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Abstract 

Using Landsat 5 TM Data to Identify and Map Areas of Mangrove in Tulum, 
Quintana Roo, Mexico 

By 

Samuel S. Meacham 

University of New Hampshire, May, 2012 

Mangroves are recognized worldwide as a major ecosystem that provides 

significant ecosystem services. They are threatened due to rising pressures from human 

overpopulation and economic development. The Caribbean Coast of Mexico's Yucatan 

Peninsula contains mangrove habitat that have been negatively impacted by the 

development of the region's tourist industry. However, little research has been done to 

map and quantify the extent of mangrove in the region. This study used remote sensing 

techniques to identify mangrove in the Municipality of Tulum located in Quintana Roo, 

and to produce an accurate vector based thematic map that inventories these areas. 

Anatomical differences were analyzed and related to high-resolution field spectral data 

for each mangrove species. A vector map of mangrove habitat, including areas of inland 

mangrove, was produced with an overall accuracy of 88%. The 19,262 ha. of mangrove 

identified by this study represents a 140% increase in area over previous studies. 
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1.0 Introduction 

1.1 Study Area 
This research project was conducted in the Mexican state of Quintana Roo within 

and around the Municipality of Tulum (Figure 1), which was incorporated as a 

municipality in 2008 (Congreso del Estado de Quintana Roo, 2008). Located along the 

Caribbean coastline and stretching west to the town of Coba, it incorporates 2,040 km2, 

contains 170 populated localities and according to the 2010 census has a population of 

28,263 (Institute Nacional de Estadistica y Geografia, 2010 ). This does not, however, 

take into account a floating population of workers involved in construction, the tourism 

industry and the tourists that visit the area. 

The area's climate is tropical and receives an annual mean precipitation of 1230 

mm (Lee, 1996). Mean monthly temperatures range from 34°C in August to 20°C in 

Cancun 

Cozumel 

^Tulum 

¥ 

Quintana Roo 

Municipality of Tuhjm 

Kilometers 

Legend 

Figure 1 The Municipality of Tulum and the Solimon Bay Study Site 
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February (Lee, 1996). There is a marked rainy season from May through November and 

a dry season from December through April (Beddows, 2004). Tropical storm and 

hurricane activity frequently affect the area. The geology of the region is karst with 

large, submerged solution cave systems serving as conduits that discharge freshwater 

along the Caribbean coastline while allowing seawater to infiltrate to inland areas 

(Beddows, 2004). Saltwater circulation could play a significant role in mangroves 

existing in inland areas. 

1.2 Worldwide Status of Mangrove 
The term 'mangrove' is used to describe both the plant families and ecosystems 

that have adaptations allowing them to live in the highly saline conditions between 

terrestrial and marine ecosystems (Tomlinson, 1986). Mangroves dominate the coastlines 

of the world's tropical and subtropical regions, i.e. they are pantropical in their 

distribution. Estimates in the coverage of mangroves worldwide vary widely from 12 to 

20 million hectares (FAO, 2007). This large discrepancy only highlights the need for 

more accurate remote sensing methods of identifying and mapping mangrove forests. 

Because of their unique positioning, worldwide distribution, and high productivity, 

mangroves provide many important functions to the millions of people inhabiting 

subtropical and tropical coastlines (Polidoro et al., 2010). Their position in the 

transitional area between terrestrial ecosystems and the marine environment allows them 

to act as buffers and, as such, help to mitigate coastal erosion especially in the case of 

extreme events such as tsunamis and hurricanes (Alongi, 2008). 

Mangroves also support and protect biological diversity as they provide habitat to 

a wide variety of mammals, birds, reptiles, amphibians, fish and plants (Kathiresan and 
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Bingham, 2001). Humans depend on mangroves both directly and indirectly for their 

economic well being (Cornejo et al., 2005; Ewel et al., 1998; Kaplowitz, 2000; 

Kaplowitz, 2001). Wood and tannins are harvested commercially from mangrove forests 

worldwide (Terchunian et al., 1986). Shellfish and mollusks are collected from them, 

and many commercial and sporting fish species use mangroves as nurseries and breeding 

grounds (Ellison and Farnsworth, 1996; Kathiresan and Bingham, 2001). The rise of 

ecotourism worldwide has also seen a new-found interest in mangrove ecosystems as a 

sustainable source of economic development (FAO, 2007). 

At the same time, increases in the world's human population, and its associated 

development, are putting mangrove ecosystems at risk (Polidoro et al., 2010). Current 

estimates are that since 1980, 3.6 million hectares of mangrove have been destroyed 

(FAO, 2007). Long perceived of as unhealthy mosquito-ridden swamps (Lugo and 

Snedaker, 1974), developers have removed mangrove in order to further expand 

recreational and urbanized areas. They have also been used historically as dumping 

grounds for sewage and industrial waste (Kathiresan and Bingham, 2001). In addition, 

many developing nations are promoting the use of mangroves for aquaculture such as 

shrimp ponds (Terchunian et al., 1986; Valiela et al., 2001). While these types of 

exploitation may have short-term economic benefits, they also may have long-term 

negative impacts on the environment and local economies if they are not managed in a 

sustainable manner. 

1.3 Status of Mangrove in Mexico 
Due to its geographic location within subtropical and tropical regions, and its 

extensive coastlines on both the Pacific and Atlantic coasts, Mexico is ideally situated for 
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mangrove to proliferate. A total of 770,057 hectares of mangrove habitat were identified 

in a 2008 study of Mexico that employed remote sensing techniques by the Comision 

Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO, 2009). The 

CONABIO study was conducted using remote sensing (SPOT 5, Systeme Probatoire 

d'Observation de la Terre) and photogrammetric techniques (digital aerial imagery) and 

covered the coastal sections of the entire nation. While Mexico only contains four 

species of mangrove (Rhizophora mangle, Avicennia germinans, Laguncularia racemosa, 

Conacarpus erectus), it does contain 5% of all the mangrove in the world (FAO, 2007). 

Mangrove is protected under the Mexican Ley General de la Vida Silvestre NOM 60 Ter 

(Poder Ejecutivo Federal, 2011), yet it is threatened from a number of different forces. 

The same intensive study in 2008 by CONABIO to quantify areas of mangrove within 

Mexico, identified agriculture, cattle ranching, aquaculture and tourism as the principal 

threats to mangrove habitats (CONABIO, 2009). Of these threats, the development of 

tourism along Mexico's Caribbean coast is of greatest concern to this study. Hoteliers, 

developers and state governors in areas of Mexico where tourism infrastructure is present 

have challenged the law arguing that the protection of mangrove is hampering job growth 

by limiting development. A total of 16 non partisan governors in coastal states have 

opposed the laws protecting mangroves urging amendments that would loosen the laws 

and allow more development (AllBusiness.com, 2007). Thus, the conservation of 

mangrove in the region is of critical importance. 

Of particular interest to this study is the recently established Municipality of 

Tulum. Tulum is rich in its cultural and natural history. It is the home to two major 

Maya archeological sites, Tulum and Coba, an abundance of submerged cave systems 
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(Beddows, 2004; Meacham, 2007) that serve as the regions aquifer, portions of the 

Mesoamerican Barrier Reef and the UNESCO World heritage Site of the Sian Ka'an 

Biosphere Reserve. For these reasons and in addition to its white sand beaches, Tulum 

and the surrounding destinations of Cozumel, Cancun and the Riviera Maya are magnets 

for international tourism (Mazzotti et al., 2005) and tourist development. The growth of 

the town of Tulum and the impact that growth is having within its municipal boundaries 

are already visible in comparative satellite images (Figure 2, Figure 3). Evidence of these 

impacts helps to rationalize a study of this nature. 

Growth of the Town of Tulum 1984-2000 

2000 TM Data, Bands 7,5,3 

0 930 Meters 

Figure 2 Evidence of the Growth of the Town of Tulum 1984-2000 
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DIF, Chemuyil Bay, Bahia Principe 1984-2000 
Evidence of construction of a large hotel on top of mangrove. 

1984 TM Data, Bands 7,5,3 2000 TM Data, Bands 7,5,3 

500 250 0 500 Meters 

Figure 3 Evidence of Construction on top of Mangrove Habitat, Chemuyil, Mexico 

Established in 2008, Tulum has adopted a conservation action plan presented to 

them by local NGOS's working in concert with The Nature Conservancy that identifies 

the conservation of mangroves as one of its priorities. 

1.4 Mangrove Distribution and Classification 
The main limiting factor attributed to the global distribution to mangrove is 

temperature (Hogarth, 1999; Tomlinson, 1986). Hogarth (1999) states that the 

distribution of mangroves is more closely correlated to sea temperatures as they are 

confined mainly by the winter position of the 20°C isotherm. Thus, the great majority of 

mangrove species are confined to the subtropical and tropical regions of the world. The 

relationship to sea temperature is demonstrated by the fact that in the Americas, the 

distribution of mangroves along the Atlantic coast of South America extends to 33° South 

due to warmer sea temperatures, while the furthest southern extent on the Pacific coast 

6 



goes only as far as 3° South due to the colder currents associated with the Humboldt 

Current (Hogarth, 1999). 

Lugo and Snedaker (1974) established a classification of mangroves using an 

ecosystem approach that incorporated, '...the essential structural and functional attributes 

of mangrove as well as the principal external energy sources and stresses that affect that 

system.'. They describe a system of flux where the zonation of mangroves may be most 

influenced by 'external forces' acting on them. They consider that the substrate and 

water regime are two of the main factors influencing mangrove zonation. The categories 

include the fringe forests that occur along protected shorelines and that are above the 

high tide mark; riverine forests that occur along rivers or creeks and that are influenced 

by the presence of freshwater; overwash forests are small mangrove fingers and islands 

that occur in shallow bays and estuaries. They are most influenced by tidal fluctuation 

and are dominated by Rhizophora mangle, the red mangrove; basin forests that occur 

inland and along areas of drainage to the sea. Where they are still influenced by tides R. 

mangle dominates. Moving further inland mixing of Laguncularia racemosa (white 

mangrove) and Avicennia germinans (black mangrove) will occur; and dwarf forests are 

typified by the stunted growth of mangrove that is usually >1.5m in height. Snedaker 

postulates that the stunting could be attributed to a lack of nutrient sources. (Lugo and 

Snedaker, 1974) 

In their study of Belizean mangroves Murray et al. (2003) further narrowed the 

limiting factors of mangrove to a local scale that is more meaningful to my proposed 

study. They state that among other things, the factors controlling mangrove distribution 

are influenced by the presence of the Mesoamerican Barrier Reef, the coastlines shallow 
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gradient, narrow tidal range, geomorphology, drainage and past hurricane tracks. These 

conditions mirror those found along the coast of Quintana Roo. 

1.5 Mangrove Leaf Anatomy 
Mangroves species share a common set of anatomical features including, 'water 

storage' tissue, short tracheids terminating in vein endings, and the absence of sclerotic 

vein sheaths (Tomlinson, 1986). Jensen (2007) states that the three dominant factors 

controlling leaf reflectance are the leaf pigments contained in the palisade mesophyll, the 

scattering of Near-IR energy in the spongy mesophyll, and the amount of water in the 

foliage. 

Of greatest interest to this study is the common feature of 'water storage' tissue, 

known as a hypodermis, and resulting leaf succulence. Tomlinson (1986) states that 

mangrove leaf succulence varies according to the degree of salinity and leaf age. This 

suggests that the reflective properties of mangrove would be influenced by the salinity in 

which the mangrove grows. This idea is supported by the findings of Camilleri and Ribi 

(1983) who found leaf thickness to increase with higher salinity levels. One of the goals 

of this project is to characterize the reflectance response pattern of the dominant species 

of mangrove and relate it to leaf anatomy. It is expected that the 'water storage' tissue 

common to all 3 species of mangrove present will be an important factor in being able to 

spectrally characterize them. 

1.6 The Mangrove species of Mexico 

1.6.1 Red Mangrove (Rhizophora mangle) 
Rhizophora mangle belongs to the family Rhizophoracea that includes 16 genera 

and 20 species. It can attain a maximum height of 20m and while it does occur on the 
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west coast of Africa, it is mainly confined to the Old World on both the Pacific and 

Atlantic coasts. It is most easily identified by its large prop roots and is the dominant 

species to be found along the Caribbean Coast of Mexico (Mazzotti et al., 2005). It is 

viviparous and can also be easily identified by its distinctly shaped propagules. R. 

mangle uses the mechanisms of exclusion (at the roots) and accumulation in order to cope 

with high levels of salinity. Of the four species found in Mexico it is the one that is most 

tolerant to high salinity and therefore is found closest to the interface of marine and 

terrestrial ecosystems. The leaf arrangement of R. mangle is arranged in such a way that 

self-shading is minimized and reflectance is maximized (Tomlinson, 1986). 

1.6.2 Black Mangrove (Avicennia germinans) 
Avicennia germinans belongs to the family Avicenniaceae. The genus has about 8 

species that are difficult to distinguish. It is a New World species and is distributed along 

both the Pacific and Atlantic coasts of the Americas. A. germinans can grow up to 30m 

tall and occupies diverse mangrove habitats. It is very tolerant to hypersaline conditions 

and uses the mechanism of exclusion, secretion and accumulation to cope with high 

levels of salinity. A. germinans is most easily distinguished by its pneumataphore root 

systems that can stick up to 30 cm. It has a rough black bark that is the source of its 

name. The leaves of A. germinans are also diagnostic, the lower leaf surface is white and 

hairy, and the upper surface is dark green. Salt crystals can be seen on the surface of the 

leaves. It has a large white flower, the fruit is viviparous and deposits a germinated 

seedlings to the ground or water below. 
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1.6.3 White mangrove (Laguncularia racemosa) 

Languncularia racemosa belongs to the family Combretaceae that contains 20 

genera and 500 species. Similar to R.mangle, L. racemosa is found only in America and 

the West Coast of Africa. It can grow to 12-18 m and is viviparous. It is generally found 

on the landward fringe of mangrove communities and may or may not have 

pneumatophores. It can be identified by its solitary trunk and rough textured bark. It is 

also characterized by an abundance of dead or dying branches (Tomlinson, 1986) due to 

rapid branch growth and subsequent branch abortion. L. racemosa uses the mechanism 

of secretion in order to cope with high levels of salinity. Three kinds of secretory 

structures have been found on the leathery textured leaves of L. racemosa, the most 

obvious of which are the two glands located on the petiole of each leaf (Tomlinson, 

1986). 

1.6.4 Buttonwood (Conacarpus erectus) 
Conacarpus erectus, like L. racemosa, belongs to the family Combretaceae, a 

large family of 20 genera and 500 species. It is within a genus of 2 species, one 

distributed in East Africa, while C. erectus is confined to the Americas and West Africa. 

Of the four species of mangrove found in Mexico, C. erectus is the only one that is not 

considered a 'true mangrove' (Tomlinson, 1986). Since it lacks vivipary and 

pneumatophores it is considered a 'mangrove associate'. It is tolerant to a range of 

conditions from freshwater to hypersaline. Its button shaped seed that is the source of its 

name easily distinguishes it. A variety of the species C. sericeus, known commonly as 

'silverleaved buttonwood', can be easily identified by the hairy, silver colored leaf 

surface. 
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1.7 Remote Sensing Overview 
Remote sensing is defined as, the measurement of some property of an object by a 

device not in contact with the object (Jensen, 2007). Remote sensing data can be 

collected by satellite, airborne or ground based sensors. The data detected by the sensors 

and recorded by the instrument are measurements of electromagnetic (EM) radiation 

(Figure 4). Sensors are designed to record and detect EM radiation along different 

portions of the electromagnetic spectrum and at differing resolutions or bandwidths. 

Each area along the EM spectrum is able to impart information about conditions on 

Earth's surface. For example, the visible and infrared portions of the EM spectrum allow 

scientists to study and understand the health of vegetation (Rock et al., 1986). The key to 

remote sensing is to understand the spectral response pattern of an object, or surface, seen 

in an image, and relating it to what is happening on the ground. 

THE ELECTROMAGNETIC SPECTRUM 

afj /  / / 
<?• vT & § „•£ 

C? -V •§• -S? ^ ̂  ^ £ 

1 1 1 1 1 H I  1 1 1 1 1 1 1 

1 0 *  1 0 "  i o "  1 0 *  1 0 4  

Visible light 

Wavelengths are given in meters. 

Blue visible light: 4.5xlO; meters 

Green visible light: 5.5x10'meters 

Red visible light: 6.5x10 ' meter* 

1 0 J  1 0 °  

Wavelength (A) vw 
i o :  

Figure 4 The Electromagnetic Spectrum, adapted from Jensen (2007) 

By using a variety of sensors and platforms, remote sensing analysts can provide 

solutions to real world problems. Large-scale human issues such as overpopulation, the 
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earth's finite landscape and diminishing natural resources are the main drivers behind 

remote sensing analysis (Congalton, 2011). The sensors and platforms used in remote 

sensing provide timely and accurate information that help us to study and understand 

these issues so that informed decisions can be made. 

There are many clear advantages to using remote sensing. It is generally less 

expensive than traditional land based studies, allowing scientists to cover much larger 

areas more effectively and efficiently. It provides us with a synoptic view, a perspective 

that allows us to see the 'big picture' of issues across time and space. Furthermore, 

remote sensing allows us to see things that the human eye cannot. This capability allows 

us to, among many things, study the health of forest vegetation (e.g. using the visible and 

the NIR and SWIR spectrum). Additionally, remote sensing allows for various spatial 

and temporal scales that permit detailed studies of specific areas and change detection. 

The common factors that are essential to choosing the right system for a 

project should be based on the following factors; spatial resolution, spectral resolution, 

radiometric resolution, extent and temporal resolution. 

Spatial resolution is the size of the smallest pixel (picture element) captured by a 

sensor. High-resolution images have fine levels of detail (smaller pixels) while low-

resolution images have coarse levels of detail (larger pixels). 

Spectral resolution is the number of wavelengths of electromagnetic energy that a 

sensor is able to detect. The more wavelengths a sensor is able to detect, the higher its 

resolution will be. For example, a multispectral sensor (e.g. Landsat 5 TM, 7 spectral 

bands) (Figure 5) detects wide wavelengths with breaks, while a hyperspectral sensor 
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(e.g. Hiperion, 220 spectral bands) detects narrow wavelengths and is continuous in its 

measurements. 

Band 1 (0.45 - 0.52 micrometers, 30m resolution) 

Band 2 (0.52 - 0.60 micrometers, 30m resolution) 

Band 3 (0.63 - 0.69 micrometers, 30m resolution) 

Band 4 (0.76 - 0.90 micrometers, 30m resolution) 

Band 5 (1-55 - 1.75 micrometers, 30m resolution) 

Band 6 {10.40 -12.50 micrometers, 120m resolution) 

Band 7 (2.08 - 2.35 micrometers, 30m resolution) 

Landsat 5 TM Bandwidths and Resolutions 

Figure 5 Landsat 5 TM Bandwidths and Resolutions, adapted from Jensen (2007) 

Radiometric resolution is the amount of light that is being reflected and sensed. 

Radiometric resolution determines the dynamic color range for each individual pixel. 

The higher the radiometric resolution, the more range is available to each pixel. Most 

remotely sensed satellite data are 8-bit (28) which gives a potential dynamic range of 0-

256. With higher levels of radiometric resolution, more subtlety and variation can be 

sensed. 

Extent is the size of an area that a single scene covers. Typically sensors that 

have high spatial resolution have small extents (more detail over a smaller area). 
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Finally, temporal resolution is how often the sensor passes over the same point on 

planet earth. It is the temporal resolution of a sensor that allows the powerful application 

of change detection to be used allowing impacts on the earth's surface to be quantified. 

1.7.1 The Landsat 5 Thematic Mapper 

For this study, data will be used from the Landsat 5 Thematic Mapper (TM). 

Launched in 1984, Landsat 5 TM data has a spectral resolution of 30m. When compared 

to more recent advances in high spatial resolution image data (e.g. Ikonos, Quickbird) the 

Landsat 5 TM imagery has a lower quality that may lead some to question its 

effectiveness as a tool. However, the 30m resolution has an advantage, especially when 

looking at large stands of homogeneous vegetation, as in the case of this study. Systems 

that have higher spatial resolution can suffer from too much detail and the effects of 

shadows, thus making the process of classification more difficult (Congalton, 2011). An 

additional benefit of the Landsat 5 TM data is the spectral coverage that they possess. 

Landsat 5 TM is a multispectral platform that acquires seven bands of electromagnetic 

energy from the visible, near infrared, mid infrared and the thermal infrared spectrum 

(Figure 5 and Table 1). It is the spectral coverage that gives the Landsat data the power 

to discriminate a wide variety of surface and atmospheric features and vegetation types 

that other systems are not capable of. Each of the seven spectral bands that Landsat 5 

TM measures were specifically chosen for their ability to help scientists study a variety of 

conditions on Earth (Table 1). 
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Band# 

Band 1 (blue) 

Bandwidth Use 

0.45-0.52 jam Penetrates water bodies, supports analysis of 
land-use, soil, and vegetation characteristics. 

0.52-0.60 (xm Reacts to the green reflectance of healthy 
vegetation. 

0.63-0.69 fim Very useful for discrimination of vegetation. 
Also useful for determining soil and geologic 
boundaries. 

0.76-0.90 jim Very responsive to amount of vegetation 
biomass. Placed above 0.75 |im to increase 
accuracy of vegetation studies. Useful for crop 
identification. 

1.55-1.75 Jim Sensitive to turgidity/amount of water in 
plants. Can discriminate among clouds, snow 
and ice. 

Band 6 (thermal infrared) 10.4-12.5 jim Measures infrared radiant energy emitted from 
surfaces. 

Band 7 (mid-infrared) 2.08-2.35 um Able to discriminate geologic rock formations. 

Band 2 (green) 

Band 3 (red) 

Band 4 (near-infrared) 

Band 5 (mid-infrared) 

Table 1 Landsat 5 TM Bands and Uses, adapted from Jensen (2007) 

Because the temporal resolution of the Landsat 5 TM is every 16 days since its 

launch in 1984 it is an excellent platform for detecting changes on the Earth's surface. 

Perhaps the greatest benefit to the Landsat data is that they are now provided free of 

charge through the USGS. This makes it available to a worldwide market and will only 

promote further use and development of remote sensing as a tool to power informed 

decision making. 

1.7.2 Data Exploration 
Data exploration is an essential step in the process for digital image analysis. 

Data exploration employs numerous techniques that can be done during the pre or post 

processing of image data. These techniques allow the remote sensing analyst to better 

understand the quality of the data being used, and select individual bands and derivative 

bands that best separate designated classes for image classification (Jensen, 2007). 

Visual interpretation, masking, spectral pattern analysis, unsupervised classification, and 
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spectral transformations (e.g. derivative bands; principal components analysis, vegetation 

indices) (Jensen, 2007) are all examples of data exploration techniques. Derivative bands 

combine ratios to further enhance the differences between the raw data bands. The 

creation of derivative bands gives more power to discriminate land cover and vegetation 

types in a supervised classification. 

/. 7.3 Image Classification 
Image classification can be defined as assigning pixels from remotely sensed data 

to classes. As Jensen (2007) notes, this is a process where, 'data are transformed into 

information.' There are two widely accepted methods for doing this; unsupervised and 

supervised classification. Unsupervised classification is a technique whereby the 

computer statistically clusters image pixels with similar spectral properties together. It is 

a useful tool that allows the remote sensing analyst to begin to see and understand 

spectral patterns within an area of interest before visiting the site. In the case of an 

unsupervised classification, the number of clusters is determined by the analyst and the 

computer groups the spectrally similar pixels in to the spectral 'bucket' it determines is 

the best fit. It is then up to the analyst to identify and label the clusters based on their 

own interpretation of ground conditions. 

Supervised classification of image data is designed to mimic the concepts of photo 

interpretation (Congalton, 2011). Supervised image classification uses one's own 

knowledge of a given area and/or ancillary reference data to 'train' the computer to 

differentiate between different classes (e.g. Urban, water, forest, wetland) using a 

signature field. Thematic maps can be derived from either technique. For this study, the 

final thematic map is a product of a supervised classification. 
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1.7.4 The Visible Infrared Intelligent Spectrometer (VIRIS) 

The VIRIS is a passive hyperspectral remote sensing instrument that utilizes 

either a natural or an artificial illumination source, measuring percent reflectance in 

the wavelength range of 350-2500 nm in 600 discrete spectral bands. The VIRIS 

provides spectral coverage from 400-2500 nm with 2-nanometer spectral 

resolution from 400-1100 nm and 4-nanometer resolution from 1100-2500 nm. 

The high spectral resolution of the VIRIS makes it useful for detecting variations in 

the anatomy and physiology of vegetation. A total of 81 different reflectance, 

derivative and wavelength parameters can be extracted from VIRIS data. Three of 

the most often utilized parameters that are used are the Red Edge Inflection Point 

(REIP) the Normalized Difference Vegetation Index and the 5/4 ratio. The two 

indices of interest to this project are the Red Edge Inflection Point (REIP] which is 

an indicator of foliar chlorophyll concentration, a measure of plant health, and the 

TM 5/4 ratio which is an indicator of foliar moisture content. The REIP's position is 

determined by calculating the first derivative of the spectral curve data in the 

wavelength range of 680-750 (Rock et al,, 1986; Vogelmann etal., 1993). Generally, 

values below 710nm are considered unhealthy. The TM 5/4 ratio is calculated by 

taking the average reflectance in the Thematic Mapper band 5 and dividing it by the 

average reflectance in TM band 4. (Hunt et al., 1987). TM 5/4 values below 0.55 are 

an indication of adequate water within a vegetation sample, values between 0.55 

and 0.60 indicate the beginnings of water stress and values above 0.60 are 

indication of higher degrees of water stress ((Forestwatch, 2011)). 

Reflectance curves derived from VIRIS scans are diagnostic tools that allow 
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scientists to determine a wide range of conditions with regards to the health and 

cellular structure of vegetation (Figure 6). It is thought that by selecting Landsat 

data from dates within the dry season of the study area that the more moist and 

healthy reflective qualities of mangrove will be accentuated when compared to 

surrounding and potentially drier non-mangrove vegetation such as forest. 

While Pine Spectral Curve 
& Landsat Band Regions 

JO 

» 

Figure 6 Spectral Curve of White Pine and Landsat Band Regions (Forestwatch, 2011) 

1.7.5 Leaf Anatomical/Spectral Characteristics 

Plant anatomy and leaf cell structure varies between species and the 

environmental conditions in which it grows. Studies have shown that these differences 

can be detected by looking into the reflectance curves produced by field and laboratory 

spectrometers (e.g. the VIRIS) allowing each species to be spectrally characterized 

(Gates et al., 1965; Rock et al., 1988; Rock et al., 1986; Rock et al., 1994). 

The advantage of combining ground based hyperspectral sensors to characterize 

the dominant mangroves of the Mexican Caribbean is that it will provide important 
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information for identifying which bands will of the Landsat 5 TM will best discriminate 

mangrove. Understanding what is being seen in satellite data and linking it to what is 

happening on the ground is the key to remote sensing. Studies of leaf anatomy and the 

spectral characteristics of mangroves will be essential to making these linkages. 

Past studies have been able to link cellular structure to not only reflectance values 

(Gates et al., 1965) but also to the overall health of forests (Rock et al., 1986). Since leaf 

cell structure varies depending on the species and the environmental conditions where the 

plant is found, it is quite probable that the reflectance of mangrove species will vary from 

that of surrounding forest vegetation. 

1.7.6 Remote Sensing and Mangroves 
There are clear advantages to using remote sensing techniques to study 

mangroves. Remote sensing provides the potential for a fast and efficient means to 

monitor mangrove forests both on a spatial and temporal scale. Tropical conditions of 

high heat and humidity combined with the difficulty of moving through mangrove habitat 

makes remote sensing an ideal alternative to traditional field based mapping methods. In 

addition, the low species diversity of mangrove in areas like the Yucatan Peninsula and 

the fact that they occupy an ecological zone distinct from other forest vegetation make 

them desirable a habitat to test using such technology. However, there are also 

disadvantages with working in the tropical environment with satellite imagery, 

particularly the fact that there is an increased chance of cloud cover that can obscure the 

area one is trying to study. This factor can significantly reduce the quality and 

availability of data for a given area. 
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Many studies over the years have used remote sensing to monitor mangrove 

forests (Blasco et al., 1998; Heumann, 2011). The most common methods have used 

satellite imagery to classify the area of interest and then field studies and aerial imagery 

to verify (Heumann, 2011; Rasolofoharinoro et al., 1998). Recently, more studies have 

begun to incorporate higher airborne hyperspectral and radar sensors to increase the 

definition and accuracy of the study (Held et al., 2003; Heumann, 2011; Pasqualini et al., 

1999). The use of airborne sensor systems can guarantee cloud free imagery. The 

higher spectral resolution from air borne hyperspectral sensors allows for the potential 

differentiation of mangrove species that Landsat data cannot obtain (Held et al., 2003). 

Few, if any, studies have incorporated both a ground based spectrometer and an 

airborne/satellite sensor to characterize or monitor the mangrove habitat. 

1.8 Accuracy Assessment 
Accuracy assessment is a vital, and often ignored, procedure in map making. 

Many people assume, incorrectly, that all maps are right (Congalton, 2011). Error can 

enter the process of mapmaking at many points along the way. Accuracy assessment can 

help identify and eliminate sources of error so that what is represented on a map is indeed 

what it claims to be (Congalton, 2011). In general, anyone using accuracy assessment is 

using it for the following reasons; to assess how good a job they have done in producing 

a map; to make comparisons between different methods (e.g. supervised classification vs. 

unsupervised classification) to see if one gives better results than another; to understand 

the errors present in their work, where they come from and how they might be 

eliminated; to determine the accuracy of layers as the information produced as they will 

20 



potentially drive important decisions to be made; because they are required to by contract 

(Congalton, 2011; Congalton et al., 1998; Gopal and Woodcock, 1994) 

As one goes through the process of making a map error accumulates and compounds 

on itself. Image acquisition, processing, analysis, conversion and sampling can all 

contribute to degrees of error. While all factors cannot realistically be controlled, 

accuracy assessment allows GIS technicians and remote sensing specialists to identify 

where error has occurred so that it can be corrected and taken out of the daisy chain. 

Sample design is a critical part of the process for accuracy assessment. It is essential 

to determine how many samples will be taken, how sample sites will be selected, what 

the minimum mapping unit will be and how samples will be collected. 

Once ground reference data has been collected, it is then compared with the classified 

data on the thematic map. The most commonly used technique to do this is an error 

matrix (Congalton, 1991) (Figure 7). An error matrix provides three important measures 

of thematic map accuracy; overall accuracy, producer's accuracy and user's accuracy. 

The overall accuracy is computed by dividing the total number of correctly classified 

pixels (the main diagonal) by the total number of pixels. The resulting percentage 

represents the overall accuracy of the map. The producer's accuracy, which is a measure 

of omission error, is calculated by dividing the number of correctly classified pixels of 

reference data (column data), by the total number of pixels for that category. The results 

allow one to know how well a particular area has been classified. The user's accuracy is 

a measure of commission error and is calculated by dividing the number of correct pixels 

in a category by the total number of pixels that were classified for that category (row 
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data). User's accuracy is a measure of whether or not a classified pixel is actually what it 

says it is on the ground. 

Reference Data 

Urban Wetland Forest Water Row Total 

Urban 65 0 10 0 75 

Classified Wetland 0 90 0 0 90 

Data Forest 0 9 40 0 49 

Water 0 0 0 121 121 

Column Total 65 99 50 121 335 

Overall Accuracy 316/335= 94% 

Producer's Accuracy 

Urban 65/65= 100% 

Wetland 90/99=91% 

Forest 40/50= 80% 

Water 121/121= 100% 

User's Accuracy 

Urban 65/75= 87% 

Wetland 90/90= 100% 

Forest 40/49= 82% 

Water 121/121= 100% 

Figure 7 Example of Error Matrix, derived from Jensen (2007) 
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1.9 Hypotheses 
HI: Detailed hyperspectral analysis (i.e. VIRIS data) of foliage of mangrove leaves will 

allow species of mangroves to be spectrally characterized, based on diagnostic 

reflectance properties. 

H2: The diagnostic reflectance properties will be related to differences in leaf anatomical 

properties. 

H3: Analysis of Landsat Thematic Mapper multispectral imagery, combined with the 

VIRIS data, will allow dominant mangrove types to be detected and mapped. 

H4: Use of this model will allow the detection of mangrove in areas where it was 

previously not known to exist. 

1.10 Goals 
The goals for this project are as follows: 

• Map the distribution of mangroves in the area surrounding the municipality of 

Tulum, Mexico; 

• Extend the areas of known mangrove beyond previously mapped extent; 

• Positively influence the conservation of mangroves in the Tulum Municipal area 

through the dissemination of this map. 

1.11 Objectives 
The objectives of this research effort are as follows: 

• Conduct field research; 

• Conduct leaf analysis using GER 2600 (VIRIS); 

• Prepare and analyze leaf thin sections of collected mangrove; 
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Select and analyze Landsat 5 imagery; 

Create a predictive model using Digital Image Processing and GIS techniques; 

Conduct in field accuracy assessment of predictive model; 

Create GIS geodatabase, Google Earth compatible .kmz files and educational 

material for Centro Ecologico Akumal, Municipal Government and other 

interested parties. 
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2.0 Methods and Materials 

2.1 Overview 
This project called for the creation of a spatially and thematically accurate vector 

map of mangrove communities in the area surrounding the Municipality of Tulum, 

Quintana Roo, Mexico. In order to achieve this, a process was undertaken to select, 

analyze and classify Landsat 5 TM data using field reference data and leaf spectral 

characteristics collected in the field. Image preprocessing, analysis and classification was 

done using ERDAS Imagine v.10 (ERDAS, 2010)* and ArcMap v.10 (ESRI, 2010)*. 

Accuracy assessment was conducted by field visits using the same classification scheme 

as the supervised classification. Additional field data were observed and collected at 

each site to assess model results and provide anecdotal data to facilitate further analysis. 

2.2 Selection of Landsat Data 
Landsat 5 TM data were provided by the United States Geological Survey 

(USGS) Global Visualization Viewer (GloVis) website (www.glovis.usgs.gov). The 

Municipality of Tulum falls entirely within images associated with Landsat 5 TM Path 19 

Row 46. The Landsat 5 TM data measures reflectance in 6 bands (bands 1,2,3,4,5,7) at a 

pixel resolution of 30m, and thermal (band 6) at a pixel resolution of 120m (Jensen, 

2007). 

Landsat TM data were selected based on the following three criteria to maximize 

model accuracy; that they contained minimal cloud cover; they were acquired during the 

annual dry season from December through April (Beddows, 2004) to highlight 

differences between drier forest vegetation types and more moisture rich mangrove 

* Specific brand name is cited for clarity and does not imply endorsement. 
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habitats; that they be as close temporally as possible to dates of the field studies being 

conducted in March, 2010 and June, 2011. 

Data received from the USGS GloVis site for Path 19 Row 46 were projected 

using WGS84 UTM Zone 16Q and were provided with Level IT corrections (GloVis, 

2011) with an accuracy of ±0.5 pixels (15 meters) (Congalton et al., 1998). Based on 

this accuracy, the minimum mapping unit (MMU) was set to 3x3 pixels (1 pixel = 30m , 

total MMU area >8,100m2) in order to reduce positional error for classification and 

accuracy assessment. Neither geometric nor radiometric corrections were needed for the 

data because only one image would be used to generate the classification. 

Landsat TM5 data acquired on February 9th, 2000 came closest to meeting all 

three criteria. Additionally, Landsat data from April 17th, 1984 were downloaded to 

provide a basis for comparison and to provide evidence of change detection for the 16-

year period between the data sets. 

2.2.1 Image Stacking 
The seven raw bands of Landsat 5 TM data were stacked in ERDAS Imagine 

V.10 following the manufacturers specifications (ERDAS, 2010). Particular attention 

was paid to each bands individual histogram (Salvador and San-Miguel-Ayanz, 2003). 

The mean, standard deviation, shape, and maximum and minimum DN values were 

recorded for each band. 
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2.3 Image Exploration 
The 1984 image and the 2000 image were analyzed and compared visually. 

Using simple combinations of the seven spectral bands, basic image exploration was 

performed. In particular, the 4,3,2 False Color Composite (FCC) and the 7,5,3 and 7,5,2 

combinations were observed with interesting results. The 4,3,2 FCC gives a good 

indication of the health of vegetation. Band 4, which is near infrared, is the key to seeing 

where healthy vegetation is or is not. This was telling in the comparison of the 1984 

image to the 2000 image. Areas that indicate healthy vegetation in the 2000 image did 

not appear to be healthy in the 1984 image. When examining the 7,5,3 band 

combination, areas that are known to be mangrove appeared to stand out from areas of 

non-mangrove vegetation. These combinations, particularly the 7,5,3 make sense as band 

seven accentuates moisture content in vegetation and soils, which points towards 

mangrove leaf succulence and the areas of inundation that mangrove prefer. Band 5 

indicates moisture content in vegetation that, during the dry season, should be 

accentuated between the drier forest vegetation and the more moist and succulent 

vegetation associated with mangroves. Similarly the distinction of chlorophyll present 

within vegetation that band 3 demonstrates should also be accentuated due to the distinct 

wet and dry conditions that mangrove and non-mangrove vegetation occupy. 

Further observation revealed that areas of known sawgrass (Cladium jamaicense) 

appeared to have very different spectral reflectance properties in the image when 

compared to areas of known mangrove or forest. The ability to discriminate C. 

jamaicense from mangrove and forest would be an unexpected outcome of this project. 

If supported by accuracy assessment, this would begin to help managers, especially in the 
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SKBR better understand the distribution of vegetation types within the reserve. What is 

interesting is that although mangrove and sawgrass share similar habitats and conditions, 

their spectral reflectance characteristics are distinct. Based on the visual observations 

made in this phase, C. jamaicense was added as a non-mangrove class for the supervised 

classification. 

A last area that was of interest in the initial stages of image exploration were 

cenotes known to have mangrove and also the features (lakes and depressions) associated 

with the Holbox fracture (Beddows, 2004). Once again the 7,5,3 band combination was 

able to clearly show larger cenotes that contain mangrove as distinct from the 

surrounding forest vegetation. The Holbox fracture features appear to contain areas of 

mangrove. These observations helped to determine the overall scope of the project area. 

2.3.1 Unsupervised Classification 

Unsupervised classification was used in order to establish how well certain 

classes would separate and in turn see if there was any confusion between classes. This 

was possible through the use of ancillary data and sound knowledge of the Tulum 

Municipal area through my previous work there (Meacham, 2007). Unsupervised 

classification was performed using ERDAS Imagine V. 10 according to the manufacturers 

specifications (ERDAS, 2010). Differing cluster sizes were assigned to the TM data to 

ascertain similarities and differences in the spectral reflectance of different landcover 

types within the data (e.g. urban, water, beach, mangrove, forest, sawgrass, agriculture). 

The more clusters that are assigned, the more subtle variations can be teased out of the 

image. The advantage to unsupervised classification is the fact that it incorporates all the 

spectral variability within an image (Congalton, 2011). The resulting 10 class 
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unsupervised classification (Figure 8) helped demonstrate that the main classes of 

mangrove, sawgrass and forest were spectrally different. It also showed that urban, beach 

and overwash mangrove areas had the same spectral characteristics. Due to the 

similarities of these areas, and the difficulty in separating areas of overwash mangrove by 

masking, it was decided to eliminate areas of overwash from the study. This information 

was an important step in confirming the feasibility of a supervised classification and in 

helping determine what areas could be further masked out from the subset image. 

10 Class Unsupervised Classification demonstrating Confusion 
between Urban, Overwash Mangrove and Beach areas 

Figure 8 Detail of 10 Class Unsupervised Classification demonstrating Confusion with Urban, 
Overwash Mangrove and Beach Areas 
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2.3.2 Derivative Bands 

Derivative bands were created after analysis of leaf spectral characterizations, leaf 

anatomical analysis and a literature review. As a result, the 5/4 ratio, NDVI, Principal 

Components Analysis and Tasseled Cap Transformation were created (Crist and Cicone, 

1984; Green et al., 1998; Heumann, 2011; Jensen, 2007; Vogelmann et al., 1993). 

Six new bands (5/4, PCA 1, NDVI, Tasseled Cap 1,2,3) were created following the 

manufacturers specifications (ERDAS, 2010) and added to the original seven bands of 

the Landsat 5 TM data using image stack in ERDAS Imagine V. 10. Derivative bands 

were restretched to match the dynamic range of the original TM data. 

2.4 Image Preprocessing 

2.4.1 Image Subsetting 
Because the study was focused only on the area surrounding the Municipality of 

Tulum, and because mangrove communities were not expected to be found across the 

entire extent of the image, the image was subset. The subset area was defined by my 

own knowledge of the location of mangrove habitats (e.g. inland cenotes and lakes), 

existing information on the extent of mangroves (CONABIO, 2009), and the boundaries 

of the Municipality of Tulum and of the Sian Ka'an Biosphere Reserve where large 

homogeneous areas of mangrove exist (Mazzotti et al., 2005). Large inland depression 

features that form part of the Holbox Fracture (Lineament) Zone (Beddows, 2004) were 

also included within the subset and represent the northwestern limit of the subset image. 

Based on this knowledge and using ArcMap v. 10 a shapefile was created to define 

the subset area (Figure 9). A Shapefile is a digital storage format for storing geometric 

location and associated attribute information. A process was developed so that a 
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shapefile could be imported to ERDAS Imagine and converted to an AOI file so that the 

image could be subset. Thus, a preliminary subset image was created to allow the 

supervised classification to focus on the true areas of interest. 

2.4.2 Image Masking 
Image masking took place after analysis of the unsupervised classification and 

spectral pattern analysis results (Figure 9). Masking was performed in order to decrease 

the spectral variation of the image so that 'mangrove' and 'not mangrove' classes could 

be the focus of the classification. Masking eliminated areas on the image that could have 

caused confiision in the final supervised classification (e.g. water, urban, agriculture, 

clouds, cloud shadow). Masking was done in the same way as subsetting by creating 

polygons in ArcMap V.10 and converting them to AOI's in ERDAS Imagine v. 10. 
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Figure 9 Processes of Subsetting and Masking the Image 

Full Image Tile (FCC 4,3,2) 
Image centered on study area (FCC 4,32) Image after subset (FCC 4,3,2) 

Clipping Path Created in ArcMap Image after application of clipping path 
(FCC 4,3,2) 

Image after application of clipping path 
(FCC 7,5,3) 
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2.5 Classification Scheme 
As the purpose of this study was to discriminate areas of mangrove from non-

mangrove vegetation, a simple classification scheme was developed (Congalton, 1991; 

Congalton et al., 1998) (Table 2). This classification scheme is an important step 

required for a supervised classification and later for the determination of accuracy 

assessment. In this step a set of labels and rules for two, mutually exclusive classes were 

created (e.g., mangrove and not-mangrove) with the 'not-mangrove' class having a 

hierarchical system that included both 'forest' and 'sawgrass' habitat types. 

All other habitat types that occurred within the study area but that were not 

captured by these classification categories (e.g. beach, water, urban, agriculture) were 

masked out of the final subset image in order to reduce error in the computer-generated 

classification. This process is explained in more detail below. 

2.6 Reference Data Collection and Areas of Interest 
Field collected reference data are required to train the computer for the supervised 

classification. In this step, data are collected in the field from various sites documenting 

vegetation classes (i.e., mangrove, non-mangrove, forest, and sawgrass) to provide the 

basis for subsequent model preparation. Data were collected from Solimon Bay in 

March, 2010 and from previous field excursions and aerial flights related to the work I 

have conducted in the area around Tulum (Meacham, 2007). In the majority of cases, a 

Mangrove 

>65% mangrove present 

Not-mangrove 

>65% forest present 

>65% sawgrass present 

Table 2 Classification scheme for Reference Data Collection 
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GPS unit was used to record the position or track of areas that were visited. However, 

dead reckoning was used for a few sites based where GPS tracking was not possible (i.e., 

some flight paths). All GPS data collected were exported from Trimble SoloField® 

software in the RECON unit as shapefiles and integrated into the geodatabase file for the 

project. All reference data were recorded in WGS84 UTM Zone 16Q. Shapefiles then 

could be superimposed with the Landsat 5 TM data to help aid in establishing the areas of 

interest (AOI's) for training the supervised classification (Table 3). 

Class Name Mangrove type Area 
1 Forest 1 West of Akumal 
2 Forest 2 West of Xel Ha 
3 Forest 3 West of Solimon Bay 
4 Forest 4 Tulum on Coba Highway 
5 Forest 5 Ejido Jose Maria Pino Suarez 
6 Forest 6 South of Lake Chumkopo 
7 Forest 7 Si an Ka'an Biosphere 
8 Forest 8 Sian Ka'an Biosphere 
9 Forest 9 Sian Ka'an Biosphere 
10 Forest 10 Sian Ka'an Biosphere 
11 Mangrove 1 Dwarf Solimon Bay 
12 Mangrove 2 Fringe Tankah 
13 Mangrove 3 Dwarf Ejido Jose Maria Pino Suarez 
14 Mangrove 4 Fringe Ejido Jose Maria Pino Suarez 
15 Mangrove 5 Dwarf Ejido Jose Maria Pino Suarez 
16 Mangrove 6 Dwarf Sian Ka'an Biosphere 
17 Mangrove 7 Dwarf Sian Ka'an Biosphere 
18 Mangrove 8 Fringe Ejido Jose Maria Pino Suarez 
19 Mangrove 9 Fringe Ejido Jose Maria Pino Suarez 
20 Mangrove 10 Fringe Ejido Jose Maria Pino Suarez 
21 Sawgrass 1 Sian Ka'an Biosphere 
22 Sawgrass 2 Sian Ka'an Biosphere 
23 Sawgrass 3 Sian Ka'an Biosphere 
24 Sawgrass 4 Sian Ka'an Biosphere 

Table 3 Areas of Interest for Training the Computer 

2.7 Supervised Classification 
The supervised classification of the data for this project was done using ERDAS 

Imagine V.10 software and reference data collected in March, 2010 and through previous 

experience in the field (Meacham, 2007). Reference data were used to create areas of 
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interest (AOI's) using the 'seed' tool within ERDAS Imagine V.10. A signature file was 

created to include all vegetation classes (e.g. mangrove, forest, sawgrass). In most cases, 

a minimum of 10 training areas were established for each vegetation class with the 

exception of 'sawgrass' where only four training areas were created. This was due to a 

lack of sufficient areas where sawgrass could be certain to exist. Therefore, sawgrass and 

forest were collapsed into one class of 'not-mangrove'. The supervised classification for 

this project used the minimum distance algorithm. This classification method works by 

calculating the distance of one pixel to other pixels and deciding on the class based on the 

smallest distance. 

2.8 Accuracy Assessment 

2.8.1 Reference Data Collection and Classification Scheme 

Accuracy assessment for this study was conducted from June 5th-13th, 2011 by 

means of field visits that compared thematic map data with reference data collected with 

a Trimble GPS unit. All reference data were recorded in WGS84 UTM Zone 16Q. 

Sampling for thematic accuracy was performed using a Trimble NOMAD® GPS unit1. 

The NOMAD® incorporates an integrated high-sensitivity 12-channel SiRF Star III 

GPS/SBAS2 receiver** and antenna with accuracy of 2-5 meters (Trimble, 2011). 

Additionally, the NOMAD® has the capability of recording offset points that allowed the 

team to extend a point into an area where the terrain prohibited entry. Any time this was 

done, line of site into the area of extension was maintained, a compass bearing was taken 

and a distance was estimated. 

' ** Specific brand name is cited for clarity and does not imply endorsement. 
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A field form was created using Tripod Data Systems SoloField® software 

running on the NOMAD® GPS unit (Table 4). The exact same set of labels and rules for 

classification that were used for the supervised classification were used again for 

accuracy assessment. Percent coverage was estimated visually for each point and not 

measured. When possible as much of the field form was completed at each sample site. 

• Accuracy 
o > 65% Mangrove 
o >65% Not Mangrove 

• >65% Forest 
• >65% Sawgrass 

• Mangrove characterization 
o Dwarf 
o Fringing 

• Salinity at surface • Salinity at 30cm 

• Canopy closure • Road 

• Trail • Generic Point 

• Generic Polygon • Generic Line 

• Soil type • Comment 

Table 4 Accuracy Assessment Field Form 

For each vegetation class, at least 30 sample points were recorded. Sample sites 

were chosen from the thematic map that met the minimum mapping unit. Due to 

pressures of time, terrain, weather and access to sites, sampling sites were not chosen 

randomly; rather they were chosen on a daily basis according to the four aforementioned 

variables. Sampling sites were distributed throughout the study area in order to minimize 

error associated with spatial autocorrelation and to allow sampling of as many diverse 

sites as was possible. In order to increase accuracy and reduce error associated with 

spatial autocorrelation (Congalton, 1988; Congalton, 1991), rules for sampling stipulated 

that each sample site needed to be a minimum distance of 300 meters from other samples 
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of the same class type and from training areas of the same class type. To ensure 

positional accuracy, each point collected was required to have at least 200 averaged 

points. 

A Nikon D80 digital SLR camera (18-128mm lens) and a GoPro Hi-Definition 

digital video camera were used to record the field teams observations. Salinity of surface 

water was measured directly in the field using an Orion 5-Star Plus multimeter with 

DuraProbe conductivity cell calibrated daily. Soil pore water was sampled using the 

sipper method (Portnoy and Valiela, 1997) which extracts water trapped in pore spaces 

using a 1mm diameter stainless steel tube fitted with a 60cc plastic syringe. Pore water 

was sampled at two depths within the rhizosphere (20cm and 40cm) at each site to 

document salinity, redox potential, sulfide concentration and pH. Pore water salinity was 

determined in the field as stated above, as was redox potential using the Orion 5-Star 

fitted with a platinum electrode. All data collected were exported as shapefiles from the 

NOMAD® using SoloField®. 

A standard error matrix was created to perform quantitative accuracy assessment 

using the classification map and the reference data collected in the field (Congalton, 

1991; Story and Congalton, 1986). Comparison of reference data to thematic data in 

ArcMap V.10 allowed the error matrix to be populated with information so that analysis 

could take place. 

2.9 Spectral Characterization and Anatomical Study of Mangrove Leaf 
Samples 

Leaf samples collected within the Solimon Bay study area were acquired to 

characterize the anatomical and spectral reflectance properties of the dominant four 
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species of mangrove characterizing the area. The resulting data were used to assist in 

selection and justification of Landsat TM band selection for the supervised classification. 

2.9.1 Study Area for Foliar Collection 

In March 2010 an area was identified for mangrove leaf sample collection at 

Solimon Bay, Mexico, a secluded bay with an associated mangrove habitat located along 

the coast and within the Municipality of Tulum (Figure 10). 

Figure 10 Municipality of Tulum including the Town of Tulum and the Solimon Bay Study Site 

Solimon Bay was chosen as a study site because it was known to contain the four 

mangrove species (see below) and associated habitat types (defined below) that were of 

interest to this project, and it occurs within the lands made accessible to us through 

project partners Centro Ecologico Akumal (CEA). 

Municipality of Tulum, Quintana Roo Mexico 
and Solimon Bay Study Site 

Cancun 

Cozumel 

Solimon Bay Study Site 

^Tulum 

Quintana Roo 

Legend 

'] Municipality of Tulum 

i Kilometers 
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Solimon Bay measures 1,360 meters along its mouth and is protected by a 

fringing barrier reef. The coastline within the study area is oriented along a 

northeast/southeast axis, including barrier beach, dune, mixed littoral forest and several 

mangrove habitats. The mangrove is dominated by R. mangle, and includes patches of L. 

racemosa, A. germinans, and C. erectus. These species assemblages represent two major 

habitat classification; Fringe and Dwarf mangrove (Lugo and Snedaker, 1974). While a 

few stands of 'fringing' mangrove (5-8 meters height) are present along the coastline, the 

majority of the Solimon Bay area is filled with densely packed 'dwarf mangrove (1-2 

meters height). Both 'fringing' and 'dwarf habitats are dominated by R. mangle. On the 

western limit of Solimon Bay, patches of sawgrass (Cladium jamaicense) mix with 

mangrove. Beyond the mangrove area to the northwest begins low scrub forest that 

transitions into the semi deciduous tropical forest dominated by such species as Gum 

Tree (Manilkara zapota), Gumbo Limbo (Bursura simaruba), Poisonwood (Metopium 

brownei) and Fig (Ficus maxima) that typify the Yucatan Peninsula (Lee, 1996; Mazzotti 

et al., 2005) and are classified as 'Not Mangrove' in this study. Solimon Bay has been 

developed along the coastal strip with vacation homes built on the coastal dune between 

the beach and mangrove area. 

Due to the difficulty of moving through the dense rhizophores (i.e. prop roots) of 

R. mangle, deep marles and knee-deep standing water, existing property lines (mensuras) 

that had been cut through the mangrove were used for access to the interior of the 

mangrove stand and served as transects along which samples were collected. Mensuras 

run parallel and perpendicular to the coastline, providing a relatively predictable pathway 
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through the site and are visible in imagery provided by Google Earth. The Solimon Bay 

area also serves as a reference site for classification, discussed in greater detail below. 

2.9.2 Collection Methods for Leaf Samples 

Leaf samples were collected every 50-100m along a mensura transect. At each 

sampling point, foliar samples (Figure 11) of each mangrove species present were 

collected with pruning shears, placed into a Ziploc bag with a wet paper towel to 

maintain high leaf moisture, then placed in a cooler with frozen blue ice for return to the 

base facilities (small microscopy lab and dorm room) for later analysis. 

Figure 11 Foliar Sample Ready for Scan 

Each sample bag was marked with a unique site number. Once returned to the 

base facility, each numbered bag was stored in a refrigerator until ready for analysis. 

Additionally, surface and porewater salinity samples were collected at each leaf 

collection site using a stainless steel 'sipper' and plastic syringe (Portnoy and Valiela, 

1997). Porewater samples were obtained from an approximate depth of 30cm, 

corresponding with the average rooting depth of the species encountered (Moore, 2011). 

Salinity values were recorded in the field using a temperature corrected handheld 
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refractometer (VWR Scientific SW series [VWR item no. 12777-992])*. Foliar samples 

collected in this manner were used for both anatomical and spectral analysis. 

In most cases, mangrove height and canopy closure were estimated and 

observations of soil type were noted (Table 5). Photographs and videos were taken for 

each site in order to supplement any observations recorded by our team. All of this 

information was recorded into a handheld Tripod Data Systems, Inc. RECON GPS unit* 

using SoloField® Software (TDSWay, 2007)*. SoloField® permits the creation of 

attribute menus that greatly speed up the process of data collection and later data 

organization. Moreover, each record is geo-referenced and can be exported from 

SoloField® as a shapefile so that it may be easily incorporated into a geographic 

information system (GIS) database. 

Species: Soil type (marie, bedrock, organic etc.) 

Sample #: Percent Canopy Closure 

Type [dwarf, fringing etc. based on (Lugo 

and Snedaker, 1974)] 

Salinity at Surface (ppt) 

Mangrove Height (m) Salinity Subsurface (ppt) 

Flowering? (Y/N) Sub surface Salinity Depth (cm) 

Fruiting (Y/N) Comments 

Surface Water Depth (cm) Camera Reference 

Table 5 Data field form for Solimon Bay Study Site 

A total of 30 foliar samples for both medial and distal leaves of R. mangle were 

processed. 11 samples of L. racemosa and five samples of A. germinans were also 

processed. There were no samples of C. erectus collected. 

* Specific brand name is cited for clarity and does not imply endorsement. 
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2.9.3 Measuring Spectral Reflectance Properties of Leaf Samples 
Foliar samples were processed at the field lab at the Centro Ecologico Akumal by 

separating the distal and medial leaves of the dominant R. mangle. Once prepared, 

samples, in optically-dense stacks of seven leaves, were then scanned in a standardized 

laboratory setting (Vogelmann et al., 1993) using the GER 2600 Field Spectrometer 

(VIRIS) (Figure 12) so that spectral reflectance properties could be recorded. 

0 

Figure 12 The VIRIS in use with leaf samples in the foreground 

Each stack of seven leaves was scanned three times, rotating the stack 90 

degrees between scans. Following scanning, a total of 81 spectral index values were 

then calculated using UNH software [Vogelmann et al., 1993). Only one of these 

indices was of interest to this project (the 5/4 ratio). The TM 5/4 ratio is an 

indicator of foliar moisture content. Other indices such as the Red Edge Inflection 

Point (REIP) were only used as an indicator of foliar chlorophyll concentration, a 

measure of plant health. It is important to note that Landsat TM bands are too broad to 

discriminate REIP values, thus REIP is not helpful for determining which band 

42 



combinations to use. Spectral reflectance curves were generated using UNH software 

(Vogelmann et al., 1993). 

2.9.4 Mangrove Leaf Anatomy Analysis 
This analysis was conducted to detect differences in the cellular structures and 

cellular arrangements of the three dominant mangrove species, R. mangle, L. racemosa, 

A. germinans found at the Solimon Bay Study site. The external morphology of the leaf 

samples was studied with a dissecting scope and the internal anatomy was studied with 

using a compound microscope. Hand cross-sections were taken from the mid-regions of 

the distal and medial leaves of samples from each mangrove species using a slicing 

motion with a razor blade and studied with a compound microscope. Multiple cross-

sections were placed in a petri dish containing a small amount of water to prevent them 

from drying out. A 1:1 glycerin/water solution was then placed with a pipette on a clean 

slide and the best cross-sections were then transferred onto the slide and a covered with a 

coverslip. All of the samples were closely examined and the best cross-sections were 

further examined under higher magnification. These sections were photographed directly 

through the eyepiece of the compound microscope since no camera adapter was available 

at the time. In addition, small pieces of intact leaves were transferred to fixative FAA 

(formalin acetic acid and 70% EtOH), left for 24 hours and hen transferred to 70% EtOH 

for storage and transport to UNH. Each of these pieces of leaves were then embedded in 

paraffin and thin sectioned using standard microtechnical procedures (Johansen, 1940). 

This procedure was repeated for all of the samples of each mangrove type. This part of 

the study was conducted by a UNH undergraduate, Ms. Natallia Leuchanka, as part of her 

IROP research program in Mexico (2010) and Belize (2011). 
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3.0 Results 

3.1 Mangrove Leaf Anatomical Analysis 
As noted above, the leaves of each of the three dominant mangrove species 

collected in Solimon Bay were analyzed for detailed cellular structure in order to develop 

insight into the spectral differences, if any, characterizing these species. Below is given a 

description of the cellular features of each species. 

3.1.1 Avicennia germinans (Black mangrove) 

Figure 13 clearly illustrates the anatomy of a healthy leaf of A. germinans, the 

black mangrove. The leaf of A. germinans is dorsiventral. The thick cuticle and sunken 

stomates on the leafs upper epidermis, help restrict nonstomatal water loss (Tomlinson, 

1986). Beneath the upper epidermis is a well-defined shallow hypodermis, these are the 

Upper Epidermis with thick Cuticle and Sunken Stomates 

Dense Spongy 
Mesophvll Layer' 

Shallow Hypodermis 

Avicennia germinans, Black Mangrove 

(lOOx) 

Double Layer of Palisade Mesophvll 

Lower epidermis with dense Trichome Layer 

Figure 13 Thin Section of A. germinans Leaf (lOOx) 
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'colorless', water storage cells that are common to many mangrove species (Tomlinson, 

1986) and accounts for their thick, succulent leaves, as do the dense palisade and spongy 

mesophyll layers beneath the hypodermis. The mesophyll cells for this sample appear 

turgid and the outline of the individual cells is well defined and smooth. The color of the 

palisade mesophyll is much darker green than those of the other two species anlayzed. 

The lower epidermis has a dense capitate trichome layer that is consistent with 

Tomlinson's (1986) description of A. germinans. This trichome layer covering the lower 

leaf surface is what gives it its characteristic gray/brown color. 

3.1.2 Rhizophora mangle (Red mangrove) 

lipidermis and Cuticle 

- Thick Hypodermis 

Palisade Mesophyll 
Laver 

Rhizophora mangle, Red Mangrove 
(lOOx) 

Lower epidermis and cuticle Spongy Mesophyl 

Figure 14 Thin Section of R. mangle leaf (lOOx) 

Figure 14 shows a very well defined cross section of a R. mangle leaf. 

The leaf of R. mangle is dorsiventral and has five very well defined layers; the epidermis 
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and cuticle; the hypodermis; the palisade mesophyll; the spongy mesophyll; and the 

lower epidermis. The hypodermis and mesophyll cells for this sample appear turgid and 

the outline of the individual cells is well defined and smooth. The upper epidermis of the 

leaf has a thick cuticle with a very thick and well-defined hypodermis of 'colorless' water 

storage cells beneath it. The palisade mesophyll and spongy mesophyll layers are also 

thick and well defined. The dark green color of the palisade mesophyll layer is an 

indication of healthy quantities of leaves and a reflection of the leaf color. The thickness 

of these cell layers demonstrates why the leaf of R. mangle is so succulent. A closer 

examination of the hypodermis (Figure 15) of R. mangle shows cellular inclusions that 

could be salt or calcium oxalate. Present on the lower epidermis are trichomes and also 

sunken stomates. 

Water-filled Hypodermis with cellular inclusions 

Rhizophora mangle, Red Mangrove 
(400x) 

Figure 15 R.mangle water storage cells (400x) 
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3.1.3 Laguncularia racemosa (White mangrove) 

The leaf of L. racemosa is isolateral with the 'colorless' water storage tissue 

occupying the center of the leaf (Figure 16). While there is good separation between 

each of the layers, the individual cell structure observed in Figure 16 is not as well 

defined as in the other two species. The top and the bottom of the leaf have thick, well-

defined mesophyll layers. The fact that the green upper palisade mesophyll layer is 

unobstructed by the presence of water storage cells should influence the reflectance in 

TM Band 3. The water storage cells are loosely packed and not well organized. Non-

sunken stomates are found on both the upper and lower surfaces of the leaf. Of the three 

cross sections examined, the sample of the L. racemosa is distinctly different from those 

of A. germinans and R. mangle, due to the isolateral structure of the leaf and ill defined 

cell shapes. Because of this difference, it would be logical to hypothesize that the 

reflectance characteristics of L. racemosa will be more different from than similar to the 

other two mangrove species. 
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Upper Rpidermis w ith non-sunken stomales 

I.ower Palisade 
Mesophyll Layer? 

Multilayer Upper palisade 
Mesophvll Layer 

Laguncularia racemosa. White Mangrove 

(lOOx) 

'Colorless' Water Storage Layer 

Lower epidennis with non-sunken stomates 

Figure 16 Thin section of L. racemosa leaf (lOOx) 

3.2 Spectral Characterization of Mangrove 

The three mangrove species are observed to have distinct spectral 

characterizations that likely relate to the cellular structure of 'colorless' water storage 

cells, palisade mesophyll cells and spongy mesophyll cells commonly found among all 

mangrove species occurring at Solimon Bay (Figure 19). This relates well to the 

statement by Jensen (2007) that the 'dominant factors controlling leaf reflectance are 

(found in) the leaf pigments in the palisade mesophyll (in the visible), the scattering of 

near-infrared energy in the spongy mesophyll and the amount of water in the plant', 

likely in the short-wave infrared. Given this statement, and the anatomical structure of 

the three species of mangrove examined, particular attention should be given to the 

visible portion of the spectrum (400 nm - 700 nm; TM Bands 2 and 3) which relates to 

leaf pigment, the near infra-red (700 nm - 1400 nm; TM Band 4/NIR Plateau) portion 
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which relates to spongy mesophyll and the short-wave infrared range from 1400 nm -

2600 nm (TM Bands 5 and 7) where leaf moisture content can have a significant impact. 

The strongest separation of all three species is along the NIR plateau suggesting 

that there are major differences in the spongy mesophyll layers. The reflectance feature 

of the NIR plateau is a characterization of healthy leaf tissue (Rock et al., 1986). While 

not as distinct as the NIR plateau, the reflectance values seen in Band 3 confirm that the 

leaf pigment contained in the three species is the influence of leaf chlorophyll content. A. 

germinans has the lowest reflectance in band 3 while L. racemosa has the highest. This 

is supported by the darker green color due perhaps to greater density of chloroplasts 

observed in A. germinans. Subtle but distinct differences are seen across in band 5 and 

band 7. This confirms that water storage cells play a role in the spectral characterization 

of mangrove species. There is an interesting reversal of reflectance values on either side 

of band 5. This is very likely due to cellular/foliar water content. The 1400 nm and 1900 

nm water absorption features are overtones of the primary water absorption in the TIR, 

with the 1900 nm absorption stronger than the one at 1400 nm. Therefore, the leaves with 

the greatest amount of water will reflect the least in band 7. Based on analysis of the 

reflectance curves for each species, there is enough separation and differences, that each 

of the three species can be spectrally characterized. These characterizations are based on 

anatomical differences seen in all three species. 

In order to further understand the reflective properties of mangrove and how they 

relate to surrounding forest vegetation, the average reflectance curves of the three main 

species were compared with two non-mangrove species, Ficus cotinifolia and Ficus 

maxima (Figure 20). Both species are commonly found in the surrounding forest 
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environment and have succulent leaves similar to mangrove. Ryan Huntley as part of his 

Masters thesis at UNH collected the two samples provided to this study on April 1st, 

2005 in the forest environment of Quintana Roo (Huntley, 2005). They were sampled 

using the same methods outlined above. As predicted, the reflectance of mangrove in the 

1400nm to 2400nm range is much lower than the non-mangrove species. This is 

accentuated in both TM bands 5 and 7 with very prominent separation of mangrove and 

non-mangrove species. A comparison of the TM 5/4 means (Table 6, Figure 17) for all 

species demonstrates that the mangrove species have values for water content below 

those of the Ficus species. Interestingly, the REIP values (Table 6, Figure 18) for both 

the Ficus species are much higher than the mangrove species. In addition, the Ficus 

maxima sample has high reflectance along the NIR plateau. This suggests that even 

though the Ficus has lower water content, it has adapted to be able to tolerate these lower 

water levels associated with the regions dry season and still remain healthy. The strong 

separation seen in the middle infrared corroborates the visual interpretation of the 

Landsat imagery and the ability of bands 5 and 7 to highlight areas of mangrove. The 

drier forest vegetation also validates the use of imagery from the dry season in order to 

accentuate these differences. 
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REIP TM 5/4 

Species Avg. Std. Dev. Avg. Std. Dev. N 

Avicennia 

germanins 

708.14 9.11 0.489 0.027 5 

Rhizophora mangle 

(Distal) 

710.76 8.58 0.410 0.026 30 

Rhizophora mangle 

(Medial) 

718.11 5.63 0.411 0.038 30 

Laguncularia 

racemosa 

712.69 9.23 0.437 0.042 11 

Ficus maxima 723.80 1.35 0.515 0.020 4 

Ficus cotinifolia 723.47 2.33 0.512 0.011 7 

Table 6 Average Spectral Indices (REIP, 5/4) for Solimon Bay Mangrove Samples and Two Non-
Mangrove Samples 
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AG FC FM 

Species 

LR RM-M 

Figure 17 Plot of the mean 5/4 ratio for Black Mangrove (AG), Ficus cotinafolia (FC), Ficus maxima 
(FM), Red Mangrove Medial (RM-M), and White Mangrove (LC). Overall analysis by ANOVA 

followed by multiple comparisons using Student's t (<0.05). Error bars constructed using 1 standard 
error from the mean. 

750 

p <0.0006 

RM-M 

Species 

Figure 18 Plot of the mean REIP value for Black Mangrove (AG), Ficus cotinafolia (FC), Ficus 
maxima (FM), Red Mangrove Medial (RM-M), and White Mangrove (LR). Overall analysis by 

ANOVA followed by multiple comparisons using Student's t (<0.05). Error bars constructed using 1 
standard error from the mean. 
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Comparison of Average Reflectance of Three Mangrove Species 
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Figure 19 Reflectance Curves for 3 Mangrove Species, Solimon Bay, Mexico 
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Comparison of Average Reflectance of Three Mangrove Species with Ficus Maxima and Ficus Cotinifolia 
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Figure 20 Comparison of Average Reflectance of Three Mangrove Species with Two Non-Mangrove Species 
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3.2 Thematic Map Results 

3.2.1 Thematic Map Accuracy Assessment 

The June 5th- 13th, 2011 sites were spread throughout the study area and were 

visited and ground reference sample points were collected. A total of 35 'mangrove' and 

46 'not mangrove' points were collected. Of these points, 5 'mangrove' points and 8 'not 

mangrove' points were discarded due to issues with minimum distances from other points 

or spatial autocorrelation as outlined in the methods. Reference data were crosschecked 

with the thematic map in GIS and an error matrix was populated (Table 7). An overall 

accuracy of 88% was returned. Both producers and users accuracy produced acceptable 

results. 

Reference Data 

Classified Data 

Column Total 

Overall Accuracy 

Producers Accuracy 

Mangrove (M) 

Not Mangrove (NM) 

M 

NM 

88% 

M NM Row total 

29 6 35 

2 29 | 31 

31 35 58 

94% 

83% 

Users Accuracy 

Mangrove (M) 

Not Mangrove (NM) 

83% 

94% 

Table 7 Mangrove Accuracy Assessment Error Matrix 
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3.2.2 Thematic Map Classifications 

The final thematic map was created from the supervised classifications of the 13 

band-stacked image (Figure 21). A total of 18,268 polygons that met the minimum 

mapping unit of 3x3 pixels (8,100m2) and that covered an area of 95,808 hectares were 

classified for areas of mangrove and not mangrove (forest and sawgrass) (Table 8). 

Comparison of Classified Forest, Mangrove and Sawgrass Areas 

0 

V-rrtf 67.247 
Marwrovc 19.202 
Scwg'as: 
Tctjl 9S.S08 

•itbt of P.>lvfcO< i 

14.803 
2.281 

1.J84 
18.268 

Fore*! 

- MarR-w 
Sdwjrm 

» Tntii 

Table 8 Comparison of Classified Mangrove and Not-Mangrove Areas 

The non-mangrove class of forest was the dominant vegetation class to be 

classified with 67,247 ha, while mangrove had 19,262 ha and sawgrass had 9,299 ha. 
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Final Supervised Classification Showing Polygons 
Meeting the Minimum Mapping Unit 
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Figure 21 Final Supervised Classiflcation Showing Polygons Meeting the MMU 
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Adding to the significance of these findings are large inland depressions a 

distance of 15 kilometers from the coast that were identified by the classification to 

contain mangroves. The existence of mangrove habitat in these areas was confirmed by 

field visits during the accuracy assessment component of this study. Inland areas of 

mangrove are uncommon and the large areas discovered by this study could not only play 

a role in expanding conservation areas for the region, but also by advancing the body of 

knowledge about these rare habitats. In addition, cenotes large enough to meet the 

minimum mapping unit and known to contain mangrove were accurately classified within 

the thematic map. The ability to identify 'cenote' mangrove habitats could also play a 

role in the expansion of conservation areas to include the region's aquifer system. It also 

highlights the need to further explore the relationship between the regions aquifer system 

and mangrove. 

Furthermore, the thematic map was able to accurately distinguish between two 

classes of mangrove (fringe and dwarf) (Figure 22). While the possibility of separating 

individual species of mangroves using Landsat TM data was not demonstrated in this 

study, the ability to differentiate fringe and dwarf mangrove is a positive step towards the 

potential for species differentiation. 

These results are still encouraging as they indicate an area of mangrove much 

larger and more extensive than published in the previous study done by CONABIO in 

2009. 
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Areas of Mangrove Identified by this Study by Class (Fringe and Dwarf) 
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Figure 22 Areas of Mangrove Identifled by this Study by Class 
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4.0 Discussion 

4.1 Leaf Anatomy and Reflectance Properties of Mangrove 

Through an analysis of leaf cross sections of the three major species of mangrove 

found in the region (Rhizophora mangle, Avicennia germinans, Laguncularia racemosa), 

this study sought to better understand the influence that anatomical differences among the 

mangrove species have on their reflectance properties since such anatomical differences 

may result in potentially diagnostic reflectance properties of the species (Tucker and 

Sellers, 1986). 

Based on analysis of VIRIS data for the three main species of mangrove it has 

been determined that all three species have differences significant enough in TM bands 2, 

4, 5 and 7 to allow them to be individually characterized. These differences can be 

attributed to differences in the leaf pigment, spongy mesophyll and 'colorless' water 

storage cells. Whether these differences would apply to the whole spectrum of mangrove 

species would only be answered by further analysis of the anatomical and spectral 

properties of each species. 

Since water storage cells are an anatomical feature common to all mangrove 

species, and these water storage cells showed subtle but good separation in TM bands 5 

and 7 for all three species, the same could apply for all mangrove species. Thus, the 

ability to individually characterize the reflectance properties of R. mangle, A. germinans, 

L. racemosa is a significant step towards the creation of a worldwide database of 

mangrove reflectance properties. Future studies should center around a coordinated 

effort to collect, scan and analyze the spectral reflectance properties of mangrove species 
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from around the world. A library of reflectance properties of mangroves would greatly 

benefit the effort to map mangrove communities worldwide. 

Furthermore, the decision to use Landsat TM data acquired from the dry season 

was validated by comparing the reflectance properties of forest vegetation of similar 

succulence to mangrove to see if the reflectance of mangrove species varied from 

surrounding non-mangrove forest vegetation. Comparison of these reflectance values 

showed strong separation in TM bands 5 and 7. Such strong separation demonstrates 

how well the much drier forest vegetation stands from the mangrove vegetation due to a 

lack of leaf moisture content. This was further confirmed by visual analysis and of the 

Landsat TM imagery using the FCC band combination of 7,5,3- Interestingly, band 7 

had a double effect of not only being able to help in the discrimination between leaf 

moisture in mangrove and non-mangrove classes, but also in the differences in soil 

moisture. Figure 23 illustrates the difference in soil moisture very nicely between the 

drier 1984 image and the more moist conditions present in the 2000 image (Case and 

Gerrish, 1984; Lawrence et al., 2001). The fact that mangrove is able to exist in these 

moist soil conditions that band 7 accentuates so nicely, and that differences in leaf 

moisture content between mangrove and non-mangrove species are picked up by band 7, 

played a significant role in the ability of the supervised classification to perform so well. 
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Comparison of drier conditions present in 1984 vs. 2000 
Rancho San Eric, Tulum 

448*00 444600 4M400 441200 442000 444*00 44M00 450400 441200 442000 

1984 TM Data, Bands 7,5,3 2000 TM Data, Bands 7,5,3 

0 700 Meters 

Figure 23 Comparison of potential moisture conditions in the 
1984 and 2000 Thematic Mapper data sets 

4.2 Map Accuracy 
The 88% overall accuracy achieved for this project was an acceptable result. 

However, there are several potential sources of error that could have played a factor in 

the final accuracy assessment. The most obvious is the fact that the image used for the 

classification was acquired 11 years prior to field studies being conducted. Changes in 

landcover from 2000 to 2011 could be factors for errors present in the final accuracy 

assessment. It would be interesting to redo the classification once an image closer in date 

to the field study becomes available. Another source of error, is potentially areas where 

mixed vegetation of C. jamaicense and mangrove were confused. The subtle boundaries 
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between these vegetation changes could be difficult for the 30m resolution of the Landsat 

TM 5 to pick up. As a result, errors in classification in either direction could have 

occurred. Finally, the areas of grassland along the Vigia Chico road in Sian Ka'an were a 

cause of error and confusion for the model. Identified as mangrove, these areas where in 

fact, inundated low areas with grasses. Since they had not been factored into the original 

classification system they were deemed 'non-mangrove' for the accuracy assessment. 

There appear to be more of these areas in close proximity to the Vigia Chico road. In 

future studies, these areas should be classified separately as they are distinct from all 

other habitats classified in this study. 

4.3 The Thematic Map 

4.3.1 Forest Classification 
The final supervised classification was able to adequately discriminate areas of 

mangrove and non-mangrove. The non-mangrove class of forest was the dominant 

vegetation class (Table 8) to be classified. It is interesting to observe that in the final 

supervised classification that shows all of the polygons (Figure 24), that there are subtle 

variations in the forest vegetation throughout the study area. 
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Final Supervised Classification Showing All Polygons 
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Figure 24 Final Supervised Classification of the Study Area (Showing all polygons) 
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It should be noted that for the supervised classification there were no 

differentiations made for the forest class when assigning training areas to it. In other 

words, forest was considered to be one homogeneous vegetation type. The variations in 

forest vegetation seen in Figure 24 could be attributed to a number of factors from 

differences in specific forest vegetation types (palm forest vs. deciduous forest), human 

disturbance, elevation, hurricane storm damage, wildfires and surface geology. In 

addition, Figure 21 shows that while there are large areas of contiguous forest, there are 

also large fragmented areas of forest that do not meet the minimum mapping unit. This is 

particularly evident in the northern limits of the study area and again suggests that there 

may be underlying reasons for these areas as explained above. Hurricane storm damage, 

forest fires and human disturbance could all be contributors to forest fragmentation. 

Figure 21 also shows that large forested areas surround two of the areas of inland 

mangrove identified by this study (Laguna Madera and Laguna Selva Maya). These 

areas of forest are similar in appearance to the 'halos' of vegetation that appear around 

cenotes (Huntley, 2005). The vegetation 'halos' around cenotes have been attributed to 

the readily available source of water that the cenotes provide and that forest vegetation 

benefits from. This suggests that there is a relationship between the seasonally inundated 

inland mangrove areas, the possible microclimate that they create and the surrounding 

forest vegetation. The increased moisture in these areas could also act as protection for 

the forest from the forest fires that frequent the region. While the classification of forest 

type was not the focus of this particular study, these results indicate that a more detailed 

classification of forest types would warrant a follow-up study. Such a study would be of 

additional benefit to regional conservation efforts. 
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4.3.2 Sawgrass Classification 
Areas of sawgrass (Cladium jamaicense) were discriminated well by this study 

(Figure 21). The ability to differentiate sawgrass from other vegetation types is 

important, as it will give natural resource managers, particularly in the Sian Ka'an 

Biosphere Reserve a better understanding of the distributions of habitats. Since a 

minimum of ten training classes were required for the study and only four sawgrass areas 

were used for training, this evidence can only be presented anecdotally. However, the 

evidence does suggest that sawgrass possesses characteristics that set it apart from the 

two other main classes in this study (mangrove and forest). The fact that sawgrass is a 

sedge and grows in large homogeneous areas would be factors allowing it to stand out 

from the leafy vegetation of the mangrove and forest. Furthermore, although there is no 

literature to support this, it is possible that sawgrass is a C4 plant. Plants that are 

classified as C4 have anatomical differences that allow them to fixate carbon in a manner 

that is distinct from that of C3 plants (Raven Peter H., 1976). Comparisons of 

fluorescence signals taken from hyperspectral data have shown that C4 plants can be 

distinguished from C3 plants (Liangyun, 2010). Thus, if future studies can confirm that 

sawgrass is indeed a C4 plant, then the methods outlined by Liangyun could aid in 

furthering the ability to differentiate sawgrass from surrounding mangrove and forest 

habitats. The study by Liangyun reinforces the value of, and need for hyperspectral data 

to be acquired for this region thus broadening and enriching the characterization of 

vegetation for the area. 
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4.3.3 Mangrove Classification 

A total area of 19,262 ha was classified as mangrove (Figure 22) by this study. 

The results are encouraging as they indicate an area of mangrove much larger and more 

extensive than published in the previous study done by CONABIO in 2009. Perhaps the 

most interesting discovery made by this study is the existence of mangrove habitat in 

isolated areas up to 15 kilometers from the coast, and in cenotes. These findings are 

discussed in further detail below. 

It is important to state that, and as noted in the methods, the class of 'overwash' 

mangrove was masked out of the Landsat image due to confusion with other areas. As 

result, areas of 'overwash' mangrove are missing from the final tally for total classified 

mangrove areas. The majority of the 'overwash' areas that were masked out are located 

in Laguna Caapechen in the Sian Ka'an Biosphere Reserve. It is also important to state 

that there were discrepancies between mangrove classes and non-mangrove classes along 

the Vigia Chico road within the Sian Ka'an Biosphere Reserve. Areas identified as 

'mangrove' in the classification, were, in fact, a non-mangrove habitat that was neither 

forest nor sawgrass. The inability of the supervised classification to make a distinction 

would need to be addressed in further studies. Therefore, there are also areas non-

mangrove habitat that are included in the final tally. 

A comparison of the classified mangrove polygons by size (Table 9) reveals that 

the majority of them are small (1>5 ha). This is a positive finding in that it shows that 

the classification was able to map well within the parameters of the MMU. However, 

such a large number of small polygons suggest that there are many, small, potentially 
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fragmented areas of mangrove throughout the study area. From the standpoint of 

conservation, these areas pose a challenge, as smaller more fragmented areas are more 

difficult to consolidate and conserve. 

Supervised Mangrove Polygons by Size (ha) 

h& icosco ha so>: 

Size in Hectares 

Table 9 Supervised Mangrove Polygons by Size (ha) 

Furthermore, the thematic map was able to accurately distinguish between two 

classes of mangrove (fringe and dwarf) (Figure 22, Table 10). The areas of fringe that 

were identified fit with the areas they would normally be associated (e.g. protected 

lakeshores of the Sian Ka'an Biosphere Reserve). The comparison of mangrove areas by 

type seen in Table 10 also helps illustrate the dominance of the dwarf mangrove type 

over fringe. The success of the classifications ability to discriminate fringe and dwarf 

mangrove types can be attributed to the training areas that were used. 
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Mangrove Areas (ha) and Number of 
Polygons by Type 

20.UOC 

lb.OOC 

- Mangrove (Dv.ai-f) 

* Mangrove (Hingel 

Table 10 Mangrove Areas (ha) and Number of Polygons by Type 

The spectral differences between fringe and dwarf mangrove could be related to 

proximity as evidenced by the presence of fringe mangrove around and within cenotes 

and by lakeshores. Future work in the area should include further study of leaf anatomy 

between the fringe and dwarf classes and also the generation of spectral reflectance 

curves of fringe. Studies of this nature will only help better understand the differences 

between them and allow for more accurate classification. 

The possibility of separating individual species of mangroves using Landsat TM 

data was not demonstrated in this study. However, the ability to be able to discriminate 

at by type (fringe and dwarf) and to characterize the spectral reflectance properties of 

individual mangrove species is potentially a positive first step towards the use of 

hyperspectral data to further explore mangrove zonation, and species differentiation both 

locally and internationally. 

While some may look at the thematic map as the end result of this project, it is 

only one small part that opens up new avenues for investigation with many questions to 

be answered. While an 88% overall accuracy is encouraging, there is always room for 
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refinement of the model. Further refinement should include more training classes for C. 

jamaicense so that it may stand alone as its own class. The variations in forest cover seen 

in the final supervised classification suggest that the forest vegetation for the area is not 

homogeneous and could be classified in more detail. A better understanding of the 

distribution of C. jamaicense and characterization of forest habitats and types will only 

benefit the managers of the regions natural resources. Mangrove habitats were 

adequately identified and mapped by the model. Refinement could be applied in order to 

lessen the confusion between mangrove, C. jamaicense, and the grass habitats 

encountered in the Sian Ka'an Biosphere Reserve. Additional time could be spent to 

allow the model to include areas of overwash mangrove that were not represented in the 

thematic map. The ability for the model to correctly discriminate between mangrove 

types (dwarf and fringe) was a welcome outcome. This clearly shows that there is a 

difference spectrally between these two mangrove types. Further investigation using 

high-resolution hyperspectral instruments like the VIRIS combined with anatomical 

analysis of the two types would help to understand the differences and improve the 

model. The Landsat 5 TM data has done an admirable job of classification with the one 

shortcoming of the ability to distinguish at the species level. While the Landsat 5 TM 

data is an excellent first pass, airborne hyperspectral data would allow for much more 

detailed inventory of habitats, potentially to a species level. The groundwork laid out in 

this study will only serve to further improve how the model works. 
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4.4 Inland Mangrove Habitats 

Inland mangrove habitats have been described from around the world, yet they are 

a rarity (Ellison and Simmonds, 2003; Lugo, 1981). One of the common factors that 

allows these habitats to exist is that they are found in areas of karst geology (Lugo, 1981). 

Inland mangrove areas are thought to be influenced by groundwater flows associated with 

the porous nature of karst geology even though they can be kilometers from the coast 

(Ellison and Simmonds, 2003). Given that the karst geology of the region around Tulum 

has well-developed solution cave systems that act as conduits for both fresh and saltwater 

(Beddows, 2004) it is not surprising that inland mangrove habitats are found in this area. 

The large depressions associated with the Holbox Fracture (Laguna Madera, Laguna 

Selva Maya, Laguna Union, Laguna Chumkopo) and the cenotes (karst windows to the 

aquifer) that were identified by this study to have mangrove (Figure 25), represent two 

different types of inland mangrove habitat with connections to the regions aquifer system. 

Despite being isolated from the sea these communities are described as healthy 

habitats. Ellison and Simmonds (2003) reported from Lake MacLeod in Western 

Australia, rates of primary production, and mangrove biomass per unit area that were 

equivalent to mangroves found in normal coastal situations. Lugo (1981) identified a 

large intact inland mangrove habitat in the Bahamas 50 km from the sea that is similar in 

species composition to the Tulum. The Lake Windsor site he describes had all four of the 

species that are found in Mexico present. 
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Unprotected Inland Areas of Mangrove 
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Figure 25 Unprotected Inland Areas of Mangrove 

Measurements of soil and surface water yielded high values (surface salinity range: 25.0 

ppt-72.8 ppt; soil salinity range: 25ppt-l 19ppt) that are typical of the arid climate in 
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which they were found. A. germinans and L. racemosa grew in areas of higher salinity 

while R. mangle and C. erectus occupied areas of lower salinity. Of the sites found in 

the literature, the one described by Lugo is the closest geographically and in the species 

found. However, there are more differences than similarities to the sites found in and 

around Tulum. Foremost among these differences is that salinities of pore water samples 

taken in two of the inland mangrove areas were much lower and bordered on freshwater 

bodies. The average salinity of Laguna Madera measurements was 0.95 ppt while the 

measurement made at Laguna Selva Maya was 2.0 ppt. These both represent very low 

salinity measurements and also suggest that there is a salinity gradient heading towards 

the coast from these two inland areas. 

The second major difference is that the species diversity is lower than in the study 

by Lugo, perhaps due in large part to the lower salinity levels. Only R. mangle and C. 

erectus were found consistently in the areas around Tulum (Table 11). 

R. mangle was observed to have very brittle branches that would snap off. This is 

contrary to R. mangle observed by the beach that had much more typically supple 

branches. One can only speculate about these differences, but they may have something 

to do with the lower salinity levels. 
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Name Distance 
from Coast 

(km) 

Substrate Mangrove 
Species Present 

Salinity 
Subsurface (ppt) 

Laguna Selva 
Maya 

11.1 Marie, organic Red Mangrove, 
Buttonwood 

2.0 

Laguna 
Madera 

15 Marie, organic, 
bedrock 

Red Mangrove, 
Buttonwood 

0.95 

Laguna Union 9.5 Marie Red Mangrove, 
Buttonwood 

n/a 

Laguna 
Chumkopo 
(Kanluum) 

10 Marie Red Mangrove, 
Buttonwood, 

White 
Mangrove 

n/a 

Cenote 
Gemini 

2.6 Open Water, 
Organic 

Red Mangrove n/a 

Cenote Tall 
Trees 

2.8 Open Water, 
organic, 
Bedrock 

Black 
Mangrove? 

n/a 

Table 11 Characteristics of Inland Mangrove Areas 

One intriguing question that has not yet been answered relates to the origins of 

inland mangrove habitats. A number of theories exist to explain these origins. Lugo 

(1981) postulates that mangrove propagules are distributed by hurricanes, while others 

claim that they are remnants of past communities cut of by sea level change and 

geological enclosure (Ellison and Simmonds, 2003). The cenotes of the Yucatan 

Peninsula provide evidence that these mangrove areas are indeed remnants from 

mangrove communities cut off by sea level rise during the Holocene. Gabriel et al. 

(2009) examined core samples from Cenote Aktun Ha, located 8.5 km from the coast, 

and found a pollen record that indicates that the cenote evolved from a marsh once 
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dominated by R. mangle. Using 14C-dating, wood fragments from the bottom of the core 

where R. mangle pollen was located were dated to 6,840 ±100 cal year BP. Further 

analysis of the core towards the surface indicates that over time, and as sea levels rose, 

there was a decrease in R. mangle pollen. What is striking, is that Cenote Aktun Ha is 

located directly between the two large present day inland mangrove areas of Laguna 

Madera and Laguna Union. The presence of the R. mangle pollen in Cenote Aktun Ha 

that dates back to the Holocene would support the theory that the present day inland 

mangrove areas are remnants of Holocene period mangrove communities. It would also 

suggest that the cenotes are able to provide ideal conditions that allow mangrove habitats 

to grow out of, our recede into during episodes of sea level and climate change. 

The discovery of inland cenote habitats is one of the more exciting outcomes of 

this study, and is the one that will have the greatest impact for conservation efforts. That 

mangrove habitats are found inland is not only interesting, but also is very relevant for 

conservation. The fact that these mangrove communities exist in such low levels of 

salinity, so close to freshwater conditions, suggests that suitable habitat for protecting 

mangrove extends all the way inland whether mangrove is there or not. The implications 

for extending the search for mangrove and mangrove habitat further inland by using 

hyperspectral data could expand conservation areas beyond their current limits. 

This study also suggests that cenotes and the aquifer system for this region are 

vectors for inland mangrove. Cenotes possibly provide habitat connectivity, suitable 

hydrology or other requirements that promote 'mangrove oasis' from which mangrove 

habitats can grow out of our recede into with changes in sea level as evidenced by the 

study of Gabriel et al. (2009). Cenotes and the aquifer system have very little if any 
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environmental protection under Mexican law. By identifying 'mangrove oasis', 

potentially, the laws protecting mangroves in Mexico can serve blanket protection to the 

regions aquifer. While the results of this project show that the large majority of mangrove 

habitats within the study area fall under protected areas, the inland mangrove habitats of 

cenotes and lagunas fall outside of them. An effort needs to be undertaken to ensure their 

conservation. 

4.5 Comparison of CONABIO and UNH studies 
A previous study by CONABIO conducted in 2008 that used remote sensing 

techniques, was able to identify and map a total 317 polygons representing 8,040 ha 

within the study area (CONABIO, 2009). By contrast, the UNH study has expanded the 

total number of mapped areas of mangrove to 2,081 polygons covering 19,262 ha. This 

represents a 140% increase on the previously mapped area (Figure 26, Table 12). 

Comparison of Results Between CONABIO and UNH Studies 
25,000 

20,000 

15,000 

10,000 

5,000 

0 

CONABIO Study 

. UNH Study 

Percent Change 

Total Area of Classified as Mangrove 

(ha| 

8.040 

19,262 

140% 

largest Area Classified as Mangrove 

(ha) 

4,225 

5.808 

Comparitive Figures 

Number of Polygons Created 

317 

2,081 

CONABIO Study 

» UNH Study 

Percent Change 

Table 12 Comparisons of Results Between CONABIO and UNH Studies 

Differences in these two studies can be attributed to one factor; the scope of the 

study area. The scope of the CONABIO study was nationwide and was focused only on 

coastal areas. The UNH study was more focused geographically and took advantage of 
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my knowledge of the area to expand further inland to areas known to have mangrove 

habitat (cenotes) and areas suspected of having mangrove habitat (the depressions and 

lakes associated with the Holbox fracture). Thus the UNH study extended the boundaries 

of its study area beyond those of which the CONABIO study had used. Another potential 

issue might have been that for the CONABIO study, SPOT 5 10-meter data were used. 

While SPOT 5 has a higher spatial resolution than Landsat TM data, it has reduced 

spectral resolution, with only 3 bands covering portions of the visible and near infrared 

spectrum. On would infer then that the capability of the SPOT 5 sensor to identify areas 

of mangrove would be less than that of the Landsat 5 TM sensor. However, when 

comparing the two studies, there is a good deal of intersection in the common areas 

studied. This suggests that the SPOT and Landsat TM data were able to resolve 

mangrove at an equal rate. Thus, the difference in the amount of mangrove that was 

identified is most attributable to the fact that the UNH study extended into areas not 

covered by the CONABIO study. 
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Areas of Mangrove Identified by CONABIO and UNH Studies 
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Figure 26 Overlays of CONABIO and UNH Studies 
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4.6 Implications for Mangrove Conservation 
Figure 27 shows that the majority of the mangrove identified within the study area 

fall within protected areas. This accounts for 89% (17,061 ha) of the mangrove that was 

classified. The remaining 2,196 ha of unprotected mangrove are in privately owned 

property or ejido (communally owned) lands. Unprotected areas are distributed both in 

close proximity to the coast and inland areas already described (Figure 28). The largest 

contiguous area (658 ha) of unprotected mangrove is located in the southern boundary of 

the Ejido Jose Maria Pino Suarez that borders the northern limit of the Sian Ka'an 

Biosphere Reserve. This sharp border that divides the protected from unprotected areas 

is clearly visible and should be a priority area for conservation due to its close proximity 

to Sian Ka'an. These mangrove serve as an ecological buffer that protects and nourishes 

the reserve. 

Areas of Mangrove Protected vs. Unprotected 

1 S'[W' 17,061 

12.00C 

to.ooc 
• • •• ; Uififo'rTfd Mangrrv/ 

*" Protcctcd Msngrcvc 

1,7S0 

' m * 1-1 

"etc I Area Jh3i n o*"polY3cns Average Ar~j (hal Urges; Arcs (ha) 

Figure 27 Areas of Mangrove, Protected vs. Unprotected 

Despite the fact that the large majority of mangrove is found within protected 

areas, the remaining unprotected areas should not be discounted. Due to the high rate of 

development occurring on along the coastline, priority should be given to these areas for 
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active conservation. Conservation of coastal mangrove is a key element to maintaining 

the health of the Mesoamerican Barrier Reef, which draws tourists to the area and helps 

to sustain the regions economy. And due to their rarity and potential for scientific 

discovery, the inland mangrove habitats (e.g. lagunas, cenotes) identified by this study 

should also be considered of extremely high value and worthy of conservation. 

Unprotected Areas of Mangrove Identified by the UNH Study 

N if # 

/ 

i 

Figure 28 Unprotected Areas of Mangrove Identified by the UNH Study 
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5.0 Conclusions 
This study was able to successfully identify and map areas of mangrove within 

and around the municipality of Tulum Quintana Roo Mexico using remote sensing 

techniques. Anatomical differences between the three main species of mangrove found 

in the area were examined and compared to high-resolution spectral reflectance data so 

that each species could then be spectrally characterized. The spectral reference data for 

mangrove was also compared to two common types of forest vegetation revealing 

significant differences in reflectance values between them associated with TM bands 5 

and 7. These differences were also noted during visual analysis of the TM data. A 

vector-based map with an overall accuracy of 88% was created that identified 140% more 

mangrove areas than in a previous study. The supervised classification was able to 

discriminate mangrove and non-mangrove (forest, sawgrass) habitats. Although 

sawgrass (Cladium jamaicense) was grouped with forest habitats for classification, 

anecdotal evidence suggests that it can be classified on its own in future studies. 

As a result of the classification, which expanded its scope further inland than 

previous studies, large inland mangrove habitats (lakes, cenotes, depressions) were 

identified and confirmed by field visits. The furthest distance inland for one of these sites 

is 15 kilometers from the coast. These inland habitats of mangrove are of high ecological 

value due to their scarcity worldwide. Unlike other similar habitats where hypersaline 

conditions have been documented, the habitats found in the course of this study had very 

low salinity levels. The implications that mangrove can exist in such low salinity 

conditions suggests that mangrove that suitable habitat for protecting mangrove extends 

all the way inland whether mangrove is there or not. The presence of mangrove in cenote 
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environments also suggests that cenotes and the aquifer system they connect are vectors 

for inland cenotes. Due to the high rate of development in this region, both along the 

coast and inland, the mangroves of this area need to be the focus of conservation efforts. 

The ability to link mangrove, which is protected under Mexican law, to the cenotes, lakes 

and depressions of the area would serve a double purpose to protect and conserve these 

valuable natural resources. It is my great hope that this study will act as a springboard to 

action. 
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Hypothesis 1 
H I :  D e t a i l e d  h y p e r s p e c t r a l  a n a l y s i s  ( i . e .  V I R I S  d a t a )  o f f o l i a g e  o f  m a n g r o v e  l e a v e s  w i l l  

allow species of mangroves to be spectrally characterized, based on diagnostic 

reflectance properties. 

Hypothesis 1 is supported by the findings of this project. 

Hypothesis 2 
H2: The diagnostic reflectance properties will be related to differences in leaf anatomical 

properties. 

Hypothesis 2 is supported by the findings of this project. 

Hypothesis 3 
H3: Analysis ofLandsat Thematic Mapper multispectral imagery, combined with the 

VIRIS data, will allow dominant mangrove types to be detected and mapped. 

Hypothesis 3 is supported by the findings of this project. 

Hypothesis 4 
H4: Use of this model will allow the detection of mangrove in areas where it was 

previously not known to exist. 

Hypothesis 4 is supported by the findings of this project. 
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Appendix A: 

Landsat Image Stack in Erdas Imagine 
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{ Check Original Data Redo ~) 

Check Pixel Data 
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Reset No Data Values 
Based ori Pixel Data 

Figure A 1 Flowchart for Image Stacking in ERDAS Imagine V.IO 
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Figure A 2 Full Extent of Landsat 5 TM Image (FCC bands 4,3,2) Path 19 Row 46, Acquired 
February 9th, 2000 with Tulum Municipal Boundary 
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Figure A 3 Full Extent of Landsat 5 Image (FCC Bands 4,3,2) Path 19 Row 46, Acquired April 17th, 
1984 with Tulum Municipal Boundary 
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Figure A 4 10 Class Unsupervised Classification of the Study Area 
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. • - n. 

Derivative Band Creation and Stacking in Erdas imagine (5/4 Ratio, Principal Components Analysis) 
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Figure A 5 Derivative Band Creation (5/4 ratio, Principal Components Analysis) in ERDAS imagine V.IO 
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Derivative Band Creation and Stacking in Erdas Imagine (NDVI, Tasseled-Cap) 
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Figure A 6 Derivative Band Creation (NDVI, Tasseled-Cap) in ERDAS Imagine 
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Landsat Image Subset in Erdas 
Imagine £_ 

total dip.shp 
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To do this, open the vector layer m the viewer with the 
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in this window choose Viewer", Process the image. 
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Figure A 7 Flowchart for Landsat Image Subset and Masking in ERDAS Imagine 
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Accuracy Assessment Reference Points 
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Figure A 8 Accuracy Assessment Reference Points 
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