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ABSTRACT 

TRANSESTERIFICATION OF WASTE VEGETABLE OIL BY THERMOMYCES 

LANUGINOSUS LIPASE IMMOBILIZED ON ZEOLITE ZSM-5 

by 

Ye Deng 

University of New Hampshire, September 2012 

In this thesis, the effect of organic solvent-cosolvent system, temperature, methanol 

concentration, water content and used enzyme washing method on transesterification 

of waste vegetable oil catalyzed by Thermomyces lanuginosus lipase immobilized on 

zeolite ZSM-5 was investigated. Four organic solvents, one co-solvent, three 

reaction temperatures, three methanol addition methods, four different water content 

and two used-enzyme washing methods were assessed. Optimal conditions were 

obtained with n-hexane as solvent, 5 vol.% ter/-butanol as co-solvent, 25°C reaction 

temperature, batch addition of 3 equivalent molar methanol, water content equivalent 

to 7.5% by weight, and used-enzyme washing method B. It was also confirmed that 

the transesterification reaction catalyzed by used Thermomyces lanuginosus lipase 

immobilized on zeolite ZSM-5 was limited by the concentration of acyl acceptor, 

and that active water loss was related to enzyme activity lost after every reaction 

cycle. 

ix 



CHAPTER 1 

INTRODUCTION 

Energy is always an important issue in the world. For hundreds of years, fossil fuel 

has been the main source of energy in transportation. However, according to the 

Energy Information Administration (EIA), the consumption of petroleum products in 

2011 was 83,760,391 barrels per day while the total amount of fossil oil reserves 

worldwide is 1,119 billion barrels to 1,317 billion barrels1, and at this level, the fossil 

oil will be exhausted in 50 years. As a result, looking for alternative sources of 

energy has attracted more and more attention, and of these potential energy sources, 

biodiesel is one of the most promising one. 

Biodiesel, defined by National Biodiesel Board (USA), is a vegetable oil- or animal 

fat-based diesel fuel, which consists of mono long-chain alkyl (methyl, propyl or 

ethyl) esters2. Biodiesel can be applied in transportation as pure form (B100) or be 

blended with fossil diesel in the volume ratio of 5% (B5), 10% (BIO) and 20% (B20), 

of which B20 is the current commercial biodiesel employed in the U.S. The technical 

standard of biodiesel is ASTM International D67513, which determines the main 

physical and chemical characteristics of biodiesel. All commercial biodiesel 

employed in the U.S. should meet ASTM International D6751. 

Application of biodiesel has lots of advantages: i) biodiesel is more environmentally 



friendly than fossil oil. Biodiesel has a large oxygen content of 12 wt%, which 

makes it easier to combust completely to produce less CO. And without sulfur and 

nitrogen molecule in biodiesel, there is no SO2 or NOx produced in biodiesel 

combustion3; ii) biodiesel has good energy efficiency. The calorific value of 

biodiesel is 37.27 MJ/kg3, which is 9% lower than the common petroleum oil. 

However, the better lubricity and more complete combustion of biodiesel can 

enhance the engine output energy and make the actual energy density of biodiesel 

almost the same as petroleum oil; iii) biodiesel is easily produced and applied. Only 

one or two reactions are needed to produce biodiesel, which makes the synthesis 

process of biodiesel easy to design and modify. Besides, no extra modification to 

current vehicle engine is necessary in applying biodiesel since the characteristics of 

commercial biodiesel (B20) is very similar to No. 2 petroleum diesel; iv) biodiesel is 

a safe fuel. Biodiesel's higher boiling point (238°C in atmospheric pressure), higher 

flash point (130°C), non-toxicity and smaller density make biodiesel easy to store 

and transport compared to petroleum oil.7'8 

The production of biodiesel is mainly based on transesterification reaction, which is 

shown in Figure 1.1. 

CHz-OOC-R! R4-OOC-R1 CHrOH 

I , Catalyst I 
CH-OOC-R2 + 3R4OH 4 » R4-OOC-R2 + CH-OH 

CH2-OOC-R3 Alcohol R4-OOC-R3 CH2-OH 

Triglyceride Alkyl Ester Glycerol 

Figure 1.1 Transesterification of triglyceride with alcohol 
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Triglyceride is the main source of acyl-provider in the transesterification reaction, 

which can be derived from vegetable oil4 and animal fat5. In addition, free fatty acid 

(FFA), which is the hyrolysis product of triglyceride derived from waste cooking oil6, 

can also work as acyl-provider to produce biodiesel by esterification reactions as 

shown in Figure 1.2. 

Catalyst 
F^COOH "4" R2OH « * RrOOC-R2 -f- H20 

FFA Alcohol Alkyl Ester Water 

Figure 1.2 Esterification of FFA with alcohol 

Methanol is currently the common acyl-acceptor used in industry because of the low 

cost. Transesterification reaction based on methanol is also called as methanolysis 

reaction, and biodiesel produced by methanolysis reaction is fatty acid methyl ester 

(FAME). Other alcohols and ketones such as ethanol, propanol, butanol and actone 

are also employed in academic research as potential acyl-acceptors because of their 

low toxicity and low polarity4. 

The catalyst is the most important part in the production of biodiesel. Common 

catalysts applied in the industry are acid / base catalysts, such as H2SO49'10, NaOH11 

and KOH12. These catalysts are highly efficient and cheap13. However, there are 

many shortcomings in acid / base catalysis. For example, in homogeneous base 

catalyzed transesterification reactions, there is a significant saponification 

phenomenon, which reduces the yield of biodiesel and increases difficulty of the 

product separation process14. Besides, FFA and water produced by hydrolysis of 
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vegetable oil or animal fat can increase the saponification reaction rate to make 

things worse. Thus, in homogeneous base catalyzed reactions, the triglyceride 

substrate is extremely limited because there is large content of FFA in used cooking 

oil. Homogeneous acids can only catalyze the esterification reaction15. Thus, a 

substrate pre-treatment process to transfer triglyceride to FFA is necessary in 

homogeneous acid catalyzed reactions, which will increase the cost of biodiesel 

production. Heterogeneous catalysts suffer from a number of drawbacks as well. For 

example, the efficiency of heterogeneous base / acid catalysts is much lower than 

homogeneous catalysts15. Thus, higher temperatures (>150°C) are needed in 

heterogeneous acid / base catalyzed reactions to meet the industry requirement, 

which increases the total cost and the safety risk. Furthermore, heterogeneous 

catalysts have a low tolerance to water16, which means a dehydration process is also 

needed in heterogeneous acid / base catalyzed transesterification reactions. 

One promising catalyst to produce biodiesel is the enzyme lipase. Lipase has high 

catalyst efficiency in both transesterification and esterification reactions, and unlike 

acid / base catalysts, there is no soap formed in lipase catalyzed reactions.17'19 The 

temperature required in lipase catalyzed reactions is low (20°C~60°C), and the 

amount of alcohol needed in lipase catalyzed transesterification reactions is much 

less17'18. Lipase is also re-usable, which means it can be collected and used after each 

reaction cycle despite some loss in activity. However, there are still two obstacles in 

lipase application in the industry. First, lipase is expensive. Lipase is mainly 

produced from microbial fermentation, which makes its price much higher than acid 
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or base catalysts. Second, storage and transportation of large amounts of lipase is 

still difficult.20 Lipase is a protein derived from bacteria or mold, and is biologically 

unstable. It loses activity at room temperature due to protein denaturation and/or 

contamination18. Thus, low temperature (< 0°C) is required in the storage and 

transportation process, which also increases the cost of biodiesel and limits the 

application of lipase in the industry. 

Lipase immobilization is one good method to overcome these obstacles. By enzyme 

immobilization technique, lipase can be linked to an insoluble support, which makes 

immobilized lipase easily to collect and reuse21"23. Furthermore, Macario et al.24have 

demonstrated that the stability and productivity of lipase is enhanced by 

immobilization. Immobilization techniques can be divided into physical methods and 

chemical methods. Physical immobilization methods include adsorption, entrapment 

and encapsulation, while chemical immobilization method is linking the enzyme to 

an inert support by covalent bonding13. Both immobilization methods require 

supports. A good support can also provide a heterogeneous micro-environment to 

benefit reactions. In addition, a support with nanostructure has an extremely large 

surface area to achieve good enzyme-support attachment and can be well dispersed 

in the reaction system to make a good catalytic interface23. 

Zeolite ZSM-5 is a novel pentasil-family alumino-silicate zeolite with unique 

channel shape25. The chemical form of ZSM-5 is NanAlnSi9^_nOi92' 16H20 in which 

'n' varies from 0 to 27, and these molecules form several pentasil chains by oxygen 
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bridges. The pentasil chains are also interconnected by oxygen bridges to form 

10-ring channels. In these rings, A1 or Si molecule form the vertices, which are 

bonded by oxygen molecule (See Figure 1.3). The pore size of ZSM-5 is estimated 

to be 5.4-5.6 A. 

Figure 1.3 The pentasil-ring structure of ZSM-5 

Zeolite ZSM-5 is a good immobilization support for catalysts due to its nano-scaled 

channel and its high silicon to aluminum ratio. Furthermore, control experiments 

with waste vegetable oil in our laboratory have conclusively shown that zeolite 

ZSM-5 itself has no catalyst activity in the transesterification reaction. Aldehyde 

functional group is the common group used in lipase immobilization and it can be 

attached to the zeolite ZSM-5 by a Si-NH covalent bonding26. When modified with 

aldehyde functional group, zeolite ZSM-5 can be easily linked to lipase to form a 

stable zeolite-lipase immobilized enzyme. There is very limited work on 

enzymatically catalyzed transesterification reactions using ZSM-5 as support. 

This thesis systematically investigates the characteristics of Thermomyces 

lanuginosus lipase, a common lipase used in transesterification reactions, 
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immobilized on zeolite ZSM-5. In this study, four organic solvents (n-pentane, 

n-hexane, w-heptane and wo-octane), with and without co-solvent (5 vol.% 

/er/-butanol), three system temperatures (25°C, 30°C, and 40°C), three methanol 

addition methods (stepwise, 3:1 batch and 6:1 batch), two used enzyme washing 

methods (A and B - which are defined later in the thesis) and four different water 

content (2.5%, 5%, 7.5% and 10% by weight of enzyme) were investigated in the 

synthesis of biodiesel. The re-use efficiency of Thermomyces lanuginosus lipase 

immobilized on zeolite ZSM-5 in the methanolysis of waste vegetable oil was 

investigated to gain a comprehensive understanding of the reaction and to ascertain 

the optimal conditions that achieve the best lipase performance. 

Based on these results, the best reaction condition with specific solvent-cosolvent 

system, reaction temperature and methanol addition method is recommended in 

order to obtain the highest biodiesel production and enzyme re-use efficiency. The 

limiting factors related to the performance of Thermomyces lanuginosus lipase 

immobilized on zeolite ZSM-5 in the transesterification reaction are also examined. 

The organization of this thesis is as follows: Chapter 2 provides some Background 

on Transesterification Reactions; Chapter 3 deals with the Experimental Method; 

Chapter 4 discusses the Experimental Results; and Chapter 5 contains Conclusions 

and Recommendations for future work. 
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CHAPTER 2 

BACKGROUND 

2.1 Introduction 

The background information in this chapter can be divided into five parts: 

i) characteristics of the substrates; ii) kinetics of biodiesel synthesized 

transesterification reaction; iii) solvent-cosolvent system effect on the 

transesterification reaction; iv) temperature and mixing effect on the biodiesel 

synthesized transesterification reaction; v) effect of active water content on biodiesel 

synthesized reaction. 

2.2 Characteristics of Substrates 

2.2.1 Triglyceride 

The most common triglyceride used in biodiesel industry is plant oil or vegetable oil, 

such as soybean oil, canola oil, sunflower oil, palm oil, olive oil, cottonseed oil and 

jatropha oil27"30. FAME yields produced from these edible or inedible oils can be 

higher than 0.90 g/g oil. Animal fats, such as animal tallow, grease, fish oil and 

lard, ' are also a good source of triglyceride. FAME yield produced from animal 

fat can also be as high as 0.8 g/ g oil. 
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However, the high cost of these edible or inedible oils severely limits their 

application in biodiesel production. In addition, there is a lot of pressure on the 

agriculture industry, especially in third world countries, not to produce edible oil for 

biodiesel synthesis. Both these factors serve as an incentive to find alternative cheap 

sources of triglyceride. Waste vegetable oil or used oil is a good source for a number 

of reasons. There is a large amount of waste oil produced everyday from factories 

and restaurants, and the use of waste oil in the development of catalysts provides a 

good indication of their robustness. The triglyceride and FFA content in waste oils is 

high, and according to the research of Lara and Park, the yield of methyl ester 

produced from waste oil can be as high as 0.96 g/g oil7. In the U.S., more than 11 

billion liters of waste oil is produced per year, and 1% of petroleum oil consumption 

would be offset if all waste oil could be converted to biodiesel13. This number, 

though small represents significant progress in our efforts to wean ourselves from 

dependence on fossil fuels. This number is still increasing with the development of 

more fast food restaurants and the increase in petroleum price. The only problem is 

the high content of water and FFA in waste oils. The production of soap when a base 

catalyst is used can be solved by the application of lipase or through a pretreatment 

process. 

2.2.2 Acyl-acceptor 

The source of acyl-acceptor is also an important issue in biodiesel synthesis even 

though methanol is widely used in industry. The acyl-acceptor can be an alcohol or 
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an acetate. Some examples are methanol, ethanol, propanol, butanol and methyl 

acetate13'34. The most common acyl-acceptor is methanol because of its low cost. 

However, there are many shortcomings in the use of methanol in biodiesel synthesis: 

i) there is the mass transfer issue between the hydrophilic methanol and the 

hydrophobic triglyceride; ii) the high polarity of methanol can strip water from 

enzyme and deactivate the enzyme; iii) high toxicity and high volatility of methanol 

poses a risk on the health of workers and environment; iv) the main source of 

methanol is fossil oil, which can be a big problem if the goal is to reduce the 

consumption of fossil oil. 

2.3 Kinetics of Biodiesel Synthesis 

From the transesterification reaction (shown in Figure 1.1), one mole of triglyceride 

reacts with three moles of alcohol to produce three moles of alkyl ester (biodiesel) 

and one mole of byproduct glycerol. And if the alcohol is methanol as is common, 

the product will be methyl ester. 

Tan, Nie and Wang have shown that the mechanism of the transesterification reaction 

catalyzed by enzyme has three reversible steps13'35: i) one mole of triglyceride reacts 

with one mole of methanol to produce one mole of methyl ester and one mole of 

diglyceride; ii) one mole of diglyceride reacts with one mole of methanol to produce 

one mole of methyl ester and one mole of monoglyceride; iii) one mole of 
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monoglyceride reacts with one mole of methanol to produce one mole of methyl 

ester and one mole of glycerol, as shown in Figure 2.1. 

CH2-OOC-R1 
I 

CH-OOC-R2 
I 

CH2-OOC-R3 

Triglyceride 

CH2-OH 
I 

CH-OOC-R2 
I 

CH2-OOC-R3 

Diglyceride 

CH2-OH 

(pH-OH 

CH2-OOC-R3 

Monoglyceride 

+CH30H 

Methanol 

+CH30H JUS 

Methanol 

+ CH3OH 

Methanol 

CH2-OH 

CHs-OOC-Ri + CH-OOC-Rz 

Methyl Ester 

CH2-OOC-R3 

Diglyceride 

CH2-OH 

CH3-OOC-R2 4- CH-OH 

Methyl Ester 

CH2-OOC-R3 

Monoglyceride 

CH2-OH 

fatalvS> CH3-OOC-R3 -f CH-OH 

Methyl Ester 

I 
CH2-OH 

Glycerol 

Figure 2.1 Three reversible step mechanism in transesterification reaction 

For these reversible reactions, a high concentration of methanol can result in high 

conversion of triglyceride to give a high yield of biodiesel. However, due to its high 

polarity, high concentration of methanol is toxic to the enzyme and will inhibit the 

enzyme's re-use efficiency. One good solution is the stepwise methanol addition 

method of Nie et al.17, which means adding methanol stepwise. Their results have 

shown that 3-times stepwise addition is the most optimal, and that more than 1.5 

molar equivalent methanol added every time will deactivate the enzyme. Another 

solution is the application of other acyl-acceptors with lower polarity than methanol, 
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such as ethanol, tert-butanol and methyl acetate. Of these acyl-acceptors, ethanol is 

the most promising one because it can be produced from biomass via fermentation. 

Besides solvent source, solvents with a higher hydrophobicity and energy content 

than methanol also are beneficial and the application of ethanol compared to 

methanol falls in this category27'36. However, the shortcoming of ethanol is also 

evident, which is the higher cost and higher viscosity. 

Actually, application of organic solvent-cosolvent system is also a good solution to 

the methanol's high polarity problem, which will be illustrated in the next section. 

2.4 Effect of Solvent-Cosolvent System 

From what is illustrated in sections 2.2 and 2.3, there are two main problems in the 

transesterification reaction: i) the mass-transfer issue between hydrophobic 

triglyceride and hydrophilic alcohol; ii) the deactivation of lipase by alcohol with 

high polarity, such as methanol. A selected organic solvent-cosolvent system added 

to the reaction system can solve both the problems in the following way, i) a selected 

organic hydrophobic solvent and hydrophilic co-solvent system can increase the 

solubility of both the triglyceride and the methanol and overcome the mass-transfer 

problem raised by the highly viscous triglyceride; ii) the high solubility of methanol 

in the solv,ent-cosolvent system as well as the optimal polarity of co-solvent can 

reduce the concentration of methanol surrounding the lipase. Furthermore, the 
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addition of a hydrophobic solvent can create a hydrophobic microenvironment 

around the lipase, which can protect the active site of lipase and increase the 

concentration of triglyceride surrounding the lipase. Thus, a properly selected 

solvent-cosolvent system is a good method to improve the final biodiesel yield and 

enzyme re-use performance. 

The selection of solvent is based on the solvent's density, viscosity and polarity. In 

general, a solvent with low viscosity, low polarity and high density is good for the 

transesterification reaction. However, according to the study of Soumanou and 

Bornscheuer, different solvents have different effects on lipases from different 

sources, which means the optimal solvent for a particular lipase is not constant37. Tan 

et al. tested the activity of Candida sp. 99-125 lipase in different hydrophobic and 

hydrophilic solvents, and they reported that the lipase presented as a suspension in a 

hydrophobic solvent showed higher activity33'35. Royon et al.38 reported that the use 

of hydrophilic solvents such as tert-butanol and tert-pentanol could result in high 

biodiesel yields due to their miscibility with methanol by reducing the concentration 

of methanol surrounding the enzyme. 

To fully use the hydrophobic solvent's "concentrating triglyceride" capability, and 

the hydrophilic solvent's "diluting methanol" capability, Su and Wei proposed a 

hydrophobic solvent and hydrophilic co-solvent mixture system method39. In their 

study, they designed a solvent and co-solvent mixture system, which contained 75 
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vol.% wo-octane and 25 vol.% terr-butanol and the final biodiesel yield reached a 

maximum of 0.6 g/g oil. 

2.5 Effect of Temperature and Mixing 

In the transesterification reaction catalyzed by lipase, the reaction temperature 

usually varies from 20°C to 65°C. Other than the effect on the activity of lipase, 

temperature also has an effect on solvent viscosity and volatility. With the increase of 

reaction temperature, the viscosity of solvent will decrease and the mass transfer 

coefficient between triglyceride and methanol will be enhanced40. However, the 

increase of temperature will also increase the cost of production of biodiesel. 

Furthermore, previous studies proved that due to the low heat of reaction (-18.5 

kJ/mol FAME at 25°C), the conversion of biodiesel in transesterification reaction 

wouldn't change much with change in temperature4'13. 

Mixing rate is also a factor that affects the biodiesel synthesis. In batch reaction, the 

parameter related to mixing rate is stirring speed. Increase of stirring speed will 

effectively increase the mass transfer coefficient between triglyceride and methanol 

to benefit the reaction. However, lipase can be deactivated by the shear stress caused 

by high stirring speed. The common stirring speed employed in research is in the 

range of 50-250 rpm. However, Shen and Vasudevan reported that there was no 

significant difference in biodiesel yield with stirring speed in the range 150 rpm to 
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400 rpm18, and 150 rpm was recommended to diminish possible lipase deactivation. 

2.6 Effect of Active Water Content 

In addition to solvent-cosolvent systems, source of substrate, temperature and 

mixing rate, active water content of lipase is also an important factor related to 

biodiesel production and enzyme re-use efficiency. 

Lipase is usually a hydrophilic protein and there is a necessary amount of water 

surrounding the active site of lipase, namely active water, to protect the activity of 

lipase and provide necessary microenvironment for hydrogen bonding inside the 

protein. In transesterification reactions catalyzed by enzyme, addition of water can 

also form a water-oil interface to enhance the activity of enzyme and protect the 

enzyme from deactivation by methanol17. However, large amount of added water can 

also increase the saponification reaction rate to reduce biodiesel conversion. Thus, 

there is an optimal water addition amount in transesterification reactions to 

maximize the biodiesel yield. 

Water content is the common parameter to measure the amount of added water, 

which can be based on solvent, substrate and amount of enzyme by weight or 

volume3'39. For the transesterification reaction catalyzed by lipase, the optimal water 

content based on lipase from different sources and different solvents is different39. 
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Al-Zuhair et al.41 reported that for lipase from Mucor miehei, maximum biodiesel 

yield emerged at water content less than 10% (based on volume of solvent). Chen et 

al.42 studied the methanolysis of waste cooking oil catalyzed by Rhizopus orzyae 

lipase and reported that the optimal water content is 50% based on weight of 

substrate. 
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CHAPTER 3 

EXPERIMENTAL METHODS 

3.1 Introduction 

In this thesis, the effects of four parameters (solvent-cosolvent system, temperature, 

methanol molar ratio and active water content) and two used enzyme washing 

methods on the performance of Thermomyces lanuginosus lipase immobilized on 

zeolite ZSM-5 in the transesterification of waste vegetable oil were investigated. 

Specially, the experiments steps consisted of the following: 

a) Immobilization of Thermomyces lanuginosus lipase on zeolite ZSM-5 by 

different techniques; 

b) Effect of organic solvent-cosolvent system on the transesterification reaction of 

waste vegetable oil catalyzed by Thermomyces lanuginosus lipase immobilized 

on zeolite ZSM-5. The four organic solvents were w-pentane, w-hexane, 

H-heptane and wo-octane and the co-solvent was 5 vol.% te/7-butanol; 

c) Effect of operation temperature (25°C, 30°C, and 40°C) on the 

transesterification reaction of waste vegetable oil catalyzed by Thermomyces 

lanuginosus lipase immobilized on zeolite ZSM-5; 

d) Effect of methanol molar ratio and addition method (stepwise, 3:1 batch and 6:1 

batch) on the transesterification reaction of waste vegetable oil catalyzed by 

Thermomyces lanuginosus lipase immobilized on zeolite ZSM-5; 
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e) Effect of active water content (2.5%, 5%, 7.5% and 10% by weight of enzyme) 

of enzyme on the transesterification reaction of waste vegetable oil catalyzed by 

Thermomyces lanuginosus lipase immobilized on zeolite ZSM-5; 

f) Comparison of two washing methods (A and B - which are defined later) of 

used Thermomyces lanuginosus lipase immobilized on zeolite ZSM-5. 

3.2 Materials 

Zeolite ZSM-5 was purchased from Zeolyst International, Inc., Conshohocken, PA, 

USA. 4-Trimethylsiloxybenzaldehyde was purchased from Gelest, Morrisville, PA, 

USA. Used canola oil was purchased from ConAgra Food, Inc., Omaha, NE, USA. 

Lipase from Thermomyces lanuginosus (solution) with approximate activity of 

100,000 U/ml (1 U is defined as the amount of lipase that catalyzes the conversion of 

1 micro mole of triglyceride per minute) and glyceryl trioleate (practical grade, 

approximate 65%) were all purchased from Sigma-Aldrich, St. Louis, MO, USA. 

Pure /erZ-butanol and methyl acetate were purchased from Acros Organics, Geel, 

Belgium. HPLC grade n-hexane, n-heptane, n-pentane and iso-octane were 

purchased from the Fisher Scientific, Pittsburgh, PA. 

3.3 Immobilization of Thermomyces Lanuginosus Lipase on Zeolite ZSM-5 

Zeolite ZSM-5 modified with aldehyde functional group was obtained from Dr. 

Gonghu Li's lab. 40 ml glass vials with PTFE/silicone septa from Kimble, Vinland, 
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NJ, USA were used as reactors to immobilize Thermomyces lanuginosus lipase on 

modified zeolite ZSM-5. The reaction system contained 5 ml lipase solution (about 

500.000 U lipase) and 3 g zeolite modified with aldehyde functional group. The vial 

was put on the refrigerator at - 20°C. After 24 hours, the product was filtered on a 

filter paper (90 mm diameter) from Whatman Inc., Kent, UK for 30 minutes and then 

dried in the vacuum desiccator for 48 hours. 

3.4 Effect of Various Parameters on Thermomyces Lanuginosus Lipase 

Immobilized on Zeolite ZSM-5 in Catalyzing Transesterification Reactions 

Even though the experimental methods and results are presented in the following 

order, please note that the experiments were not performed in the same chronological 

order. 

3.4.1 Study of Solvent Effect on Performance of Thermomyces Lanuginosus Lipase 

Immobilized on Zeolite ZSM-5 

40 ml glass vials with PTFE/silicone septa from Kimble, Vinland, NJ, USA were 

used as reactors to produce biodiesel. The reaction system contained 0.2 g 

immobilized Thermomyces lanuginosus lipase, 4 ml solvent («-pentane, w-hexane, 

w-heptane and /so-octane), 200 |il terf-butanol, and 1 ml triglyceride (65 vol.%). To 

minimize the denaturation of lipase caused by methanol, exactly 27|il methanol 

(molar ratio of methanol to triglyceride =1:1) was added stepwise to the reactor at 0 

hour, 4 hour and 8 hour, respectively. Hence the total molar ratio of methanol to 
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triolein was kept at 3:1 (81 jil methanol). The reaction was carried out at a constant 

temperature water bath at 30°C and a stirring speed of 250 rpm. The reaction was 

stopped after 12 hours. After the completion of each cycle, the enzyme was washed 

by washing method B (see chapter 3.5) and re-used. Two cycles were employed with 

each solvent. 

3.4.2 Study of Co-Solvent Effect on Performance of Thermomyces Lanuginosus 

Lipase Immobilized on Zeolite ZSM-5 

40 ml glass vials with PTFE/silicone septa from Kimble, Vinland, NJ, USA were 

used as reactors to produce biodiesel. The reaction system contained 0.2 g 

immobilized Thermomyces lanuginosus lipase, 4 ml wo-octane as solvent, 1 ml 

triglyceride (65 vol.%) and 81 ja! methanol. To test the effect of co-solvent, one set 

contained 200 p.1 of ter/-butanol as co-solvent, while the comparison set contained 

200 |il /so-octane. The reaction was carried out in a constant temperature water bath 

at 30°C and a stirring speed of 250 rpm. The reaction was stopped after 12 hours. 

After each cycle, the enzyme was washed by washing method B (see chapter 3.5) 

and re-used. Four cycles were employed with each set. 

3.4.3 Study of Temperature Effect on Performance of Enzyme Immobilized on 

Zeolite ZSM-5 

40 ml glass vials with PTFE/silicone septa from Kimble, Vinland, NJ, USA were 
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used as reactors to produce biodiesel. The reaction system contained 0.2 g 

immobilized Thermomyces lanuginosus lipase, 4 ml wo-octane as solvent, 200 pi 

terf-butanol as co-solvent, and 1 ml triglyceride (65 vol.%). Twenty seven pi 

methanol (molar ratio of methanol to triglyceride =1:1) were added stepwise to the 

reaction system at 0, 4 and 8 h, and the total amount was 81 pi. The temperature of 

reaction was set at 25°C, 30°C and 40°C. The reaction was carried out at a constant 

stirring speed of 250 rpm. The reaction was stopped after 12 hours. After each cycle, 

the enzyme was washed by washing method B (see chapter 3.5) and re-used. Two 

cycles were employed at each temperature. 

3.4.4 Effect of Methanol Molar Ratio on Performance of Immobilized Enzyme 

40 ml glass vials with PTFE/silicone septa from Kimble, Vinland, NJ, USA were 

used as reactors to produce biodiesel. The reaction system contained 0.2 g 

immobilized Thermomyces lanuginosus lipase, 4 ml /so-octane as solvent, 200 pi 

tert-butanol as co-solvent, and 1 ml triglyceride (65 vol.%). Methanol was add in the 

following three ways: a) 27^1 methanol (molar ratio of methanol to triolein =1:1) 

was added stepwise to the reactor at 0, 4 and 8 h, respectively, and the total molar 

ratio of methanol to triolein was kept at 3:1; b) 81 fil methanol (molar ratio of 

methanol to triolein = 3:1) was added at 0 h; c) 162 jxl methanol (molar ratio of 

methanol to triolein = 6:1) was added at 0 h. The reaction was carried out at a 

constant temperature water bath at 40°C and a stirring speed of 250 rpm. The 

reaction was stopped after 12 h. After each cycle, the enzyme was washed by 
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washing method B (see chapter 3.5) and re-used. Two cycles were employed with 

each set. 

3.4.5 Effect of Active Water Content on Immobilized Enzyme Performance 

Prior to the experiment, immobilized Thermomyces lanuginosus lipase was divided 

into five vials, each with 0.2 g. Every vial was dried in a vacuum desiccator for 24 h, 

and then 0, 5, 10, 15 or 20 |xl deionized water (water content 0, 2.5%, 5%, 7.5% and 

10% by weight of enzyme) was added. 40 ml glass vials with PTFE/silicone septa 

from Kimble, Vinland, NJ, USA were used as reactors to produce biodiesel. Every 

vial contained 0.2 g enzyme, 4 ml /so-octane as solvent, 200 ^1 tert-butanol as 

co-solvent, 81 |il methanol and 1 ml triglyceride (65 vol.%). The reaction was 

carried out in a constant temperature water bath at 30°C and a stirring speed of 250 

rpm. The reaction was stopped after 12 h. 

3.4.6 Study of Active Water Effect on Performance of Enzyme Immobilized on 

Zeolite ZSM-5 

Prior to the experiment, 0.2 g immobilized Thermomyces lanuginosus lipase was 

dried in vacuum desiccator for 48 h, and then 15 jil deionized water (7.5% by weight 

of enzyme) was added. 40 ml glass vials with PTFE/silicone septa from Kimble, 

Vinland, NJ, USA were used as reactors to produce biodiesel. The reaction system 

contained 0.2 g enzyme, 4 ml /so-octane as solvent, 200 |il tert-butanol as co-solvent, 

81 |il methanol and 1 ml glyceryl trioleate. The reaction was carried out in a constant 
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temperature water bath at 30°C and a stirring speed of 250 rpm. The reaction was 

stopped after 12 h. After each cycle, the enzyme was washed by washing method B 

(see chapter 3.5) and re-used. Four cycles were employed with each set. 

3.5 Comparison of Two Used Enzyme Washing Methods 

After the transesterification reaction, two methods to wash the used immobilized 

Thermomyces lanuginosus lipase were employed: in the first method A) all liquid 

was decanted from the reaction vial by pipette and 4 ml /so-octane was added to the 

vial to immerse the used enzyme for 15 minutes. This procedure was repeated four 

times. Finally, all liquid was removed by pipette and the washed used enzyme was 

air dried for 10 h; in the second method B), the liquid was decanted from the reaction 

vial by pipette and 4 ml /so-octane was added to the vial to immerse the used 

immobilized enzyme. After 15 minutes, all liquid was removed by pipette and 4 ml 

terf-butanol was added to the vial. The vial was kept at 30°C and stirred at 250 rpm 

for 15 minutes. Finally, all liquid was removed by pipette and 1 ml /so-octane was 

added to the vial. Then the vial was kept at 30°C, 250 rpm for 45 minutes. After 45 

minutes, all liquid was removed by pipette and the washed used enzyme was air 

dried for 10 h. 

3.6 Analysis Method 

The concentration of methyl ester was measured by a HP 5890 gas chromatography 
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with a Restek RTX-1 column (15 m x 0.32 mm * 3 |am). Helium with a purity of 

99.99% was chosen as the carrier gas. The column was initially set at a temperature 

of 185°C and ramped up to 200°C in 1.5 minutes and then maintained at 200°C. The 

temperature of injector and flame ionization detector were set as 275°C. Methyl 

oleate was employed as biodiesel standard in GC analysis. 

The GC analysis indicates that the peak of methyl ester appears around 18 minutes 

t 
(see Figure. 3.1). The calculation of methyl ester amount is based on the peak area 

of methyl ester and the corresponding standard curve. The yield of methyl ester was 

determined as the mass of methyl ester produced per initial mass of oil (g methyl 

ester/ g oil). 
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Figure 3.1 peak of methyl ester tested by GC machine 

In this study, methanol is the acyl-acceptor, which means the biodiesel essentially 

consists of mono fatty acid methyl ester (MFAE) (shown in Figure 1.1). Thus, the 

peaks of biodiesel tested by GC are similar to Figure 3.1 which was calculated by 

the calibration method outlined in Appendix A. 
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To determine the appropriate time of sampling, 30|il samples were collected at 0, 3, 

6, 12 and 24 h, and then diluted with 1 ml /so-octane for GC analysis. A plot of the 

yield (calculated from peak area) versus time as shown in Figure 3.2 revealed that 

the optimum time for sample collection is 12 h. 
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Figure 3.2 Determination of optimum sampling time 

In this thesis, samples were collected at 12 h, and then diluted with 1 ml iso-octane 

prior to GC analysis. Every experiment was repeated twice. Thereby, each data point 

shown in tables in the results section is the mean value.. 
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CHAPTER 4 

EXPERIMENT RESULTS 

4.1 Introduction 

In this chapter, results are discussed in five parts: 

i) Effect of organic solvents («-pentane, n-hexane, ^-heptane and iso-octane) 

and co-solvent (ter/-butanol) was evaluated as possible media for 

transesterification of used cooking oil catalyzed by Thermomyces 

lanuginosus lipase immobilized on zeolite ZSM-5. 

ii) Effect of temperature (25°C, 30°C, and 40°C) was evaluated to determine 

optimum system temperature for transesterification of used cooking oil 

catalyzed by Thermomyces lanuginosus lipase immobilized on zeolite 

ZSM-5. 

iii) Effect of methanol addition method (stepwise, 3:1 batch and 6:1 batch) was 

evaluated for transesterification of used cooking oil catalyzed by 

Thermomyces lanuginosus lipase immobilized on zeolite ZSM-5. 

iv) Effects of active water content of enzyme on the transesterification of used 

cooking oil catalyzed by Thermomyces lanuginosus lipase immobilized on 
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zeolite ZSM-5 was investigated. 

v) Effect of used enzyme washing method on the transesterification of used 

cooking oil catalyzed by Thermomyces lanuginosus lipase immobilized on 

zeolite ZSM-5 was investigated. 

4.2 Effect of Organic Solvent-Cosolvent system 

Four organic solvents were employed in this study (n-pentane, w-hexane, w-heptane 

and /so-octane), and the density, viscosity, biodiesel yield after the first and second 

runs as well as the enzyme re-use efficiency are shown in Table 4.1. The enzyme 

re-use efficiency for different solvents are also shown in Figure 4.1. 

Table 4.1 Density, viscosity, and first and second runs yields with specific organic 

solvents 

Name Densitya Viscosityb 1st Yieltf 2nd Yield 
Re-use 

Efficiencyd 

n- pentane 0.626 240 0.47±0.02 0.40±0.02 0.84±0.02 

w-hexane 0.655 294 0.47±0.02 0.41 ±0.02 0.86±0.02 

M-heptane 0.680 386 0.51±0.02 0.32±0.02 0.64±0.02 

/so-octane 0.692 469 0.49±0.02 0.31±0.02 0.65±0.02 

aDensity is tested at 25°C, and the unit is g/ml. 
bViscosity is tested at 20°C, and the unit is |iPa*s. 
cThe 1st and 2nd yield is tested at 12 h and the unit is g FAME/g triglyceride. 
dThe re-use efficiency is calculated as the ratio of 2nd yield/ 1st yield. 
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Figure 4.1 Enzyme re-use efficiency with different organic solvents. 

From Table 4.1, it can be observed that there was no significant difference in first 

run yield among the different solvents, while the re-use efficiency changed 

significantly between «-pentane/«-hexane group and M-heptane/wo-octane group. 

And Figure 4.1 clearly shows that the highest re-use efficiency was obtained with 

n-hexane as the solvent. Thus, n-hexane is recommended as the best organic solvent 

for transesterification reaction catalyzed by Thermomyces lanuginosus lipase 

immobilized on zeolite ZSM-5. 

The probable reason is that n-hexane provides the best suspension conditions for 

Thermomyces lanuginosus lipase immobilized on zeolite ZSM-5. From Table 4.1, it 

can be observed that the density and viscosity of these alkane solvents increase with 

increase in carbon number. n-Hexane has a density similar to the immobilized 

enzyme and a relatively low viscosity provides the best suspension conditions for 

Thermomyces lanuginosus lipase immobilized on zeolite ZSM-5.. Please note that 

the experiments were not performed in the same chronological order as reported in 
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the results section. 

The effect of hydrophilic co-solvent was also tested in this study. The result of final 

yield in consecutive batch reactions with re-used enzyme with or without co-solvent 

adding is shown in Table 4.2 and Figure 4.2.. 

Table 4.2 Consecutive batch reactions with re-used enzyme with and without 

addition of co-solvent 

3rd Yield 

Average 

Name f Yield 2nd Yield 3rd Yield 4th Yield Re-use 

Efficiency" 

5 vol.% 

tert-butanol 
0.52±0.02 0.44±0.02 0.36±0.02 0.28±0.02 0.78±0.01 

No 
Co-Solvent 

0.54±0.02 0.29±0.02 0.12±0.02 0.06±0.02 0.49±0.01 

"The average re-use efficiency is calculated by (2nd yield/1st yield + 3 rd yield/2nd 

yield + 4th yield/3rd yield)/3. 

5 Vol% co-solvent 

no co-solvent 

Reaction cycles 

Figure 4.2 Consecutive batch reactions with re-used enzyme with and without 

addition of co-solvent 

From Table 4.2 and Figure 4.2, it is observed that addition of /erf-butanol as 

co-solvent did enhance the performance of Thermomyces lanuginosus lipase 
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immobilized on zeolite ZSM-5 in recycle use. The plausible reason is that methanol 

is miscible with the hydrophilic terf-butanol, and addition of a small amount of 

/er/-butanol can dilute the methanol and control the diffusion rate of methanol to the 

active site of enzyme. 

4.3 Effect of Temperature 

As discussed in Chapter 2, temperature has a significant effect on enzyme activity 

and reaction system mass transfer. In this study, three temperatures were evaluated 

(25°C, 30°C, and 40°C) and the results are shown in Table 4.3 and Figure 4.3. 

Table 4.3 Effect of different temperature on transesterification reaction 

Name Is' Yield" 2nd Yield Re-use Efficiency 

25 °C (Room 

Temperature) 
0.57±0.02 0.29±0.02 0.51 ±0.02 

30°C 0.49±0.02 0.26±0.02 0.53±0.02 

40°C 0.44±0.02 0.09±0.02 0.21±0.02 

aThe reaction conditions are: 0.2 g immobilized enzyme, 400 ml /'so-octane, 200 j_il 

tert-butanol, 1 ml triglyceride (65 vol.% pure), stepwise addition of 3 equivalent 

mole methanol (81 jil total), 250 rpm. Reaction time is 12 h. 
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Figure 4.3 Effect of different temperatures on transesterification reaction 

The results clearly showed that reaction at 25°C and 30°C resulted in good re-use 

efficiency. Since the difference in yields is quite small, a temperature of 25°C is 

recommended, and this is likely to result in energy savings as well. 

4.4 Effect of Methanol Addition Method 

The concentration of methanol in the reaction medium has a significant effect on 

biodiesel synthesis, because it is an important substrate in the transesterification 

reaction and its high polarity has a deleterious effect on lipase activity. In this study, 

three methanol addition methods were employed: i) 1 equivalent mole methanol was 

added stepwise at 0, 4 and 8 h, and the total content was 3 equivalent molar; ii) 3 

equivalent moles of methanol were added at 0 h; iii) 6 equivalent moles of methanol 

were added at 0 h. The results are shown in Table 4.4 and Figure 4.4. 
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Table 4.4 Results of different methanol addition methods 

Name 1st Yielif 2nd Field Re-use Efficiency 

Stepwise 3 

equivalent mole 
0.48±0.02 0.31 ±0.02 0.64±0.02 

Batch 3 equivalent 

mole 
0.52±0.02 0.44±0.02 0.85±0.02 

Batch 6 equivalent 

mole 
0.12±0.02 0.03±0.02 0.27±0.02 

aIn stepwise addition method, we assumed the methanol is consumed up in 4 h, thus 

the molar ratio of methanol is considered to be 1. Reaction conditions: 0.2 g 

immobilized enzyme, 400 ml iso-octane, 200 (il tert-butanol, 1 ml triglyceride (65 

vol.% pure), 25°C and 250 rpm. The reaction time is 12 h. 
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Figure 4.4 Results of different methanol addition methods 

The results showed that batch addition of 3 equivalent moles of methanol resulted in 

the best results. The difference between this result and what is reported in the 

literature is probably due to the addition of a co-solvent and the re-establishment of 

an active water layer. Addition of hydrophilic co-solvent can control the diffusion 

rate of methanol to the active site by diluting the methanol, and re-establishment of 

the active water layer near the enzyme's active site before each cycle can offset the 
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damage of high concentration of methanol. However, if the concentration of 

methanol is too high, not only the active water but also the enzyme itself will be 

affected, which will result in a low biodiesel yield as well as low re-use efficiency. 

Thus, the maintenance of an active water layer certainly enhances the performance 

of the catalyst and allows use of a higher concentration of methanol, which in turn 

results in a higher biodiesel yield. In our case, the 3:1 batch addition resulted in 

higher yields compared to stepwise addition. The addition of tert-butanol also to 

some extent prevents the active water layer from being stripped. 

4.5 Effect of Active Water Content 

Active water content is an important factor in enzyme activity. From Chapter 3, we 

know that one step in enzyme immobilization is drying the enzyme in a vacuum 

desiccator, which may strip some active water from the enzyme. Furthermore, the 

acyl-acceptor methanol, and washing step in enzyme re-use process will also strip 

the active water. Thus, addition of optimal amount of deionized water is a good 

method to enhance enzyme's activity. 

4.5.1 Optimal Content of Deionized Water Addition 

After testing, it was ascertained that there was almost no activity of enzyme after 24 

hours treatment in a vacuum desiccator, and the enzyme was assumed to be totally 

dry at this stage. In this study, different amounts of deionized water (0 |xl, 5 (J.1, 10 |a.l, 

15 ^1 and 20 jil) were added to totally dried enzyme. The biodiesel yield for each 
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case is shown in Figure 4.5. 

0 5 10 15 20 

water/ul 

Figure 4.5 Biodiesel yield catalyzed by enzyme with different amount of active 

water. Reaction condition: 0.2 g immobilized enzyme, 400 ml /so-octane, 200 |j.l 

ter/-butanol, 1 ml triglyceride (65 vol.% pure), 3 equivalent mole methanol, 40°C 

and 250 rpm. Reaction time is 12 h. 

From the results, we observe that with 0.2 g enzyme, 15 jal deionized water addition 

(7.5% by weight of enzyme) result in the highest biodiesel yield and the yield 

decrease with additional water addition. 

4.5.2 Effect of Deionized Water Addition Method on Enzyme Re-use 

In this thesis, the effect of deionized water addition method on performance of 

re-used enzyme was investigated. The results are shown in Table 4.5 and Figure 4.6. 

It is evident that addition of optimum amount of deionized water certainly promote 

enzyme re-use performance. 
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Table 4.5 Effect of deionized water addition methods on performance of re-used 

enzyme 

Average 

Name 1st Yield 2nd Field 3rd Yield 4th Yield Re-use 

Efficiency 

With 

deionized 

water 

addition 

Without 

deionized 

water 

addition 

0.52±0.02 0.44±0.02 0.37±0.02 0.28±0.02 0.82±0.01 

0.54±0.02 0.29±0.02 0.12±0.02 0.07±0.02 0.49±0.01 

With Water Addition 0 .6  
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Figure 4.6 Effect of deionized water addition methods on performance of re-used 

enzyme 

4.6 Comparison of Used Enzyme Washing Methods 

In this study, two used enzyme washing methods were tested. The enzyme lost and 

re-use efficiency is shown in Table 4.6. 

Table 4.6 Effect of different used enzyme washing methods 

,, ,st v ,, W V i jo Weight Loss% Re-use 
Name I Yield T Yield1 ® b „„ . 

of Enzyme Efficiency 
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Method Ac 0.49±0.02 0.26±0.02 14.8±0.1% 0.53±0.02 

Method B 0.49±0.02 0.31±0.02 7.6±0.1% 0.64±0.02 

"Both 2nd yields were calculated after adjusting for weight loss. For example, in the 

2nd run of Method A, the yield from GC analysis was 0.22614 g/g, the weight loss% 

of immobilized-enzyme was 14.8%. Thus, the final yield is 0.22614/(1-14.8%) = 

0.26542 g/g. This calculation method was employed in all data of this thesis. 
bIn both runs, the initial immobilized enzyme's weight was 0.2 g. To maintain the 

same conditions, weight loss was determined after drying and addition of water at 

the end of the first run. 
cThe explanation of washing method A & B and the reaction conditions are 

illustrated in Section 3.5. 

The results clearly demonstrate that washing method B is better on two counts: 

lower enzyme loss and higher enzyme re-use efficiency. 

36 



CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

5.1 Conclusions 

In this thesis, the effects of four organic solvents (w-pentane, M-hexane, w-heptane 

and /so-octane), co-solvent (terf-butanol), three temperatures (25, 30 and 40°C), 

three methanol addition methods (3:1 stepwise, 3:1 batch, 6:1 batch), four water 

content (2.5%, 5%, 7.5% and 10% by weight of enzyme) and two used enzyme 

washing methods (A and B) on the transesterification reaction catalyzed by 

Thermomyces lanuginosus lipase immobilized on zeolite ZSM-5 were investigated. 

The optimum conditions for transesterification of waste vegetable oil by 

Thermomyces lanuginosus lipase immobilized on zeolite ZSM-5 were as follows: 

n-hexane as solvent, 5 vol.% tert-butanol as co-solvent, room temperature of 25°C, 

batch wise addition 3 equivalent mole methanol addition, washing method B and 

7.5% by weight of enzyme deionized water added to totally dried enzyme. 

The concentrations of the acyl-acceptor and solvent play a critical role in the 

performance of the enzyme catalyst. The highest enzyme re-use efficiency was 

obtained with n-hexane, which resulted in the best enzyme suspension. A 3:1 

methanol molar ratio with all the methanol added at the beginning of the reaction 

was better than stepwise addition method. This is contrary to what has been reported 
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in the literature and is perhaps due to the presence of the co-solvent, terf-butanol. 

Thus, the combination of a good solvent-cosolvent system and optimal substrate 

concentration are very important to enhance the performance of Thermomyces 

lanuginosus lipase immobilized on zeolite ZSM-5. 

The results of experiments to determine active water content showed that active 

water loss was a reason for lower activity of Thermomyces lanuginosus lipase 

immobilized on zeolite ZSM-5 after each cycle. The maintenance of an active water 

layer certainly enhances the performance of the catalyst and allows use of a higher 

concentration of methanol, which in turn results in a higher biodiesel yield. In our 

case, the 3:1 batch addition resulted in higher yields compared to stepwise addition. 

5.2 Recommendations for Future Work 

Here are four aspects of future work recommended: 

i) Additional solvents should be investigated. Other than organic solvents, ionic 

solvents are also excellent. From the study of Ha et al.43 and Gamba et al.44, 

many ionic such as [EMIM].[TfO], [BMIM].[THf2], [BMIM].[PF6] have 

shown good performance in transesterification reactions. 

ii) Effect of different co-solvents need to be evaluated. In addition to 5 vol.% 

tert-butanol, other hydrophilic organic solvents and terf-butanol of other 
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concentrations should be investigated. For example, methyl isopropyl ketone 

may be a good co-solvent13. 

iii) Other source of acyl-acceptors should be investigated. Ethanol, methyl 

acetate and tert-butanol can also be good source of acyl-acceptor13'3. In 

addition to their lower toxicity to enzymes, the benefit of these low 

hydrophilic acyl-acceptors is that the concentration of these acyl-acceptors 

can be high, and some of these acyl-acceptors can also work as the co-solvent 

to promote the rate of triglyceride conversion. 

iv) Reaction run in PFR should be investigated. The use of a continuous process 

could result in higher yields and increased productivity. 
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APPENDIX A 

PERPARATION OF CALIBRATION CURVES 

As illustrated in Chapter 3, in this study methyl oleate was selected as the biodiesel 

standard for GC analysis, iso-Octane was selected as dilution solvent to get different 

concentrations of methyl oleate and /'so-octane solution. 

Calibration curves were prepared as follows: 

i) 20 p.1 methyl oleate was added to 2 ml iso-octane to get the "specimen 0"; ii) After 

adequate shaking of specimen 0, 0.8 ml mixture was extracted and mixed with 1 ml 

/so-octane to get the "specimen 1"; iii) 1 ml of mixture specimen 1 was extracted and 

mixed with 1ml /so-octane to get "specimen 2"; iv) 1 ml of mixture was extracted 

from specimen 2 and mixed with 1 ml iso-octane to get "specimen 3"; v) 1 ml of 

mixture was extracted from specimen 3 and mixed with 1 ml /so-octane to get 

"specimen 4". 

Except specimen 0, the mass concentration of specimen 1-4 was calculated by 

Equation A. 1: 

Wu * mi 
Wi= 

mi * (1 - Wi.i) +1; (Equation 

A.2) 

45 



Wi (g/g) and Wj.i (g/g) is the mass concentration of specimen i and specimen i-1, 

repectively; m-t (g) is the weight of mixture extracted from specimen i-1; Ij (g) is the 

weight of /so-octane added to the mixture. Concentration of specimen 0 was 

calculated by weight of methyl oleate divided by added iso-octane. 

30 (il samples of specimen 1-4 were extracted and test by GC analysis. Software 

Origin was used for calculating the area of peaks. Finally, these area values were 

correlated with the corresponding mass concentrations in the calibration curve as 

shown in Figure A.l. In this study, calibration curve was tested every week with 

R2 > 0.95. 
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Figure A.l Calibration curve for methyl oleate 
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