
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Winter 2012

Waste heat measurement and recovery options in
an investment casting process
Patrick Timothy Kilar
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Kilar, Patrick Timothy, "Waste heat measurement and recovery options in an investment casting process" (2012). Master's Theses and
Capstones. 758.
https://scholars.unh.edu/thesis/758

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/758?utm_source=scholars.unh.edu%2Fthesis%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


WASTE HEAT MEASUREMENT AND RECOVERY OPTIONS IN AN 
INVESTMENT CASTING PROCESS

BY

PATRICK TIMOTHY KILAR 

B.S. in Mechanical Engineering, University of New Hampshire, 2011

THESIS

Submitted to the University o f New Hampshire 

in Partial Fulfillment of 

the Requirements for the Degree of

Masters o f Science 

in

Mechanical Engineering

December, 2012



UMI Number: 1522313

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI 1522313
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



This thesis has been examined and approved.

Thesis Co-Director, Brad L. Kinsey, Assoc. Prof, Mechanical Eng. Dept., UNH

Thesis Co-Director, Ihab H. Earag, Prof, Chemical Eng. Dept., UNH

Martin Wosnik, Asst. Prof, Mechanical Eng. Dept., UNH

Date



Contents

DEDICATION....................................   v

LIST OF TABLES......................................................................................................................vii

LIST OF FIGURES..............................................................  viii

ABSTRACT................................................................................................................................... x

I. INTRODUCTION......................................................................................................................1

II. SENSORS AND EXPERIMENTAL PROCEDURE......................................................... 9

Flow Sensor Selection.............................................................................................................10

Flow Sensor Validation...........................................................................................................13

Theoretical Calculations..................................................................................................... 15

Results and Discussion.......................................................................................................20

Experimental Setup and Procedure.......................................................................................22

Accutube Set-up..................................................................   22

KURZ Set-up.............................................................................................  25

Natural Gas Flow M eter.....................................................................................................26

III. EQUATIONS AND DATA ANALYSIS..........................................................................28

Natural Gas Flow Meter................  31

Density Calculation and Pressure Measurement.................................................................32

Volume Flow Rate Calculation............................................................................................. 34

Calculated Waste Heat........................................................................................................... 39

IV. EVALUATION OF WASTE HEAT RECOVERY OPTIONS.....................................44

Waste Heat Recovery Considerations.................................................................................. 44

Recovery Options....................................................................................................................46

Waste Heat Recovery Steam B oiler................................................................................. 46

Preheat Air to Combustion Burners.................................................................................. 49

Organic Rankine Cycle.......................................................................................................51

Building Heat....................................................................................................................... 52

Economizer.......................................................................................................................... 52

Thermo-electric...................................................................................................................53



Combined Heat and Power.................................................................................................54

Absorption Chillers..............................................................................................................55

Waste Heat Recovery Summary........................................................................................... 55

V. Previous Studies..................................................................................................................... 58

Hitchiner Initial Study...........................  58

Energy Resource Solutions Study......................................................................................... 62

RISE Engineering Study........................................................................................................ 66

Previous Studies Summary....................................................................................................67

VI. CONCLUSIONS.....................   69

APPENDICES.............................................................................................................................71

APPENDIX I: LIST OF REFERENCES............................................................................. 71

APPENDIX II: EMAIL/PHONE CORRESPONDENCES.............................................. 74

APPENDIX III: SUPPLEMENTAL FIGURES & GRAPHS..........................................75

G Afterburner Zone............................................................................................................ 75

G Zone 2 ...............................................................................................................................76

G Zone 3 .....................................................................................................................  77

J Afterburner Zone...........................................................   78

J Zone 3 ................................................................................................................................ 80

Boiler.................................................................................................................................... 81

iv



DEDICATION

To the cabinet shop.

v



ACKNOWLEDGEMENTS

This work is supported by a grant from the National Science Foundation, # EPS-071730, 
to the New Hampshire Experimental Program to Stimulate Competitive Research 
(EPSCOR) and New Hampshire Innovative Research Council (NHIRC).

A special thanks is extended to; the guidance and advisement of Dr. Kinsey, Dr. Wosnik, 
and Dr. Farag from UNH; and Kim Hutchinson and Jillian Tombarelli from Hitchiner 
Manufacturing Inc., Co..



LIST OF TABLES

Table 1. General characteristics o f casting processes.[9].........................................................4
Table 2. Estimates of stack conditions..................................................................................... 10
Table 3. Flow sensors accuracy and ranges.tl7’18’191.............................................................11
Table 4. Exhaust densities and excess air................................................................................ 32
Table 5. Average velocities and Reynolds numbers per stack..............................................37
Table 6. G-oven afterburner velocity traverse data................................................................ 38
Table 7. Boiler exhaust average temperature, waste heat, and flow rate............................ 41
Table 8. G-oven exhaust average temperature, waste heat, and flow rate.......................... 41
Table 9. J -oven exhaust average temperature, waste heat, and flow rate........................... 43
Table 10. Boiler specifications.t301...........................................................................................47
Table 11. Economic analysis G-oven afterburner WHRSG option....................................49
Table 12. Economic analysis G and J oven preheat air........................................................ 50
Table 13. Economic analysis G-oven afterburner ORC option.......................................... 52
Table 14. Economic analysis J-oven afterburner building heat option.................  52
Table 15. Economic analysis boiler economizer option.......................................................53
Table 16. Summary of economic evaluations for heat recovery options based on NG
price of $25.94/MWh..................................................................................................................56
Table 17. Annual carbon reduction (7.18E-4 metric tons/KWh electricity and 1.7E-4
metric tons/KWh natural gas).................................................................................................... 57
Table 18. Collected measurements from the initial and new studies.[151.............................60
Table 19. Parameters used in ERS's analysis.1101...................................................................62
Table 20. ERS's economic analysis.1-101............   65
Table 21. Parameters used in RISE's analysis.[53]................................................................ 67
Table 22.RISE’s Economic Analysis.1531.................................................................................67
Table 23. Summary o f previous studies compared to new study...................   68



LIST OF FIGURES

Figure 1. Heat losses in industrial p ro c e s s e s . ....................................................................... 2
Figure 2. Investment casting processJ13̂ ................................................................................... 6
Figure 3. KURZ 2440 interface and anemometer.tl7]...........................................................11
Figure 4. Meriam Accutube (A) hardware and (B) sensor.[20̂ ............................................ 12
Figure 5. UNH wind tunnel....................................................................................................... 14
Figure 6. Accutube probe and fluid streamline.[21]................................................................ 15
Figure 7. Prandtl number versus temperature [K]J20]............................................................19
Figure 8. Pitot-static tube velocity and Accutube constant...................................................20
Figure 9. Velocity measurements between flow sensors...................................................... 21
Figure 10. Experimental setup for the DP transducer............................................................23
Figure 11. (A) Accutube, (B) outside, and (C) and inside canopy.......................................24
Figure 12. KURZ weather enclosure....................................................................................... 25
Figure 13. Experimental setup for KURZ...............................................................................26
Figure 14. Installed NG transducer.......................................................................................... 27
Figure 15. G-oven firing rate.................................................................................................... 32
Figure 16. Natural convection stacks and their fume hoods.................................................33
Figure 17. Control volume of a pipe.........................................................................  34
Figure 18. Flow profile in G-oven afterburner stack............................................................. 38
Figure 19. Daily average waste heat exhausted from boiler................................................40
Figure 20. Daily average waste heat exhausted from G-oven.............................................41
Figure 21. Daily average waste heat exhausted from J-oven.............................................. 43
Figure 22. Helical coil WHRSG illustration.[36J...........................  47
Figure 23. Plate heat exchanger.[38]........................................................................................ 49
Figure 24. Illustration of the ORC thermodynamic cycle.[41].............................................. 51
Figure 25. Economizer.[4I]........................................................................................................53
Figure 26. Thermoelectric electricity generator.[44].............................................................. 54
Figure 27. Illustration o f a CHP system.[45].............................................................. 54
Figure 28. Absorption chiller.[48]..............................................................................................55
Figure 29. Schematic o f waste heat recovery system from the initial study.[,5]................61
Figure 30. Waste heat emitted from G-oven afterburner stack............................................ 75
Figure 31. Standard volume flow rate and temperature from G-oven afterburner stack. 75
Figure 32. Waste heat emitted from G-oven zone 2 stack.................................................... 76
Figure 33. Standard volume flow rate and temperature G-oven zone 2 stack...................76
Figure 34. Waste heat emitted from G-oven zone 3 stack.................................................... 77
Figure 35. Standard volume flow rate and temperature G-oven zone 3 stack...................77
Figure 36. Waste heat emitted from J-oven afterburner stack..............................................78
Figure 37. Standard volume flow rate and temperature J-oven afterburner stack.............78
Figure 38. Waste heat emitted from J-oven zone 2 stack......................................................79
Figure 39. Standard volume flow rate and temperature J-oven zone 2 stack..................... 79

viii



Figure 40. Waste heat emitted from J-oven zone 3 stack......................................................80
Figure 41. Standard volume flow rate and temperature from J-oven zone 3 stack........... 80
Figure 42. Waste heat emitted from boiler stack.................................................................... 81
Figure 43. Standard volume flow rate and temperature boiler stack................................... 81
Figure 44. ACF floor layout.1541............................................................................................... 82

ix



ABSTRACT

WASTE HEAT MEASUREMENT AND RECOVERY OPTIONS IN AN 
INVESTMENT CASTING PROCESS

by

Patrick Timothy Kilar 

University o f New Hampshire, December, 2012

In this research, the waste heat emitted from two ovens and a boiler used in the 

investment casting manufacturing process by New Hampshire based Hitchiner 

Manufacturing Inc. Co. was determined. This was achieved with measured temperature 

and standard volume flow rate data gathered from the exhaust stacks using a thermal 

anemometer. Pressure in the stacks and density were also determined using a differential 

pressure transducer and combustion analyzer transducer, respectively. The thermal 

anemometer collected data continuously over a period of 1 week per stack. To support 

and protect the transducers during the experiments, tripods and enclosures were designed, 

fabricated and implemented. From the data, economic options to recover the waste heat 

were analyzed and one was recommended based on the return on investment periods.



I. INTRODUCTION

Manufacturing processes and facilities account for approximately 32% of the energy used in the 

world 2] and 14% of the total energy used in New Hampshire.^1 Automotive, aerospace, 

defense, and renewable energy industries as well as others continue to innovate and manufacture 

new products containing ferrous and non-ferrous alloy parts. One means to produce these parts, 

in addition to machining, forming, powder metallurgy, etc., is through a metal casting process. 

Over 90 percent of all manufactured goods in the United States contain cast metal components.[4] 

In this process, molten metal is fed into molds with the desired part geometry and solidifies 

upon cooling. Due to the temperatures required to melt the metal, casting is an extremely energy 

intensive process.

There are few if any technical papers in the literature on waste heat recovery in casting. However 

the Department of Energy has published some related case studies on waste heat recovery in 

other manufacturing processes. For example, U.S. Steel's plant in Minntac, Minnesota mines and 

processes iron-bearing rock into pellets for use in steelmaking. There are five production lines at 

the facility and each has its own kiln, preheater, and dryer which operate at 1,616 K, 1,477 K, 

and 589 K, respectively. Figure 1 shows typical inputs and outputs for a Sankey flow diagram of 

an oven. In 2008, U.S. Steel installed an air to air heat exchanger that preheats combustion air in 

the exhaust stacks exiting the kilns. Through this installation the plant achieved an annual



savings of approximately 64.8 GWh, which equates to $1.8 million savings in energy expenses 

per year and a return on investment (ROI) of 1.5 years.[5]

Rue losses

Opening loss
Gross (fet - , - 3
fuel fue| Available! 
in^uf input heal}

Useful output 
(heat to load)

Stored
heat

Cooling 
water loss 

and/or conveyor

Figure 1. Heat losses in industrial processes.161

Additionally waste heat recovery has been studied in the coffee roasting i n d u s t r y . T h e  main 

waste heat sources in this process are the natural gas fired coffee roasting ovens. In this study 

the temperature and flow rates of exhaust gases exiting from the roasting and cooling stacks of 

the existing plant were measured with a resistance temperature detector and a Pitot tube 

respectively. The average temperature, waste heat, and standard volume flow rate measured in 

the case study were 833.15 K, 454 KW, and 103 SCMM respectively, where SCMM is standard 

cubic meters per minute. (More explanation of the units will be given in Chapter III.) The factory 

analysis showed that the most beneficial use for the recovered heat was for space heating of 

buildings and had an ROI of 7.6 years.

Lastly Shaw Industries, a flooring company, uses a significant amount of steam and warm water 

in their processes.181 An assessment found that waste energy in the water was significant enough 

to incorporate a waste water heat exchanger into the stream. Additionally an economizer was
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added to the boiler and its pipes were cleaned to increase efficiency. Altogether after 

implementing heat recovery and other equipment on the boilers $ 872,000 in energy cost savings 

annually was achieved with an ROI of 1.7 years. ® In summary manufacturing facilities which 

use boilers and ovens are excellent candidates for waste heat recovery projects.

Returning to the subject of casting, there are various casting methods, i.e., sand casting, 

evaporative pattem/lost foam casting, die casting, etc. Table 1 compares various casting 

processes versus key design and production parameters. [9] Hitchiner Manufacturing Company, 

Incorporated located in Milford, NH specializes in investment casting of both ferrous and non- 

ferrous alloys. Investment casting allows for high volume production of light weight, thin walled 

metal components, which have exceptional surface finish and tight tolerances. It has been 

estimated that the metal casting industry uses approximately 58.6 to 73.3 TWh annually.^ 

Furthermore, the average amount of energy annually used by the ovens (i.e., G and J ovens) and 

boilers at Hitchiner’s Automated Casting Facility (ACF) is 19.6 GWh, which thus makes up 

0.02% of the industries total energy consum ption.^  Comparing the corresponding monthly 

consumption rate to that of the production of New Hampshire’s Seabrook power station and 

residential users it is 0.18% (assuming 1.2 GW power production) and 1,701 homes 

respectively.^11’1̂
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Table 1. General characteristics o f casting processes.191
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There are several steps in the investment casting process (see Fig. 2):

1) Wax replicas o f the desired part are created using wax injection into dies.

2) The wax replicas are assembled onto a central wax sprue.

3) The ceramic shells are created over the wax assembly by immersing it in a liquid slurry and 

then in a fine sand.

i) This process is repeated multiple times to create thick walled ceramic shell.

ii) The assembly with its ceramic coatings then dries and hardens in humidity 

controlled rooms maintained by a boiler.

4) In the “Dewax/Bumout” step, the now hardened ceramic shells are placed in a boiler oven to 

melt out the inner wax assembly and then an oven to remove any residual wax and fire the 

ceramic mold to receive the molten metal.

5) The ceramic shell is then filled by molten metal via Hitchiner’s exclusive counter gravity 

process instead of the traditional gravity pouring technique. Thus, the sprue does not solidify 

which is more material efficient and eliminates the process o f cutting parts from the sprue.

6) After the metal has cooled and solidified, the ceramic shell is removed by vibration or water 

jet.

7) For investment casting processes with a solidified sprue, the individual castings are cut from 

the sprue.

8) Operations such as sanding or grinding are performed to finish the product.

5
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Figure 2. Investment casting process.1' 31

The most energy intensive stages in investment casting are the shell building and 

Dewax/Bumout which use natural gas fired ovens and boilers. The bi-products of natural gas 

and air’s combustion are exhausted to atmosphere (i.e., exhaust losses in Fig. 1) after the thermal 

energy has been used in the process. Boilers and ovens exhaust these bi-products to the 

atmosphere and when they have a higher temperature than the surrounding ambient air it 

exhausts to, it is considered waste heat. According to a report by the Department o f Energy 

(DOE) published in 2011, exhausted thermal energy from industrial operations in metals 

industries represents 20% to 50% of the total energy used in manufacturing plants, and it is 

possible to reduce or recover 30% to 60% of the available exhaust thermal energy by using 

conventional and readily available technologies.tl4] The waste heat recovery technology that is 

the best-fit for the specific investment casting processes used by Hitchiner has been the topic of 

both internal and external energy efficiency audits.

Generally, waste heat recovery options are most economically viable when the exhausted 

thermal emission has a consistently high average temperature and flow rate. At ACF two boilers 

operate 24 hours a day for 7 days a week to maintain humidity control of the mold storage room 

(i.e., Step 3 in Fig. 2). Humidity control is important so the shells do not lose their shape and/or



crack, which would result in a scrap part. Two ovens named the G-oven and J-oven both 

generally operate 24 hours a day for 4 days a week to prepare the ceramic shells to receive the 

molten metal and bum out excess wax from the molds (i.e., Step 4 in Fig. 2). Within Appendix 

III there is an architectural floor plan of ACF and photos o f the exhaust stacks from the G-oven, 

J-oven and the boilers. Note that there are a lot of additional thermal losses in the process (see 

Fig. 1) but the others are considerably less significant and are more difficult to recover (i.e. their 

relative magnitudes given by the thickness of the arrows). Therefore, waste heat in this research 

is considered to be the "exhaust losses" (or stack losses) in Fig. 1.

The three stacks that emit from both the G-oven and J-oven are referred to as the afterburner 

zone, zone 2, and zone 3 stacks. The afterburner zone uses an inductor to pull air/smoke from the 

oven through a set of burners positioned above the oven that eliminate any volatile organic 

compounds (VOCs) and hazardous air pollutants (HAPs) from the residual wax's burn off. Zones 

2 and 3 do not use any inductors to draw air through them or have afterburners. Instead the 

driving force for the air flow in zones 2 and 3 is due to the temperature difference between the 

air inside the oven and the outside ambient air. This phenomenon is called natural convection.

Although other studies have been performed to estimate the waste heat emitted in Hitchiner’s 

investment casting processes, none of them have taken measurements of temperature and flow 

rate over an extended period of time. The specific goals o f the project are 1) to determine the 

magnitude of waste heat from the G-oven, J-oven, and boiler at ACF, and 2) to determine the 

most beneficial and economical use of the waste heat available. In order to accomplish these 

goals, sensors to quantify the data for assessing technological options had to be acquired and the

7



procedures to use them had to be developed. The following information will be presented in the 

proceeding chapters: Chapter 2 explains the selection of sensors, the validation of flow data in a 

wind tunnel, and the experimental procedure/instrumentation setup on the roof of ACF; Chapter 

3 describes the theoretical equations used to quantify the waste heat emitted and the resulting 

data; Chapter 4 discusses the waste heat recovery options evaluated and assesses the economics 

and feasibility o f implementation; Chapter 5 describes and contrasts previous waste heat studies 

at Hitchiner; and lastly Chapter 6 contains the conclusions.

8



CHAPTER II

II. SENSORS AND EXPERIMENTAL PROCEDURE

Several sensors were used in this research to measure the density o f air in the stack, natural gas 

used in the process, fluid flow, and fluid temperature. For example, a combustion analyzer 

transducer was used to quantify the percent oxygen in the exhaust gas. The percent oxygen 

measurement is necessary to calculate the density o f the exhaust in each stack. Hitchiner has a 

combustion analyzer, Bacharach Fyrite Pro (Serial No. MZ1020), for waste heat analysis. The 

Bacharach can operate in stacks with a temperatures below 811 K, thus it was applicable in all of 

the stacks in this study. However due to material constraints of the sensor it cannot be inserted 

closer to the burners. Also a NG thermal mass flow meter (model number 9500) made by 

Thermal Instrument co. was used to approximate the annual energy use o f the process 

equipment. The final sensor required was a flow sensor to measure the flow rate and temperature 

in the stacks. As this is the critical sensor for the research, a detailed selection process and 

validation of the sensor was used.

\ 9



Flow Sensor Selection

The implementation of a flow sensor into a stack is limited by whether the temperature and flow 

rate are within the range of the sensor. For example, flow measurements can be taken with a pitot 

tube, however, this pressure sensor is limited by the high temperatures. Table 2 shows the 

estimated stack temperatures, pressures, and volumetric flow rates of each stack from the G- 

oven, J-oven, and boiler as well as their diameters that were referenced. This data came from 

previous studies.^0,15’161 Also Hitchiner requested approximately a week of data collection per 

stack in order for them to have confidence in the data that is being used to base their decision of 

whether or not to purchase heat recovery equipment. So the sensor needs the ability to store 

significant amounts of data.

T ab le  2. Estimates o f  stack conditions.

Stack Diameter, 
di [mm]

Temperature,
T[K]

Pressure 
P [Pa]

Volumetric Flow, 
Q [SCMM]

G-oven (A/B)L1;,J 457.2 771 101,412 74.33
G-oven (Zones 2 and 3)ll5J 812.8 450 101,337 171.46

Boiler1I0J 558.8 419 101,412 30.55
J-oven (A/B)tlbJ 355.6 771 101,412 74.33

J-oven (zones 2 and 3)ll6J 406.4 450 101,337 171.46
Note: Data from a Hitchiner s t u d y E n e r g y  Resources Solutions110J, and Kim Hutchinsonll6j

It is desirable to have a sensor that can be implemented in all stack diameters (i.e., from 

355.6mm (14 inches)-812.8mm (32 inches)) and conditions. Based off an extensive search two 

sensors were purchased. One is a thermal anemometer, made by KURZ instruments (model 

number 2440). The second is a single point differential pressure sensor, similar to a Pitot-Static 

tube, called an Accutube (model number 22L).Table 3 shows that both sensors have comparable 

accuracies and can measure in the expected operating range of each stack. As is evident from 

Table 3, a major difference between the sensors is that the Meriam also measures pressure while

10



KURZ does not. The two sensors were purchased to determine if  this parameter affected the 

results or could be assumed as atmospheric.

T ab le  3. Flow sensors accuracy and ranges.117, l8,191

KURZ
Accuracy Range G-oven A/B

Stack Flow Rate, Q [SCMM] +/- 1 % 450.12 74
Stack Temperature, T [K] +/- 5 255 - 771 498

Stack Pressure, P [Pa] NA NA 101,412
Meriam

Accuracy Range G-oven A/B

Stack Flow Rate, Q [SCMM] +/- 1 % Flows except 24 - 
3.6 74

Stack Temperature, T [K] +/- 0.9 255-922 498
Stack Pressure, P [Pa] +/- 0.1% 0-3,447,378 101,412

The KURZ consists of two instruments that work together to collect data on the stack volume 

flow rate and temperature. One is a thermal anemometer rod which is inserted into the exhaust. 

The second is a data logger which contains the circuitry to convert the signal to flow and 

temperature measurements. A picture o f the thermal anemometer rod and the data logger is 

shown in Figure 3.

Data Logger

F igure  3. KURZ 2440 interface and anem om eter.[17)

The thermal anemometer rod consists o f two resistance temperature detectors (RTD); one RTD 

is heated 50-100 K above the ambient, while the other monitors the ambient. The current 

required to keep the RTD element heated at different flows is the parameter calibrated in

i thermal ANtuasterCH



KURZ's wind tunnels. In order to process this signal, a wire exits the end of the thermal 

anemometer rod and connects to the data logger. The data logger converts the signal into flow 

rate and temperature values that are saved on its internal memory. The data can be later 

transferred to a computer through a program called HyperTerminal as a “ .txt” file. The KURZ 

interface can measure 2,300 samples before the data needs to be downloaded. At that time it 

overwrites the oldest saved data sample. The minimum and maximum programmable time 

between sampling is 1 and 999 seconds respectively. To achieve the 24/7 data, samples were 

measured every 100 seconds and the data was downloaded halfway through the week (to assure 

no important data features were missed).

The Meriam Accutube model 22L is similar to a pitot-static tube in that it senses the differential 

pressure (i.e., the difference between the high and low pressure ports). Figure 4 shows (A) the 

hardware and (B) the corresponding sensor model number EJX910A which uses membranes to 

measure the differential pressure.

(A) (B)

Figure 4. Meriam A ccutube (A) hardware and (B) sensor. 2̂t>1

These respective high and low pressure ports of the hardware are piped to the sensor via two 12.7 

mm (0.5 inch) diameter tubes connected by compression fittings. The length of the tubing is

12



selected based on the estimated stack exhaust temperature. Therefore, depending on whether the 

exhaust temperature was closer to either 771 K (i.e., the G-oven or J-oven afterburner stacks) or 

419 K (i.e., boiler stack), 4.57 m (15ft) or 1.52 m (5ft) lengths were used. This was done to cool 

the air prior to the sensor which had an input temperature limit o f 393 K. For data logging, a 

National Instruments data acquisition board (NI 6341), LabView software/program, and a laptop 

computer was used for continuous sampling.

Flow Sensor Validation

As previously noted two sensors were purchased for this research. Again the principal difference 

between the two transducers is that the Accutube flow calculation is related to the pressure in the 

stack and the KURZ calculates flow without a direct measurement o f stack pressure (i.e., 

assumes atmospheric pressure). Because the pressures in the stacks were unknown when 

purchasing, both sensors were acquired. It was desired to test both sensors in a controlled setting 

before implementation at Hitchiner for comparison to each other and to assure knowledge of 

sensor function. The UNH wind tunnel (see Figure 5) was used for this testing, and 

measurements were taken at wind tunnel speeds within the range of the exhaust gases. The 

velocity results of the two sensors were compared between each other and with a pitot-static tube 

in the wind tunnel to evaluate the closeness in data between the two sensors. In order to calculate 

the waste heat from the process, the velocity of the flow is required as this is used to determine 

the mass flow rate.

13



Sensor inserted in test section.

1. Air enters 
through agitator 

screen.

2. Air flow profile is 
made uniform through 

contraction.

3. Test section has a 
uniform flow profile 

across it.

4. Air exits 
through diffuser.

F igure  5. UNH wind tunnel.

Air enters the wind tunnel through an agitator screen to induce turbulence (1). Next the air is 

accelerated and made into a flat uniform flow profile through the contraction into the test area 

(2). This makes the velocity uniform across the wind tunnel test area (3). The test area walls are 

made of clear 19.05 mm (0.75 inches) thickness plexi-glass with interior dimensions of 914.4 

mm (36 inches) in length by 457.2 mm (18 inches) in both width and height. Sensors were 

inserted in the side of the wind tunnel through an opening fabricated for these sensors (see 

Fig.6 ). Exiting the test section the system air decelerates and regains static pressure by passing 

through a diffuser (4). Flow then continues through the fan and air is exhausted into the 

atmosphere completing the air's cycle through the wind tunnel. The air velocity o f the wind 

tunnel in the test section can range from 3 m/s to 65 m/s. For these tests, the speed of the wind 

tunnel was varied in 15 increments from its minimum of 3 m/s to a velocity near 22 m/s to 

correspond to stack flow rates. The following provides the theoretical calculations of flow 

velocity for the Accutube and pitot-static tube.
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Theoretical Calculations

Accutube and Pitot-Static Tube. Fluid dynamic assumptions in this wind tunnel analysis include 

incompressible flow, steady flow, and that Bernoulli's equation is valid. Bernoulli's equation 

states the sum of the kinetic and potential energy in a fluid along a streamline is the same at all 

points on that streamline. A streamline is defined as a line that is parallel to the direction of fluid 

flow at a given instant in time. The general form of Bernoulli's equation is by:

(i)

U 2 P—  + gz +  — =  constant,
2 °  p

where Ux is the fluid velocity [m/s] at point x on the streamline, g is the acceleration [m/s ] due 

to gravity (assumed to be 9.81 m/s2), z is the distance [m] of point x with respect to a reference 

plane, Px is the pressure [Pa] at point x, and p is the density [kg/m ] of the fluid at all points 

because of incompressibility. Since Eq. 1 is a constant it can be applied at two locations in a flow 

to determine, the velocity or pressure at one location if the information is known at the other. 

Because the ports of the Accutube are horizontal (i.e., at the same z distance, there is no potential 

energy term, gz). Figure 6  shows a representation of a streamline approaching the Accutube.

Accutube Probe

oL
F igu re  6. Accutube probe and fluid stream line.1211

Applying Bernoulli's equation between points X 1-X2 (note that point X2 is a stagnant point where 

V2 is equal to zero) and X 1-X3 in Figure 6  and designating air as the fluid the pressure at points 2 

and 3 may be represented by:
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where B1 is a constant that can be determined experimentally. Physically, the Bx term is due to 

the wake and shedding effects that occur as the streamline passes over the circular Accutube.[21] 

The differential pressure (AP) [Pa] between the ports o f the Accutube is measured by the 

pressure transducer. Therefore, the AP can be represented as the difference between these 

pressures by:

(4)

a p  =  pX2-pX3 =  ( i  +  b1) £^ .

Allowing B2 =  (1 +  Bi) and solving Eq. (4  in terms o f velocity yields:

(5)

u Xl =

The working fluid will be air thus in Eq. 2-5 p=pair which can be mathematically determined by:

(6)

______ Pstatic
P a i r  “  RTXl ’

where Pstatic *s atmospheric pressure [Pa] (101,325 Pascal's), R  is the specific gas constant [J/kg- 

K] (287.06 J/kg-K), and Txj is the absolute air temperature [K] o f the ambient air. As mentioned 

terms Bx and B2 are unknown and can be measured experimentally, and the velocity across the 

test section of the wind tunnel is theoretically uniform. In order to have a separate measurement 

of velocity allowing the determination of constants Bx and B2, a pitot-static tube was inserted 

upstream of the Accutube into the test section that is connected to a vertical tube manometer. By



combining the known density o f the wind tunnel fluid (pajr), velocity (Uxi) calculated by the 

pitot-static tube together with Bernoulli’s equation, and AP measured by the transducer, the 

constant B2 is given by:

(7)

The following will detail how Uxi was calculated using the pitot-static tube and vertical 

manometer to solve for B2.

Design standards dictate that the tip of a pitot-static tube must be within 15 degrees of the 

direction of the flow. A protractor was used to perform this alignment during validation 

experiments. Again, similar to the Accutube two pressures are sensed by the pitot-static tube at 

its stagnation and static taps. The differential pressure (DP) is the difference in pressure between 

these two columns. Vertical tube manometers (filled with water) were connected to the 

respective pressure outlets of the pitot-static tube. The height o f the water in the column 

increases as the pressure increases. The vertical distance between the height o f the static and 

stagnation water columns was measured using calipers. The measured difference in height, 1, [m] 

between the stagnation and static water columns was converted to pressure by:

(8)

D P  (Pstagnation — P static) PH 20 g h  

where Pstagnation is the stagnation pressure [Pa], P static is the static pressure [Pa], and Ph20 is the 

density [kg/m3] of the water which was the manometer fluid. Further applying Bernoulli's 

equation to a stream line impacting the pitot-static tube the velocity related to the difference in 

stagnation and static pressures can be represented by:
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Xl ~  N

(9) 

|2PH20gl
Pair

Substituting the result o f Eq. 8 into Eq. 7 allows the constant B2 to be determined at different 

wind tunnel settings by combining it together with the DP measurement from the pitot tube.

KURZ. The KURZ is a Constant Temperature Anemometer (CTA). As the exhaust temperature 

changes, the CTA feedback control circuit maintains a constant greater temperature above the 

heated RTD probe and the ambient fluid temperature. [22] The RTD probes are subject to heat 

transfer by forced convection when they are inserted in a moving exhaust. The heat loss due to 

forced convection, El, [W] is given by:

( 10)

H =  hAKURZ(TF-Ti),

where h is the heat transfer coefficient [W/m2-K], Tf is the surface temperature o f the RTD 

element [K], and Akurz is the area of the heated element. The calculation of the heat transfer 

coefficient, h, is generally quantified by experimental data [W/m2-K]. The relationship for the 

forced convection heat transfer coefficient for a cylinder in cross-flow follows the non- 

dimensional correlation of the Nusselt number, NNu:

(11)

Nu =  J(Pr)m(Re)n

( 12)

_  hd]<uRz _  j ^ pCp^ m  ^ p U d KuRZ^ n
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where J is a constant, Pr Prandtl number, Re is the Reynolds number, m and n are coefficients, 

dicuRZ [m] is the sensor diameter, Cp [J/kg-K] is the specific heat o f the fluid, K [W/m-K] is the 

thermal conductivity of the fluid, and n  [kg/m3] is the fluid viscosity. The quantity pU is the 

mass flow rate of the fluid which allows the direct measurement of fluid velocity. KURZ 

assumes the Prandtl number is approximately 0.7 and does not vary much within the temperature 

range expected (i.e., 500 K and above) and so it is dropped from the equations (i.e., see Fig. 7 to 

reference Prandtl number versus Temperature [K] for an ideal gas at atmospheric pressure).[23]

0.76

0.75

x. 0-74
I  0.73 
z; QJ2
If  0.71

0.69

0.63

0.67
500 600 700 8000 too 200 500 400

Temperature [K]

Figure 7. Prandtl num ber versus temperature [K ]/20'

Combining Eqn. 10 and 12, the following result is obtained:

(13)

H = ^ ( £ ^ ) " ( Tp - w
dlO JR Z '  M- '

This relation allows the two-wire current outputs to be readily converted to an output 

proportional to mass flow rate. Note that an independent measurement o f pressure is not 

required. Furthermore, KURZ has determined that several other terms affect the heat loss 

including free convection, radiation, and conduction. KURZ quantifies the total heat loss by all 

these mechanism by expanding equation 13 by:



where N and D are constants that account for free convection, radiation, and conduction to the 

probe support structure. KURZ performs its own sensor calibration in air to ensure its circuitry 

provides accurate measurements of mass flow rate. In conclusion, all of these calculations are 

performed internally by the KURZ and its measurements account for several other terms that 

affect heat loss. Again the sensor does not require independent measurements of pressure.

Results and Discussion

Figure 8Error! Reference source not found, shows the pitot tube velocity versus the Accutube 

onstant B2 for various wind tunnel speed settings. These values were obtained in the center o f the 

wind tunnel's test s avg. B 2 v a lu e  fo r 
3 .07  < U <  3 .14

60

avg . B 2 va lu e  fo r 
4 .2  < U  < 5 .6

- ♦ - 8 2
- * - 8 2  Range 1 
———82 Range 2 
■ » 82 Range 3

-Pitot Tube Velocity [m/sl

60
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avg . B 2 va lu e  fo r 

6.7 < U <  19. 30 £

F igu re  8. Pitot-static tube velocity and Accutube constant.

There are several values of B2 present in the data. This was expected because in the ordering of 

this sensor the salesmen indicated the expected velocity range dictated the constant programmed 

into the Accutube sensor. The velocity ranges for different B2 values are indicated in Fig. 8 . The 

maximum percent error in these ranges compared to the data are 1%, 3%, and 5% for increasing 

velocity ranges. Note that the flow velocity in the stacks is expected to be less than 16 m/s.
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Further the KURZ thermal anemometer was also inserted in the wind tunnel for the same wind 

tunnel speed settings. Figure 9 shows the velocity results for the Accutube and KURZ against the 

velocity o f the pitot tube again at the center o f the wind tunnel's test section.

>  10

'Kurz V elocity [m/s] 

Accutube V elocity [m/s]

0 10 15 20 25
Velocity [m/s]

Figure 9. Velocity m easurem ents between flow sensors.

Differences between the Accutube and other flow sensors are due in part to the averaging effect 

of the B value (three ranges in Fig. 8 using Eqn. 9 and 7). For the KURZ, its differences with the 

pitot tube and Accutube are due to the Prandtl number assumption, and calibration constant 

errors (i.e., assumptions of Eq. 14). Again, the pitot tube does not have such assumptions but its 

sensors cannot withstand the temperatures in the process. The resulting average, maximum, and 

minimum percent difference between the KURZ and Pitot tube are 7% (i.e., at 13 m/s), 15% (i.e., 

at 13 m/s), and 1% (i.e., at 5 m/s) respectively. The average percent difference between Accutube 

and KURZ velocity measurements made in the wind tunnel is 9% with the largest difference 

being 17%. Based on the wind tunnel tests performed, the accuracy of the two sensors used was 

deemed to be acceptable

In addition to measurements taken at the center of the wind tunnel's test section, the pitot tube, 

KURZ, and Accutube were traversed across the wind tunnel. There were no changes in the
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output of the transducer. Thus, as expected a uniform flow fluid was obtained across the wind 

tunnel’s test section. This was confirmed at various wind tunnel speed settings.

Experimental Setup and Procedure

Hitchiner's ACF building has a flat rubber roof covered in smooth rocks. The exhaust stacks and 

their flow are perpendicular to the roofline, and the stacks have a wall thickness of 1 .6  mm (0.62 

inches). A 31.75 mm (1.25 inches) hole was drilled on the side o f a stack to allow sensors to be 

inserted and aligned perpendicular to the direction of the flow. The sensor was inserted at a 

height of approximately 1.4 m (4.6 feet) above the roof-line. It was estimated this height is 

approximately where heat recovery equipment would be positioned. Only one sensor was 

inserted in a stack at a time. A tape measure with an accuracy of 0.8 mm was used to position the 

transducer in the center o f the stack. This ensured it measured the centerline velocity.

Accutube Set-up

Figure 10 shows the 12.70 mm (0.5 inches) diameter Stainless Steel (SS) piping, 12 Volt direct 

current (DC) power supply, Accutube sensor, NI DAQ, and Hart Interface Module (HIM) for the 

Accutube experimental setup.
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0  12.70 mm SS Piping

12 V DC Power Supply

NI DAQ Board

Hart Interface Module

Figure 10. Experimental setup for the DP transducer.

The 12 V DC power supply is required for both the sensor and HIM. The sensor receives the 

pressure via two 12.70 mm (0.5 inches) diameter SS pipes, and a 100 ohm RTD is also 

connected to the sensor. The sensor outputs are sent to the HIM, which in turn outputs three 4-20 

mA signals proportional to RTD temperature, differential pressure, and static pressure. The wires 

carrying the three output signals are connected to a NI DAQ board model number 6341. The NI 

DAQ board is used to log the data on a laptop using LabView. The electronic equipment shown 

in Figure 10 needed to be protected in order for tests to occur over the period of 24 hours, 7 days 

a week outdoors on the roof of the building. Figure 11A shows the view of the Accutube and 

RTD inserted in the stack, through 25.4 mm (1 inch) and 6.35 mm (0.25 inches) diameter shaft 

collars respectively, and the 12.70 mm diameter SS piping. Figure 12B shows the overall view of 

the tripods used to support the SS tubing and a 3.05 m (10 feet) square canopy used to protect the 

Accutube electronics.
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0  6.35 mm SS shaft collar

Accutube Hardware

0  25.4 mm SS shaft collar

0  12.70 mm SS Piping

Metal Enclosure

Canopy

Accutube Hardware

LaptopExhaust Stack

(B) (C)
Figure 11. (A) Accutube, (B) outside, and (C) and inside canopy.

The shaft collar was used to firmly fasten the Accutube and RTD sensors at the correct distance 

into the stack. The tripod allowed the alignment of the Accutube to be adjusted such that it was 

perpendicular to the direction of exhaust flow. Bubble levels and squares were used in this 

alignment process with an accuracy of 0.79 mm (0.03 inches). Figure 11C shows the metal
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enclosure that contains and protects the electronics shown in Figure 10. The laptop in Figure 11C 

was used to store the data acquired with the NI DAQ board. A tripod with a desk was used to 

support the metal enclosure and laptop.

KURZ Set-up

The KURZ requires significantly less components than the Accutube to perform its 

measurements. Figure 12 shows inside the enclosure used to protect the KURZ interface from 

the elements.

Power Cord Weather Enclosure

KURZ Interface

Figure 12. KURZ weather enclosure.

In addition to the larger enclosure the electronic interface was put into a plastic Tupperware 

container for additional protection. The container top locked close and holes were drilled on its 

side to allow the power and signal cords to attach to the interface. Figure 13 shows the KURZ 

thermal anemometer supported by a tripod and inserted into a stack via the same 25.4 mm (1 

inch) diameter shaft collar used for the Accutube sensor.
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Figure 13. Experimental setup for KURZ.

As with the Accutube, the shaft collar was used to firmly position the KURZ transducer at the 

center of the stack. Again, the tripod allowed the alignment o f the KURZ to be adjusted such that 

it was perpendicular to the direction of exhaust flow.

Natural Gas Flow Meter

In order to have an accurate measurement of the energy used in the process, natural gas (NG) 

flow-meters were installed on the G-oven and J-oven. Figure 14. installed NG transducer, shows the 

NG flow meter installed via a flange connection to the NG pipeline of the G-oven at ACF. A 

similar installation was made on the J-oven.
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F igure 14. Installed NG transducer.

The NG flow meter measures the volume flow rate [m /hr] of NG into the process. The sensor 

was positioned before the pipes split to each burner. Data was recorded every minute, and 43,200 

samples were stored on the data logger until downloaded to a laptop. Once the data logger was 

filled, no more data was stored or the oldest data was overwritten.
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CHAPTER III

III. EQUATIONS AND DATA ANALYSIS

The term "waste heat", E, [W] simply put refers to the waste in the form of a temperature 

difference between the exhaust gasses and the ambient air that the exhaust stack emits it is 

calculated by:

(15)

E = p Q ( h ( T ex) - h ( T air)), 

where h(Tex) is the enthalpy [J/kg] of the fluid in the stack at atmospheric pressure and its 

temperature, and h(Tair) is the enthalpy [J/kg] of ambient air at atmospheric pressure and its 

temperature. Based on the measurements of the density and pressure, reference tables for air at 

standard pressure were used to determine the enthalpy.[24] Furthermore since the goal o f the 

study is to quantify the amount o f waste heat that is exhausted annually, the ambient temperature 

will not be measured directly during experimentation. Rather a reference quantity of 294.15 K 

(21 C) was used for all calculations presented as standard conditions because this was the 

procedure done by a previous study performed at Hitchiner similarly the flow rate quantity was 

measured at standard conditions o f 293 K and 101.3 kPa.[IO’15]
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Furthermore, combustion analysis was performed to determine the exhaust gas density. Carbon 

and hydrogen makeup NG's primary component, methane (CH4). When combustion occurs with 

oxygen (O2) in the air, carbon dioxide (CO2) and water (H2O) are the principle chemical products 

formed. In the stoichiometric (i.e., balanced) reaction, each molecule of methane reacts with two 

molecules of O2 producing one molecule o f CO2 and two molecules of H2O. When this occurs, 

energy is released as heat as shown by:

( 16)

CH4 + 2 0 2 = >  C02 + 2H20  

Reactants => Products + Heat 

In the actual combustion process other elements are involved such as Nitrogen (N2). The 

components in the exhaust have an effect on its density. An industrial handbook was referenced 

which listed the exhaust gas composition: for nitrogen N2,combustion, water vapor FhO com bustion, and 

carbon dioxide CO2,combustion as 7.94, 2 .1 0 , and 1.16 cubic meters of air per cubic meters of 

methane (NG) combusted respectively.[22] Furthermore, to ensure complete combustion of all 

the NG, an additional stream of air is injected into the burner combustion area. The composition 

of air is known to be 78.03 vol. % Nitrogen, N2t%air, and 20.99 vol. % Oxygen, 0 2 ,%air- p5] This 

"excess air" adds to the total volume of the exhaust gas by adding more oxygen and nitrogen. 

Excess air can be defined as the percent air above the amount theoretically needed for complete 

combustion. In real-world combustion applications, the percentage of excess air, EA, required 

for gaseous fuels is typically about 15%.[26] The Bacharach combustion analyzers measurement 

of the percent oxygen O2,Bacharach in the exhaust can be used to calculate the excess air, EA, in the 

exhaust:
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(17)

EA =  CW '» ™ c h  x 100
0 2 ,% air ^ .B a c h a r a c h

Further because air consists of N2 and O2 their corresponding excess quantities, N 2, e a  and C>2,e a  

were calculated knowing the percent excess air through:

• , ______ __ . .  EA
™2,EA — ^  2,co m b u s tio n  Y oo’

(18)

(19)

0-> RA — N-;
0 2,% air

, 2,EA — 1’ 2,EA Ti •
2 ,% air

The stack density at standard conditions p s ta c k ,s ta n d a rd  is calculated by:

(20)

  P a ir .s ta n d a rd * M W stack
P s ta c k ,s ta n d a rd  — M W a jr  ’

where MWstack is the molecular weight o f the gas in the stack, MWair is the molecular weight of 

air, and p a ir ,s ta n d a rd  is the density of air at standard conditions. Again an industrial handbook 

was referenced which listed molecular weights for nitrogen MWNz, water MWH2q, oxygen 

MWo2, carbon dioxide MWC02, and air M W ajr as 28, 18.01, 32, 44.01, and 28.97 respectively. 

The molecular weight of the exhaust gas was equivalent to the sum of the weights o f the 

components contained in the exhaust multiplied by their percent by volume. The percent by 

volume of each component varied depending on the amount of excess air calculated by Eqs. 17- 

2 0  by:

(21)

w , , .  [Yhl2 c o m b u s tio n  T N2 EA »*tAt \  , / ^ 2,EA i . , , . ,  \  , 7 ^ 2^  c o m b u s tio n  \
MWstack =  H ------------- — --------------* MWNzJ +  \ ^ ~  * MW02 J  +  -------- — --------- * MWH2oJ

^ C 0 2 iCOnib u s tio n+ * M W Co 2 ) ] ,
TV
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where TV is the total volume in the stack [cubic meters o f gas per cubic meters of NG] exhaust 

given by:

(22)

TV =  ( N 2jCOm bustion ^ 2 , E a )  4" (H 2 O com bUStio n ) T  ( ® 2  ,E a )  T (C O 2,com bustion)-

According to our industrial contact at Hitchiner, the boiler operates continuously throughout the 

year (i.e., 8,766 hours), and both the G-oven and J-oven operate for 51 weeks a year, 4 days a 

week, or 4,896 hours annually. The ovens do not operate continuously because there are weeks 

with holidays and scheduled down times associated with maintenance.

Natural Gas Flow Meter

Based on the volume flow rate o f NG measured, the average fuel consumption and firing rate 

were determined. The annual fuel consumption, FC [KWh/year] was determined by:

(23)

FC =  ^ r * 0 ,
EC

where the energy content of NG, EC [m3/KWh] is 0.0966 m3/KWh, and Qng [m3/hr] is the 

volume flow rate of NG, and O [hours/year] is the annual hours of operation. Thus, the firing rate 

FR, is calculated by:

(24)

P R  _  Q n g / e c  
T ’

where T [KW] is the maximum heat input rating of the burners listed as listed in the manual (i.e., 

3.75 MW for the G - o v e n ) . F i g u r e  15 shows the calculated firing rate of the G-oven over a one 

week period.
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Figure 15. G-oven firing rate.

By averaging the calculated firing rate values over the period of data collection it was 

determined to be 48%. Therefore the average heat input into the oven was 48% of the total heat 

input rating of the burners 1.8 MW, which equates to 8,813 MWh/year of energy annually used 

by the G-oven.

Density Calculation and Pressure Measurement 

Error! Reference source not found.4 shows the standard exhaust density from each stack based 

n the volume percentage of each element calculated from the Bacharach combustion analyzer.

T able 4. Exhaust densities and excess air.

Stack
Density,

Pstack
[kg/m3]

%
Difference 
compare to

Pair,

Excess Air, 
EA %

G-Afterbumer 1.18 1.31 350
G-Zone 2 1.19 0.77 1,040
G-Zone 3 1.19 0.57 2,675

J-Afterburner 1.18 0.94 688
J-Zone 2 1.19 0.76 1,100
J-Zone 3 1.19 0.77 1,040
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The exhaust gas density does not vary more than 1.31% from the density of air at standard
•5

conditions of 1.20 kg/m . Note that the excess air measured is considerably more than the 

industry standard of 15%.[261 One likely cause of this is that draft inducers blow air into the G- 

oven and J-oven afterburner stacks to cause any smoke in the oven to be pulled through the 

afterburner stack. Also with all the stacks there is a large gap between the stacks connected to 

the oven and the fume hood which exhausts through the roof as shown in Figure 16. Finally by 

design car bottom ovens have no bottom to prevent air from leaking into the oven. It is 

speculated based on these factors significant excess air is introduced into the exhaust flow which 

leads to the density of the exhaust being close to air and the corresponding considerable excess 

air measurements. Attempts were made to substantiate this however by taking density 

measurements in the large gap shown in Fig. 16 however the Bacharach transducer could not 

operate at the temperature in excess of 538 C (i.e., 1000 F).

F igure  16. Natural convection stacks and their fume hoods.

The pressure measured in the G-oven and J-oven afterburner stacks are both 101,249 Pa. The

accuracy of the measured values is +/-0.1% which is +/-101 Pa. Thus, within the accuracy range

of the sensor it is possible that atmospheric pressure (i.e., latm=101,325 Pa) is being measured

in the stacks. Discussion with the designers/builders of the ovens, ETTER Engineering, indicated
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the natural convection stacks are at atmospheric pressure, and the afterburner stacks are at a 

slight vacuum because o f the air inductors.[28J Note the KURZ is a thermal mass flow meter that 

assumes the density of air in its volume flow rate calculation, and based on these measurements 

uncertainty in measurement caused from density and pressure variation from air at atmospheric 

pressure was deemed small enough to ignore.

Volume Flow Rate Calculation

The velocity of the exhaust fluid was measured in each exhaust stack using the KURZ. The 

KURZ instrument was detailed in Chapter II. For analysis exhaust stacks may be conceptualized 

as a control volume. Control volumes defined with a volume V are the space through which the 

exhaust fluid travels. Thus the flow rate is described as the amount of fluid which passes its 

control surfaces. Figure 17 shows a schematic:

F igure  17. Control volume o f  a pipe.

The three dimensional velocity field at a point in the exhaust stack control volume in cylindrical 

coordinates is described by:

(25)

U =  U(x, r, 9 ) =  uex +  ver +  we e , 

where x, r, and 0 are unit vectors in each of the component directions x, r, and 0 respectively and 

u, v, and w are the corresponding scalar velocity magnitudes.
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Another relation which can be used to describe the flow is the conservation of mass equation. 

Thus, the rate at which mass accumulates within the control volume plus the net flow of mass 

m [kg/s] that physically crosses any of its control surfaces will be zero:

(26)

/> dV +  # cs 0 U ■ AdA =  0,

for steady flows, where n is the outward normal from a control surface of area A [m2]:

(27)

and

(28)

m =  J/A p UdA,

through each plane perpendicular to the stack axis, so that:

thjn thout- (29)

Constant density flows across control surfaces is described in terms of the volume flow rate by:

(30)

Q =  / / A UdA =  / 02" / 0r‘ U (r,8 )rd rd e,

where equation 29 is applied to circular exhaust stacks, x is the axial position, and ri is the 

exhaust stack radius (see Fig. 19). Using the average velocity U [m/s] the volume flow rate is 

given by:

(31)

D =  Xi'iAUdA’

(32)

q  =  Da .
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Expanding on identifying the average velocity and flow rate through the control volume an 

additional classification is whether the flow is either turbulent or laminar. In general turbulent 

flow is characterized by variation in velocities among other properties as compared to the more 

orderly laminar flows. Flows are characterized by the dimensionless parameter called the 

Reynolds number Re by:

numbers of the respective stacks. The Reynolds numbers calculated for each stack indicate 

turbulent flows. Additionally the flow magnitudes statistical variation known as its turbulence 

intensity T.I. is given by:

where N is the total number of points in the data set, Uj is the instantaneous velocity [m/s], and U 

is the average velocity of the data set [m/s]. Table 5 shows the calculated turbulence intensities 

for each stack. Note a total of 21 velocity measurements made over 40 minutes where used to 

calculate the turbulence intensity in each instance. Flow profile warping may occur when 

measurements are taken at a location where the ratio of length over diameter (i.e., L/D) of 

straight pipe is small. Note direct distance measurements were not taken due to the logistics of 

taking them over the equipment and approximations are shown in Table 5. Regarding standards, 

“Velocity traverses at any cross-sectional location some 20-40 pipe diameters downstream of any 

pipe fitting in a long section of straight pipe are preferred”.[29] It is noted that the L/D ratios of 

the measurement locations were not within this preferred range. Additionally, the entrance

(33)

In pipes the flow is laminar when Re < 2000.[29] Table 5 shows the average velocities and Re
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length, Le [m], defined as the distance downstream from the entrance to the location at which the 

boundary layers have grown together and the flow is considered fully developed is given by:

(35)

Le =  4.4RC1/ 6

Table 5 shows the entrance length values for all the stacks again these values being greater than 

the L/D values indicate that measurements were taken in the entrance length of a developing 

flow profile.

T ab le  5. Average velocities and Reynolds numbers per stack.

Source U [m/s] Re T.I. L/D Le [m]
G Afterburner 5.78 201,646 0.06 1 0 34
J Afterburner 5.73 140,413 0.06 1 2 .8 6 32

G Zone 2 3.88 216,977 0.07 5.63 34
G Zone 3 1.78 99,841 0.06 5.63 30
J Zone 2 3.24 90,597 0 .0 2 11.25 29
J Zone 3 2.43 67,956 0.04 11.25 28

Boiler 2.96 113,811 0.05 10.91 31

The G-oven afterburner stack was traversed using the KURZ because of its potential with waste 

heat recovery equipment (waste heat recovery equipment covered in Chapter IV). The circular 

exhaust duct was divided along its circumference into equal area concentric rings. The stack was 

accessed by ports 1, 2, 3, and 4 each spaced 90 degrees from one another in a cross-section of the 

duct perpendicular to the flow (such that 1 is 180 degrees from 3 and 2 180 degrees from 4). This 

allowed for 4 measurements to be made in each strip (i.e., ID1-ID5) for a combined total o f 20 

velocity measurements shown in Table 6 .
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Table 6. G-oven afterburner velocity traverse data.

IDn Insertion 
Depth (mm)

Velocity [m/s]

Average Velocity [m/s]Port 1 Port 2 Port 3 Port 4
ID1 11.94 5.32 5.34 5.38 5.40 5.36
ID2 38.10 5.50 5.63 5.52 5.53 5.54
ID3 67.82 5.57 5.63 5.50 5.71 5.60
ID4 105.16 5.56 5.67 5.54 5.69 5.61
ID5 177.55 5.65 5.73 5.60 5.79 5.69

The difference between the average velocity of ID2 and ID5 is only 3%. The strip with the 

greatest average velocity is the one closest to the center of the stack (i.e., ID5). Note considerable 

variation in velocity measurements within a strip were observed with a maximum percent 

difference of measurements within strip ID1 thru ID5 of 1%, 2%, 4%, 3%, and 3% respectively. 

The closeness of the results was deemed acceptable. The average velocities calculated for 

individual strips (i.e., ID1-ID5) were graphed in Figure 18.
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F igure 18. Flow profile in G-oven afterburner stack.

A polynomial trend-line with an exponent of 2 (i.e., a potential fully developed parabola only the 

equation is displayed on Fig. 18) was fit to the data. Reasons the R-squared value is low may be 

attributed to the flow which was not fully developed (low Le value and corresponding low L/D 

value) and the turbulent nature of the flow. The equation was applied to calculate the average 

velocity of the flow profile. Note experimental measurements were made in the center o f the
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exhaust stack and to determine an average velocity at that location the ratio o f the average and 

maximum velocity values corresponding to the trend-line (i.e., 5.70 m/s and 5.58 m/s 

respectively) were used to determine the average value corresponding to the average centerline 

measurement experimentally attained (i.e., 5.78 m/s) . It was determined to be 5.66 m/s or 

equivalently 55.72 SCMM. Thus the average velocity is 2% different from the max center-line 

velocity. Note there is error in the trend-lines flow profile estimate due to the R-squared number 

being less than 1 .

Calculated Waste Heat

Once the atmospheric pressure was measured using the Accutube sensor, no further data was 

collected due to the difficulties operating this sensor on the roof. The KURZ sensor assumes was 

positioned in the centerline o f the exhaust stack to take measurements. Appendix section III can 

be referenced to view the raw data that was collected by the KURZ (i.e., volume flow rate 

[SCMM] and temperature [K], and the calculated waste heat [KW] over the week of 

experimental data collection).

Note in order to determine if the opening and closing of oven doors would have an effect on the 

waste heat emitted the data was analyzed. The data sampling rate was generally 1 sample per 100 

seconds. At that sampling rate there are no obvious peaks in the data that could be correlated to 

the opening and closing of the door despite the fact that the opening and closing the door takes 

approximately 20 seconds. The appendix shows the raw data as it was collected over the week.
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Boiler Calculated Waste Heat. Two boilers at ACF operate continuously to provide the steam 

requirements of the facility (Note they are programed such that they take turns as primary steam 

providers in a routine known as lead-lag) to generate 1,435 kg/hour of steam at 721.6 kPa. [30̂ 

Steam input from the boilers is required in order to control the humidity o f the shell building 

room. Concerning the waste heat generated by this process, each boiler has its own stack that is 

outfitted with an economizer to reclaim waste heat exhaust which is used to preheat the steam 

line. The waste heat from one boiler stack is shown in Fig. 19Error! Reference source not 

ound. (Note measurements were taken above the existing economizer and with only one sensor 

waste heat from the other boiler was not measured).
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Figure 19. Daily average waste heat exhausted from boiler.

Based on the calculated waste heat from one boiler stack shown in Fig. 19 it is believed that 

Tuesday and Wednesday the other boiler was primarily leading while Thursday through Sunday 

and Monday this boiler was primarily leading. The waste heat from both boilers would be the 

sum of the leading and lagging components. Note that no observations were made to substantiate 

that the boiler was either leading or lagging during a specific day. Table 7 shows the average 

temperature, waste heat, and volume flow rate that were emitted from the stack over the 7 days 

of monitoring.
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Table 7. Boiler exhaust average temperature, waste heat, and flow rate.

Temperature, T [K] Waste Heat, E [KW] Flow Rate, Q 
[SCMM]

354 53 36

G-oven Calculated Waste Heat. Again, the G-oven prepares the ceramic casting shells to receive 

molten metal. Waste heat was measured from the afterburner zone, zone 2, and zone 3 stacks of 

the oven. The total heating capacity o f the oven is 3.75 MW (i.e., oven burners 3.43 MW + 

afterburners 0.32 MW) note from determining the firing rate was 48% the oven thus operates at 

1.8 MW. [27] Figure 20 shows the average waste heat emitted from the G-oven considering all 

stacks and Table 8  shows the corresponding average temperature, waste heat, and flow rate per 

stack.
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Figure 20. Daily average waste heat exhausted from G-oven. 

Table 8. G-oven exhaust average temperature, waste heat, and flow rate.

Temperature, T 
[K]

Waste Heat, E 
[KW]

Flow Rate, Q 
[SCMM]

afterburner 744.11 576.16-516.58* 56.95-55.72*
zone 2 447.44 375.55 100.73
zone 3 310.26 18.20 45.70

*Note 55.72 SCMM estimated average from  traverse.
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Considering the average firing rate of the oven the waste heat emitted through the exhaust 

accounts for approximately 50% of the total heat input other sources for heat loss are detailed in 

Fig. 1. The afterburner stack is at the front o f the oven (where product enters). Stacks from zones 

2 and 3 are approximately evenly spaced along the length of the oven. Insulation has been 

inserted in the stack of zone 3 by Hitchiner to retain more heat in the oven. Correspondingly, the 

exhaust temperature of Zone 3 is significantly lower than the exhaust temperature of zone 2. 

Lastly, on Wednesday the oven burners were shut down for one shift because there was no 

available product. Normally there are no shutdowns over the period between Monday-Thursday. 

Therefore the average casting temperature, waste heat, and flow rate excluded the data from 

Wednesday.

J-oven Waste Heat. Again, the J-oven has the same function as the G-oven. Figure 21 shows the 

average waste heat emitted from the J-oven. The total heating capacity of the oven is 1.58 MW 

(oven burners 1.23 MW + afterburners 0.35 MW) the firing rate was measured from this oven 

because no natural gas sensors were installed (i.e., G-oven had a 48% firing rate).[31] Waste heat 

was measured from the afterburner zone, zone 2, and zone 3 stacks. Figure 21 shows the oven 

operated 24 hours, 4 days a week, Monday through Thursday. Table 9 shows the corresponding 

average temperature, waste heat, and flow rate during the days of casting (Monday-Thursday).
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F igure 21. Daily average waste heat exhausted from J-oven. 

T able 9. J-oven exhaust average tem perature, w aste heat, and flow rate.

Temperature, T 
[K]

Waste Heat, E 
[KW]

Flow Rate, Q 
[SCMM]

afterburner 572.71 193.19 28.30
zone 2 427.44 68.18 20.69
zone 3 414.06 46.01 15.43

Unlike the G-oven, the data from zones 2 and 3 are comparable due to the closeness o f the two 

stacks (see Fig. 3). In addition, unlike zone 3 o f the G-oven no insulation has been inserted in the 

stack. Again as stated earlier the firing rate was not measured so comparisons o f heat input to 

waste heat emitted could not be made.
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CHAPTER IV

IV. EVALUATION OF WASTE HEAT RECOVERY OPTIONS

Waste heat recovery is the process of reusing the waste heat in the production process or 

alternatively converting a portion of it to electricity. By reusing the heat in the process, it will 

effectively reduce the required fuel input. Alternatively by converting a portion of it into 

electricity, the waste heat can supplement the electrical demand o f a facility. During the period 

of this analysis in 2011-2012, the delivered electricity and natural gas costs at Hitchiner’s ACF 

facility are approximately $120/MWh and $27/MWh respectively. [32] The results o f the 

economic and feasibility analysis of different waste heat recovery options are explained in this 

chapter.

Waste Heat Recovery Considerations

Using the measured data, companies that offer waste heat recovery technologies were 

approached considering the sources of waste heat available in this study. If an option could be 

used to recover waste heat, the corresponding project cost, return on investment (ROI), and 

carbon reduction were among the general parameters that were calculated for comparison. The
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ROI estimates the time in years required for the energy savings o f an option to equal the total 

cost of the option. The ROI [year] can be calculated by:

(36)

TC -  I AC 

R0! ”  C * S  ~  RV

where TC [USD] is the total cost of the system (i.e., installation and equipment cost), I [USD] is 

the incentive amount, C [USD/MWh] is the cost o f energy, S [MWh/yr] is the estimated annual 

energy savings, AC [USD] is the actual cost of the option (i.e., the total cost minus the incentive 

amount), and RV [USD] is revenue from the annual energy savings (i.e., the price of the energy 

multiplied by the annual energy saved by the option). The incentive (I) is offered by a utility 

company or government agency for an energy reduction project only for one year. The incentive 

amount is determined by multiplying the utilities determined incentive rate, IR, [USD/MWh] by 

the estimated annual energy savings of the respective heat recovery option:

(37)

I =  IR * S.

Incentive programs offered by the State and Federal government and utility companies were 

thoroughly researched in order to determine the actual cost of implementing a heat recovery 

option. It was found that renewable energy certificates (REC) are not awarded because waste 

heat recovery technologies derive their energy from non-renewable technologies. However the 

money from REC funds a State program through the Regional Greenhouse Gas Initiative (RGGI) 

called NH Pays 4 Performance, which is in a trial period.[33] The guidelines for the program are 

not expected to be defined or in operation until the second quarter of 2 0 1 2 .^  Additionally, 

Hitchiner's account manager at PSNH, their electricity provider, couldn’t derive any incentives 

on the selected waste heat recovery technologies.[34] Lastly National Grid, Hitchiner’s Natural
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Gas provider, was contacted. Through National Grid's evaluation of the preheat air to 

combustion burners option, they determined they could award $68.26/MWh o f incentives over 

the first year the recovery option was implemented.[35] The incentive amount is factored into all 

the ROIs listed in the proceeding sections.

Several waste heat recovery options were identified and evaluated (listed from the smallest to 

largest ROI): preheat air to combustion burners, steam generator, organic Rankine cycle, space 

heating, economizer, thermo-electrics, and combined heat and power. Due to the lower 

temperature only the economizer was considered for the boiler.

Recovery Options 

Waste Heat Recovery Steam Boiler

The waste heat recovery steam generator (WHRSG) option reduces the steam requirements of 

the boiler. Fig. 22 shows a schematic o f the WHRSG where water is pumped into a helical coil 

heat exchanger installed in-line an exhaust stack then using this heated flow a mechanical 

separating valve would then direct generated steam to the boiler. Thus, the NG used to create 

steam by the boilers is decreased.
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How Steam  Is Produced In A Clayton Heat Recovery Boiler
High Quality 
Steam to 
Header

Clayton 
Feed water 

Pump

Helical Coil 
Heat Exchanger Mechanical

Separator

Figure 22. Helical coil W HRSG illustration.[361

When NE Thermal the exhaust company evaluated the experimental results o f this study they 

indicated installing this on the G-oven afterburner stack would yield the lowest ROI of the set. 

The corresponding steam produced by the WHRSG, G w hrsg [kg/hr], will be between 5 4 3 -5 4 2  

kg/hr at 6 2 0 .5 2  kPa based on the temperatures and flow rates measured in the G-oven afterburner 

stack/ 371 Table 10 shows the boiler steam generated and corresponding fuel consumed at 

different loads and corresponding efficiencies as determined from the boilers manual (efficiency 

refers to the fuel to steam efficiency of a boiler which is described by: combustion efficiency 

equals the total heat released in combustion, minus the heat lost in the stack gases, divided by the 

total heat released and fuel to steam efficiency is a measure o f the energy converted to steam and 

is equal to the combustion efficiency minus the percent heat losses through radiation and 

convection) / 301

Table 10. Boiler specifications.t30]

Steam Generated (100%  Load), Gioo%iikg/hr] 3 ,1 3 0
Steam Generated (46%  Load), G 46%l [kg/hr] 1,435

Fuel Consumed (100%  Load, 85%  EFF), FCioo%l,85%eff [K W h] 2 ,3 0 8
Fuel Consumed (50%Load, 8 6 % EFF), FCso%l,86%eff [K W h] 1,140

Fuel Consumed (46%  Load, Prorated EFF), FC 46%lpr%eff [K W h] 1,046

*Note all steam is generated by the boiler at 620.5 kPa.
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The fuel consumed at 50% Load and the corresponding 8 6 % efficiency, Q 5o % l,86% e f f ,  was 

calculated by scaling the 100% FC quantity at 85% efficiency by:

(38)

_ 85
F C 5 0 o/0l ,8 6 % E F F  — g g  *  F C 1 0 0 o/0l i8 5 o/0e f F *

The fuel consumed at 46% load and a prorated efficiency based on the efficiency of other heat 

inputs near its loading, F C 46% l p r % e f f  was calculated by

(39)

_  8 5
FC46o/oLpRo/oEFF — * P ^ 1 0 0 % L ,8 5 % E F F  *  G 4 6 o/oL / G 10 oo/ 0l -

No measurements were made to substantiate the assumed steam flow rate or that the boilers 

operated at 46% load both were derived from the steam flow diagrams observed.t30] The boilers 

annual NG use without the supplementary steam from the steam generator, FC w h r s g , was 

calculated by:

(40)

^ B o i l e r  =  F C 4 6 o/oLPR o/oE f f  *  ^ B o i le r*  

where 0 BoUer is the hours o f operation o f the boiler. The resulting annual NG use reduction of the 

WHRSG, S w h r s g ,  is calculated by:

(41)

G w h r s g
Sw H R SG  =  ( F C 4 6 o/oLp Ro/oEPF *  ^ G - o v e n )  * ■'J100%L

Note the operating hours of the G-oven are used because this system only generates steam while 

the G-oven is in operation. Table 11 shows the economic evaluation of the WHRSG option.
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Table 11. Economic analysis G-oven afterburner WHRSG option.
Boiler

Cost of System, T C w h r s g  i:i7j $270,545
Incentive, I w h r s g $132,242

Actual System Cost, A C w h r s g

$138,303-
$138,495

Annual NG Use of the boiler (w/out WHRSG),FC Boiler [MWh/year] 9,168
Annual NG Use Reduction of the boiler(w/ WHRSG), S w h r s g  [MWh/year] 1,937-1,934

Yearly Savings from NG Reduction (w/WHRSG), RVw h r s g  [USD/year]
$52,831-
$52,754

ROI w h r s g  [years] 2.62-2.63

Preheat Air to Combustion Burners

The preheat air to combustion burners heat recovery option preheats the intake air o f the NG 

burners using a plate heat exchanger (HX) shown schematically in Figure 23. Therefore the NG 

required to produce the flame temperature is decreased. Note this option was only considered on 

the G and J-oven afterburner stacks because they had the largest magnitude of waste heat emitted 

of the stacks measured in the study.

stack HX.

intake air HX

Tin take air

Figure 23. Plate heat exchanger.[3S]

The intake air temperature, T jntake air [K], was assumed to be 294 K (i.e., 21 C). Furthermore the 

exit temperature of both the stack, T stack h x  [K], and intake air, T jntake air h x  [K], out o f the HX and 

the heat transfer rate, Z preheat [KW], are unknown. These quantities can be determined from:
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(42)

^preheat — U A
(T  ^stack H x )  d" ( i n t a k e  air HX ^intake a ir)

^preheat — [^stack^-pC^stackHX ^intake a ir )]

(43)

(44)

^preheat — [rils tackCp (Tjntake air HX - T ) ]

■j
where U is the overall heat transfer coefficient, A [m ] is the HX surface area, rh [kg/s] is the 

mass flow rate of the fluid in the stack, and cp [J/kg-K] is the specific heat o f the fluid in the 

stack. The values T stack h x , Tjntake air h x , and Z  preheat for a HX by Thermal Products are 713 K, 528 

K, and 262-260 KW respectively for the G-oven data considering the flow traverse. Using this 

information the annual NG savings, S preheat [MWh/yr], can be calculated by:

(45)

S p r e h e a t  — 0  *  Z p r e h e a t -

Again O is the annual hours of operation of the respective oven. Table 12 provides data o f the 

economic analysis for the preheat air recovery option.

Table 12. Economic analysis G and J oven preheat air.

G-oven J-oven
Cost of System, TC Dreheat l3!MoJ $ 182,600 $ 149,250

Incentive, I preheat

$87,561 -  
$86,892

$37,364

Actual System Cost, AC preheat

$95,039 - 
$95,708

$ 111,886

Annual NG Use (w/out HX), FC preheat [MWh/year] 8,772 3,772

Annual NG Use Reduction (w/ HX), S Dreheat [MWh/year] 1,283 - 1,273 547

Yearly Savings from NG Reduction (w/ HX), RV preheat

[USD/year]
34,634 - 
34,370

14,779

ROI preheat [yearsl 2.74 -2.78 7.57
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The NG flow-meter data recorders were not installed on the J-oven at Hitchiner. However it was 

known that the heat input into the J-oven is 43% o f the G-oven. [2?1311 Therefore Rpreheat, S preheat, 

andFC preheat terms were scaled accordingly in Table 12.

Organic Rankine Cycle

The Organic Rankine Cycle (ORC) option converts waste heat captured by the organic fluid 

r245a into electricity by its expansion across an integrated power module generator as shown in 

Figure 24. This option would supplement the electricity purchased lowering the annual 

electricity usage.

imcimMi +emtt MocMe. 
Gw«« 12SSW

..tttf Restore

Figure 24. Illustration o f  the ORC thermodynamic c y c le .[41]

The annual electricity use reduction that installing the ORC in the G-oven afterburner stack 

would lead to S o r c  is:

(46)

S o r c  =  Z 0RC * O c - o v e n s  

where Z o r c  is 1 1 0  K W .[42] Note the actual cost, A C o r c , is a budgetary estimate that includes 

installation.[42] For this system no applicable financial incentives could be found. Although less 

energy was captured than the preheated air to the combustion burners and WHRSG option the 

yearly savings, R V o r c , of the ORC is greater and this can be attributed to the higher cost of 

electricity with respect to natural gas. Table 13 shows the economic evaluation of the Calnetix 

ORC.
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Table 13. Economic analysis G-oven afterburner ORC option.

G-oven
Cost o f System, TCorc l42J $350,000
Incentive($0/MWh), I orc $0 .0 0

Actual System Cost, ACorc $350,000
Annual Electricity Use Reduction, Sorc [MWh/year] 539

Yearly Savings from Electricity Reduction (w/ORC), RVorc [USD/year] 64,627
ROIorc [years] 5.4

building Heat

The building heat option uses a plate HX similar to the one shown in Figure 23 except the intake 

air that passes through the heat exchanger is blown into the building. This option lowers the 

amount o f NG that would be used to heat the facility in the winter. Furthermore, in the summer 

no heat recovery will take place. Note a series o f fans and controls would be installed to ensure 

that air delivered to different sections of the building is at the desired temperature set on the 

thermostat. Table 14 shows the results from the economic analysis o f the building heat recovery 

option applied to the J-oven afterburner for a Munter's heat exchanger.

T ab le  14. Economic analysis J-oven afterburner building heat option.

J-oven
Cost o f System, TCspaCeHeat[4JJ $84,000

Incentive, I SoaceHeat $17,881
Actual System Cost, AC soaceHeat $66,318

Annual NG Use (w/out HX), FCj.0ven [MWh/year] 3,772
Annual NG Use Reduction (w/ HX), S soaceHeat [MWh/year] 262

Yearly Savings from NG Reduction (w/WHRSG), RVsDaCeHeat [USD/year] $6,180
ROIspaceHeat [years] 11

It is not desirable to implement space heating in the G-oven afterburner stack because other 

options with lower ROIs can be applied.

Economizer

Note both boilers already have economizers on them. An economizer preheats the water entering 

the boiler harnessing waste heat of the boiler stack. Fig. 25 shows an economizer.
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F igure  25. Economizer.1411

The economizer can decrease the NG used by the boiler by 1%.[37] The annual NG use reduction 

with Economizer, S Economizer, was calculated by: £

(47)

^ E c o n o m iz e r  ~~ 1 %  * ^ B o i l e r -

Table 15 shows the details of installing an economizer on a boiler with an ROI of 7.4 years.

T able 15. Economic analysis boiler economizer option.

Boiler
Cost o f System, TC E c o n o m iz e r^  ^ $18,000

Incentive, lE c o n o m iz e r $4,560
Actual System Cost, A C E c o n o m i z e r $13,440

Annual NG Use (w/out Economizer), F C e o i i e r  [MWh/year] 9,168
Annual NG Use Reduction (w/Economizer), S e c o n o m i z e r  [MWh/year] 67

Yearly Savings from NG Reduction (w/Economizer), R V E c o n o m i z e r

[USD/year] $1,822

ROI E c o n o m iz e r  [years] 7.4

Thermo-electric

The thermo-electric option generates electricity from waste heat by the electrical phenomenon 

known as the Seebeck effect. In order to do this thermo-electric generators are installed inline the 

exhaust stack as shown in Figure 26. This option supplements electricity purchased lowering the 

annual electricity usage of the facility.



Figure 26. Thermoelectric electricity generator.[44i

The annual electricity use reduction S t e  was calculated by:

(48)

Ste = ZTE * 0 G_oven.

where Zte is 2.9 KW for the temperatures and flow rates of the G-oven afterburner stack.[42] It 

was determined that 14 MWh/year o f annual electricity generation could be displaced by 

installing this option with a corresponding annual savings of $1,700. No price was given by 

Alphabet energy the supplier, and it was not pursued by Hitchiner because of the more appealing 

savings of other recovery options. It is important to note more than 500 KW is exhausted from 

the G-afterburner stack and generating 2.9 KW is less than 1% of the available exhausted energy. 

Combined Heat and Power

The combined heat and power (CHP) option generates electricity and reverts residual heat into 

the process (i.e., preheat combustion air, supplement steam to a boiler, or provide building heat). 

Figure 27 shows an illustration of a CHP system.

= = = [ > = ■  e S c c tr ic a ty  

steam
NO fossil fu e l

H eat recovery  B ack p ressu re
S e ite r iisrb;rSQ g e n e ra to r

Figure 27. Illustration o f  a CHP system /451

1 0 0 %
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Using the steam created by the heat recovery boiler in the exhaust stack a turbine generator 

creates the electricity. An analysis was performed for a set of turbines and heat recovery boiler 

that found and the maximum steam production using the G-oven afterburner is 1,360 kg/hr 

however a steam production of 13,608 kg/hr was necessary for it to be economical.I46-47!

Absorption Chillers

The absorption chillers option uses steam or hot water to drive the lithium bromide refrigeration 

cycle, which generates space cooling in the summer and space heating in the winter. Figure 28 

shows a Trane absorption chiller.

Figure 28. Absorption chiller.1481

After considering the waste heat measurements Trane believed that absorption chilling was not 

economically feasib le .^

Waste Heat Recovery Summary

The economics of the previously mentioned waste heat recovery options are summarized in 

Table 16. They are listed left to right in order of the lowest ROI at Hitchiner’s current energy 

prices of $25.94/MWh delivered. No waste heat recovery options were found that could be 

feasibly applied to zones 2 and 3 of the G and J-oven due to the lower temperatures in these 

stacks (see Tables 9 and 10). Additionally, the emission of waste heat energy from the boiler
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stack was too low for heat recovery options to be considered besides the economizer. There are 3 

candidates for the G-afterbumer stack, 2 for the J-afterbumer stack, and 1 for the boiler stack. 

However according to Hitchiner's standards which prefer an ROI of less than 2 years there are no 

options. The only two options with ROIs near 2 years include, WHRSG and Preheat Air, which 

would be applied in the G-oven afterburner stack. It is important to realize that only one option 

can be chosen per stack.

T able 16. Summary o f  economic evaluations for heat recovery options based on NG price o f  $25.94/M W h.

Option WHRSG Preheat Air ORC Preheat Air Space Heat Economizer

Stack G-AB G-AB G-AB J-AB J-AB boiler

ROI [years] 2.62-2.63 2.74-2.78 5.4 7.57 11 7.4

Cost o f  System, 
TC $270,545 $182,600 $350,000 $149,250 $84,000 $18,000

Yearly Energy 
Savings, RV

$52,831-
$52,7541

$34,634 - 
34,370 $64,627 $14,779 $6,180 $1,822

Energy 
Reduction, S 
[MWh/year]

1,937-1,934 1,283 - 
1,273 539 547 262 67

Company NE Thermal ETTER Calnetix ETTER Munter's NE Thermal

Again any waste heat recovery option that has a ROI over 2 years is too long for Hitchiner to 

consider. However based on fluctuations in the price of natural gas that Hitchiner has seen in the 

past, the ROI can change as much as one year. Currently, Hitchiner is paying near its lowest 

price for natural gas of $25.94/MWh delivered. In the past they have paid over $37.54/MWh.[15] 

Furthermore, if production were increased from 24-4 for 51 weeks a year to 24-5 for 51 weeks a 

year the ROI of the G-oven preheat air option and steam generation option would decrease to 

between 2.11-2.13 and 1.59-1.60 respectively. Although, the ROIs o f the options are not reduced 

by the options associated carbon reduction within New Hampshire /United States Table 17 lists 

the annual carbon reduction from each waste heat recovery option. Carbon reduction is
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determined by the product of the annual energy saved [MWh/year] and the carbon content 

[metric tons/MWh] present in either NG or electricity.[50]

T able 17. Annual carbon reduction (7.18E-4 metric tons/KW h electricity and 1.7E-4 metric tons/KW h natural gas).

Annual Carbon Savings [metric tons/year]
G-oven preheat 218

G-oven WHRSG 330
ORC 387

J-oven preheat 93
economizer 11

space heating 45

The G-oven WHRSG reduces the most carbon, followed closely by ORC and G-oven preheat 

technology. There is no financial incentive for carbon reduction. [51'52]
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CHAPTER V

V. Previous Studies

Hitchiner Initial Study

An initial study in 2 0 0 8  used a differential pressure Magnehelic gauge, Pitot-tube sensor, and a 

K-type thermocouple to measure dynamic pressure, to calculate flow, and measure temperature 

respectively. The initial study focused on the three stacks of the G-oven and the sensors were 

inserted at a height of approximately 1 .4 0  meters ( 4 .6  feet) from the roof-line. Note the insertion 

height o f the new study was chosen to allow accurate comparison with the initial study. Thus, 

one of the reasons for the new study was to take measurements with equipment that would 

tolerate the stack conditions to produce more reliable measurements because the Magnehelic 

gauge has a temperature rating of 3 6 6  K (i.e., 9 3  C) and the temperature rating of the clear PVC 

tubing is only 3 1 3  K (i.e., 5 0  C). Both are far below the G-oven stack temperatures in Table 2 . [15] 

The velocity calculation of the pitot-tube in this initial study is similar to that o f the Eq. 5 used 

by the Accutube except that it doesn't have the B value and in this case the AP value is measured 

by the Magnehelic gauge. Furthermore the initial study calculated the density o f the exhaust 

Pexhaust by using Eqs. 1 7 - 2 0  together with two equations used to define the excess quantities of 

oxygen and nitrogen by:
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(49)

^ _ N 2,com bustion "b H 2 0 com bu stiOn "h ^ ^ 2 com bustiony 2 EA _  -  .

and

(50)

NI _  ^  % N itro g e n
2,EA -  2,EA o/o0xy g e n  ’

Instead of using a combustion analyzer’s measurement o f percent oxygen, 0 2,Bacharach> to 

calculate the excess air, the initial study assumed the excess air was equal to 1 0 % based on their 

familiarity with the oven, which is considerably different than the measured values in Table 4.

Different from the instantaneous measurements, the initial study made in the center and side of 

the stack and then averaged their values. The new study collected data continuously at the center 

of the stack in intervals o f approximately 100 seconds for 24 hours a day, 7 days a week to create 

its average values. Also a profile across the stack cross-section was considered (see Fig. 18). 

This yielded a much larger and more representative data set from which to quantify the average 

temperature, volume flow rate, and waste heat emitted from the stack. Tables 18 shows the 

measured standard volume flow rate, stack temperature, and calculated waste heat loss from both 

the initial and new studies. Again, note the initial study was only performed on the stacks o f the 

G-oven.
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Table 18. Collected measurements from the initial and new studies.1' 51
Parameter Stack Initial New % Diff

Volumetric Flow Rate, Q; 
[SCMM]

A/B 74.33 56.95-55.72 26%-29%
2 159.48 100.73 45%
3 123.97 45.70 92%

Stack Temperature, T [K]
A/B 771 744 4%

2 450 447 1%
3 395 310 24%

Waste Heat Energy, E 
[KW]

A/B 717 576-516 22%-33%
2 498 376 28%
3 249 18 173%

Total Waste Heat Energy, E totai [KW] 1,464 970-910 41%-47%

The measurements and calculated values from the initial study are greater than the values 

measured by the new study. Furthermore, there is a large difference between studies in their zone 

3 measurements. Through talking with Hitchiner about the difference, it was determined that 

insulation had been inserted after the initial study into zone 3 to keep heat from passing through 

the stack. Altogether the initial measurements were not significantly different despite using less 

sophisticated sensors and obtaining a much smaller set of data points.

Furthermore, the opportunity of reusing the thermal energy in the G-oven Afterburner stack to 

preheat the combustion air was evaluated after the initial study as well. To this end mechanical 

contractors provided a cost estimate of $168,000 ± $25,000 for a heat exchanger system from 

Exothermics and installation.1151 A schematic of the system is shown in Fig. 29. The system was 

estimated to save 2,259 MWh/year.1151
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Energy Resource Solutions Study

In 2010 Hitchiner's utility National Grid had the engineering firm Energy Resource Solutions 

(ERS) evaluate heat recovery options for its G-oven again. ERS's analysis assumed the oven has 

a single input of air and NG and exhausts through a single stack (i.e., the air exiting from the two 

other stacks of the oven was ignored). Figure 29 shows a circular draft inducer above the 

afterburner. This also was not accounted for in ERS's calculations. Thus their analysis comprised 

of a theoretical flow balance and was not substantiated by any direct measurements in the stack. 

Table 19 shows the G-oven Properties, Material Properties, Inferred Quantities, Measured 

Quantities, and Calculated Values used by ERS.

T able 19. Param eters used in ERS's analysis.110̂

Oven Properties
HC G-oven, 100%L fMW] 3.75
HC G-oven, 50%L [MW] 1.87

Material Properties
Higher Heating Value of NG, HHVng [KWh/kg] 14.98

Stoichiometric Air to Fuel Ratio, A F R st0ch [ k g a ir / k g N G ] 17.2
Exhaust Density, pair [kg/m3] 1 .2 0

Specific Heat, cD, [J/kg-K] 1,030
Inferred Quantities

Firing Rate, FR 50%
Excess Air, EA 150%

Temperature of Air Exhausted to, T outsideair [ K ] 294
Temperature of Intake Air, T jntakeair [K] 294

Measured Quantities
Afterburner Exhaust Temperature, T staCk fK] 944

Calculated Values
Mass Flow of Natural Gas, M n g  [kg/hr] 126

Mass Flow of Intake Air, Majr [kg/hr] 5,427
Total Mass Flow, Mtotai [kg/hr] 5,553

Exhaust Volume Flow Rate, Qstack, [m3/min] 77
Annual Waste Heat, E [MWh/year] 4,615

The Total Heating Capacity HC c-oven, ioo%l is listed in the oven manual its 50 % equivalent is 

scaled accordingly. In order to determine what firing rate the oven was operating at, current

62



loggers were implemented on the intake air blower o f the oven thus tracking the motor 

amperage. By comparing the amperage of the blower to an amperage curve in the blower manual 

it was determined that the blowers were being operated at 50% load. Thus a 50% heat input load 

of the oven burners is the average. The "Material Parameters" in Table 19 are all constants o f NG 

and its combustion with air. Note ERS assumed the exhaust density was equal to that o f air at 

2 9 4  K. The excess air values for both the boiler and ovens are assumed values that were not 

substantiated by any measurements. The G-oven afterburner exhaust temperature, Tstack [K] is the 

average temperature measured by a K-type thermocouple over two weeks of oven operation. The 

thermocouple was inserted in the afterburner exhaust stack between the exit o f the afterburner 

and the circular draft inducer shown in Figure 2 9 .  The temperature of the air exhausted to, 

Toutsideair [K], was arbitrarily selected by ERS to be 2 9 4  K. The mass flow of NG, M n g  [kg/hr], 

was calculated by:

(51)

»/r   HCc-oven,50%L
M n g  “  h h v ng  ■

The mass flow of the combustion air, Majr [kg/hr], was calculated by:

(52)

M jntakeair ( 1  +  E A ) * * A FRgj-Q ^.

The combined total mass flow of the air and NG, Mtotai [kg/hr], is a summation represented by:

(53)

^total ~~ Mjntakejuj- +  M^g-

The standard volumetric flow rate of exiting the stack is:

(54)

  Mtotai
x  total — .  5

Pai r
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Again the waste heat, E, can then be calculated by Equation 15. Next calculating the energy 

savings from implementing a heat exchanger was performed by first calculating the term Ch 

[J/min-K] by:

(55)

Ch =  Mtota] * Cp ,

where cp [J/kg-K] is the specific heat of air at standard conditions. Second, the term Cc [J/min-K] 

was calculated by:

(56)

C c —  M a i r  *  C p , ■

Third the thermal energy that the heat exchanger can extract, Z preheat, [KW] was calculated by:

(57)

Zpreheat — 6  * Cc * (Tstack — Tjntgkeair)' 

where the effectiveness, e, is a property of the specific heat exchanger (e.g., 34% for Munter's 

E1X). Furthermore, the temperatures of the lowered exhaust stack temperature T stackHX [K] and 

the preheated air T jntakeairHX [K] can be calculated by:

(58)

rp _  rp ^ p r e h e a t
*stackH X  — t s ta c k  n  >

(59)

„ ______________ ™ . ^ p r e h e a t
M ntakeairH X  “  M n ta k e a ir  *" p

The result of ERS's analysis on the preheat air of the combustion burners on the G-oven by 

installing a FIX on the G-oven afterburner stack is that the HX is capable of extracting 1,524 

MWh/year, making the new exhaust temperature 730 K and the preheated air temperature 518
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K.tll] Table 20 shows the results of the economic analysis done by ERS for the preheat 

combustion air option.

T able 20. ERS's economic analysis.[10)

G-oven (ERS)
Annual NG Use Reduction(w/ HX), S preheat [MWh/year] 1,524

Incentive($61.77/MWh)l/J, I preheat [U S D ] $ 1 0 0 ,0 0 0

Actual System Cost, AC Dreheat [ U S D ] $ 150,000
ROI preheat [years] 2.3
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RISE Engineering Study

Again in 2011, RISE engineering evaluated the preheated combustion air option on the G-oven. 

Like ERS before them their analysis comprised o f a theoretical flow balance and was not 

substantiated by any direct measurements in the stack. It was assumed the oven has a single input 

of air and NG and exhausts through a single stack (i.e., the air exiting from the two other stacks 

of the oven was ignored). Also the additional air from the circular draft inducer shown in Figure 

29 was again ignored.

The operation manuals o f the G-oven indicate intake air is supplied at 62.86 m3/min under full 

load Qintakeair,ioo%L and at 50% load the combustion air is simply 50% that o f full load at 31.43
*3

m /min Qimakeair,50%L- R I S E  assumed that the oven operated in "preheat" mode for 4  hours every 

week which caused the oven load to be 1 0 0 %, and the remainder of the time the oven was 

"operational" with an oven load of 50%. Considering the calculations of energy savings, the 

corresponding mass flow rate of air M ajr [kg/hr] is given by:

characteristic o f Exothermics heat exchanger for the G-oven. The combustion efficiency 

E F F combustion is an assumed value. Lastly the annual energy savings R p reheat, [MWh/year] is 

calculated by:

(60)

Mair — Q air/^actual-

where Q ajr [m3/min] is the volume flow rate of the intake air to the combustion burners, and vactua| 

[m3/kg] is the specific volume of air. Temperatures, TstackHx [K]and TmtakeairHx [K], are

(61)

M in tak ea ir  *  Cp * (T s tac]< T ^ ^ h x )
P re h e a t

combustion P re h e a t

M in tak ea ir  * Cp * (T s t-ack T ^ ^ h x )

combustion O p e ra tio n a l
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Table 21 and 22 summarize the values of the parameters used and the results o f RISE's economic 

analysis respectively

T ab le  21. Parameters used in RISE'S analysis.1531

Preheat Operational
Oven Load 1 0 0 % 50%

Volume Flow Rate of Air, Q air [m3/min] 62.86 31.43

Specific Volume of Air, v actuai [m /kg] 0.84 0.84

Mass Flow Rate o f Air, M ajr [lb/hr] 4,519 2,259

Specific Heat, cPj [J/kg-K] 1030 1030

Temperature of Air leaving HX,TstackHX [K] 622 622

Temperature o f Air Entering HX,Tstack [K] 294 294

Combustion Efficiency, E F F combustion 0.82 0.82

Hours o f Operation, O o-oven [hours] 2 0 0 4,600

Annual Energy Savings, S preheat [MWh/year] 100.41 1,154.62

T ab le  22.RISE's Economic A nalysis/531

Annual NG Use Reduction(w/ HX), S preheat [MWh/year] 1,255
Incentive($61.77/MWh)[7], I preheat [USD] $85,667

Actual System Cost, AC Dreheat [USD] $96,933
ROI preheat [years] 2 .8

Previous Studies Summary

Table 23 shows a summary of the results o f the studies performed to date that have evaluated the 

recovery option of preheated combustion air on the G-oven (i.e., initial, ERS, RISE, and new).
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Table 23. Summary o f previous studies compared to new study.
Initial1101
(2008)

ERS113 J 
(2 0 1 0 )

RISEt3jJ
(2 0 1 2 )

NEW
(2 0 1 2 )

Cost of System, TCpreheat [USD] $193,000 $250,000 $182,600 $182,600
Annual NG Use Reduction (w/ 

HX), Spreheat [MWh/yearl 2,259 1,524 1,255 1,283-1,273
Annual Savings from NG 

Reduction (w/ HX), RVpreheat 
[USD/year] $ 60,744 $ 40,980 $ 33,746

$ 34,634- 
$ 34,370

Incentive, I preheat $96,500 $104,028 $85,666 $86,892

Actual Cost, AC Preheat $96,500 $145,972 $96,934 $95,708

ROI Preheat 1 .6 3.6 2.9 2.74-2.78

Note the yearly savings from NG Reduction R V preheat, the R O I preheat, the incentive amount I preheat, 

and actual cost A C preheat all reflect the 2012 rates of energy and incentives $26.89/MWh and 

$68.26/MWh respectively. Furthermore the studies performed by E R S  and R I S E  are similar to 

one another in that they derived the annual NG use reduction by considering a single stream of 

air flow entering and exiting the oven without taking direct measurements in the exhaust stack. 

Also the initial and new studies are similar in that direct measurements in the exhaust stack were 

taken to determine the actual flow in the stack. However they differ because the initial study 

assumed a the oven operated at 100% firing rate where the NG flow sensors determined it 

operated at 48% on average. This means the flow rate of air into the burners is not as great as the 

initial study assumed. Thus reducing the corresponding heat that could be extracted from the 

same model HX.
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CHAPTER VI

VI. CONCLUSIONS

In this research, the waste heat emitted from two ovens and a boiler used in the investment 

casting manufacturing process by New Hampshire based Hitchiner Manufacturing Inc. Co. was 

determined. This was achieved with measured temperature and standard volume flow rate data 

both gathered from the exhaust stacks (i.e., three for each oven and one for the boiler) using a 

thermal anemometer KURZ 2440. For these calculations, atmospheric pressure was assumed 

which was confirmed using an Accutube differential pressure sensor. Also a combustion 

analyzer sensor, Bacharach Fyrite Pro, was used to measure the volume percentage o f oxygen 

which was used to calculate the density of the exhaust. The exhaust density calculated from the 

measurement does not vary more than 1.31% from the density of air. Thus within the accuracy 

range of the pressure and density transducer it is possible the exhaust streams have the same 

density as air and are at atmospheric pressure.

Whereas the density and pressure measurements were made instantly from a single measurement 

taken once, the thermal anemometer collected data continuously over a period of one week per 

stack (i.e., 24 hours a day for 7 days) in order to quantify the temperature and standard volume
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flow rate of the exhaust. In order to support the KURZ sensor and protect its interface during the 

experiments, tripods and enclosures were designed, fabricated and implemented. The 

measurements obtained in the new study have similar results to an initial study that was 

performed by Hitchiner in 2008. By performing measurements over the course of a week, data 

was gathered in the new study to more accurately quantify the average temperature, volume flow 

rate, and waste heat emitted during operation.

The data acquired in the new study along with assumptions for the process allowed several waste 

heat recovery options to be assessed with respect to the waste heat recovered, energy saved, and 

return on investment. Based on the nine waste heat recovery options considered, none of them 

have a ROI less than 2 years as Hitchiner requires. However, pre-heating the combustion air of 

the burners and generating steam to supplement the boilers using the exhaust o f the G-oven 

afterburner stack are both comparable having maximum ROIs of 2.78 and 2.63 years 

respectively with a 24/4 schedule of operation. Based on their ROIs is recommended the waste 

heat recovery steam generator be installed because it has the lowest ROI.
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APPENDIX III: SUPPLEMENTAL FIGURES & GRAPHS 

G Afterburner Zone

Notes: Data acquisition on the G-oven afterburner stack spanned Monday-Friday. First dip in 
data (see Fig. A -l) is due to oven shutdown due to lack of product according to Plant Manager 
(Mike McNamara). Second dip is due to planned shutdown at the end of the production week. 
No data was taken over the weekend because of hurricane Irene. Flow rate possibly increased 
because inducer above afterburner was left on and no shells in the oven allowed the air to flow 
unobstructed from the oven.
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F igure  30. Waste heat emitted from G-oven afterburner stack.
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F igure 31. Standard volume flow rate and tem perature from G-oven afterburner stack.
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G Zone 2

Notes: Data acquisition began on Monday. First dip is due to oven shutdown due to lack of 
product. Flow and temperature decrease uniformly over shutdown. This stack has no inducer to 
blow in it. The second dip is due to the weekend shutdown.
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Figure 32. Waste heat emitted from G-oven zone 2 stack.
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Figure 33. Standard volume flow rate and tem perature G-oven zone 2 stack.
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G Zone 3

Notes: Data acquisition began on Monday. Spikes in data are single data point scatter.
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F igu re  34. W aste heat emitted from G-oven zone 3 stack.
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Figure 35. Standard volume flow rate and tem perature G-oven zone 3 stack.
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J Afterburner Zone

Notes: Data acquisition began on Thursday. First dip is due to weekend shutdown. Large spike in 
data is a single data point scatter.
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Figure 36. Waste heat emitted from J-oven afterburner stack.
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Figure 37. Standard volume flow rate and temperature J-oven afterburner stack.
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J Zone 2

Notes: Data acquisition began on Monday. Oven was run over the weekend with no lack of 
product.
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F igu re  38. Waste heat emitted from J-oven zone 2 stack.
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F igure  39. Standard volume flow rate and tem perature J-oven zone 2 stack.
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J Zone 3

Notes: Data acquisition began on Thursday. First dip is due to weekend shutdown. The oven was 
run with a lack of product thus it was not fired constantly throughout the day (i.e., square wave 
like features).
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F igure 40. Waste heat emitted from J-oven zone 3 stack.
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Figure 41. Standard volume flow rate and tem perature from J-oven zone 3 stack.
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Boiler

Notes: Data Acquisition began on Monday. Boiler was in Lag control strategy on Tuesday (first 
large valley). During the middle o f the day Wednesday it began Lead control. This "Lead-Lag" 
control scheme causes the fluctuations in the data.
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Figure 42. Waste heat emitted from boiler stack.
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Figure 43. Standard volume flow rate and temperature boiler stack.
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F igure  44. ACF floor layout.
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