438832 114133 550 3 Partial Min Heap

25 97 3 40929 39356 36326.75722 190.5957954 161024 429 4 Partial Min Heap

30 96 4 37825 35909 37803.67426 194.4316699 185539 116 4 Partial Min Heap

35 96 4 44795 42519 35617.20849 188.7252195 156674 366 5 Partial Min Heap

40 96 4 63943 55114 47063.97357 216.9423278 185076 325 7 Partial Min Heap

45 100 0 53977 53977 49582.33748 222.6709175 229676 48 6 Partial Min Heap

50 92 8 96063 58351 57402.98117 239.5891925 273227 530 14 Partial Min Heap

55 90 10 93265 76722 63384.56423 251.7629127 282075 220 13 Partial Min Heap

Table 9: Map Size 200*200 using K=9 Full Data

78

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 17927 17927 21180.5015 64.73169839 82973 1142 0 Cached Min Heap

5 100 0 46077 46077 65807.24207 149.894721 422817 684 3 Cached Min Heap

10 100 0 38746 38746 89702.4825 139.0441867 844208 309 3 Cached Min Heap

15 100 0 40493 40493 58489.18912 148.6798249 488985 208 4 Cached Min Heap

20 100 0 63002 63002 91382.74326 170.6385846 537700 1000 6 Cached Min Heap

25 100 0 146637 146637 277498.8552 148.5965883 2102559 296 12 Cached Min Heap

30 100 0 130075 130075 270682.9522 159.8302901 2051331 44 12 Cached Min Heap

35 100 0 115109 115109 198098.0386 169.3514589 1099160 1206 12 Cached Min Heap

40 100 0 150392 150392 212878.1312 162.6366386 1127654 681 17 Cached Min Heap

45 100 0 98108 98108 104924.2131 183.3348153 571915 760 15 Cached Min Heap

50 97 3 120612 113269 100040.7455 228.6652357 425680 596 20 Cached Min Heap

55 87 13 152405 108842 83811.95813 272.1519902 446466 1252 28 Cached Min Heap

0 100 0 9849 9849 4401.296712 66.34226942 18757 1353 1 Heap

5 100 0 24430 24430 22938.97713 151.4561888 106698 784 3 Heap

10 100 0 28919 28919 28304.04378 168.2380569 164301 346 3 Heap

15 100 0 39382 39382 37436.68108 193.4856095 185979 238 4 Heap

20 100 0 59783 59783 58548.38487 241.9677352 252283 1167 7 Heap

25 100 0 89292 89292 75237.25033 274.2940946 293828 331 10 Heap

30 100 0 92114 92114 84894.48118 291.3665753 341203 48 10 Heap

35 100 0 97009 97009 91927.7983 303.1959734 465667 1488 11 Heap

40 100 0 129516 129516 116139.9487 340.7931171 497146 795 15 Heap

45 100 0 125484 125484 114301.6043 338.0852028 464401 953 15 Heap

50 97 3 165705 154930 133382.0398 365.2150597 536236 730 21 Heap

55 87 13 216471 152589 118705.4571 344.5365831 637116 1603 28 Heap

0 100 0 45121 45121 31348.7251 177.0557119 129097 1664 9 List

5 100 0 183791 183791 213814.5722 462.4008783 983769 774 29 List

10 100 0 208286 208286 266280.3283 516.0235734 1408960 291 31 List

15 100 0 265384 265384 311254.4094 557.9017919 1632835 181 38 List

20 100 0 428984 428984 544570.582 737.9502571 3392918 1667 58 List

25 100 0 738014 738014 800034.5848 894.4465243 4129442 268 98 List

30 100 0 730430 730430 897148.9635 947.179478 4842053 32 94 List

35 100 0 718476 718476 929330.2443 964.0177614 5260234 2375 89 List

40 100 0 1018335 1018335 1209836.023 1099.925462 5543035 1102 123 List

45 100 0 833101 833101 995238.4047 997.6163615 4521046 1437 97 List

50 97 3 1050151 973065 1086863.588 1042.5275 4705561 1052 121 List

55 87 13 1087321 754945 738914.3733 859.6012874 4075554 2599 123 List

0 61 39 9940 8188 4190.192777 64.73169839 16236 1327 0 Partial Min Heap

5 52 48 18070 22509 22468.42738 149.894721 92747 769 1 Partial Min Heap

10 56 44 19948 19043 19333.28585 139.0441867 94664 341 1 Partial Min Heap

15 51 49 29146 25227 22105.69032 148.6798249 91679 232 3 Partial Min Heap

20 43 57 33818 26531 29117.52656 170.6385846 152615 1153 3 Partial Min Heap

25 35 65 29939 24997 22080.94606 148.5965883 85412 326 3 Partial Min Heap

30 44 56 33031 24554 25545.72165 159.8302901 90371 46 3 Partial Min Heap

35 51 49 41015 33941 28679.91664 169.3514589 110670 1453 4 Partial Min Heap

40 44 56 49514 33177 26450.67622 162.6366386 96031 783 6 Partial Min Heap

45 55 45 60419 45251 33611.6545 183.3348153 144886 918 7 Partial Min Heap

50 59 41 88242 65213 52287.79004 228.6652357 187204 707 11 Partial Min Heap

55 68 32 185267 103852 74066.70574 272.1519902 284653 1548 25 Partial Min Heap

Table 10: Map Size 300*300 using K=8 Full Data

79

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 22894 22894 27904.63174 73.50771816 113606 808 1 Cached Min Heap

5 100 0 35068 35068 69781.99146 132.5461615 611257 692 2 Cached Min Heap

10 100 0 46964 46964 90579.06236 178.2474506 727165 551 4 Cached Min Heap

15 100 0 59214 59214 145981.7177 197.6093931 1031634 234 4 Cached Min Heap

20 100 0 91999 91999 196668.2783 224.4976965 1199167 1004 8 Cached Min Heap

25 100 0 130170 130170 241699.8876 220.6729168 1223282 424 10 Cached Min Heap

30 100 0 158528 158528 324539.7973 264.0453487 1869935 142 13 Cached Min Heap

35 98 2 179054 168624 229222.2572 289.5989189 1097443 687 18 Cached Min Heap

40 99 1 122445 123682 132829.3179 306.9172467 641591 144 16 Cached Min Heap

45 97 3 136969 141204 179491.5081 340.028056 1089201 51 21 Cached Min Heap

50 93 7 163134 131554 111603.9374 357.3657433 474444 692 28 Cached Min Heap

55 89 11 130650 118048 113209.6016 396.4755429 502441 599 24 Cached Min Heap

0 100 0 10603 10603 5198.998665 72.10408217 20271 951 1 Heap

5 100 0 19809 19809 18134.12331 134.662999 84923 768 2 Heap

10 100 0 32122 32122 32859.03602 181.2706154 161261 637 3 Heap

15 100 0 37637 37637 52035.08186 228.1119941 249737 267 4 Heap

20 100 0 60733 60733 67027.57589 258.8968441 295312 1153 7 Heap

25 100 0 75751 75751 72399.82979 269.0721647 296539 478 9 Heap

30 100 0 96652 96652 92439.05214 304.0379123 441915 163 11 Heap

35 98 2 135088 116827 100675.8966 317.2946527 372692 805 16 Heap

40 99 1 133595 134944 104309.7674 322.9702268 433673 161 16 Heap

45 97 3 159917 164861 160163.5417 400.2043749 696320 57 19 Heap

50 93 7 224925 177867 143426.7934 378.7173001 541816 868 29 Heap

55 89 11 184779 165990 160674.2324 400.8419045 717607 728 23 Heap

0 100 0 52052 52052 39508.59206 198.7676836 153168 1008 11 List

5 100 0 132647 132647 168921.2026 411.0002464 949706 807 22 List

10 100 0 233209 233209 308754.3239 555.6566601 1882557 641 36 List

15 100 0 292234 292234 536722.7627 732.6136518 2649724 208 42 List

20 100 0 489517 489517 727390.8294 852.8721061 4373318 1467 67 List

25 100 0 600134 600134 788817.6683 888.1540792 3636656 448 82 List

30 100 0 777839 777839 1041513.537 1020.545705 5305221 165 101 List

35 98 2 1112409 942252 1027030.266 1013.425017 4096235 975 139 List

40 99 1 957882 967557 934183.9269 966.5319068 3940866 147 117 List

45 97 3 1196240 1233233 1567761.566 1252.102858 7847976 51 144 List

50 93 7 1495173 1167685 1221469.782 1105.201241 4670416 1300 177 List

55 89 11 1011373 898525 1134710.057 1065.227702 5683965 950 117 List

0 88 12 12184 9992 5403.384628 73.50771816 23037 932 0 Partial Min Heap

5 88 12 20722 18608 17568.48492 132.5461615 79966 756 2 Partial Min Heap

10 83 17 31237 30092 31772.15363 178.2474506 156200 627 3 Partial Min Heap

15 92 8 33963 30132 39049.47226 197.6093931 176711 262 3 Partial Min Heap

20 87 13 52626 45359 50399.21576 224.4976965 249597 1133 5 Partial Min Heap

25 80 20 59250 50700 48696.53621 220.6729168 203152 469 6 Partial Min Heap

30 83 17 76620 73087 69719.94617 264.0453487 349415 158 8 Partial Min Heap

35 74 26 108637 83630 83867.53385 289.5989189 342048 790 13 Partial Min Heap

40 89 11 119770 117735 94198.19632 306.9172467 355738 158 14 Partial Min Heap

45 88 12 138100 127335 115619.0789 340.028056 431684 55 17 Partial Min Heap

50 89 11 214424 160512 127710.2745 357.3657433 503727 830 28 Partial Min Heap

55 89 11 180339 162081 157192.8561 396.4755429 701723 703 24 Partial Min Heap

Table 11: Map Size 300*300 using K=9 Full Data

80

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 18379 18379 35898.34318 71.94692173 284758 894 1 Cached Min Heap

5 100 0 24578 24578 23975.83305 128.0258517 128513 1014 2 Cached Min Heap

10 100 0 47193 47193 73845.20575 216.1153192 574904 524 6 Cached Min Heap

15 100 0 127500 127500 615314.0872 206.5498215 6168978 464 12 Cached Min Heap

20 100 0 133500 133500 351226.4041 149.3089772 3101255 1591 14 Cached Min Heap

25 100 0 259071 259071 673732.5151 136.0477908 4432340 1033 22 Cached Min Heap

30 100 0 223860 223860 377853.4181 156.3846225 2241751 659 24 Cached Min Heap

35 100 0 151816 151816 294982.149 159.3840315 2346101 607 20 Cached Min Heap

40 100 0 206714 206714 227092.3517 181.3845753 1954732 1709 31 Cached Min Heap

45 99 1 180327 161457 153425.2833 201.962503 647993 863 31 Cached Min Heap

50 97 3 214544 183315 162151.5663 221.996758 575272 2396 38 Cached Min Heap

55 93 7 277813 230007 218943.778 311.7752984 1020285 853 51 Cached Min Heap

0 100 0 14922 14922 7054.094184 83.98865509 32169 1037 2 Heap

5 100 0 28592 28592 26463.51496 162.6761045 148706 1168 3 Heap

10 100 0 55326 55326 70279.22967 265.1023004 374907 608 6 Heap

15 100 0 95676 95676 163565.1641 404.431903 1132755 532 11 Heap

20 100 0 116228 116228 130144.6382 360.7556489 661965 1836 13 Heap

25 100 0 159626 159626 163012.4822 403.748043 589460 1213 19 Heap

30 100 0 189469 189469 169519.5522 411.7275218 711465 763 22 Heap

35 100 0 163002 163002 168686.2496 410.7143163 654532 730 19 Heap

40 100 0 260378 260378 194901.7222 441.4767516 947720 2163 31 Heap

45 99 1 251163 223203 214049.9637 462.6553401 898734 1073 32 Heap

50 97 3 302474 256423 228813.5231 478.3445653 807235 3071 39 Heap

55 93 7 395582 325809 313260.0734 559.6964118 1462711 1096 52 Heap

0 100 0 92796 92796 73130.37089 270.4262763 325541 928 20 List

5 100 0 243642 243642 315347.0949 561.5577396 1727637 1422 40 List

10 100 0 557622 557622 983872.1054 991.9032742 6452529 544 83 List

15 100 0 1120280 1120280 2758804.034 1660.96479 21816269 590 161 List

20 100 0 1237960 1237960 1946601.023 1395.206445 11325133 3017 173 List

25 100 0 1826549 1826549 2479208.739 1574.550329 10133718 1715 250 List

30 100 0 2062786 2062786 2336360.649 1528.515832 9695050 853 268 List

35 100 0 1571745 1571745 2225980.608 1491.972053 11645969 863 199 List

40 100 0 2477732 2477732 2519306.322 1587.232284 15367051 3531 305 List

45 99 1 2078859 1861325 2370728.783 1539.717111 11877280 1483 246 List

50 97 3 2340381 2006124 2258252.548 1502.748332 8433668 5094 273 List

55 93 7 2735435 2251023 2862453.361 1691.878648 12813568 1690 313 List

0 54 46 11864 11119 5176.359546 71.94692173 22361 1016 1 Partial Min Heap

5 49 51 18168 20217 16390.61872 128.0258517 76514 1151 1 Partial Min Heap

10 40 60 30257 36831 46705.83117 216.1153192 255687 596 3 Partial Min Heap

15 35 65 26506 31900 42662.82874 206.5498215 156169 527 2 Partial Min Heap

20 27 73 33512 26577 22293.17068 149.3089772 95073 1817 3 Partial Min Heap

25 25 75 29804 16376 18509.00138 136.0477908 77278 1194 3 Partial Min Heap

30 21 79 37843 30036 24456.15014 156.3846225 71286 750 4 Partial Min Heap

35 35 65 41747 24687 25403.26949 159.3840315 106531 712 5 Partial Min Heap

40 24 76 57353 37729 32900.36415 181.3845753 118702 2105 7 Partial Min Heap

45 44 56 74693 60969 40788.85263 201.962503 165963 1033 9 Partial Min Heap

50 42 58 94820 62888 49282.56057 221.996758 196176 2968 12 Partial Min Heap

55 53 47 159256 129472 97203.8367 311.7752984 394637 1052 21 Partial Min Heap

Table 12: Map Size 400*400 using K=8 Full Data

81

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 18333 18333 38101.05182 76.72646536 293295 1706 1 Cached Min Heap

5 100 0 26272 26272 26134.44467 177.4237686 119553 222 3 Cached Min Heap

10 100 0 57243 57243 152661.9162 228.9530868 1514991 152 7 Cached Min Heap

15 100 0 65946 65946 97823.83993 241.4548621 787447 1104 9 Cached Min Heap

20 100 0 83769 83769 115516.9734 228.7738583 776333 376 11 Cached Min Heap

25 100 0 179999 179999 500413.0597 283.7337907 4103568 861 18 Cached Min Heap

30 100 0 169700 169700 469350.4578 308.5549269 4655493 1605 20 Cached Min Heap

35 100 0 214322 214322 403330.8382 321.0278097 2123422 686 23 Cached Min Heap

40 99 1 184734 186600 215794.876 361.392638 1543015 61 28 Cached Min Heap

45 100 0 215576 215576 198290.1556 362.5163312 1126110 2027 35 Cached Min Heap

50 98 2 249451 236478 191438.1475 432.1073146 977797 1377 44 Cached Min Heap

55 92 8 279299 252868 209298.272 518.6725622 792854 2894 51 Cached Min Heap

0 100 0 13700 13700 6813.985845 82.5468706 32651 2010 1 Heap

5 100 0 30662 30662 30637.15713 175.0347312 154254 254 3 Heap

10 100 0 65877 65877 143510.8653 378.8282794 1394471 172 8 Heap

15 100 0 78656 78656 90143.5941 300.2392281 423304 1302 9 Heap

20 100 0 98116 98116 113603.7007 337.0514808 485293 436 12 Heap

25 100 0 139878 139878 142817.9086 377.9125674 631330 1017 16 Heap

30 100 0 160744 160744 156557.9978 395.6741055 635814 2015 19 Heap

35 100 0 182971 182971 176839.3276 420.5226838 700761 817 22 Heap

40 99 1 235475 237854 226099.8696 475.4996 1079004 66 29 Heap

45 100 0 293379 293379 257867.5322 507.8065894 1091850 2541 37 Heap

50 98 2 350542 330851 269494.5691 519.1286633 1380486 1722 45 Heap

55 92 8 397740 358729 299567.6723 547.3277558 1133616 3736 52 Heap

0 100 0 80420 80420 65383.51535 255.702005 328694 2994 17 List

5 100 0 272021 272021 365219.9846 604.3343318 1711622 174 44 List

10 100 0 753273 753273 2507212.61 1583.418015 24853883 118 114 List

15 100 0 775584 775584 1147685.72 1071.300948 5663488 1848 111 List

20 100 0 990572 990572 1469840.413 1212.369751 7272784 386 140 List

25 100 0 1462427 1462427 2072156.13 1439.498569 12602826 1254 200 List

30 100 0 1548135 1548135 2032930.94 1425.808872 12403013 3385 204 List

35 100 0 1906813 1906813 2584468.322 1607.628167 11916477 1058 243 List

40 99 1 2306954 2330257 2968168.38 1722.837305 17271434 58 282 List

45 100 0 2705835 2705835 3251955.99 1803.31805 16137495 3864 325 List

50 98 2 2855831 2718813 2908183.811 1705.339793 15313563 2544 336 List

55 92 8 2666917 2431558 2607544.751 1614.789383 10427013 6759 305 List

0 84 16 14790 12186 5886.950487 76.72646536 23521 1973 1 Partial Min Heap

5 77 23 29881 29945 31479.19368 177.4237686 143537 248 3 Partial Min Heap

10 75 25 51751 50086 52419.51595 228.9530868 243379 167 5 Partial Min Heap

15 76 24 61277 53339 58300.45041 241.4548621 299013 1285 6 Partial Min Heap

20 73 27 74461 49839 52337.47824 228.7738583 258224 425 8 Partial Min Heap

25 68 32 88991 78612 80504.86399 283.7337907 334760 999 10 Partial Min Heap

30 70 30 114117 93813 95206.14289 308.5549269 363619 1967 13 Partial Min Heap

35 72 28 110543 99807 103058.8546 321.0278097 443841 803 13 Partial Min Heap

40 70 30 147961 126251 130604.6388 361.392638 569459 64 17 Partial Min Heap

45 73 27 200962 169783 131418.0904 362.5163312 659954 2469 24 Partial Min Heap

50 84 16 299748 251386 186716.7313 432.1073146 658789 1669 39 Partial Min Heap

55 89 11 384486 327548 269021.2268 518.6725622 1092736 3623 51 Partial Min Heap

Table 13: Map Size 400*400 using K=9 Full Data

82

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 15570 15570 25968.0567 82.85323241 172503 880 1 Cached Min Heap

5 100 0 26624 26624 27872.9467 163.9559575 159982 407 2 Cached Min Heap

10 100 0 64749 64749 176494.4456 433.2962479 1516320 524 8 Cached Min Heap

15 100 0 70402 70402 130263.6188 278.1635219 935119 608 9 Cached Min Heap

20 100 0 294063 294063 1464274.745 314.2317948 12043183 290 21 Cached Min Heap

25 100 0 303154 303154 984787.6919 350.320962 8289638 1241 24 Cached Min Heap

30 100 0 135642 135642 158533.9221 377.2006995 994738 1343 19 Cached Min Heap

35 100 0 171151 171151 198629.4858 408.8058851 1155932 170 24 Cached Min Heap

40 100 0 196859 196859 209505.18 436.016358 1255525 4165 29 Cached Min Heap

45 98 2 196066 200066 172015.9607 485.0850577 682831 1203 33 Cached Min Heap

50 97 3 237453 206884 164543.3143 476.922584 637332 1988 42 Cached Min Heap

55 91 9 278753 237417 183883.3782 507.0268258 778065 1328 54 Cached Min Heap

0 100 0 13352 13352 7109.72536 84.31918738 29804 1037 1 Heap

5 100 0 29688 29688 27193.84906 164.9055762 129159 474 4 Heap

10 100 0 74267 74267 200421.6777 447.6847972 1857087 594 9 Heap

15 100 0 81461 81461 124293.8669 352.5533532 1013411 702 9 Heap

20 100 0 123352 123352 156263.1491 395.3013396 1013182 333 14 Heap

25 100 0 162907 162907 159755.6798 399.6944831 635300 1515 19 Heap

30 100 0 160253 160253 147696.6894 384.3132699 572134 1647 19 Heap

35 100 0 201998 201998 175992.1433 419.5141754 759554 197 24 Heap

40 100 0 244437 244437 211040.8455 459.3918214 861513 5513 29 Heap

45 98 2 271315 276851 239666.5933 489.5575486 944953 1519 33 Heap

50 97 3 334587 289391 231903.1511 481.5632368 901878 2521 43 Heap

55 91 9 397234 336323 262617.3891 512.4620856 1113192 1691 53 Heap

0 100 0 79519 79519 65089.33761 255.126121 295286 1171 17 List

5 100 0 258281 258281 316327.6344 562.4301152 1438510 485 42 List

10 100 0 938444 938444 3972333.516 1993.071378 38732966 605 140 List

15 100 0 879483 879483 2001635.192 1414.791572 17832835 790 127 List

20 100 0 1460488 1460488 3148209.361 1774.319408 22972308 251 208 List

25 100 0 1964554 1964554 2807194.454 1675.468428 16484882 2291 271 List

30 100 0 1553298 1553298 1772840.02 1331.480387 9085343 2534 204 List

35 100 0 1923439 1923439 2270469.119 1506.807592 9858718 159 242 List

40 100 0 2425506 2425506 2889114.101 1699.739422 13264194 11412 301 List

45 98 2 2400533 2449521 2753692.342 1659.425305 11774738 2293 293 List

50 97 3 2598973 2247669 2286377.104 1512.077083 9643404 4039 304 List

55 91 9 2644121 2217199 2287027.621 1512.292175 10921632 2612 306 List

0 98 2 13924 12926 6864.658121 82.85323241 29889 1017 1 Partial Min Heap

5 100 0 29372 29372 26881.556 163.9559575 127725 464 2 Partial Min Heap

10 99 1 71999 70563 187745.6385 433.2962479 1716062 587 7 Partial Min Heap

15 98 2 76344 68529 77374.94491 278.1635219 401615 691 8 Partial Min Heap

20 96 4 108463 99927 98741.62086 314.2317948 395631 325 12 Partial Min Heap

25 86 14 140676 124231 122724.7764 350.320962 519202 1485 16 Partial Min Heap

30 95 5 154066 152028 142280.3677 377.2006995 534533 1612 18 Partial Min Heap

35 96 4 192229 188293 167122.2517 408.8058851 747117 191 23 Partial Min Heap

40 96 4 231775 222137 190110.2645 436.016358 846863 5349 28 Partial Min Heap

45 98 2 266114 271544 235307.5132 485.0850577 928502 1473 33 Partial Min Heap

50 97 3 327516 283473 227455.1511 476.922584 883330 2432 42 Partial Min Heap

55 91 9 388013 328667 257076.2021 507.0268258 1090476 1625 52 Partial Min Heap

Table 14: Map Size 400*400 using K=10 Full Data

83

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 33087 33087 58728.45223 86.81254517 293319 534 1 Cached Min Heap

5 100 0 72604 72604 102992.0083 214.0952593 665832 819 6 Cached Min Heap

10 100 0 85242 85242 109345.7555 252.8757542 689762 1522 9 Cached Min Heap

15 100 0 492097 492097 3612268.61 260.7393203 36353532 1201 29 Cached Min Heap

20 100 0 356871 356871 1178527.436 239.208389 10361507 1504 25 Cached Min Heap

25 100 0 746173 746173 1848326.622 312.1407001 10989029 7816 46 Cached Min Heap

30 99 1 771604 733092 1901169.814 321.2236732 14177394 1190 58 Cached Min Heap

35 100 0 486506 486506 766980.3576 357.2166547 4237598 2958 51 Cached Min Heap

40 100 0 411989 411989 618520.5793 366.7454866 4383201 630 54 Cached Min Heap

45 99 1 408382 376654 449944.1493 406.5076136 3247649 2261 65 Cached Min Heap

50 98 2 404706 379643 330419.4284 462.1730909 1586372 3817 69 Cached Min Heap

55 91 9 472789 432875 328600.4119 593.4462598 1597126 4053 88 Cached Min Heap

0 100 0 17071 17071 8526.993586 92.3417218 35029 590 2 Heap

5 100 0 55411 55411 53390.97256 231.0648666 229825 930 7 Heap

10 100 0 78328 78328 84019.50331 289.8611794 368507 1796 9 Heap

15 100 0 154233 154233 268984.1957 518.636863 2280165 1410 19 Heap

20 100 0 165846 165846 195937.5946 442.6483871 939573 1837 19 Heap

25 100 0 256958 256958 233864.0007 483.5948725 888943 9531 30 Heap

30 99 1 356919 290619 309043.4312 555.9167484 1534967 1361 45 Heap

35 100 0 373106 373106 345733.0613 587.9906983 1472913 3783 45 Heap

40 100 0 427321 427321 354569.9791 595.4577895 1552897 758 52 Heap

45 99 1 525248 476686 419237.0956 647.4852088 1715859 2890 66 Heap

50 98 2 567725 530964 457540.7231 676.4175656 2018812 4997 70 Heap

55 91 9 676586 616635 471621.3058 686.7469009 2292941 5409 90 Heap

0 100 0 121213 121213 97486.35225 312.2280453 385407 525 27 List

5 100 0 630977 630977 714179.8076 845.0915972 3221411 1079 100 List

10 100 0 915128 915128 1144098.625 1069.62546 6045919 2652 139 List

15 100 0 2223968 2223968 6804581.609 2608.559298 64434471 2075 330 List

20 100 0 2220915 2220915 3402855.675 1844.683083 21845010 2830 319 List

25 100 0 3621292 3621292 4669493.769 2160.901147 23520301 34224 499 List

30 99 1 5088222 4196901 6619283.316 2572.796789 42503718 2005 658 List

35 100 0 4684147 4684147 5607494.667 2368.014921 25340676 7147 596 List

40 100 0 5072422 5072422 5560225.609 2358.013064 23214519 1034 624 List

45 99 1 5812504 5149080 6145541.316 2479.020233 28436576 5038 694 List

50 98 2 5813538 5471237 6279223.678 2505.837919 31571793 8951 680 List

55 91 9 5660511 5185893 5020235.939 2240.588302 26138935 10739 654 List

0 68 32 18606 14003 7536.418 86.81254517 30312 579 1 Partial Min Heap

5 63 37 44161 45865 45836.78004 214.0952593 171850 915 4 Partial Min Heap

10 63 37 55436 54107 63946.14708 252.8757542 261983 1771 6 Partial Min Heap

15 58 42 95613 67578 67984.99314 260.7393203 266852 1397 10 Partial Min Heap

20 47 53 71515 54374 57220.65336 239.208389 278843 1801 8 Partial Min Heap

25 47 53 102429 97175 97431.81666 312.1407001 356813 9433 12 Partial Min Heap

30 49 51 124908 101917 103184.6482 321.2236732 450176 1345 15 Partial Min Heap

35 52 48 155725 141066 127603.7384 357.2166547 436633 3683 19 Partial Min Heap

40 48 52 182845 157270 134502.2519 366.7454866 590499 736 22 Partial Min Heap

45 59 41 285210 215458 165248.4399 406.5076136 604717 2809 36 Partial Min Heap

50 63 37 333162 261399 213603.9659 462.1730909 867651 4832 42 Partial Min Heap

55 77 23 606632 485375 352178.4633 593.4462598 1241686 5222 81 Partial Min Heap

Table 15: Map Size 512*512 using K=9 Full Data

84

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 38936 38936 77819.42845 96.55528871 481723 386 2 Cached Min Heap

5 100 0 73940 73940 158087.7484 232.7268686 1191855 1238 6 Cached Min Heap

10 100 0 217274 217274 1516599.697 293.0842623 15274525 2660 14 Cached Min Heap

15 100 0 339979 339979 1112354.995 358.8988907 8004632 1354 23 Cached Min Heap

20 100 0 326654 326654 848691.455 412.6915392 5951347 300 27 Cached Min Heap

25 100 0 873226 873226 2109774.965 458.3424363 13655722 576 52 Cached Min Heap

30 100 0 825142 825142 1713183.315 421.1366985 10218591 636 52 Cached Min Heap

35 100 0 361938 361938 842343.0821 500.6095019 7304187 509 37 Cached Min Heap

40 99 1 318708 321927 456154.7807 548.2023594 3871134 1515 46 Cached Min Heap

45 100 0 327727 327727 358121.6251 620.2879692 2221254 467 52 Cached Min Heap

50 95 5 424675 381370 281516.8742 625.5437236 1330595 9982 75 Cached Min Heap

55 89 11 385244 290680 266130.2874 611.7291218 1124800 8420 71 Cached Min Heap

0 100 0 17343 17343 9708.733637 98.53290637 41601 448 2 Heap

5 100 0 52155 52155 54162.43109 232.7282344 281114 1458 6 Heap

10 100 0 90505 90505 224087.7523 473.3790789 2136372 3207 11 Heap

15 100 0 149581 149581 211327.8877 459.7041306 1332563 1579 17 Heap

20 100 0 192769 192769 201892.9515 449.3249954 850786 335 23 Heap

25 100 0 260246 260246 241523.323 491.4502244 1018062 679 31 Heap

30 100 0 285071 285071 285218.819 534.0588161 1198732 726 34 Heap

35 100 0 269076 269076 282202.4257 531.2272826 1205480 612 32 Heap

40 99 1 372937 376704 325169.5621 570.236409 1320028 1852 45 Heap

45 100 0 428573 428573 406213.3485 637.3486868 1462480 533 52 Heap

50 95 5 602061 536272 398642.3053 631.3812678 1881958 13310 77 Heap

55 89 11 552988 412963 381865.4468 617.952625 1616376 11319 73 Heap

0 100 0 129144 129144 114574.5811 338.488672 488389 373 28 List

5 100 0 589478 589478 768871.9957 876.8534631 4535576 2034 95 List

10 100 0 1345530 1345530 5381558.644 2319.818666 53211436 5483 200 List

15 100 0 2132006 2132006 3890802.044 1972.511608 27125621 2354 307 List

20 100 0 2400230 2400230 3118439.845 1765.910486 16416680 310 338 List

25 100 0 3831368 3831368 4815486.318 2194.421636 24549225 775 532 List

30 100 0 4371062 4371062 5984339.899 2446.291049 30692642 736 577 List

35 100 0 3235347 3235347 4521703.169 2126.429676 27409861 841 412 List

40 99 1 4246391 4289284 4903773.869 2214.446628 22573024 2748 528 List

45 100 0 4627432 4627432 5680925.039 2383.469119 21995116 607 553 List

50 95 5 5911350 5196288 5146010.612 2268.482006 27672397 32768 692 List

55 89 11 4154633 3183882 3990661.907 1997.664113 17215684 25171 480 List

0 94 6 19114 16315 9322.923777 96.55528871 47052 439 1 Partial Min Heap

5 96 4 52261 51724 54161.79539 232.7268686 273908 1440 5 Partial Min Heap

10 94 6 69787 64580 85898.38479 293.0842623 416635 3170 7 Partial Min Heap

15 86 14 124283 100199 128808.4137 358.8988907 819868 1560 14 Partial Min Heap

20 88 12 178127 158436 170314.3065 412.6915392 714073 326 20 Partial Min Heap

25 77 23 212264 188852 210077.789 458.3424363 1001108 668 24 Partial Min Heap

30 74 26 203331 182623 177356.1188 421.1366985 619325 716 24 Partial Min Heap

35 88 12 233448 220482 250609.8734 500.6095019 1182459 594 27 Partial Min Heap

40 95 5 351040 347115 300525.8268 548.2023594 1297629 1808 43 Partial Min Heap

45 98 2 411055 403729 384757.1647 620.2879692 1435228 523 52 Partial Min Heap

50 95 5 589822 525741 391304.9501 625.5437236 1848558 12941 76 Partial Min Heap

55 89 11 540335 403988 374212.5185 611.7291218 1583437 10979 72 Partial Min Heap

Table 16: Map Size 512*512 using K=10 Full Data

85

6. FUTURE WORK

Obs Chance Total Success Total Failed OverAll Avg Ops Success Ops Ops Variance Ops SD Max Ops Min Ops Overall Time Success Nodes Expanded

0 100 0 57884 57884 90025.49605 98.28234522 296307 48 2 Cached Min Heap

5 100 0 49033 49033 82066.63835 188.5768864 538704 514 4 Cached Min Heap

10 100 0 78801 78801 110770.4491 306.6745851 738170 872 8 Cached Min Heap

15 100 0 171058 171058 279368.3657 373.8565735 1754931 1048 17 Cached Min Heap

20 100 0 237814 237814 567884.8498 401.6243296 3763349 1037 21 Cached Min Heap

25 100 0 588809 588809 1686185.931 414.1794445 12665397 382 35 Cached Min Heap

30 100 0 560485 560485 1298508.873 482.7399889 6551005 401 42 Cached Min Heap

35 100 0 652194 652194 1365797.849 534.0696566 9822667 637 53 Cached Min Heap

40 99 1 284975 287853 374784.8628 572.3703088 2983161 1553 43 Cached Min Heap

45 98 2 382386 313069 274157.6119 577.3439262 1469541 660 65 Cached Min Heap

50 97 3 449262 402567 297652.559 642.7481711 1167699 7793 81 Cached Min Heap

55 87 13 442651 393125 324324.6707 675.4912055 1588777 4139 82 Cached Min Heap

0 100 0 18829 18829 9769.780442 98.8421997 38974 52 2 Heap

5 100 0 38394 38394 35961.48871 189.6351463 141821 592 5 Heap

10 100 0 76822 76822 95258.26298 308.6393737 442246 1032 9 Heap

15 100 0 139643 139643 141729.8556 376.4702586 578118 1217 17 Heap

20 100 0 151773 151773 163595.8335 404.4698178 714601 1210 18 Heap

25 100 0 191283 191283 193213.5315 439.5606119 889962 442 22 Heap

30 100 0 263556 263556 241241.9505 491.1638734 1089152 454 31 Heap

35 100 0 352846 352846 297928.9922 545.8287206 1199808 779 43 Heap

40 99 1 350126 353663 333430.0723 577.4340415 1380703 1969 42 Heap

45 98 2 521290 418784 339365.5111 582.5508657 1594370 784 65 Heap

50 97 3 636407 565952 420855.1693 648.7335118 1646967 10317 80 Heap

55 87 13 634601 559534 465566.7339 682.3245077 2271113 5306 83 Heap

0 100 0 149451 149451 123442.1796 351.3433927 467890 32 32 List

5 100 0 381413 381413 475791.9915 689.7767693 2541446 510 62 List

10 100 0 917446 917446 1446421.66 1202.672715 9051016 1355 138 List

15 100 0 1689380 1689380 2102953.565 1450.156393 9157813 1729 244 List

20 100 0 1911819 1911819 2613552.055 1616.648402 14004014 1684 271 List

25 100 0 2637751 2637751 4034025.435 2008.488346 25218134 456 365 List

30 100 0 3573103 3573103 4553304.479 2133.847342 21287530 475 468 List

35 100 0 4671923 4671923 5581586.829 2362.538218 33475551 993 594 List

40 99 1 3862503 3901518 4588543.508 2142.088585 19856941 3238 475 List

45 98 2 5527481 4272846 4699919.894 2167.929864 21430198 958 663 List

50 97 3 6115063 5582816 5194332.609 2279.107854 19625015 23626 717 List

55 87 13 5025977 4582653 5048210.332 2246.822274 25372515 9837 574 List

0 100 0 18593 18593 9659.419382 98.28234522 38535 50 1 Partial Min Heap

5 100 0 37985 37985 35561.24208 188.5768864 140202 579 3 Partial Min Heap

10 100 0 75927 75927 94049.30114 306.6745851 433493 1016 8 Partial Min Heap

15 100 0 137786 137786 139768.7375 373.8565735 571518 1204 15 Partial Min Heap

20 100 0 149692 149692 161302.1021 401.6243296 703571 1191 16 Partial Min Heap

25 98 2 185223 176282 171544.6122 414.1794445 758264 432 21 Partial Min Heap

30 98 2 256114 251337 233037.8968 482.7399889 1071541 447 30 Partial Min Heap

35 99 1 340665 339504 285230.3981 534.0696566 1177672 756 39 Partial Min Heap

40 99 1 343828 347301 327607.7704 572.3703088 1355584 1911 41 Partial Min Heap

45 98 2 511076 410904 333326.0092 577.3439262 1565387 767 65 Partial Min Heap

50 97 3 623450 554971 413125.2115 642.7481711 1617056 10029 80 Partial Min Heap

55 87 13 620385 547538 456288.3687 675.4912055 2225831 5159 82 Partial Min Heap

Table 17: Map Size 512*512 using K=11 Full Data

86

REFERENCES

[1] (1964). Algorithms. Commun. ACM, 7(6):347–349.

[2] Aviram, N. and Shavitt, Y. (2015). Optimizing dijkstra for real-world perfor-

mance. Networking and Internet Architecture - arXiv preprint arXiv.

[3] Botea, A., Müller, M., and Schaeffer, J. (2004). Near optimal hierarchical path-

finding. Journal of game development, 1(1):7–28.

[4] Cazenave, T. (2006). Optimizations of data structures, heuristics and algorithms

for path-finding on maps. 2006 IEEE Symposium on Computational Intelligence

and Games, pages 27–33.

[5] Cherkassky, B. V. and Goldberg, A. V. (1996). Heap-on-top priority queues.

Society for Industrial and Applied Mathematics, 96(42).

[6] Cui, X. and Shi, H. (2011). A*-based pathfinding in modern computer games.

International Journal of Computer Science and Network Security, 11(1):125–130.

[David Rutter] David Rutter, M. C. G. T. Why should i use a closed list in the a*

pathfinding algorithm? Accessed: 2018-11-16.

[8] Denardo, E. V. and Fox, B. L. (1979). Shortest-route methods: 1. reaching,

pruning, and buckets. Operations Research, 27(1):161–186.

[9] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1(1):269–271.

87

REFERENCES

[10] Erdtman, S. and Fylling, J. (2008). Pathfinding with hard constraints - mobile

systems and real time strategy games combined.

[11] Fredman, M. L., Sedgewick, R., Sleator, D. D., and Tarjan, R. E. (1986). The

pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1-4):111–129.

[12] Goldberg, A. V. and Silverstein, C. (1997). Implementations of dijkstra’s al-

gorithm based on multi-level buckets. In Network optimization, pages 292–327.

Springer.

[13] Graham, R., McCabe, H., and Sheridan, S. (2003). Pathfinding in computer

games. The ITB Journal: Article 6, 4(2):6.

[14] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968a). A formal basis for the

heuristic determination of minimum cost paths. IEEE Transactions on Systems

Science and Cybernetics, 4(2):100–107.

[15] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968b). A formal basis for the

heuristic determination of minimum cost paths. IEEE transactions on Systems

Science and Cybernetics, 4(2):100–107.

[16] Holte, R. C., Perez, M. B., Zimmer, R. M., and MacDonald, A. J. (1996). Hi-

erarchical a *: Searching abstraction hierarchies efficiently. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence - Volume 1, AAAI’96,

pages 530–535. AAAI Press.

[17] Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree

search. Artificial intelligence, 27(1):97–109.

[18] Martelli, A. (1977). On the complexity of admissible search algorithms. Artificial

Intelligence, 8(1):1–13.

[19] Mathew, G. E. and Malathy, G. (2015). Direction based heuristic for pathfinding

in video games. pages 1651–1657.

88

REFERENCES

[20] Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem

solving. Addison-Wesley Pub. Co., Inc., Reading, MA.

[21] Rihani, H., Sanders, P., and Dementiev, R. (2014). Multiqueues: Simpler, faster,

and better relaxed concurrent priority queues. arXiv preprint arXiv:1411.1209.

[22] Sturtevant, N. and Buro, M. (2005). Partial pathfinding using map abstraction

and refinement. In AAAI, volume 5, pages 1392–1397.

[23] Sturtevant, N. R. (2012). Benchmarks for grid-based pathfinding. Transactions

on Computational Intelligence and AI in Games, 4(2):144–148.

[24] Zhang, Z., Sturtevant, N., Holte, R., Schaeffer, J., and Felner, A. (2009). A*

search with inconsistent heuristics. International Joint Conference on Artificial

Intelligence (IJCAI), pages 634–639.

89

VITA AUCTORIS

NAME: Mohsen Tavakoli

PLACE OF BIRTH: Mashhad, Iran

YEAR OF BIRTH: 1993

EDUCATION: Islamic Azad University of Mashhad, B.Sc., Information
Technology, Mashhad, Iran, 2015

University of Windsor, M.Sc in Computer Science,
Windsor, Ontario, 2018

90

	Performance Evaluation of Competing Data Structures
	Recommended Citation

	tmp.1554052687.pdf.x93ER

