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ABSTRACT 
STUDIES OF NET COMMUNITY PRODUCTIVITY IN A 

NEAR-COASTAL TEMPERATE ECOSYSTEM 

by 

Olivia De Meo 

University of New Hampshire, December, 2011 

Understanding the biological contribution to the carbon cycle is important to 

accurately calculate oceanic carbon budgets. The biological contribution to air-sea 

flux can be expressed as net community productivity (NCP), or the difference be

tween gross primary production and community respiration. This study conducted 

two experiments to constrain NCP in a near-coastal region. The first experiment 

conducted in the western Gulf of Maine (GoM) sought to identify an indirect optical 

proxy for NCP that would allow for the determination of NCP remotely by satellite 

in the future. NCP results indicated that the GoM was near equilibrium during our 

study. Changes in particulate organic carbon inventory derived from beam attenua

tion proved to be the most robust proxy of NCP. The second experiment evaluated a 

novel custom-built autonomous incubation instrument for continuous NCP and res

piration measurement in the Piscataqua Estuary Inlet. Although some questionable 

data patterns were occasionally observed, NCP and respiration rates correlated well 

with the literature where good data was recorded. 

vm 



CHAPTER 1 

INTRODUCTION 

The coastal zone accounts for only about 7% of the ocean's surface area (Borges, 

2011), but despite its small size, it is one of the most biogeochemically active regions 

and plays an important role in the carbon cycle. Riverine inputs and upwelling trans

port organic carbon and nutrients conducive to significant biological productivity, 

which stimulates the export of carbon to the deep ocean through a mechanism known 

as the biological pump (Fig. 1-1). Thus, quantifying the coastal ocean's role in the 

carbon cycle has become an important consideration for calculating oceanic carbon 

budgets. 

Net community productivity (NCP), defined as the difference between gross pri

mary productivity (GPP) and community respiration (R), is an important indicator 

of the role of the biota in sequestering and exporting carbon. NCP is related to the 

production and consumption of carbon by the general equation, 

C02 + H20 v± OrganicCarbon + 02 (1.1) 

where the forward form of the equation represents photosynthesis and the reverse 

is respiration. It is evident from equation 1.1 that NCP can be tracked by changes 

in dissolved inorganic carbon (DIC) and dissolved oxygen (DO). Odum (1956) was 

the first to use DO to study NCP as the basis for classifying communities as net 

autotrophic (GPP > R) or net heterotrophic (GPP < R). Consequently, based on 

these classifications, NCP is a useful tool for understanding the biological component 

of carbon cycling by determining whether a coastal community is a source or sink of 

C0 2 . 
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Debate exists over the role of the coastal ocean in the global carbon cycle. Several 

studies have shown that coastal margin systems are a net source of CO2 (Frankig-

noulle et al., 1998; Cai et al., 2003), while others have shown them to sequester carbon 

(Borges and Frankignoulle, 2002; Kortzinger, 2003; Thomas et a l , 2004). It will be 

difficult to resolve this debate until more is known about coastal carbon dynam

ics. Unfortunately, the coastal region is difficult to characterize due to its complex 

interactions with the land, atmosphere, and open ocean. These interactions are fur

ther complicated by anthropogenic effects. Coastal areas are particularly sensitive 

to anthropogenic perturbations of the land, which affect the timing, magnitude, and 

concentrations of organic matter and nutrient deposition by rivers (Hopkinson and 

Vallino, 1995). Thus, human-induced changes to coastal organic carbon loading can 

alter the balance of carbon in the system and affect heterotrophic processes, while 

nutrient inputs can stimulate production. 

Furthermore, it is estimated that from 1850 to 1996, anthropogenic fossil fuel use 

emitted roughly 340 Pg of carbon to the atmosphere, nearly 30% of which has dis

solved into the oceans (Falkowski and Raven, 2007). These emissions of CO2, a potent 

greenhouse gas, are predicted to cause temperatures to rise, resulting in a more strat

ified water column (Falkowski et al., 2003). This decreases the ability of deep water 

to mix up to the surface and bring with it nutrients, reducing primary productivity. 

Additionally, rising temperatures could alter oceanic circulation patterns and affect 

upwelling (Falkowski et al., 2003), the primary driver of coastal biological activity 

(Libes, 1992). These effects on biological activity could alter the biological pump and 

therefore the ocean's ability to sequester carbon. 

It is important then to gain a better understanding of NCP and its effects on 

carbon cycling as well as to be able to monitor changes in the future. This research will 

present the first steps taken to identify a proxy for remote retrieval of NCP by satellite, 

which has the potential to aid in future global estimations of NCP. Additionally, this 
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study seeks to gain a better understanding of NCP through long-term monitoring 

with a novel incubation instrument in the hopes of aggregating a large data set of 

gross production, community respiration, and net community production. 

1.1 Objectives 

This research consisted of two experiments. The purpose of the first experiment 

was two-fold. The first goal of this study was to gain a better understanding of 

carbon cycling in the coastal zone by observing the timing and magnitude of NCP 

in the western Gulf of Maine (GoM) while tracking a drifter over the course of two 

weeks. The second goal was to use the data collected on the cruises to identify an 

optical parameter that would act as an indirect index for NCP and potentially allow 

for remote retrieval of NCP by satellite. We hypothesize that NCP, measured as the 

temporal derivative of the biological oxygen inventory will be tracked by changes in 

the particulate organic carbon (POC) inventory, which can be sufficiently estimated 

from optical parameters. To that end, we examined chlorophyll-a (chl-a), particle 

attenuation at 660 nm (cp(660)), and particle backscattering at 555 nm (&bp(555)) 

as estimators of POC. This research is important because in situ ship-sampling is 

expensive and only provides sparse regional data that are of little use in calculating 

a global carbon budget. However, satellites provide access to global data sets. If one 

or more of these optical parameters is found to be a good proxy for NCP, then NCP 

can be constrained globally through the use of satellite ocean-color products and the 

existing global carbon budget can be improved. 

The goal of the second experiment was to determine NCP in the Piscataqua Estu

ary Inlet and build a large data base of production and respiration rates. We hypoth

esize that NCP will vary seasonally with changes in nutrient supply, organic carbon, 

and light. Additionally, we expect to see a year-round tidal signal as freshwater en-
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ters via the Piscataqua River and different NCP signals from varying phytoplankton 

communities. In an effort to improve field methods, this experiment utilized a novel 

instrument created by Langdon Enterprises (Miami, FL) that automatically incubates 

seawater in light and dark chambers while simultaneously measuring changes in dis

solved oxygen, which can be used to calculate NCP. This research is poised to build 

upon existing knowledge of coastal carbon cycling by providing a long-term data set 

of NCP. Furthermore, little respiration data exist and current models often assume 

respiration to be constant. Respiration rates in this experiment were calculated from 

the dark chamber incubations. As a result, this study provides a long-term data set 

of respiration rates during both daytime and nighttime hours. 

1.2 Background 

1.2.1 Methods of N C P Measurement 

The development of methods to measure NCP began as early as the 1920s when 

Gaarder and Gran (1927) first developed light and dark oxygen incubations. With this 

technique, oxygen concentrations are measured at the beginning and end of the incu

bation using the Winkler titration method. Net community productivity is measured 

in the light bottles and respiration is measured in the dark bottles. Similarly, the rate 

of change in carbon dioxide can also be measured. Smith and Marsh (1973) examined 

whether changes in oxygen or carbon dioxide gave a better estimate of organic carbon 

production in coral reefs and found good agreement using both measurements. An

other incubation approach developed by Steemann-Nielsen (1952) involved the use of 

14C as a radiotracer, which could measure the amount of carbon fixed when a bottle 

of seawater was incubated at depth. This method became the preferred method of 

measurement, but it does not provide any respiration data so our knowledge of res

piration and therefore the balance of carbon that is exportable, remains poor. Much 
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confusion ensued over the years about what the 14C method actually measured, and 

it is now thought to measure a rate in between gross and net production. Both 

light/dark and 14C incubation approaches suffer from bottle effects because removing 

organisms from the ocean environment and sequestering them in a bottle reduces the 

variability that they experience in real seawater (Marra, 2002). 

A method that avoids bottle effects is the open-water oxygen method, developed 

by Odum (1956), in which oxygen sensors are placed in situ to measure DO. The data 

are later corrected for air-sea gas exchange, so NCP depends strongly on which gas 

transfer parameterization is employed (Gazeau et al., 2005). An additional alternative 

that avoids bottle effects is to compare 0 2 measurements to an abiotic gas. Abiotic 

gases give an account of the physical forcings that have occurred and are not affected 

by biological activity like 0 2 . The abiotic gas chosen must have similar diffusivity and 

solubility coefficients as 0 2 so that it equilibrates with the atmosphere on the same 

timescale. For this reason, Ar or N2 are usually chosen. NCP can then be calculated 

as the difference between 0 2 and Ar or N2 over the time needed to equilibrate with 

the atmosphere (McNeil et al., 2006a). While these field methods provide good local 

in situ data, they are not feasible for gathering global NCP data. 

In an effort to calculate NCP across large spatial and temporal scales, several bud

geting approaches have also been taken. The first is the construction of a DIC budget, 

which relies on knowledge of air-sea flux and measurements of DIC to solve for NCP. 

However, an assumption of the DIC budget method is that only DIC input/output, 

air-sea flux, and biological production and consumption affect DIC concentrations; 

precipitation and dissolution of CaCOs are not considered (Gazeau et al., 2005). An

other budgeting approach is the Land Ocean Interaction in the Coastal Zone (LOICZ) 

stoichiometry budget. This budget is based on non-conservative fluxes of dissolved 

inorganic phosphorus (DIP). However, this method assumes that dissolved organic 

phosphorus (DOP) fluxes are inconsequential, DIP fluxes are only due to pelagic bi-
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ological activity, and a Redfield ratio to convert DIP to carbon units (Gazeau et al., 

2005). The validity of budgeting approaches versus incubation measurements was 

assessed by Gazeau et al. (2005). They found that each method had limitations, but 

all generally converged on similar estimates. 

Several more methods have been used to estimate global NCP. Lee (2001) cal

culated NCP in the surface mixed layer through two approaches. The first was an 

approximation from the change in salinity-normalized total DIC inventory, which 

was corrected for air-sea flux and diffusion. The second approach employed a ther

modynamic model with monthly mean pC0 2 and total alkalinity. Both showed good 

agreement with an annual NCP of 9.1 ± 2.7 and 10.8 ± 2.7 Pg C yr_1 respectively. 

Alternatively, a study by Jin et al. (2007) quantified NCP by combining an ecosystem 

model with an ocean circulation model to estimate global NCP at 14.9 ± 2.5 Pg C 

yr - 1 . 

1.2.2 Relationship of N C P to Air-Sea Flux 

Air-sea flux is a function of the partial pressure of C0 2 (pC02) disequilibrium 

between the atmosphere and the ocean caused by physical and biological factors. 

It is affected by physical conditions that alter the solubility of C0 2 like sea surface 

temperature and salinity. Net community productivity is closely related to the process 

of air-sea flux because it is the biological driver of pC02 . When production exceeds 

respiration, the ecosystem shifts towards autotrophy and the surface ocean becomes 

under-saturated in C0 2 causing an air-to-sea flux of C0 2 . Conversely, the ecosystem 

will become heterotrophic if respiration outpaces production. Then the surface ocean 

super-saturates with C0 2 and a sea-to-air flux will occur. Despite the importance 

of NCP to surface C0 2 fluxes, little work has been done to deconvolve NCP in 

coastal systems. Prowe et al. (2009) specifically addressed the mechanisms driving 

air-sea flux in the North Sea and found that in the northern region, air-sea flux 
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was more biologically driven, but in the southern region, temperature was a more 

influential driver than the biology. In the marsh-dominated South Atlantic Bight, 

net metabolism was found to be 0.004 Pg C yr - 1 (Cai et al., 2003) while coral reef 

metabolism in Moorea, French Polynesia was found to decrease total seawater C0 2 

by 5.2 x 10 -15 Pg m - 2 d_1 (Gattuso et al., 1993). Another study of 27 estuaries 

showed all but four to be heterotrophic (Caffrey, 2003), and a study of the Scheldt 

estuarine plume found it to be heterotrophic for three years but autotrophic one year, 

likely due to increased nutrient input from freshwater discharge (Borges et al., 2008). 

Significantly more work has been focused on elucidating coastal air-sea fluxes of 

C0 2 . These can be estimated from pC0 2 and wind speed, which is used to parame

terize gas transfer velocity (Liss and Merlivat, 1986; Wanninkhof, 1992; Wanninkhof 

and McGillis, 1999; Nightingale et al., 2000). A heated debate has ensued over the 

status of the coastal ocean in the global carbon cycle. A study of nine European 

estuaries were found to emit 0.03-0.06 Pg C yr - 1 to the atmosphere (Frankignoulle 

et al., 1998), while a study in the South Atlantic Bight also showed a sea-to-air flux 

of 0.0027 Pg C yr"1 (Cai et a l , 2003). Only one study has been done in the GoM, 

which found it to be a source of 4.56 x 10 -15 ±3 .12 x 10~15 mol C m"2 y r - 1 to 

the atmosphere (Vandemark et al., 2011). On the other hand, Borges and Frankig

noulle (2002) found the Galician Coast of Spain to be a net sink, and Kortzinger 

(2003) found the total net air-sea flux associated with the Amazon River plume in 

the Atlantic to be 0.014 ± 0.005 Pg C yr - 1 . 

Clearly, a single generalization of the role of coastal regions cannot be made. 

More recently, it has been postulated that coastal regions differ according to latitude. 

Air-sea C0 2 fluxes were examined by Borges et al. (2005) based on an exhaustive 

literature survey. They found coastal regions at high and temperate latitudes to be 

sinks while subtropical and tropical latitudes were sources of C0 2 . These findings 

were corroborated by Cai et al. (2006), who compiled a database of continental shelf 
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air-sea fluxes and found shelf regions to be a sink of 0.33 Pg C yr - 1 in the middle and 

high latitudes and a source of 0.11 Pg C yr - 1 at low latitudes. Clearly, uncertainty 

still exists as to the status of the coastal ocean in the global carbon cycle. Thus, it 

is important not only to quantify air-sea flux but to understand the processes that 

influence it such as net community productivity. 

1.2.3 Causes of Variability in Coastal N C P 

The primary factors that influence NCP are the balance between inorganic nu

trients and organic carbon in the system and the availability of light (Hopkinson 

and Vallino, 1995). Inorganic nutrient loading stimulates production leading to au

totrophic conditions, whereas labile organic carbon loading fuels heterotrophy. Fac

tors that influence the photosynthetic process also impact NCP such as solar irra-

diance and turbidity, which reduces the amount of light that phytoplankton receive, 

as well as inputs of nutrients from upwelling and vertical mixing. It has also been 

demonstrated that seasonal shifts towards autotrophy can occur during the spring 

phytoplankton bloom even though the system is net heterotrophic the rest of the 

year (Caffrey et a l , 1998). 

Additionally, several studies have shown water mass properties to be correlated 

to metabolism in estuaries. In a study of 27 estuaries monitored by the National 

Estuarine Research Reserve (NERR), Caffrey (2003) found a strong correlation be

tween temperature and metabolic rate, with warmer temperatures leading to higher 

metabolic rates and consequently more heterotrophic conditions. The same study also 

observed a correlation between salinity and metabolic rates; however, this connection 

was less clear. Some locations had more autotrophic conditions at high salinities while 

some had more heterotrophic conditions at high salinities. Caffrey (2003) attributed 

this to differing freshwater inputs at each site, where more autotrophic conditions in

dicated nutrient-rich runoff and increased heterotrophic conditions suggested highly 
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organic runoff. A follow-up study of 42 sites within the NERR was conducted to as

sess how metabolic rates were affected by physical, chemical, and biological variables 

(Caffrey, 2004). It was found that temperature, followed by nutrients, were the two 

most important factors in explaining intra-site variation of metabolic rates, while ad

jacent habitat, estuarine area, and salinity were able to explain 58% of the variation 

between sites (Caffrey, 2004). 

1.2.4 Optical Parameters for Estimation of N C P 

Although considerable prior work has been done to calculate net primary pro

duction (Antoine et al., 1996; Behrenfeld and Falkowski, 1997) from satellite ocean 

color data, little if any work has focused on estimating NCP. We hypothesize that 

NCP is related to changes in particle stocks, which have been shown to be empirically 

related to optical data, in particular particle attenuation and particle backscattering. 

Additionally, we will look at chlorophyll-a (chl-a) and use an appropriate C:Chl ratio 

to convert chl-a to carbon. We believe one or more optical parameters may serve 

as a good indirect proxy for NCP, in which case NCP could be tracked remotely by 

satellite. 

Satellite optical remote-sensing strives to understand how light interacts with sea

water and its constituents to estimate optical properties. Most light penetration 

occurs in the visible range (400-700 nm). When light penetrates the water, it can 

either be absorbed or scattered. These terms are quantified by the absorption co

efficient (a) and the scattering coefficient (b) at various wavelengths (A). The sum 

of these two is the attenuation coefficient (c). They are considered inherent optical 

properties (IOPs) of seawater because they are only dependent on the constituents of 

the water (Kirk, 1994). 
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Absorption 

Absorption converts light into heat or chemical energy (biomass from photosyn

thesis). Light absorption in the ocean is due to four components: seawater, phy

toplankton, non-algal particles such as minerals and detritus, and colored dissolved 

organic matter (CDOM), which comes from compounds called humic substances in 

soil that drain into the ocean from rivers. The total absorption coefficient, a, is the 

summation of the absorption coefficients of each component respectively 

a(X) = Ow(A) + aph(A) + ap(A) + aCDOM(A) (1.2) 

Seawater absorption is strongest in the red (680 nm) and weakest in the blue-green. 

Phytoplankton, on the other hand, absorb predominantly blue light due to the photo-

synthetic pigment chl-a. Chlorophyll-a also absorbs in the red, while yellow accessory 

pigments called carotenoids absorb in the green. In the presence of high irradiance, 

chl-a will re-emit photons at lower energy. This phenomenon is known as fluores

cence. Generally, higher chlorophyll concentrations result in more fluorescence, thus, 

fluorescence can be used as an index of chl-a concentration. 

Much work has been done to isolate Oph. Phytoplankton communities vary largely 

in shape, size, and pigment composition, which can cause differences in absorption 

(Ciotti et al., 2002). Pigment packaging is thought to be related to cell size and can 

further influence absorption. Ciotti et al. (2002) compared absorption spectra for 

phytoplankton communities of different sizes and found that more than 80% of the 

variability in the spectral shape of Oph was determined by the cell size of the most 

abundant organism. According to Ciotti et al. (2002), the influence of cell size is 

actually a proxy for several changes at once because of the covariation of pigment 

packing and the concentration of accessory pigments with cell size. Variation in Oph 

as a result of pigment packging related to cell size was further supported by Bricaud 

et al. (2004). 
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Scattering 

Scattering occurs when light interacts with a substance in the water that causes 

it to change direction (Kirk, 1994). Scattering can occur in both the forward and 

backward directions. The total scattering coefficient is the summation of the two 

6(A) = 6f(A) + 6b(A) (1-3) 

where bf is the forward scattering coefficient and b\, is the backscattering coefficient. 

Backscattering can be further partitioned into backscattering by seawater and by 

particles 
MA) = 6bw(A) + M A ) (1-4) 

where &bw is the backscattering coefficient of pure seawater and &bp is the backscat

tering coefficient of particles. The scattering of light by seawater is caused by changes 

in the density of water molecules due to temperature, salinity, and pressure (Stramski 

et al., 2004). Particles that cause scattering include mineral particles, phytoplankton, 

bacteria, and dead cells (Kirk, 1994). The size, shape, and structure of these various 

particles affects how much light will be scattered (Stramski et al., 2004). Coastal 

waters tend to have more scattering than the open ocean due to phytoplankton, ter

rigenous material from rivers, and resuspended sediments from wave action, storms, 

and tidal currents (Kirk, 1994). 

Stramski et al. (1999) were the first to show that POC could be estimated by 

satellite-derived particle backscattering. Their work centered on two empirical rela

tionships. The first relationship derived b^ from satellite remote-sensing reflectance, 

which can be used to calculate b^p. The second relationship connected &bp to sur

face POC. However, Stramski et al. (1999) showed that the &bP to POC relationship 

differed regionally between two locations in the Southern Ocean, suggesting the need 

for site-specific algorithms. Further work has been done to develop &bP to POC algo

rithms in the Mediterranean Sea (Loisel et al., 2001) and improve the algorithms for 

the Southern Ocean (Allison et al., 2010). 
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Attenuation 

When the scattering coefficient is added to the absorbance coefficient, the result 

is the attenuation coefficient (c) 

c(A) = a(A) + 6(A) (1.5) 

The beam attenuation coefficient can be decomposed into the attenuation of its con

stituents 
c(A) = cv(A) + CCDOM(A) + cp(A) (1.6) 

where Cw, CCDOMJ
 a n d Cp are the attenuation coefficients of seawater, CDOM, and 

particles respectively. A wavelength of 660 nm is generally used because CCDOM(660) 

is insignificant in oligotrophic waters (Bricaud et al., 1981). The beam attenuation 

of seawater is constant so its effects can be removed to calculate Cp. 

Bishop (1999) reviewed the literature attempting to correlate beam attenuation to 

particle volume and suspended mass concentration. He subsequently demonstrated 

that a better correlation independent of geographic region, season, and depth exists 

between beam attenuation and POC when measured by a multiple-unit large-volume 

in situ filtration system (MULVFS). Beam attenuation versus POC regressions yielded 

r2 values of 0.97 and 0.95 for two cruises in the equatorial Pacific; however, regressions 

with bottle POC for the same two cruises returned r2 values of 0.40. It is not clear 

why bottle POC and MULVFS-determined POC relationships are so different but 

Bishop (1999) suggests a re-evaluation of bottle POC methods. These results were 

supported within several percent by a similar experiment near southern Vancouver 

Island (Bishop et al., 1999). 

12 



The Biological Pump 
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Figure 1-1: The ocean acts as a sink for C 0 2 through a process known as the biological 
pump. Phytoplankton remove C 0 2 from the surface waters and convert it to organic 
carbon during photosynthesis. A fraction aggregate and sink through the water column, 
while others are consumed by zooplankton who emit fecal pellets that sink. Through this 
sinking process, carbon is removed from the surface and exported to the deep ocean. 
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CHAPTER 2 

DRIFTER STUDY 

The first goal of this experiment was to characterize net community productivity 

in the western Gulf of Maine. This was accomplished by a cruise in which a water 

parcel was visited every other day over the course of two weeks and the time difference 

of vertical oxygen profiles was analyzed to calculate NCP. To that end, a proxy 

obtainable by satellite was sought. Optical proxies have successfully been used in 

the past, most notably chl-a as an index of phytoplankton biomass. If changes in 

phytoplankton stock are due to production and respiration, then it seems reasonable 

to assume that a change over time in chl-a would act as a proxy for NCP. Similarly, 

if Cp and 6bp can be used to estimate POC, and changes in POC are attributable to 

community productivity, then changes in Cp and &bp should also be useful to indirectly 

measure NCP. The second goal of this experiment then was to evaluate chl-a, cp and 

&bp as potential indices for NCP. 

2.1 Site Description 

The Gulf of Maine is a highly productive continental-shelf sea extending from Cape 

Cod to Nova Scotia. It is separated from the Northwest Atlantic by Georges Bank and 

Browns Bank, with the Northeast Channel situated between these two banks serving 

as the primary conduit for exchange between the GoM and the open ocean. The GoM 

undergoes tidal mixing from semi-diurnal tides ranging from 2-3 m in the western 

Gulf to over 10 m in the Bay of Fundy (Townsend et al., 1987) that continuously 

deliver nutrients to the euphotic zone (Townsend et al., 2006). The western GoM is 
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also influenced by freshwater discharge from the area's major rivers including the St. 

John, the Merrimack, the Penobscot, and the Kennebec-Androscoggin system. 

The major biological event of the year is the spring phytoplankton bloom. High 

biological productivity in the GoM has been linked to three processes working in 

concert to deliver nutrients into the GoM, mix them to the surface, and re-distribute 

them throughout the GoM. The delivery of nutrients occurs when deep slope water 

enters the GoM through the Northeast Channel (Townsend, 1998). The slope water 

can either be cold, fresh Labrador Slope Water (LSW) with nitrate concentrations 

of about 15 /xM, or warmer and more saline Warm Slope Water (WSW) originating 

from the Gulf Stream with higher nitrate concentrations of >23 //M. Both LSW and 

WSW have silicate concentrations in the range of 10-14 /iM (Townsend et al., 2006). 

The nutrient-rich water is then brought to the surface by tidal mixing and upwelling, 

vertical flux across the seasonal pycnocline, or winter convection (Townsend, 1991). 

During the summer, these processes can increase surface nitrate levels to >7 /JM 

(Townsend et al., 1987). Once at the surface, nutrients are distributed to the western 

GoM by the Eastern Maine Coastal Current (EMCC), which originates on the Nova 

Scotian Shelf and travels southwest, hugging Maine's coast, until it turns offshore 

near Penobscot Bay. The EMCC is essential for biological productivity in the GoM, 

transporting as much as 44% of the inorganic nutrients derived from slope water to 

the western GoM (Townsend et a l , 1987). 

2.2 Methods 

2.2.1 Sample Collection and Analysis 

Cruises aboard the University of New Hampshire's (UNH) R/V Gulf Challenger 

took place in the western Gulf of Maine on seven days between June 16, 2010 and 

July 2, 2010. In order to track a water parcel over the course of the cruises, a surface 
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drifter and a 12-meter drogue both outfitted with GPS units were deployed at roughly 

43.7°N and -70.0°W. The drogue was placed at 12 m as that was the expected depth 

of the chlorophyll maximum. The surface drifter spiraled away to the east as the 

surface layer sheared off and we were unable to follow it. We tracked the 12-m drogue 

for the duration of the cruises and visited it approximately every other day where we 

stayed on station for 8-10 hours to collect samples, perform oxygen incubations, and 

take vertical profiles. 

Discrete samples of dissolved oxygen, chl-a, and particulate organic carbon (POC) 

were taken at 2 and 12 meters with Niskin bottles to correct profiler data during data 

processing. Dissolved oxygen samples were collected in 300 mL borosilicate glass 

bottles, preserved with 1 mL of MnS04 solution and 1 mL of NaOH/KI solution, and 

analyzed by Winkler titration. Chlorophyll-a and POC samples were filtered through 

25 mm Whatman GF/F glass fiber filters, wrapped in foil, and stored in liquid ni

trogen. Chlorophyll-a was extracted from the filters with 7mL of 90% acetone and 

analyzed by fluorometry (Turner Designs Aquafluor). The POC filters were satu

rated with HC1 fumes, dried, and analzyed on a PerkinElmer 2400 Series II CHNS/O 

Elemental Analyzer. All analysis followed accepted JGOFS protocols (Knap et al., 

1996). 

Oxygen incubations were done in light and dark 300 mL borosilicate glass bottles. 

The light bottles were incubated in direct sunlight on deck, and the dark bottles were 

incubated in a covered chamber. Both light and dark bottles were maintained at 

sea-surface temperature by pumping surface water through the chambers. At the end 

of the incubations, the DO samples were preserved as described above and analyzed 

by Winkler titration. 

Several vertical profiles were taken throughout the day with two profilers. The 

SBE profiler measured conductivity, temperature, and depth (Sea-Bird SBE 49), dis

solved oxygen (Sea-Bird SBE 43), chlorophyll fluorescence (WET Labs ECO Fluo-
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rometer), and photosynthetically active radiation (Biospherical QSP). The IOP pro

filer also measured absorption and attenuation (WET Labs ac-s) and backscattering 

(WET Labs ECO BB9) in addition to conductivity, temperature, depth (Sea-Bird 

SBE 49), dissolved oxygen (Sea-Bird SBE 43), and chlorophyll fluorescence (WET 

Labs ECO Fluorometer). 

On the last day of the cruise, water samples were collected to determine the 

phytoplankton species present. Following Utermohl's method, 200 mL samples were 

collected at depths of 2 m, 14 m, and 20 m. They were preserved with Lugol's solution 

to kill, stain, and weight the phytoplankton. The samples were allowed to settle for 

24 hours, and then the phytoplankton were identified and counted with an inverted 

microscope. 

2.2.2 Data Processing 

Profiler Corrections 

Raw oxygen data from the vertical profiles needed to be corrected due to calibra

tion drift in the instruments. Oxygen data from the two profilers were plotted against 

discrete oxygen samples in order to apply an offset to the data from the instruments. 

A linear regression was fitted to the data, and the slope and intercept were used to 

correct the oxygen profiles (Fig. 2-1). Similarly, the f-chl data were plotted against 

discrete chl-a samples and fitted with a linear regression (Fig. 2-2). The slope and 

intercept were used to convert f-chl to chl-a. 

Biological Oxygen Anomaly 

Variability in dissolved oxygen is attributable to biological and physical factors. 

Biological additions of oxygen to seawater are the result of photosynthesis while con

sumption of oxygen occurs during respiration. The physical factors that affect dis

solved oxygen are temperature, salinity, and pressure, which alter the solubility of 
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oxygen in seawater. In order to calculate NCP from oxygen data, the changes in 

oxygen due solely to biology must be isolated. We will call this the biological oxygen 

anomaly (A[02]&;0). The expected oxygen at saturation was calculated as a function 

of temperature and salinity according to Weiss (1970). The change in oxygen due to 

biological production was then calculated as 

A[02}bi0 = [02] - [02]sat (2.1) 

so as to remove the effects of solubility. [02] is the corrected oxygen concentration 

and [02] sa t is the expected oxygen concentration at saturation. 

Net Community Production from Oxygen 

Net community productivity derived from oxygen (NCPo2), was calculated by 

integrating the biological oxygen anomaly from 1 m to the average euphotic depth 

(zeu) of 24 m to get an oxygen inventory. Oxygen was integrated from 1 m because 

the first meter of data was unreliable. The euphotic depth was calculated from the 

photosynthetically active radiation (PAR) sensor on the profiler for each cast. The 

average euphotic depth was chosen for the integration depth because PAR may have 

varied significantly if the sun went behind the clouds during a particular cast, but 

this likely would not have affected the water column distribution over such short time 

scales. The change in oxygen stock was calculated and then corrected for the loss or 

addition of oxygen at the surface due to air-sea flux and bubble injection, and the 

loss of oxygen at the euphotic depth due to diffusion: 

/ \ 

NCP02 = 
d_ 
dt 

fZeu Pt2 pt2 Pt2 

/ A[02]biodz+ F8dt- / Fdt + Fddt 
Jl Jtx Jti Jtx 

(2.2) 

~v- V V V 
\ AO2 Stock Ai r -Sea Flux Bubble Injection Diffusion / 

Air-sea flux (Fs), bubble injection (Fj), and diffusion (F^) were all integrated from an 

initial cast (tx) to a subsequent cast (t2). NCP was considered over two timescales: 

over the course of the day (last cast minus first cast) and between casts. Advection 
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was considered negligible since we were tracking a water parcel. The final NCPo2 

was converted to units of carbon using the Redfield ratio. 

Air-Sea Flux and Bubble Injection 

Air-sea gas exchange occurs when the partial pressures of gases in the ocean are not 

at equilibrium with atmospheric concentrations. Gas interactions at the atmosphere-

ocean interface can then represent an addition or loss of C0 2 and 0 2 to the system 

that is independent of biological consumption and production of these gases. As a 

result, gas exchange must be accounted for in our NCP measurements. Air-sea gas 

exchange and bubble injection are functions of wind speed, which causes turbulent 

waves that increase the surface area for gas exchange (Libes, 1992). Bubble injection 

was determined according to Nicholson et al. (In Press). Air-sea flux (Fs) for 0 2 was 

estimated from: 

Fs = k(Csw — Csat) (2-3) 

where Csw is the measured 0 2 concentration and Csat is the expected 0 2 concentration 

at saturation. The rate at which a column of gas will diffuse through the water 

column, known as the piston velocity, can be estimated from wind speed (Liss and 

Merlivat, 1986; Wanninkhof, 1992; Wanninkhof and McGillis, 1999; Nightingale et al., 

2000). Piston velocity (k) was computed according to Nightingale et al. (2000) 
0.5 / Sc \ 

k = (0.333 u10 + 0.2222 w10
 2) f — J (2.4) 

Wind speed (u) at 4 m was obtained from the Gulf of Maine Ocean Observing System's 

(GoMOOS) Buoy B and converted to windspeed at 10 m (ui0) after Smith (1988). 

The Schmidt number (Sc) was calculated as 

kinematic viscosity ,n _. 
Sc = ,.„. , , (2.5) 

diffusivity 

Diffusivity was determined according to the Arrhenius equation with the activation 

energy and pre-exponential factor taken from Emerson and Hedges (2008). Kinematic 
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viscosity is the ratio of dynamic viscosity to density. Density was computed after 

Fofonoff and Millard (1983) and dynamic viscosity was estimated from Sharqawy 

et al. (2010). 

Diffusion 

Diffusion of oxygen occurs at the base layer of the euphotic zone where oxygen 

concentrations are higher in the euphotic zone than below. The diffusive flux (F^) 

was calculated by 

Fd =
 k*^of (2-6) 

where 5 m (2.5 m above and below the euphotic depth) was chosen as <9z. A diffusivity 

constant (k2) of 1.5 cm2 s_1 found for stratified July conditions in the Wilkinson Basin 

section of the Gulf of Maine was taken from Benitez-Nelson et al. (2000). 

Net Community Productivity from Optical Parameters 

In order to compare NCPo2 to our optical parameters (chl-a, cp, and &bp), they 

were first converted to carbon. It was determined that we were tracking an Alexan

drium bloom on the cruise so chl-a was converted to units of carbon by applying a 

C:Chl ratio of 172, found by Langdon (1987) for Gonyaulax tamarensis {Alexandrium 

tamarense) at high irradiance. Cp(660) and &bp(555) were linearly regressed against 

discrete POC samples to derive empirical relationships (Fig. 2-3). The slope and 

intercept were applied to convert Cp(660) and &bp(555) to POC. 

Net community production of organic carbon (NCPoc) for each parameter was 

subsequently estimated as 

/ \ 

dt 
NCPoc = 7̂ 1 / APOC dz+ ADOC dz + Fg dt 

V v ' * v ' * v ' / 
\ AParticle Stock Extracellular Production Gravitational F lux / 

(2.7) 
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As with oxygen, POC was integrated from 1 m to the average euphotic depth. How

ever, POC production by phytoplankton only represents a fraction of the change in 

carbon stock due to biology, so dissolved organic carbon (DOC) produced by phy

toplankton (extracellular release) must also be taken into account. Little is known 

about extracellular release but it is thought to be the result of one of two physiolog

ical mechanisms: (1) an overflow mechanism to release excess photosynthate (Fogg, 

1983) or (2) passive diffusion of photosynthates (Bj0rnsen, 1988). The percent of 

extracellular release (PER) is defined as 

where DOCp and POCp are the photosynthetic production of DOC and POC respec

tively. Experiments by Marahon et al. (2004) found that PER was independent of 

phytoplankton biomass and productivity and that 80% of variability in integrated 

DOCp was explained by POCp, thus supporting the passive diffusion mechanism. 

The research by Marahon et al. (2004) suggested that productivity is underestimated 

if dissolved components are not accounted for. Therefore, we estimated DOCp based 

on our POCp and an average PER of 19% obtained by Marahon et al. (2004). 

The vertical sinking, or gravitational carbon flux of POC must also be considered. 

Packard and Christensen (2004) explored vertical carbon flux in the Gulf of Maine 

at 30, 50, and 100 m depth by integrating respiratory oxygen consumption profiles. 

Given that 30 m was close to our average euphotic depth of 24 m, we applied a 

constant carbon flux of 3.09 fimol m~2 min - 1 measured by Packard and Christensen 

(2004). 
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2.3 Results 

2.3.1 Hydrography 

The conditions over the course of the cruises were relatively stable. Surface tem

peratures began around 15 °C during the first week of sampling, and peaked at 22 °C 

after the end of the first week (Fig. 2-4). The temperatures then cooled back down to 

about 15 °C by the end of the second week of cruises. At 10 m depth, temperatures 

dropped by several degrees, and below 15 m, temperatures remained uniform around 

8 °C. Salinity was uniform over time and increased by about 1.5 psu over 40 meters 

(Fig. 2-5). Fluorescent chlorophyll data exhibited surface chlorophyll values near 1 

mg m~3 and a deep chlorophyll maximum (DCM), which occurred at 12 m on the 

first day of the cruise, and slowly deepened throughout the two week period. The 

DCM also increased in intensity, with the highest values at the end of the first week 

on June 25. The biological oxygen anomaly followed suite, with maximum values 

near 10 m at the beginning of the cruise, which deepened and increased in intensity 

over the course of the cruises. As expected, values were generally positive above 

the average euphotic depth (24 m), indicative that photosynthesis was the dominant 

process, whereas respiration prevailed below the euphotic depth. 

2.3.2 Oxygen Corrections 

Air-sea fluxes were calculated from piston velocity, which was parameterized from 

wind speed and the Schmidt number. Surface oxygen Schmidt numbers exhibited a 

decreasing trend over the course of the cruises (Fig. 2-8). Initial values were around 

600 and declined to about 545 by the last cruise day. Ten-meter wind speeds were 

relatively low throughout the duration of the cruises with the average wind speed less 

than 5 m s_1(Fig. 2-9). The highest wind speeds of between 8 and 11 m s_1 occurred 

on the third cruise day. Piston velocity mirrored wind speed with the highest values 
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between 17 and 35 cm hr - 1 occuring on the third day during strong winds (Fig. 2-10). 

Mean piston velocity was 8.46 cm hr - 1 . 

Final air-sea fluxes ranged from 0.17 to 3.47 mmol m~2 h r - 1 out of the ocean. 

The mean air-sea flux over the course of the day was 1.52 mmol m - 2 h r - 1 and 1.48 

mmol m~2 h r - 1 between casts. The lowest overall fluxes occured on the first cruise 

day, while the highest fluxes occured on the June 30 cruise. As a percent of the 

change in oxygen stock, air-sea flux was the biggest correction. The mean percent of 

the change in oxygen stock, excluding two extremely high percentages (>100%), was 

14% over the day and 6% between casts. The high percentages were not the result 

of air-sea flux being high, but instead were due to very small changes in the oxygen 

stock. 

Bubble injection was calculated as a function of wind speed, temperature, and 

salinity. At 10-meter wind speeds (uio) less than 2.27 m s_1, bubble injection was 

assumed zero. Fluxes due to bubble injection ranged from 0-1.14 mmol m~2 hr_1(Fig. 

2-12). The mean rate of bubble injection was 0.14 mmol m - 2 h r - 1 over the day and 

0.13 mmol m~2 h r - 1 between casts. The highest bubble injection rates occurred 

on the third cruise day when the winds were strongest, while the bubble injection 

rates were below 0.40 mmol m~2 h r - 1 for the rest of the cruise days. Mean bubble 

injection flux was about 2% of the change in oxygen stock over the day and less than 

1% between casts. 

Diffusion of oxygen generally occurred from the base of the euphotic zone to the 

depths below. Positive diffusion values ranged from 0.12 mmol m~2 h r - 1 to 2.36 

mmol m - 2 hr_1(Fig. 2-13). Average values were around 0.89 mmol m - 2 h r - 1 over 

the day and 0.87 mmol m~2 h r - 1 between casts. In a few cases, diffusion values 

were negative implying a movement of oxygen into the euphotic zone from below. 

These values ranged from 0.08 to 0.50 mmol m - 2 hr - 1 . As a percent of the change 

in oxygen stock, diffusion was an average of 9% over the day and 5% between casts 
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when excluding one unusually high value of over 100%. The high percentage was not 

a function of the diffusion value but of the oxygen change, which was unusually small. 

2.3.3 Net Community Productivity 

Final net community productivities were calculated after correcting the change in 

depth-integrated oxygen for air-sea flux, bubble injection, and diffusion (Fig. 2-14). 

Some variability in NCP occurred during the cruises. NCP values ranged from -2.64 

to 2.11 g C m - 2 hr - 1 . The mean rate of productivity was -0.04 g C m~2 h r - 1 over 

the day and -0.07 g C m~2 h r - 1 between casts. This indicates that the GoM was 

nearly in equilibrium during our cruises in spite of the variability that occurred. The 

last day of the cruise appeared to be the most productive with the majority of NCP 

being positive. 

2.3.4 Optical Proxies for NCP 

Linear regression analysis of NCPoc derived from chl-a, cp(660), and &bp(555) 

showed promise as optical proxies for NCPo2- Because the coefficients of determina

tion for the conversion of f-chl to chl-a and the conversion of Cp(660) and ObP(555) to 

POC were not optimal (all <0.50), direct relationships between the change in f-chl, 

Cp(660), and 6Dp(555) with NCPo2 were also examined. Relationships were assessed 

over two time scales: NCP over the course of the day (last cast minus the first cast) 

and short-term NCP between each cast. P-values less than 0.05 were considered 

significant. 

The relationship of NCPoc derived from chl-a (NCPoc(chl-a)) versus N C P Q 2 

over the course of the day (Fig. 2-15) was insignificant (p = 0.12, r2 = 0.18). Short-

term changes between casts (Fig. 2-16) were significant and showed a stronger corre

lation (p < 0.001, r2 = 0.40). However, given that the same value is being measured 

on both axes, a 1:1 relationship was expected, yet the slope (m) is only 0.14. The 
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lack of a 1:1 relationship may be the result of the poor conversion of f-chl to chl-a. 

Surprisingly, when NCPoc (f-chl) is regressed against NCPo2 over the course of the 

day and between casts (Figs. 2-17 and 2-18), the results worsen (p = 0.29, r2 = 0.09 

and p < 0.001, r2 = 0.35 respectively). While f-chl is not the equivalent of chl-a, NCP 

is a measure of the rate of change over time so it was expected that the change in 

f-chl should approximate the change in chl-a and the results would improve since no 

error was introduced by converting f-chl, however, this was not the case. 

The strongest trends were found between NCPoc derived from Cp (NCPoc (cp)) 

both throughout the day (Fig. 2-19) and between casts (Fig. 2-20). Both relation

ships were significant and strongly correlated (p < 0.01, r2 = 0.86 and p < 0.001, 

r2 = 0.91 respectively). Similarly, a 1:1 relationship was expected from NCPoc(Cp), 

however, the slope was only 0.18 during the day and improved to 0.28 between casts. 

Interestingly, when the change in depth-integrated cp(660) was regressed against 

NCP02 (Fig. 2-22) between casts, a 1:1 agreement was obtained (m = 0.99, p < 

0.001), although the relationship weakens slightly (r2 = 0.88). However, this 1:1 rela

tionship was not seen throughout the day (Fig. 2-21) where the slope was only 0.48 

(p < 0.05). 

The trend between NCPoc derived from &bP (NCPoc(&bp)) a n d NCPo2 was in

significant over the course of the day (p > 0.05) despite an r2 of 0.54 (Fig. 2-23). A 

significant correlation was found between casts (p < 0.001, r2 = 0.83), although a 1:1 

relationship was still not seen (Fig. 2-24). Plotting &bp(555) with NCPo2 did not 

improve the slope as backscattering is a very small portion of the attenuation in an 

ecosystem dominated by productivity (Antoine et al., 2011). 
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2.4 Discussion 

This experiment sought to characterize NCP in the western GoM and analyze 

the potential of several optical variables as proxies for NCP that would offer the 

opportunity to estimate NCP globally and improve oceanic carbon budgets. At the 

start of this work, there were three main points of contention: 1) a suitable depth of 

integration to calculate inventories, 2) the implications of surface shear to tracking a 

water mass, and 3) an appropriate C:Chl ratio for conversion of chl-a into units of 

carbon. 

At first glance, the mixed layer depth (MLD) seemed to be the relevant depth of 

integration. However, when MLDs were calculated based on potential density and 

temperature using thresholds of 0.03 and 0.2 respectively after de Boyer Montegut 

et al. (2004), MLDs were found to be on average 5 meters. Upon examination of 

the biological oxygen and f-chl profiles, maxima were well below the MLD suggesting 

that most of the biological activity would be ignored when only integrating to the 

MLD. Consequently, the euphotic depth, or the depth to which 1% of surface light 

penetrates, was chosen as the integration depth to ensure that the most biological 

activity would be captured. 

As for the second issue, originally this experiment was intended to be a Lagrangian 

cruise that would track one water mass over the course of two weeks. At the outset 

of this experiment, a surface drifter and 12-m drogue were deployed, but the surface 

layer of water sheared off and carried the surface drifter to the east while we tracked 

the drogue south. Kudryavtsev and Soloviev (1990) describes this phenomenon in 

the Equatorial Atlantic as the result of daytime solar heating causing a decreased 

drag coefficient in the near-surface layer allowing it to slip over the the underlying 

water with little friction. Wind stress can then induce a current in the surface water 

that moves it in another direction than the water below. This has repercussions for 

our experiment because the surface water above the thermocline was moving away 

26 



so our cruise was not truely Lagrangian. While we were tracking the 12-m water 

mass, we had different surface water during each sampling period. However, since the 

surface layer was shallow (<5 m) and most of the biological activity occurred below 

12 meters, this likely introduced little error to our NCP calculations. 

With regard to the third point, a first approximation of the C:Chl ratio was made 

using a ratio of discrete POC data to discrete chl-a data resulting in a ratio of 230. 

However, the ratio of POC to chl-a is an overestimation of the C:Chl ratio because 

POC includes both living and detrital components. Since we were unable to isolate 

the living component of POC, we used the ratio of 172 found by Langdon (1987) 

at high light conditions, which seemed an appropriate value more representative of 

the living component of POC. As we were unable to calculate our own C:Chl ratio, 

significant error may be associated with using a value from the literature, although it 

seems a reasonable estimate. Similar values of 172, 180, and 82 were found by Buck 

et al. (1996) for the tropical, subtropical, and subarctic regions of the North Atlantic 

respectively. 

2.4.1 Sources of Error 

Estimating the uncertainty in NCP calculated from both oxygen and POC was a 

challenging task because errors propagated with each correction. In order to estimate 

the total uncertainty, a Monte Carlo analysis was utilized. This involved generating 

random samples for each variable that was subject to error within the NCP equation 

based on their mean and standard deviation. Some of these variables were measured 

directly while those that could not were taken from the literature. A summary of the 

means and uncertainties of each parameter used to calculate NCPoc and NCPo2 is 

given in Tables 2.1 and 2.2. 

The lack of a 1:1 relationship between NCPo2 and NCP calculated from optical 

proxies is indicative that either not enough particles were added back in or too much 
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oxygen was added when correcting for fluxes. This could arise from the ineffective 

tracking of particle loss or 0 2 gain. According to the Monte Carlo analysis, the largest 

errors in the estimation of NCPo2 came from air-sea flux, followed by diffusion. Since 

wind speeds were low, bubble injection was of least importance. The largest error 

incorporated into NCPoc came from ADOC. In all NCP estimates, uncertainties 

were extremely high, particularly in NCPoc(cp)5 which gave the best relationship 

with NCPo2. 

The first source of error associated with NCPoc involves the conversion of Cp and 

&bP to POC. Literature reports strong linear relationships when regressing cp and 6Dp 

against POC with r2 > 0.80 (Gardner et al., 1993; Bishop, 1999; Bishop et al., 1999; 

Stramski et al., 1999; Mishonov et al., 2003). But our relationships for Cp and b\,p 

against bottle POC were weak (r2 = 0.48 and r2 = 0.37 respectively). As mentioned 

previously, Bishop (1999) observed the same poor relationship with bottle POC data 

(r2 = 0.40), but achieved an r2 > 0.90 with in situ POC filtration methods. In spite 

of these weak relationships, NCP regressions were more robust with NCP calculated 

from POC than when plotted directly with cp and 6Dp-

Large errors in NCPoc estimations were also associated with the conversion of 

chl-a to carbon, gravitational flux, and extracellular release because we were unable 

to directly measure these values. Instead values from the literature were assumed, 

which introduced more error than if we had been able to measure them directly. 

Although the largest error according to the Monte Carlo analysis came from ADOC, 

the vertical sinking flux may well be causing even greater error as this value was taken 

from the literature in a study done in 2004. It is unlikely that vertical sinking rates 

are constant over the years and sinking fluxes can change quickly during flash events 

where many particles may be lost. Thus, studies of gravitational fluxes are needed 

on shorter time scales. 

Errors associated with N C P Q 2 were related to piston velocity, air-sea flux, dif-
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fusion, and bubble injection corrections. While errors were high, values compared 

relatively well to the literature values that were scaled down to hourly rates. Winds 

were fairly calm during the duration of our cruises, with average Uio of ~4 m s_1. 

The mean piston velocity was 2.4 x 10 - 3 cm s_1, which is in good agreement with 

the piston velocity of 4 x 10 - 3 cm s_ 1 found by Redfield (1948) in the summer for 

the GoM. It is also similar to the piston velocity of 4.1 x 10~3 cm s - 1 in the shelf 

area west of Iceland where average wind speed was 4.4 m s_1 (Stefansson et al., 1987) 

and the piston velocity of 1.6 x 10 - 3 cm s_ 1 found by Johnson and Pytkowicz (1979) 

in Stuart Channel, BC. 

The average air-sea flux (1.52 mmol m - 2 hr - 1) was a little higher than air-sea 

fluxes found by Alvarez et al. (2002) in Bellingshausen Sea (Antarctic waters). In 

Bellingshausen Sea, a diatom bloom occurred during the study period causing the area 

to act as a strong source of oxygen 1.04 mmol m~2 h r - 1 similar to the Alexandrium 

bloom seen in our study. During two wind events (5 < Uio< 11 m s_1) in Martha's 

Vineyard, McNeil et al. (2006b) reported air-sea fluxes of 0.53 and -1.81 mmol m~2 

hr - 1 , which are similar in magnitude to our data. 

Bubble flux was seldom reported in the literature, likely due to the uncertainty 

in modelling it. Najjar and Keeling (2000) employed the Spitzer and Jenkins (1989) 

model to calculate a global mean annual bubble injection flux of 2 mol m~2 yr - 1 . 

When scaled down to an hourly flux of 0.23 mmol m~2 h r - 1 it correlates well to our 

mean bubble injection flux of 0.14 mmol m - 2 hr - 1 . Good agreement was also found 

with an annual estimation by Hamme and Emerson (2006) of 0.16 mmol m - 2 h r - 1 

when scaled down to an hourly flux at station ALOHA near Hawaii. 

There is also a paucity of literature reporting diffusive flux of oxygen across the 

euphotic depth. McCardell and O'Donnell (2009) reported fluxes of 150-160 mmol 

m~2 d_1 across the pycnocline in the Long Island Sound, however, this is likely not 

a good comparison as they state that the euphotic depth is much shallower than 
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the pycnocline in Long Island Sound. Kemp and Boynton (1980) reported that in 

Chesapeake Bay, diffusive flux ranged from 1-9% of the total inputs and outputs across 

the euphotic boundary, with an average of 5%. Our diffusive flux corresponded well 

with an average of 9% of the total oxygen inputs and outputs. 

2.4.2 Net Community Productivity 

Despite large errors, our NCP rates correspond well to literature values. Sam-

brotto and Langdon (1994) conducted a Lagrangian experiment on Georges Bank 

during April of 1990 by following a water mass spiked with SF6 for 10 days. NCP 

was calculated from changes in DIC and 0 2 resulting in average NCP from -0.05 

to -0.06 g C m~2 h r - 1 using both methods, which compares well to our average 

NCP of -0.04 to -0.07 g C m"2 hr"1. Further studies in the Labrador Sea by Martz 

et al. (2009) became Lagrangian when a mooring became loose in late June-August 

of 2004. They estimated NCP of 0.02 g C m~2 hr - 1 , which is near equilibrium like 

our estimate. 

Marra et al. (1995) did similar work in the northeast Atlantic following drifters 

over three periods in 1991. The first was during a bloom of Paeocystis pouchetii, the 

second occurred after a storm mixed the water column to a MLD of >150 m, and 

the third deployment was during the restratification of the water column. They also 

found a good correlation between cp and chl-a to POC and subsequently estimated 

POC from both. Upon comparison of NCP from 0 2 and POC, they were mildly 

successful in their comparison. During stations before the storm, they only observed 

agreement in sign while after the storm, values agree to 30%. As with our study, 

their NCP rates from POC estimated by cp were off by a factor of 4.6 (similar to our 

nearly 5) when compared to NCP rates from 0 2 measurements. 

Lastly, Jonsson et al. (2010) did the only study we are aware of that attempts 

to estimate NCP with satellite ocean color data from MODIS-Aqua. The study in 
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the GoM over 3 years used chl-a and light attenuation in conjunction with a C:Chl 

model to calculate phyoplankton carbon inventories down to the euphotic depth. NCP 

was estimated from changes in phytoplankton carbon stocks using sequential satellite 

images that tracked water parcel movements. They were successful and found that 

NCP values ranged from ± 0.02 g C m~2 hr - 1 , similar to the values in our experiment. 

2.4.3 Optical Proxy Relationships 

NCPoc (cp) showed the strongest relationship to NCPo2, both over the day and 

between casts. According to Behrenfeld and Boss (2003), cp should be closely asso

ciated with phytoplankton carbon biomass since Cp is dominated by particles in the 

phytoplankton size domain (0.5-2.0 /im). While inorganic, detrital, and heterotrophic 

particles can also cause variability in Cp, it is assumed that variations in cp were due 

solely to biology over short time scales of our study. Although Cp is not currently a 

remote sensing product, advances are being made to retrieve cp from water leaving 

radiance (Roesler and Boss, 2003). 

NCPoc (^bP) also showed relatively good trends, although they were not as strong 

as those from Cp(660). This is probably due to the fact that most backscattering is 

caused by particles less than 1 ̂ tm (Stramski and Kiefer, 2001), the majority of which 

are thought to be detrital (non-living) particles (Ulloa et al., 1994). NCPoc (chl-a) 

displayed little to no correlation with NCPo2. Chlorophyll-a was likely the weakest 

predictor of NCP because conversions of f-chl to chl-a were poor and the C:Chl ratio 

was difficult to estimate. A more direct measure of carbon rather than chlorophyll is 

needed to understand biogeochemical cycles. Although the strongest slope was found 

between Adepth-integrated Cp(660) and NCPo2, this is likely just a coincidence since 

the same slope is not seen over the day. 

Since we were estimating the same quantity on both axes, we expected to obtain 

a 1:1 relationship for each proxy. Yet in all cases, our slope was off by a factor of ap-
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proximately 5. One possibility for this discrepancy is the fact that we used total POC, 

cp, and 6bp, which includes both living and detrital components, rather than isolating 

phytoplankton carbon and the attenuation and backscattering due to phytoplankton 

(Cphyto and frbphyto respectively). This error would have been introduced during the 

initial conversion of Cp and 6bp to POC. In order to determine if isolating phyto

plankton carbon could reasonably explain this discrepancy, we conducted a thought 

experiment. We estimated phytoplankton carbon (PC) after Behrenfeld et al. (2005) 

as a constant proportion (30%) of the total POC pool. In order to obtain a final 1:1 

relationship, this would have called for 8% of Cp and 6% of 6bp to be attributable to 

phytoplankton. 

These percentages may be reasonable for 6bphyto but it is unlikely that Cphyto would 

be that small. Durand and Olson (1996) found that 50% of beam attenuation was at

tributable to phytoplankton and that changes in Cp were almost completely explained 

by changes in Cpnyto- On the other hand, Green et al. (2003) found that the main 

contributors to 6b hi New England coastal shelf waters were detritus and minerals in 

the summer and only minerals in the spring. Upon isolating the various contributions 

to 6b> when taken as a percentage of 6bp> 44% was due to minerals, 41% was due to 

detritus, 9% was a result of heterotrophic prokaryotes, and eukaryotic phytoplank

ton and Synechococcus contributed 2.5% each. It is likely then that isolating 6bphyto 

would have significantly improved our 1:1 relationship, but it is unlikly to have been 

the case for Cphyto-

2.4.4 Experiment Weaknesses 

Our current experiment has many weaknesses and calculations are associated with 

high errors, indicative that there is significant room for improvement in future ship

board experiments. To truly obtain an understanding of NCP, consecutive 24-hour 

measurements would be required. We do not know how nighttime respiration, air-sea 

32 



flux, and bubble injection pre-conditioned our morning casts and as such, we were 

unable to assess day-to-day changes in NCP. Our measurements were constrained to 

sunlit hours. Alternate determinations of NCP via bottle incubation are one aspect 

of the experiment that did not produce results. The bottle data were determined 

not to be representative of true NCP at depth because they were incubated on deck 

where they were exposed to warmer temperatures and stronger PAR, which would 

have been attenuated at depth. 

Furthermore, many parameters required for NCP calculations were not measured 

and we had to rely upon the literature to find suitable estimates. In particular, an ap-

propiate C:Chl ratio was required to convert chl-a into phytoplankton carbon. C:Chl 

ratios differ substantially among phytoplankton species (Langdon, 1987) as well as 

with temperature, nutrient availability, and light (Behrenfeld et al., 2005). Since 

phytoplankton communities change throughout the year and environmental condi

tions change seasonally, future experiments would benefit by taking phytoplankton 

samples to determine the dominant species present and determine the C:Chl ratio. 

Likewise, a literature estimate of gravitational POC flux in the GoM was applied 

to our data. It would be informative to directly measure the gravitational POC flux 

via sediment traps once the euphotic depth is established. As with the C:Chl ratio, 

sinking rates will vary based on the phytoplankton community present, as different 

communities will have variable size, shape, and density which can affect sinking rates 

(Fischer and Karaka§, 2009). 

Little is known about the extracellular release of DOC, but Maranon et al. (2004) 

suggests that productivity measurements are greatly underestimated if DOC produc

tion is omitted. In order to estimate the extracellular release of DOC we used the 

mean PER (19%) found by Marahon et al. (2004), however, this data was collected 

in Spain. Local measurements in the GoM were conducted by Mague et al. (1980), 

who found a PER of 5-10%, but Maranon et al. (2004) suggested this is an under-
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estimate because DOC may have adsorbed to the GF/F filters. Additionally, only 

surface samples were collected and Maranon et al. (2004) found PER to increase with 

depth. They also showed that PER is affected by irradiance but it is unclear whether 

it is related to phytoplankton size. Since much uncertainty surrounds the ratio of 

DOC production to total carbon production, it would be better to measure DOC 

production directly. 

Again, vertical eddy diffusivity was taken from the Benitez-Nelson et al. (2000) 

study in the GoM. However, eddy diffusivity has been shown to vary within the GoM 

by area and season (Townsend, 2002). 7Be has been shown to provide a useful estimate 

of eddy diffusivity and may be more accurate than estimations from empirical models, 

offering a potential method of kz measurement for future experiments. 

2.4.5 Improvements for Future Experiments 

Our study was brief and limited data was collected to provide a significant under

standing of NCP in the western GoM. A well-designed future experiment will seek to 

elucidate the annual cycle of NCP in order to clarify the effects of seasonal changes 

in temperature, light, labile organic carbon, inorganic nutrients, and phytoplankton 

community. This would involve week to month-long cruises each season where sam

ples should be taken continuously throughout the daytime and nighttime to capture 

diel cycles, as our data was limited by a lack of knowledge about how nighttime 

respiration contributes to NCP. Depth profiles should be taken every hour to pro

vide increased temporal resolution, and independent determinations of NCP through 

bottle incubations should be conducted at depth to avoid the temperature and light 

attenuation issues seen in our experiment. Additionally, some instruments such as 

an optode could be situated directly on the drifter at several depths (i.e. surface, 

chlorophyll maximum, and euphotic depth) to provide continuous coverage while still 

allowing for the integration of the 0 2 profile over the euphotic depth. 
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In order to minimize the errors associated with NCP calculations, as many vari

ables as possible should be sampled directly to avoid reliance on literature values. 

Regular phytoplankton samples should be collected to characterize the dominant 

phytoplankton community and determine an appropriate C:Chl ratio. Particulate 

carbon could be measured through the use of an elemental analyzer and chl-a could 

be measured fluorometrically as in Langdon (1987). Seasonal gravitational fluxes 

could be measured through the use of a sediment trap that could be attached to the 

drogue so that it would drift with the water mass being traced. DOC production 

could be estimated following Maranon et al. (2004) through the use of simulated in 

situ incubations where seawater samples spiked with 14C are incubated at the light 

and temperature conditions measured by the profiler. k2 can be derived through the 

steady-state model described by Silker (1972), which would require the collection of 

7Be on iron-impregnated filters (Benitez-Nelson et al., 2000). 

Ideally, it would be advantageous to have concurrent satellite imagery of chl-a 

6bp and cp over the cruise periods to examine whether optical parameters measured 

by satellite produce the same estimates for POC inventories and hence NCP as the 

optical parameters measured in situ. However, this would require a satellite being 

positioned above the study area in order to take closely-spaced sequential images. 

Presently we do not have that capability, but it may become a reality in the near 

future with the launch of NASA's geostationary satellite, GEO-CAPE. 

2.4.6 Implications and Conclusions 

This research reports on a novel method of retrieving NCP by using an optical 

proxy to track changes in particle inventories. Since most particles in the euphotic 

zone are of biological origin, it is reasonable to assume that community consumption 

and production can be estimated by knowledge of the temporal dynamics of particle 

inventories. Two of the three optical parameters examined in this study are retrievable 
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from satellite and can act as indices for POC. It follows then that changes in particle 

stocks retrieved by satellite could provide a first order estimation of NCP. 

Significantly stronger relationships were seen between casts compared to over the 

day. Part of this may be attributable to the fact that there were fewer points over the 

day than between casts. However, if there is a stronger relationship over shorter time 

periods, this has implications for monitoring NCP by satellite. Currently, satellites 

such as SeaWiFS and MODIS-Aqua can only collect images once every day or two. 

If there is excessive cloud cover, data may only be collected once or twice a week, 

which is not suitable for estimating NCP because one image is not enough to give 

information about a rate. A rate implies a change over time, so consecutive snapshots 

over short periods of time to track a moving water mass and correct for advection 

using modelled velocity fields are necessary to estimate NCP. 

NASA is planning to launch a new satellite, GEO-CAPE, that will be in geosyn

chronous orbit with the earth, and as such will be stationary over one area. It would 

be capable of capturing data on short-term time scales and could likely get a good 

measure of NCP. Currently a similar geostationary satellite, the COMS-GOCI, is op

erating above the Korean Sea. It is capable of capturing 8 daytime images and 2 

nighttime images. Polar orbiters could even provide additional looks that could be 

combined with geostationary images. 

This research presents the possibility of using optical parameters to estimate POC 

inventories and utilize the temporal derivative as a first order estimate of NCP. The 

best estimate was derived from cp as it is dominated by particles in the phytoplankton 

size domain. While cp is not currently a satellite product, it is highly desirable and 

greater efforts should be made to retrieve it. Strong relationships seen between casts 

imply the need for improved resolution of satellite images in space and time. NASA's 

GEO-CAPE satellite has the potential to fulfill this task. For the first time ever, we 

would be able to estimate the biogeochemical contribution of NCP to the carbon cycle 
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and be able to continually monitor the effects of climate change and anthropogenic 

perturbations on NCP. 
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Figure 2-1: Oxygen corrections for both profilers. 
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Figure 2-2: Chlorophyll corrections for both profilers. 
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Temperature 
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Figure 2-4: A kriged plot of temperature (°C) with periods of high variance in between 
cruise days masked out. 
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Figure 2-5: A kriged plot of salinity (psu) with periods of high variance in between cruise 
days masked out. 
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Figure 2-6: A kriged plot of f-chl (mg m ) with periods of high variance in between 
cruise days masked out. 
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Figure 2-7: A kriged plot of the biological oxygen anomaly (/xmol m 3) with periods of 
high variance in between cruise days masked out 

40 



Schmidt Number Time Series 10 m Wind Speed Time Series 
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Figure 2-8: A time series plot of Schmidt 
numbers (dimensionless) for oxygen during 
the cruises. Each dot represents a cast. 
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Figure 2-9: A time series plot of 10 m wind 
speed (ulO) for the cruises. Each dot repre
sents a cast. 
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Figure 2-10: A time series plot of piston 
velocity (cm h r - 1 ) for the cruises. Each dot 
represents a cast. 
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Figure 2-11: A time series plot of air-sea 
flux (mmol m - 2 h r - 1 ) for the cruises. Blue 
dots represent fluxes between casts and red 
dots represent the flux over the course of the 
day (last cast minus the first cast) for both 
profilers. 
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Bubble Injection Time Series Diffusion Time Series 
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Figure 2-12: A time series plot of bubble 
injection (mmol m - 2 h r - 1 ) for the cruises. 
Blue dots represent fluxes between casts and 
red dots represent the flux over the course of 
the day (last cast minus the first cast) for 
both profilers. 
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Figure 2-13: A time series plot of diffu
sion (mmol m - 2 h r - 1 ) for the cruises. Blue 
dots represent fluxes between casts and red 
dots represent the flux over the course of the 
day (last cast minus the first cast) for both 
profilers. 
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Figure 2-14: A time series plot of NCP (g 
C m~2 h r - 1 ) for the cruises. Blue dots rep
resent NCP between casts and red dots rep
resent NCP over the course of the day (last 
cast minus the first cast) for both profilers. 
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Figure 2-17: The relationship between Figure 2-18: The relationship between 
NCP derived from uncorrected profiler f-chl NCP derived from uncorrected profiler f-chl 
vs. N C P Q 2

 o v e r the course of the day. vs. N C P Q 2 calculated between casts. 
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19: NCP derived from cp(660) Figure 2-20: NCP derived from cp(660) 
over the course of the day. vs. N C P Q 2 calculated between casts. 
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Figure 2-21: Raw cp(660) data plotted Figure 2-22: Raw cp(660) data plotted 
against NCPo2 without converting to POC against NCPo2 without converting to POC 
over the course of the day. calculated between casts. 
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Figure 2-23: POC derived from 6bp(555) Figure 2-24: POC derived from &bp(555) 
vs. N C P Q 2 over the course of the day. vs. N C P Q 2 calculated between casts. 
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Table 2.1: Displayed is a table of the errors associated with POC calculations. Sbe and 
iop refer to the two different profilers. Day and btw refer to the two different time scales 
analyzed (over the course of the day and between casts respectively). All means displayed 
are from the original data or the literature, not a Monte Carlo analysis. Standard deviations 
(SD) are from a Monte Carlo simulation where indicated. 

m (f-chl, sbe) 
b (f-chl, sbe) 
m (f-chl, iop) 
b (f-chl, iop) 
m (cp, iop) 
b (cp, iop) 
m (6bp, iop) 

b (6bp, iop) 

%eu 

PER 
ADOC (chl-a, day) 
ADOC (chl-a, btw) 
ADOC (cp, day) 
ADOC (cp, btw) 
ADOC (6bp, day) 
ADOC (6bP, btw) 

F , 

NCP (chl-a, day) 
NCP (chl-a, btw) 
NCP (cp, day) 
NCP (cp, btw) 
NCP (bbp, day) 
NCP (6bP, btw) 

mean 
0.29 
0.65 
0.52 
0.48 
17.1 
11.4 
1575 
12.9 
24.4 

19% 
-0.0035 
-0.0058 
-0.0060 
-0.0072 
-0.0023 
-5.93e"4 

3.09 

-0.019 
-0.031 
-0.032 
-0.038 
-0.012 

-0.0032 

S D 
0.07 
0.10 
0.13 
0.14 
3.65 
1.60 

401.2 
1.50 
2.69 
5% 
0.01 
0.04 
0.08 
0.16 
0.01 
0.03 
1.55 

0.05 
0.18 
0.39 
0.81 
0.05 
0.16 

units 

mg m~3 

mg m~3 

fimol L _ 1 

/imol L _ 1 

m 

g C m~2 h r - 1 

g C m~2 h r - 1 

g C m~2 h r - 1 

g C m - 2 h r - 1 

g C m~2 h r - 1 

g C m~2 h r - 1 

/ / m o l m _ 2 s _ 1 

g C m~2 h r - 1 

g C m - 2 h r - 1 

g C m~2 h r - 1 

g C m~2 hr" 1 

g C m~2 h r - 1 

g C m~2 hr" 1 

source 
data 
data 
data 
data 
data 
data 
data 
data 
data 

Maranon et al. (2004) 
Monte Carlo 
Monte Carlo 
Monte Carlo 
Monte Carlo 
Monte Carlo 
Monte Carlo 
Packard and 

Christensen (2004) 
Monte Carlo 
Monte Carlo 
Monte Carlo 
Monte Carlo 
Monte Carlo 
Monte Carlo 

46 



Table 2.2: Displayed is a table of the errors associated with O2 calculations. Sbe and 
iop refer to the two different profilers. Day and btw refer to the two different time scales 
analyzed (over the course of the day and between casts respectively). All means displayed 
are from the original data or the literature, not a Monte Carlo analysis. Standard deviations 
(SD) are from a Monte Carlo simulation where indicated. 

m (O2, sbe) 
b (02 , sbe) 
m (02 , iop) 
b (02 , iop) 
[O2] sat 
^eu 

k 
k, 
Fs (day) 
Fs (btw) 
Finj (day) 
Finj (btw) 
Fd (day) 
Fd (btw) 
NCP (02 , day) 
NCP (02 , btw) 

mean 
0.88 
47.2 
0.76 
65.3 

profile 
24.4 
8.46 
1.5 
1.52 
1.48 
0.14 
0.13 
0.89 
0.87 
-0.04 
-0.07 

SD 
0.12 
35.7 
0.13 
41.2 
0.015 
2.69 
12% 
0.40 
2.00 
2.24 
12% 
12% 
0.70 
0.76 
0.25 
0.89 

units 

/imol Lr1 

//mol L - 1 

m L L - 1 

m 
cm hr - 1 

cm2 s - 1 

mmol m - 2 h r - 1 

mmol m - 2 h r - 1 

mmol m~2 h r - 1 

mmol m~2 h r - 1 

mmol m - 2 h r - 1 

mmol m~2 h r - 1 

g C m~2 h r - 1 
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CHAPTER 3 

INCUBATION STUDY 

This experiment sought to characterize NCP in the Piscataqua Estuary Inlet and 

collect a long-term data set of gross primary production, respiration, and net commu

nity production rates. In order to undertake this goal, a novel incubation instrument 

was developed and subsequently deployed at a marine station adjacent to the Pis

cataqua Estuary Inlet. This system is advantageous because the incubation chambers 

are much larger than traditional bottle incubations and we are able to control some of 

the variables such as light, the length of the incubation, and to some extent temper

ature. Additionally, this system is capable of continuous automated measurements 

that would otherwise require a lot of manpower to collect. It will also provide a large 

data set of respiration measurements giving us information on the heterotrophic con

tribution to NCP, which is lacking in the literature. We hypothesize that there will 

be seasonal variability of NCP as phytoplankton communities evolve and inorganic 

nutrient and organic carbon availability changes. 

3.1 Site Description 

The study site is the Piscataqua Estuary Inlet, which is located along the New 

Hampshire-Maine border at the confluence of the Great Bay-Piscataqua estuary sys

tem and the Gulf of Maine. The Great Bay Estuary is a tidally-dominated, well-

mixed system, consisting of Little Bay and Great Bay (Bilgili et a l , 2005). It receives 

drainage from seven rivers, the Lamprey, Squamscott, Winnicut, Bellamy, Oyster, 

Cocheco, and Salmon Falls rivers, although their net contribution is less than 2% of 
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the tidal prism (Bilgili et al., 2005). The Great Bay Estuary undergoes semi-diurnal 

tidal exchange with the Gulf of Maine via the Piscataqua River. The island of New 

Castle is situated in the Piscataqua Estuary where the Piscataqua River connects 

to the Gulf of Maine, forming the Piscataqua Estuary Inlet (Fig. 3-la). The sam

pling station for this study is the University of New Hampshire's Coastal Marine Lab 

(CML), which is located in the old Mines building of historic Fort Constitution on 

the Fort Point Peninsula in New Castle, NH (Fig. 3-lb). 

Previous work in the Piscataqua Estuary Inlet by Brown (2006) found that during 

low tide, water measured at the inlet was uncontaminated Piscataqua Estuary water 

and during high tide, the water was essentially near-shore western GoM water. Brown 

(2006) also investigated oxygen dynamics and attributed its variability to both phys

ical and biological controls. He concluded that the biological activity appeared to be 

ocean driven rather than estuary driven and warranted further study. Therefore, we 

propose to use a novel incubation instrument to collect continuous production and 

respiration data to elucidate the annual magnitude and diurnal variability of NCP 

and the contribution of phytoplankton community dynamics. 

3.2 Methods 

3.2.1 Data Collection 

Data for this study were collected at the Coastal Marine Lab (CML) adjacent 

to the Piscataqua Estuary Inlet. The lab houses a flow-through water pump that 

distributes seawater throughout the facility. The intakes are located about 20 m out 

into the Inlet and 0.5 m from the bottom. This puts the intakes roughly 6 m from the 

surface at high tide and 3.5 m at low tide (Brown, 2006). Two large impeller pumps 

each draw in seawater at a rate of 570 liters per minute pumping it 70 m into the 

facility to the header tanks, although only one pump is in use at a time. Seawater is 
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then distributed to the facility from the header tanks. 

For our experiment, one tank was installed with a suite of instruments to measure 

the initial properties of the seawater as it was pumped in (Fig. 3-2). Absorption and 

beam attenuation at nine wavelengths (ac-9, WET Labs), turbidity, chlorophyll, and 

colored dissolved organic matter (Triplet, WET Labs), pC02 (equilibrator, Idrysis), 

dissolved oxygen (Optode, Aanderaa), and temperature, conductivity, and salinity 

(CT, Aanderaa) were measured. In order to incubate water, we utilized a novel 

custom-built, autonomous dual-chamber instrument (Langdon Enterprises) that au

tomatically sampled and incubated seawater to measure changes in dissolved oxygen 

(Fig. 3-3). The instrument consists of two 16-liter transparent polycarbonate cham

bers. It was important that they were not made from acrylic plastic, which contains 

UV stabilizing compounds capable of reacting with the oxygen in the water. One 

chamber was darkened with aluminum foil in order to provide a dark environment 

for respiration to occur. The other chamber was left clear so light could penetrate 

the chamber for photosynthesis. A multispectral light source (D-D Midday 6000 

T5HO, Giesemann) was installed above to provide the light needed for photosyn

thesis. Both chambers were equipped with an optode to measure dissolved oxygen 

and temperature (Optode 4835, Aanderaa) and stirring rods to keep the water well 

mixed. Additionally, the light chamber contained a PAR sensor (QSL, Biospherical) 

to measure light from all directions. The light chamber was also wrapped with clear 

hosing through which cool water was pumped to keep the chamber from heating sig

nificantly more than the dark chamber. Each chamber has an inflow and outflow line 

at the bottom, and an overflow line at the top. Solenoid valves were programmed 

to pump and drain seawater into and out of the chambers. A two-chamber settling 

tank was constructed to filter out sediment as seawater was pumped in for incubation 

(Fig. 3-4). Incubations were conducted at high tide from June through September in 

varying increments from 3-12 hours. The instrument was cleaned with a 5% bleach 
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solution when necessary. 

3.2.2 Data Processing 

Oxygen data from the optodes were utilized to calculate the biological oxygen 

anomaly. First, the raw optode data were processed according to Aanderaa specifica

tions to correct for salinity. An additional adjustment was applied to correct for the 

offset between the optodes in each chamber. Then the expected oxygen at saturation 

was calculated according to Weiss (1970) and subtracted from the observed oxygen 

in order to get the biological oxygen anomaly. NCP was calculated as the difference 

between the beginning and ending biological oxygen concentration over the length of 

the incubation in the light chamber. Similarly, the rate of respiration was the differ

ence in the biological oxygen over the course of the incubation in the dark chamber. 

The rate of gross primary production was determined by summing respiration and 

NCP. 

3.3 Results 

The results of our incubations fell into three general patterns. Several incubations 

representative of each category will be presented. The first pattern observed was an 

expected production and respiration pattern (Fig. 3-5). Data is presented from June 

28 to July 5, 2011. In all incubations, production was observed in the light chamber 

while respiration was observed in the dark chamber. Late June incubations had small 

rates of production (<5 fimol O2 L_1) while July rates saw a large increase to >15 

fimol 02 L_1 . Respiration rates saw a slight increase as well. Over the course of 

the incubation, temperatures saw an increase of about 5 °C but the temperatures 

in each chamber remained fairly close together with only a 1-2 °C difference (Fig. 

3-6). PAR levels were constant for the first six incubations and dropped slightly for 
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the last three, likely due to the chambers becoming dirty (Fig. 3-7). The PAR data 

tended to show a decrease over the course of the incubation, perhaps from increased 

light attenuation as particulate matter accumulated. The PAR data exhibited an 

unexpected shape for all incubations that will be addressed in the next section. 

The second pattern observed was a lack of production in the light chamber (Fig. 3-

8). In most of these eight incubations from June 21 to June 27, 2011, the light chamber 

data mirrored the dark chamber data showing little to no production. It is possible 

that this occurred due to biofouling in the pipes carrying water to our chambers. 

Once the pipes were cleaned out, data returned to expected results. Temperature 

differences between the chambers were slightly greater as the hose cooling the light 

chamber became clogged with organisms reducing water flow (Fig. 3-9). PAR stayed 

more constant during the incubation since no production occurred to increase light 

attenuation (Fig. 3-10). 

Production in the dark chamber was the final pattern exhibited (Fig. 3-11). In 

each of these nine incubations, production in the light chamber was extremely high 

(25-35 /xmol O2 L_1). Respiration began equally strong, but about three quarters 

of the way through the incubation, production suddenly began occuring in the dark 

chamber. Temperatures stayed between 1-2 °C apart, and increased between 4-7 °C 

during the incubation (Fig. 3-12). During the first five incubations, PAR decreased 

throughout the incubation but during the last four, it increased (Fig. 3-13). Overall 

PAR levels were between 40-50 fiE m~2 s_ 1 which is somewhat lower than the roughly 

60 //E m~2 s_ 1 that they had been previously. This is possibly due to increased 

light attenuation from the large rates of production seen during these incubations, 

biofouling of the chamber, or photon flux in the lights. 

Gross primary production, respiration, and NCP rates from June 28 to August 19, 

2011 are presented in Fig. 3-14. Questionable data where no production was obtained 

in the light chamber or production occurred in the dark chamber were excluded. 
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Oxygen was converted to units of carbon using the Redfield photosynthetic quotient. 

GPP rates ranged from about 0.46-6.29 ,umol C L - 1 hr - 1 . Respiration rates were 

small ranging from 0.19-1.07 /imol C L_ 1 hr - 1 . NCP values ranged from 0.03-5.68 

/^mol C L_ 1 hr - 1 . Average GPP, respiration, and NCP rates were 2.37, 0.53, and 

1.84 /^mol C L_ 1 hr - 1 , respectively. In all cases, the system was autotrophic. 

3.4 Discussion 

3.4.1 Initial Problems 

Originally it was hoped that a large data set could be collected over the course 

of a year to capture seasonal variability in NCP. Unfortunately, due to delays in the 

construction of the instrument and several problems discovered upon its arrival, we 

were unable to begin collecting data until June of 2011. We experienced leaking 

chambers, mixing rods that would not spin, overheating solenoids, and a bug in the 

program. The chambers were leaking in two places: around the edges and through 

the bottom where the instruments were inserted. The leakage around the edges was 

the result of overtightening the screws fastening down the chambers and was easily 

fixed. The leakage through the bottom of the chambers where the instruments were 

was the result of missing O-rings. The mixing rods' inability to spin was caused by a 

wiring error. One solenoid that continually overheated was sent out to be modified. 

The bug in the program occurred when we tried to run incubations past midnight 

and so the program had to be altered. 

3.4.2 GPP, Respiration, and N C P Rates 

GPP, respiration, and NCP rates for cases of good data were reasonable and 

fell within literature values reported in other estuaries using incubation methods. 

Caffrey et al. (1998) measured respiration rates through dark bottle incubations in San 
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Francisco Bay, CA and found rates of 0-0.92 /^mol C L_ 1 hr - 1 . Similarly, Fourqurean 

et al. (1997) also calculated average annual dark bottle respiration of 0.51 fimol C L_ 1 

hr - 1 in Tomales Bay, CA. In Long Island Sound, Goebel and Kremer (2007) found 

average community respiration to be 1.07 /xmol C L_ 1 h r - 1 through dark bottle 

respiration. On the continental shelf of Georgia, summer respiration ranged from 

0.49-0.68 /xmol C L_ 1 h r - 1 found by 24 hour deck incubations (Jiang et al., 2010). 

These rates all correspond well to our average respiration rate of 0.53 /miol C L_ 1 

hr"1. 

In West Florida coastal waters, Hitchcock et al. (2010) conducted 12 hr incuba

tions during a harmful algal bloom dominated by Karenia brevis and found GPP 

rates between 0.64-3.84 /imol C L"1 hr"1 and NCP rates of 0.32-1.34 ,umol C L ' 1 

hr - 1 . Russell and Montagna (2007) used open water methods to study ecosystem 

metabolism in the western Gulf of Mexico estuaries and found GPP of 1.5-3 /^mol C 

L_ 1 h r - 1 and net metabolism of 0 to -3.5 /imol C L_ 1 h r - 1 during the summer at 

four estuaries. These rates are similar in magnitude to our average GPP of 2.37 //mol 

C L-1 hr"1 and average NCP of 1.84 //mol C L"1 hr"1. 

3.4.3 No Production 

There are several possible explanations for the lack of production seen in some 

incubations. There may have been a deficiency in nutrients required for photosyn

thesis to occur. Also, there may have been no viable phytoplankton community or 

they have been poisoned and died from residual bleach in the chambers after clean

ing. This is unlikely though because the heterotophic community was still active and 

poison would have killed both the autotrophic and heterotrophic communities. The 

most likely explanation could be that biofouling in the pipes bringing water to the 

incubation instrument created a dominant heterotrophic environment that used up 

all the nutrients and consumed the phytoplankton. 
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3.4.4 Dark Production 

Production in the dark chamber was unexpected, but we are not the first to 

observe this phenomenon. Similar data were found with a light/dark Niskin bottle 

in situ incubation system at Woods Hole, MA (Van Mooy, personal communication). 

Other previous studies have also reported oxygen production in the dark (Riley, 

1941; Dugdale and Wallace, 1960). There are several reasons that production may 

have been seen in the dark chamber. The first is that light may have entered the 

chamber providing just enough for photosynthesis to occur. However, this is unlikely 

since no adjustments were made to the covering on the dark chamber and subsequent 

incubations returned to normal respiration. Another possibility is that an air leak in 

the chamber caused an exchange of 02 with the atmosphere. We do not have any 

way to quantify this so it is possible that a small amount of 0 2 was diffusing into the 

chambers. 

The primary assumption of light/dark incubations is that the only process affect

ing oxygen in the dark is respiration. A recent theory suggests that oxygen concentra

tions can also be affected by H202 decomposition into O2 (Pamatmat, 1997). H 20 2 is 

naturally present in surface ocean water at concentrations of 10-200 nM (Van Baalen 

and Marler, 1966). Additionally, several studies have found that H202 can actually 

be produced in the dark by phytoplankton species (Palenik et al., 1987; Palenik and 

Morel, 1988). In the Sargasso Sea, Palenik and Morel (1988) saw H2O2 production 

occur in dark incubations at a maximum rate of 11 nM hr - 1 , where production of 

H2O2 was usually greatest during the first 1-2 hours. Catalase, which is present 

throughout the ocean, is responsible for decomposing H202 into 0 2 . Experiments by 

Moffett and Zafiriou (1990) showed an increase in O2 caused by the decay of H202 of 

14 nM during a 7-hour dark incubation. Pamatmat (1997) conducted further studies 

with concurrent dark incubations where one sample had been poisoned with mercuric 

chloride to prevent biological activity while the other remained live. The live samples 
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showed a drawdown of 0 2 , but the poisoned samples had an 0 2 increase suggesting 

that respiration masks the effects of 0 2 production from H202 decay. However, it 

remains unclear as to whether this could be the case with our data. We observed an 

increase of 0 2 on the order of several micromoles, but the literature suggests an 0 2 

increase of nanomoles. Even though coastal waters may have much higher concen

trations of DOC, the substrate for peroxide production, it is still unlikely that this 

would be enough to produce the micromolar 0 2 increases we sometimes measured. 

3.4.5 PAR Pat tern 

The pattern of the PAR data over the length of the incubation was unanticipated 

as well. It was expected that the PAR values would be fairly constant throughout 

the incubation. Instead, they started out high and dropped about 15 /JE m~2 s_1 

over the first 90 minutes of each incubation. The most likely explanation for this is 

that after the incubation began, condensation began to form on the outside of the 

chamber until the chamber was completely covered in water droplets after 90 minutes. 

The water droplets would have increased the scattering of light causing the gradual 

reduction that we see in PAR. However, the gradual decrease in PAR does not seem 

to have affected production and respiration rates as they look to be constant over the 

course of the incubation. 

3.5 Improvements and Future Experiments 

We were only able to collect a small data set and were not able to accumulate 

winter data or examples of community changes. Additionally, we did not have corre

sponding nutrient or chlorophyll data because the instruments were malfunctioning 

so it is difficult to explain why some incubations had much greater production than 

others. Although only a small data set was collected, this novel incubation chamber 
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had some strengths and shows promise for future work. It is automated allowing for 

continuous measurements with the potential to build a substantial database of GPP, 

NCP, and respiration rates, which are of particular interest as little respiration data 

exists. 

Several improvements could be made to the instrument such as a better system 

of maintaining a constant temperature in the chambers. It is unlikely that the tem

perature would increase as much as it did under in situ conditions and increases in 

temperature can enhance respiration rates. Additionally, a PAR sensor inside the 

dark chamber would be beneficial to ensure that it has been adequately darkened. 

Year-round incubations should be conducted in order to understand seasonal variabil

ity in NCP caused by inorganic nutrients, labile organic carbon, and light fluctuations 

as well as to understand the effects of changing phytoplankton communities. Future 

work could also experiment with different incubation lengths and variable light con

ditions to simulate various in situ conditions. It would be beneficial to take discrete 

samples during incubations to be analyzed for nutrients, chlorophyll, and the dom

inant phytoplankton community in order to better understand the drivers of NCP 

variability. 
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(a) Piscataqua Estuary Inlet 

(b) CML on the island of New Castle 

Figure 3 -1: The Coastal Marine Lab on the island of New Castle, located at the confluence 

of the Piscataqua River and the Gulf of Maine 
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Figure 3-2: The main tank next to the incubation chamber that measures the incoming 
properties of the water. 

\J . \ {K^' 

Figure 3-3: The incubation chamber custom built by Langdon Enterprises. The light 
chamber is on the left with a cooling hose wrapped around it. The dark chamber is covered 
in foil on the right. Above is a multispectral light source. 
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Figure 3-4: A two-chamber setting tank allowing suspended solids to settle out before 
water enters the incubation chambers 
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Figure 3-5: This figure shows the change in biological oxygen in each chamber during a 
series of 9 incubations where both respiration and NCP values were reasonable. 
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Figure 3-6: This figure shows temperature in both chambers during a series of 9 incuba
tions where reasonable data was collected. 
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Figure 3-7: This figure shows PAR during a series of 9 incubations where reasonable data 
was collected. The red area highlights questionable PAR data. 
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Figure 3-8: This figure shows the change in biological oxygen in each chamber during a 
series of 8 incubations where no production in the light chamber occurred. 
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Figure 3-9: This figure shows temperature in each chamber during a series of 8 incubations 
where no production in the light chamber occurred. 
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Figure 3-10: This figure shows PAR during a series of 8 incubations where no production 
in the light chamber occurred. The red area highlights questionable PAR data. 
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Figure 3-11: This figure shows the change in biological oxygen in each chamber during a 
series of 9 incubations that resulted in questionable respiration data. 
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Figure 3-12: This figure shows the temperature of the water in each chamber during a 
series of 9 incubations where questionable respiration data was collected. 
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Figure 3-13: This figure shows PAR during a series of 9 incubations where suspect respi
ration data was collected. The red area highlights questionable PAR data. 
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Figure 3-14: This histogram displays gross primary productivity, respiration, and net 
community productivity for a series of summer incubations from June 28, 2011 to July 21, 
2011. Oxygen data has been converted to units of carbon using the Redfield Ratio. 



CHAPTER 4 

CONCLUSION 

A drifter study was conducted in the western Gulf of Maine where the evolution of 

a water mass and its properties were observed on seven cruises. NCP was calculated as 

the temporal derivative of the integrated biological oxygen anomaly. Results showed 

that NCP ranged from apparent autotrophic to heterotrophic conditions, but overall 

suggest that the western GoM was near equilibrium at the time of this study. NCP 

values were further compared to changes in POC inventory as estimated from chl-a, 

cp, and &bp- Integrated POC rates estimated from chl-a were found to provide the 

weakest relationship to NCP while those estimated from cp and b\,p were both robust 

proxies. NCPoc (cp) was slightly better correlated likely due to its closer association 

with the phytoplankton size distribution, whereas NCPoc (Ap) can be more affected 

by non-algal particles at the submicron level. 

The second experiment employed a novel light and dark incubation instrument 

custom-built by Langdon Enterprises to measure NCP and respiration in the Pis

cataqua Estuary Inlet. Data from the instrument fell into three patterns: expected 

NCP/respiration rates, no production in the light chamber, and production in the 

dark chamber. Lack of production was probably due to clogging and biofouling in 

the pipes providing seawater to the chamber. Production in the dark chamber may 

have been the result of light leakage, air-sea flux, or hydrogen peroxide production. 

Overall, expected NCP and respiration rates correlated well to the literature support

ing the use of this instrument in future experiments. 

It is expected that future NCP studies can benefit from this work. It is hoped 

that cp will soon become a satellite ocean color product that could be used to aid 
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in the quantification of global NCP. This knowledge could further enhance our com

prehension of the current global carbon budget, which remains poorly understood. 

Additionally, it is hoped that the use of this novel automated incubation system will 

make the study of regional NCP more economically feasible and provide long-term 

daytime and nighttime NCP and respiration data sets, which are lacking and cannot 

be easily obtained through ship-board observations. 
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