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ABSTRACT 

DETECTION OF TREHALOSE IN PORPHYRA EXTRACTS 

USING MASS SPECTROMETRY 

AND GAS CHROMATOGRAPHY-MASS SPECTROMETRY 

by 

Ying Huo 

University of New Hampshire, May 2012 

It is known that trehalose helps many plants to survive under desiccated 

environment26. This property of trehalose has also been proposed to explain why 

Porphyra could survive desiccation when left on dry land for a long period of 

time25. However, after extensive study25, effort at identifying trehalose in 

Porphyra has been unsuccessful, leaving the question of whether trehalose really 

exists in Porphyra unanswered. In my thesis research, in collaboration with Dr. 

Anita Klein, I set out to use ion-trap mass spectrometry and gas chromatography 

coupled with mass spectrometry to identify and quantify the amount of trehalose 

in Porphyra extracts. Using these techniques, I was able to show for the first time 

that trehalose definitely exists and the amount decreases as Porphyra goes 

through desiccation. These results set the stage for further study in the role of 

trehalose plays in survival under desiccation. 

ix 



CHAPTER 1 

INTRODUCTION 

1.1 Gfvcans 

A living cell utilizes four major biomolecules as constituent building 

blocks, and a fifth that is a carbohydrate conjugate of two. They are 

carbohydrates, nucleic acids, lipids and proteins. Among them, 

carbohydrates are the most abundant, comprising glycosaminoglycans, 

glycolipids, and glycoproteins. The term glycan refers to carbohydrate 

residues attached to a protein, and these are of two types, the O-linked and 

N-linked, which refers to their attachment position on the protein. Glycans 

expand the protein's function in two ways; indirectly by modulating the 

proteins physical properties or its conformation or directly by serving as 

receptors or adhesive components. 

1.2 Glvcans and Proteins 

These glycans are covalently attached to a protein primarily through 

the amino acids asparagine (N-linked) and serine or threonine (O-linked). 

Such glycoconjugates exhibit numerous functional activities in cell-cell 

recognition and adhesion, cell migration during development, blood clotting, 

the immune response, wound healing and many other important biological 

processes1. 
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Such conjugates are called glycoproteins and found in high 

abundance on the outside surface of the plasma membrane, in blood and in 

the extracellular matrix. They are also found in some specific organelles 

inside cells, for example, the Golgi apparatus. This site is the primary source 

of glycoprotein processing. But N-glycans are first attached to the protein in 

the endoplasmic reticulum (ER) before the protein has completed 

translation. This high mannose glycan moves from the ER to the Golgi 

where it is processed specifically to the individual needs of the cell. These 

resultant conjugates are rich in information, forming extremely specific sites 

for recognition and high-affinity binding by other proteins1. 

Glycoproteins have been an interesting topic for many years, 

especially for the last 20 years when biological function was specifically 

attributed to glycosylation. This attracted interest from scientists around the 

world. This interest comes from both their abundance in living organisms, 

and their diverse functions. Glycoproteins play important roles in cell 

structure as constituents of cell walls and connective tissues. They are also 

abundant in blood where they serve many basic functions, as for example, 

blood clotting. Mucus is a glycoprotein and this glycoprotein is critical for the 

physical properties of all mucosal secretions. The diverse functions of 

glycoproteins have been attributed to their variable structures. 

1.3 Structural Features of Glycoproteins 
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Structurally, there are two major kinds of conjugate linkages, to N-, 

and O-linked glycans. Some glycoproteins exhibit both and many have only 

one linkage types. These glycoproteins are profoundly affected by the 

number and size of their conjugates. N-links are formed by carbohydrate 

attached to the nitrogen atom of asparagine (Asn) and it happens in 

the endoplasmic reticulum, while O-linked glycoprotein are formed by the 

glycan attached to the protein through the oxygen of serine (Ser) or 

threonine (Thr) and this also happens in the Golgi apparatus, (Fig. 1.1). 

The abundance of N-glycans is high in eukaryotes but less common in 

prokaryotes2. 

N-linked O-linked 
Or* 

I ' » 
< H- < M; 

Figure 1.1 N-linked and O-linked glycoproteins 

Fig. 1.1 N-linked and O-linked Glycans linked at Amino Acid Sites. 

1.4 N-linked Glvcans 

N-linked glycosylation occurs in more than half of the total human 

proteome. These glycans are attached to asparagine in the sequence Asn-X-Ser 

or Asn-X-Thr, where X is any amino acid except proline. The glycans are 
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commonly composed of N-acetylgalactosamine, N-acetylglucosamine, fucose, 

galactose, mannose and other monosaccharides. All N-glycans share a common 

pentasaccharide core: Mana1-6(Mana1-3)Man{31-4GlcNAc|31-4GlcNAc(31-Asn-

X-Ser/Thr5. These N-glycans can be divided into three classes: high-mannose, 

complex, and hybrid, (Fig.1.2). High-mannose N-glycans (a) have as the 

common core that is extended with many mannose residues only. For complex 

N-glycans (b) the core is extended with N-acetylgalactosamine, N-

acetylglucosamine, galactose, and frequently fucose (not shown) and often 

capped with neuraminic acid. The hybrid N-linked glycans (c) represent core 

extensions of both (a) and (b). 

Figure 1.2 Three kinds of N-linked glycoproteins (a) high-mannose (b) complex (c) hybrid 

Fig. 1.2 Three kinds of N-linked glycans 
(a) high-mannose (b) complex (c) hybrid 

(a) lb) •>) Asm 

H N-acetylglucos^minc A Fucosc Galactose 
N-acetylgalactosamine $ Manncse Sialic acid 

4 



In eukaryotes, the biosynthesis of N-linked glycans begins from the 

cytoplasmic face of the endoplasmic reticulum (ER) membrane and ends in Golgi 

apparatus. Their synthesis occurs in four steps: first, on the external side of the 

endoplasmic reticulum membrane, a lipid dolichol phosphate conjugates with N-

acetylglucosamine in two steps forming Dolichol-P-P-N-acetylglucosamine-N-

acetylglucosamine. This precursor is built up with single additions of mannose 

into an array of three antennae (a, b, c) and finally capped with three glucose 

residues on antennae c. This structure serves as a precursor for 

oligosaccharyltransferase which attaches it to the polypeptide chain The 

protein-bound N-glycan precursor is now processed by trimming off two of the 

three terminal glucose residues exposing a single glucose-nine mannose core 

structure3. This important entity binds to cell chaperones that ensure a correct 

conformation of the peptide. From here the conjugate is processed to a low 

molecular weight core structure which is extended and modified into two types: 

complex, and hybrid. These steps are catalyzed by a combination of membrane-

bound glycosidases and glycosyltransferases. Some high mannose structures 

transverse the Golgi unaffected. Defects in N-glycan biosynthesis can cause 

many kinds of human diseases such as congenital disorders of glycosylation. 

In glycoproteins, the attached glycans can directly affect the functions of 

the conjugated proteins3. From in vivo studies, it has been reported that changing 

N-glycans' sialylation and branching can affect erythropoietin's activity7, 8. 

Recent studies also found that N-glycan profiles were changed in disease states 

and this new or altered glycan structure can influence biological activity in a 
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negative way11. Therefore, the N-glycan profile patterns have been shown to 

represent disease bio-markers 9'10. 

N-glycans also play important roles in eukaryotic cells because of the 

following reasons. First, they facilitate protein folding. It works through the 

terminal glucose residues and thereby supports protein folding. Additionally, Nl-

linked glycans modulate a protein's structure which is important in cell-cell 

interactions. Lastly, N-linked glycans are known to target proteins for lysosomal 

degradation. This is because N-linked glycan are phosphorylated forming a 

mannose-6-phosphate residue, a marker label for degradation by the lysosome. 

1.5 Methods of Glycan Analysis 

Although carbohydrates were the first biopolymer identified, our 

understanding of the biological functions of carbohydrates trails far behind 

those of proteins and nucleic acids. A large part of the reason for this is our 

inability to dissect the structural complexity of glycans. Compared with the 

comprehensive sequencing strategies for both proteins and nucleic acids, a 

comprehensive strategy for glycan sequencing has been lacking12. Glycan 

analysis is complicated due to the reality that glycans can be branched and 

joined by a variety of linkages which is the key difference with analysis of 

nucleic acids and proteins. 

Establishing a complete glycan sequence should provide composition, 

positions of inter-residue linkage, topologies with linear and branching 

information, stereo and structural isomers, and the sites of glyconjugation. 
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Glycan structures are usually approached using a variety of methods: which 

may include, partial enzymatic or acid hydrolysis, which can provide smaller 

pieces to separate using chromatography. Smaller fragments can be 

considered for further study by instrumental analyses, like NMR and MS. 

Another common consideration has been linkage composition analysis as 

permethylated alditol acetates (PMAA)3. 

High-resolution NMR Spectroscopy 

Glycan analysis depends increasingly on high-resolution NMR 

spectroscopy. High-resolution NMR spectroscopy is one of the most useful 

tools for de novo glycan characterization13. However, the practical use of 

NMR is limited because of the requirement of relatively large amounts of 

pure sample needed, , the limitations imposed by molecular weight and 

sensitivity, as well as the factors that limit their use, such as the instrumental 

cost and complexity of spectra interpretation. 

High-performance Liquid Chromatography and Gas Chromatography 

High-performance liquid chromatography and gas-liquid 

chromatography have also been widely used in analyzing carbohydrate 

samples. Their strength is that they are good at determining types and 

amounts of monosaccharide. Their weakness is that it is hard to get 

information about positions of inter-residue linkage, topologies with linear 

and branching information and the sites of glyconjugation. 

7 



Mass Spectrometry 

Mass spectrometry has increasing popularity in analyzing glycan 

structures because of its high sensitivity and the requirement of relatively 

small amount of pure samples. 

MALDI Mass Spectrometry 

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI 

MS) is a very sensitive tool for determining the mass of the molecular ion to 

get the composition of the entire oligosaccharide chain; especially the 

software "GlycoMod" that is used to suggest a "cartoon" structure from the 

ion composition. GlycoMod is online and free, and easy to use. The 

shortcoming of MALDI MS is that it cannot get the detailed branching and 

linkaging information of the glycan. 

Tandem Mass Spectrometry 

Tandem Mass Spectrometry (MS/MS) has also been used in 

sequencing glycans. It is good at detecting the mass of the molecular ions 

and some of its fragments that are result from breakage of the glycosidic 

bonds1. The weakness is that the MS/MS spectra are deficient in terms of 

assigning the exact details of a carbohydrate12. 

Ion Trap Sequential Mass Spectrometry (MSn) 
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A method called "Ion Trap Sequential Mass Spectrometry (MSn)" has 

been utilized at University of New Hampshire with a set of software to 

interpret the MSn spectra14,15. Ion trapping MS allows for repeated isolation, 

fragmentation, and detection of ions, making it possible to reconstruct the 

detailed structure of a glycan molecule from the successively obtained ion 

fragments (Fig. 1.3). It works in a procedure as described below: first, a full 

mass spectrum is obtained called MS1; second, an ion within the MS1 

spectrum, can be selected for further detail fragmented again; the ion is 

isolated, and all other ions are depleted from the trap. The single isolated ion 

is now fragmented by a combination of collisional activation with a neutral 

gas (CID) and pulse electrical activation, in the gas phase of mass 

spectrometer. The product spectrum obtained from this procedure is called 

MS2. This step can be repeated again (MS3,4'5 ), until the ion under study is 

understood. Spectra from successive fragmentation steps are called MSn. 

Third, the spectral interpretation is assisted by a set of software tools16, 17. 

From multiple MSn pathways, and comparing with structural library 

standards, the components of glycan linkage and branching structures can 

be assigned. 
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Electrospray Ionization Ion Trap 
Mass Spectrometry 

V S WSJ s.'S3 

Ion trap Slows for repeated isolation, fragmentation. 
and detection of tons, making it possible to reconstruct 
the detailed structure of a glycan molecule from tfie 
successively o&tained ion fragments 

v N R^wsset. ai, . 'JSC. .377-402. 
Figure 1.3 Electrospray Ionization Ion Trap Mass Spectrometry 
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DETECTION OF TREHALOSE IN PORPHYRA EXTRACTS 
USING MASS SPECTROMETRY 

AND GAS CHROMATOGRAPHY-MASS SPECTROMETRY 

2.1 Introduction 

Porphyra belongs to the phylum of red algae and comprises about seventy 

species18. It grows in intertidal areas, usually between the higher intertidal zone 

and the splash area in cold waters of temperate oceans19. It is the most popular 

consumable seaweed, which makes it the most domesticated species of aquatic 

algae20,21. One of the most famous usages of Porphyra is that it is used to wrap 

fish and rice to make the Japanese food "sushi". For this reason, it is also an 

economically important plant species. For example, in Japan alone, the annual 

production of Porphyra is about one billion dollars22. 

Trehalose is a unique disaccharide because it is formed through a, a-1, 1-

glucoside bond between two a-glucose units which makes it a nonreducing 

disaccharide (Fig. 2.1). Trehalose is synthesized by fungi, plants, and 

invertebrate animals23. Trehalose is widely used in many fields because of its 

stability, water absorbency, and radicalization resistance. Especially in recent 

years, because of the growing appreciation of the important biological functions 

of trehalose, it has become one of the most abundant saccharides used in the 

world of cosmetics and pharmaceuticals. 

11 



trehalose Chemical Characteristics 

- _ Q , >'-O^- O Disaccharide 
OH' -r V OH 

J |l ao-1,1 -glucosicfe bond between two a-glucose units 

HOv" i OH HO*̂  : OH .. . 1 - Nonreducing sugar 
oh Oh 

Figure 2.1 Chemical structure of trehalose Molar mass 342 g/mol 

Fig. 2.1 Chemical structure of trehalose 

It has been reported that trehalose has roles in helping plants survive in 

desiccated environments. Consider the Selaginella species for example, which 

spreads in the desert. Even though it may be dried out due to the lack of water 

for a long time, it will essentially revive after a rain. This is thought to be because 

of the presence of trehalose24 in this plant. There are two prevalent theories to 

explain how trehalose helps plants survive desiccation. One is the vitrification 

theory which explains that trehalose can form a glass-like state under dry 

conditions that contributes to the preservation of cellular structure25'26. The other 

is the water displacement theory, whereby during desiccation trehalose may bind 

to macromolecules and membranes by replacing water and maintaining basic 

cellular structure24,25. It is believed that a combination of the two theories is at 

work. 

In recent years, an interesting biological question about Porphyra's life 

cycle links Porphyra to trehalose by scientists studying seaweed25. The question 

is how Porphyra can survive desiccation during low tide period. According to the 

knowledge of geography, most places in the ocean usually experience two high 

tides and two low tides each day30'31. As Porphyra grows in the intertidal area, it 
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is exposed to a dry environment during the low tide period for hours every day. 

What are the essential components that help Porphyra survive desiccation and 

revive after high tide returns has become an interesting question (Fig. 2.2). It 

was hypothesized25 that it may be trehalose that helps Porphyra survive the 

desiccation during the low tide period. This hypothesis is based on the following 

evidence; first, in many plants, it is known that trehalose helps them survive in 

desiccated environments26' 27; second, trehalose has been widely found in red 

algae species28, even though not reported in Porphyra25; third, genomic data 

suggests that Porphyra contains genes29 that synthesize trehalose. Therefore it 

was hypothesized that trehalose may exist in Porphyra and help it survive during 

the long low tide period25. 

Desiccated Porphyra at low tide Fully hydrated Porphyra at high tide 

Figure 2.2 Desiccated Porphyra at low tide and Fully hydrated Porphyra at high tide 

Fig. 2.2 Desiccated Porphyra at low and fully hydrated Porphyra at high tide. 

In order to test this hypothesis, carbohydrate screening using NMR and 

quantification using HPLC has been applied. But the data showed that trehalose 
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could not be detected in Porphyra using these two methods25. It is not clear why 

these instrumental approaches have proved unsuccessful. 

In collaboration with Dr. Klein, who is an expert of seaweed research, we 

are trying to solve the probability of trehalose in Porphyra extracts using mass 

spectrometry and gas chromatography. There are two questions we are 

interested in. The first one is a qualitative question: whether trehalose can be 

detected in Porphyra extracts using mass spectrometry; the second one is a 

quantitative question: whether the amounts of trehalose are the same in hydrated 

and desiccated Porphyra samples. 

Mass spectrometry has been predominantly used in analyzing glycan 

structures because of its high sensitivity and the requirement of relatively small 

amount of pure sample. The method of Ion Trap Sequential Mass Spectrometry 

(MSn) has been successfully used in analyzing glycan structures through 

constructing multiple MS" pathways11,14' and 17. This would be the first time that 

mass spectrometry has been applied in detecting trehalose. The commercial 

value of Porphyra will dramatically increase if trehalose is found in Porphyra to 

help with desiccation and this would definitely improve Porphyra's prosperity of 

industrialization. 

Gas chromatography is good at determining types and amounts of 

monosaccharides, which has made it a powerful tool for quantification and it has 

been routinely used in detecting and quantifying trehalose39 in many other 

plants32. This will be the first time that gas chromatography is used in comparing 

the amount of trehalose between hydrated and desiccated Porphyra samples. 
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This will also facilitate our understanding of the mechanism of how trehalose 

helps plants survive in a desiccation environment. 

To characterize trehalose an experimental approach was designed as 

shown, (Fig. 2.3). Samples were first purified using porous graphitized carbons 

(PGC). The samples were then separated into two batches. One batch was 

treated by permethylation and then injected into mass spectrometer to check if 

there was trehalose in Porphyra extracts; the other batch was treated with Tri-Sil 

HTP (TMS) reagent to obtain TMS derivatization and then injected into gas 

chromatography to check if there was trehalose in the Porphyra samples and the 

amount of trehalose in hydrated and desiccated Porphyra samples. 

Sample 

Permethylation 

Mass spectrometry 

TMS derivatization 

Gas chromatography 

Sample purification using PGC 

Fig. 2.3 Scheme for detecting trehalose in Porphyra extracts 

Permethylation is an important strategy for oligosaccharide structural 

characterization for the following reasons: first, permethylation can locate 
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glycosidic bonds; second, it can enhance ion signals33, 34. Trimethylsilation is a 

necessary step of gas chromatography sample preparation because the sample 

needs to be volatilized for chromatography and subsequently resolved and 

detected. 
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2.2 Experimental Section 

Materials and Reagents 

Porphyra extracts and the sample preparation protocol were provided by 

Dr. Klein's lab, University of New Hampshire. All of the rest of materials and 

reagents were of analytical purity and used as received. HPLC grade water, 

acetonitrile (ACN), and chloroform were purchased from Fisher Scientific 

(Fairlawn, NJ, USA). Porous graphitized carbon (PGC) was purchased from 

Alltech Associates (Deerfield, IL). Sodium hydroxide (NaOH), trifluoroacetic acid 

(TFA), HPLC grade dimethylsulfoxide (DMSO), sucrose and sodium hydroxide 

(NaOH) beads were obtained from Sigma-Aldrich (St. Louis, MO, USA). Spin 

Columns were obtained from Harvard Apparatus (Holliston, MA, USA). Methyl 

iodide (CH3I) was received from EM Science (Gibbstown, NJ, USA). Tri-Sil HTP 

(HDMS: TMSC: pyridine) Reagent was purchased from Thermo Scientific 

(Bellefonte, PA, USA). Trehalose standard was purchased from Ferro Pfanstiehl 

Laboratories, Inc (Waukegan, IL, USA). 

Porphyra extracts preparation 

Porphyra species samples were collected from Ft. Stark, Newington, 

NH. These samples were then kept in salt water obtained from Dover Point in a 

tank with a bubbler until use. The salt water tank was contained in a larger tank 

with circulating cold water. 1.5 hours before samples were taken, individual 

Porphyra plants were removed from the salt water and placed on a clean surface 
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to experience a "low tide" partially dehydrated state. The Porphyra was then 

removed from the tank, patted dry on a paper towel, and cleaned on each side 

using a Q-tip. Cleaned plant samples were then ground to a fine powder in liquid 

N2. 30 mg of this powder was measured into 1.5 mL microcentrifuge tubes and 

200 |iL of water were added. Each sample was thoroughly vortexed and 

subsequently centrifuged at 16000rpm for 1 minute. Supernatant (100 (iL) was 

then transferred to a clean microcentrifuge tube. Hydrated samples followed 

same protocol but did not have the 1.5 hour "low tide" treatment. 

Sample purification using PGC 

Dried out samples were purified by using a PGC column. PGC purification 

of glycans was carried out as below. Firstly, PGC was prewashed 3 times with 1 

M NaOH, 1 time with water, 1 time with 80% ACN/ 20% water in 0.1% TFA, 1 

time with 75% ACN/25% water in 0.1% TFA and the PGC packed column was 

equilibrated with 4 mL of water. Secondly, samples were applied into the PGC 

column and eluted by 5 aliquots of 1 mL of water. Thirdly, the 5 mL eluent was 

dried out in a Speedvac. 

Permethvlation 

Spin Column was washed twice by 0.3 mL DMSO before adding NaOH 

beads and then the column was packed with about 3cm of NaOH beads. NaOH 

beads were washed with DMSO twice. Glycan sample was suspended in 60 |iL 

DMSO, 45 \iL Mel and 2 |iL water and applied to the spin column. A red cap was 
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gently placed on the column and the column was incubated at room temperature 

for 15 minutes. The column was centrifuged for 60 sec at the speed of 2000 rpm. 

45 |iL Mel was added to the flow through and all the material at the bottom of the 

column was applied back to the spin column and centrifuged for 60 sec at the 

speed of 2000 rpm. The flow through was added with 100 nL ACN and spun for 

60 sec at 2000 rpm. Liquid/Liquid extraction was performed with Chloroform 5 

times and each time by adding 1.5 ml_ chloroform and 3 mL H20. Samples were 

dried out in a SpeedVac. 

Preparation of the TMS derivatives 

Dried samples were treated by adding 200 uL of Tri-Sil HTP reagent into 

each reaction and then placed on heat block at 80°C for 20 minutes. Samples 

were cooled rapidly to room temperature and evaporated just to dryness under a 

stream of nitrogen gas at room temperature. Samples were dissolved in 1 mL of 

chloroform, vortexed, centrifuged and then the top 850|jL was removed and 

saved in a separate new tube. This step was repeated twice and the top 

supernatants were combined. Samples in the new tube were dried in a 

SpeedVac until dry. 100|il_ of chloroform was added into each sample and 3 \xL 

was injected into the GC-MS system. 

Separation of the TMS derivatives using GC/MS 

The equipment we used was Finnigan PolarisQ GC/MS Benchtop Ion 

Trap Mass Spectrometer of Thermo Electron Corporation (Austin, TX, USA), 
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supplied with ion trap detection (ITD) system and a TriPlus autosampler (Austin, 

TX, USA). The column used was the product of Agilent Technologies (New 

Castle, Delaware, USA); code: DB-5MS, 30mx 0.25mmx 25nm. 

The temperature program for gas chromatography was set as below: 

Injections were made at 200°C, held at 200°C for 0.5 minute, and then 

elevated to 300 °C with the ramp 10°C/min and held at 300°C for 10min. 

The temperature of the transfer line was 260°C. The actual parameters of 

the ITD system were defined by the automatic set up mode. 

The actual ITD parameters were: mass range: 50-650 Dalton; ionization 

mode: El; ionizing potential: 70eV; filament emission current: 250|iA; s/scan: 25; 

Fil/Mul delay 4min; peak threshold 0 count. 

ESI Mass Spectrometry and Data Interpretation 

Mass spectra were obtained using a LTQ, an MS" mass spectrometer 

(Thermo Fisher Scientific, Waltham, MA). This instrument was equipped with a 

TriVersa Nanomate (Advion) automated ion injection source. Samples were 

infused at flow rates ranging from 0.30 to 0.60 nL/min. Spectra were collected by 

using Xcalibur 1.4 and 2.0# software (Thermo Fisher Scientific). Average signal 

was accomplished by 5 micro-scans within each scan and adjusted 50 to 300 

scans in each spectrum depending on signal intensity. This improved spectral 

quality and was important, especially at the higher orders of MSn, particularly 

beyond MS5 or MS6. Normalized collision energy was set at 35%; activation Q 

was set at 0.25 and activation time for 30 ms. The relative abundance of product 
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ions cannot be affected by changing the collision energy, but the abundance of 

precursor ion can. Activation time and the activation Q were kept constant 

because the product ion abundances can be influenced by them. 

In-house bioinformatics tools developed by Hailong Zhang were used to 

assist data analysis. Ion trapping allows for repeated isolation, fragmentation, 

and detection of ions, providing fragments to reconstruct the detailed structure of 

a glycan molecule from the successively obtained ion fragments. It works in a 

procedure as described below: first, after the sample is injected into the mass 

spectrometer, the full mass spectrum is obtained and this is called MS1; second, 

an ion of interest the spectra is selected as precursor ion and can be fragmented 

again. In this step, the selected precursor ion is isolated to a alternative trajectory 

and the remaining ions ejected. Secondly, a collision gas is introduced (CID) to 

obtain additional structural detail on the isolated fragment. The spectrum 

obtained from this procedure is called MS2. This step can be repeated again and 

again until the most detailed structure is obtained. The spectrum from the 

successive steps is called MSn. Third, the spectral interpretation are assisted 

using a set of software that provided an understanding of the structural details. 

From multiple MSn pathways, a fragment library of standards, glycan's structure 

can usually be determined, including interresidue linkage and structural isomers. 
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2.3 Results and Discussion 

In this project, our goal was to answer two questions about trehalose in 

Porphyra. The first is a qualitative question: whether trehalose is present, and the 

second, is a quantitative question, how much. Was the amount of trehalose the 

same in hydrated and desiccated Porphyra samples? In order to present the data 

clearly, the results are presented as two parts: (1) Mass spectrometry analysis; 

(2) Gas chromatography-mass spectrometry analysis. 

Mass spectrometry analysis 

Five samples were processed in parallel and they were: © the blank 

sample, as the negative control; (D the trehalose standard 3.42|ig; © the fully 

hydrated Porphyra extracts; © the fully hydrated Porphyra extracts with 

trehalose standard 3.42|ig added into it as the internal control; © the partially 

desiccated Porphyra extracts. All of the samples were purified with PGC first and 

then permethylated before they were finally injected into Mass Spectrometer for 

analysis. The permethylated samples were dissolved in 90% methanol, andlOnl 

was injected into LTQ Mass Spectrometer. The characteristic ion for trehalose in 

MS1 profile was observed, m/z 477 (with Na+ adducted) after permethylation 

(Table 2.1). 
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Trehalose Before Permethylation After Permethylation 

Molecular 
weight 

342 477 

(with Na+ adducted) 

Structure 
cW\ °*VY"OH 

HOxX "'OH HO'̂ Y^^OH 
OH OH 

^O-^A -°yyv* 

y "o crv^cr^ 

Na+ 

Table 2.1 Characteristic peaks for trehalose in MS1. After permethylation, the 
molecular weight of trehalose becomes 477, which was ion observed in the 
trehalose spectrum. 

The ion m/z 477 was found in sample ©: trehalose standard 0.0342ng4il 

as expected and it was the most abundant peak. All the other minor peaks also 

appeared in sample ® blank (Fig. 2.4). In order to confirm if the ion was 

trehalose in the Porphyra samples, further fragmentations was carried out on 

both the Porphyra samples and the trehalose standard. The results are 

presented in three sections: (1) MS1 spectral comparison between the standard 

and the Porphyra extracts; (2) spectral patterns of trehalose; and (3) spectral 

comparison of the MS" spectra obtained from the ion m/z 477 of the trehalose 

standard and the Porphyra samples. 
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trehalose standard 0.0342yg.,Ml MS' 
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Fig. 2.4 MS1 profiles of trehalose standard 0.0342|ig/|il and the blank. The ion of 
m/z 477 marked with a red line was observed as the major ion in the MS1 

spectrum of trehalose standard and all the other minor peaks have been found in 
the MS1 profile of the blank sample. All spectra are displayed to show the most 
abundant ion as the base ion. 
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(1) Comparison of MS1 profiles 

In order to see whether trehalose could be detected in Porphyra extracts, 

we first compared MS1 spectra of the Porphyra extracts samples with that of the 

trehalose standard. The ESI MS profiles from the four samples: the trehalose 

standard 0.0342|ig/|il; the fully hydrated Porphyra extracts; the fully hydrated 

Porphyra extracts with trehalose standard 0.0342|ig/iil added into it as the 

internal control; and the partially desiccated Porphyra extracts (Fig. 2.5). The 

MS1 spectra of the latter three samples have a lot of similarities. The 

characteristic peak at ion of m/z 477 of the permethylated trehalose was found in 

the positive control sample and the fully hydrated Porphyra extracts with 

trehalose standard added as expected, while it has also been found in the MS1 

profiles of the fully hydrated Porphyra extracts and the partially desiccated 

Porphyra extracts. More importantly, in all four samples, the m/z 477 ion showed 

up as the major peak. Now the question was whether the m/z 477 ion that 

showed up in all of the Porphyra extracts samples was due to natural occurring 

trehalose as it was in the trehalose standard. In order to answer this question, 

the CID patterns were studied (Fig.2.5). 
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Fig. 2.5 MS1 profiles of permethylated samples: trehalose standard 0.0342|ag/(j.l; 
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fully hydrated Porphyra extracts; fully hydrated Porphyra extracts with trehalose 
standard 0.0342|ig/|il added as the internal control; partially desiccated Porphyra 
extracts. 

(2) Fragmentation patterns of trehalose 

There are two major fragments in glycosidic samples as a result of CID: 

glycosidic bond and cross-ring cleavages35. Glycosidic cleavage is the result of 

C-0 bond rupture providing B- and Y- ions, (Fig. 2.6). Alternatively, rupture 

could occur on the distal side of the glycosidic oxygen providing C- and Z-type 

ions,  (Fig.  2.6) .  A cross-r ing c leavage ruptures two bonds across the 

pyran ring of a monomer, which yields A- and X- type ions5 (Fig. 2.6). 

Glycosidic cleavages provide monomer connectivity, while cross-ring cleavages 

provide information of monomer linkage position. For a permethylated sample, 

glycosidic bond cleavage provides specific pyranosyl-1-ene (B-ion) and Z-type 

ions with an open hydroxyl (Y-type ion). These cleavage identifiers are called as 

scars12. The position of such scars is determined by the composition mass of the 

ion under investigation. Generally, facile bond ruptures are mostly glycosidic 

bonds, B-/Y-type and C-/Z-type. Double cleavage cross-ring product ions are 

observed more commonly under higher energies or with glycans of smaller size 

where collision energy dissipation is constrained to fewer oscillators. 

ch2oh CHoOH 

/ ' 
/ £>H 

o 

OH 

R 

0.2A B3 c3 
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Fig. 2.6 Nomenclature for carbohydrate fragments generally observed under CID 

After the MS1 spectrum has been obtained using the Electrospray 

ionization ion trap mass spectrometer, the precursor ion m/z 477 was selected 

and fragmented to confirm its structure (Fig. 2.7). Eight major product ions were 

observed in this MS2 spectrum: m/z 227.09, 241.09, 259.09, 329.09, 373.18, 

389.18, 403.18 and 445.18. In order to obtain additional structural detail each of 

these ions, were further selected and collided, MS3. As an example, the ion m/z 

241.09 was disassembled to provide a detailed structural understanding of this 

MSn process. 

trehalose standard 0.0342pg/}il _MS2of peak 477 

1<Xh 2jm 

90-

70-

s eo-
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24'09 

2zm i i mix 
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?5i 16 389 18 403 16 44518 477 27 
-T'T'T*1 '—I i.y-..r...T...y ' •[ f yi-'T-r- [ TM—r y , -r ,—|—>•" V 'T "! 

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 

Fig. 2.7 MS2 of ion m/z 477 of permethylated trehalose standard 0.0342[ig/|il 

In order to get a more detailed understanding of the ion structure m/z 

241.09, further fragmentation was initiated (Fig. 2.8). From this MS2 spectrum 
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241.09, four major ions were observed, m/z 139.09, 209.09, 211.09, and 226.09. 

These products can be explained as showed in Fig. 2.9. Peak m/z 226.09 can be 

considered a loss of one methyl group, while ions m/z 139.09, 209.09, 211.09 

are due to the cleavages shown (Fig. 2.9). From these studies, the structure of 

ion m/z 241.09 is consistent and expected. 
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Fig. 2.8 MS3 of ion m/z 477-241 of permethylated trehalose standard 0.0342|ig/|il 

MS2 of the ion with m/z 259.09 (in the spectrum of MS2 of m/z 477) is also 

studied using ESI MS (Fig. 2.10). Three major peaks at m/z 155.09, 185.09 and 

227.09 were observed. The structure and fragmentation pattern of this m/z 

259.09 ion was rationalized (Fig. 2.11). 
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Fig. 2.9 Fragmentation patterns proposed for the product ions of MS3 m/z 477-
241 of permethylated trehalose standard 0.0342|ig/|il 
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Fig. 2.10 MS3 m/z 477-259 of permethylated trehalose standard 0.0342|jg/|il 
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Fig. 2.11 Fragmentation patterns proposed for the product ions of MS3 m/z 477-
259 of permethylated trehalose standard 0.0342|ig/|il 
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In order to get great structural detail, the ion m/z 373.18 (MS2 477), was 

disassembled further (Fig. 2.12). From the MS2 spectrum, three major ions were 

observed, m/z 257.09, 259.18, and 343.18. The ion with m/z 343.18 is unusual in 

MSn spectra, therefore further fragmentation was pursued (Fig. 2.13). In the m/z 

343.18, five major peaks have been found. They are m/z: 211.09, 241.09, 

259.09, 269.18 and 311.27. Following MS4, the sample amounts are low; so in 

further studies only highly abundant ions were considered in structure analysis. 

Through MSn analyses, the fragmentation patterns of m/z 373.18 in the MS2 

spectrum of ion m/z 477 and the ion m/z 343.18 in the MS2 spectrum of peak 

373.18 were obtained (Fig. 2.14 and 2.15). From these studies, the fragment, 

m/z 373.18 in the MS2 spectrum of peak 477 may be considered a marker ion for 

trehalose. 

In the MS2 spectrum of ion m/z 477 of permethylated trehalose standard, 

the ion with m/z 403.18 is one of the major peaks. Its further fragmentation is 

also studied by ESI mass spectrometer (Fig. 2.16). Three major peaks have 

been found as: 257.09, 259.18 and 373.18. The structure and fragmentation 

pattern of this m/z 403.18 ion is showed (Fig. 2.17). 
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Fig. 2.12 MS3 m/z 477-373 of permethylated trehalose standard 0.0342|ag/|il 
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Fig. 2.13 MS4 m/z 477-373-343 of permethylated trehalose standard 0.0342[ig/|il 
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Fig. 2.14 Fragmentation patterns proposed for the product ions of MS m/z 477-
373 of permethylated trehalose standard 0.0342|jg/nl 
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Fig. 2.15 Fragmentation patterns proposed for product ions of MS4 m/z 477-373-
343 of permethylated trehalose standard 0.0342|ig/|J 
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Fig. 2.16 MS m/z 477-403 of permethylated trehalose standard 0.0342|ig/|il 
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Fig. 2.17 Fragmentation patterns proposed for the product ions of MS3 m/z 477-
403 of permethylated trehalose standard 0.0342|ig/|il 
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From the results above, the fragmentation patterns (Fig. 2.18) of 

permethylated trehalose standard has been obtained which can be used as a 

37 



standard to compare with Porphyra extracts samples. Although sequential mass 

spectrometry has been used in studying trehalose and has been published in 

many research papers37,38, 39, it is the first time that the fragmentation pattern of 

permethylated trehalose has been studied. Since the standard fragmentation 

patterns of trehalose has been elucidated, the next step will be to compare the 

MSn of the Porphyra samples with that of the trehalose standard to find out if 

trehalose indeed exists in the Porphyra extracts. 
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Fig. 2.18 Fragmentation patterns proposed for permethylated trehalose 

38 



(3) Comparison of MS" of peak 477 

MSn of ions m/z 477 from the Porphyra extracts samples have been 

studied and their comparison of the MS2 m/z 477 with that from the fully hydrated 

Porphyra extracts, fully hydrated Porphyra extracts with 3.42|ig trehalose 

standard added as the internal standard, and the partially desiccated Porphyra 

extracts are compiled (Fig. 2.19). All four samples have very similar MS2 spectra 

(Table 2.2). 

T rehalose Fully hydrated Fully hydrated Partially 

standard Porphyra Porphyra desiccated 

3.42(jg extracts extracts with Porphyra 

trehalose extracts 

standard 

3.42[ig 

227 V V V V 
241 V V V V 
259 V V V V 
329 V V V V 
373 V V V V 
389 V V V V 
403 V V V V 
445 V V V V 

Table 2.2 major peaks in the MS2 of ion m/z 477 of permethylated samples: 
trehalose standard 0.0342ng/nl; fully hydrated Porphyra extracts; fully hydrated 
Porphyra extracts with trehalose standard 0.0342[ig/|il; partially desiccated 
Porphyra extracts. 

All major peaks have been labeled with a red line. The only difference 

between Porphyra extracts samples and trehalose standard is the ion with m/z 

347 peak which shows up as a major peak in Porphyra extracts samples while as 
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a minor peak in trehalose standard. MS2 was conducted to study it deeply in 

trehalose standard sample but no more information could be obtained from the 

MS2 which is probably because the amount of it is too low to be detected by LTQ 

mass spectrometer. 

In order to confirm whether it is trehalose that exist in Porphyra extracts 

samples, further disassembly was carried out the higher abundance products m/z 

477, including m/z 241 (Fig. 2.20), m/z 259 (Fig. 2.21), m/z 373 (Fig. 2.22), and 

m/z 403 (Fig. 2.23). From the MS3 spectra m/z 477_241 comparison of the 

permethylated samples, the four samples have exactly the same set of major 

peaks. There was a small difference between the Porphyra extracts samples and 

the trehalose standard (m/z 153) that shows up as a major peak in Porphyra 

extracts samples while only as a minor peak in the trehalose standard. In the 

comparison of MS3 m/z 477_259, the four samples also have the same set of 

peaks while the difference between them is that there is more background noise 

peaks in the Porphyra extracts samples which may be expected because these 

extracts cannot be as pure as the commercial trehalose standard sample. 

Comparison of MS3 m/z 477_373 from four samples showed that they are exactly 

the same, with the same set of ions and relative abundance. From the 

comparison of MS3 m/z 477_373 of the four permethylated samples, the same 

set of peaks have been obtained except the Porphyra samples have more 

background noise peaks due to the same reason mentioned above. From these 

data, we can conclude that we are able to detect trehalose in the Porphyra 

extracts samples. This is the first time that trehalose is definitively identified in 
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Porphyra extracts and it is also the first time that sequential mass spectrometry is 

used in studying Porphyra. 

41 



ridard 0.034?po/pl -MS1 of peak 47? 

turn <0.1 JJV -J 

Full hydrated Porphyra l~xtracts_MS2 of peak 477 

2£g_l£ 

itj-lll 

1 -
?40 2iiO 

Full hydrate-d Porphyra Extracts adding trehalose standard o 0342pg-v> MS- of p»ak 477 

Partially desiccated Porpnyra Extraets_MS2 of peak 477 

yon yyo -'-v ?< 

Fig. 2.19 MS2 of ion m/z 477 of permethylated samples: trehalose standard 
0.0342|ig/|il; fully hydrated Porphyra extracts; fully hydrated Porphyra extracts with 
trehalose standard 0.0342[ag/[il added as the internal control; partially desiccated 
Porphyra extracts. 
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Fig. 2.20 MS3 m/z 477_241 of permethylated samples: trehalose standard 
0.0342ng/|il; fully hydrated Porphyra extracts; fully hydrated Porphyra extracts with 
trehalose standard 0.0342|jg/|il added as the internal control; partially desiccated 
Porphyra extracts. 
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Fig. 2.21 MS3 m/z 477_259 of permethylated samples: trehalose standard 
0.0342(ig/(il; fully hydrated Porphyra extracts; fully hydrated Porphyra extracts with 
trehalose standard 0.0342[ig/nl added as the internal control; partially desiccated 
Porphyra extracts. 
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Fig. 2.22 MS3 m/z 477_373 comparison of permethylated samples: trehalose 
standard 0.0342ng/|jl; fully hydrated Porphyra extracts; fully hydrated Porphyra 
extracts with trehalose standard 0.0342|ig/|il added as the internal control; partially 
desiccated Porphyra extracts. 
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Fig. 2.23 MS3 ion m/z 477_403 of permethylated samples: trehalose standard 
0.0342ng/|il; fully hydrated Porphyra extracts; fully hydrated Porphyra extracts with 
trehalose standard 0.0342[ig/|il added as the internal control; partially desiccated 
Porphyra extracts. 

46 



Gas chromatoqraphv-mass spectrometry analysis 

Seven samples were processed in parallel and they are: © the Blank 

sample, as the negative control; © the sucrose standard 0.684|ig; CD the trehalose 

standard 0.684ng, in order to see the standard GC/MS chromatogram of trehalose; 

© a mixture of sucrose standard 0.684|ig and trehalose standard 0.684|ig; © the 

fully hydrated Porphyra extracts; © the fully hydrated Porphyra extracts with 

trehalose standard 0.684ng added into it as the internal control; © the partially 

desiccated Porphyra extracts. All of the samples were purified with PGC first and 

then prepared as TMS derivatives before they were injected into gas 

chromatography-mass spectrometer for analysis. 

Although GC/MS has been widely used in trehalose detection and has been 

reported many times43, 45 and 46, different groups use different GC columns and, 

when the same type of column is used, different temperature programs were used. 

So first of all, we need to make sure our GC program is appropriate. Sucrose is the 

other non-reducing disaccharide that has been found so far, which has the same 

molecular weight as trehalose. The GC chromatograms of sucrose, trehalose, and 

a mixture of sucrose and trehalose of the same amount show that our GC method 

had resolving ability to separate and detect trehalose (Fig. 2.24). The retention 

time of trehalose is 9.31 min, while it is 8.52 min for sucrose (Table 2.3). The 

difference between the retention time of the same saccharide in the single and the 
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mixed samples is very small; for trehalose the retention time is exactly the same 

suggesting reliability. 
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Fig. 2.24 GC chromatogram of trehalose 

Retention time of 
single saccharide 
(min) 

Retention time of 
mixed saccharide 
(min) 

Time difference 
(min) 

T rehalose 9.31 9.31 0.00 

Sucrose 8.52 8.53 0.01 

Table 2.3 Comparison of characteristic peak retention time on carbohydrate 
derivative 

Five concentrations of trehalose standard solution were prepared to 

generate a standard curve for quantitative analysis. They are 0 pmol, 5000 pmol, 

10000 pmol, 15000 pmol and 20000 pmol. These five samples are processed in 

parallel and dried out before the preparation of TMS derivatives and then they 

were injected into the gas chromatography-mass spectrometer for quantitative 

analysis, (Table 2.4). This was repeated three times and the peak area were 

average. Using Microsoft Excel, we calculated the relationship between the 

characteristic peak area of trehalose and the quantity of trehalose as 

Y=1034X+1534.1, Y is the amount (pmol) of trehalose and X is the characteristic 

peak area of trehalose derivative, R2 is 0.9752 (Fig. 2.25). This standard curve 

will be used in the quantification of trehalose in the Porphyra extracts samples. 

T rehalose 
standard 

A B C D E 

pmol 0 5000 10000 15000 20000 
Peak area (E4) 0 1.71 3.42 5.13 6.84 

Table 2.4 The relation of trehalose derivative characteristic peak area and 
trehalose quality 

49 
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Fig. 2.25 Standard curve of trehalose quantification using GC; The amount of 
trehalose was plotted against the characteristic peak area in the GC 
chromatograms 

The trehalose standard 0.684|ig, the fully hydrated Porphyra extracts, the 

fully hydrated Porphyra extracts with trehalose standard 0.684ng and the partially 

desiccated Porphyra extracts were processed in parallel. They were purified with 

PGC first and then prepared as TMS derivatives before they were finally injected 

into the gas chromatography-mass spectrometer for analysis. In the GC 

chromatograms of Porphyra extracts (Fig. 2.26), we found a peak at the retention 

time of 9.27min, which is 0.04min different from that of the standard trehalose 

samples. Especially, in the chromatogram of the fully hydrated Porphyra extracts 

with trehalose standard 6.84(ig added, the peak area at 9.27min increases 

significantly, and it is the only peak that increases after 6.84|ig of trehalose 

standard is added into the fully hydrated Porphyra extracts, which suggests that 

this peak must be due to the existence of trehalose in the samples. Since this peak 

50 



exists in the chromatograms of all the Porphyra extracts samples, it suggests 

trehalose must exist in the Porphyra. 

We also compared the mass spectra of the 9.27min peak in the GC 

chromatograms of the trehalose standard and the Porphyra extracts samples (Fig. 

2.27); they are essentially the same. This also suggests that trehalose does exist 

in the Porphyra extracts. 

Next, we quantified the amount of trehalose in the different Porphyra 

extracts samples using the standard curve developed above. The experiments 

were repeated three times and the average peak area were calculated. As a result, 

there is 7133 pmol trehalose in the fully hydrated Porphyra extracts and 5762 pmol 

trehalose in the partially desiccated Porphyra extracts (Table 2.5). Since the 

weight of each Porphyra extracts sample is 60mg, every 10mg of fully hydrated 

Porphyra extracts contain 0.4066|ig of trehalose and every 10mg of partially 

desiccated Porphyra extracts have 0.3284ng of trehalose. Therefore, it seems that 

there is la smaller amount of trehalose in the partially desiccated Porphyra. We 

currently do not understand why this is the case. Further study is surely needed to 

understand why the amount of trehalose decreases after it is subject to desiccation 

and how trehalose helps Porphyra survive during desiccation. 
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Fig. 2.26 GC chromatograms of the trehalose standard 0.684|ig, the fully hydrated 
Porphyra extracts, the fully hydrated Porphyra extracts with trehalose standard 
0.684ng added into it as the internal control and the partially desiccated Porphyra 
extracts 
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Fig. 2.27 GC/MS comparison of trehalose derivative characteristic peak of the 
trehalose standard 0.684|ig, the fully hydrated Porphyra extracts, the fully hydrated 
Porphyra extracts with trehalose standard 0.684|ig added into it as the internal 
control and the partially desiccated Porphyra extracts 
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Porphyra 
extracts 

Peak 
area 

T rehalose 
amount (pmol) 

Every 10mg Porphyra extracts 
containing trehalose (|ig) 

Fully hydrated 5.36 7133 0.4066 

Partially 
desiccated 

4.05 5762 0.3284 

Table 2.5 Comparison of trehalose content between full hydrated and partially 
desiccated Porphyra extracts 

2.4 Conclusions 

We were able to detect trehalose in Porphyra extracts for the first time and 

thus authenticate the existence of trehalose in this plant, which has been 

speculated in the field of seaweed study for a long time40'41'and42. 

We have demonstrated that trehalose can be effectively detected in 

Porphyra extracts using mass spectrometry and especially by using ion trap 

mass spectrometry coupled with sequential disassembly. This is also the first 

time that the fragmentation patterns of permethylated trehalose have ever been 

obtained and it can serve as a standard for others to compare and improve. Our 

results suggest that sequential mass spectrometry, coupled with appropriate 

sample preparation and data interpretation techniques, can be an ideal way to 

detect carbohydrates in plant extracts samples. 

Although GC/MS has been routinely used to detect and analyze trehalose 

from other sources, this is the first time it has successfully detected trehalose 

from Porphyra extracts. 
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