University of New Hampshire University of New Hampshire Scholars' Repository

Master's Theses and Capstones

Student Scholarship

Fall 2011

Sensitivity Analyses of Flexible Pavement Performance in VT, NY and MA using the Mechanistic-Empirical Pavement Design Guide

I Mark Nogaj University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation

Nogaj, I Mark, "Sensitivity Analyses of Flexible Pavement Performance in VT, NY and MA using the Mechanistic-Empirical Pavement Design Guide" (2011). *Master's Theses and Capstones*. 666. https://scholars.unh.edu/thesis/666

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Sensitivity Analyses of Flexible Pavement Performance in VT, NY and MA using the Mechanistic-Empirical Pavement Design Guide

 $\mathbf{B}\mathbf{Y}$

I. MARK NOGAJ

THESIS

Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of

> Master of Science in Civil Engineering

September, 2011

UMI Number: 1504959

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI 1504959 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346 The thesis of I. Mark Nogaj has been examined and approved.

** **

Thesis Director, Jo S. Daniel Associate Professor Department of Civil Engineering University of New Hampshire

Da∜id L. Gress Professor Department of Civil Engineering University of New Hampshire

Netton Nettery 7

Jeffrey S. Melton Affiliate Professor Department of Civil Engineering University of New Hampshire

July 21, 2111 Date J

ABSTRACT

Many state highway agencies are in the process of transitioning pavement design procedures from the empirical AASHTO design to the new M-E PDG. The New England states and the State of New York initiated NETC Project 06-1 "New England Verification of NCHRP 1-37A Mechanistic-Empirical Pavement Design Guide with Level 2&3 Inputs" to gather more information about the new design and to make the implementation process smoother. The objective of this project was to evaluate which of the Level 2 and 3 input variables require state specific information, which of the national default values are acceptable for the M-E PDG in New England and New York, which variables are available and collected by the state agencies, and for which variables regional or local calibration will be necessary. This study identified critical state specific factors affecting predicted flexible pavement distresses and roughness as well as to what degree. This thesis presents data, analysis, state specific recommendations, and general conclusions for the states of Vermont, Massachusetts and New York.

Acknowledgements

I would like to thank Dr. Jo S. Daniel for her guidance and mentoring through my research work and graduate career. I am especially thankful to her for her motivational support and providing me the opportunity to explore, understand and integrate different sources of information for successfully conducting my research. I would also like to thank Dr. David L. Gress and Dr. Jeff Melton for serving as members on my thesis committee. I would especially like to thank my wife Marzanna and my son Michael Alexander for their help and support throughout my graduate career at the University of New Hampshire.

Table of Contents

List of Figures	xii
List of Tables	xxv
List of Equations	xxx
Chapter 1: Introduction	1
1.1 Objective.	2
1.2 Research Significance	3
1.3 Research Tasks	4
1.4 Organization of Thesis	5
Chapter 2: Literature Review	7
2.1 Background of Flexible Pavement Design	7
2.1.1 Existing AASHTO Methodology	7
2.1.2 M-E PDG Methodology	12
2.1.3 AASHTO vs. M-E PDG Design Guide	21
2.2 Critical Input Parameters	21
2.3 Findings from Completed Research Activities on M-E PDG Implementation	26
2.3.1 Implementing the M-E PDG for Cost Savings in Indiana	26
2.3.2 M-E PDG Sensitivity Analysis Results for New HMA in Ohio	28
2.3.3 M-E PDG Sensitivity Analysis Results in South Dakota	29
Chapter 3: Research Methodology	32
3.1 Data Collection	32
3.2 Tolerances and Determination of Material Properties	34
3.3 Input Values for M-E PDG	38
3.3.1 General Inputs	42
3.3.2 Traffic Inputs	43
3.3.3 Climatic Inputs	46
3.3.4 Asphalt Material Inputs	47
3.3.5 Base and Subgrade Material Inputs	49

Chapter 4: Data Analysis, Results and Discussion	50
4.1 Normalization of Distresses	50
4.2 M-E PDG Sensitivity Analysis Results by State	52
4.2.1 Vermont sensitivity analysis results	53
4.2.2 New York sensitivity analysis results	69
4.2.3 Massachusetts sensitivity analysis results	79
4.3 Impact of Traffic Inputs on M-E PDG predictions	89
4.4 Impact of Climate Inputs on M-E PDG predictions	90
4.5 Impact of Pavement Layer Inputs on M-E PDG predictions	92
4.6 Impact of Material Inputs – Asphalt on M-E PDG predictions	93
4.7 Impact of Material Properties – Unbound Materials on M-E PDG predictions	94
Chapter 5: Conclusions	96
5.1 State Specific Recommendations	97
5.1.1 Vermont Recommendations	97
5.1.2 New York Recommendations	98
5.1.3 Massachusetts Recommendations	99
5.2 General observations for the M-E PDG implementation	100
5.3 Recommendations for future work	101
References:	103

Appendix A: Vermont M-E PDG Level 2 and Level 3 Report1051. General Inputs1071.1 Design Life1071.2 Construction & Traffic Opening Dates1071.3 Type of Pavement1071.4 Site/Project Identification1071.5 Pavement Layer Structure1082. Performance Criteria Inputs (Analysis Parameters)1093. Design Reliability Input1114. Traffic Inputs112

4.1 Annual Average Daily Truck Traffic (AADTT)112

4.2 Truck Class Distribution selections	114
4.3 Rate of Traffic Growth	117
4.4 Traffic Operational Speed	117
4.5 Annual Average Daily Truck Traffic (AADTT)	117
4.6 The Monthly Traffic Adjustment Factors	118
4.7 The MADT to AADT factor	119
5. Climate Inputs	121
5.1 Sensitivity to Climate Data Interpolation	123
5.2 Water Table Depth Variation	123
6. Material Inputs	127
6.1 HMA Thickness	127
6.2 Number of HMA Layers	127
6.3 HMA Mix Gradation	128
6.4 PG Binder Grade	130
6.5 Unbound Layer Inputs	131
6.6 Base Course Resilient Modulus	131
6.7 Subgrade Resilient Modulus M _R	133
6.8 Effective Binder Content V _{be} , % (AASHTO T308)	134
6.9 Air Voids Content, %	135
6.10 Mix Coefficient of Thermal Contraction (CTC)	136
6.11 Aggregate Coefficient of Thermal Contraction	136
6.12 Initial IRI Values for New Pavement Design	136
7. Vermont Level 3 Sensitivity Analysis	138
7.1 Effect of Traffic Inputs on Pavement Distresses	138
7.2 Effect of Climate Inputs on Pavement Distresses	146
7.3 Effect of Material Inputs on Pavement Distresses	151
7.4 Effect of Asphalt Concrete Mix Gradation	158
7.5 Effect of Base/Subbase Inputs on Pavement Distresses	173
8. Sensitivity Analysis Summary Level 3	186
9. Vermont Level 2 Sensitivity Analysis	193
9.1 Effect of Traffic Inputs on Level 2 Predicted Pavement Distresses	193

9.2 Effect of Material Inputs on Level 2 predicted Pavement Distresses	198
10. Sensitivity Analysis Summary Level 2	216
References (Vermont)	221
Appendix A (Vermont): Code Descriptions	222
Appendix B (Vermont): Vermont Performance Graded Binder Selection Map	223
Appendix C (Vermont): Material Classification	224
Appendix D (Vermont): Permanent Traffic Recorder Stations	225
Appendix E (Vermont): Performance Graded Binder Selection Table	226

Appendix B: New York State M-E PDG Level 3 Report	
1. General Inputs	
1.1 Design Life	
1.2 Construction & Traffic Opening Dates	
1.3 Type of Pavement	
1.4 Site/Project Identification	
1.5 LTPP Road Section Structure	
2. Performance Criteria Inputs (Analysis Parameters)	
3. Design Reliability Input	
4. Traffic Inputs	
4.1 Annual Average Daily Truck Traffic (AADTT)	
4.2 Truck Class Distribution selections	
4.3 Rate of Traffic Growth	
4.4 Traffic Operational Speed	
4.5 Annual Average Daily Truck Traffic (AADTT)	
4.6 The Monthly Traffic Adjustment Factors	
4.7 The MADT to AADT factor	
5. Climate Inputs	
5.1 Sensitivity to Climate Data Interpolation	
5.2 Water Table Depth Variation	
6. Material Inputs	
6.1 HMA Thickness	

6.2 Number of HMA Layers	48
6.3 HMA Mix Gradation	49
6.4 PG Binder Grade	51
6.5 Unbound Layer Inputs	52
6.6 Base Course Resilient Modulus	52
6.7 Subgrade Resilient Modulus M _R	53
6.8 Effective Binder Content V _{be} , % (AASHTO T308)25	54
6.9 Air Voids Content, %	54
6.10 Mix Coefficient of Thermal Contraction (CTC)	55
6.11 Initial IRI Values for New Pavement Design	55
6.12 Aggregate Coefficient of Thermal Contraction	55
7. NY State M-E PDG Level 3 Sensitivity Analysis	56
7.1 Effect of Traffic Inputs on Pavement Distresses	56
7.2 Effect of Climate Inputs on Pavement Distresses	56
7.3 Effect of Material Inputs on Pavement Distresses	71
7.4 Effect of Asphalt Concrete Mix Gradation	79
7.5 Effect of Base/Subbase Inputs on Pavement Distresses	94
8. Sensitivity Analysis Summary Level 3)7
References (New York)	14
Appendix A (New York): Code Descriptions	15
Appendix B (New York): Seasonal Adjustment	16
Appendix C (New York): Axle Adjustment Factors for 2010 Traffic Count Processing3	17
Appendix D (New York): Heavy Vehicle (Class 04-13) Percentages for 2009	18
Appendix E (New York): Material Classification	19
Appendix F (New York): Performance Graded Binder Selection – Standard	20
Appendix G (New York): Performance Graded Binder Selection – Polymer Modified.32	21

1.	General Inputs	324
1.1	Design Life	324
1.2	Construction & Traffic Opening Dates	324

1.3 Type of Pavement	
1.4 Site/Project Identification	
2. Performance Criteria Inputs (Analysis Parameters)	
3. Design Reliability Input	
4. Traffic Inputs	
4.1 Annual Average Daily Truck Traffic (AADTT)	
4.2 Truck Class Distribution selections	
4.3 Rate of Traffic Growth	
4.4 Traffic Operational Speed	
4.5 Annual Average Daily Truck Traffic (AADTT)	
4.6 The Monthly Traffic Adjustment Factors	
4.7 The MADT to AADT factor	
5. Climate Inputs	
5.1 Sensitivity to Climate Data Interpolation	
5.2 Water Table Depth Variation	
6. Material Inputs	
6.1 HMA Thickness	
6.2 Number of HMA Layers	
6.3 HMA Mix Gradation	
6.4 PG Binder Grade	
6.5 Unbound Layer Inputs	
6.6 Base Course Resilient Modulus	
6.7 Subgrade Resilient Modulus M _R	
6.8 Effective Binder Content V _{be} , % (AASHTO T308)	
6.9 Air Voids Content, %	
6.10 Mix Coefficient of Thermal Contraction (CTC)	
6.11 Aggregate Coefficient of Thermal Contraction	
6.12 Initial IRI values for new pavement design	
7. MA State M-E PDG Level 3 Sensitivity Analysis	354
7.1 Effect of Traffic Inputs on Pavement Distresses	
7.2 Effect of Climate Inputs on Pavement Distresses	

7.3 Effect of Material Inputs on Pavement Distresses	69
7.4 Effect of Asphalt Concrete Mix Gradation	76
7.5 Effect of Base Subbase Inputs on Pavement Distresses	91
8. Sensitivity Analysis Summary Level 340	04
References (Massachusetts)4	14
Appendix A (Massachusetts): Code Descriptions4	15
Appendix B (Massachusetts): Specification for Hot Mix Asphalt4	16
Appendix C (Massachusetts): Engineering Limits for HMA Aggregate Gradation and Po Binder Content	G 17
Appendix D (Massachusetts): Material Classification4	18
Appendix E (Massachusetts): MassDOT Hot Mix Asphalt Formulas4	19

Appendix D: Material	Classification420
----------------------	-------------------

List of Figures

Figure 1: Test Vehicles during the 1950s AASHO Road Test.	8
Figure 2: AASHO Road Test Layout	8
Figure 3: Axle Weights and Distributions Used on Various Loops of the AASHO Ro	oad
Test	9
Figure 4: Bituminous Concrete Construction for AASHO Road Test	10
Figure 5: M-E PDG Implementation Status as of December, 2010	13
Figure 6: Flow Chart for Mechanistic-Empirical Design Methodology	15
Figure 7: M-E PDG Outline Process	17
Figure 8: M-E PDG Pavement Layer Structure	24
Figure 9: Pavement Structures Used for Sensitivity Analysis.	34
Figure 10: Vermont M-E PDG Inputs Level 3 and Level 2.	39
Figure 11: New York M-E PDG Inputs Level 3	40
Figure 12: Massachusetts M-E PDG Inputs Level 3.	41
Figure 13: VT Level 3 Significance of Effect of Input Variables on Bottom-Up	
Cracking	56
Figure 14: VT Level 3 Significance of Effect of Input Variables on Top-Down	
Cracking	56
Figure 15: VT Level 3 Significance of Effect of Input Variables on AC Rutting	57
Figure 16: VT Level 3 Significance of Effect of Input Variables on Total Rutting	57
Figure 17: VT Level 3 Significance of Effect of Input Variables on IRI	58
Figure 18: VT Level 2 Significance of Effect of Input Variables on Bottom-Up	
Cracking	66
Figure 19: VT Level 2 Significance of Effect of Input Variables on Top-Down	
Cracking	67
Figure 20: VT Level 2 Significance of Effect of Input Variables on AC Rutting	67
Figure 21: VT Level 2 Significance of Effect of Input Variables on Total Rutting	68
Figure 22: VT Level 2 Significance of Effect of Input Variables on IRI	68
Figure 23: NY Level 3 Significance of Effect of Input Variables on Bottom-Up	
Cracking	74
Figure 24: NY Level 3 Significance of Effect of Input Variables on Top-Down	
Cracking	75
Figure 25: NY Level 3 Significance of Effect of Input Variables on AC Rutting	75
Figure 26: NY Level 3 Significance of Effect of Input Variables on Total Rutting	76
Figure 27: NY Level 3 Significance of Effect of Input Variables on IRI	76

•

Figure 28: MA Level 3 Significance of Effect of Input Variables on Bottom-Up	
Cracking	.84
Figure 29: MA Level 3 Significance of Effect of Input Variables on Top-Down	
Cracking	85
Figure 30: MA Level 3 Significance of Effect of Input Variables on AC Rutting	.85
Figure 31: MA Level 3 Significance of Effect of Input Variables on Total Rutting	.86
Figure 32: MA Level 3 Significance of Effect of Input Variables on IRI.	.86
Figure 33: Effect of Climate on Thermal Cracking in NY State.	.91
Figure 1A: New Haven, VT – Rt. 71	08
Figure 2A: Analysis Parameters Used in VT1	10
Figure 3A: Traffic Inputs for New Haven, VT1	13
Figure 4A: Illustration of FHWA/AASHTO Vehicle Class Type Description1	14
Figure 5A: MADT to AADT Factor for Three Selected Location1	19
Figure 6A: MADTT to AADTT Factor for Class 5 in New Haven, VT1	20
Figure 7A: MADTT to AADTT Factor for Class 9 in New Haven, VT1	20
Figure 8A: Vermont Climate Station Locations1	21
Figure 9A: New Haven, VT Location1	22
Figure 10A: Vermont Active Wells1	24
Figure 11A: Most recent data value: 6.30 on 6/28/2010	25
Figure 12A: Addison County Well1	25
Figure 13A: 3/8" (9.5 mm) Asphalt Mix Aggregate Gradation1	29
Figure 14A: ³ / ₄ " (19.0 mm) Asphalt Mix Aggregate Gradation1	29
Figure 15A: Effect of Truck Class Distribution on Bottom-Up Cracking1	38
Figure 16A: Effect of Truck Class Distribution on Top-Down Cracking1	39
Figure 17A: Effect of Truck Class Distribution on Subtotal AC Rutting1	39
Figure 18A: Effect of Truck Class Distribution on Total Rutting1	40
Figure 19A: Effect of Truck Class Distribution on IRI1	40
Figure 20A: Effect of Traffic Growth Rate at Bottom-Up Cracking1	41
Figure 21A: Effect of Traffic Growth Rate on Top-Down Cracking1	41
Figure 22A: Effect of Traffic Growth on Subtotal AC Rutting1	42
Figure 23A: Effect of Traffic Growth Rate on Total Rutting1	42
Figure 24A: Effect of Traffic Growth Rate on IRI1	43
Figure 25A: Effect of AADTT on Bottom-Up Cracking1	43
Figure 26A: Effect of AADTT on Top-Down Cracking1	44
Figure 27A: Effect of AADTT on Subtotal AC Rutting1	44
Figure 28A: Effect of AADTT on Total Rutting1	45
Figure 29A: Effect of AADTT on IRI1	45
Figure 30A: Effect of Climate on Bottom-Up Cracking1	46
Figure 31A: Effect of Climate on Top-Down Cracking1	46
Figure 32A: Effect of Climate on Subtotal AC Rutting1	47

Figure 33A: Effect of Climate on Total Rutting	147
Figure 34A: Effect of Climate on IRI	148
Figure 35A: Effect of Water Table Depth on Bottom-Up Cracking	148
Figure 36A: Effect of Water Table Depth on Top-Down Cracking	149
Figure 37A: Effect of Water Table Depth on Subtotal AC Rutting	149
Figure 38A: Effect of Water Table Depth on Total Rutting	150
Figure 39A: Effect of Water Table Depth on IRI	150
Figure 40A: Effect of Effective Binder Content on Bottom-Up Cracking	151
Figure 41A: Effect of Effective Binder Content on Top-Down Cracking	151
Figure 42A: Effect of Effective Binder Content on Subtotal AC Rutting	152
Figure 43A: Effective of Effective Binder Content on Total Rutting	152
Figure 44A: Effect of Effective Binder Content on IRI	153
Figure 45A: Effect of Percent Air Voids on Bottom-Up Cracking	153
Figure 46A: Effect of Percent Air Voids on Top-Down Cracking	154
Figure 47A: Effect of Percent Air Voids on Subtotal AC Rutting	154
Figure 48A: Effect of Percent Air Voids on Total Rutting	155
Figure 49A: Effect of Percent Air Voids on IRI	155
Figure 50A: Effect of AC Layer Thickness on Bottom-Up Cracking	156
Figure 51A: Effect of AC Layer Thickness on Top-Down Cracking	156
Figure 52A: Effect of AC Layer Thickness on Subtotal AC Rutting	157
Figure 53A: Effect of AC Layer Thickness on Total Rutting	157
Figure 54A: Effect of AC Layer Thickness on IRI	158
Figure 55A: Effect of Aggregate Gradation of 9.5 mm AC mix on Bottom-Up	
Cracking	158
Figure 56A: Effect of Aggregate Gradation of 9.5 mm AC mix on Top-Down	
Cracking	159
Figure 57A: Effect of Aggregate Gradation of 9.5 mm AC mix on Subtotal AC	
Rutting	159
Figure 58A: Effect of Aggregate Gradation of 9.5 mm AC mix on Total Rutting	160
Figure 59A: Effect of Aggregate Gradation of 9.5 mm AC mix on IRI	160
Figure 60A: Effect of Aggregate Gradation of 19.0 mm mix on Bottom-Up Cracking	161
Figure 61A: Effect of Aggregate Gradation of 19.0 mm mix on Top-Down Cracking	161
Figure 62A: Effect of Aggregate Gradation of 19.0 mm mix on Subtotal AC Rutting	162
Figure 63A: Effect of Aggregate Gradation of 19.0 mm mix on Total Rutting	162
Figure 64A: Effect of Aggregate Gradation of 19.0 mm mix on IRI	163
Figure 65A: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Bottom-Up	
Cracking	163
Figure 66A: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Top-Down	
Cracking	164

Figure 67A: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Subtotal AC Figure 68A: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Total Rutting Figure 69A: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on IRI......165 Figure 70A: Effect of Binder Grade on Bottom-Up Cracking at Speed 5 mph......166 Figure 71A: Effect of Binder Grade on Top-Down Cracking at Speed 5 mph166 Figure 72A: Effect of Binder Grade on Subtotal AC Rutting at Speed 5 mph......167 Figure 73A: Effect of Binder Grade on Total Rutting at Speed 5 mph......167 Figure 74A: Effect of Binder Grade on IRI at Speed 5 mph168 Figure 75A: Effect of Binder Grade on Bottom-Up Cracking at Speed 25 mph......168 Figure 76A: Effect of Binder Grade on Top-Down Cracking at Speed 25 mph169 Figure 77A: Effect of Binder Grade on Subtotal AC Rutting at Speed 25 mph......169 Figure 78A: Effect of Binder Grade on Total Rutting at Speed 25 mph170 Figure 79A: Effect of Binder Grade on IRI at Speed 25 mph170 Figure 80A: Effect of Binder Grade on Bottom-Up Cracking at Speed 55 mph.....171 Figure 81A: Effect of Binder Grade on Top-Down Cracking at Speed 55 mph171 Figure 82A: Effect of Binder Grade on Subtotal AC Rutting at Speed 55 mph.....172 Figure 83A: Effect of Binder Grade on Total Rutting at Speed 55 mph......172 Figure 84A: Effect of Binder Grade on IRI at Speed 55 mph173 Figure 85A: Effect of Base Course Material on Bottom-Up Cracking173 Figure 87A: Effect of Base Course Material on Subtotal AC Rutting174 Figure 88A: Effect of Base Course Material on Total Rutting......175 Figure 89A: Effect of Base Course Material on IRI......175 Figure 91A: Effect of Subgrade Type on Top-Down Cracking176 Figure 93A: Effect of Subgrade Type on Total Rutting177 Figure 95A: Effect of Water Table on Bottom-Up Cracking with Weakest Subgrade ...178 Figure 96A: Effect of Water Table on Top-Down Cracking with Weakest Subgrade179 Figure 97A: Effect of Water Table on Subtotal AC Rutting with Weakest Subgrade179 Figure 98A: Effect of Water Table on Total Rutting with Weakest Subgrade......180 Figure 99A: Effect of Water Table on IRI with Weakest Subgrade......180 Figure 103A: Effect of HMA CTC on Total AC Rutting......182 Figure 104A: Effect of HMA CTC on IRI......183

Figure 105A: Effect of Initial IRI on Bottom-Up Cracking	183
Figure 106A: Effect of Initial IRI on Top-Down Cracking	184
Figure 107A: Effect of Initial IRI on Subtotal AC Rutting	184
Figure 108A: Effect of Initial IRI on Total Rutting	185
Figure 109A: Effect of Initial IRI on IRI	185
Figure 110A: Significance of Effect of Input Variables on Bottom-Up Cracking	188
Figure 111A: Significance of Effect of Input Variables on Top-Down Cracking	188
Figure 112A: Significance of Effect of Input Variables on AC Rutting	189
Figure 113A: Significance of Effect of Input Variables on Total Rutting	189
Figure 114A: Significance of Effect of Input Variables on IRI	190
Figure 115A: Effect of AADTT on Bottom-Up Cracking	193
Figure 116A: Effect of AADTT on Top-Down Cracking	194
Figure 117A: Effect of AADTT on Subtotal AC Rutting	194
Figure 118A: Effect of AADTT on Total Rutting	195
Figure 119A: Effect of AADTT on IRI	195
Figure 120A: Effect of Truck Class Distribution on Bottom-Up Cracking	196
Figure 121A: Effect of Truck Class Distribution on Top-Down Cracking	196
Figure 122A: Effect of Truck Class Distribution on Subtotal AC Rutting	197
Figure 123A: Effect of Truck Class Distribution on Total Rutting	197
Figure 124A: Effect of Truck Class Distribution on IRI	198
Figure 125A: Effect of Effective Binder Content on Bottom-Up Cracking	199
Figure 126A: Effect of Effective Binder Content on Top-Down Cracking	199
Figure 127A: Effect of Effective Binder Content on Subtotal AC Rutting	199
Figure 128A: Effect of Effective Binder Content on Total Rutting	200
Figure 129A: Effect of Effective Binder Content on IRI	200
Figure 130A: Effect of Air Void Content on Bottom-Up Cracking	201
Figure 131A: Effect of Air Void Content on Top-Down Cracking	201
Figure 132A: Effect of Air Void Content on Subtotal AC Rutting	202
Figure 133A: Effect of Air Void Content on Total Rutting	202
Figure 134A: Effect of Air Void Content on IRI	203
Figure 135A: Effect of Base Course Material on Bottom-Up Cracking	203
Figure 136A: Effect of Base Course Material on Top-Down Cracking	204
Figure 137A: Effect of Base Course Material on Subtotal AC Rutting	204
Figure 138A: Effect of Base Course Material on Total Rutting	205
Figure 139A: Effect of Base Course Material on IRI	205
Figure 140A: Effect of Subgrade Type on Bottom-Up Cracking	206
Figure 141A: Effect of Subgrade Type on Top-Down Cracking	206
Figure 142A: Effect of Subgrade Type on Subtotal AC Rutting	207
Figure 143A: Effect of Subgrade Type on Total Rutting	207
Figure 144A: Effect of Subgrade Type on IRI	208

Figure 145A: Effect of Water Table on Bottom-Up Cracking with Weakest Subgrade	.208
Figure 146A: Effect of Water Table on Top-Down Cracking with Weakest Subgrade.	.209
Figure 147A: Effect of Water Table on Subtotal AC Rutting with Weakest Subgrade.	.209
Figure 148A: Effect of Water Table on Total Rutting with Weakest Subgrade	.210
Figure 149A: Effect of Water Table on IRI with Weakest Subgrade	.210
Figure 150A: Effect of HMA CTC on Bottom-Up Cracking	.211
Figure 151A: Effect of HMA CTC on Top-Down Cracking	.211
Figure 152A: Effect of HMA CTC on Subtotal AC Rutting	.212
Figure 153A: Effect of HMA CTC on Total Rutting	.212
Figure 154A: Effect of HMA CTC on IRI	.213
Figure 155A: Effect of Initial IRI on Bottom-Up Cracking	.213
Figure 156A; Effect of Initial IRI on Top-Down Cracking	.214
Figure 157A: Effect of Initial IRI on Subtotal AC Rutting	.214
Figure 158A: Effect of Initial IRI on Total AC Rutting	.215
Figure 159A: Effect of Initial IRI on IRI	.215
Figure 160A: Significance of Effect of Input Variables on Bottom-Up Cracking	.217
Figure 161A: Significance of Effect of Input Variables on Top-Down Cracking	.218
Figure 162A: Significance of Effect of Input Variables on AC Rutting	.218
Figure 163A: Significance of Effect of Input Variables on Total Rutting	.219
Figure 164A: Significance of Effect of Input Variables on IRI	.219
Figure 1B: LTPP Section 36-1011-1 Coordinates	.230
Figure 2B: Analysis Parameters used in NY	.232
Figure 3B: Traffic Inputs for East Syracuse, NY	.236
Figure 4B: Traffic Data Viewer October 2010	.236
Figure 5B: NY State DOT Region 3 map	.237
Figure 6B: NY State WIM Stations	.238
Figure 7B: Illustration of FHWA/AASHTO vehicle class type description	.239
Figure 8B: NY 481 Interstate AADT values (yellow color - control AADT)	.241
Figure 9B: New York State map - Climate Station location	.243
Figure 10B: New York Active Water Level Network	.245
Figure 11B: Camillus, NY well location	.246
Figure 12B: Ground Water Table Level	.246
Figure 13B: Historic data for depth to water level in Camillus, NY (well # Od-1825).	.247
Figure 14B: 3/8" (9.5 mm) Asphalt Mix Aggregate Gradation	.250
Figure 15B: ³ / ₄ " (19.0 mm) Asphalt Mix Aggregate Gradation	.250
Figure 16B: Effect of Truck Class Distribution on Bottom-Up Cracking	.256
Figure 17B: Effect of Truck Class Distribution on Top-Down Cracking	.256
Figure 18B: Effect of Truck Class Distribution on Subtotal AC Rutting	.257
Figure 19B: Effect of Truck Class Distribution on Total Rutting	.257
Figure 20B: Effect of Truck Class Distribution on IRI	.258

Figure 21B: Effect of Traffic Growth Rate at Bottom-Up Cracking	258
Figure 22B: Effect of Traffic Growth Rate on Top-Down Cracking	259
Figure 23B: Effect of Traffic Growth on Subtotal AC Rutting	259
Figure 24B: Effect of Traffic Growth Rate on Total Rutting	
Figure 25B: Effect of Traffic Growth Rate on IRI	260
Figure 26B: Effect of Traffic Speed on Bottom-Up Cracking with PG 64-22	261
Figure 27B: Effect of Traffic Speed on Top-Down Cracking with PG 64-22	261
Figure 28B: Effect of Traffic Speed on Subtotal AC Rutting with PG 64-22	262
Figure 29B: Effect of Traffic Speed on Total Rutting with PG 64-22	262
Figure 30B: Effect of Traffic Speed on IRI with PG 64-22	263
Figure 31B: Effect of AADTT on Bottom-Up Cracking	263
Figure 32B: Effect of AADTT on Top-Down Cracking	264
Figure 33B: Effect of AADTT on Subtotal AC Rutting	264
Figure 34B: Effect of AADTT on Total Rutting	265
Figure 35B: Effect of AADTT on IRI	265
Figure 36B: Effect of Climate on Bottom-Up Cracking	266
Figure 37B: Effect of Climate on Top-Down Cracking	
Figure 38B: Effect of Climate on Subtotal AC Rutting	267
Figure 39B: Effect of Climate on Total Rutting	267
Figure 40B: Effect of Climate on IRI	268
Figure 41B: Effect of Climate on Thermal Cracking	
Figure 42B: Effect of Water Table Depth on Bottom-Up Cracking	
Figure 43B: Effect of Water Table Depth on Top-Down Cracking	269
Figure 44B: Effect of Water Table Depth on Subtotal AC Rutting	270
Figure 45B: Effect of Water Table Depth on Total Rutting	270
Figure 46B: Effect of Water Table Depth on IRI	271
Figure 47B: Effect of Effective Binder Content on Bottom-Up Cracking	271
Figure 48B: Effect of Effective Binder Content on Top-Down Cracking	272
Figure 49B: Effect of Effective Binder Content on Subtotal AC Rutting	272
Figure 50B: Effect of Effective Binder Content on Total Rutting	273
Figure 51B: Effect of Effective Binder Content on IRI	273
Figure 52B: Effect of Percent Air Voids on Bottom-Up Cracking	274
Figure 53B: Effect of Percent Air Voids on Top-Down Cracking	274
Figure 54B: Effect of Percent Air Voids on Subtotal AC Rutting	275
Figure 55B: Effect of Percent Air Voids on Total Rutting	275
Figure 56B: Effect of Percent Air Voids on IRI	276
Figure 57B: Effect of AC Layer Thickness on Bottom-Up Cracking	276
Figure 58B: Effect of AC Layer Thickness on Top-Down Cracking	277
Figure 59B: Effect of AC Layer Thickness on Subtotal AC Rutting	277
Figure 60B: Effect of AC Layer Thickness on Total Rutting	278

Figure 61B: Effect of AC Layer Thickness on IRI278
Figure 62B: Effect of Aggregate Gradation of 9.5 mm AC mix on Bottom-Up Cracking
Figure 63B: Effect of Aggregate Gradation of 9.5 mm AC mix on Top-Down Cracking
Figure 64B: Effect of Aggregate Gradation of 9.5 mm AC mix on Subtotal AC Rutting 280
Figure 65B: Effect of Aggregate Gradation of 9.5 mm AC mix on Total Rutting 280
Figure 66B: Effect of Aggregate Gradation of 9.5 mm AC mix on IRI 281
Figure 67B: Effect of Aggregate Gradation of 19.0 mm mix on Bottom-Un Cracking 281
Figure 68B: Effect of Aggregate Gradation of 19.0 mm mix on Ton-Down Cracking 282
Figure 69B: Effect of Aggregate Gradation of 19.0 mm mix on Subtotal AC Rutting 282.
Figure 70B: Effect of Aggregate Gradation of 19.0 mm mix on Total Rutting
Figure 71B: Effect of Aggregate Gradation of 19.0 mm mix on IRI
Figure 72B: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Bottom-Up
Cracking
Figure 73B: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Top-Down
Cracking
Figure 74B: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Subtotal AC
Rutting
Figure 75B: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Total Rutting
Figure 76B: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on IRI286
Figure 77B: Effect of Binder Grade on Bottom-Up Cracking at Speed 5 mph286
Figure 78B: Effect of Binder Grade on Top-Down Cracking at Speed 5 mph287
Figure 79B: Effect of Binder Grade on Subtotal AC Rutting at Speed 5 mph287
Figure 80B: Effect of Binder Grade on Total Rutting at Speed 5 mph288
Figure 81B: Effect of Binder Grade on IRI at Speed 5 mph
Figure 82B: Effect of Binder Grade on Bottom-Up Cracking at Speed 25 mph289
Figure 83B: Effect of Binder Grade on Top-Down Cracking at Speed 25 mph289
Figure 84B: Effect of Binder Grade on Subtotal AC Rutting at Speed 25 mph290
Figure 85B: Effect of Binder Grade on Total Rutting at Speed 25 mph290
Figure 86B: Effect of Binder Grade on IRI at Speed 25 mph291
Figure 87B: Effect of Binder Grade on Bottom-Up Cracking at Speed 65 mph291
Figure 88B: Effect of Binder Grade on Top-Down Cracking at Speed 65 mph292
Figure 89B: Effect of Binder Grade on Subtotal AC Rutting at Speed 65 mph292
Figure 90B: Effect of Binder Grade on Total Rutting at Speed 65 mph293
Figure 91B: Effect of Binder Grade on IRI at Speed 65 mph293
Figure 92B: Effect of Base Course Material on Bottom-Up Cracking294
Figure 93B: Effect of Base Course Material on Top-Down Cracking294

Figure 94B: Effect of Base Course Material on Subtotal AC Rutting	295
Figure 95B: Effect of Base Course Material on Total Rutting	295
Figure 96B: Effect of Base Course Material on IRI	296
Figure 97B: Effect of Subgrade Type on Bottom-Up Cracking	296
Figure 98B: Effect of Subgrade Type on Top-Down Cracking	297
Figure 99B: Effect of Subgrade Type on Subtotal AC Rutting	297
Figure 100B: Effect of Subgrade Type on Total Rutting	298
Figure 101B: Effect of Subgrade Type on IRI	.298
Figure 102B: Effect of Water Table on Bottom-Up Cracking with Weakest Subgrade .	299
Figure 103B: Effect of Water Table on Top-Down Cracking with Weakest Subgrade	299
Figure 104B: Effect of Water Table on Subtotal AC Rutting with Weakest Subgrade	300
Figure 105B: Effect of Water Table on Total Rutting with Weakest Subgrade	.300
Figure 106B: Effect of Water Table on IRI with Weakest Subgrade	301
Figure 107B: Effect of HMA CTC on Bottom-Up Cracking	.301
Figure 108B: Effect of HMA CTC on Top-Down Cracking	.302
Figure 109B: Effect of HMA CTC on Subtotal AC Rutting	.302
Figure 110B: Effect of HMA CTC on Total AC Rutting	.303
Figure 111B: Effect of HMA CTC on IRI	.303
Figure 112B: Effect of Initial IRI on Bottom-Up Cracking	.304
Figure 113B: Effect of Initial IRI on Top-Down Cracking	.304
Figure 114B: Effect of Initial IRI on Subtotal AC Rutting	.305
Figure 115B: Effect of Initial IRI on Total Rutting	.305
Figure 116B: Effect of Initial IRI on IRI	.306
Figure 117B: Significance of Effect of Input Variables on Bottom-Up Cracking	.309
Figure 118B: Significance of Effect of Input Variables on Top-Down Cracking	.309
Figure 119B: Significance of Effect of Input Variables on AC Rutting	.310
Figure 120B: Significance of Effect of Input Variables on Total Rutting	.310
Figure 121B: Significance of Effect of Input Variables on IRI	311
Figure 1C: New Bedford, MA, Highway I-195	.325
Figure 2C: LTPP Section Coordinates Lat/Lon: 41.65/70.9	.325
Figure 3C: Three LTPP Sections Located in MA	.326
Figure 4C: LTPP Station 25_1004 at I-195 Used for the M-E PDG Sensitivity	
Analysis	327
Figure 5C: Analysis Parameters Used in MA	.329
Figure 6C: Traffic Inputs for New Bedford, MA	.333
Figure 7C: Two-Way AADT in New Bedford, MA (2005)	.333
Figure 8C: New Bedford, MA WIM Station (ID # 6384)	.334
Figure 9C: Illustration of FHWA/AASHTO Vehicle Class Type Description	.334
Figure 10C: MADT to AADT Factor for New Bedford, MA Vehicle Class 4 to 11	.338

.

Figure 11C: Class 6 Monthly Adjustment Factors (MADTT to AADTT) for New	
Bedford, MA	339
Figure 12C: Class 9 Monthly Adjustment Factors (MADTT to AADTT) for New	
Bedford, MA	339
Figure 13C: Massachusetts Climate Station Locations	340
Figure 14C: Bristol County Active Wells	342
Figure 15C: Ground Water Table Levels for 2010-2011	343
Figure 16C: Historic Data of a Ground Water Level in New Bedford, MA	343
Figure 17C: 3/8" (9.5 mm) Asphalt Mix Aggregate Gradation	347
Figure 18C: 3/4" (19.0 mm) Asphalt Mix Aggregate Gradation	347
Figure 19C: Effect of Truck Class Distribution on Bottom-Up Cracking	354
Figure 20C: Effect of Truck Class Distribution on Top-Down Cracking	354
Figure 21C: Effect of Truck Class Distribution on Subtotal AC Rutting	355
Figure 22C: Effect of Truck Class Distribution on Total Rutting	355
Figure 23C: Effect of Truck Class Distribution on IRI	356
Figure 24C: Effect of Traffic Growth Rate at Bottom-Up Cracking	356
Figure 25C: Effect of Traffic Growth Rate on Top-Down Cracking	357
Figure 26C: Effect of Traffic Growth on Subtotal AC Rutting	357
Figure 27C: Effect of Traffic Growth Rate on Total Rutting	358
Figure 28C: Effect of Traffic Growth Rate on IRI	358
Figure 29C: Effect of Traffic Speed on Bottom-Up Cracking with PG 64-22	359
Figure 30C: Effect of Traffic Speed on Top-Down Cracking with PG 64-22	359
Figure 31C: Effect of Traffic Speed on Subtotal AC Rutting with PG 64-22	360
Figure 32C: Effect of Traffic Speed on Total Rutting with PG 64-22	360
Figure 33C: Effect of Traffic Speed on IRI with PG 64-22	361
Figure 34C: Effect of AADTT on Bottom-Up Cracking	361
Figure 35C: Effect of AADTT on Top-Down Cracking	362
Figure 36C: Effect of AADTT on Subtotal AC Rutting	362
Figure 37C: Effect of AADTT on Total Rutting	363
Figure 38C: Effect of AADTT on IRI	363
Figure 39C: Effect of Climate on Bottom-Up Cracking	364
Figure 40C: Effect of Climate on Top-Down Cracking	364
Figure 41C: Effect of Climate on Subtotal AC Rutting	365
Figure 42C: Effect of Climate on Total Rutting	365
Figure 43C: Effect of Climate on IRI	366
Figure 44C: Effect of Water Table Depth on Bottom-Up Cracking	366
Figure 45C: Effect of Water Table Depth on Top-Down Cracking	367
Figure 46C: Effect of Water Table Depth on Subtotal AC Rutting	367
Figure 47C: Effect of Water Table Depth on Total Rutting	368
Figure 48C: Effect of Water Table Depth on IRI	368

Figure 49C: Effect of Effective Binder Content on Bottom-Up Cracking	369
Figure 50C: Effect of Effective Binder Content on Top-Down Cracking	369
Figure 51C: Effect of Effective Binder Content on Subtotal AC Rutting	370
Figure 52C: Effect of Effective Binder Content on Total Rutting	370
Figure 53C: Effect of Effective Binder Content on IRI	371
Figure 54C: Effect of Percent Air Voids on Bottom-Up Cracking	371
Figure 55C: Effect of Percent Air Voids on Top-Down Cracking	372
Figure 56C: Effect of Percent Air Voids on Subtotal AC Rutting	372
Figure 57C: Effect of Percent Air Voids on Total Rutting	373
Figure 58C: Effect of Percent Air Voids on IRI	373
Figure 59C: Effect of AC Layer Thickness on Bottom-Up Cracking	374
Figure 60C: Effect of AC Layer Thickness on Top-Down Cracking	374
Figure 61C: Effect of AC Layer Thickness on Subtotal AC Rutting	375
Figure 62C: Effect of AC Layer Thickness on Total Rutting	375
Figure 63C: Effect of AC Layer Thickness on IRI	376
Figure 64C: Effect of Aggregate Gradation of 9.5 mm AC mix on Bottom-Up	
Cracking	.376
Figure 65C: Effect of Aggregate Gradation of 9.5 mm AC mix on Top-Down	
Cracking	.377
Figure 66C: Effect of Aggregate Gradation of 9.5 mm AC mix on Subtotal AC	
Rutting	377
Figure 67C: Effect of Aggregate Gradation of 9.5 mm AC mix on Total Rutting	378
Figure 68C: Effect of Aggregate Gradation of 9.5 mm AC mix on IRI	378
Figure 69C: Effect of Aggregate Gradation of 19.0 mm mix on Bottom-Up Cracking.	379
Figure 70C: Effect of Aggregate Gradation of 19.0 mm mix on Top-Down Cracking	379
Figure 71C: Effect of Aggregate Gradation of 19.0 mm mix on Subtotal AC Rutting	380
Figure 72C: Effect of Aggregate Gradation of 19.0 mm mix on Total Rutting	380
Figure 73C: Effect of Aggregate Gradation of 19.0 mm mix on IRI	381
Figure 74C: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Bottom-Up)
Cracking	381
Figure 75C: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Top-Down	
Cracking	382
Figure 76C: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Subtotal A	С
Rutting	382
Figure 77C: Effect of Aggregate Gradation of 9.5mm & 19.0 mm mix on Total	
Rutting	383
Figure 78C: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on IRI	383
Figure 79C: Effect of Binder Grade on Bottom-Up Cracking at Speed 5 mph	384
Figure 80C: Effect of Binder Grade on Top-Down Cracking at Speed 5 mph	384
Figure 81C: Effect of Binder Grade on Subtotal AC Rutting at Speed 5 mph	385

Figure 82C: Effect of Binder Grade on Total Rutting at Speed 5 mph	385
Figure 83C: Effect of Binder Grade on IRI at Speed 5 mph	386
Figure 84C: Effect of Binder Grade on Bottom-Up Cracking at Speed 25 mph	386
Figure 85C: Effect of Binder Grade on Top-Down Cracking at Speed 25 mph	387
Figure 86C: Effect of Binder Grade on Subtotal AC Rutting at Speed 25 mph	387
Figure 87C: Effect of Binder Grade on Total Rutting at Speed 25 mph	388
Figure 88C: Effect of Binder Grade on IRI at Speed 25 mph	388
Figure 89C: Effect of Binder Grade on Bottom-Up Cracking at Speed 65 mph	389
Figure 90C: Effect of Binder Grade on Top-Down Cracking at Speed 65 mph	389
Figure 91C: Effect of Binder Grade on Subtotal AC Rutting at Speed 65 mph	390
Figure 92C: Effect of Binder Grade on Total Rutting at Speed 65 mph	390
Figure 93C: Effect of Binder Grade on IRI at Speed 65 mph	391
Figure 94C: Effect of Base Course Material on Bottom-Up Cracking	391
Figure 95C: Effect of Base Course Material on Top-Down Cracking	392
Figure 96C: Effect of Base Course Material on Subtotal AC Rutting	392
Figure 97C: Effect of Base Course Material on Total Rutting	393
Figure 98C: Effect of Base Course Material on IRI	393
Figure 99C: Effect of Subgrade Type on Bottom-Up Cracking	394
Figure 100C: Effect of Subgrade Type on Top-Down Cracking	394
Figure 101C: Effect of Subgrade Type on Subtotal AC Rutting	395
Figure 102C: Effect of Subgrade Type on Total Rutting	395
Figure 103C: Effect of Subgrade Type on IRI	396
Figure 104C: Effect of Water Table on Bottom-Up Cracking with Weakest Subgrad	e .396
Figure 105C: Effect of Water Table on Top-Down Cracking with Weakest Subgrade	e397
Figure 106C: Effect of Water Table on Subtotal AC Rutting with Weakest Subgrade	:397
Figure 107C: Effect of Water Table on Total Rutting with Weakest Subgrade	398
Figure 108C: Effect of Water Table on IRI with Weakest Subgrade	398
Figure 109C: Effect of HMA CTC on Bottom-Up Cracking	399
Figure 110C: Effect of HMA CTC on Top-Down Cracking	399
Figure 111C: Effect of HMA CTC on Subtotal AC Rutting	400
Figure 112C: Effect of HMA CTC on Total AC Rutting	400
Figure 113C: Effect of HMA CTC on IRI	401
Figure 114C: Effect of Initial IRI on Bottom-Up Cracking	401
Figure 115C: Effect of Initial IRI on Top-Down Cracking	402
Figure 116C: Effect of Initial IRI on Subtotal AC Rutting	402
Figure 117C: Effect of Initial IRI on Total Rutting	403
Figure 118C: Effect of Initial IRI on IRI	403
Figure 119C: Significance of Effect of Input Variables on Bottom-Up Cracking	406
Figure 120C: Significance of Effect of Input Variables on Top-Down Cracking	407
Figure 121C: Significance of Effect of Input Variables on AC Rutting	407

Figure	122C:	Significance	of Effect	of Input	Variables on	Total Rutting	408
Figure	123C:	Significance	of Effect	of Input	Variables on	IRI	408
Figure	124C:	Significance	of Effect	of Input	Variables on	Bottom-Up Cracking	g409
Figure	125C:	Significance	of Effect	of Input	Variables on	Top-Down Cracking	g409
Figure	126C:	Significance	of Effect	of Input	Variables on	AC Rutting	410
Figure	127C:	Significance	of Effect	of Input	Variables on	Total Rutting	410
Figure	128C:	Significance	of Effect	of Input	Variables on	IRI	411

List of Tables

Table 1: Distress Prediction Equations and Transfer Functions	19
Table 2: AASHTO Versus M-E PDG Design.	21
Table 3: Cost Savings Attributed to the M-E PDG Implementation in Indiana	27
Table 4: Summary of Significance for New AC (Rural Design)	30
Table 5: Range of Values of HMA Mix Grading – Superpave Specification	35
Table 6: Tolerance for HMA Mix Grading – Superpave Specification	35
Table 7: ASTM D 2940 Grading for Dense-Graded Bases and Subbases	36
Table 8: Performance Graded Binder Selection Table	37
Table 9: Levels of Reliability for Different Functional Classifications of the Roadway.	. 42
Table 10: Performance Criteria for Flexible Pavements – Failure Limits	43
Table 11: Massachusetts Truck Class Distribution Summary.	44
Table 12: Vermont Truck Class Distribution Summary.	44
Table 13: New York Truck Class Distribution Summary.	45
Table 14: Virtual Weather Station Interpolation Table for New Bedford, MA	47
Table 15: HMA Mix Grading Input Values	48
Table 16: Binder Grade Selections in VT, NT and MA.	48
Table 17: Subgrade Types and Resilient Modulus Values for Vermont Level 2 & 3	49
Table 18: Predicted Pavement Distresses for HMA Thicknesses in MA.	51
Table 19: Predicted Pavement Distresses for HMA Effective Binder Contents in MA	52
Table 20: Normalized Values and Ranks for Vermont Level 3	54
Table 21: Ranking of Input Variable Significance for VT Level 3 Sensitivity Analysis.	.55
Table 22: VT Ranking Summary of Significance of Each Input Parameter on the	
Performance of Flexible Pavement	62
Table 23: Normalized Values and Ranks for Vermont Level 2	64
Table 24: Ranking of Input Variable Significance for VT Level 2 Sensitivity Analysis.	.65
Table 25: Normalized Values and Ranks for New York Level 3	70
Table 26: Ranking of Input Variable Significance for NY Level 3 Sensitivity Analysis.	71
Table 27: NY Overall Ranking Summary of Significance of Each Input Parameter on t	he
Performance of Flexible Pavement	78
Table 28: Normalized Values and Ranks for Massachusetts Level 3	80
Table 29: Ranking of Input Variable Significance for MA Level 3 Sensitivity Analysis	.81
Table 30: MA Overall Ranking Summary of Significance of Each Input Parameter on t	the
Performance of Flexible Pavement	88
Table 31: AADTT Default Options	90
Table 1A: Pavement Layers Used for Rt. 7 in Vermont M-E PDG Analysis	108
Table 2A: Pavement Layers at Rt. 2 in Vermont M-E PDG	108

Table 3A: Suggested Performance Criteria for Use in Pavement Design.	.109
Table 4A: Analysis Parameters Used in VT	110
Table 5A: Tentative Recommended Level of Reliability	.111
Table 6A: Recommended Traffic Value Inputs	112
Table 7A: LTPP Truck Class Distribution	114
Table 8A: Track Class Distribution Level 3 (Control)	115
Table 9A: Low-Class Concentrated Distribution	115
Table 10A: High-Class Concentrated Distribution	116
Table 11A: Truck Class Distribution Summary	116
Table 12A: Selected Traffic Growth Rates for Vermont	117
Table 13A: Selected Traffic Operational Speeds	117
Table 14A: Calculated AADTT Values	117
Table 15A: Monthly Adjustment Factors (MAF) for Pavement Design in New Haven	.118
Table 16A: Monthly Adjustment Factors (MAF) for Pavement Design in Salisbury an	ıd
Ferrisburg	118
Table 17A: Collected MADT's for Selected Locations	119
Table 18A: Selected Locations Climate Data	123
Table 19A: Selected WT Depth for New Haven, VT	123
Table 20A: Water Level Measurement Records at Addison Well	126
Table 21A: Most Recent Data for Water Levels at Addison Well	126
Table 22A: Selected HMA Layer Thickness	127
Table 23A: Range of Values of HMA Mix Gradation – Superpave Specification	128
Table 24A: Tolerance for HMA Mix Gradation	128
Table 25A: Recommended Typical Vermont HMA Mix Gradations Input	130
Table 26A: Vermont PG binder Grades	130
Table 27A: Level 2 asphalt binder values at Angular Frequency = 10 rad/sec	130
Table 28A: ASTM D 2940 Gradation for Dense-Graded Bases and Subbases	131
Table 29A: Base Course Aggregate Gradations (Level 3)	131
Table 30A: Base Course Aggregate Gradations (Level 2)	132
Table 31A: Untreated Base Course Gradation Limits	133
Table 32A: Subgrade Types and Subgrade Resilient Modulus	133
Table 33A: V _{beff} Calculated from VFA and V _a Values	134
Table 34A: Recommended Typical Mix VMA and Binder Content	134
Table 35A: Effective Binder Content	135
Table 36A: HMA Mix Gradation Input Values	135
Table 37A: Air Voids Percentage (Mixture design)	135
Table 38A: Mix Coefficient of Thermal Contraction Level 2	136
Table 39A: Suggested Initial IRI Values for New Pavement Design	136
Table 40A: Initial IRI Values Used for Analysis	137
Table 41A: Difference between Maximum and Minimum Distress Level – Level 3	186

Table 42A: Normalized Values for Vermont Level 3 and Ranks	187
Table 43A: Sensitivity Analysis Results Level 3	190
Table 44A: Sensitivity Analysis Summary Level 3	191
Table 45A: NY Ranking Summary of Significance of Each Input Parameter on the	
Performance of Flexible Pavement	192
Table 46A: Difference between Maximum and Minimum Distress Level – Level 2	216
Table 47A: Normalized Values for Vermont Level 2 and Ranks	217
Table 48A: Sensitivity Analysis Results Level 2	220
Table 49A: Sensitivity Analysis Summary Level 2	220
Table 1B: Pavement Layers at Section 36-1011-1	230
Table 2B: Suggested Performance Criteria for Use in Pavement Design	231
Table 3B: Analysis Parameters Used for NY State.	232
Table 4B: NY State Level 3 Reliability Summary	233
Table 5B: IRI Ranges Defined by FHWA Highway Statistics Publications	233
Table 6B: Tentative Recommended Level of Reliability	234
Table 7B: Recommended Traffic Value Inputs	235
Table 8B: Truck Class Distribution Level 3 Summary	239
Table 9B: Selected Traffic Growth Rates for New York State	240
Table 10B: Selected Traffic Operational Speeds	240
Table 11B: Calculated AADTT Values	240
Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract	use,
Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syrace NY	use, 241
Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East SyractNYTable 13B: Collected MADT's for Selected Location	use, 241 242
Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East SyractNYTable 13B: Collected MADT's for Selected LocationTable 14B: Selected Locations Climate Data	use, 241 242 244
Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East SyractNYTable 13B: Collected MADT's for Selected LocationTable 14B: Selected Locations Climate DataTable 15B: Selected WT Depth for East Syracuse, NY	use, 241 242 244 245
Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East SyractNYTable 13B: Collected MADT's for Selected LocationTable 14B: Selected Locations Climate DataTable 15B: Selected WT Depth for East Syracuse, NYTable 16B: Water Level Measurement Records at Camillus Well	use, 241 242 244 245 247
Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NYTable 13B: Collected MADT's for Selected LocationTable 14B: Selected Locations Climate DataTable 15B: Selected WT Depth for East Syracuse, NYTable 16B: Water Level Measurement Records at Camillus WellTable 17B: Most Recent Data Value: 10.82 on 4/12/2011 at Camillus, NY Well	use, 241 242 244 245 247 247
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY	use, 241 242 244 245 247 247 248
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY Table 13B: Collected MADT's for Selected Location	use, 241 242 244 245 247 247 248 249
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY Table 13B: Collected MADT's for Selected Location Table 14B: Selected Locations Climate Data Table 15B: Selected WT Depth for East Syracuse, NY Table 16B: Water Level Measurement Records at Camillus Well Table 17B: Most Recent Data Value: 10.82 on 4/12/2011 at Camillus, NY Well Table 18B: Selected HMA Layer Thickness Table 19B: Range of Values of HMA Mix Gradation – Superpave Specifications Table 20B: Tolerance for HMA Mix Gradation 	115e, 241 242 244 245 247 247 248 249 249
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY Table 13B: Collected MADT's for Selected Location	use, 241 242 244 245 247 247 248 249 249 249 251
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY Table 13B: Collected MADT's for Selected Location	1se, 241 242 244 245 247 247 248 248 249 251 251
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY Table 13B: Collected MADT's for Selected Location	use, 241 242 244 245 247 247 248 249 249 251 251 252
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY Table 13B: Collected MADT's for Selected Location	1se, 241 242 244 245 247 247 248 249 251 251 252 252
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY	use, 241 242 244 245 247 247 248 249 249 251 251 252 252 253
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY	1se, 241 242 244 245 247 247 248 249 249 251 251 252 253 253
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY	use, 241 242 244 245 247 247 247 249 249 251 251 252 252 253 253 253
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY	ISE, 241 242 244 245 247 247 248 249 249 251 251 252 253 253 253 254
 Table 12B: Monthly Adjustment Factors (MAF) for Pavement Design in East Syract NY Table 13B: Collected MADT's for Selected Location Table 14B: Selected Locations Climate Data Table 15B: Selected WT Depth for East Syracuse, NY Table 16B: Water Level Measurement Records at Camillus Well Table 17B: Most Recent Data Value: 10.82 on 4/12/2011 at Camillus, NY Well Table 18B: Selected HMA Layer Thickness Table 19B: Range of Values of HMA Mix Gradation – Superpave Specifications Table 20B: Tolerance for HMA Mix Gradation Table 21B: Recommended Typical NY State HMA Mix Gradations Input Table 23B: ASTM D 2940 Gradation for Dense-Graded Bases and Subbases Table 25B: Base Course Resilient Modulus Level 3 Values for NY State Table 26B: Untreated Base Course gradation Limits Table 27B: Subgrade Types and Subgrade Resilient Modulus Table 29B: HMA Mix Gradation Input Values 	use, 241 242 244 245 247 247 247 247 249 251 251 252 252 253 253 254 254

Table 31B: Mix Coefficient of Thermal Contraction	.255
Table 32B: Suggested Initial IRI Values for New Pavement Design	.255
Table 33B: Sensitivity Analysis Initial IRI Values	.255
Table 34B: Difference between Maximum and Minimum Distresses – Level 3	.307
Table 35B: Normalized Values and Ranks for NY Level 3	.308
Table 36B: NY Sensitivity Analysis Results Level 3	.311
Table 37B: Sensitivity Analysis Summary Level 3	.312
Table 38B: NY Overall Ranking Summary of Significance of Each Input Parameter o	n
the Performance of Flexible Pavement	.313
Table 1C: Pavement Layers at LTPP Section 25-1004-1	.326
Table 2C: Suggested Performance Criteria for Use in Pavement Design	.328
Table 3C: Analysis Parameters Used in MA State	.329
Table 4C: MA level 3 Control Reliability Summary	.330
Table 5C: IRI Ranges Defined by FHWA Highway Statistics Publications	.330
Table 6C: Tentative Recommended Level of Reliability	.331
Table 7C: Recommended Traffic Value Inputs	.332
Table 8C: Truck Class Distribution Summary	.335
Table 9C: Selected Traffic Growth Rates for Massachusetts	.335
Table 10C: Selected Traffic Operational Speeds	.336
Table 11C: Calculated AADTT Values	.336
Table 12C: Monthly Adjustment Factors for Pavement Design in New Bedford, MA .	.337
Table 13C: Monthly Adjustment Factors for Pavement Design for Fall River and	
Mattapoisett, MA (Level 3 default)	.337
Table 14C: Collected MADT's to AADT's for Selected Locations	.338
Table 15C: Selected Locations Climate Data	.341
Table 16C: Selected WT Depths for New Bedford, MA	.341
Table 17C: Ground Water Table Most Recent Data Values on 03/28/2011	.344
Table 18C: Water Level Measurement Records at New Bedford Well	.344
Table 19C: Selected HMA Layer Thickness	.345
Table 20C: Range of Values of HMA Mix Gradation – Superpave Specifications	.346
Table 21C: Tolerance for HMA Mix Gradation	.346
Table 22C: Recommended Typical Massachusetts HMA Mix Gradations Input	.348
Table 23C: Massachusetts PG Binder Grades	.348
Table 24C: ASTM D 2940 Gradation for Dense-Graded Bases and Subbases	.349
Table 25C: Base Course Aggregate Gradations (Level 3)	.349
Table 26C: Untreated Base Course Gradation Limits	.350
Table 27C: Subgrade Types and Subgrade Resilient Modulus	.350
Table 28C: Effective Binder Content	.351
Table 29C: HMA Mix Gradation Input Values	.351
Table 30C: Air Voids Percentage (Mixture design)	.351

Table 31C: Mix Coefficient of Thermal Contraction	352
Table 32C: Suggested Initial IRI Values for New Pavement Design	352
Table 33C: Sensitivity Analysis Initial IRI Values	353
Table 34C: Difference between Maximum and Minimum Distresses - Level 3	404
Table 35C: Normalized Values and Ranks for MA Level 3	405
Table 36C: Sensitivity Analysis Results Level 3	406
Table 37C: MA Sensitivity Analysis Summary Level 3	412
Table 38C: MA Overall Ranking Summary of Significance of Each Input Parameter	r on
the Performance of Flexible Pavement	413

List of Equations

Equation 1: Normalized Value Parameter	51
Equation 2: Normalized Value Calculation for Top-Down Cracking and HMA	
Thickness	51
Equation 3: Normalized Value Calculation for Top-Down Cracking and HMA Effective	ve
Binder Content	52

Chapter 1: Introduction

Most of the State Highway Agencies (80%) are still using pavement design methods based on empirical equations derived from the American Association of State Highway Officials (AASHO) Road Test that was conducted in the late 1950s. The test was conducted with modest traffic levels compared to current traffic levels, with limited structural sections, and the test was based on the study of only one location in Ottawa, Illinois. The results from the AASHO Road Test have limited application relative to current pavement design criteria in use today. To address this, in the mid-1990s, the National Cooperative Highway Research Program began work on a design guide based on a mechanistic-empirical approach. Representatives from state DOT's, HMA and PCC paving industries, academia and FHWA worked together to deliver a novel pavement design software called the Mechanistic-Empirical Pavement Design Guide (M-E PDG). This user friendly M-E PDG software predicts the pavement condition over time taking into consideration of many different factors including traffic, climate and pavement structure.

The Mechanistic-Empirical Pavement Design Guide (M-E PDG) was developed under the National Cooperative Highway Research Program (NCHRP) Project 1-37A for design of flexible and rigid pavement structures. The mechanistic-empirical approach of the M-E PDG methodology represents a fundamental shift for pavement design. It considers the input parameters that influence pavement performance – including traffic, climate, pavement, unbound material structure and layer thickness – and applies the principles of

1

engineering mechanics to predict critical pavement responses. The responses of the pavement defined in terms of stresses, strains and as well as other parameters are analyzed using rigorous theories of mechanics, and subsequently the critical response quantities are empirically related to pavement performance.

The M-E PDG changes the design process, required inputs and the way engineers develop and implement efficient and effective pavement design (2) (3). The M-E PDG does not provide the user with a design thickness of the pavement (like the AASHTO design does), but rather provides the user with projected pavement distresses and smoothness (IRI) over the design period. The design process is completed after user's acceptance of the projected level of distresses.

In 2006 the New England Transportation Consortium (NETC) introduced Project NETC 06-1 "New England Verification of NCHRP 1-37A Mechanistic-Empirical Pavement Design Guide with Level 2&3 Inputs". The main purpose of this project was to help New England states and the State of New York to gather more information about this new pavement design, to realize advantages over the existing AASHTO methods, as well as to provide recommendations of steps that need to be taken before the decision to implement the M-E PDG.

1.1 Objective

The main objective of the research was to identify critical state specific factors affecting predicted pavement performance for level 2 and 3 M-E PDG input values, in Vermont,

New York and Massachusetts. The research focused only on the mechanistic-empirical design of new flexible pavements with a 20 year design life. The research also provides the state highway agencies with the option of using default inputs for low volume roads, addresses some issues and concerns that arose during the design process, identifies the necessity for a local calibration or field and laboratory data evaluations, and specifies the guidelines for future implementation strategy in terms of data collection techniques and existence of required specifications for the M-E PDG design. This research is a part of the New England Transportation Consortium (NETC) Project 06-1: "New England Verification of NCHRP 1-37A Mechanistic – Empirical Pavement Design Guide with Level 2 and 3 Inputs" and is presented in this thesis.

For all research sensitivity analyses the M-E PDG version 1.1 was used. Version 1.1 outputs were compared, during the first phase of the research, to results from the previous analyses, which used the 1.0 version software with different states (RI, CT, ME and NH) (4).

1.2 Research Significance

The mechanistic-empirical pavement design guide (M-E PDG) procedure requires defining a large number of traffic, climate and material related inputs by the pavement designer before conducting an analysis. Therefore, before conducting any runs, the designer must determine which variables are to remain fixed and at what level, which inputs need to be investigated and which input value ranges are to be used for the sensitivity analysis to represent specific conditions. It is known that not all inputs in the performance models have an equal impact on the predicted distresses. Therefore, it is very important to try to determine which variables have the largest impact for the typical pavement design. The sensitivity analysis can determine the impact on pavement performance caused by individual changes in the previously selected significant design inputs.

The sensitivity analyses were conducted only for new flexible pavements throughout three states (VT, NY and MA) with inputs variables based on the relevant state's Department of Transportation (DOT) specifications, LTPP database, climatic stations data, selected project locations, and other findings obtained from both the internet and from published literature, e.g., research papers.

The research significance was to determine the critical state specific factors as well as to provide an analysis of their influence on the M-E PDG prediction data.

1.3 Research Tasks

The following identify the steps which were used to perform the Sensitivity analysis process:

- 1. Identification of the LTPP road sections.
- Collection of all necessary input values. Analysis data and values were based on an existing pavement structure, material properties, tolerances, specifications, monitored performance or literature review.
- 3. Evaluation of the accuracy and adequacy of data collection.
- 4. Identification of critical inputs which could affect the M-E PDG pavement distress predictions.
- 5. Selection of the control input file, which was used as a baseline for the sensitivity analysis.
- 6. Variation of one input value over its typical range while holding other inputs constant and analysis using the M-E PDG software.
- 7. Repetition of the same process for all critical inputs for the design, including climatic, traffic inputs, material properties and structural design parameters.
- 8. Identification of the state specific critical input variables based on the M-E PDG runs and comparison to nationally calibrated data.
- 9. Presention of sensitivity analysis in graphical form and summarization of the pavement performance results.

1.4 Organization of Thesis

Chapter 2 presents a literature review of the M-E PDG. It presents the history and background of the M-E PDG, the existing AASHTO methodology, differences between these two designing methods, critical input parameters for the M-E PDG, and findings from completed research activities in Indiana, Ohio, and South Dakota.

Chapter 3 presents a research methodology used for this study. It contains data collection methods, tolerances used by the respective states, and input values required for M-E PDG.

Chapter 4 presents data analysis, results and discussion for the states of VT, NY and MA.

Chapter 5 presents state specific recommendations, general conclusions, and

recommendations for future work.

Chapter 2: Literature Review

Results of the literature review are summarized in the following section. The significant findings from the literature review were applied to this research.

2.1 Background of Flexible Pavement Design

2.1.1 Existing AASHTO Methodology

Starting in the 1920s the State Highway Agencies and the Bureau of Public Roads started a series of road tests to determine the relationship between axle loading and pavement structure on pavement performance (2). This knowledge was needed to assist in the design of pavements to establish maximum load limits, and to provide a basis for the allocation of highway user taxation. The AASHO Road Test (1958-1960) was the last of the series. It was conducted with limited structural sections at one location in Ottawa, Illinois. The test studied the performance of known thickness pavement structures under moving loads of known magnitude and frequency. These tests were conducted for both pavement types: asphaltic concrete and portland cement concrete. The test facilities had six loops of 7 mile two-lane pavements (Figure 2), which contained 836 test sections with a wide range of surface, base and subbase thicknesses. Test traffic was inaugurated on October 15, 1958 and ended November 30, 1960 (Figure 1).

7

Five of the loops were exposed to traffic loading shown in Figure 3, and one was used to test environmental effects.

Figure 1: Test Vehicles during the 1950s AASHO Road Test (Ref: AASHTO Design Guide, 1972).

Figure 2: AASHO Road Test Layout (Ref. Smith and Skok, Transportation Research Circular, July 2007).

(Ref:http://training.ce.washington.edu/wsdot/Modules/06_structural_design/aasho_road_ test.htm).

The test data established the relationships for pavement structural designs based on expected loadings over the life of a pavement. Figure 4 shows the construction of the flexible pavement section for the AASHO Road Test.

Figure 4: Bituminous Concrete Construction for AASHO Road Test (Ref. CH. Wagner, FHWA – Resource Center, February 2007).

Following completion of the Road Test, in May 1962 the AASHO Design Committee reported the development of the AASHO Interim Design Guides (1st – Flexible, and 2nd – Rigid Pavement Structures). All the pavement design procedures within these Interim Design Guides were based on the results from the AASHO Road Test and were supported by existing design procedures and available theory. Although the AASHO Road Test represented the most comprehensive development of the relationship between traffic loadings, material characteristics, structural thicknesses and performance, the results were limited by the scope of the test and conditions under which it was conducted. The performance equations from the AASHO Road Test were developed based on: (2)

- Specific set of paving materials
- One subgrade material type
- A single environment
- An accelerated procedure for accumulating traffic

• Accumulation of traffic on each test section by operating vehicles with identical loads and axle configuration, rather than by mixed traffic.

To develop a new design procedure for a different location it was necessary to make certain assumptions, which adjusted the different traffic conditions, specific climate and material types.

The assumptions and limitations associated with each design procedure were enumerated in the guides, and each emphasized that:

"The Guide is interim in nature and it is subject to adjustment based on experience and additional research" (2).

The 1962 Interim Guide was first revised in 1972 (2). The design methods and procedures contained in 1962 version of the guide were not changed in the 1972 revision, but both the flexible and rigid design guides were incorporated into one document.

A more significant revision to the Interim Guide was made in 1986, however the procedures were still based on the performance equations developed in the 1960s (5). At this revision several important items were considered:

- Resilient modulus for roadbed soils was recommended for characterizing soil support
- Design reliability for adding safety to the pavement structure
- The resilient modulus test (AASHTO Test T-247) was recommended for determining layer coefficient in flexible pavement design
- Subsurface drainage
- Environmental factors such as frost heave, thaw weakening and swelling soils

- Rehabilitation of pavements
- Discussion on the mechanistic-empirical design.

The 1986 Guide for Design of Pavement Structures was, for the first time, not labeled as interim.

The most recent revision of the Guide for Design of Pavement Structures, which guide included the consideration of the flexible pavements was introduced in 1993 (3).

2.1.2 M-E PDG Methodology

In December 1996, the National Cooperative Program (NCHRP) started Project 01-37A: "Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures," which was the initial step for developing a new pavement design process. The design procedure developed under this project was a large leap forward from existing practice. Project 1-37A was completed in 2004 and has entered the implementation process. As of December, 2010 forty states in the US (Figure 5) are planning to adopt this design procedure (a few states are already using it), now known as the Mechanistic-Empirical Pavement Design Guide (M-E PDG).

Figure 5: M-E PDG Implementation Status as of December, 2010 (Ref: Federal Highway Administration Office of Pavement Technology, December 2010).

The M-E PDG design incorporates a hierarchical approach to design inputs for subgrade, materials, environment, and traffic information. Three levels of hierarchy are provided for within the design inputs:

- Level 1 the highest level of prediction. This level would be used for designing heavily trafficked pavements. Material inputs would require field or laboratory evaluation.
- Level 2 an intermediate level of prediction. This level could be used when resources or testing equipment are not available. Inputs would be estimated via correlations or experience.

• Level 3 – the lowest level of prediction. This level might be used for designing low volume roads, in which there are minimal consequences of early failure. Inputs are based on global or regional values.

The engineers select the inputs and determine the types and quantities of data needed for a reliable design. This process requires a thorough evaluation of all of design parameters and a detailed analysis of how the input values will affect the predicted performance. The M-E PDG design process therefore demands a huge amount of information from the engineers concerning pavement inputs and pavement performance.

Figure 6 provides a flow chart for the mechanistic-empirical design approach as implemented in the M-E PDG procedures (6).

Figure 6: Flow Chart for Mechanistic-Empirical Design Methodology (6).

The following lists the major steps in this design methodology for a new flexible pavement:

- Specify and define the required inputs including traffic, environmental, materials, etc.
- 2. Select a trial pavement section for analysis.

- 3. Define the properties of materials in the various pavement layers.
- 4. Analyze the pavement response due to traffic loading and environmental influences.
- 5. Empirically relate critical pavement responses to damage and distress for the pavement distresses of interest.
- 6. Adjust the predicted distresses for the specified design reliability.
- Compare the predicted distresses at the end of pavement design life against design limits.
- 8. If necessary, adjust the trial pavement section and repeat steps 3-7 until all predicted distresses are within design limits.

To implement the above mechanistic-empirical methodology, the following corresponding major components are needed:

- Inputs traffic, materials, climate and other general values (e.g. design life, latitude, longitude and elevation)
- Pavement response model
- Environmental response model
- Material characterization model
- Performance prediction model
- Design reliability to increase the safety of the design
- Software to implement the mechanistic-empirical models and calculation in a usable form.

The M-E PDG "system" has been designed in a modular fashion. This approach recognizes that pavement response is a function of three primary influences: environmental (climate), traffic, and pavement (materials and thicknesses). The mechanistic-empirical process is outlined in Figure 7 (7).

Figure 7: M-E PDG Outline Process (7).

The environmental model plays a significant role in the performance of pavement. The M-E PDG software provides environmental data sets for specific locations from over 800 weather stations throughout the U.S., as well as historical records for up to 10 years. This model recognizes not only external factors such as temperature, precipitation, freeze-thaw

cycles and depth to water table, but also internal factors such as the susceptibility of the pavements materials to moisture and frost heaving, drainage ability of the paving layers and potential infiltration of the pavements. Temperature and moisture variations within the pavement structures and subgrade over the design life of pavement are simulated by the Enhanced Integrated Climatic Model (EICM).

The traffic model inputs are also significant for the analysis and design of pavement structures. The mechanistic response model in the M-E PDG requires the magnitudes and frequencies of the actual wheel load that the pavement is expected to experience over its design life. Typically, state highway agencies collect two categories of traffic data: weight-in-motion (WIM) and Automatic Vehicle Classification (AVC). WIM data provides information about truck axle weights and gross vehicle weights as they drive over a sensor. AVC data provides information about the number and types of vehicles that use a given roadway over some period of time.

The material characterization model is used in the M-E PDG to calculate the stresses, strains and deflections in the pavement. Pavement performance is evaluated in the M-E PDG by individual empirical distress models, also termed as transfer functions.

Empirical models are incorporated in the M-E PDG for the major structural distresses and smoothness estimation in flexible pavements.

Distress prediction equations and transfer functions for flexible pavements and HMA overlays are listed in Table 1 (9) (4).

[&]quot;The transfer function is the empirical part of the distress prediction model that relates the critical pavement response parameter, either directly or through the damage concept, to pavement distress" (8).

Distress Type	Equations	Terms
Fatigue Cracking	$N_{f} = 0.00432 \times k_{1} C \left(\frac{1}{\varepsilon_{t}}\right)^{3.9492} \left(\frac{1}{E}\right)^{1.281}$	N_F =Number of repetitions to fatigue cracking k_1 =correction for asphalt layer thickness E=stiffness of material ε_t =tensile strain at critical location C=laboratory to field adjustment factor
Alligator Cracking (Bottom-Up)	$FC_{Bottom} = \left(\frac{1}{60}\right) \left(\frac{C_4}{1 + e^{\left(C_1C_1' + C_2C_2'Log(DI_{Bottom})\right)}}\right)$	FC Bottom=Bottom-Up Cracking (%) C 1, C1', C2, C2', C4=calibration functions; C4=6000 DI Bottom =Cumulative damage index at the bottom of the HMA layers
Transverse Cracking	$TC = \beta_1 N \left[\frac{1}{\delta_d} Log \left(\frac{C_d}{H_{HMA}} \right) \right]$	TC=thermal cracking, ft/mi β_1 =Regression coefficient determined through global calibration N[z]=standard normal distribution evaluated at [z] δ_d =Standard deviation of log of the depth of cracks in the pavement (0.7690, in C_d=Crack depth, in H _{HMA} =Thickness of HMA layers, in
Longitudinal (Top-Down Fatigue) cracking	$FC_{Top} = \left(\frac{1000}{1 + e^{(70 - 3.5x \times (D \times 100))}}\right)$	FC _{Top} =top-down cracking, ft/mi D=top-down fatigue damage coefficient

Table 1: Distress Prediction Equations and Transfer Functions (9) (4)	Table	1:	Distress	Prediction	Equations	and Transfer	Functions	(9) (4).
---	-------	----	----------	------------	-----------	--------------	-----------	----------

		$\delta_a(N)$ =Permanent
		deformation of layer,
		in
		N=Number of traffic
		repetitions
		β_1 =Local calibration
		factor
Rutting in	$(N) = Q \left(\frac{\varepsilon_0}{N}\right) e^{-\left(\frac{\rho}{N}\right)^{\beta} \varepsilon_n \times h}$	$\epsilon_0,\beta,\rho=material$
Unbound	$o_a(N) = \beta_1\left(\frac{1}{\varepsilon_r}\right)e^{-(N)}$	properties
Materials		ε_r =Resilient strain
		imposed in laboratory
		test to obtain above
		properties
		ε_{v} =Average resilient
		strain from primary
		response model
		h=Thickness of
		layer/sublayer
		ε_p =Accumulated
		plastic strain at N load
		repetitions
		ε_r =Resilient strain of
Rutting in	$\varepsilon_p = 1.0 \times 10^{-3.4488} \pi 1.5606 \times 0.479244$	asphalt as a function
Asphalt Layer	$\frac{1}{\varepsilon_r} = \kappa_1 \times 10^{-1} \text{ mm}$	of mix properties,
	'	temperature and
		loading time
		k_1 =correction for
		asphalt layer thickness
		T=Temperature, ^o F
		N=Number of load
		repetitions
· · · · · · · · · · · · · · · · · · ·		IRI=Smoothness, in/mi
		IRL=Initial IRI after
		construction, in/mi
	$IRI = IRI_{0} + 0.0150(SF) + 0.400(FC_{Total})$	FC _{Total} =Area of fatigue
	+ 0.0080(TC) + 40.0(RD)	cracking
		TC=Length of
	$SF = FROSTH + SWELL \times AGE^{1.5}$	transverse cracking.
		ft/mi
		RD=Average rut
Smoothness (IRI)	$FROSTH = LN([PRECIP + 1] \times FINES)$	depth. in
	$\times [FI + 1])$	SF=Site Factor
		AGE= Pavement age.
	$SWELL = LN([PRECIP + 1] \times CLAY)$	vears
	x [PI + 1])	PRECIP=Mean annual
		precipitation, in
	FINFS = FSAND + SIIT	PI=Subgrade plasticity
		index
		FI=Mean annual
		freezing index

	CLAY=Amount of	
	clay particles in	
	subgrade	
Smoothness (IRI)	FSAND=Amount of	
(Continued)	fine sand particles in	
	subgrade	
	SILT=Amount of	
	particles in subgrade	

2.1.3 AASHTO vs. M-E PDG Design Guide

Table 2 shows some major differences between the old AASHTO pavement design

guides and the M-E PDG design.

AASHTO Design	M-E PDG Design
Predicts AC thickness	Predicts pavement performance
Northern Illinois (wet-freeze climate) based	Uses more than 800 weather stations
One subgrade type (A-6 silty sand)	Project specific subgrade type
Uses equivalent single axle load (ESAL)	Individual Axle type and actual loading per axle
Uses Structural Number (SN) for flexible pavements	HMA specific characteristics
AASHO Road Test database	LTPP and NCDC databases

Table 2: AASHTO versus M-E PDG Design.

2.2 Critical Input Parameters

The M-E PDG is used to calculate all the pavement responses and to predict the resulting distresses but the program requires a large number of design inputs. Many of these inputs are more sophisticated than those currently being collected by the state highway agencies

(SHA). Some design inputs are more critical for the prediction of pavement distresses than others. Knowing the critical inputs necessary for the design process will definitely reduce SHA's overall cost and minimize the required resources.

This section provides an example of critical input parameters based on research conducted by different states highway agencies, with the focus on flexible pavements (3).

Traffic Inputs

The M-E PDG uses axle load spectra data, which includes collecting following trafficrelated inputs:

- a) Initial two-way Annual Average Daily Truck Traffic (AADTT)
- b) Number of lanes in design direction (%)
- c) Percent of trucks in design line (%)
- d) Operational speed (mph)

Traffic volume adjustments:

- a) Monthly adjustment by vehicle class specification
- b) Vehicle class distribution
- c) Hourly distribution
- d) Traffic growth factor

Axle load distribution factor:

- a) Level 1: site specific
- b) Level 2: regional (not used in the M-E PDG version 1.1)
- c) Level 3: default

General Traffic Inputs:

- a) Mean wheel location
- b) Traffic wander standard deviation
- c) Design lane width (ft)
- d) Number of axles per truck, axle configuration and wheelbase

Climatic Inputs

Within the M-E PDG, the Enhanced Integrated Climatic Model (EICM) handles the input, collection, characterization and analysis of environmental and material properties which determine the stiffness or modulus of unbound materials (10). This stiffness significantly influences the pavement distresses predicted by M-E PDG. The following are climatic-related inputs:

General Information:

- a) Base/subgrade construction completion dates
- b) Existing pavement construction date (required for overlay design)
- c) Pavement construction date (required for new and overlay design)
- d) Date when the pavement will be opened to traffic

Weather-related information:

 a) Hourly values for past air temperatures, precipitation, wind speed, percentage sunshine, relative humidity, etc. This information is available from over 800 weather stations throughout the U.S. Ground water table depth:

- a) At level 1 could be determined from borings.
- b) At the level 2 and 3 could be determined from local wells or county soil reports.

Drainage and surface properties:

a) Water infiltration potential of the drainage path length, pavement slope, etc.

Pavement Structure Materials:

- a) Layer thicknesses.
- b) Material properties such as surface shortwave absorptivity, thermal conductivity (K), and heat or thermal capacity (Q).

Material Inputs

Materials are divided into two groups: asphalt concrete inputs and unbound materials.

Figure 8 describes M-E PDG pavement layer structure.

Asphalt concrete inputs Level 3:

- a) Asphalt mix parameters layer thickness, aggregate gradation
- b) AC binder parameters binder grade
- c) Asphalt general parameters reference temperature (70 °F), Poisson's ratio,
 volumetric properties (air voids %, effective binder content %, total unit weight –
 pcf), thermal properties).

Asphalt concrete inputs Level 2:

- a) Asphalt mix same as Level 3 inputs
- b) Asphalt binder requires the complex shear modulus (G*), and the phase angle (δ) values and testing temperatures

Unbound material inputs:

- a) Layer type typical resilient modulus (M_R) value for Level 3 obtained from national averages, and Level 2 from laboratory test or a state specific value (AASHTO or Unified Classifications). Level 1 when active, will incorporate k₁, k₂, k₃ values from universal model.
- b) Layer thickness
- c) Poisson's ratio
- d) Material properties level 2 options: resilient modulus, CBR value, R-value, layer coefficient, penetration (DCP) or based upon plasticity index and grading.

2.3 Findings from Completed Research Activities on M-E PDG Implementation

This section presents some activities, conclusions and results on the M-E PDG topics conducted by researchers in other states: Indiana (10), Ohio (11), and South Dakota (12).

2.3.1 Implementing the M-E PDG for Cost Savings in Indiana

The implementation of the new pavement design methodology is a huge task for the state Departments of Transportation (DOT). Indiana DOT's experience is a good example of how to handle this difficult and time consuming task (11). Implementation of the M-E PDG design process demands knowledge about pavement design inputs and pavement performance. This task was completed by interactions among the highway agency personnel who work in traffic, material, geotechnical areas and pavement structures to identify the proper parameters for the design (11). To ensure successful outcome of the analysis and design process, the team of engineers had sufficient knowledge in pavement engineering. The implementation process was coordinated with other agencies such as Federal Highway of Administration (FHWA), state pavement associations and contractor associations. FHWA must approve all projects supported by government funds and the contractor association members actually build the pavements.

The full M-E PDG implementation in Indiana began on January 1, 2009, although initial implementation efforts started seven years earlier, in 2002. Indiana DOT coordinates all implementation activities with agency pavement design engineers, FHWA, pavement

26

association and contractor associations. There were regular monthly meetings, where implementation issues were discussed and approved for the next steps in the process. Training sessions were initiated throughout the entire implementation process for all involved parties.

In 2009, Indiana DOT's engineers and consultants designed over 100 pavement sections using the M-E PDG procedure. All the new M-E PDG design pavement thicknesses were documented and compared to the thicknesses estimated according to the 1993 AASHTO design. They provided profit calculations based on the material, labor cost and time savings. Savings resulted from more efficient M-E PDG design which also reduced thickness of the pavement; most pavements were reduced by 2 inches. Significant savings of material, labor cost and time were realized.

Summarizing Indiana DOT's experience, the implementation of the M-E PDG results in more efficient pavement designs, that can be built at a lower cost as shown in Table 3 (11).

Road	AASHTO 1993 HMA Thickness	M-E PDG HMA Thickness	Estimated Contract Saving	Actual Contract Saving
SR 14	15"	13.5"	\$333,000	\$155,440
US 231	15.5"	13"	\$557,000	\$673,796
SR 62	16"	13"	\$403,000	\$420,548

Table 3: Cost Savings Attributed to the M-E PDG Implementation in Indiana.

2.3.2 M-E PDG Sensitivity Analysis Results for New HMA in Ohio

In Ohio, M-E PDG research mainly focused on the characterization of paving materials utilized in that state. In this study (12), the basic HMA properties such as air voids %, effective binder content and total unit weight were obtained from job mix formulas (JMF) for level 3 design. A very limited amount of effort has been expended on traffic related studies under Ohio Department of Transportation's (ODOT) research program. ODOT typically collects three categories of traffic data: weight-in-motion (WIM), automatic vehicle classification (AVC) and traffic volume, however most of this information has not been analyzed for M-E PDG purposes. The following observations were obtained from the research and from sensitivity analysis:

- Longitudinal cracking was mostly affected by thickness of the HMA layer alone, and was caused mostly by poor construction methods. The subgrade and base stiffness did not influence the longitudinal cracking.
- Transverse (thermal) cracking was highly affected by climate, volumetric binder content and base type. HMA thickness had a moderate influence with thicker asphalt pavements showing lower thermal cracking predictions.
- Alligator cracking was significantly affected by HMA thickness and asphalt binder content. Higher thicknesses and higher asphalt contents lead to lower predicted alligator cracking. Also the base type had a major impact on the alligator cracking. Percentage of heavy trucks (class 9 or greater), subgrade type and climate affected alligator cracking moderately.
- Total rutting (includes HMA layers, base and subgrade) as expected, was affected mostly by the percentage of heavy trucks. Other significant factors affecting total

rutting were HMA thicknesses (the higher the pavement thickness, lower the rutting), binder content (the higher the content, higher the rutting), and base type (asphalt treated based showing lesser rutting). Moderate impacts on the predicted rutting were observed with the air voids content (higher air voids leading to increasing rutting), climate and subgrade type.

• Smoothness IRI (Ride Quality) was mostly affected by pavement thickness (thicker pavements exhibited lower IRI). Base and subgrade stiffnesses had a moderate effect on IRI (sections with stiffer layers having more beneficial IRI).

2.3.3 M-E PDG Sensitivity Analysis Results in South Dakota

The pavement performance for the sensitivity analysis in South Dakota (13) was expressed using the following performance indicators:

- Top-down fatigue (longitudinal) cracking,
- Bottom-up fatigue (alligator) cracking,
- AC rutting,
- Total rutting,
- Smoothness (IRI).

The transverse cracking performance predictions were omitted due to the M-E PDG version 1.1 software having specific shortcomings (transverse cracking values equal to "0").

Before conducting any runs for M-E PDG sensitivity analysis the South Dakota DOT Technical Panel (13) needed to determine:

- Fixed variables and their levels,
- Determine which inputs needed to be investigated,
- Input value ranges were to represent typical South Dakota conditions.

The newly designed rural AC pavement was evaluated based on 56 M-E PDG software simulations. The parameters in Table 4 are placed in decreasing order of their significance for each investigated performance indicator.

Pavement Type	Distress Type	Critical input Variables			
	Top-down (longitudinal cracking)	 AC layer thickness Initial 2-way AADTT Base resilient modulus AC binder grade 			
	Bottom-up fatigue (alligator cracking)	 Initial 2-way AADTT AC binder grade AC layer thickness Base resilient modulus 			
New HMA	AC rutting	 Initial 2-way AADTT AC layer thickness AC binder grade Location (climate) 			
	Total rutting	 Initial 2-way AADTT AC layer thickness Subgrade resilient modulus Depth of water table AC binder grade Base resilient modulus 			
	Smoothness (IRI)	 Bottom-up fatigue (alligator) cracking Total permanent deformation (rutting) 			

Table 4: Summary of Significance for New AC (Rural Design).

In the overall ranking, it was observed that the initial 2-way AADTT variable had the largest performance affect on all of the pavement distress types for the new HMA design, follow by: AC layer thickness, AC binder grade, base resilient modulus, and subgrade resilient modulus.

The smoothness indicator (IRI) was predicted as a function of the initial (as-constructed) IRI and the predicted longitudinal cracking, alligator cracking and total rutting. Based on these correlations the bottom-up fatigue cracking has the largest affect on the pavement smoothness in South Dakota.

Chapter 3: Research Methodology

This section describes in detail the tasks performed in order to accomplish the objectives of this research, namely, to identify required inputs for Level 3 and Level 2 and conduct sensitivity analyses with M-E PDG software for Vermont, New York and Massachusetts. The state-specific inputs were varied for typical ranges used in New England or were ranges obtained from the LTPP database. The sensitivity analysis was performed using state-specific input parameters chosen in accordance to state pavement design procedures, theoretical knowledge of flexible pavements, and engineering experience. The research methodology consists of three parts:

- 1. Data collection
- 2. M-E PDG sensitivity analysis
- 3. Predicted distresses data compilation

3.1 Data Collection

Input values for all M-E PDG runs were collected from the LTPP road sections (14). Vermont has two LTPP sections, one located in Addison County and the second in Grand Isle County. For sensitivity analysis, the first section was selected based on higher traffic values, thinner structural layers and central location. New York has only one LTPP road section located in the central part of the state in Onondaga County. The road layer structure was obtained from the LTPP section. No other sources of information were available and the research was completed based on current findings. Massachusetts has three LTPP road section locations: in the western part of the state (Hampden County), in the central part of the state (Norfolk County), and in the south eastern part of the state (Bristol County). Bristol County was selected for the M-E PDG sensitivity analysis based on traffic, road structure and available data.

The following information was collected for each state:

- General information such as construction dates for pavement, base, subbase and subgrade based on the state's seasonal paving periods.
- Climatic information and ground water table depths based on the closest weather station and local well records.
- Asphalt mix design specifications based on currently adopted procedures and specifications.
- Unbound material (base, subbase) characteristics state specifications or the State Soil Survey Geographic database (STATSGO2) for subgrade information (15).

Figure 9 shows typical road structures (layer thickness and material type) used for the M-E PDG sensitivity analysis in selected states.

Figure 9: Pavement Structures Used for Sensitivity Analysis.

3.2 Tolerances and Determination of Material Properties

The research objectives for this project only require level 3 and level 2 approaches for determining design inputs. Level 3 requires the designers to estimate the most appropriate design value of the material property based on experience and with little or no testing. For level 3 analysis, the M-E PDG software contains major material types and their default values based on national calibration. In contrast, level 2 inputs are estimated through correlations with other material properties that are commonly measured in the field or laboratory.

All three states selected for this research are using the Superpave specification for asphalt binder and asphalt mixture grading requirements (16) (17). The tolerances for unbound materials were selected from the state agency specifications available online. Table 5 presents the HMA mix grading ranges and Table 6 presents the tolerances from target grading of percentage by weight of material retained on sieves in accordance with Superpave specification.

NMAS*	9.5 mm	12.5 mm	19.0 mm	25.0 mm	37.5 mm
of Mix	(3/8")	(1/2")	(3/4")	(1")	(1.5")
³ / ₄ " sieve	0	0-10	10 – NR	NR	NR
3/8" sieve	0-10	10 – NR	NR	NR	NR
#4 sieve	10 – NR	NR	NR	NR	NR
#200 sieve	2 - 10	2 – 10	2-8	1-7	0-6

 Table 5: Range of Values of HMA Mix Grading – Superpave Specification.

* - Nominal Maximum Aggregate Size

NR - No Restriction on the value

NMAS of Mix	9.5 mm (3/8")	12.5 mm (1/2")	19.0 mm (3/4")	25.0 mm (1")	37.5 mm (1.5")
Cum. % Ret 3/4" sieve		<u>+</u> 4%	<u>+</u> 5%	<u>+</u> 7%	
Cum. % Ret 3/8" sieve		<u>+</u> 4%	<u>+</u> 5%	<u>+</u> 7%	
Cum. % Ret # 4 sieve	<u>+</u> 4%	<u>+</u> 3%	<u>+</u> 4%	<u>+</u> 4%	<u>+</u> 6%
#200 sieve	± 0.8%	$\pm 0.8\%$	$\pm 0.8\%$	<u>+</u> 0.8%	$\pm 0.8\%$

 Table 6: Tolerance for HMA Mix Grading – Superpave Specification.

The percentage of air voids for the analysis is 4% with a tolerance of \pm 1%. For new HMA mixtures, the mid-range value or value from previous construction records for a particular type of HMA mixture needs to be used. For existing HMA layers, the air voids value can be obtained from pavement cores. Other asphalt properties, such as effective asphalt content, voids in mineral aggregate (VMA) or voids filled with asphalt (VFA) if unavailable, could also be obtained from pavement cores (9).

Base and subgrade resilient modulus values could also be characterized using the hierarchical approach. Appendix D contains typical resilient modulus (M_R) values for level 3 designs, which are national averages for a given type of soil or base material. Level 2 designs would require the user to choose resilient modulus values based on laboratory material testing. The strength of the unbound materials for level 2 inputs could be also be selected based on other parameters such as California Bearing Ratio (CBR), R-value, layer coefficient, dynamic cone penetration (DCP) or calculated from plasticity index or grading. Table 7 presents sieve size characteristics of unbound materials used for bases and subbases in accordance with the ASTM D 2940 specification.

Sieve Size	Percent Passing	
2 in. (50 mm)	100	
1½ in. (37.5 mm)	95 - 100	
3/4 in. (19.0 mm)	70 - 92	
¹ / ₂ in. (9.5 mm)	50-70	
No. 4 (4.75 mm)	35 - 55	
No. 30 (0.600 mm)	12 – 25	
No. 200 (0.075 mm)	0-8	

Table 7: ASTM D 2940 Grading for Dense-Graded Bases and Subbases.

Performance binder grade selections were specified based on state specifications, information obtained from the agency, or current Hot Mix Asphalt (HMA) suppliers. Level 2 design requires the complex shear modulus (G*) and the phase angle (δ) values from laboratory asphalt testing. Table 8 provides the example of binder selections for Vermont based on design ESAL's and average traffic speed values (18).

Table 8: Performance Graded Binder Selection Table (Ref: Vermont Agency of Transportation Flexible Pavement Design Procedures; March 1, 2002).

		Adjusted PG Binder Grade	
Design ESALs		Average Traffic Speed	
(million)	<20 km/h (12 mph)	20 to 70 km/h (12 to 44 mph)	>70 km/h (44 mph)
< 0.3	PG 58-XX	PG 58-XX	PG 58-XX
0.3 to <3	PG 64-XX	PG 58-XX	PG 58-XX
3 to <10	PG 70-28	PG 64-XX	PG 58-XX
10 to <30	PG 70-28	PG 64-XX	PG 64-XX
>30	PG 70-28	PG 64-XX	PG 64-XX

Five binder grades for New York have been chosen based on the state DOT website and the NYS DOT Comprehensive Pavement Design Manual and Revision for the selected locations (Ref: NY Report, Appendix F and G). Massachusetts binder selections were obtained from the state HMA suppliers.

3.3 Input Values for M-E PDG

The M-E PDG software predicts the performance of the pavement during its service life based on a large amount of input values which need to be specified by the designer. Before choosing input values for the project, the designer should first decide on the "trial design", which is a reference file for a future sensitivity analysis. Data for the "trial design" may be selected based on existing pavement structure, material properties, monitored performance, a design catalog, or may be created solely by the design engineer. The "trial design" pavement predictions are then examined by the designer to achieve satisfactory results. Unacceptable design outputs are revised and re-run until all performance criteria are met. The following subsections provide characteristics of design inputs used for this research, and Figures 10, 11 and 12 present the input summaries for each state.

Figure 10: Vermont M-E PDG Inputs Level 3 and Level 2.

Figure 11: New York M-E PDG Inputs Level 3.

Figure 12: Massachusetts M-E PDG Inputs Level 3.

3.3.1 General Inputs

The M-E PDG software requires that the designer specify certain general project information such as pavement design life, base, subgrade and pavement construction dates, and the traffic opening date. The software will calculate predicted pavement distresses according to a reliability value which is selected by the user depending on the importance of the project and road functional classification. The reliability is the probability that the pavement will not achieve specific performance criteria over the design period.

The default reliability value used for the M-E PDG sensitivity analysis was 90%. Recommended reliability values for different roadway functional classifications are presented in Table 9 (8).

Table 9: Levels of Reliability for Different Functional Classifications of theRoadway (Ref: MEPDG; A Manual of Practice; July, 2008).

Functional Classification	Urban	Rural
Interstate/Freeways	95	92
Principal Arterials	90	85
Collectors	80	75
Local	70	60

Table 10 presents the default failure limits for performance criteria which have been used to perform this research.

Performance Criteria	Failure Limit
Terminal IRI (inches/mile)	172
AC Surface Down (Longitudinal) Cracking (feet/mile)	2000
AC Bottom-Up (Fatigue) Cracking (% area of lane)	25
AC Thermal Fracture – Crack Length (feet/mi)	1000
Permanent Deformation – Total Pavement (inches)	0.75
Permanent Deformation – AC Only (inches)	0.25

Table 10: Performance Criteria for Flexible Pavements – Failure Limits.

3.3.2 Traffic Inputs

The M-E PDG requires the initial 2-way average annual daily track traffic (AADTT) value. This value can be calculated by using the software calculator and providing the average annual daily traffic (AADT) and the percentage of heavy trucks (class 4 or higher – FHWA/AASHTO Vehicle Classification). These two values can be estimated from the specific DOT traffic count websites or from the LTPP road sections.

Truck Class Distribution values were obtained from the LTPP monitored traffic stations, state WIM stations, default M-E PDG values and from Iowa DOT research studies with similar road classifications (19). Track class selections (class 4 to 13) were specified based on the FHWA vehicle classification and the M-E PDG requirement.

Table 11 presents four cases of track class distribution investigated for the Massachusetts sensitivity analysis.

	CODE					
TRUCK CLASS	D1 (LTPP-Control)	D2 (low class)*	D3 (high class)*	D4 (Level 3)		
4	3.5	5.2	0.1	1.8		
5	47.2	38.9	0.6	24.6		
6	9.7	35.8	0.8	7.6		
7	0.5	10.2	0.6	0.5		
8	8.8	5.6	6.8	5.0		
9	29.8	3.5	9.2	31.3		
10	0.4	0.2	25.8	9.8		
11	0.1	0.3	36.4	0.8		
12	0.0	0.2	16.5	3.3		
13	0.0	0.1	3.2	15.3		

Table 11: Massachusetts Truck Class Distribution Summary.

*Based on Sensitivity Study of Design Input Parameters for Flexible Pavement Systems using M-E PDG in Iowa DOT. 2004

Tables 12 and 13 present track class distribution summaries for Vermont and New York.

TRUCK	CODE					
CLASS	D1(from LTPP)	D2 (low class)*	D3 (high class)*	D4 (Control)		
4	5.5	5.2	0.1	1.8		
5	43.0	38.9	0.6	24.6		
6	10.8	35.8	0.8	7.6		
7	3.4	10.2	0.6	0.5		
8	7.6	5.6	6.8	5.0		
9	25.9	3.5	9.2	31.3		
10	3.2	0.2	25.8	9.8		

 Table 12: Vermont Truck Class Distribution Summary.

Table	12	Continued
-------	----	-----------

11	0.0	0.3	36.4	0.8
12	0.4	0.2	16.5	3.3
13	0.2	0.1	3.2	15.3

*Based on Sensitivity Study of Design Input Parameters for Flexible Pavement Systems using M-E PDG in Iowa DOT, 2004

	CODE					
TRUCK	D (from LTPP)*	D1 (low class)**	D2 (high class)**	D3 (Control)		
CLASS						
4	N/A	5.2	0.1	1.8		
5	N/A	38.9	0.6	24.6		
6	N/A	35.8	0.8	7.6		
7	N/A	10.2	0.6	0.5		
8	N/A	5.6	6.8	5.0		
9	N/A	3.5	9.2	31.3		
10	N/A	0.2	25.8	9.8		
11	N/A	0.3	36.4	0.8		
12	N/A	0.2	16.5	3.3		
13	N/A	0.1	3.2	15.3		

Table 13: New York Truck Class Distribution Summary.

* - no LTPP Truck Class Distribution data

**- Based on Sensitivity Study of Design Input Parameters for Flexible Pavement Systems using M-E PDG in Iowa DOT, 2004

Traffic operational speed depends on the road functional classification and varies from 55 mph in Vermont's Rt. 7 (Functional Class 2), to 65 mph in Massachusetts' I-195 (Functional Class 11). Traffic operational speed for this research was analyzed in conjunction with different binder grades to observe the effects of slow and fast moving

traffic. Three operational speeds were selected for the analysis: 5 mph, 25 mph and 65 mph (with the exception of Vermont at 55 mph).

Level 3 and 2 sensitivity analysis allows the use of many default values for traffic inputs such as the monthly adjustment factors, hourly distribution, and axle load distribution factors.

3.3.3 Climatic Inputs

Climate inputs needed by the M-E PDG are available from over 800 weather stations embedded in this software. Multiple weather stations were selected for each state to provide climatic information for pavement design locations. The user may select only one weather station to obtain the data if the project is located less than 50 miles from the station. If it is located more than 50 miles, the user should select and interpolate climatic data from 2 to 6 surrounding weather stations. The weather stations selected to create the virtual weather station should have similar elevations (8). Multiple weather stations are recommended because of the possibility of missing data and errors in the database for a single station. The state specific project locations and selected weather stations are presented in details in the attached Appendixes A, B and C. As an example, Table 14 presents the virtual weather station interpolation results for a New Bedford, MA project.

46

STATION	Nearest 3 Stations	Latitude	Longitude	Distance	#Months of data
New Bedford	Taunton, MA	41.53	-71.01	14.0	99
Lat. 41.41	Newport, RI	41.32	-71.17	19.4	116
Lon70.58 Elev. 78 ft	Plymouth, MA	41.55	-70.44	20.1	116

Table 14: Virtual Weather Station Interpolation Table for New Bedford, MA.

The water table depth is another climate input parameter that needs to be specified by the user. This input value affects pavement distresses such as fatigue cracking, total rutting and roughness of the pavement (IRI). Water table depths greater than 10 feet below the planned surface elevation have minimal affect on the pavement distress predictions. The current data for water table depths were obtained from the USGS website (20).

3.3.4 Asphalt Material Inputs

The asphalt layer thicknesses and grading were obtained from the LTPP database and the DOT's websites. The HMA mix grading was selected within the Superpave specification limits. Table 15 presents the HMA mix grading input values for the surface (9.5 mm) and the binder (19.0 mm) for all states.

	9	9.5 mm (3/8")		19.0 mm (3/4")		! ")
% of Aggregate	mean	coarse	fine	mean	coarse	fine
Retained on 3/4" sieve	0	0	0	14.0	18.6	12.0
Retained on 3/8" sieve	5.0	8.2	3.6	24.0	32.4	19.8
Retained on #4 sieve	35.0	48.3	22.1	42.0	52.0	34.5
Passing #200 sieve	6.0	2.8	8.5	5.0	2.8	7.2

Table 15: HMA Mix Grading Input Values.

The mean aggregate mix values are used as the inputs for a control file in the M-E PDG sensitivity analysis.

The specific binder grade varies between states and they are listed in Table 16.

Table 16: Bind	er Grade Selection	is in VT, NT and MA.

State	Binder Grades
Vermont	PG 58-34, PG 58-28, PG 64-28
New York	PG 58-34, PG 64-28, PG 64-22, PG 70-22, PG 76-22
Massachusetts	PG 52-34, PG 64-22, PG 64-28

The mix coefficient of thermal contraction (CTC) default value of 1.3 E-05 (in/in/ $^{\circ}$ F) was used for Level 3 and Level 2 sensitivity analysis in all states. This is the coefficient of thermal contraction of the AC mix, and is expressed as the change in length per unit length for unit decrease in temperature. The typical values range from 2.2 to 3.4 / $^{\circ}$ C.

3.3.5 Base and Subgrade Material Inputs

The unbound materials used in this research were based on the findings from another research project conducted for the New England states (21), as well as on the State Soil Geographic database (15). As an example, Table 17 presents the selected subgrade material types and resilient modulus values for level 2 and 3 sensitivity analysis in Vermont.

CODE	SUBGRADE TYPE	Material	RESILIENT MODULUS (psi)	
		Classification	Level 2	Level 3
E1	Clayey soils	A-7-6	11500	8000
E2	Fine sand, some silt	A-2-4	21500	32000
E3	Coarse to fine gravelly, coarse to medium sand, some fine sand	A-1-a	29500	40000

Table 17: Subgrade Types and Resilient Modulus Values for Vermont Level 2 & 3.

The base layer material characteristics for the analysis were obtained from the DOT web sites, or when unavailable, the M-E PDG default values were selected. The State Final Reports (Appendix A, B and C) contain base layer input values for VT, NY and MA. The subgrade type resilient modulus range for level 2 is much smaller than level's 3 sensitivity analysis, giving more conservative approach for this research. Usually level 3 inputs should be lower than level's 2, as this level is less certain.

Chapter 4: Data Analysis, Results and Discussion

The results of the M-E PDG software runs for the evaluated input parameters provided numerous charts and tables. The results of all software runs are presented in separate state reports (Appendix A, B, and C). This chapter presents the general conclusions and discussion for all data.

4.1 Normalization of Distresses

Normalization of the distresses was done to compare the effects of each input parameter on predicted distresses. This method of normalization is based on the variability of distresses about the control. The normalized value describes how the specific distress varies about the control value. For a significant variable the normalized value is higher than for an insignificant value.

The normalized distress levels are calculated as the ratio of the difference between the maximum and minimum predicted distresses for each input variable to the distress levels corresponding to the control set of input values. The normalized values in this research were used to determine the significance of the input variables on the predicted pavement distress. Equation 1 presents the calculation method.

Equation 1: Normalized Value Parameter

$$N = \frac{Maximum \ Distress - Minimum \ Distress}{Distress \ for \ control \ input \ set}$$

N = normalized value

As an example, two variables were observed to determine the normalized values for fatigue (top-down) cracking, one with a significant influence on the predicted pavement distress, and the other one with a minimal impact. Tables 18 and 19 present the predicted pavement distress values for HMA thickness, and HMA effective binder content variables in Massachusetts. Equations 2 and 3 present the calculations and results.

Table 18: Predicted Pavement Distresses for HMA Thicknesses in MA.

HMA Thickness, in	Bottom-Up Cracking, % area of lane	Top-Down Cracking, ft/mi	AC Rutting, in	Total Rutting, in	IRI, in/mi
8.0	1.63	1367.91	0.204	0.489	168.2
9.6 (Control)	1.51	696.46	0.196	0.426	164.99
11.0	1.47	347.56	0.174	0.378	162.54

Equation 2: Normalized Value Calculation for Top-Down Cracking and HMA Thickness.

$$N = \frac{1367.91 - 347.56}{696.46} = 1.465$$

Table 19: Predicted Pavement Distresses for HMA Effective Binder Contents in MA.

HMA Effective Binder Content, %	Bottom-Up Cracking, % area of lane	Top-Down Cracking, ft/mi	AC Rutting, in	Total Rutting, in	IRI, in/mi	
10.0	1.52	735.86	0.189	0.417	164.52	
11.0 (Control)	1.51	696.46	0.196	0.426	164.99	
12.0	1.50	663.95	0.203	0.435	165.41	

Equation 3: Normalized Value Calculation for Top-Down Cracking and HMA Effective Binder Content.

$$N = \frac{735.86 - 663.95}{696.46} = 0.103$$

4.2 M-E PDG Sensitivity Analysis Results by State

The tables and graphs presented below are results of sensitivity analysis studies prepared for VT, NY and MA. This research investigated the effect of selected input variables (15 variables) on five predicted pavement distresses:

- 1. Longitudinal (top-down) cracking, ft/mi
- 2. Alligator (bottom-up) cracking, % area of lane
- 3. Asphalt concrete (AC) rutting, in
- 4. Total rutting, in
- 5. Smoothness IRI, in/mi.

The transverse cracking pavement distresses were not investigated in this research due to a M-E PDG software shortcoming that predicted no cracking (transverse cracking values equal to "0"). Individual state analyses are discussed in the next three sections, followed by the general discussion on the impact of various inputs.

4.2.1 Vermont sensitivity analysis results

The M-E PDG analysis in Vermont was performed for two hierarchical levels: Level 3 and 2.

Data presented in Tables 20 - 24 and Figures 13 - 22 show sensitivity analysis results for Vermont Level 3 and 2.

VT Level 3 results

Table 20 presents normalized value results for the Vermont Level 3 sensitivity analysis. Based on their ranks, Table 21 shows the six most significant input variables in decreasing order of significance for the Vermont Level 3 sensitivity analysis. Figures 13 to 17 present significance of effect of each variable on the predicted pavement distress based on the normalized value.

VERMONT LEVEL 3										
Input Value	Bottom-U	p Cracking	Top-Dowr	Cracking	AC Ri	itting	Total F	Rutting	IRI	
	Value	Rank	Value	Rank	Value	Rank	Value	Rank	Value	Rank
HMA thickness	0.079	1	0.997	1	0.145	8	0.218	4	0.027	4
HMA mix										
gradation	0.013	6	0.258	9	0.395	3	0.198	5	0.025	6
HMA air voids	0.053	2	0.546	3	0.125	9	0.069	12	0.009	11
HMA effective										
binder content	0.033	5	0.28	8	0.151	7	0.085	10	0.007	12
HMA binder grade	0.013	6	0.242	10	0.296	5	0.157	7	0.019	8
Base type/modulus	0.013	6	0.302	7	0.039	13	0.061	13	0.007	12
Subgrade										
type/modulus	0.013	6	0.768	2	0.046	12	0.303	2	0.1	2
Ground water										
table	0.007	7	0.203	11	0.066	11	0.102	9	0.012	10
WT with weakest										
subgrade	0.013	6	0.018	14	0.033	14	0.074	11	0.009	11
Climate	0.007	7	0.083	12	0.263	6	0.118	8	0.013	9
AADTT value	0.053	2	0.423	5	0.474	2	0.259	3	0.032	5
Operational speed	0.046	3	0.433	4	0.98	1	0.488	1	0.059	3
Traffic growth rate	0.007	7	0.076	13	0.079	10	0.044	14	0.007	12
Traffic distribution	0.04	4	0.409	6	0.309	4	0.171	6	0.022	7
HMA CTC	0	8	0	15	0	15	0	15	0.005	13
Initial IRI	0	8	0	15	0	15	0	15	0.615	1

Table 20: Normalized Values and Ranks for Vermont Level 3.

	Bottom-Up Cracking	Top-Down Cracking	AC Rutting	Total Rutting	IRI
Most Significant Variable	HMA Thickness	HMA Thickness	Operational Speed	Operational Speed	Initial IRI
	HMA Air Voids	Subgrade Type/ Modulus	AADTT	Subgrade Type/ Modulus	Subgrade Type/ Modulus
	AADTT	HMA Air Voids	HMA Mix Gradation	AADTT	Operational Speed
	Operational Speed	Operational Speed	Traffic Distribution	HMA Thickness	HMA Thickness
Ļ	Traffic Distribution	AADTT	HMA Binder Grade	HMA Mix Gradation	AADTT
Least Significant Variable	HMA Effective Binder Content	Traffic Distribution	Climate	Traffic Distribution	HMA Mix Gradation

 Table 21: Ranking of Input Variable Significance for VT Level 3 Sensitivity

 Analysis.

The "zero" value on the graph indicates, there is no impact of an input on a predicted pavement distress. Figures 13 through 16 show the initial IRI input which has no impact on the predicted pavement distresses such as bottom-up cracking, top-down cracking, AC rutting and total rutting.

Figure 13: VT Level 3 Significance of Effect of Input Variables on Bottom-Up Cracking.

Figure 14: VT Level 3 Significance of Effect of Input Variables on Top-Down Cracking.

Figure 15: VT Level 3 Significance of Effect of Input Variables on AC Rutting.

Figure 16: VT Level 3 Significance of Effect of Input Variables on Total Rutting.

Figure 17: VT Level 3 Significance of Effect of Input Variables on IRI.

HMA thickness had a significant effect on both fatigue cracking distresses (bottom-up and top-down). Both of these distresses increased with the decrease of HMA thickness layer. Longitudinal (top-down) cracking was greatly affected, when the HMA layer thickness was reduced to 7.0". In this example, the failure in pavement compared to the design limit, which occurred after 18 years of service life (Appendix A, Figure 51A). The trends observed were reasonable for total rutting and IRI, with the highest distress/IRI for the thinner HMA (Appendix A, Figures 53A and 54A) (Table 21).

Traffic composition (i.e., operational speed, AADTT, and vehicle class distribution) are expected to influence the extent of pavement condition deterioration. Based on the literature review, pavement deterioration is significantly increased as the traffic composition is dominated by heavier trucks and axle loads. In Vermont, the AADTT value for the selected LTPP road section has a moderate rate of 10.35%. With the operational speed of 55 mph and the LTPP track distribution, the traffic composition impact was greatest on AC rutting and total rutting (Figures 15 and 16), and a moderate effect on fatigue (bottom-up) alligator cracking (Figure 13). Operational speed had a significant effect on both rutting pavement distresses, with the highest distresses for the lower speed value (Appendix A, Figures 70A to 84A).

The effect of subgrade type on pavement performance was determined by comparing distress and IRI over time with subgrade types (Appendix D – AASHTO Classification). Three soil types were chosen (A-1-a, A-2-4, and A-7-6) along with typical default inputs recommended for use in the M-E PDG and shown in Appendix A, Table 32A. Figures 90A, 93A, and 94A (Appendix A) present the effect of subgrade soil type on predicted distresses and roughness. In general, the lower the subgrade type/modulus the higher alligator fatigue cracking, rutting and IRI.

Changes in HMA parameters such as air voids or effective binder content were expected to have an effect on pavement distresses. Based on this research, an increase of air void content in the HMA layer results in a large increase in fatigue alligator and longitudinal cracking (Appendix A Figures 45A and 46A). There were no observed effects on the remaining pavement distresses and IRI with changes in air voids (Appendix A Figures 47A through 49A). The moderate effect of change in the effective binder content was only observed for fatigue alligator (bottom-up) cracking and longitudinal (top-down) cracking (Appendix A Figure 40A through 44A). In general, the increase of binder content reduces alligator and longitudinal cracking and increases rutting (AC and total).

59

There is no impact of change in the effective binder content to the pavement roughness IRI.

The effect of climate on the predicted distress and IRI was determined by selecting three representative weather stations for Vermont and three ground water table depths (2 ft , 5 ft, and 8 ft), and using the representative data to simulate climate condition across the state Appendix A Figures 30A through 39A). Table 21 presents the moderate effect of climate change only for AC rutting. In general, higher pavement distresses were observed in the southern part of the state due to warmer temperatures (Appendix A Figures 30A through 33A). The effect of ground water table level change was insignificant for all of the predicted pavement distresses. The ground water table effect is not reasonable to the current pavement design knowledge, and it needs to be reevaluated with the new M-E PDG version.

The moderate effect of HMA mix grading was observed mostly for AC rutting and total rutting (Table 21). In general, the coarse aggregates used for the production of HMA pavements, exhibited a higher level of all pavement distresses and IRI (Appendix A Figures 65A through 69A).

The effect of a binder grade selection was observed on AC rutting pavement distress. The binder grade selection is presented in Appendix A Table 26A, and the effects on the predicted pavement performance in Figures 70A through 84A (Appendix A). It was observed, that the lower HMA binder grades (PG 58) exhibited a higher level of all distresses and IRI, when compared to the higher binder grades (PG 64).

60

Table 22 presents Vermont's overall ranking summary of the significance of each input parameter on the performance of flexible pavement. This ranking method finds the most significant variables which impact the predictions of pavement distresses in the state. This method is very subjective and depends on the variables chosen by the researcher. In this example, based on the total ranking points (smaller numbers affected more), the following variables have a significant impact on pavement distress prediction in Vermont:

- 1. Operational speed
- 2. AADTT value
- 3. HMA thickness
- 4. Subgrade type/modulus
- 5. Traffic distribution
- 6. HMA mix grading
- 7. HMA binder grade.

In the above overall order of significance ranking, the high position of vehicle operational speed is surprising. This research did not investigate how realistic the ranking of vehicle speed is as a variable for pavement performance predictions. It is up to the state agency to decide if a change of vehicle speed and its range could really affect the pavement performance.

VERMONT LEVEL 3										
Input Variable	Bottom-Up	Top-Down	AC Rutting	Total Rutting	IRI	Total Ranking Points	Overall Order of			
	Rank	Rank	Rank	Rank	Rank		Significance			
HMA thickness	1	1	8	4	4	18	3			
HMA mix gradation	6	9	3	5	6	29	6			
HMA air voids	2	3	9	12	11	37	8			
HMA effective binder content	5	8	7	10	12	42	9			
HMA binder grade	6	10	5	7	8	36	7			
Base type/modulus	6	7	13	13	12	51	11			
Subgrade type/modulus	6	2	12	2	2	24	4			
Ground water table	7	11	11	9	10	48	10			
WT with weakest subgrade	6	14	14	11	11	56	13			
Climate	7	12	6	8	9	42	9			
AADTT value	2	5	2	3	5	17	2			
Operational speed	3	4	1	1	3	12	1			
Traffic growth rate	7	13	10	14	12	56	13			
Traffic distribution	4	6	4	6	7	27	5			
НМА СТС	8	15	15	15	13	66	14			
Initial IRI	8	15	15	15	1	54	12			

Table 22: VT Ranking Summary of Significance of Each Input Parameter on the Performance of Flexible Pavement

VT Level 2 results

For VT Level 2 sensitivity analysis, only 10 input variables were selected. As a new variable, mix coefficient of thermal contraction (CTC) was added to the level 2 sensitivity analysis.

Table 23 presents normalized values and their ranks for Level 2 sensitivity analysis in VT.

Table 24 presents top five significant ranks of input variables for VT Level 2 sensitivity analysis. Variables are presented in decreasing order for each investigated performance indicator. Figures 18 to 22 present significance of effect of each variable on the predicted pavement distress based on the normalized value ranks from Table 23.

.

VERMONT LEVEL 2										
Input Variable	Bottor Crac	n-Up king	Top-l Crac	Down king	AC R	utting	g Total Rutting		IRI	
	Value	Rank	Value	Rank	Value	Rank	Value	Rank	Value	Rank
HMA air voids	0.065	3	0.551	3	0.126	5	0.066	6	0.009	8
HMA effective binder content	0.033	5	0.297	6	0.153	3	0.080	5	0.011	7
HMA CTC	0.000	8	0.000	9	0.000	8	0.000	9	0.098	2
Base type/modulus	0.013	7	0.185	7	0.022	7	0.032	8	0.005	10
Subgrade type/modulus	0.020	6	0.672	2	0.033	6	0.096	4	0.075	3
WT with weakest subgrade	0.020	6	0.022	8	0.033	6	0.055	7	0.008	9
AADTT value	0.072	2	0.436	4	0.470	1	0.261	1	0.037	4
Traffic distribution	0.039	4	0.307	5	0.333	2	0.172	3	0.024	6
Initial IRI	0.000	8	0.000	9	0.000	8	0.000	9	0.600	1
HMA thickness	0.131	1	1.153	1	0.148	4	0.222	2	0.032	5

Table 23: Normalized Values and Ranks for Vermont Level 2.

.

	Bottom-Up Cracking	Top-Down Cracking	AC Rutting	Total Rutting	IRI
Most Significant Variable	HMA Thickness	HMA Thickness	AADTT	AADTT	Initial IRI
	AADTT	Subgrade Type/ Modulus	Traffic Distribution	HMA Thickness	НМА СТС
	HMA Air Voids	HMA Air Voids	HMA Effective Binder Content	Traffic Distribution	Subgrade Type/ Modulus
ļ	Traffic Distribution	AADTT	HMA Thickness	Subgrade Type/ Modulus	AADTT
Least Significant Variable	HMA Effective Binder Content	Traffic Distribution	HMA Air Voids	HMA Effective Binder Content	HMA Thickness

 Table 24: Ranking of Input Variable Significance for VT Level 2 Sensitivity

 Analysis.

The "zero" value on the graph indicates, there is no impact of an input on a predicted pavement distress. As an example, Figures 18 through 21 present the initial IRI and the HMA CTC inputs which have no impact on the predicted pavement distresses such as: bottom-up cracking, top-down cracking, AC rutting and total rutting.

The predicted distresses and trends were observed to be similar with Level 3 sensitivity analysis, with slightly higher values predicted for Level 2 (Figure 13 through 22).

The effect of a new variable (mix coefficient of thermal contraction CTC) in this level of sensitivity analysis was insignificant for all of pavement distresses (zero value in Figures 18 through 21), and had only small effect on the roughness IRI prediction (Figure 22).

Figure 18: VT Level 2 Significance of Effect of Input Variables on Bottom-Up Cracking.

Figure 19: VT Level 2 Significance of Effect of Input Variables on Top-Down Cracking.

Figure 20: VT Level 2 Significance of Effect of Input Variables on AC Rutting.

Figure 21: VT Level 2 Significance of Effect of Input Variables on Total Rutting.

Figure 22: VT Level 2 Significance of Effect of Input Variables on IRI.

4.2.2 New York sensitivity analysis results

The M-E PDG sensitivity analysis in New York State was performed only for Level 3 because the NY DOT was not interested in participating in the research in order to provide Level 2 input values. Table 26 presents the six most significant input variables from the NY State Level 3 sensitivity analysis. The input variables in the table are presented in decreasing order of their significance for each investigated performance indicator. Figures 23 to 27 present significance of effect of each variable on the predicted pavement distress based on the normalized value. The normalized values for New York State are presented in Table 25.

Data presented in Tables 25 - 27 and Figures 23 - 27 showing sensitivity analysis results for New York Level 3.

NEW YORK LEVEL 3										
Input Variable	Botton	n-Up	Top-Down		AC Rutting		Total F	lutting	IRI	
	Value	Rank	Value	Rank	Value	Rank	Value	Rank	Value	Rank
HMA thickness	0.175	1	2.550	1	0.155	9	0.208	5	0.024	7
HMA mix	0.019	11	0.417	8	0.244	6	0.134	8	0.015	10
gradation										
HMA air voids	0.130	2	1.047	5	0.113	11	0.063	11	0.002	14
HMA effective	0.026	10	0.141	12	0.167	8	0.089	9	0.020	8
binder content										
HMA binder grade	0.065	5	1.409	3	0.768	3	0.411	2	0.046	6
Base type/modulus	0.032	9	0.295	10	0.065	13	0.066	10	0.008	12
Subgrade	0.078	4	1.206	4	0.173	7	0.395	3	0.102	4
type/modulus										
Ground water	0.058	6	0.436	7	0.137	10	0.134	8	0.008	12
table										
WT with weakest	0.078	4	0.010	14	0.077	12	0.061	12	0.009	11
subgrade										
Climate	0.045	8	0.881	6	0.786	2	0.392	4	0.149	2
AADTT value	0.045	8	0.326	9	0.292	5	0.161	7	0.019	9
Operational speed	0.091	3	1.633	2	1.024	1	0.529	1	0.061	5
Traffic growth rate	0.013	12	0.082	13	0.137	10	0.045	13	0.005	13
Traffic distribution	0.052	7	0.224	11	0.327	4	0.166	6	0.019	9
HMA CTC	0.000	13	0.000	15	0.000	14	0.000	14	0.115	3
Initial IRI	0.000	13	0.000	15	0.000	14	0.000	14	0.577	1

Table 25: Normalized Values and Ranks for New York Level 3.

	Bottom-Up Cracking	Top-Down Cracking	AC Rutting	Total Rutting	IRI
Most Significant Variable	HMA thickness	HMA thickness	Operational speed	Operational speed	Initial IRI
	HMA air voids	Operational speed	Climate	HMA binder grade	Climate
	Operational speed	HMA binder grade	HMA binder grade	Subgrade type/modulus	НМА СТС
	Subgrade type/modulus	Subgrade type/modulus	Traffic distribution	Climate	Subgrade type/modulus
, 	WT with weakest subgrade	HMA air voids	AADTT value	HMA thickness	Operational speed
Least Significant Variable	HMA binder grade	Climate	HMA mix gradation	Traffic distribution	HMA binder grade

 Table 26: Ranking of Input Variable Significance for NY Level 3 Sensitivity

 Analysis.

The "zero" value on the graph indicates, that there is no impact of an input on a predicted pavement distress. As an example, Figures 23 through 26 present the initial IRI and the HMA CTC inputs which have no impact on the predicted pavement distresses such as: bottom-up cracking, top-down cracking, AC rutting and total rutting.

In New York, HMA thickness had a significant effect on bottom-up and top down fatigue cracking distresses. Both of these increased with the decrease of HMA thickness

(Appendix B Figures 57B and 58B). The most significant effect of fatigue top-down cracking was especially visible when the HMA layer thickness was reduced to 8.0" (Appendix B Figure 58B). In general, all pavement distresses and roughness IRI were increased with the decrease of the total HMA thickness (Appendix B Figures 57B through 62B).

Traffic variables such as operational speed, AADTT, and vehicle class distribution had an expected influence on the predicted pavement distresses and roughness IRI (Figures 23 through 27). Operational speed was the most significant variable with a large impact on AC rutting and total rutting (Appendix B Figures 26B through 30B). In general, for all pavement distresses and roughness IRI, values increased with the decrease of the operational speed. For the AADTT and the vehicle class distribution (axle loads) as was expected, with the increase of these two variables the predicted pavement distresses and IRI increased as well. This study had confirmed this prediction as well (Appendix B Figures 31B - 35B, and Figures 16B - 20B).

The effect of binder grade selection was observed in New York State for all types of predicted pavement distresses and roughness IRI. The selected binder grades were analyzed in conjunction with three different operational speeds. The selected binder grades are listed in Table 22B (Appendix B). The significant effect of a selected binder grade was observed on fatigue top-down cracking, and both rutting distresses (AC and total). The small effect was visible on the fatigue (bottom-up) cracking distress and roughness IRI. In both examples, the lower selected pavement grade exhibited a higher distress level and a higher roughness IRI value (Appendix B Figures 77B through 91B).

72

The New York climate had a significant effect on fatigue top-down cracking and AC rutting, and moderate effects on total rutting and roughness IRI. The influence of climate in NY is very important due to the size of the state, geographic characteristics and local temperature variations. In general, higher predicted pavement distresses in southern state locations were observed (Appendix B Figures 36B through 39B). The opposite effects of binder grades on roughness and thermal cracking were observed in Figures 40B and 41B (Appendix B). In those two examples, the state's northern location exhibited a higher thermal cracking distress and a higher roughness IRI value.

Changes in HMA parameters such as air voids (%) or effective binder content (%) were expected to have an influence on pavement distresses. This expectation was only confirmed for the air voids content and its influence on fatigue bottom-up and top-down cracking. Increased HMA air voids content caused a large increase of fatigue alligator and longitudinal cracking distresses (Appendix B Figures 52B and 53B). The effective binder content variations within the state tolerances did not influence any of the predicted pavement distresses or roughness IRI.

The effect of subgrade type (AASHTO Classification) on performance was determined by comparing distress and IRI prediction over time with selected subgrade types (Appendix B Figures 97B to 101B). Figure 98B and 99B (Appendix B) showed unexpected results for the weaker subgrade type (A-7-6), where there was no influence on fatigue (top-down) cracking, and an opposite than expected effect on subtotal rutting. In general, the lower the subgrade type/modulus, there could be expected higher pavement distresses and IRI.

73

The effect of the mix coefficient of thermal contraction CTC in this level of sensitivity analysis was insignificant for all of pavement distresses (zero value in Figures 23 through 26), and the mix coefficient had only moderate effect on the roughness IRI prediction (Figure 27). The increase of the CTC value affected the increase in roughness IRI (Appendix B Figure 111B).

Figure 23: NY Level 3 Significance of Effect of Input Variables on Bottom-Up Cracking.

Figure 24: NY Level 3 Significance of Effect of Input Variables on Top-Down Cracking.

Figure 25: NY Level 3 Significance of Effect of Input Variables on AC Rutting.

Figure 26: NY Level 3 Significance of Effect of Input Variables on Total Rutting.

Figure 27: NY Level 3 Significance of Effect of Input Variables on IRI.
Table 27 presents the New York overall ranking summary of significance of each input parameter on the performance of flexible pavement. This ranking method finds the most significant variables which impact the predictions of pavement distresses in the state. This method is very subjective and depends on the variables chosen by the researcher. In this example, based on the total ranking points (smaller numbers had a higher effect), the following variables have a significant impact on the pavement distress prediction in New York:

- 1. Operational speed
- 2. HMA binder grade
- 3. Climate and subgrade type/modulus
- 4. HMA thickness
- 5. Traffic distribution
- 6. AADTT

In the above overall order of significance ranking the high position of the operational speed was surprising. This research did not investigate how realistic ranking of vehicle speed is as a variable for pavement performance predictions. It is up to the state agency to decide if the change of vehicle speed and its range could really affect the pavement performance.

	NEW YORK LEVEL 3						
Input Variable	Bottom-Up	Top-Down	AC Rutting	Total Rutting	IRI	Total Ranking Points	Overall Order of Significance
	Rank	Rank	Rank	Rank	Rank		
HMA thickness	1	1	9	5	7	23	4
HMA mix gradation	11	8	6	8	10	43	7
HMA air voids	2	5	11	11	14	43	7
HMA effective binder content	10	12	8	9	8	47	8
HMA binder grade	5	3	3	2	6	19	2
Base type/modulus	9	10	13	10	12	54	10
Subgrade type/modulus	4	4	7	3	4	22	3
Ground water table	6	7	10	8	12	43	7
WT with weakest subgrade	4	14	12	12	11	53	9
Climate	8	6	2	4	2	22	3
AADTT value	8	9	5	7	9	38	6
Operational speed	3	2	1	1	5	12	1
Traffic growth rate	12	13	10	13	13	61	13
Traffic distribution	7	11	4	6	9	37	5
HMA CTC	13	15	14	14	3	59	12
Initial IRI	13	15	14	14	1	57	11

 Table 27: NY Overall Ranking Summary of Significance of Each Input Parameter on the Performance of Flexible Pavement.

4.2.3 Massachusetts sensitivity analysis results

In Massachusetts, only Level 3 sensitivity analysis was performed due to lack of Level 2 input data. In spite of many requests, the MA DOT did not provide any inputs for this level. Table 28 shows all input variables used for the study, as well as their ranks based on the normalized values from the final analysis. Table 29 presents the six most significant input variables for the Massachusetts Level 3 sensitivity analysis. The input variables in the table are presented in decreasing order of significance for each investigated performance indicator. Figures 28 to 32 present the significance of effect of each variable on the predicted pavement distress based on the normalized value (Table 26).

Data presented in Tables 28 - 30 and Figures 28 - 32 showing sensitivity analysis results for Massachusetts Level 3.

MASSACHUSETTS LEVEL 3										
Input Variable	Botton	n-Up	Top-I	Down	AC R	utting	Total F	Rutting	IF	RI 🛛 🕹
	Value	Rank	Value	Rank	Value	Rank	Value	Rank	Value	Rank
HMA thickness	0.106	1	1.465	1	0.153	7	0.261	4	0.034	8
HMA mix	0.013	7	0.289	11	0.235	6	0.134	8	0.018	10
gradation										
HMA air voids	0.086	2	0.942	3	0.133	8	0.075	11	0.010	13
HMA effective	0.013	7	0.103	12	0.071	10	0.042	13	0.005	15
binder content										
HMA binder grade	0.033	4	0.902	5	0.755	2	0.406	2	0.053	5
Base type/modulus	0.026	5	0.360	9	0.087	9	0.101	9	0.013	11
Subgrade	0.013	7	0.623	6	0.046	13	0.202	7	0.084	3
type/modulus										
Ground water table	0.013	7	0.349	10	0.061	12	0.096	10	0.012	12
WT with weakest	0.020	6	0.015	14	0.046	13	0.063	12	0.008	14
subgrade										
Climate	0.026	5	0.506	7	0.469	3	0.235	5	0.039	7
AADTT value	0.026	5	0.411	8	0.332	5	0.207	6	0.027	9
Operational speed	0.046	3	1.096	2	1.051	1	0.556	1	0.072	4
Traffic growth rate	0.007	8	0.069	13	0.066	11	0.040	14	0.005	15
Traffic distribution	0.086	2	0.908	4	0.429	4	0.289	3	0.044	6
HMA CTC	0.000	9	0.000	15	0.000	14	0.000	15	0.087	2
Initial IRI	0.000	9	0.000	15	0.000	14	0.000	15	0.588	1

Table 28: Normalized Values and Ranks for Massachusetts Level 3.

	Bottom-Up Cracking	Top-Down Cracking	AC Rutting	Total Rutting	IRI
Most Significant Variable	HMA thickness	HMA thickness	Operational speed	Operational speed	Initial IRI
	HMA air voids	Operational speed	HMA binder grade	HMA binder grade	НМА СТС
	Traffic distribution	HMA air voids	Climate	Traffic distribution	Subgrade type/modulus
	Operational speed	Traffic distribution	Traffic distribution	HMA thíckness	Operational speed
Ļ	HMA binder grade	HMA binder grade	AADTT value	Climate	HMA binder grade
Least Significant Variable	AADTT value	Subgrade type/modulus	HMA mix gradation	AADTT value	Traffic distribution

 Table 29: Ranking of Input Variable Significance for MA Level 3 Sensitivity

 Analysis.

The "zero" value on the graph indicates that there is no impact of an input on a predicted pavement distress. As an example, Figures 28 through 31 present the initial IRI and the HMA CTC inputs which have no impact on the predicted pavement distresses such as: bottom-up cracking, top-down cracking, AC rutting and total rutting.

HMA thickness had a significant effect on both fatigue cracking distresses (bottom-up and top-down). Both of these pavement predicted distresses increased with the decrease of HMA thickness (Appendix C Figures 59C – 60C). The moderate effect of HMA thickness was observed for total rutting, and a small effect was observed for AC rutting in

Figures 62C and 61C (Appendix C). As was expected for the thinner HMA layers, higher pavement distresses and IRI were observed.

Traffic variables such as operational speed, AADTT, and vehicle class distribution had an expected influence on the predicted pavement distresses and roughness IRI (Figures 28 through 32). Operational speed was the most significant variable with the greatest impact on AC rutting and total rutting (Appendix C Figures 29C through 33C). In general, for all pavement distresses and roughness IRI, the decrease of the operational speed increased distresses and IRI values. For the AADTT and the vehicle class distribution (axle loads), as was expected, with the increase of the track traffic and axle load values, the predicted pavement distresses and IRI increased as well. This study had confirmed this prediction as well (Appendix C Figures 34C – 38C and Figures 19C – 23C).

The effect of binder grade selection was observed in Massachusetts for all types of predicted pavement distresses and roughness IRI. The selected binder grades were analyzed in the conjunction with three different operational speeds (5, 25 and 65 mph). The selected binder grades are listed in Table 23C (Appendix C). The significant effect of a selected binder grade was observed on fatigue top-down cracking, and both of rutting distresses (AC and total). The small effect was visible on the fatigue (bottom-up) cracking distress and roughness IRI. In both examples, the lower selected pavement grade exhibited a higher distress level and a higher roughness IRI value (Appendix C Figures 79C through 93C).

Changes in HMA parameters such as air voids (%) or effective binder content (%) were expected to have an influence on predicted pavement distresses in Massachusetts. This

82

expectation was only confirmed for the air voids content and its influence on fatigue bottom-up and top-down cracking distresses. Increased HMA air voids content caused a large increase of fatigue alligator and longitudinal cracking pavement distresses (Appendix C Figures 54C and 55C). The effective binder content variations within the MA DOT tolerance limits did not influence any of the predicted pavement distresses or roughness IR1.

The Massachusetts climate effects were observed in Figures 39C through 43C (Appendix C). Four climatic weather stations and three ground water table levels were selected. The influence on a predicted pavement performance was only observed for the weather station variables, with moderate effects on AC and total rutting, and on fatigue top-down cracking distress. In general, the southern state locations had a higher predicted distress level, with the exception of roughness IRI value prediction, whereas the northern parts of the state exhibited higher values. The ground water table level variable was insignificant for all of the predictions (Table 26). The ground water table effect is not consistent to current pavement design knowledge, and it needs to be reevaluated with the new M-E PDG version.

The effect of subgrade type (AASHTO Classification) on performance was determined by comparing distress and IRI prediction over time with selected subgrade types (Appendix C Figures 99C to 103C). Figure 100C and 101C (Appendix C) showed unexpected results for the weaker subgrade type (A-7-6), where there was almost no influence on fatigue (top-down) cracking, and an opposite then expected effect on AC rutting (a weaker subgrade type effected pavement distress less than a stronger subgrade).

83

In general, the lower the subgrade type/modulus the higher the pavement distresses and IRI would be expected.

The effect of mix coefficient of thermal contraction CTC in this level of sensitivity analysis was insignificant for all of pavement distresses (zero value in Figures 28 through 31), and had only small effect on the roughness IRI prediction (Figure 32).

Figure 28: MA Level 3 Significance of Effect of Input Variables on Bottom-Up Cracking.

Figure 30: MA Level 3 Significance of Effect of Input Variables on AC Rutting.

Figure 31: MA Level 3 Significance of Effect of Input Variables on Total Rutting.

Figure 32: MA Level 3 Significance of Effect of Input Variables on IRI.

Table 30 presents the Massachusetts overall ranking summary of significance of each input parameter on the performance of flexible pavement. This ranking method identifies the most significant variables which impact the predictions of pavement distresses in the state. This method is very subjective and depends on the variables chosen by the researcher. In this example, based on the total ranking points (smaller numbers indicate a greater effect), the following variables have a significant impact on the pavement distress prediction in Massachusetts:

- 1. Operational speed
- 2. HMA binder grade
- 3. Traffic distribution
- 4. HMA thickness
- 5. Climate
- 6. AADTT
- 7. Subgrade type/modulus.

In the above overall order of significance ranking the high position of the operational speed was surprising. This research did not investigate how realistic ranking of vehicle speed is as a variable for pavement performance predictions. It is up to the state agency to decide if the change of vehicle speed and its range could really affect the pavement performance.

			MASSAC	CHUSETTS LEVE	EL 3		
Input Variable	Bottom-Up	Top-Down	AC Rutting	Total Rutting	IRI	Total Ranking	Overall Order
	Rank	Rank	Rank	Rank	Rank	Points	of Significance
HMA thickness	1	1	7	4	8	21	4
HMA mix	7	11	6	8	10	42	9
gradation							
HMA air voids	2	3	8	11	13	37	8
HMA effective	7	12	10	13	15	57	14
binder content							
HMA binder grade	4	5	2	2	5	18	2
Base type/modulus	5	9	9	9	11	43	10
Subgrade	7	6	13	7	3	36	7
type/modulus							
Ground water table	7	10	12	10	12	51	11
WT with weakest	6	14	13	12	14	59	15
subgrade							
Climate	5	7	3	5	7	27	5
AADTT value	5	8	5	6	9	33	6
Operational speed	3	2	1	1	4	11	1
Traffic growth rate	8	13	11	14	15	61	16
Traffic distribution	2	4	4	3	6	19	3
HMA CTC	9	15	14	15	2	55	13
Initial IRI	9	15	14	15	1	54	12

 Table 30: MA Overall Ranking Summary of Significance of Each Input Parameter on the Performance of Flexible Pavement.

4.3 Impact of Traffic Inputs on M-E PDG predictions

Level 3 and 2 M-E PDG sensitivity analysis required a large number of traffic inputs. The M-E PDG uses the full axle-load spectrum data for flexible new pavements. The axleload spectra are obtained from processing weighting-in-motion (WIM) data. The M-E PDG defaults values were determined from an analysis of nearly 200 WIM stations from the Long Term Pavement Performance (LTPP) program. The results from this study show which traffic inputs are significant for the pavement predictions.

Operational speed was the most significant variable of the traffic inputs. The sensitivity analysis results are especially visible in the AC rutting and total rutting predictions.

Annual Average Daily Truck Traffic (AADTT) value in all three investigated states also had a significant effect on the predicted pavement performance distresses. This value could be obtained from the historic traffic data sites, either from the DOT or LTPP database. AADTT value affects both rutting predictions (AC and total), as well as fatigue bottom-up and top-down cracking.

The effect of traffic distribution was observed in Massachusetts for all the predicted pavement performance indicators. In Vermont and New York, a significant effect was only visible for AC and total rutting predicted distresses. The M-E PDG default AADTT option allows the designer to choose between different truck distributions depending on the road functional classification. Table 31 presents the options for selecting AADTT defaults based on the road functional classification and heavy truck traffic characteristics (vehicle class 4 to 13).

89

Table 31: AADTT Default Options.

Sele	ect ge	neral cate	egory	Principal Arterials	Interstate and Defense -	AAD selec	TT distribution ted General	on for the Category
		* = rec	commended	Principal Arterials	Interstate and Defense Rou Others	l Ve	ehicle Class	Percent(%
	•	TTC	Bus %	Minor Arterials		le-unit(SU) Trucks	Class 4	13
-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15 18	1<2%) 1<2%}	Minor Collectors	Streets	er trucks le-trailer truck with some single	Class 5	85
	1.8 1.8	11 13	(<2%) (<2%)	(>10%) (>10%)	Nixed truck traffic • #h Mixed truck traffic with	a higher percentage of single-tr about equal percentages of sing	Class 6	28
-	i *	18 2	1<2%;	(>10% (2 - 10%	Predominantly single-un Predominantly single-tra	it trucks iler trucks	Class 7	03
-	-	[7 10	1<2%,	12 - 10% 12 - 10%	Nixed truck traffic with	a higher percentage of single-tr about equal percentages of single-tr	Class 8	76
÷ 7	*	(13 1	ī <2%) ⊨>2%`	12 - 10%, (<2%	Predominantly single-un Predominantly single-tra	it trucks iler trucks	Class 9	74
=	* -	12	1>2%)	1<2%	Predominantly single-tra	aller trucks with a low percenta iler trucks with a low to modera	Class 10	12
-		ê 9	11>2%, 11>2%,	ı<2%∉ ı<2%	Nixed truck traffic with	a higher percentage of single-ui about equal percentages of sing	Class 11	34
=		⁷ 12 14	(>2%,	i<2%,	Nixed truck traffic with Predominantly single-un	a higher percentage of single-ui	Class 12	06
-		17	i>25%	1<2%	Hixed truck traffic with	about equal single-unit and single-	Class 13	03

The traffic growth factor was found to have an insignificant effect on the prediction of pavement distresses

The monthly adjustment and hourly distribution factors were found to be insignificant to the prediction of pavement distresses.

4.4 Impact of Climate Inputs on M-E PDG predictions

All of the climate data necessary for the M-E PDG sensitivity analysis is available from over 800 weather stations located across the U.S The designer must specify the project location (longitude and latitude) to obtain the six closest weather stations. At least three weather stations must be chosen for each project location to create a virtual weather station. The purpose of choosing more water stations was to avoid the possibility of missing data and of obtaining errors from a single weather station. The climate variable was found to have a significant effect on the AC and total rutting predictions.

The literature review shows that the climatic data have a significant affect on the thermal cracking predictions. The occurrence was only observed in New York State, where the thermal cracking model worked well, except for the Buffalo, NY location, where the thermal crack length values decreased with the increase of time. In the other states the task could not be completed due to the M-E PDG software shortcoming (transverse cracking values equal to "0"). The example of the climate effect on the thermal cracking distress is seen in Figure 33.

Figure 33: Effect of Climate on Thermal Cracking in NY State.

The water table depth was another climate input parameter selected for this study. This variable was found to have an insignificant effect on the most of the predicted pavement distresses, with only small effect on total rutting and fatigue (bottom-up) cracking. This finding does not seem to be reasonable, and it needs to be reevaluated in a future research using a new M-E PDG software version.

4.5 Impact of Pavement Layer Inputs on M-E PDG predictions

The research study considered pavement layer inputs variables such as: thicknesses and types of all layers in the pavement structure. The typical pavement structure consists of four layers: two asphalt layers (surface and binder), base layer and subgrade. The designer needs to specify thicknesses of asphalt and base layers, and material types of all of the layers. For the sensitivity analysis the asphalt layer thicknesses were varied within specific SHA limits and material types were selected based on local soil characteristics.

It was found during the research that changes in asphalt layer thickness were most significant for predicting fatigue bottom-up and top-down cracking. The asphalt layer thickness did not affect rutting or smoothness (IRI) predictions of the pavement.

Base type material was found to have an insignificant effect on predicted pavement distresses if used within the specification limits.

Subgrade type had a significant effect on fatigue top-down cracking (in VT), moderate effect on total rutting (in VT and NY) pavement prediction distresses and, a small effect on smoothness (IRI) in all three states.

4.6 Impact of Material Inputs – Asphalt on M-E PDG predictions

Asphalt material inputs required for M-E PDG Level 2 and Level 3 sensitivity analysis are specified by following variables:

- Asphalt layer thickness,
- Asphalt concrete mix aggregate gradation,
- Asphalt binder grade (Superpave, Viscosity or Penetration grades),
- Air void content,
- Effective binder content.

Asphalt layer thickness is most significant for predicting fatigue bottom-up and top-down cracking, and it does not exhibit have any influence on rutting or smoothness (IRI) of the pavement.

Asphalt mix aggregate grading was not found to be significant for any of the distress predictor indicators if used within the SHA tolerances.

Based on the literature review, the asphalt binder grade selection is dependent on traffic value level, operational speed and climate (16) (17). This study only investigated the interactions between the selected asphalt binder grades and traffic operational speed. It is

also known that the asphalt binder grade selection has a large impact on the prediction of thermal cracking in pavements. Since this topic was omitted in this research, it is highly recommended to review it again.

This study shows the significant effect of asphalt binder grade in the conjunction with the traffic operational speed in two of the investigated states: NY and MA, and that the asphalt binder grade had only a moderate effect in Vermont.

HMA air voids content highly affected fatigue bottom-up cracking, and moderately affected top-down pavement distresses in all states. No significance effect of HMA air voids content was found on other pavement distresses.

HMA effective binder content was found to be insignificant for all investigated pavement performance distresses within tolerances examined.

4.7 Impact of Material Properties – Unbound Materials on M-E PDG predictions

The unbound material inputs for M-E PDG sensitivity analysis Level 3 and 2 are characterized by the following variables:

- Material type,
- Resilient modulus value,
- Base layer thickness (not investigated),

Other methods to characterize material properties in Level 2 such as: CBR value, R-value, penetration DCP value, AASHTO layer coefficient – a₁, or plasticity index and grading.

In this research, the unbound material properties were only characterized by the material types and resilient modulus (measured in psi) values obtained from the state specifications or the LTPP database. It was found that base layer input variables based only on those two values have an insignificant effect on pavement distresses.

Base layer thickness variable was omitted in this study, but it can impact the M-E PDG pavement distress predictions as well. Therefore, it is highly recommended to review this topic in the next project.

Subgrade type had a significant effect on fatigue top-down cracking (in VT), a moderate effect on total rutting (in VT and NY) pavement prediction distresses but only a small effect on smoothness (IRI) in all three states.

Chapter 5: Conclusions

Based on the results of the sensitivity analyses conducted for flexible pavement systems in VT, NY and MA, the following observations were made and the following conclusions drawn:

The various inputs that affect predicted performance of the pavement in VT, NY and MA are:

- Fatigue longitudinal (top-down) cracking predictions were mostly affected by: HMA thickness, subgrade type/modulus, HMA air voids and operational speed.
- Fatigue alligator (bottom-up) cracking predictions were mostly affected by: HMA thickness, HMA air voids %, AADTT value, operational speed and traffic distribution.
- Asphalt surface rutting predictions were mostly affected by: operational speed, HMA binder grade, climate, AADTT value and HMA mix gradation.
- **Total rutting** predictions were mostly affected by: operational speed, HMA binder grade, subgrade type/modulus, HMA thickness, traffic distribution and AADTT.
- **Smoothness IRI** was not sensitive to most input parameters. Based on the literature review fatigue alligator cracking and thermal cracking are the primary contributors to the IRI value (19).
- Based on the above findings only a few parameters used in this study affected all predicted performance measures. However, asphalt volumetric properties, AADTT,

operational speed, and subgrade type generally influenced most of the predicted performance measures.

• **Transverse cracking** distresses were only predicted by the M-E PDG software in New York State (Appendix B). The model did not work in the Vermont and Massachusetts analysis (transverse cracking values equal to "0").

5.1 State Specific Recommendations

Feasibility of the nationally calibrated M-E PDG models in VT, NY and MA were investigated based on limited number of resources such as LTPP sections and state web sites. These resources are inadequate to finally specify the M-E PDG application feasibility in those states. However, this research and results presented herein can help with the transition process from the current AASHTO design practices to the M-E PDG, by evaluating the adequacy of Level 3 and 2 inputs for flexible pavement design.

5.1.1 Vermont Recommendations

According to this study, the most significant M-E PDG input variables on performance for new flexible pavements in Vermont are:

- Traffic values such as AADTT, operational speed and traffic distribution
- Asphalt thickness
- Asphalt properties such as air voids content and HMA mix gradation
- Subgrade type/modulus value

It is also recommended that Vermont carefully attend to the selection of the asphalt binder grade due to climate variations within the state. The use of the higher binder grades is recommended due to the smaller predicted pavement distresses. Based on an initial meeting with the Vermont AOT, it could be stated that they are the most advanced in the implementation process within the New England States. The Vermont AOT holds meetings with the involved departments on the regular basis, provides M-E PDG training to the personnel, discusses the M-E PDG implementation issues, makes future plans, collects the data necessary for future use with the new software, and validates the predicted pavement distress values with their road tests data and recent findings.

5.1.2 New York Recommendations

This recommendation is based only on the default input values, which were obtained for this state from one LTPP road section and from information available on the NY State DOT web site. According to this study, the most significant M-E PDG input variables on the performance for new flexible pavements in New York are:

- Traffic values such as operational speed and traffic distribution
- Asphalt thickness
- Other asphalt properties such as air void content and binder grade selection
- Subgrade type/modulus value
- Climate

Climate is a very important variable for this state due to its area. It was found that climate highly affected all predicted pavement distresses with the exception of bottom-up fatigue cracking.

5.1.3 Massachusetts Recommendations

This recommendation is based only on the default input values, which were obtained for this state from three LTPP road sections and from information from the MA DOT web site. According to this study, the most significant M-E PDG input variables on the performance for new flexible pavements in Massachusetts are:

- Traffic values such as operational speed, traffic distribution and AADTT value
- Asphalt thickness
- Other asphalt properties such as air voids content and binder grade selection
- Climate.

The climate variation is especially important with the AC and total rutting predictions for new flexible pavements.

5.2 General observations for the M-E PDG implementation

Implementation of the M-E PDG requires:

- a) Time and agency resources (staffing, training, testing facilities and equipment).
- b) Establishment of performance criteria against which the design evaluation can be measured.
- c) Validation of the M-E PDG nationally calibrated pavement distress and smoothness prediction models with current state conditions.
- d) Local calibration as may needed.

An example of an implementation plan which can be use by state highway agencies:

- 1. Form an Implementation Team and develop a communication plan
- Establish a set of performance criteria against which design evaluations can be measured. These criteria may be stratified to reflect different levels of traffic, different levels of functional class, etc.
- 3. Set recommend M-E PDG input levels, required resources, and obtain necessary testing equipment
- 4. Conduct sensitivity analysis of M-E PDG inputs
- 5. Develop and populate a central database with required M-E PDG input values.
- 6. Conduct staff training
- 7. Develop a formal state specific M-E PDG-related documentation
- 8. Resolve differences between the M-E PDG predicted distresses and distresses collected in the field

- 9. Calibrate and validate M-E PDG performance prediction models to local conditions
- 10. Define long-term plan for adopting the M-E PDG design procedure
- 11. Develop a design catalog.

The benefits of implementing M-E PDG are:

- a) Achieving the more cost effective and reliable pavements designs
- b) Lower initial and life cycle cost to the agency
- Reduced highway user impact due to less lane closures for maintenance and rehabilitation of pavements

5.3 Recommendations for future work

- Transverse cracking model and its performance predictions for flexible pavements needs to be analyzing with the new version of the M-E PDG.
- Improve interactions and data sharing between state highway agencies and researchers, (i.e., academia) to benefit future studies (knowledge of states specific issues, implementation plans, founding's, local calibrations, etc.,)
- The M-E PDG predicted pavement distresses should be validated against the recorded measurements by each of the state highway agencies covered by this research.
- Reevaluate the ground water table affect on pavement performance predictions, due to suspect findings in this research.
- Investigate the interaction between asphalt binder grades and traffic level.

- Investigate the interactions between asphalt binder grades and climate.
- Investigate unbound layer thickness effect on predicted pavement distresses for base and subbase.
- Compare summary resilient modulus values to average resilient modulus values for unbound layers.
- Compare affect of base and subbase on pavement distress predictions (as an example: rock base/sand subbase).
- Investigate how the M-E PDG ground water table values relate to unbound M_r values.
- Investigate how realistic is ranking of vehicle speed as a variable for pavement performance predictions.
- Perform the M-E PDG Level 1 sensitivity analysis for the New England States and New York.

References:

1. **Transportation Research Circular E-C155.** Sensitivity Analyses for Flexible Pavement Design with the Mechanistic–Empirical Pavement Design Guide. Washington, D.C. : TRB, July, 2011. ISSN 0097-8515.

2. **AASHO.** *AASHO Interim Guide For Design Of Pavement Structures 1972.* Washington, D.C. : The American Association Of State Highway Officials, 1972.

3. AASHTO. AASHO Guide for Design of Pavement Structures 1993. Washington, D.C. : AASHTO, 1993.

4. Ayyala, Dinesh. Sensitivity Analysis of Pavement Performance Predicted Using the *M-E PDG*. Philadelphia, PA : The Pensilvania State Un iversity, May, 2009.

5. **AASHTO.** *AASHO Guide for Design of Pavement Structures 1986.* Washington, D.C. : AASHTO, 1986.

6. Schwartz, Charles W. Implementation of the NCHRP 1-37A Design Guide. College Park, MD : Department of Civil and Environmental Engineering, February, 2007.

7. Coree, Brian, Ceylan, Halil and Harrington, Dale. *Implementing the MEPDG: Technical Report.* s.l. : CTRE, May, 2005.

8. **AASHTO.** *Mechanistic-Empirical Pavement Design Guide: A Manual of Practice.* Washington, D.C. : AASHTO, July, 2008.

9. —. *Mechanistic-Empirical Pavement Design Guide: A Manual of Practice.* Washington, D.C. : s.n., July, 2008.

10. A National Database of Subgrade soil-water characterictic curves and selected soil properties for use with the MEPDG. NCHRP. 347, Washington, D.C. : NCHRP, August, 2010.

 Implementing the Mechanistic -Empirical Pavement Design Guide for Cost Saving in Indiana. Nantung, Tommy E. Washington, D.C. : Transportation Research Board, 2010.
 271.

12. Mallela, Jagannath, et al. *Guidelines for Implementing NCHRP 1-37A M-E PDG Design Procedures in Ohio.* Champaign, IL : Applied Research Associates, Inc., November, 2009.

13. **SD DOT.** *M-E PDG implementation Plan; StudySD2005-01.* Urbana, IL : Applied Pavement Technology, Inc., October, 2007.

14. LTPP. LTPP Data Pave Online. *http://www.ltpp-products.com/DataPave/visualization/Map.aspx.* [Online] LTPP. [Cited: 02 10, 2010.]

15. **Staff Soil Survey.** U.S. General Soil Map (STATSGO2). *http://soildatamart.nrsc.usda.gov.* [Online] [Cited: 04 15, 2010.]

16. Asphalt Institute. *Performance Graded Asphalt, Binder Specification and Tasting; SP-1.* Lexington, KY : Asphalt Institute, 2003.

17. ---. Superpave Mix Design; SP-2. Lexington, KY : Asphalt Institute, 1996.

18. **Vermont AOT** . *Vermont Agency of Transportation Flexible Pavement Design Procedures*. s.l. : VT AOT, March, 2002.

19. Kim, Sunghwan, Ceylan, Halil and Heitzman, Michael. Sensitivity Study of Design Input Parameters for Two Flexible Pavement Systems Using the M-E PDG. Ames, Iowa : Iowa State University, August, 2005.

20. USGS. http://groundwaterwatch.usgs.gov/. [Online] USGS, 2011. [Cited: 09 15, 2010.]

21. Malla, B. Ramesh and Joshi, Shraddha. *Establish Subgrade Support values for Typical Soils in New England States*. s.l. : NETCR 57, April, 2006. Report 02-3.

22. Highway Research Board. The AASHO Road Test: History and Description of the Project: Report 61A. 1961.

23. National Research Council. AASHO Road Test: History and Description of Project. Publication 816. Washington, D.C. : National Academy of Sciences, 1961.

24. Thompson et al. Research Results Digest 307. s.l. : NCHRP, September, 2006.

25. Daniel, Jo Sias, Chehab, Ghassan R. and Ayyala, Dinesh. Sensitivity of M-E PDG Level 2 and 3 Inputs using Statistical Analysis Techniques for New England States. August, 2009.

Appendix A: Vermont M-E PDG Level 2 and Level 3 Report

VERMONT

RANGE OF VALUES FOR CRITICAL INPUT PARAMETERS

INPUT VALUE SELECTION FOR VERMONT FOR M-E PDG RUNS

1. General Inputs

1.1 Design Life

• 20 years for a new pavement is recommended

1.2 Construction & Traffic Opening Dates

- Base/subgrade construction month July, 2010
- Pavement construction month August, 2010
- Traffic opening date October, 2010

1.3 Type of Pavement

• This analysis is performed for a new flexible pavement.

1.4 Site/Project Identification

The site is located in New Haven, VT on Rt. 7 (LTPP section # 50-1002-1)

- County: Addison
- Latitude, deg. 44.12
- Longitude, deg. -73.18
- Elevation, (ft) 283
- Org. Construction Date: 08/01/1984
- Functional Class: 2

1.5 Pavement Layer Structure

Figure 1A: New Haven, VT – Rt. 7

Table 1A. Tavement Layers Used for Rt. 7 in vermont M-E 1 DG Analysis				
Layer Type	Layer Thickness (in)			
Original Surface Layer (layer Type: AC)	3.0"			
AC Layer Below Surface (Binder Course)	5.5"			
Base Layer (Layer Type: GB)	25 8"			
Subgrade (Layer Type: SS)	Semi-infinite			

Table 1A: Pavement Layers Used for Rt. 7 in Vermont M-E PDG Analysis

The pavement layer structure used for VT M-E PDG analysis is similar to the LTPP section 50-1002-1 on Rt. 7 in New Haven, VT.

Layer TypeLayer Thickness (in)Original Surface Layer (layer Type: AC)3.0"AC Layer Below Surface (Binder Course)5.0"Base Layer (Layer Type: GB)24.3"Subbase Layer (Layer Type: GS)22.8"Subgrade (Layer Type: SSSemi-infinite

 Table 2A: Pavement Layers at Rt. 2 in Vermont M-E PDG

The pavement layer structure LTPP section # 50-1004-1 at Rt. 2 in South Hero, VT.

Pavement Type	Performance Criteria	Max. Value at End of
		Design Life at Design
		Reliability
	HMA bottom up fatigue cracking (alligator cracking)	Interstate: 10 percent lane area Primary: 20 percent lane
	0,	area Secondary: 45 percent
	HMA longitudinal fatigue cracking (top down)	Interstate: 2,000-ft/mile Primary: 2,500-ft/mile Secondary: 3,000-ft/mile
HMA pavement & overlays	Permanent deformation (total mean rutting of both wheel paths)	Interstate: 0.40-in mean Primary: 0.50-in mean Others <40 mph: 0.75-in mean
	Thermal fracture (transverse cracks)	Interstate: Crack spacing > 70-ft (Crack length < 905- ft/mile) Primary/Secondary: Crack spacing > 50-ft (Crack length < 1267- ft/mile)
	IRI	Interstate/Primary: 169 in/mile maximum Secondary: 223 in/mile maximum

2. Performance Criteria Inputs (Analysis Parameters)

Table 3A: Suggested Performance Criteria for Use in Pavement Design.*

*Report No. UT-09.11a "Draft User's Guide for UDOT MEPDG"; October 2009

Analysis parameter	Maximum criteria at 90% Reliability
Initial IRI (in./mi)	75
Terminal IRI (in./mi)	172
AC Surface Down Cracking (ft/mi)	2000
AC Bottom Up Cracking (%)	25
AC Thermal Fracture (ft/mi)	1000
Permanent Deformation – Total Pavement (in)	0.75
Permanent Deformation – AC only (in)	0.25

Table 4A:	Analysis	Parameters	Used in	VT

Project Name	VT_1002 U2G1		
Initial IRI (in/mi)	75		
Performance Criteria			
🕅 Rigid Pavement	Flexible Pavement		
		Limit	Reliability
S	Terminal IRI (în/mile)	172	90
4	AC Suiface Down Cracking Long: Cracking fit mi)	2000	90
2	AC Bottom Up Cracking Alligator Cracking (?.)	25	90
2	AC Thermal Fracture (ft/mi)	1000	36
N	Chemically Stabilized Layer Fatigue Fracture:")	25	90
V	Permanent Deformation - Total Pavement (in)	C -5	90
	Permanent Deformation - AC Only (in)	C 25	ISC

Figure 2A: Analysis Parameters Used in VT

3. Design Reliability Input

Functional Classification	Urban	Rural
Interstate/Freeways	95	92
Principal Arterials	90	85
Collectors	80	75
Locals	70	60

Table 5A: Tentative Recommended Level of Reliability

A design reliability of 90 percent is selected for this analysis. A higher level of design reliability is not recommended, because of the significant cost increase.

4. Traffic Inputs

Traffic Input	Recommended Value
Initial two way AADTT (class 4 and above)	Projected traffic for opening month from
	measured historical data.
Number of lanes in design direction	Actual or from design plans.
Percent of trucks in design direction (%)	50%, unless higher truck volume is measured in design direction
Percent of trucks in design lane (%)	 Actual measured in design lane over 24-hours, otherwise use the following: 100% for 1 lane in design direction 95% for 2 lanes in design direction For unusual truck traffic situations (mountainous terrain or urban usage complexity), conduct on site truck lane usage counts over 24-hour period.
Operational Speed (mph)	Posted or Design Speed

 Table 6A: Recommended Traffic Value Inputs

4.1 Annual Average Daily Truck Traffic (AADTT)

Truck Traffic (AADTT) is calculated by taking 10.35% of AADT as given in 2009 Automatic Vehicle Classification Report. AADT for Rt. 7 in New Haven, VT (Addison County) was 6800.

Control AADTT for this study is taken as 704.

Figure 3A: Traffic Inputs for New Haven, VT

FHWA VEHICLE CLASSIFICATIONS

Figure 4A: Illustration of FHWA/AASHTO Vehicle Class Type Description

4.2 Truck Class Distribution selections

TRF_MEPDG_VEH_CLASS_DIST								
STATE_	SHRP_	YEAR	VEHICLE_	TRF_DATA	RECORD_STA	PERCENT_OF		
CODE	ID		CLASS	_TYPE	TUS	_TRUCKS		
50	1002	2008	4	0	E	5.57		
50	1002	2008	5	0	E	42.95		
50	1002	2008	6	0	E	10.79		
50	1002	2008	7	0	E	3.36		
50	1002	2008	8	0	E	7.61		
50	1002	2008	9	0	E	25.89		
50	1002	2008	10	0	E	3.22		
50	1002	2008	11	0	E	0.02		
50	1002	2008	12	0	E	0.42		
50	1002	2008	13	0	E	0.17		

 Table 7A: LTPP Truck Class Distribution

*based on LTPP data base, 2008

VEHICLE_CLASS	PERCENT_OF_TRUCKS
4	1.8
5	24.6
6	7.6
7	0.5
8	5.0
9	31.3
10	9.8
11	0.8
12	3.3
13	15.3

Table 8A: Track Class Distribution Level 3 (Control)

*based on level 3 M-E PDG, 2009

Table 9A: Low-Class Concentrated Distribution

VEHICLE_CLASS	PERCENT_OF_TRUCKS
4	5.2
5	38.9
6	35.8
7	10.2
8	5.6
9	3.5
10	0.2
11	0.3
12	0.2
13	0.1

*Based on Sensitivity Study of Design Input Parameters for Flexible Pavement Systems using M-E PDG in Iowa DOT, 2004

1

.

VEHICLE_CLASS	PERCENT_OF_TRUCKS
4	0.1
5	0.6
6	0.8
7	0.6
8	6.8
9	9.2
10	25.8
11	36.4
12	16.5
13	3.2

Table 10A: High-Class Concentrated Distribution

*Based on Sensitivity Study of Design Input Parameters for Flexible Pavement Systems using M-E PDG in Iowa DOT, 2004

.

	CODE								
TRUCK	D1(from	D2 (low class)	D3 (high class)	D4 (Level 3-					
CLASS	LTPP)			Control)					
4	5.5	5.2	0.1	1.8					
5	43.0	38.9	0.6	24.6					
6	10.8	35.8	0.8	7.6					
7	3.4	10.2	0.6	0.5					
8	7.6	5.6	6.8	5.0					
9	25.9	3.5	9.2	31.3					
10	3.2	0.2	25.8	9.8					
11	0.0	0.3	36.4	0.8					
12	0.4	0.2	16.5	3.3					
13	0.2	0.1	3.2	15.3					

Table 11A: Truck Class Distribution Summary

.

Rate of Traffic Growth 4.3

Code	Traffic Growth Rate
R1	1.0 % linear
R2 (Control)	2.0 % linear
R3	3.0 % linear

 Table 12A: Selected Traffic Growth Rates for Vermont

4.4 **Traffic Operational Speed**

Table 13A: Selected Traffic Operational Speeds

Code	Traffic Operational Speed (mph)	Binder Grades
U1	5	G1, G2, G3
U2	25	G1, G2, G3
U3 (Control)	55	G1, G2, G3

Annual Average Daily Truck Traffic (AADTT) 4.5

]	Table 14A: Calculated AADTT Values									
	Code	Station ID	Traffic Volume (AADTT)							
	Q1 (Control)	S6A041 - New Haven, VT (Rt.7)	704							
	Q2	S6A107 – Salisbury, VT (Rt. 7)	932							

S6A014 - Ferrisburg, VT (Rt. 7)

____ . . .

Q3

1576

4.6 The Monthly Traffic Adjustment Factors

Location	Month	Class									
		4	5	6	7	8	9	10	11	12	13
	Jan.	0.71	0.71	0.71	0.71	0.80	0.80	0.80	0.80	0.80	0.80
	Feb.	0.64	0.64	0.64	0.64	0.91	0.91	0.91	0.91	0.91	0.91
	Mar.	0.87	0.87	0.87	0.87	0.98	0.98	0.98	0.98	0.98	0.98
	Apr.	1.01	1.01	1.01	1.01	0.88	0.88	0.88	0.88	0.88	0.88
	May	1.21	1.21	1.21	1.21	1.00	1.00	1.00	1.00	1.00	1.00
New	Jun.	1.35	1.35	1.35	1.35	1.11	1.11	1.11	1.11	1.11	1.11
Haven	Jul.	1.20	1.20	1.20	1.20	0.90	0.90	0.90	0.90	0.90	0.90
	Aug.	1.21	1.21	1.21	1.21	1.12	1.12	1.12	1.12	1.12	1.12
	Sep.	0.94	0.94	0.94	0.94	1.05	1.05	1.05	1.05	1.05	1.05
	Oct.	1.13	1.13	1.13	1.13	1.14	1.14	1.14	1.14	1.14	1.14
	Nov.	0.94	0.94	0.94	0.94	1.11	1.11	1.11	1.11	1.11	1.11
	Dec.	0.78	0.78	0.78	0.78	0.99	0.99	0.99	0.99	0.99	0.99

 Table 15A: Monthly Adjustment Factors (MAF) for Pavement Design in New

 Haven

*-n/c - not collected

Table 16A: Monthly	Adjustment Factors	s (MAF) for	Pavement	Design in	Salisbury
and Ferrisburg					

Locat	Mont	Class									
ion	h	4	5	6	7	8	9	10	11	12	13
	Jan.	0.71	0.71	0.71	0.71	0.80	0.80	0.80	0.80	0.80	0.80
	Feb.	0.64	0.64	0.64	0.64	0.91	0.91	0.91	0.91	0.91	0.91
	Mar.	0.87	0.87	0.87	0.87	0.98	0.98	0.98	0.98	0.98	0.98
	Apr.	1.01	1.01	1.01	1.01	0.88	0.88	0.88	0.88	0.88	0.88
	May	1.21	1.21	1.21	1.21	1.00	1.00	1.00	1.00	1.00	1.00
Salis	Jun.	1.35	1.35	1.35	1.35	1.11	1.11	1.11	1.11	1.11	1.11
bury	Jul.	1.20	1.20	1.20	1.20	0.90	0.90	0.90	0.90	0.90	0.90
	Aug.	1.21	1.21	1.21	1.21	1.12	1.12	1.12	1.12	1.12	1.12
	Sep.	0.94	0.94	0.94	0.94	1.05	1.05	1.05	1.05	1.05	1.05
	Oct.	1.13	1.13	1.13	1.13	1.14	1.14	1.14	1.14	1.14	1.14
	Nov.	0.94	0.94	0.94	0.94	1.11	1.11	1.11	1.11	1.11	1.11
	Dec.	0.78	0.78	0.78	0.78	0.99	0.99	0.99	0.99	0.99	0.99
	Jan.	0.71	0.71	0.71	0.71	0.80	0.80	0.80	0.80	0.80	0.80
	Feb.	0.64	0.64	0.64	0.64	0.91	0.91	0.91	0.91	0.91	0.91
	Mar.	0.87	0.87	0.87	0.87	0.98	0.98	0.98	0.98	0.98	0.98
	Apr.	1.01	1.01	1.01	1.01	0.88	0.88	0.88	0.88	0.88	0.88
	May	1.21	1.21	1.21	1.21	1.00	1.00	1.00	1.00	1.00	1.00
Ferri	Jun.	1.35	1.35	1.35	1.35	1.11	1.11	1.11	1.11	1.11	1.11
sburg	Jul.	1.20	1.20	1.20	1.20	0.90	0.90	0.90	0.90	0.90	0.90
	Aug.	1.21	1.21	1.21	1.21	1.12	1.12	1.12	1.12	1.12	1.12
	Sep.	0.94	0.94	0.94	0.94	1.05	1.05	1.05	1.05	1.05	1.05
	Oct.	1.13	1.13	1.13	1.13	1.14	1.14	1.14	1.14	1.14	1.14
	Nov.	0.94	0.94	0.94	0.94	1.11	1.11	1.11	1.11	1.11	1.11
	Dec.	0.78	0.78	0.78	0.78	0.99	0.99	0.99	0.99	0.99	0.99

4.7 The MADT to AADT factor

	MA	OR	
Month	New Haven	Salisbury	Ferrisburg
Jan.	1.20	1.21	1.18
Feb.	1.12	1.13	1.10
Mar.	1.08	1.07	1.08
Apr.	1.01	0.99	1.03
May	0.94	0.94	0.96
Jun.	0.91	0.92	0.91
Jul.	0.90	0.90	0.89
Aug.	0.88	0.88	0.86
Sep.	0.93	0.95	0.95
Oct.	0.97	0.97	0.96
Nov.	1.05	1.09	1.08
Dec.	1.12	1.15	1.11

Table 17A: Collected MADT's for Selected Locations

*- MADT - monthly average daily traffic

*MADT ~ Monthly Average Daily Traffic *AADT ~ Annual Average Daily Traffic

Figure 5A: MADT to AADT Factor for Three Selected Location (Vehicle Classifications 1 to 13)

Figure 6A: MADTT to AADTT Factor for Class 5 in New Haven, VT

Figure 7A: MADTT to AADTT Factor for Class 9 in New Haven, VT

5. Climate Inputs

Three climate stations are selected from the five stations for which climate data is available in the M-E PDG. The three stations: Bennington, Barre -Montpelier and Burlington are chosen as they are more geographically dispersed.

Canada - Quebec

Figure 8A: Vermont Climate Station Locations

Figure 9A: New Haven, VT Location

5.1 Sensitivity to Climate Data Interpolation

STATION	Nearest 3	Latitude	Longitud	Distance	#Months of data
	Stations		e		
Bennington	North Adams,	42.42	-73.1	13.3 mi	116
Lat. 42.53	MA				
Lon73.15	Albany, NY	42.45	-73.48	29.3	116
(803 ft)	Pittsfield, MA	42.26	-73.17	31.1	85
Barre/	Morrisville, VT	44.32	-72.37	23.1	116
Montpelier	Durlington VT	11.78	72.00	22.5	116
Lat. 44.12	Burnigton, v i	44.28	-75.09	55.5	110
Lon72.35	Lebanon, NH	43.38	-72.18	41.6	94
(1172 ft)					
Burlington	Plattsburg, NY	44.41	-73.31	23.4	92
Lat. 44.28	Morrisville, VT	44.32	-72.37	26.7	116
Lon73.09 (348 ft)	Barre/Montpelier	44.12	-72.35	33.5	116

Table 18A: Selected Locations Climate Data

5.2 Water Table Depth Variation

Table 19A: Selected WT Depth for New Haven, VT

CODE	Depth of Water	Combination with A-2-4 and A-7-6				
	Table	Subgrades				
WT1	2 ft	WT1 E2, WT1 E1,				
WT2 (Control)	5 ft	WT2 E2, WT2 E1				
WT3	8 ft	WT3 E2, WT3 E1				

The water table depth was selected based on average values from the Addison County well.

Sile of the	and the	Highgate Cen	te East	Newport	Derby Center	1 Saddle	apck Mountain 411b tt
S www.stymes	المسلم المجر المالي		°¶° _ She∎o	n i j	ESSE	X SColebrook	FRANKLIN
Malon	e Ellenol	^{Irg} jst, Alban	ទង្គី ្វ 🕻 🕻	ERMIOKN	Т	Columbia	Wentworth Location
	, ÇUNIO		FRANKLIN -	ORLEA	IS Mowark	¢	i . I susse of the s
Lyon Móu	intain			Albany 🧳	Hollow	North Stratford	Upton Swift
FRANKLIN	Saranac	Bast Georg	a	Hyde Park			
Pani	Keese	1 7	Essex		Stangard Cullur		Kumora S
Smiths	3	A 🛸 🌡	Sunction:	ardwick [°] CALE		ALancaster	OXEORD
He C P	arrietstoven 🔆	Bugington	East	Cab	ot Conco	Berlin	West
30 2	[Läke ∫ Jay	GHI CHI	a Middlasay	Calars	IST STORED	ury ~ ~ ~ Gi	orham ^{Paris}
Saranac Lake	Placid	Hinesburg	WILLUIESEX	Plainfiel	Littleton)	Bethlehem	South Paris
Tupper Lak	e North Elba	Fer Fer	risburg WASH	INCTON (302			نې (۲۰۰۰) س
1 . The second			Waitsfield) B	ape. ORANG	E A NEW	HAMPSHIRE	Harrison
NEW NEW	YURK	nry	Brookfield	Have	rhil Vvoodsville	Lower Bartlett	
Newcomb) Mest Br	idnort ADDI	SON J	1		Lincoln (Fryeh	Urdi Casco,
2	Severence		XNI ZE	y si	ALLES	1	Hiram MAINE
- (78)	severances (~	Ticonder	oga 🗛 🗛 🗛	idge° 🛄		Madison	(302)
Miner		Orwall :	Brandan	Cente	To Center Sal	We:	st Baldwin Little
11 1 2 3	X. I		Brandur	Hangver	GRAFTON	Center Ossipee	Linerick
	n Horicon	Pittsf	ord	Ma	Canaan _	CARR(Gorham
MANUL KON		VE	Rutland	UNDSOR . C	ebanon d		Saco
a ten it.	B	olton Lánding	Wallippdor	d Šociih Woo	dstock	BELKNAP	ORK YORK
Lake Pleas	ant FòrtA	nn, ź			Andover	Souther and All	ebahon Biddeford
1		°Ō	North Springt	ield Néwport	o Nizachuru	Beimont	
30,		6 5 Aug	E Cheste	o Unity		KOCNES	a Berwick
Northville	Hudson Palls	Z	o Peru	<u>ک</u>	and the second	STF	AFFORD:
FULTON	SARATOGA	μ. Η Γ. Η Γ. Η Γ. Η Γ. Η Γ. Η Γ. Η Γ. Η Γ	STI Crotter		Cone	OFO 4	Eliot
Saratoga S	Springs		Townshend	Westminste	er West	uncooki Po	rtsmouth Beach
Johnstow		tifer Svhit		° K	Benning	tion =ROCI	(INGHAM//
THREE			VWNDHA	Ke Ke	ene Manch	esterios -	بين المجافعة المجافعة المحافظة ال
HIL		ISSELAER	9 Brattlebo		PE Dublin Lite	chfield	Beach
SCHEN	ADY Cont	nes BRINN	NGTON	Fitzwillian		RUHAH	91
© 2001-Micro	soft@orp#All/	rights	: 761	10182		Moodili 20.	MASS Newbury
Explanat	ion - Perc	centile cla	asses(symb	ol color based	l on most recent	t measurement)	
· · · · · · · · · · · · · · · · · · ·		ing.	8				O Reallime
	t <10	10-24	25.75 76	Lan >9	<u> </u>		Continuous
Low	N IV	Rolow			High	Not	△ Periodic
	Normal	Normal	Normal No	rmal Non	mal -	Ranked	Measurements

Figure 10A: Vermont Active Wells

Figure 11A: Most recent data value: 6.30 on 6/28/2010 Period of Record Monthly Statistics for 440016073070901 Depth to Water Level, Feet below Land Surface.

Figure 12A: Addison County Well (Site Number: 440016073070901 - VT-MGW 11)

Highest WL	Date of Highest WL	Lowest WL	Date of Lowest WL
2.58	09/22/81	25.92	10/26/01

Table 20A: Water Level Measurement Records at Addison Well

Table 21A: Most Recent Data for Water Levels at Addison Well

Month	Lowest	10th	25th	50th	75th	90th	Highest	Number
	Median	%ile	%ile	%ile	%ile	%ile	Median	of
								Years
Jan	14.76	9.28	7.18	5.84	5.14	4.70	3.84	29
Feb	10.25	9.40	7.56	6.19	5.29	4.64	3.80	26
Mar	8.20	7.82	6.05	5.33	4.78	4.21	3.62	28
Apr	8.32	7.50	7.04	5.48	5.06	3.96	3.72	25
May	9.86	9.58	7.85	6.59	5.62	4.84	4.25	26
Jun	11.22	10.59	8.85	7.77	6.52	5.32	4.73	28
Jul	15.58	14.01	11.28	9.74	7.92	6.82	5.95	26
Aug	19.86	15.80	13.33	9.87	7.46	6.06	3.81	28
Sep	23.51	16.60	12.59	10.50	8.14	6.19	2.58	29
Oct	25.92	15.15	11.01	7.49	5.94	4.57	4.46	25
Nov	19.92	10.15	7.02	6.06	5.12	4.31	3.87	26
Dec	16.75	7.39	6.27	5.53	4.95	4.52	4.30	28

Note: Bold values in the table indicate closest statistic to the most recent data value.

6. Material Inputs

6.1 HMA Thickness

An HMA thickness for the control file is 8.5". To see the effect of HMA thickness on predicting distresses values two more HMA thicknesses has been selected:

CODE	Total HMA Thickness (in)
T1	7.0
T2 (Control)	8.5
T3	10.0

The two HMA layers (surface and binder) will be treated as one layer with 19.0 mm asphalt mix gradation (mean).

6.2 Number of HMA Layers

Two HMA layers are going to be used for the M-E PDG analysis:

- AC original surface -3" (w/ 9.5 mm mix gradation)
- AC binder course -5.5" (w/ 19.0 mm mix gradation)

6.3 HMA Mix Gradation

HMA mix gradation for Vermont conforms to Superpave specifications.

NMAS of Mix	9.5 mm	12.5 mm 19.0 mm		25.0 mm	37.5 mm
	(3/8")	(1/2")	(3/4")	(1")	(1.5")
3/4" sieve	· 0	0 - 10	10 – NR*	NR	NR
3/8" sieve	0-10	10 – NR	NR	NR	NR
# 4 sieve	10 – NR	NR	NR	NR	NR
#200 sieve	2-10	2-10	2-8	1 – 7	0-6

Table 23A: Range of Values of HMA Mix Gradation – Superpave Specification

* NR - No restriction on the value

NMAS of Mix	9.5 mm	12.5 mm	19.0 mm	25.0 mm	37.5 mm	
	(3/8")	(1/2")	(3/4")	(1")	(1.5")	
Cum. % Ret 3/4" sieve		<u>+</u> 4%	<u>+</u> 5%	<u>+</u> 7%		
Cum. % Ret 3/8" sieve		<u>+</u> 4%	<u>+</u> 5%	<u>+</u> 7%		
Cum. % Ret # 4 sieve	<u>+</u> 4%	<u>+</u> 3%	<u>+</u> 4%	<u>+</u> 4%	<u>+</u> 6%	
#200 sieve	<u>+</u> 0.8%					

Table 24A: Tolerance for HMA Mix Gradation

Asphalt Material Properties	28
Level 3 - Layer thickness (in) 3	
🖀 Asphalt Μα 📓 Asphalt Binder 🖾 Asphalt General	
Aggregate Gradation Cumulative % Retained 3/4 inch sieve Cumulative % Retained 3/8 inch sieve Cumulative % Retained #4 sieve Passing #200 sieve 6	

Figure 13A: 3/8" (9.5 mm) Asphalt Mix Aggregate Gradation

sphalt Material Pro	operties		
Level 3 💌	Asphalt material type Layer thickness (in)	Asphalt concrete	•
🗃 -sphait Mix 📓 -	Asphalt Binder 🔜 Asphalt	t General	
∆ggreg	ate Gradation		an constanting and second
	Cumulative Retained 3 4	inch sieve 1-	
,	Cumulative Retained 3/8	Inch sieve	
	Cumulative * Retained #4	sieve	
	Passing T200 siava	, 	

Figure 14A: ¾" (19.0 mm) Asphalt Mix Aggregate Gradation

Gradation Mix Designation			Percent Passing		
	³ ⁄4-in Sieve	#4-in Sieve	#200 Sieve		
1-in (25.0 mm)	15	30	48	62	4
³ / ₄ -in (19.0 mm)	5	20	40	58	5
¹ / ₂ -in (12.5 mm)	0	5	25	52	6
³ / ₈ -in (9.5 mm)	0	0	5	45	6

 Table 25A: Recommended Typical Vermont HMA Mix Gradations Input

6.4 PG Binder Grade

Three different binder grades are chosen from among the PG binders that are suitable for use in the state of Vermont. PG 58-28 is used as the binder grade for the control case. The binder grade is tested in conjunction with operational speed of vehicle.

 Table 26A: Vermont PG binder Grades

CODE	PG BINDER GRADE
G1	PG 58-34
G2 (Control)	PG 58-28
G3	PG 64-28

Table 27A: Level 2 asphalt binder	values at Angular Frequency = 10 rad/sec (1.59
Hz)	

PG Grades	Temperature (°F)	G * (Pa)	Delta (°)
PG 58-28	40	17950000	46.7
	68	1336381.7	64.3
	113	9478.4	78.4
PG 64-28	40	29540000	41.7
	68	2297155.4	58.3
	113	35275.56	72.3
PG 58-34	40	n/c*	n/c*
	68	n/c*	n/c*
	113	n/c*	n/c*

*n/c – not collected

6.5 Unbound Layer Inputs

ASTM D 2940, Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports. The gradation for base material from this standard is given below.

Sieve Size	Percent Passing
2 in. (50 mm)	100
1½ in. (37.5 mm)	95 - 100
3/4 in. (19.0 mm)	70 - 92
½ in. (9.5 mm)	50 - 70
No. 4 (4.75 mm)	35 - 55
No. 30 (0.600 mm)	12-25
No. 200 (0.075 mm)	0-8

Table 28A: ASTM D 2940 Gradation for Dense-Graded Bases and Subbases

6.6 Base Course Resilient Modulus

 Table 29A: Base Course Aggregate Gradations (Level 3)

CODE	M1	M2	M3
Type of	Crushed Gravel	Crushed Stone (Fine)	Crushed Stone
course			(Coarse)
Sieve Size		Percent Passing by Weig	ht
3 ½ in	-	-	100
(90mm)			
3 in (75mm)	100	-	92.5
2 in (50mm)	97.5	100	-
1 ½ in	-	92.5	75.0
(37.5mm)			
1 in (25mm)	70.0	-	-
³ ⁄4 in (19mm)	-	60.0	55.0

Table 29A Continued

#4 (4.75mm)	39.5	27.5	27.5
#200	6.0	2.5	2.5
(0.075mm)			
Resilient			
Modulus	29600	24370	33500
Level 3			

* M-E PDG accepts values only between 20000 psi and 30000 psi

CODE	M1L2	M2L2
Type of course	Crushed Gravel	Crushed Stone
Sieve Size	Percent Passi	ing by Weight
3 ½ in (90mm)	97.6	97.6
3 in (75mm)	-	-
2 in (50mm)	91.6	91.6
1 ½ in (37.5mm)	85.8	85.8
1 in (25mm)	78.8	78.8
³ / ₄ in (19mm)	72.7	72.7
¹ / ₂ in (12.5mm)	63.1	63.1
3/8 in (9.5mm)	57.2	57.2
#4 (4.75mm)	44.7	44.7
#10 (2.0 mm)	33.8	33.8
#40 (0.425 mm)	20.0	20.0
#80 (0.18 mm)	12.9	12.9
#200 (0.075mm)	8.7	8.7
Resilient Modulus	25000	30000
Level 2		

Table 30A: Base Course Aggregate Gradations (Level 2)

	Gradation Limits				
Sieve Size	Job Mix Gradation	Job Mix Gradation			
	Target Band	Tolerance			
$1^{1}/_{2}$ inch	100				
1 inch	90 - 100	±9.0			
³ / ₄ inch	70 – 85	±9.0			
$^{1}/_{2}$ inch	65 - 80	±9.0			
³ / ₈ inch	55 – 75	±9.0			
No. 4	40 - 65	±7.0			
No. 16	25 – 40	±5.0			
No. 200	7 – 11	±3.0			

 Table 31A: Untreated Base Course Gradation Limits

6.7 Subgrade Resilient Modulus M_R

 Table 32A: Subgrade Types and Subgrade Resilient Modulus

CODE	SUDCDADE TVDE	Material	RESILIENT MODULUS (psi)		
CODE	SUDGRADE ITTE	Classification	Level 2	Level 3	
E1	Claycy soils	A-7-6	11500	8000	
E2 (Control)	Fine sand, some silt	A-2-4	21500	32000	
E3	Coarse to fine gravelly, coarse to medium sand, some fine sand	A-1-a	29500	40000	

6.8 Effective Binder Content V_{be}, % (AASHTO T308)

From table 490.03 B – Design Criteria the VT AOT specifies VFA % from 65% to 75% for Traffic Level (ESALs) >3,000,000

V_a = Air voids (%) V_{beff} = Effective binder content, %

VFA = Void filled with asphalt (%)

$VFA = [V_{beff} / (V_{beff} + V_a)]x100$

VFA (%)		65			70			75	
V _a (%)	4	5	6	4	5	6	4	5	6
V _{beff} (%)	7.4	9.3	11.1	9.3	11.7	14	12	15	18

Table 33A: V_{beff} Calculated from VFA and V_a Values

Table 34A: Recommended Typical Mix VMA and Binder Content

Gradation Mix Designation	In-situ VMA, percent	In-situ Effective Binder Content, percent by volume
l-in	16.5	10.0
3⁄4-in	18.0	11.5
½−in	19.5	13.0
3⁄8-in	21.0	14.5

Table 35A: Effective Binder Content

CODE	EFFECTIVE BINDER CONTENT		
F1	9.5		
F2 (Control)	11.5		
F3	13.5		

Table 36A: HMA Mix Gradation Input Values

	9.5 mm (3/8")			19.0 mm (3/4")		
% of Aggregate	A1	A2	A3	B1	B2	B3
Retained on 3/4" sieve	0	0	0	14.0	18.6	12.0
Retained on 3/8" sieve	5.0	8.2	3.6	24.0	32.4	19.8
Retained on #4 sieve	35.0	48.3	22.1	42.0	52.0	34.5
Passing #200 sieve	6.0	2.8	8.5	5.0	2.8	7.2

1 - Mean values of the allowable range of values

 $2-Coarse \ mix \ gradation$

3 - Fine mix gradation

6.9 Air Voids Content, %

able 5/A: All volus relicentage (whithe design)			
CODE	AIR VOIDS PERCENT		
V1	4.0		
V2 (Control)	5.0		
V3	6.0		

 Table 37A: Air Voids Percentage (Mixture design)

Non mixture design Air Voids (in-situ air voids at construction site) will be based on percent compaction in specification:

- Range 3.5 to 9.5 (90.5 to 96.5)
- Target 6.5 (93.5) recommended

6.10 Mix Coefficient of Thermal Contraction (CTC)

CODE	COEFFICIENT OF THERMAI	
	CONTRACTION	
N1	1.0 E-05	
N2 (Control)	1.3 E-05	
N3	2.0 E-05	

 Table 38A: Mix Coefficient of Thermal Contraction Level 2

The Mix CTC default value of 1.3 E-05 is used for Level 3 sensitivity analysis.

Level 2 CTC are listed above.

6.11 Aggregate Coefficient of Thermal Contraction

The MEPDG default value is $5.0*10^{-6}/{}^{\circ}$ F.

6.12 Initial IRI Values for New Pavement Design

PAVEMENT	IRI, IN/MI		
ТҮРЕ	MINIMUM	AVERAGE	MAXIMUM
NEW HMA AND			
HMA/HMA*	32	70	106

 Table 39A: Suggested Initial IRI Values for New Pavement Design.

*- Initial IRI for HMA pavements shall be set within the range of 70 to 85 in/mi.

Table 40A: Initial IRI Values Used for Analysis.

CODE	Initial IRI (in/mi)		
S1	32		
S2 (Control)	75		
S3	106		

7. Vermont Level 3 Sensitivity Analysis

.

7.1 Effect of Traffic Inputs on Pavement Distresses

Figure 15A: Effect of Truck Class Distribution on Bottom-Up Cracking

Figure 16A: Effect of Truck Class Distribution on Top-Down Cracking

Figure 17A: Effect of Truck Class Distribution on Subtotal AC Rutting

Figure 18A: Effect of Truck Class Distribution on Total Rutting

Figure 19A: Effect of Truck Class Distribution on IRI

Figure 20A: Effect of Traffic Growth Rate at Bottom-Up Cracking

Figure 21A: Effect of Traffic Growth Rate on Top-Down Cracking

Figure 22A: Effect of Traffic Growth on Subtotal AC Rutting

Figure 23A: Effect of Traffic Growth Rate on Total Rutting

Figure 24A: Effect of Traffic Growth Rate on IRI

Figure 25A: Effect of AADTT on Bottom-Up Cracking

Figure 26A: Effect of AADTT on Top-Down Cracking

Figure 27A: Effect of AADTT on Subtotal AC Rutting

Figure 28A: Effect of AADTT on Total Rutting

Figure 29A: Effect of AADTT on IRI

7.2 Effect of Climate Inputs on Pavement Distresses

Figure 30A: Effect of Climate on Bottom-Up Cracking

Figure 31A: Effect of Climate on Top-Down Cracking

Figure 32A: Effect of Climate on Subtotal AC Rutting

Figure 33A: Effect of Climate on Total Rutting

Figure 34A: Effect of Climate on IRI

Figure 35A: Effect of Water Table Depth on Bottom-Up Cracking

Figure 36A: Effect of Water Table Depth on Top-Down Cracking

Figure 37A: Effect of Water Table Depth on Subtotal AC Rutting

Figure 38A: Effect of Water Table Depth on Total Rutting

Figure 39A: Effect of Water Table Depth on IRI

7.3 Effect of Material Inputs on Pavement Distresses

Figure 40A: Effect of Effective Binder Content on Bottom-Up Cracking

Figure 41A: Effect of Effective Binder Content on Top-Down Cracking

Figure 42A: Effect of Effective Binder Content on Subtotal AC Rutting

Figure 43A: Effective of Effective Binder Content on Total Rutting

Figure 44A: Effect of Effective Binder Content on IRI

Figure 45A: Effect of Percent Air Voids on Bottom-Up Cracking

Figure 46A: Effect of Percent Air Voids on Top-Down Cracking

Figure 47A: Effect of Percent Air Voids on Subtotal AC Rutting

Figure 48A: Effect of Percent Air Voids on Total Rutting

Figure 49A: Effect of Percent Air Voids on IRI

Figure 50A: Effect of AC Layer Thickness on Bottom-Up Cracking

Figure 51A: Effect of AC Layer Thickness on Top-Down Cracking

Figure 52A: Effect of AC Layer Thickness on Subtotal AC Rutting

Figure 53A: Effect of AC Layer Thickness on Total Rutting

Figure 54A: Effect of AC Layer Thickness on IRI

7.4 Effect of Asphalt Concrete Mix Gradation

Figure 55A: Effect of Aggregate Gradation of 9.5 mm AC mix on Bottom-Up Cracking

Figure 56A: Effect of Aggregate Gradation of 9.5 mm AC mix on Top-Down Cracking

Figure 57A: Effect of Aggregate Gradation of 9.5 mm AC mix on Subtotal AC Rutting

Figure 58A: Effect of Aggregate Gradation of 9.5 mm AC mix on Total Rutting

Figure 59A: Effect of Aggregate Gradation of 9.5 mm AC mix on IRI

Figure 60A: Effect of Aggregate Gradation of 19.0 mm mix on Bottom-Up Cracking

Figure 61A: Effect of Aggregate Gradation of 19.0 mm mix on Top-Down Cracking

Figure 62A: Effect of Aggregate Gradation of 19.0 mm mix on Subtotal AC Rutting

Figure 63A: Effect of Aggregate Gradation of 19.0 mm mix on Total Rutting

Figure 64A: Effect of Aggregate Gradation of 19.0 mm mix on IRI

Figure 65A: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Bottom-Up Cracking

Figure 66A: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Top-Down Cracking

Figure 67A: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Subtotal AC Rutting

Figure 68A: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Total Rutting

Figure 69A: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on IRI

Figure 70A: Effect of Binder Grade on Bottom-Up Cracking at Speed 5 mph

Figure 71A: Effect of Binder Grade on Top-Down Cracking at Speed 5 mph

Figure 72A: Effect of Binder Grade on Subtotal AC Rutting at Speed 5 mph

Figure 73A: Effect of Binder Grade on Total Rutting at Speed 5 mph

Figure 74A: Effect of Binder Grade on IRI at Speed 5 mph

Figure 75A: Effect of Binder Grade on Bottom-Up Cracking at Speed 25 mph

Figure 76A: Effect of Binder Grade on Top-Down Cracking at Speed 25 mph

Figure 77A: Effect of Binder Grade on Subtotal AC Rutting at Speed 25 mph

Figure 78A: Effect of Binder Grade on Total Rutting at Speed 25 mph

Figure 79A: Effect of Binder Grade on IRI at Speed 25 mph

Figure 80A: Effect of Binder Grade on Bottom-Up Cracking at Speed 55 mph

Figure 81A: Effect of Binder Grade on Top-Down Cracking at Speed 55 mph

Figure 82A: Effect of Binder Grade on Subtotal AC Rutting at Speed 55 mph

Figure 83A: Effect of Binder Grade on Total Rutting at Speed 55 mph

Figure 84A: Effect of Binder Grade on IRI at Speed 55 mph

7.5 Effect of Base/Subbase Inputs on Pavement Distresses

Figure 85A: Effect of Base Course Material on Bottom-Up Cracking

Figure 86A: Effect of Base Course Material on Top-Down Cracking

Figure 87A: Effect of Base Course Material on Subtotal AC Rutting

Figure 88A: Effect of Base Course Material on Total Rutting

Figure 89A: Effect of Base Course Material on IRI

Figure 90A: Effect of Subgrade Type on Bottom-Up Cracking

Figure 91A: Effect of Subgrade Type on Top-Down Cracking

Figure 92A: Effect of Subgrade Type on Subtotal AC Rutting

Figure 93A: Effect of Subgrade Type on Total Rutting

Figure 94A: Effect of Subgrade Type on IRI

Figure 95A: Effect of Water Table on Bottom-Up Cracking with Weakest Subgrade

Figure 96A: Effect of Water Table on Top-Down Cracking with Weakest Subgrade

Figure 97A: Effect of Water Table on Subtotal AC Rutting with Weakest Subgrade

Figure 98A: Effect of Water Table on Total Rutting with Weakest Subgrade

Figure 99A: Effect of Water Table on IRI with Weakest Subgrade

Figure 100A: Effect of HMA CTC on Bottom-Up Cracking

Figure 101A: Effect of HMA CTC on Top-Down Cracking

Figure 102A: Effect of HMA CTC on Subtotal AC Rutting

Figure 103A: Effect of HMA CTC on Total AC Rutting

Figure 104A: Effect of HMA CTC on IRI

Figure 105A: Effect of Initial IRI on Bottom-Up Cracking

Figure 106A: Effect of Initial IRI on Top-Down Cracking

Figure 107A: Effect of Initial IRI on Subtotal AC Rutting

Figure 108A: Effect of Initial IRI on Total Rutting

Figure 109A: Effect of Initial IRI on IRI

8. Sensitivity Analysis Summary Level 3

Normalization of the distresses was done to compare the effects of each input parameter on predicted distresses.

The normalized distress levels are calculated as the ratio of the difference between the maximum and minimum predicted distresses for each input variable to the distress levels corresponding to the control set of input values.

$N = \frac{Maximum \ Distress - Minimum \ Distress}{Distress \ for \ control \ input \ set}$

-

N - Normalized Value

Table 41A: Difference between Maximum and Minimum Distress Level – Level 3

VERMONT LEVEL 3									
Input Variable	Bottom-Up	Top-Down	AC Rutting	Total Rutting	IRI				
HMA thickness	0.12	1458.07	0.022	0.079	3.2				
HMA mix	0.02	377.43	0.06	0.072	3.0				
gradation									
HMA air voids	0.08	798.56	0.019	0.025	1.1				
HMA effective	0.05	409.08	0.023	0.031	0.9				
binder content									
HMA binder	0.02	353.41	0.045	0.057	2.3				
grade									
Base	0.02	442.11	0.006	0.022	0.9				
type/modulus									
Subgrade	0.02	1123.56	0.007	0.11	12.0				
type/modulus									
Ground water	0.01	296.48	0.01	0.037	1.5				
table									
WT with weakest	0.02	26.87	0.005	0.027	1.1				
subgrade									
Climate	0.01	121.11	0.04	0.043	1.6				
AADTT value	0.08	618.19	0.072	0.094	3.8				
Operational	0.07	634.17	0.149	0.177	7.1				
speed									
Traffic growth	0.01	111.66	0.012	0.016	0.79				
rate				· · · · · · · · · · · · · · · · · · ·					
Traffic	0.06	598.17	0.047	0.062	2.6				
distribution									
HMA CTC	0	0	0	0	0.6				
Initial IRI	0	0	0	0	74				

VERMONT LEVEL 3										
Input Variable	Botto	m-Up	Top-l	Down	AC R	utting	To	tal	IRI	
	Value	Donk	Value	Donk	Value	Popk	Value	Dopk	Value	Dank
UNA thickness		Ralik		Kalik	value 0.145	Nalik o	Value			
	0.079	4	0.997		0.145	0	0.210	4	0.027	4
HMA mix	0.013	0	0.258	9	0.395	3	0.198	5	0.025	0
	0.052		0.546	2	0.125		0.0(0	12	0.000	
HMA air voids	0.053		0.546	3	0.125	9	0.069	12	0.009	11
HMA effective	0.000	_ ا	0.000		0.1-1		0.005	10	0.007	10
binder content	0.033	5	0.280	8	0.151	/	0.085	10	0.007	12
HMA binder						_		_		
grade	0.013	6	0.242	10	0.296	5	0.157	7	0.019	8
Base				_						
type/modulus	0.013	6	0.302	7	0.039	13	0.061	13	0.007	12
Subgrade										
type/modulus	0.013	6	0.768	2	0.046	12	0.303	2	0.100	2
Ground water	0.007									
table		7	0.203	11	0.066	11	0.102	9	0.012	10
WT with										
weakest	0.013	6	0.018	14		14		11		11
subgrade					0.033		0.074		0.009	
Climate	0.007	7	0.083	12	0.263	6	0.118	8	0.013	9
AADTT value	0.053	2	0.423	5	0.474	2	0.259	3	0.032	5
Operational	0.046	3	0.433	4		1		1,		3
speed					0.980		0.488		0.059	
Traffic growth										
rate	0.007	7	0.076	13	0.079	10	0.044	14	0.007	12
Traffic										
distribution	0.040	4	0.409	6	0.309	4	0.171	6	0.022	7
HMA CTC	0.000	8	0.000	15	0.000	15	0.000	15	0.005	13
Initial IRI	0.000	8	0.000	15	0.000	15	0.000	15	0.615	1

 Table 42A: Normalized Values for Vermont Level 3 and Ranks

Figure 110A: Significance of Effect of Input Variables on Bottom-Up Cracking

Figure 111A: Significance of Effect of Input Variables on Top-Down Cracking

Figure 112A: Significance of Effect of Input Variables on AC Rutting

Figure 113A: Significance of Effect of Input Variables on Total Rutting

Figure 114A: Significance of Effect of Input Variables on IRI

Bottom-Up	Top-Down	AC Rutting	Total Rutting	IRI
HMA Thickness	HMA Thickness	Operational Speed	Operational Speed	Initial IRI
HMA Air Voids	Subgrade Type/ Modulus	AADTT	Subgrade Type/ Modulus	Subgrade Type/ Modulus
AADTT	HMA Air Voids	HMA Mix Gradation	AADTT	Operational Speed
Operational Speed	Operational Speed	Traffic Distribution	HMA Thickness	HMA Thickness
Traffic Distribution	AADTT	HMA Binder Grade	HMA Mix Gradation	AADTT
HMA Effective Binder Content	Traffic Distribution	Climate	Traffic Distribution	HMA Mix Gradation

Table 43A: Sensitivity Analysis Results Level 3

Design/ Material	erial Distress/Smoothness						
	Bottom-Up	Top-Down	AC Rutting	Total	IRI (in/mi)		
	Cracking	Cracking	(in)	Rutting (in)			
	(%)	(ft/mi)					
HMA thickness	XXX	XXX	X	X			
HMA mix gradation	XX	XX	XX	X			
HMA air voids	XXX	XXX	X				
HMA effective binder content	XX	XX	X				
HMA binder grade	Х	XX	XX	X			
Base type/modulus	Х	XX					
Subgrade type/modulus	Х	XXX		XX	X		
Ground water table	Х	XX	X	X			
WT with weakest subgrade	Х	X	X	X			
Climate	Х		XX	X			
AADTT value	XXX	XX	XXX	XX			
Operational speed	XX	XX	XXX	XX	X		
Traffic growth rate	Х	Х	X				
Traffic distribution	XX	XX	XX	Х			
HMA CTC							
Initial IRI					XXX		

Table 44A: Sensitivity Analysis Summary Level 3

Note:

X – Small effect XX – moderate effect XXX – large effect

VERMONT LEVEL 3									
Input Variable	Bottom- Up	Top-Down	AC Rutting	Total Rutting	IRI	Total Ranking Points	Overall Order of Significance		
	Rank	Rank	Rank	Rank	Rank				
HMA thickness	1	1	8	4	4	18	3		
HMA mix gradation	6	9	3	5	6	29	6		
HMA air voids	2	3	9	12	11	37	8		
HMA effective binder content	5	8	7	10	12	42	9		
HMA binder grade	6	10	5	7	8	36	7		
Base type/modulus	6	7	13	13	12	51	11		
Subgrade type/modulus	6	2	12	2	2	24	4		
Ground water table	7	11	11	9	10	48	10		
WT with weakest subgrade	6	14	14	11	11	56	13		
Climate	7	12	6	8	9	42	9		
AADTT value	2	5	2	3	5	17	2		
Operational speed	3	4	1	1	3	12	1		
Traffic growth rate	7	13	10	14	12	56	13		
Traffic distribution	4	6	4	6	7	27	5		
HMA CTC	8	15	15	15	13	66	14		
Initial IRI	8	15	15	15	1	54	12		

9. Vermont Level 2 Sensitivity Analysis

9.1 Effect of Traffic Inputs on Level 2 Predicted Pavement Distresses

Figure 115A: Effect of AADTT on Bottom-Up Cracking

Figure 116A: Effect of AADTT on Top-Down Cracking

Figure 117A: Effect of AADTT on Subtotal AC Rutting

Figure 118A: Effect of AADTT on Total Rutting

Figure 119A: Effect of AADTT on IRI

Figure 120A: Effect of Truck Class Distribution on Bottom-Up Cracking

Figure 121A: Effect of Truck Class Distribution on Top-Down Cracking

Figure 122A: Effect of Truck Class Distribution on Subtotal AC Rutting

Figure 123A: Effect of Truck Class Distribution on Total Rutting

Figure 124A: Effect of Truck Class Distribution on IRI

9.2 Effect of Material Inputs on Level 2 predicted Pavement Distresses

Figure 125A: Effect of Effective Binder Content on Bottom-Up Cracking

Figure 126A: Effect of Effective Binder Content on Top-Down Cracking

Figure 127A: Effect of Effective Binder Content on Subtotal AC Rutting

Figure 128A: Effect of Effective Binder Content on Total Rutting

Figure 129A: Effect of Effective Binder Content on IRI

Figure 130A: Effect of Air Void Content on Bottom-Up Cracking

Figure 131A: Effect of Air Void Content on Top-Down Cracking

Figure 132A: Effect of Air Void Content on Subtotal AC Rutting

Figure 133A: Effect of Air Void Content on Total Rutting

Figure 134A: Effect of Air Void Content on IRI

Figure 135A: Effect of Base Course Material on Bottom-Up Cracking

Figure 136A: Effect of Base Course Material on Top-Down Cracking

Figure 137A: Effect of Base Course Material on Subtotal AC Rutting

Figure 138A: Effect of Base Course Material on Total Rutting

Figure 139A: Effect of Base Course Material on IRI

Figure 140A: Effect of Subgrade Type on Bottom-Up Cracking

Figure 141A: Effect of Subgrade Type on Top-Down Cracking

Figure 142A: Effect of Subgrade Type on Subtotal AC Rutting

Figure 143A: Effect of Subgrade Type on Total Rutting

Figure 144A: Effect of Subgrade Type on IRI

Figure 145A: Effect of Water Table on Bottom-Up Cracking with Weakest Subgrade

Figure 146A: Effect of Water Table on Top-Down Cracking with Weakest Subgrade

Figure 147A: Effect of Water Table on Subtotal AC Rutting with Weakest Subgrade

Figure 148A: Effect of Water Table on Total Rutting with Weakest Subgrade

Figure 149A: Effect of Water Table on IRI with Weakest Subgrade

Figure 150A: Effect of HMA CTC on Bottom-Up Cracking

Figure 151A: Effect of HMA CTC on Top-Down Cracking

Figure 152A: Effect of HMA CTC on Subtotal AC Rutting

Figure 153A: Effect of HMA CTC on Total Rutting

Figure 154A: Effect of HMA CTC on IRI

Figure 155A: Effect of Initial IRI on Bottom-Up Cracking

Figure 156A; Effect of Initial IRI on Top-Down Cracking

Figure 157A: Effect of Initial IRI on Subtotal AC Rutting

Figure 158A: Effect of Initial IRI on Total AC Rutting

Figure 159A: Effect of Initial IRI on IRI

10. Sensitivity Analysis Summary Level 2

Normalization of the distresses was done to compare the effects of each input parameter on predicted distresses.

The normalized distress levels are calculated as the ratio of the difference between the maximum and minimum predicted distresses for each input variable to the distress levels corresponding to the control set of input values.

$\mathbf{N} = \frac{\mathbf{Maximum Distress} - \mathbf{Minimum Distress}}{\mathbf{Distress for control input set}}$

N - Normalized Value

VEDMONT I EVEL 2								
Input Variable	Bottom-Up Cracking	Top-Down Cracking	AC Rutting	Total Rutting	IRI			
HMA air voids	0.1	762.4	0.023	0.029	1.1			
HMA effective	0.05	410.48	0.028	0.035	1.3			
HMA CTC	0	0	0	0	12.1			
Base type/modulus	0.02	256.33	0.004	0.014	0.6			
Subgrade type/modulus	0.03	928.81	0.006	0.042	9.3			
WT with weakest subgrade	0.03	30.98	0.006	0.024	1.0			
AADTT value	0.11	603.71	0.086	0.114	4.6			
Traffic distribution	0.06	424.95	0.061	0.075	3.0			
Initial IRI	0	0	0	0	74.0			
HMA Layer thickness	0.2	1595.26	0.027	0.097	4.0			

 Table 46A: Difference between Maximum and Minimum Distress Level – Level 2

VERMONT LEVEL 2										
	Botto	m-Up	Top-l	Down	AC Rutting		Total		IRI	
Input	Crac	king	Crac	king			Rut	ting		
Variable										
	Value	Rank	Value	Rank	Value	Rank	Value	Rank	Value	Rank
HMA air voids	0.065	3	0.551	3	0.126	5	0.066	6	0.009	8
HMA	0.033	5	0.297	6	0.153	3	0.080	5	0.011	7
effective										
binder content										
HMA CTC	0.000	8	0.000	9	0.000	8	0.000	9	0.098	2
Base	0.013	7	0.185	7	0.022	7	0.032	8	0.005	10
type/modulus										
Subgrade	0.020	6	0.672	2	0.033	6	0.096	4	0.075	3
type/modulus										
WT with	0.020	6	0.022	8	0.033	6	0.055	7	0.008	9
weakest										
subgrade										
AADTT value	0.072	2	0.436	4	0.470	1	0.261	1	0.037	4
Traffic	0.039	4	0.307	5	0.333	2	0.172	3	0.024	6
distribution										
Initial IRI	0.000	8	0.000	9	0.000	8	0.000	9	0.600	1
HMA	0.131	1	1.153	1	0.148	4	0.222	2	0.032	5
thickness										

Table 47A: Normalized Values for Vermont Level 2 and Ranks

Bottom-Up Cracking

Top-Down Cracking

Figure 161A: Significance of Effect of Input Variables on Top-Down Cracking

AC Rutting

Figure 162A: Significance of Effect of Input Variables on AC Rutting

Total Rutting

Figure 163A: Significance of Effect of Input Variables on Total Rutting

Figure 164A: Significance of Effect of Input Variables on IRI

Bottom-Up	Top-Down	AC Rutting	Total Rutting	IRI
HMA Thickness	HMA Thickness	AADTT	AADTT	Initial IRI
AADTT	Subgrade Type/ Modulus	Traffic Distribution	HMA Thickness	НМА СТС
HMA Air Voids	HMA Air Voids	HMA Effective Binder Content	Traffic Distribution	Subgrade Type/ Modulus
Traffic Distribution	AADTT	HMA Thickness	Subgrade Type/ Modulus	AADTT
HMA Effective Binder Content	Traffic Distribution	HMA Air Voids	HMA Effective Binder Content	HMA Thickness

Table 48A: Sensitivity Analysis Results Level 2*

* Values from highest to lowest

.

Table 49A: Sensitivity Analysis Summary Level 2

Design/	Distress/Smoothness								
Material Variable	Bottom-Up Cracking	Top-Down Cracking	AC Rutting	Total Rutting	IRI				
HMA air voids	XXX	XXX	X	X					
HMA effective binder content	XX	XX	XX	Х					
HMA CTC					Х				
Base type/modulus	Х	Х	X	Х					
Subgrade type/modulus	Х	XXX	X	Х	Х				
WT with weakest subgrade	Х	Х	X	X					
AADTT value	XXX	XXX	XXX	XXX					
Traffic distribution	XX	XX	XX	XX					
HMA Thickness	XXX	XXX	XX	XX					
Initial IRI					XXX				

Note: X – Small effect

XX – moderate effect

XXX – large effect
References (Vermont)

- 1. http://groundwaterwatch.usgs.gov/AWLSites.asp?S=440016073070901&ncd=
- 2. http://www.ltpp-products.com/DataPave/index.asp
- 3. Sensitivity Study of Design Input Parameters for Two Flexible Pavement Systems Using the MEPDG; Sunghwan Kim, Iowa State University, August 2005.
- Vermont Agency of Transportation Flexible Pavement Design Procedures for use with the 1993 AASHTO Guide for Design of Pavement Structures; March 1, 2002.
- Sensitivity Analysis of Pavement Performance Predicted Using the MEPDG; Dinesh Ayyala, May 2009.
- 6. Superpave Series No. 1 (SP-1, 2003) and No. 2 (SP-2, 1996)
- Report No. UT-09.11a Draft User's Guide for UDOT MEPDG; October 2009.
- 8. ASTM Standards Volume 04.03, 2008
- 9. ASTM Standards Volume 04.08, 2009

CODE	DESCRIPTIONS
A1, A2, A3	3/8" (9.5 mm) HMA mix gradation
B1, B2, B3	3/4" (19 mm) HMA mix gradation
A1B1, A2B2, A3B3	Mean, coarse, fine HMA mix gradation
D1, D2, D3, D4	Truck class distribution
E1, E2, E3	Subgrade type
F1, F2, F3	Effective binder content
G1, G2, G3	AC Binder grade
M1, M2, M3	Base course aggregate gradation level 3
M1L2, M2 L2	Base course aggregate gradation level 2
N1, N2, N3	Coefficient of Thermal Contraction
Q1, Q2, Q3	AADTT value
R1, R2, R3	Traffic growth rate
S1, S2, S3	Initial IRI
Т1, Т2, Т3	HMA layer thickness
U1, U2, U3	Traffic operational speed
V1, V2, V3	Binder air content
WT1, WT2, WT3	Ground water table level

Appendix B: Vermont Performance Graded Binder Selection Map (Vermont)

Material Classification	M _r Range	Typical M _r
A-1-a	38,500 - 42,000	40,000
A-1-b	35,500 - 40,000	38,000
A-2-4	28,000 - 37,500	32,000
A-2-5	24,000 - 33,000	28,000
A-2-6	21,500 - 31,000	26,000
A-2-7	21,500 - 28,000	24,000
A-3	24,500 - 35,500	29,000
A-4	21,500 – 29,000	24,000
A-5	17,000 – 25,500	20,000
A-6	13,500 - 24,000	17,000
A-7-5	8,000 - 17,500	12,000
A-7-6	5,000 - 13,500	8,000
СН	5,000 - 13,500	8,000
MH	8,000 - 17,500	11,500
CL	13,500 - 24,000	17,000
ML	17,000 – 25,500	20,000
SW	28,000 - 37,500	32,000
SP	24,000 - 33,000	28,000
SW-SC	21,500 - 31,000	25,500
SW-SM	24,000 - 33,000	28,000
SP-SC	21,500 - 31,000	25,500
SP-SM	24,000 - 33,000	28,000
SC	21,500 - 28,000	24,000
SM	28,000 - 37,500	32,000
GW	39,500 - 42,000	41,000
GP	35,500 - 40,000	38,000
GW-GC	28,000 - 40,000	34,500
GW-GM	35,500 - 40,500	38,500
GP-GC	28,000 – 39,000	34,000
GP-GM	31,000 - 40,000	36,000
GC	24,000 - 37,500	31,000
GM	33,000 - 42,000	38,500

Appendix C: Material Classification (Vermont)

Appendix D: Permanent Traffic Recorder Stations (Vermont)

Appendix E: Performance Graded Binder Selection Table (Vermont)

Performance Graded Binder Selection Table

	Adjusted PG Binder Grade			
Design ESALs ⁽¹⁾		Average Traffic Speed		
(million)	< 20 km/h (12 mph)	20 to 70 km/h (12 to 44 mph)	> 70 km/h (44 mph)	
< 0.3	PG 58-XX ⁽²⁾	PG 58-XX	PG 58-XX	
0.3 to < 3	PG 64-XX	PG 58-XX	PG 58-XX	
3 to < 10	PG 70-28 ⁽³⁾	PG 64-XX	PG 58-XX	
10 to < 30	PG 70-28 ⁽³⁾	PG 64-XX	PG 64-XX	
> 30	PG 70-28 ⁽³⁾	PG 64-XX	PG 64-XX	

Adjusted PG Binder on the Basis of Traffic Speed and Traffic Level

⁽¹⁾ Design ESALs are the anticipated project traffic level expected on the design lane over a 20-year period, regardless of the actual design life of the roadway.

⁽²⁾ XX indicates the low temperature of the selected PG Binder determined from the Performance Graded Binder Selection Map. either -28 or -34.

⁽³⁾ When the high-end temperature is adjusted two grades to a 70. the low-end temperature needs to be changed to a -28 if the selected PG binder is a PG 58-34. If selected PG binder is a PG 58-28, then no change to the low-end temperature is needed when changing the high-end temperature two grades to 70.

Appendix B: New York State M-E PDG Level 3 Report

NEW YORK STATE

RANGE OF VALUES FOR CRITICAL INPUT PARAMETERS

INPUT VALUE SELECTION FOR NEW YORK FOR M-E PDG

RUNS

1. General Inputs

1.1 Design Life

• 20 years for a new pavement is recommended.

1.2 Construction & Traffic Opening Dates

- Base/subgrade construction month August, 2010
- Pavement construction month September, 2010
- Traffic opening date October, 2010

1.3 Type of Pavement

This analysis is performed for a new flexible pavement.

1.4 Site/Project Identification

The site is located in East Syracuse, NY, 481 Highway (LTPP section # 36-1011-1)

- County: ONONDAGA
- Latitude, deg. 43.12
- Longitude, deg. -76.05
- Elevation, (ft) 395
- Org. construction date: 06/01/1984
- Constr. event date 09/14/1993
- Functional class: 11
- Years of climatic data 27

Figure 1B: LTPP Section 36-1011-1 Coordinates

1.5 LTPP Road Section Structure

$1 a D C 1 D \cdot 1 a v C M C M C M C A V C S a C C C U U M S O - 1 V I I - 1$	Table 1B:	Pavement	Lavers at	Section	36-1011-1
---	-----------	----------	-----------	---------	-----------

Layer Type	Layer Thickness (in)
Original Surface Layer (layer Type: AC)	1.2"
AC Layer Below Surface (Binder Course)	8.6''
Base Layer (Layer Type: GB)	15.1"
Subgrade (Layer Type: SS)	Semi-infinite

LTPP road section # 36-1011-1 contains of 2 traffic lines in one direction.

2. Performance Criteria Inputs (Analysis Parameters)

Pavement Type	Performance Criteria	Max. Value at End of Design
i aveniene i ype		
		Life at Design Reliability
	HMA bottom up fatigue	Interstate: 10 percent lane
	cracking (alligator	area
	cracking)	Primary: 20 percent lane
		area
		Secondary: 45 percent lane
		area
	HMA longitudinal	Interstate: 2,000-ft/mile
	fatigue cracking (top	Primary: 2,500-ft/mile
	down)	Secondary: 3,000-ft/mile
HMA pavement & overlays	Permanent deformation	Interstate: 0.40-in mean
	(total mean rutting of	Primary: 0.50-in mean
	both wheel paths)	Others <40 mph: 0.75-in
		mean
	Thermal fracture	Interstate: Crack spacing >
	(transverse cracks)	70-ft
		(Crack length < 905-
		ft/mile)
		Primary/Secondary:
		Crack spacing > 50-ft
		(Crack length < 1267-
		ft/mile)
	IRI	Interstate/Primary: 169
		in/mile maximum
		Secondary: 223 in/mile
		maximum

	D. C.	C -14 · C	πт. •	D	n
Table 2B: Suggested	Performance	Criteria for	Use in	Pavement	Design. [^]

*Report No. UT-09.11a "Draft User's Guide for UDOT MEPDG"; October 2009

Analysis parameter	Maximum criteria at 90%		
	Reliability		
Initial IRI (in /mi)	75		
Terminal IRI (in /mi)	172		
AC Suiface Down Cracking (ft/mi)	2000		
AC Bottom Up Cracking (%)	25		
AC Thermal Fracture (ft/mi)	1000		
Permanent Deformation – Total Pavement (in)	0 75		
Permanent Deformation – AC only (in)	0 25		

Table 3B: Analysis Parameters Used for NY State.

Inalysis Parameters	a se ann a' a sta sin militer state strate strate sinne ann ster stratean server an se	162. 70 - 149 	ste oggeforet og	?
				}
Project Name	NY_1011 level3 Control			1
Initial IRI (in/mi)	75			,
Performance Criteria	van mener ande mener			****
Rigid Pavement	Flexible Pavement			1
		Lmit	Reliability	
S	Terminal IRI (in/mile)	1-2	90	• •
	AC Surface Down Cracking Long Cracking (ft/mi)	2000	55	
S	AC Bottom Up Cracking Alligator Cracking (%)	25	90	•
S	AC Thermal Fracture (ft/mi)	1000	90	•
	Chemically Stabilized Layer Fatigue Fracture(%)	25	90	
ব	Permanent Deformation - Total Pavement (in)	C 75	35	-
	Permanent Deformation - AC Only (in)	C 25	90	-

Figure 2B: Analysis Parameters Used in NY

Project: NY 1011	J	<u>_</u>			
level3 Control					
Reliability					
Summary					
•	Distress	Reliability	Distress	Reliability	
Performance Criteria	Target	Target	Predicted	Predicted	Acceptable
Terminal IRI (in/mi)	172	90	124.1	92.19	Pass
AC Surface Down Cracking					
(Long. Cracking) (ft/mile):	2000	90	3.5	99.98	Pass
AC Bottom Up Cracking					
(Alligator Cracking) (%):	25	90	0.1	99.999	Pass
AC Thermal Fracture					
(Transverse Cracking) (ft/mi):	1000	90	460.9	99.999	Pass
Chemically Stabilized Layer					
(Fatigue Fracture)	25	90			N/A
Permanent Deformation (AC					
Only) (in):	0.25	90	0.17	92.01	Pass
Permanent Deformation					
(Total Pavement) (in):	0.75	90	0.38	99.999	Pass

Table 5B: IRI Ranges Defined by FHWA Highway Statistics Publications

IRI Scale (in/mi)	Description
< 60	Very Smooth
61 – 120	Smooth
121 – 170	Fair
171 – 220	Rough
> 220	Very Rough

3. Design Reliability Input

Functional Classification	Urban	Rural
Interstate/Freeways	95	92
Principal Arterials	90	85
Collectors	80	75
Locals	70	60

Table 6B: Tentative Recommended Level of Reliability

A design reliability of 90 percent is selected for this analysis. A higher level of design reliability is not recommended, because of the significant cost increase.

4. Traffic Inputs

Traffic Input	Recommended Value
Initial two way AADTT (class 4 and above)	Projected traffic for opening month from
	measured historical data.
Number of lanes in design direction	Actual or from design plans.
Percent of trucks in design direction (%)	50%, unless higher truck volume is measured in design direction
Percent of trucks in design lane (%)	 Actual measured in design lane over 24-hours, otherwise use the following: 100% for 1 lane in design direction 95% for 2 lanes in design direction For unusual truck traffic situations (mountainous terrain or urban usage complexity), conduct on site truck lane usage counts over 24-hour period.
Operational Speed (mph)	Posted or Design Speed

Table 7B: Recommended Traffic Value Inputs

4.1 Annual Average Daily Truck Traffic (AADTT)

Truck Traffic (AADTT) was calculated by taking 16.0 % of Annual Average Daily Traffic (AADT) as given in 2010 Traffic Data Viewer. The AADT for 481 Highway located in East Syracuse, NY (ONONDAGA County) was 26198 for the 2010 year. Control AADTT for this study is taken as 4192.

Figure 3B: Traffic Inputs for East Syracuse, NY

Figure 4B: Traffic Data Viewer October 2010

Figure 5B: NY State DOT Region 3 map

Figure 6B: NY State WIM Stations.

FHWA VEHICLE CLASSIFICATIONS

Figure 7B: Illustration of FHWA/AASHTO Vehicle Class Type Description

4.2 Truck Class Distribution selections

	CODE					
TRUCK	D (from	D1 (low	D2 (high	D3 (Level 3-		
CLASS	LTPP)*	class)**	class)**	Control)		
4	N/A	5.2	· 0.1	1.8		
5	N/A	38.9	0.6	24.6		
6	N/A	35.8	0.8	7.6		
7	N/A	10.2	0.6	0.5		
8	N/A	5.6	6.8	5.0		
9	N/A	3.5	9.2	31.3		
10	N/A	0.2	25.8	9.8		
11	N/A	0.3	36.4	0.8		
12	N/A	0.2	16.5	3.3		
13	N/A	0.1	3.2	15.3		

Table 8B: Truck Class Distribution Level 3 Summary

* - no LTPP Truck Class Distribution data

**- Based on Sensitivity Study of Design Input Parameters for Flexible Pavement Systems using M-E PDG in Iowa DOT, 2004

4.3 Rate of Traffic Growth

Code	Traffic Growth Rate		
R1	1.0 % linear		
R2 (Control)	2.0 % linear		
R3	3.0 % linear		

 Table 9B: Selected Traffic Growth Rates for New York State

4.4 Traffic Operational Speed

Table 10B: Selected Traffic Operational Speeds

Code	Traffic Operational Speed (mph)	Binder Grades
Ul	5	G1, G2, G3
U2	25	G1, G2, G3
U3 (Control)	65	G1, G2, G3

4.5 Annual Average Daily Truck Traffic (AADTT)

Table 11B: Calculated AADTT Values

Code	Station ID/location	Traffic Volume (AADTT)
Q1 (Control)	East Syracuse, NY	4192
Q2	I-90 exit	6154
Q3	South of I-90	7161

* - Figure 8 Traffic data Viewer map

Figure 8B: NY 481 Interstate AADT Values (Yellow Color - Control AADT)

4.6 The Monthly Traffic Adjustment Factors

Table 12B:	: Monthl	y Adjus	stment Fac	tors (MA	AF) for	Pavem	ent De	esign in	1 East
Syracuse, 1	NY*								

Locatio	Mont	Clas									
n	h	s 4	s 5	s 6	s 7	s 8	s 9	s 10	s 11	s 12	s 13
	Jan	1	1	1	1	1	1	1	1	1	1
	Feb	1	1	1	1	1	1	1	1	1	1
	Mar	1	1	1	1	1	1	1	1	1	1
	Apr.	1	1	1	1	1	1	1	1	1	1
	May	1	1	1	1	1	1	1	1	1	1
East	Jun	1	1	1	1	1	1	1	1	1	1
Syracuse	Jul	1	1	1	1	1	1	1	1	1	1
,	Aug	1	1	1	1	1	1	1	1	1	1
NY	Sep	1	1	1	1	1	1	1	1	1	1
	Oct	1	1	1	1	1	1	1	1	1	1
	Nov	1	1	1	1	1	1	1	1	1	1
	Dec	1	1	1	1	1	1	1	1	1	1

* - level 3 default value

The MADT to AADT factor 4.7

	MADT* TO AADT** FACTOR						
Month	East Syracuse, NY						
Jan.	n/c	n/c	n/c				
Feb.	n/c	n/c	n/c				
Mar.	n/c	n/c	n/c				
Apr.	n/c	n/c	n/c				
May	n/c	n/c	n/c				
Jun.	n/c	n/c	n/c				
Jul.	n/c	n/c	n/c				
Aug.	n/c	n/c	n/c				
Sep.	n/c	n/c	n/c				
Oct.	n/c	n/c	n/c				
Nov.	n/c	n/c	n/c				
Dec.	n/c	n/c	n/c				

Table 13B: Collected MADT's for Selected Location

*- MADT – monthly average daily traffic **- AADT – annual average daily traffic n/c – not collected

5. Climate Inputs

Five climate stations were selected from available climate data base in the M-E PDG. The five stations have been chosen as they were more geographically dispersed. These stations are: Albany, Buffalo, Saratoga (control), Massena and Poughkeepsie.

Figure 9B: New York State Map - Climate Station Location

5.1 Sensitivity to Climate Data Interpolation

STATION	Nearest 3	Latitud	Longitude	Distance	#Months of data
	Stations	e			
Buffalo, NY	Niagara Falls,	43.07	-78.57	16.7	54
	NY				
	Dunkirk, NY	42.29	-79.16	41.2	110
	Rochester, NY	43.07	-77.41	54.5	116
Albany, NY	Bennington,	42.53	-73.15	29.3	87
	VT				
	North Adams,	42.42	-73.1	32.3	116
	MA				
	Pittsfield, MA	42.26	-73.17	34.2	85
Massena, NY	Saranac Lake,	44.23	-74.13	49.1	93
	NY				
	Plattsburgh,	44.41	-73.31	67.6	92
	NY				
	Watertown,	43.59	-76.01	87.2	62
	NY				
Poughkeepsie,	Montgomery,	41.31	-74.16	21.4	98
NY	NY				
	Danbury, CT	41.22	-73.29	27.7	94
	White Plains,	41.04	-73.43	40.1	59
	NY				
Syracuse, NY	Fulton, NY	43.21	-76.23	21.5	116
	Penn Yan, NY	42.38	-77.04	59.2	98
	Watertown,	43.59	-76.01	87.2	62
	NY				

Table 14B: Selected Locations Climate Data

5.2 Water Table Depth Variation

CODE	Depth of Water	Well	Combination with A-7-6	
CODE	Table	Location	Subgrade	
WT1	3 ft	Buffalo	E1WT1	
WT2	6 ft	Massena	E1WT2	
WT3 (Control)	10 ft	Syracuse	E1WT3	
WT4	1 ft	Shawnee	E1WT4	

 Table 15B: Selected WT Depth for East Syracuse, NY

Figure 10B: New York Active Water Level Network

Figure 11B: Camillus, NY Well Location (Site Number: 430243076180401 - Local Number, Od-1825)

Figure 12B: Ground Water Table Level

Figure 13B: Historic Data for Depth to Water Level in Camillus, NY (Well # Od-1825)

 Table 16B: Water Level Measurement Records at Camillus Well

Highest WL	Date of Highest WL	Lowest WL	Date of Lowest WL
0.0	10/01/08	14.31	08/12/03

Month	Average Monthly Minimum	Monthly Median	Average Monthly Maximum	Number of Months
Jan	11.01	11.36	11.85	6
Feb	11.01	11.39	12.25	6
Mar	9.70	11.07	11.58	7
Apr	10.24	10.99	11.93	8
May	11.13	12.30	12.46	7
Jun	12.18	12.52	13.07	7
Jul	10.30	12.60	13.23	7
Aug	12.52	12.94	14.31	8
Sep	11.69	13.00	13.87	6
Oct	12.37	12.54	13.84	7
Nov	11.37	12.64	13.09	6
Dec	11.57	11.84	12.14	6

6. Material Inputs

6.1 HMA Thickness

An HMA thickness for the control file is 9.8". To see the effect of HMA thickness on predicting distresses values two more HMA thicknesses has been selected:

Table 18B: Selected HMA Layer Thickness	Table 18B:	Selected	HMA	Layer	Thickness
---	------------	----------	-----	-------	-----------

CODE	Total HMA Thickness (in)
T1	8.0
T2 (Control)	9.8
ТЗ	11.0

6.2 Number of HMA Layers

Two HMA layers are going to be used for the M-E PDG analysis:

- AC original surface -1.2" (w/ 9.5 mm mix gradation)
- AC binder course 8.6" (w/ 19.0 mm mix gradation)

A total HMA thickness for a control value is taken as 9.8".

6.3 HMA Mix Gradation

HMA mix gradation for New York State conforms to Superpave specifications.

	9.5 mm	12.5 mm	19.0 mm	25.0 mm	37.5 mm
NMAS of Mix	(3/8")	(1/2")	(3/4")	(1")	(1.5")
3/4" sieve	0	0 - 10	10 – NR	NR	NR
3/8" sieve	0 – 10	10 – NR	NR	NR	NR
# 4 sieve	10 – NR	NR	NR	NR	NR
#200 sieve	2 – 10	2 – 10	2 – 8	1 - 7	0 – 6

Table 19B: Range of Values of HMA Mix Gradation – Superpave Specifications

* NR - No restriction on the value

Table 20B: Tolerance for HMA Mix Gradation

NMAS of Mix	9.5 mm	12.5 mm	19.0 mm	25.0 mm	37.5 mm
	(3/8")	(1/2")	(3/4")	(1")	(1.5")
Cum. % Ret 3/4" sieve		<u>+</u> 4%	<u>+</u> 5%	<u>+</u> 7%	
Cum. % Ret 3/8" sieve		<u>+</u> 4%	<u>+</u> 5%	<u>+</u> 7%	
Cum. % Ret # 4 sieve	<u>+</u> 4%	<u>+</u> 3%	<u>+</u> 4%	<u>+</u> 4%	<u>+</u> 6%
#200 sieve	<u>+</u> 0.8%				

Level 3 🚽	Asphalt material type Asphalt Layer thickness (in) 12	
📕 Asphalt Mox 🛛	🔳 Asphalt Binder 🗷 Asphalt General	
Γ Ag	gregate Gradation Cumulative 3, Retained 3/4 inch sieve	
	Cumulative *, Retained 3/8 inch sieve	5
	Cumulative % Retained #4 sieve	35
and the second	‰ Passing ≓200 sieve	6
t	առուսեն։ անցին գողինում թվու	**************************************

Asphalt Material Pro	perties		Siller For 1	? 🕅
Level 3 -	Asphalt material type Layer thickness (in)	Asphalt of 86	concrete	
X Asphalt Mα) 🕅 λ	sphalt Binder 🛛 🕅 Asphal	t General		
⊂ Aggrega C	ate Gradation	- I inch sieve	14	
⁺ C	umulative % Retained 3/8	Inch sieve	24	
L C	umulative % Retained #4	sieve	42	
2	Passing ≓200 sieve		5	

Figure 15B: ¾" (19.0 mm) Asphalt Mix Aggregate Gradation

Gradation Mix Designation	Percent Retained				Percent Passing
	³ / ₄ -in Sieve	¹ / ₂ -in Sieve	3/8-in Sieve	#4-in Sieve	#200 Sieve
1-in (25.0 mm)	15	30	48	62	4
³ / ₄ -in (19.0 mm)	5	20	40	58	5
¹ / ₂ -in (12.5 mm)	0	5	25	52	6
³ / ₈ -in (9.5 mm)	0	0	5	45	6

 Table 21B: Recommended Typical NY State HMA Mix Gradations Input

6.4 PG Binder Grade

Five different binder grades are chosen from among the PG binders that are suitable for use in the state of New York. The PG 64-22 is used as the binder grade for the control case. The binder grade is tested in conjunction with operational speed of vehicle.

 Table 22B: PG Binder Grades Used in New York State

CODE	PG BINDER GRADE	
G1	PG 58-34	
G2	PG 64-28	
G3 (Control)	PG 64-22	
G4	PG 70-22	
G5	PG 76-22	

ς.

6.5 Unbound Layer Inputs

ASTM D 2940, Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports. The gradation for base material from this standard is given below.

Sieve Size	Percent Passing	
2 in. (50 mm)	100	
1½ in. (37.5 mm)	95 – 100	
3/4 in. (19.0 mm)	70 – 92	
½ in. (9.5 mm)	50 - 70	
No. 4 (4.75 mm)	35 - 55	
No. 30 (0.600 mm)	12 – 25	
No. 200 (0.075 mm)	0-8	

 Table 23B: ASTM D 2940 Gradation for Dense-Graded Bases and Subbases

6.6 Base Course Resilient Modulus

 Table 24B: Base Course Aggregate Gradations (Level 3)

CODE	M1	M2	M3			
Type of course	Crushed Gravel	Crushed Stone	River-Run Gravel			
Sieve Size	Percent Passing by Weight					
3 ½ in (90 mm)	-	-	97.6			
3 in (75 mm)	100	-	-			
2 in (50 mm)	97.5	100	91.6			
1 ½ in (37.5 mm)	-	92.5	85.6			
1 in (25 mm)	70.0	-	78.8			
³ / ₄ in (19 mm)	-	60.0	72.7			
#4 (4.75 mm)	39.5	27.5	44.7			
#200 (0.075 mm)	6.0	2.5	8.7			
Resilient Modulus	25000 psi	30000 psi	15000 psi			

CODE	M _R (psi)	
M1 (Control)	25000	
M2	30000	
M3	15000	

Table 25B: Base Course Resilient Modulus Level 3 Values for NY State

Table 26B: Untreated Base Course gradation Limits

Gradation Limits			
Sieve Size	Job Mix Gradation	Job Mix Gradation	
	Target Band	Tolerance	
1 ¹ / ₂ inch	100		
1 inch	90 – 100	±9.0	
³ / ₄ inch	70 – 85	±9.0	
¹ / ₂ inch	65 – 80	±9.0	
³ / ₈ inch	55 – 75	±9.0	
No. 4	40 - 65	±7.0	
No. 16	25 - 40	±5.0	
No. 200	7 – 11	±3.0	

٦

6.7 Subgrade Resilient Modulus M_R

CODE	SUBGRADE TYPE	Material Classification	RESILIENT I (psi)	MODULUS
			Level 2	Level 3
E1	Clayey soils	A-7-6	n/c*	8000
E2 (Control)	Fine sand, some silt	A-2-4	n/c	25000
E3	Coarse to fine gravelly, coarse to medium sand, some fine sand	A-1-a	n/c	30000

Table 27B: Subgrade Types and Subgrade Resilient Modulus

* n/c – not collected

6.8 Effective Binder Content V_{be}, % (AASHTO T308)

CODE	In-situ VMA, percent	EFFECTIVE BINDER CONTENT
F1	13.0	9.0
F2 (Control)	15.0	11.0
F3	17.0	13.0

Table 28B: Effective Binder Content

Table 29B: HMA Mix Gradation Input Values

	9.5 mm (3/8")			19.0 mm (3/4")		
% of Aggregate	A1	A2	A3	B1	B2	B3
Retained on 3/4" sieve	0	0	0	14.0	18.6	12.0
Retained on 3/8" sieve	5.0	8.2	3.6	24.0	32.4	19.8
Retained on #4 sieve	35.0	48.3	22.1	42.0	52.0	34.5
Passing #200 sieve	6.0	2.8	8.5	5.0	2.8	7.2

1 Mean values of the allowable range of values

2 – Coarse mix gradation

3 - Fine mix gradation

6.9 Air Voids Content, %

Table 30B: Air Voids Percentage (Mixture design)

CODE	PERCENT AIR VOIDS
V1	3.0
V2 (Control)	4.0
V3	5.5

None mixture design Air Voids (in-situ air voids at construction site) will be based on percent compaction in specification:

- Range 3.5 to 9.5 (90.5 to 96.5)
- Target 6.5 (93.5) recommended

6.10 Mix Coefficient of Thermal Contraction (CTC)

CODE	COEFFICIENT OF THERMAL		
	CONTRACTION		
N1	1.0 E-07		
N2 (Control)	1.3 E-05		
N3	1.0 E-04		

 Table 31B: Mix Coefficient of Thermal Contraction

The Mix CTC default value of 1.3 E-05 is used for Level 3 sensitivity analysis.

To see the effect of the CTC value on the sensitivity analysis the ranges were selected based on the M-E PDG help menu from 1.0×10^{-7} to 1.0×10^{-4} .

6.11 Initial IRI Values for New Pavement Design

PAVEMENT TYPE	IRI, IN/MI			IRI, IN/MI		
	MINIMUM	AVERAGE	MAXIMUM			
NEW HMA AND						
HMA/HMA*	32	70	106			

Table 32B: Suggested Initial IRI Values for New Pavement Design

*- Initial IRI for HMA pavements shall be set within the range of 70 to 85 in/mi.

Table 33B: Sensitivity Analysis Initial IRI Values

CODE	Initial IRI (in/mi)		
S1	32		
S2 (Control)	75		
\$3	106		

6.12 Aggregate Coefficient of Thermal Contraction

The M-E PDG default value is $5.0*10^{-6}/{}^{\circ}$ F.

7. NY State M-E PDG Level 3 Sensitivity Analysis

7.1 Effect of Traffic Inputs on Pavement Distresses

Figure 17B: Effect of Truck Class Distribution on Top-Down Cracking

Figure 18B: Effect of Truck Class Distribution on Subtotal AC Rutting

Figure 19B: Effect of Truck Class Distribution on Total Rutting

Figure 20B: Effect of Truck Class Distribution on IRI

Figure 21B: Effect of Traffic Growth Rate at Bottom-Up Cracking

Figure 22B: Effect of Traffic Growth Rate on Top-Down Cracking

Figure 23B: Effect of Traffic Growth on Subtotal AC Rutting

Figure 24B: Effect of Traffic Growth Rate on Total Rutting

Figure 25B: Effect of Traffic Growth Rate on IRI

Figure 26B: Effect of Traffic Speed on Bottom-Up Cracking with PG 64-22

Figure 27B: Effect of Traffic Speed on Top-Down Cracking with PG 64-22

Figure 28B: Effect of Traffic Speed on Subtotal AC Rutting with PG 64-22

Figure 29B: Effect of Traffic Speed on Total Rutting with PG 64-22

Figure 30B: Effect of Traffic Speed on IRI with PG 64-22

Figure 31B: Effect of AADTT on Bottom-Up Cracking

Figure 32B: Effect of AADTT on Top-Down Cracking

Figure 33B: Effect of AADTT on Subtotal AC Rutting

Figure 34B: Effect of AADTT on Total Rutting

Figure 35B: Effect of AADTT on IRI

7.2 Effect of Climate Inputs on Pavement Distresses

Figure 36B: Effect of Climate on Bottom-Up Cracking

Figure 37B: Effect of Climate on Top-Down Cracking

Figure 38B: Effect of Climate on Subtotal AC Rutting

Figure 39B: Effect of Climate on Total Rutting

Figure 40B: Effect of Climate on IRI

Figure 41B: Effect of Climate on Thermal Cracking

Figure 42B: Effect of Water Table Depth on Bottom-Up Cracking

Figure 43B: Effect of Water Table Depth on Top-Down Cracking

Figure 44B: Effect of Water Table Depth on Subtotal AC Rutting

Figure 45B: Effect of Water Table Depth on Total Rutting

Figure 46B: Effect of Water Table Depth on IRI

7.3 Effect of Material Inputs on Pavement Distresses

Figure 47B: Effect of Effective Binder Content on Bottom-Up Cracking

Figure 48B: Effect of Effective Binder Content on Top-Down Cracking

Figure 49B: Effect of Effective Binder Content on Subtotal AC Rutting

Figure 50B: Effect of Effective Binder Content on Total Rutting

Figure 51B: Effect of Effective Binder Content on IRI

Figure 52B: Effect of Percent Air Voids on Bottom-Up Cracking

Figure 53B: Effect of Percent Air Voids on Top-Down Cracking

Figure 54B: Effect of Percent Air Voids on Subtotal AC Rutting

Figure 55B: Effect of Percent Air Voids on Total Rutting

Figure 56B: Effect of Percent Air Voids on IRI

Figure 57B: Effect of AC Layer Thickness on Bottom-Up Cracking

Figure 58B: Effect of AC Layer Thickness on Top-Down Cracking

Figure 59B: Effect of AC Layer Thickness on Subtotal AC Rutting

Figure 60B: Effect of AC Layer Thickness on Total Rutting

Figure 61B: Effect of AC Layer Thickness on IRI

7.4 Effect of Asphalt Concrete Mix Gradation

Figure 62B: Effect of Aggregate Gradation of 9.5 mm AC mix on Bottom-Up Cracking

Figure 63B: Effect of Aggregate Gradation of 9.5 mm AC mix on Top-Down Cracking

Figure 64B: Effect of Aggregate Gradation of 9.5 mm AC mix on Subtotal AC Rutting

Figure 65B: Effect of Aggregate Gradation of 9.5 mm AC mix on Total Rutting

Figure 66B: Effect of Aggregate Gradation of 9.5 mm AC mix on IRI

Figure 67B: Effect of Aggregate Gradation of 19.0 mm mix on Bottom-Up Cracking

Figure 68B: Effect of Aggregate Gradation of 19.0 mm mix on Top-Down Cracking

Figure 69B: Effect of Aggregate Gradation of 19.0 mm mix on Subtotal AC Rutting

Figure 70B: Effect of Aggregate Gradation of 19.0 mm mix on Total Rutting

Figure 71B: Effect of Aggregate Gradation of 19.0 mm mix on IRI

Figure 72B: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Bottom-Up Cracking

Figure 73B: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Top-Down Cracking

Figure 74B: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Subtotal AC Rutting

Figure 75B: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Total Rutting

Figure 76B: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on IRI

Figure 77B: Effect of Binder Grade on Bottom-Up Cracking at Speed 5 mph

Figure 78B: Effect of Binder Grade on Top-Down Cracking at Speed 5 mph

Figure 79B: Effect of Binder Grade on Subtotal AC Rutting at Speed 5 mph

Figure 80B: Effect of Binder Grade on Total Rutting at Speed 5 mph

Figure 81B: Effect of Binder Grade on IRI at Speed 5 mph

Figure 82B: Effect of Binder Grade on Bottom-Up Cracking at Speed 25 mph

Figure 83B: Effect of Binder Grade on Top-Down Cracking at Speed 25 mph

Figure 84B: Effect of Binder Grade on Subtotal AC Rutting at Speed 25 mph

Figure 85B: Effect of Binder Grade on Total Rutting at Speed 25 mph

Figure 86B: Effect of Binder Grade on IRI at Speed 25 mph

Figure 87B: Effect of Binder Grade on Bottom-Up Cracking at Speed 65 mph

Figure 88B: Effect of Binder Grade on Top-Down Cracking at Speed 65 mph

Figure 89B: Effect of Binder Grade on Subtotal AC Rutting at Speed 65 mph

Figure 90B: Effect of Binder Grade on Total Rutting at Speed 65 mph

Figure 91B: Effect of Binder Grade on IRI at Speed 65 mph

7.5 Effect of Base/Subbase Inputs on Pavement Distresses

Figure 92B: Effect of Base Course Material on Bottom-Up Cracking

Figure 93B: Effect of Base Course Material on Top-Down Cracking

Figure 94B: Effect of Base Course Material on Subtotal AC Rutting

Figure 95B: Effect of Base Course Material on Total Rutting

Figure 96B: Effect of Base Course Material on IRI

Figure 97B: Effect of Subgrade Type on Bottom-Up Cracking

Figure 98B: Effect of Subgrade Type on Top-Down Cracking

Figure 99B: Effect of Subgrade Type on Subtotal AC Rutting

Figure 100B: Effect of Subgrade Type on Total Rutting

Figure 101B: Effect of Subgrade Type on IRI

Figure 102B: Effect of Water Table on Bottom-Up Cracking with Weakest Subgrade

Figure 103B: Effect of Water Table on Top-Down Cracking with Weakest Subgrade

Figure 104B: Effect of Water Table on Subtotal AC Rutting with Weakest Subgrade

Figure 105B: Effect of Water Table on Total Rutting with Weakest Subgrade

Figure 106B: Effect of Water Table on IRI with Weakest Subgrade

Figure 107B: Effect of HMA CTC on Bottom-Up Cracking

Figure 108B: Effect of HMA CTC on Top-Down Cracking

Figure 109B: Effect of HMA CTC on Subtotal AC Rutting

Figure 110B: Effect of HMA CTC on Total AC Rutting

Figure 111B: Effect of HMA CTC on IRI

Figure 112B: Effect of Initial IRI on Bottom-Up Cracking

Figure 113B: Effect of Initial IRI on Top-Down Cracking

Figure 114B: Effect of Initial IRI on Subtotal AC Rutting

Figure 115B: Effect of Initial IRI on Total Rutting

Figure 116B: Effect of Initial IRI on IRI

8. Sensitivity Analysis Summary Level 3

Normalization of the distresses was done to compare the effects of each input parameter on predicted distresses.

The normalized distress levels are calculated as the ratio of the difference between the maximum and minimum predicted distresses for each input variable to the distress levels corresponding to the control set of input values.

$N = \frac{Maximum \ Distress - Minimum \ Distress}{Distress \ for \ control \ input \ set}$

N - Normalized Value

NEW YORK LEVEL 3											
Input Variable	Bottom-Up	Top-Down	AC Rutting	Total Rutting	IRI						
HMA thickness	0.27	1821.85	0.026	0.079	3.99						
HMA mix gradation	0.03	297.93	0.041	0.051	2.55						
HMA air voids	0.2	748.37	0.019	0.024	0.28						
HMA effective binder content	0.04	100.54	0.028	0.034	3.42						
HMA binder grade	0.1	1006.74	0.129	0.156	7.71						
Base type/modulus	0.05	210.63	0.011	0.025	1.27						
Subgrade type/modulus	0.12	861.79	0.029	0.15	17.06						
Ground water table	0.09	311.81	0.023	0.051	1.3						
WT with weakest subgrade	0.12	7.19	0.013	0.023	1.49						
Climate	0.07	629.77	0.132	0.149	24.86						
AADTT value	0.07	233.22	0.049	0.061	3.11						
Operational speed	0.14	1166.93	0.172	0.201	10.14						
Traffic growth rate	0.02	58.77	0.023	0.017	0.83						
Traffic distribution	0.08	160.2	0.055	0.063	3.2						
HMA CTC	0	0	0	0	19.2						
Initial IRI	0	0	0	0	96.56						

Table 34B: Difference between Maximum and Minimum Distresses - Level 3

Table 35B: Normalized Values and Ranks for NY Level 3

NEW YORK LEVEL 3											
Input	Botto	m-Up	Top-l	Down	AC R	utting	To	tal	IF	ય	
Variable						<u> </u>	Kut	ling			
	Value	Rank	Value	Rank	Value	Rank	Value	Rank	Value	Rank	
HMA	0.175	1	2.550	1	0.155	9	0.208	5	0.024	7	
thickness											
HMA mix	0.019	11	0.417	8	0.244	6	0.134	8	0.015	10	
gradation											
HMA air voids	0.130	2	1.047	5	0.113	11	0.063	11	0.002	14	
HMA effective	0.026	10	0.141	12	0.167	8	0.089	9	0.020	8	
binder content											
HMA binder	0.065	5	1.409	3	0.768	3	0.411	2	0.046	6	
grade											
Base	0.032	9	0.295	10	0.065	13	0.066	10	0.008	12	
type/modulus											
Subgrade	0.078	4	1.206	4	0.173	7	0.395	3	0.102	4	
type/modulus											
Ground water	0.058	6	0.436	7	0.137	10	0.134	8	0.008	12	
table											
WT with	0.078	4	0.010	14	0.077	12	0.061	12	0.009	11	
weakest											
subgrade											
Climate	0.045	8	0.881	6	0.786	2	0.392	4	0.149	2	
AADTT value	0.045	8	0.326	9	0.292	5	0.161	7	0.019	9	
Operational	0.091	3	1.633	2	1.024	1	0.529	1	0.061	5	
speed											
Traffic growth	0.013	12	0.082	13	0.137	10	0.045	13	0.005	13	
rate											
Traffic	0.052	7	0.224	11	0.327	4	0.166	6	0.019	9	
distribution			}								
HMA CTC	0.000	13	0.000	15	0.000	14	0.000	14	0.115	3	
Initial IRI	0.000	13	0.000	15	0.000	14	0.000	14	0.577	1	

 Table 35B: Normalized Values and Ranks for NY Level 3

Figure 117B: Significance of Effect of Input Variables on Bottom-Up Cracking

Figure 118B: Significance of Effect of Input Variables on Top-Down Cracking

Figure 119B: Significance of Effect of Input Variables on AC Rutting

Figure 120B: Significance of Effect of Input Variables on Total Rutting

Bottom-Up	Top-Down	AC Rutting	Total Rutting	IRI
HMA thickness	HMA thickness	Operational speed	Operational speed	Initial IRI
HMA air voids	Operational speed	Climate HMA binder grade		Climate
Operational speed	HMA binder grade	HMA binder grade	Subgrade type/modulus	НМА СТС
Subgrade type/modulus	Subgrade type/modulus	Traffic distribution	Climate	Subgrade type/modulus
WT with weakest subgrade	HMA air voids	AADTT value	HMA thickness	Operational speed
HMA binder grade	Climate	HMA mix gradation	Traffic distribution	HMA binder grade

Table 36B: NY Sensitivity Analysis Results Level 3

Design/	Distress/Smoothness								
Material	Bottom-Up	Top-Down	AC Rutting	Total	IRI (in/mi)				
Variable	Cracking	Cracking	(in)	Rutting (in)					
	(%)	(ft/mi)							
HMA thickness	XXX	XXX	X	XX					
HMA mix	Х	Х	XX	XX					
gradation									
HMA air voids	XXX	XX	X	X					
HMA effective	Х	Х	X	X					
binder content									
HMA binder	XX	XX	XXX	XXX	X				
grade									
Base	Х	X	X	X					
type/modulus									
Subgrade	XX	XX	X	XXX	X				
type/modulus									
Ground water	XX	X	X	XX					
table									
WT with weakest	XX		X	X					
subgrade									
Climate	X	XX	XXX	XXX	XX				
AADTT value	X	X	XX	XX					
Operational	XX	XXX	XXX	XXX	X				
speed									
Traffic growth	Х	X	X	X					
rate									
Traffic	XX	X	XX	XX					
distribution		· · · · · · · · · · · · · · · · · · ·							
HMA CTC					<u> </u>				
Initial IRI					XXX				

Table 37B: Sensitivity Analysis Summary Level 3

Note: X – Small effect

XX – moderate effect XXX – large effect

			NEW YOR	K LEVEL 3			
Input Variable	Bottom-Up	Top-Down	AC Rutting	Total Rutting	IRI	Total Ranking Points	Overall Order of Significance
	Rank	Rank	Rank	Rank	Rank		
HMA thickness	1	1	9	5	7	23	4
HMA mix gradation	11	8	6	8	10	43	7
HMA air voids	2	5	11	11	14	43	7
HMA effective binder content	10	12	8	9	8	47	8
HMA binder grade	5	3	3	2	6	19	2
Base type/modulus	9	10	13	10	12	54	10
Subgrade type/modulus	4	4	7	3	4	22	3
Ground water table	6	7	10	8	12	43	7
WT with weakest subgrade	4	14	12	12	11	53	9
Climate	8	6	2	4	2	22	3
AADTT value	8	9	5	7	9	38	6
Operational speed	3	2	1	1	5	12	1
Traffic growth rate	12	13	10	13	13	61	13
Traffic distribution	7	11	4	6	9	37	5
HMA CTC	13	15	14	14	3	59	12
Initial IRI	13	15	14	14	1	57	11

 Table 38B: NY Overall Ranking Summary of Significance of Each Input Parameter on the Performance of Flexible

 Pavement

References (New York)

- 1. http://groundwaterwatch.usgs.gov
- 2. http://www.ltpp-products.com/DataPave/index.asp
- 3. Sensitivity Study of Design Input Parameters for Two Flexible Pavement Systems Using the MEPDG; Sunghwan Kim, Iowa State University, (August 2005).
- NYS DOT Comprehensive Pavement Design Manual (July, 2002) and Revision (January, 2009).

https://www.nysdot.gov/divisions/engineering/design/dqab/cpdm https://www.nysdot.gov/divisions/engineering/design/dqab/cpdm/cpdm-revisionlog

- Sensitivity Analysis of Pavement Performance Predicted Using the M-E PDG; Dinesh Ayyala, (May 2009).
- 6. NYS DOT HIGHWAY DESIGN MANUAL (February, 1999).
- 7. Pavement Data Report Region 3 (2009).
- 8. Network Level Pavement Condition Assessment (March, 2010).
- 9. Superpave Series No. 1 (SP-1) and No. 2 (SP-2)
- 10. Report No. UT-09.11a Draft User's Guide for UDOT MEPDG; October 2009.
- 11. ASTM Standards Volume 04.03, 2008
- 12. ASTM Standards Volume 04.08, 2009

Appendix n. code Descriptions (new rork)
--

CODE	DESCRIPTION
A1, A2, A3	3/8" (9.5 mm) HMA mix gradation
B1, B2, B3	3/4" (19 mm) HMA mix gradation
A1B1, A2B2, A3B3	Mean, coarse, fine HMA mix gradation
D1, D2, D3, D4	Truck class distribution
E1, E2, E3	Subgrade type
F1, F2, F3	Effective binder content
G1, G2, G3	AC Binder grade
M1, M2, M3	Base course aggregate gradation level 3
N1, N2, N3	Coefficient of Thermal Contraction
Q1, Q2, Q3	AADTT value
R1, R2, R3	Traffic growth rate
\$1, \$2, \$3	Initial IRI
T1, T2, T3	HMA layer thickness
U1, U2, U3	Traffic operational speed
V1, V2, V3	Binder air content
WT1, WT2, WT3	Ground water table level

Appendix B: Seasonal Adjustment Factors (New York)

SEASONAL ADJUSTMENT FACTORS FOR TRAFFIC COUNT PROCESSING 2010 Based on Continuous Count Site Data 2007 - 2009

WORK WEEK

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
29	0.906	0.923	0.970	1.009	1.049	1.049	1.055	1.052	1.023	1.021	0.989	0.949
30	0.953	0.972	1.023	1.056	1.091	1.105	1.096	1.039	1.074	1.074	1.030	0.996
31	1.00%	1.027	1.082	1.107	1 136	1.167	2.140	1 150	1.129	1 130	1 073	1.048
39	0.777	0.787	0.833	0.879	0.985	1.015	1.050	1 091	0.972	0.956	0.857	0.822
10	0.840	0 856	0 901) 953	1.043	1 084	1.161	1 183	1.057	1.020	0.938	0.891
41	0.914	0.939	0.982	1.041	1.121	1.163	1.284	1.232	1.160	1.094	1.035	0.972
59	0.615	0 637	0.640	9.670	0.911	1.040	1.316	1 328	0.981	0.813	0 694	0.528
60	0.038	0.707	0./38	1.193	1.000	1.141	1.479	1.481	1.363	0.920	0.783	0.615
v1	0.701	0.796	0 373	0 971	1.107	1.264	1.689	1 673	1.1(1	1 011	0.397) 939
	29 30 31 39 10 41 59 60 \$1	29 0.906 30 0.953 31 1.00h 39 0.777 10 0.840 41 0.914 59 0.615 60 0.058 61 0.791	29 0.906 0.923 30 0.953 0.972 31 1.00h 1.027 39 0.777 0.787 10 0.840 0.856 41 0.914 0.939 59 0.615 0.637 60 0.938 0.707 91 0.701 0.796	29 0.906 0.923 0.970 30 0.953 0.972 1.023 31 1.00h 1.027 1.032 39 0.777 0.787 0.833 10 0.840 0.856 0.901 41 0.914 0.939 0.982 59 0.615 0.637 0.640 60 0.938 0.707 0.738 91 0.791 0.796 0.373	29 0.906 0.923 0.970 1.009 30 0.953 0.972 1.073 1.056 31 1.00h 1.027 1.072 1.107 39 0.777 0.787 0.833 0.879 10 0.840 0 856 0.901 3.953 41 0.914 0.939 0.982 1.041 59 0.615 0.637 0.640 0.670 60 0.038 0.707 0.738 1.733 01 0.701 0.796 0.373 0.971	29 0.906 0.923 0.970 1.009 1.049 30 0.953 0.972 1.073 1.056 1.091 31 1.00h 1.027 1.072 1.107 1 136 39 0.777 0.787 0.833 0.879 0.986 10 0.840 0 856 0 901 3 953 1.043 41 0.914 0.939 0.982 1.041 1.121 59 0.615 0 637 0.640 0.670 0.911 60 0.048 0.707 0.738 1.033 1.000 61 0.701 0.796 0.373 0.971 1.107	29 0.306 0.923 0.970 1.009 1.049 1.049 30 0.953 0.972 1.073 1.056 1.091 1.105 31 $1.00h$ 1.027 1.073 1.056 1.091 1.167 32 $1.00h$ 1.027 1.032 1.107 1.376 1.167 33 0.777 0.787 0.833 0.879 0.985 1.015 10 0.840 0.856 0.901 0.953 1.043 1.084 41 0.914 0.939 0.982 1.041 1.121 1.163 59 0.615 0.637 0.640 0.670 0.911 1.040 60 0.093 0.707 0.733 0.971 1.107 1.264	29 0.306 0.923 0.970 1.009 1.049 1.049 1.055 30 0.953 0.972 1.073 1.056 1.091 1.105 1.096 31 $1.00h$ 1.027 1.073 1.056 1.091 1.167 2.140 39 0.777 0.787 0.833 0.879 0.986 1.015 1.060 10 0.840 0.856 0.901 3.953 1.043 1.084 2.161 41 0.914 0.982 1.041 1.121 1.163 1.294 59 0.615 0.637 0.640 0.670 0.911 1.040 1.316 60 0.948 0.707 0.738 0.731 1.000 1.141 1.479 0.701 0.796 0.373 0.971 1.107 1.264 1.689	29 0.306 0.923 0.970 1.009 1.049 1.055 1.052 30 0.953 0.972 1.073 1.056 1.091 1.105 1.096 1.039 31 $1.00h$ 1.073 1.056 1.091 1.105 1.096 1.039 32 1.027 1.073 1.107 $1.13h$ 1.167 2.140 1.150 39 0.777 0.787 0.833 0.879 0.986 1.015 1.060 1.091 10 0.840 0.856 0.901 9.53 1.043 1.084 2.161 1.183 41 0.914 0.982 1.041 1.121 1.163 1.284 1.232 59 0.515 0.637 0.640 0.670 0.911 1.040 1.316 1.328 60 0.707 0.738 1.733 1.000 1.141 1.479 1.481	29 0.306 0.923 0.970 1.009 1.049 1.055 1.052 1.723 30 0.953 0.972 1.073 1.056 1.091 1.105 1.096 1.039 1.074 31 $1.00h$ 1.073 1.056 1.091 1.105 1.096 1.039 1.074 32 1.027 1.073 1.107 $1.13h$ 1.167 2.140 1.150 1.129 39 0.777 0.787 0.833 0.879 0.986 1.015 1.060 1.091 2.972 10 0.840 0.856 0.901 3.953 1.043 1.084 2.161 1.133 1.057 41 0.914 0.939 0.982 1.041 1.121 1.163 1.224 1.232 1.160 59 0.515 0.537 0.640 0.670 0.911 1.040 1.316 1.328 0.981 <t< td=""><td>29 0.306 0.923 0.970 1.009 1.049 1.055 1.052 1.021 30 0.953 0.972 1.073 1.056 1.091 1.095 1.052 1.021 30 0.972 1.073 1.056 1.091 1.105 1.096 1.039 1.074 1.074 31 $1.00h$ 1.027 1.072 1.107 $1.13h$ 1.167 2.140 1.150 1.129 1.130 39 0.777 0.787 0.833 0.879 0.986 1.015 1.060 1.091 2.972 0.956 10 0.840 0.856 0.901 3.953 1.043 1.084 2.161 1.183 1.057 1.020 41 0.914 0.939 0.982 1.041 1.121 1.163 1.224 1.232 1.160 1.094 59 0.515 0.537 $\overline{0.640}$ $\overline{0.670}$ 0.911 1.040 1.316 1.328 0.981 0.813 <t< td=""><td>29 0.306 0.923 0.970 1.009 1.049 1.055 1.052 1.223 1.021 0.989 30 0.953 0.972 1.073 1.056 1.091 1.105 1.096 1.039 1.074 1.074 1.033 31 $1.00h$ 1.073 1.073 1.071 1.136 1.167 2.140 1.150 1.129 1.130 1.073 32 0.777 0.787 0.833 0.879 0.986 1.015 1.060 1.091 2.972 0.956 0.857 10 0.840 0.856 0.901 3.953 1.043 1.084 2.161 1.183 1.057 1.020 0.938 41 0.914 0.942 1.041 1.121 1.163 1.224 1.232 1.160 1.094 1.035 59 0.515 0.537 $\overline{0.640}$ $\overline{0.670}$ 0.911 1.040 1.316 1.328 0.981 0.813 0.994 60 0.707</td></t<></td></t<>	29 0.306 0.923 0.970 1.009 1.049 1.055 1.052 1.021 30 0.953 0.972 1.073 1.056 1.091 1.095 1.052 1.021 30 0.972 1.073 1.056 1.091 1.105 1.096 1.039 1.074 1.074 31 $1.00h$ 1.027 1.072 1.107 $1.13h$ 1.167 2.140 1.150 1.129 1.130 39 0.777 0.787 0.833 0.879 0.986 1.015 1.060 1.091 2.972 0.956 10 0.840 0.856 0.901 3.953 1.043 1.084 2.161 1.183 1.057 1.020 41 0.914 0.939 0.982 1.041 1.121 1.163 1.224 1.232 1.160 1.094 59 0.515 0.537 $\overline{0.640}$ $\overline{0.670}$ 0.911 1.040 1.316 1.328 0.981 0.813 <t< td=""><td>29 0.306 0.923 0.970 1.009 1.049 1.055 1.052 1.223 1.021 0.989 30 0.953 0.972 1.073 1.056 1.091 1.105 1.096 1.039 1.074 1.074 1.033 31 $1.00h$ 1.073 1.073 1.071 1.136 1.167 2.140 1.150 1.129 1.130 1.073 32 0.777 0.787 0.833 0.879 0.986 1.015 1.060 1.091 2.972 0.956 0.857 10 0.840 0.856 0.901 3.953 1.043 1.084 2.161 1.183 1.057 1.020 0.938 41 0.914 0.942 1.041 1.121 1.163 1.224 1.232 1.160 1.094 1.035 59 0.515 0.537 $\overline{0.640}$ $\overline{0.670}$ 0.911 1.040 1.316 1.328 0.981 0.813 0.994 60 0.707</td></t<>	29 0.306 0.923 0.970 1.009 1.049 1.055 1.052 1.223 1.021 0.989 30 0.953 0.972 1.073 1.056 1.091 1.105 1.096 1.039 1.074 1.074 1.033 31 $1.00h$ 1.073 1.073 1.071 1.136 1.167 2.140 1.150 1.129 1.130 1.073 32 0.777 0.787 0.833 0.879 0.986 1.015 1.060 1.091 2.972 0.956 0.857 10 0.840 0.856 0.901 3.953 1.043 1.084 2.161 1.183 1.057 1.020 0.938 41 0.914 0.942 1.041 1.121 1.163 1.224 1.232 1.160 1.094 1.035 59 0.515 0.537 $\overline{0.640}$ $\overline{0.670}$ 0.911 1.040 1.316 1.328 0.981 0.813 0.994 60 0.707

 Factor Group
 % Precision with 95% Confidence

 urban - 30
 1 93

 subucban - 40
 4.03

 rectestional - 90
 31 53

For each factor group, the percent precision value is the maximum value out of all months

The FHWA Traffic Monitoring Guide 2001 states

The reliability levels recommended are 10 percent precision with 95 percent confidence, 95-10, for each individual seasonal group, excluding recreational groups where no precision requirement is specified

New York State Department of Transportation Highway Data Services Bureau MO-TrafficDataViewer@dot state ny us (518) 457-1965

8/9/2010

Appendix C: Axle Adjustment Factors for 2010 Traffic Count Processing (New York)

AXLE ADJUSTMENT FACTORS FOR 2010 TRAFFIC COUNT PROCESSING BASED ON 2004 - 2009 VEHICLE CLASSIFICATION DATA

RURAL

						REG	ION					
FC	1	2	3	4	5	6	7	8	9	10	11	STATEWIDE
01	0 774	0 786	0 800	0 786	0 812	0 720	0 763	0 786	0 792		[]	0 786
02	0 915	0 939	0 940	0 882	0 930	0 897	0 914	0 965	0 912			0 921
06	0 955	0 956	0 944	0 952	0 938	0 955	0 950	0 962	0 956	0 955	[]]]]	0 955
07	0 970	0 974	0 950	0 968	0 963	0 963	0 946	0 978	0 971	0 965	[]	0 965
08	0 976	0 977	0 976	0 979	0 975	0 976	0 972	0 984	0 979			0 976
09	0 982	0 979	0 982	0 982	0 981	0 982	0 965	0 986	0 978	0 982	[]	0 982
	N											
	•					REG	ION					
FC	1	2	3	4	5	6	7	8	9	10	11	STATEWIDE
11	0 881	0 881	0 889	0 947	0 887	0 881	0 881	0 881	0 881	0 881	0 881	0 881
12	0 979	0 962	0 961	0 979	0 977	0 961		0 977	0 945	0 987	0 961	0 961
14	0 972	0 979	0 969	0 969	0 976	0 950	0 963	0 979	0 950	0 973	0 984	0 969
16	0 978	0 974	0 982	0 984	0 982	0 981	0 976	0 985	0 977	0 982	0 982	0 982
17	0 982	0 983	0 987	0 989	0 989	0 988	0 981	0 988	0 983	0 985	0 982	0 982
19	0 984	0 990	0 984	0 992	0 991	0 984	0 984	0 990	0 984	0 984	0 984	0 984

Г

Blank cell indicates there are no highway segments in this FC in this region

Shaded cell indicates insufficient data (< 10 highway segments) - statewide average was used

Appendix D: Heavy Vehicle (Class 04-13) Percentages for 2009 (New York)

HEAVY VEHICLE (F04 - F13) PERCENTAGES 2009 BASED ON 2004 - 2009 VEHICLE CLASSIFICATION DATA

						REG	SION					
FC	1	2	3	4	5	6	7	8	9	10	11	STATEWIDE
01	25 1%		24 0%	21 6%	23 5%	36 0%	26 9%	19 3%	25 1%	[]	[]	25 2%
02	13 2%	116%	10 1%	17 0%	10 9%	15 5%	13 5%	7 5%	13 6%	[]	[]	12 5%
06	10 4%	7 7%	10 0%	9 8%	11 3%	10 2%	10 0%	8 9%	10 2%	60%	[]	9 5%
07	8 8%	6 0%	10 0%	97%	88%	10 9%	10 5%	7 0%	8 7%		[]]]	8 9%
08	7 2%	6 1%	86%	5 1%	63%	5 7%	7 4%	7 7%	6 8%	[]	[]	68%
09	7 7%	5 5%		8 0%	71%		8 7%	6 3%	6 4%		[]	7 1%
URBA	И											
						REG	BION					
FC	1	2	3	4	5	6	7	8	9	10	11	STATEWIDE
11	9 3%	11 3%	5 7%	8 4%	14 9%	21 2%	16 8%	15 5%	23 4%		13 3%	15 0%
12	4 9%	7 5%	7 6%	4 9%	46%	16 0%	[]	4 8%	9 2%	3 9%	2 9%	6 6%
14	6 4%	5 6%	6 2%	6 2%	57%	8 6%	6 9%	5 8%	8 8%	6 2%	7 0%	67%
16	6 4%	5 8%	5 5%	4 5%	50%	5 6%	6 4%	5 1%	6 4%	5 3%	3 5%	5 4%
17	6 0%	5 0%	50%	4 1%	4 4%	5 1%	6 8%	5 1%	5 7%	5 5%	14 6%	61%
19	5 8%	3 7%	4 4%	3 3%	3 5%		4 9%	5 4%	6 9%	5 5%	7 4%	51%

Blank cell indicates there are no highway segments in this FC in this region

RURAL

Shaded cell indicates no data or insufficient data (< 10 highway segments)

FUNCTIONAL CLASSIFICATION (FC) CODES

URBAN

RURAL

06 Minor Arterial 07 Major Collector

08 Minor Collector

02 Principal Arterial - Other

- 01 Principal Arterial Interstate 11 Principal Arterial Interstate
 - 12 Principal Arterial Other Freeway or Expressway
 - 14 Principal Arterial Other
 - 16 Minor Arterial
 - 17 Collector
 - 19 Local
- 09 Local

Material Classification	M _r Range	Typical M _r *
A-1-a	38,500 - 42,000	40,000
A-1-b	35,500 - 40,000	38,000
A-2-4	28,000 - 37,500	32,000
A-2-5	24,000 - 33,000	28,000
A-2-6	21,500 - 31,000	26,000
A-2-7	21,500 - 28,000	24,000
A-3	24,500 - 35,500	29,000
A-4	21,500 - 29,000	24,000
A-5	17,000 - 25,500	20,000
A-6	13,500 - 24,000	17,000
A-7-5	8,000 - 17,500	12,000
A-7-6	5,000 - 13,500	8,000
СН	5,000 - 13,500	8,000
MH	8,000 - 17,500	11,500
CL	13,500 - 24,000	17,000
ML	17,000 - 25,500	20,000
SW	28,000 - 37,500	32,000
SP	24,000 - 33,000	28,000
SW-SC	21,500 - 31,000	25,500
SW-SM	24,000 - 33,000	28,000
SP-SC	21,500 - 31,000	25,500
SP-SM	24,000 - 33,000	28,000
SC	21,500 - 28,000	24,000
SM	28,000 - 37,500	32,000
GW	39,500 - 42,000	41,000
GP	35,500 - 40,000	38,000
GW-GC	28,000 - 40,000	34,500
GW-GM	35,500 - 40,500	38,500
GP-GC	28,000 - 39,000	34,000
GP-GM	31,000 - 40,000	36,000
GC	24,000 - 37,500	31,000
GM	33,000 - 42,000	38,500

Appendix E: Material Classification (New York)

Appendix F: Performance Graded Binder Selection – Standard (New York)

Location	Location by Counties	Performance Grade (Spec Number)
Upstate	All Other Counties Not Listed Under Downstate	64-22 ¹ (702-6422)
Downstate	Orange, Putnam, Rockland, Westchester, Nassau, Suffolk Counties and City of New York	70-22 (702-7022)

Performance Graded Binder Selection - Standard

1. For high volume roadways in Dutchess County, PG 70-22 or PG 76-22 may be specified with the concurrence of the Regional materials Engineer.

Appendix G: Performance Graded Binder Selection – Polymer Modified (New York)

Conditions for Use	Location	Performance Grade (Spec Number) ¹
Cold temperature data warrants its use with the concurrence of the Regional Materials Engineer Typically Adirondack Region	Jefferson, Lewis, St Lawrence, Franklin, Clinton, Essex, and the Northern Sections of Herkimer, Oswego, Hamilton, Warren, and Washington Counties	58-34 (702-5834)
Multiple course overlays, reconstruction, or new construction where cold temperature data warrants its use with the concurrence of the Regional Materials Engineer	Upstate	64-28 (702-6428)
Multiple course overlays, reconstruction, new construction or roadway segments containing (a) grades in excess of 4 0% or (b) intersections that have traffic control signals (3 light signal) with the concurrence of the Region Materials Engineer	Upstate	64-22 (702-6422)
Where the traffic level is greater than 30 million ESALs based on a 20-year design life or the roadway segment contains (a) grades in excess of 4 0% or (b) intersections that have traffic control signals (3 light signal)	Downstate	76-22 (702-7622)

Performance Graded Binder Selection – Polymer Modified

1 Other PG binder grades may be specified in a given location with approval from the Regional Materials Engineer and the Materials Bureau

Appendix C: Massachusetts M-E PDG Level 3 Report

.

MASSACHUSETTS

RANGE OF VALUES FOR CRITICAL INPUT PARAMETERS

INPUT VALUE SELECTION FOR MA FOR M-E PDG RUNS

1. General Inputs

1.1 Design Life

• 20 years for a new pavement is recommended

1.2 Construction & Traffic Opening Dates

- Base/subgrade construction month June, 2010
- Pavement construction month July, 2010
- Traffic opening date August, 2010

1.3 Type of Pavement

• This analysis is performed for a new flexible pavement.

1.4 Site/Project Identification

The site is located in New Bedford, MA, I-195 Highway (LTPP section # 25-1004-1)

- County: BRISTOL
- Latitude, deg.: 41.65
- Longitude, deg.: -70.9
- Elevation, (ft): 49
- Org. Construction Date: 7/1/1974
- Constr. Event Date: 9/1/2002
- Functional Class: 11
- Years of Climatic Data: 59

Figure 1C: New Bedford, MA, Highway I-195

Figure 2C: LTPP Section Coordinates Lat/Lon: 41.65/70.9

Layer Type	Layer Thickness (in)
Original Surface Layer (layer Type: AC)	1.4
AC Layer Below Surface (Binder Course)	8.2
Base Layer (Layer Type: GB)	25.6
Subgrade (Layer Type: SS)	Semi-infinite

Table 1C: Pavement Layers at LTPP Section 25-1004-1

The LTPP Section selected for the analysis has four layers of materials: two asphalt layers and two unbound material layers.

LTPP road section # 25-1004-1 contains of 2 traffic lines in one direction.

Figure 3C: Three LTPP Sections Located in MA

Figure 4C: LTPP Station 25_1004 at I-195 Used for the M-E PDG Sensitivity Analysis

2. Performance Criteria Inputs (Analysis Parameters)

Pavement Type	Performance Criteria	Max. Value at End of
		Design Life at Design
		Reliability
	HMA bottom up fatigue	Interstate: 10 percent lane
	cracking (alligator	Primary: 20 percent lane
	cracking)	area
		Secondary: 45 percent
		lane area
	HMA longitudinal fatigue	Interstate: 2,000-ft/mile
	cracking (top down)	Primary: 2,500-ft/mile
		Secondary: 3,000-ft/mile
HMA pavement & overlays	Permanent deformation	Interstate: 0.40-in mean
	(total mean rutting of	Primary: 0.50-in mean
	both wheel paths)	Others <40 mph: 0.75-in
		mean
	Thermal fracture	Interstate: Crack spacing
	(transverse cracks)	> 70-ft
		(Crack length < 905-
		ft/mile)
		Primary/Secondary:
		Crack spacing > 50-ft
		(Crack length < 1267-
		ft/mile)
	IRI	Interstate/Primary: 169
		in/mile maximum
		Secondary: 223 in/mile
		maximum

 Table 2C: Suggested Performance Criteria for Use in Pavement Design*

*- Report No. UT-09.11a Draft User's Guide for UDOT MEPDG; October 2009.
Table 3C: Analysis Parameters Used in MA State

Analysis parameter	Maximum criteria at 90% Reliability
Initial IRI (in./mi)	75
Terminal IRI (in./mi)	172
AC Surface Down Cracking (ft/mi)	2000
AC Bottom Up Cracking (%)	25
AC Thermal Fracture (ft/mi)	1000
Permanent Deformation – Total Pavement (in)	0.75
Permanent Deformation – AC only (in)	0.25

Analysis Parameters	en et en	46 ~ K + 84896 ~ 878 8	20
Project Name Initial IRI (m/mi)	MA_1004 Level3 Control		
Performance Criteria	🕮 Flexible Pavement	and and and	1
<u>ସ</u>	Teminal IRI ûn/mile)	Lmt 172	Reliability 90
ব	AC Surface Down Cracking Long Cracking (ft. mi) AC Bottom Up Cracking Alligator Cracking (%)	2000 25	90
ସ ସ	AC Thermal Fracture (ft/mi) Chemically Stabilized Layer Fatigue Fracture(f4)	1000 25	90
ম ম	Permanent Deformation - Total Pavement (in) Permanent Deformation AC Only (in)	C 25	90

Figure 5C: Analysis Parameters Used in MA

Table 4C:	MA	level 3	Control	Reliability	Summary
-----------	----	---------	---------	-------------	---------

Project: MA_1004 level3 Control						
Reliability Summary						
Performance Criteria	Distress	Reliability	Distress	Reliability		
	Target	Target	Predicted	Predicted	Acceptable	
Terminal IRI (in/mi)	172	90	122.1	93.27	Pass	
AC Surface Down Cracking						
(Long. Cracking) (ft/mile):	2000	90	4.1	99.97	Pass	
AC Bottom Up Cracking						
(Alligator Cracking) (%):	25	90	0.1	99.999	Pass	
AC Thermal Fracture						
(Transverse Cracking) (ft/mi):	1000	90	0.1	99.999	Pass	
Chemically Stabilized Layer						
(Fatigue Fracture)	25	90			N/A	
Permanent Deformation (AC						
Only) (in):	0.25	90	0.19	80.63	Fail*	
Permanent Deformation (Total						
Pavement) (in):	0.75	90	0.42	99.99	Pass	

*It was impossible to achieve the acceptable Reliability result for the Permanent Deformation using allowable (according to the state specification) inputs data.

 Table 5C: IRI Ranges Defined by FHWA Highway Statistics Publications

IRI Scale (in/mi)	Description
< 60	Very Smooth
61 – 120	Smooth
121 – 170	Fair
171 – 220	Rough
> 220	Very Rough

3. Design Reliability Input

Functional Classification	Urban	Rural
Interstate/Freeways	95	92
Principal Arterials	90	85
Collectors	80	75
Locals	70	60

Table 6C: Tentative Recommended Level of Reliability

The I-195 Interstate is located in the urban area, so the reliability value for the analysis should be 95 percent. Because of the low truck traffic value in this area a lower reliability was selected (90%) for the sensitivity analysis. Higher level of design reliability is not recommended, because of the significant cost increase.

4. Traffic Inputs

Traffic Input	Recommended Value
Initial two way AADTT (class 4 and above)	Projected traffic for opening month from
	measured historical data.
Number of lanes in design direction	Actual or from design plans.
Percent of trucks in design direction (%)	50%, unless higher truck volume is measured in design direction
Percent of trucks in design lane (%)	 Actual measured in design lane over 24-hours, otherwise use the following: 100% for 1 lane in design direction 95% for 2 lanes in design direction For unusual truck traffic situations (mountainous terrain or urban usage complexity), conduct on site truck lane usage counts over 24-hour period.
Operational Speed (mph)	Posted or Design Speed

Table 7C: Recommended Traffic Value Inputs

4.1 Annual Average Daily Truck Traffic (AADTT)

Truck Traffic (AADTT) is calculated by taking 5.00% of AADT as given in 2005 Mass DOT Traffic Statistic. The 2005 year was selected, because of the higher traffic value (AADT=73,500) compared to year 2008 (AADT=64,400). Control AADTT for I-195 in New Bedford (Bristol County) for this study is taken as 3675.

2 Ki

1116

Figure 6C: Traffic Inputs for New Bedford, MA

Figure 7C: Two-Way AADT in New Bedford, MA (2005)

333

Figure 8C: New Bedford, MA WIM Station (ID # 6384)

Figure 9C: Illustration of FHWA/AASHTO Vehicle Class Type Description

4.2 Truck Class Distribution selections

	CODE			
TRUCK	D1(LTPP-	D2 (low	D3 (high	D4 (MEPDG
CLASS	Control)	class)*	class)*	Level 3)
4	3.5	5.2	0.1	1.8
5	47.2	38.9	0.6	24.6
6	9.7	35.8	0.8	7.6
7	0.5	10.2	0.6	0.5
8	8.8	5.6	6.8	5.0
9	29.8	3.5	9.2	31.3
10	0.4	0.2	25.8	9.8
11	0.1	0.3	36.4	0.8
12	0.0	0.2	16.5	3.3
13	0.0	0.1	3.2	15.3

*Based on Sensitivity Study of Design Input Parameters for Flexible Pavement Systems using M-E PDG in Iowa DOT, 2004

4.3 Rate of Traffic Growth

Table 9C: Selected Traffic Growth Rates for Massachusetts

Code	Traffic Growth Rate		
R1	1.0 % linear		
R2 (Control)	2.0 % linear		
R3	3.0 % linear		

4.4 Traffic Operational Speed

Code	Traffic Operational Speed (mph)	Binder Grades
U1	5	G1, G2, G3
<u>U2</u>	25	G1, G2, G3
U3 (Control)	65	G1, G2, G3

Table 10C: Selected Traffic Operational Speeds

The effect of operational speed is analyzed in conjunction with binder grade and the traffic operational speed input values.

4.5 Annual Average Daily Truck Traffic (AADTT)

Table	11C:	Calculated	AADTT	Values

Code	Station ID	Traffic Volume (AADTT)
Q1 (Control)	#6383 - New Bedford	3675
Q2	#6526 - Fall River	4080
Q3	#0007 L - Mattapoisett	1819

4.6 The Monthly Traffic Adjustment Factors

Location	Month	Class									
		4	5	6	7	8	9	10	11	12	13
	Jan.	0.48	0.96	0.84	0.72	0.84	0.84	0.6	0.72	n/d*	n/d*
	Feb.	0.6	0.96	0.84	0.72	0.84	0.72	0.6	0.72	n/d	n/d
	Mar.	0.6	0.84	0.72	0.72	0.84	0.84	0.84	0.72	n/d	n/d
	Apr.	0.84	0.96	0.84	0.96	0.96	0.96	0.84	1.4	n/d	n/d
	May	1.2	1.08	1.08	1.32	1.26	1.16	1.2	1.39	n/d	n/d
New	Jun.	1.32	1.08	0.96	0.96	1.08	1.16	1.2	0.72	n/d	n/d
Bedford	Jul.	1.08	1.08	1.08	0.96	1.08	1.08	1.2	0.72	n/d	n/d
	Aug.	1.2	0.96	1.08	0.96	0.96	1.08	0.84	0.72	n/d	n/d
	Sep.	1.44	0.96	1.08	1.2	1.08	1.08	1.2	0.72	n/d	n/d
	Oct.	1.44	1.08	1.32	1.32	1.26	1.16	1.44	1.39	n/d	n/d
	Nov.	0.84	0.96	1.08	1.08	0.84	0.96	0.84	1.39	n/d	n/d
	Dec.	0.96	1.08	1.08	1.08	0.96	0.96	1.2	1.39	n/d	n/d

 Table 12C: Monthly Adjustment Factors (MAF) for Pavement Design in New Bedford, MA, (1997 LTPP data)

*- no data available

 Table 13C: Monthly Adjustment Factors (MAF) for Pavement Design for Fall River and Mattapoisett, MA (Level 3 default)

Location	Month	Class									
		4	5	6	7	8	9	10	11	12	13
	Jan.	1	1	1	1	1	1	1	1	1	1
	Feb.	1	1	1	1	1	1	1	1	1	1
	Mar.	1	1	1	1	1	1	1	1	1	1
	Apr.	1	1	1	1	1	1	1	1	1	1
	May	1	1	1	1	1	1	1	1	1	1
Fall River	Jun.	1	1	1	1	1	1	1	1	1	1
	Jul.	1	1	1	1	1	1	1	1	1	1
	Aug.	1	1	1	1	1	1	1	1	1	1
	Sep.	1	1	1	1	1	1	1	1	1	1
	Oct.	1	1	1	1	1	1	1	1	1	1
	Nov.	1	1	1	1	1	1	1	1	1	1
	Dec.	1	1	1	1	1	1	1	1	1	1
	Jan.	1	1	1	1	1	1	1	1	1	1
	Feb.	1	1	1	1	1	1	1	1	1	1
Mattapois	Mar.	1	1	1	1	1	1	1	1	1	1
ett	Apr.	1	1	1	1	1	1	1	1	1	1
	May	1	1	1	1	1	1	1	1	1	1
	Jun.	1	1	1	1	1	1	1	1	1	1
	Jul.	1	1	1	1	1	1	1	1	1	1

	Aug.	1	1	1	1	1	1	1	1	1	1
Mattapois	Sep.	1	1	1	1	1	1	1	1	1	1
ett	Oct.	1	1	1	1	1	1	1	1	1	1
Continued	Nov.	1	1	1	1	1	1	1	1	1	1
	Dec.	1	1	1	1	1	1	1	1	1	1

4.7 The MADT to AADT factor

Table 14C: Collected MADT's to AADT's for Selected Locations

	MADT* TO AADT** FACTOR				
Month	New Bedford	Fall River	Mattapoisett		
Jan.	0.75	n/d***	n/d		
Feb.	0.75	n/d	n/d		
Mar.	0.77	n/d	n/d		
Apr.	0.97	n/d	n/d		
May	1.21	n/d	n/d		
Jun.	1.06	n/d	n/d		
Jul.	1.04	n/d	n/d		
Aug.	0.98	n/d	n/d		
Sep.	1.10	n/d	n/d		
Oct.	1.30	n/d	n/d		
Nov.	1.00	n/d	n/d		
Dec.	1.09	n/d	n/d		

*- MADT - monthly average daily traffic

**- AADT - annual average daily traffic

***- no data available

Figure 10C: MADT to AADT Factor for New Bedford, MA Vehicle Class 4 to 11 (Missing Data Class 12-13)

Figure 11C: Class 6 Monthly Adjustment Factors (MADTT to AADTT) for New Bedford, MA

Figure 12C: Class 9 Monthly Adjustment Factors (MADTT to AADTT) for New Bedford, MA

5. Climate Inputs

Four climate stations were selected from the eighteen stations for which climate data is available in the M-E PDG. The four stations: New Bedford (control), Boston, Westfield-Springfield and Worcester were chose as they are more geographically dispersed.

Figure 13C: Massachusetts Climate Station Locations

5.1 Sensitivity to Climate Data Interpolation

STATION	Nearest 3	Latitude	Longitude	Distance	#Months of
	Stations				data
New Bedford	Taunton, MA	41.53	-71.01	14.0	99
Lat. 41.41	Newport, RI	41.32	-71.17	19.4	116
Lon70.58	Plymouth, MA	41.55	-70.44	20.1	116
Elev. 78 ft					
Boston	Norwood, MA	42.11	-71.1	14.8	93
Lat. 42.22	Bedford, MA	42.28	-71.17	15.2	91
Lon71.01					
Elev. 180 ft	Beverly, MA	42.35	-70.55	15.8	87
Westfield/Sp	Windsor, CT	41.56	-72.41	16.2	116
ringfield	Hartford, CT	41.44	-72.39	30.1	105
Lat. 42.1	Pittsfield, MA	42.26	-73.17	34.3	85
Lon72.43					
Elev. 276 ft					
Worcester	Fitchburg, MA	42.33	-71.46	20.4	101
Lat. 42.16	Orange, MA	42.34	-72.17	29.1	116
Lon71.53					
Elev. 966 ft	Bedford, MA	42.28	-71.17	15.2	91

Table 15C: Selected Locations Climate Data

5.2 Water Table Depth Variation

Table 16C: Selected WT Depths for New Bedford, MA

CODE	Depth of Water	Combination with A-2-4 and A-7-6
	Table	Subgrades
WT1	2 ft	WT1 E2, WT1 E1,
WT2 (Control)	4 ft	WT2 E2, WT2 E1
WT3	6 ft	WT3 E2, WT3 E1

The water table depth was selected based on average values from the MA-NGW 116 New Bedford, MA well.

Figure 14C: Bristol County Active Wells

Figure 16C: Historic Data of a Ground Water Level in New Bedford, MA

Month	Lowest Median	10th %ile	25th %ile	50th %ile	75th %ile	90th %ile	Highest Median	Number of Vears
Jan	4.51	4.27	4.16	3.94	3.52	3.33	2.56	1 cars 45
Feb	4.36	4.22	4.06	3.78	3.56	3.20	2.64	46
Mar	4.40	4.04	3.94	3.68	3.45	3.18	2.31	46
Apr	4.38	4.16	4.03	3.85	3.70	3.46	3.13	46
May	4.51	4.36	4.19	4.02	3.81	3.48	3.00	45
Jun	4.83	4.61	4.40	4.29	3.91	3.73	3.30	46
Jul	5.20	4.84	4.69	4.43	4.17	3.94	3.63	47
Aug	5.14	5.01	4.78	4.38	4.04	3.81	2.87	47
Sep	5.13	4.88	4.59	4.32	4.02	3.59	3.24	47
Oct	5.02	4.76	4.44	4.19	3.83	3.53	3.10	47
Nov	4.84	4.20	4.07	3.91	3.67	3.48	2.99	47
Dec	4.58	4.19	4.00	3.80	3.54	3.27	2.47	46

Table 17C: Ground Water Table Most Recent Data Values on 03/28/2011(Depth to Water Level, Feet)

Note: Bold values in the table indicate closest statistic to the most recent data value.

Table 18C: Water Level Measurement Records at New Bedford We	ell
--	-----

.

Highest WL	hest WL Date of Highest WL		Date of Lowest WL		
2.31	03/26/69	5.20	07/23/64		

6. Material Inputs

6.1 HMA Thickness

An HMA thickness for the control file is 9.6". To see the effect of HMA thickness on predicting distresses values two more HMA thicknesses has been selected:

Table 19C: Selected HMA Layer Thickness

CODE	Total HMA Thickness (in)
T1	8.0
T2 (Control)	9.6
Т3	11.0

The two HMA layers (surface and binder) will be treated as one layer with 19.0 mm asphalt mix gradation (mean).

6.2 Number of HMA Layers

Two HMA layers are going to be used for the M-E PDG analysis:

- AC original surface 1.4" (w/ 9.5 mm mix gradation)
- AC binder course 8.2" (w/ 19.0 mm mix gradation)

HMA Mix Gradation 6.3

HMA mix gradation for Massachusetts conforms to Superpave specifications.

NMAS* of Mix	9.5 mm	12.5 mm	19.0 mm	25.0 mm	37.5 mm
	(3/8")	(1/2")	(3/4")	(1")	(1.5")
3/4" sieve	0	0 - 10	10 – NR	NR**	NR
3/8″ sieve	0 - 10	10 – NR	NR	NR	NR
# 4 sieve	10 – NR	NR	NR	NR	NR
#200 sieve	2 – 10	2 – 10	2 – 8	1 – 7	0 - 6

Table 20C: Range of Values of HMA Mix Gradation – Superpave Specifications

*- Nominal Maximum Aggregate Size ** – No restriction on the value

Table 21C: Tolerance for HMA Mix Gradation

NMAS of Mix	9.5 mm	12.5 mm	19.0 mm	25.0 mm	37.5 mm
	(3/8")	(1/2")	(3/4")	(1")	(1.5")
Cum. % Ret 3/4" sieve		<u>+</u> 4%	<u>+</u> 5%	<u>+</u> 7%	
Cum. % Ret 3/8" sieve		<u>+</u> 4%	<u>+</u> 5%	<u>+</u> 7%	
Cum. % Ret # 4 sieve	<u>+</u> 4%	<u>+</u> 3%	<u>+</u> 4%	<u>+</u> 4%	<u>+</u> 6%
#200 sieve	<u>+</u> 0.8%				

perties	an a		2
Asphalt material type Layer thickness (in)	Asphalt.cor		
Asphalit Bunder 🔳 Asphal	t General		
Cumulative % Retained 3/8 Cumulative % Retained 3/8 Cumulative % Retained #4	inch sieve	25 52	a
	Asphalt material type Layer thickness (in) Asphalt Binder I I Asphalt gate Gradation Cumulative % Retained 3/4 Cumulative % Retained 3/8 Cumulative % Retained 44	Asphalt material type Asphalt con Layer thickness (in) 14 Asphalt Binder Asphalt General gate Gradation Cumulative % Retained 3/4 inch sieve Cumulative % Retained 3/8 inch sieve	Asphalt material type Asphalt conclete Layer thickness (in) 14 Asphalt Binder Asphalt General gate Gradation Cumulative % Retained 3/4 inch sieve Cumulative % Retained 3/8 inch sieve Cumulative % Retained #4 sieve 52

Figure 17C: 3/8" (9.5 mm) Asphalt Mix Aggregate Gradation

Asphalt Material Properties	
Level 3 - Layer thickness (in)	Asphalt concrete 82
📰 Asphalt Mox 🛛 🏾 Asphalt Binder 🕇 🔳 Asphalt (General
Aggregate Gradation	
Cumulative 3, Retained 3/4 in	nch sieve 5
Cumulative % Retained 3/8 ii	nch sieve 40
Cumulative 💈 Retained #4 si	eve 58
% Passing #200 sieve	5

Figure 18C: 3/4" (19.0 mm) Asphalt Mix Aggregate Gradation

Gradation Mix Designation	Percent Retained Percen Passin			Percent Passing	
	³ / ₄ -in Sieve	¹ / ₂ -in Sieve	3/8-in Sieve	#4-in Sieve	#200 Sieve
1-in (25.0 mm)	15	30	48	62	4
³ / ₄ -in (19.0 mm)	5	20	40	58	5
¹ / ₂ -in (12.5 mm)	0	5	25	52	6
³ / ₈ -in (9.5 mm)	0	0	5	45	6

 Table 22C: Recommended Typical Massachusetts HMA Mix Gradations Input

6.4 PG Binder Grade

Based on Mass DOT asphalt supplier list, three asphalt PG grades were selected: PG 52-34, PG 64-22 and PG 64-28 for the M-E PDG sensitivity analysis. The PG 64-22 is used as the binder grade for the control case. The binder grade is tested in conjunction with operational speed of vehicle.

 Table 23C: Massachusetts PG Binder Grades

CODE	PG BINDER GRADE
G1	PG 52-34
G2 (Control)	PG 64-22
G3	PG 64-28

6.5 Unbound Layer Inputs

ASTM D 2940, Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports. The gradation for base material from this standard is given below.

 Table 24C: ASTM D 2940 Gradation for Dense-Graded Bases and Subbases

Sieve Size	Percent Passing
2 in. (50 mm)	100
1'/2 in. (37.5 mm)	95 - 100
3/4 in. (19.0 mm)	70 – 92
¹ / ₂ in. (9.5 mm)	50 - 70
No. 4 (4.75 mm)	35 – 55
No. 30 (0.600 mm)	12 – 25
No. 200 (0.075 mm)	0-8

6.6 Base Course Resilient Modulus

 Table 25C: Base Course Aggregate Gradations (Level 3)

CODE	M1 (Control)	M2	M3			
Type of course	Crushed Gravel	Crushed Stone	River-Run Gravel			
Sieve Size	Р	Percent Passing by Weight				
3 ½ in (90.0 mm)	-	-	97.6			
3 in (75.0 mm)	100	-	-			
2 in (50.0 mm)	97.5	100	91.6			
1 ½ in (37.5 mm)	-	92.5	85.6			
1 in (25.0mm)	70.0	-	78.8			
³ / ₄ in (19.0 mm)	-	60.0	72.7			
#4 (4.75 mm)	39.5	27.5	44.7			
#200 (0.075 mm)	6.0	2.5	8.7			
Resilient Modulus	25000	30000	15000			

Gradation Limits			
Sieve Size	Job Mix Gradation	Job Mix Gradation	
	Target Band	Tolerance	
1 ¹ / ₂ inch	100		
1 inch	90 – 100	±9.0	
³ / ₄ inch	70 – 85	±9.0	
¹ / ₂ inch	65 – 80	±9.0	
³ / ₈ inch	55 – 75	±9.0	
No. 4	40 – 65	±7.0	
No. 16	25 – 40	±5.0	
No. 200	7 – 11	±3.0	

 Table 26C: Untreated Base Course Gradation Limits

6.7 Subgrade Resilient Modulus M_R

Table 27C: Subgrade Types and Subgrade Resilient Modulus

		Material	RESILIENT MO	DDULUS (psi)
CODE	SUBGRADE TYPE	Classification	Level 2	Level 3
E1	Clayey soils	A-7-6	n/c*	8000
E2 (Control)	Fine sand, some silt	A-2-4	n/c	25000
E3	Coarse to fine gravelly, coarse to medium sand, some fine sand	A-1-a	n/c	30000

*- n/c not collected

6.8 Effective Binder Content V_{be}, % (AASHTO T308)

CODE	In-situ VMA,	EFFECTIVE BINDER
	percent	CONTENT
F1	14.0	10.0
F2 (Control)	15.0	11.0
F3	16.0	12.0

Table 28C: Effective Binder Content

Table 29C: HMA Mix Gradation Input Values

	9	9.5 mm (3/8")		19.0 mm (3/4")		
% of Aggregate	A1	A2	A3	B1	B2	B3
Retained on 3/4" sieve	0	0	0	14.0	18.6	12.0
Retained on 3/8" sieve	5.0	8.2	3.6	24.0	32.4	19.8
Retained on #4 sieve	35.0	48.3	22.1	42.0	52.0	34.5
Passing #200 sieve	6.0	2.8	8.5	5.0	2.8	7.2

l – Mean values of the allowable range of values

 $2-Coarse mix \ gradation$

3 – Fine mix gradation

6.9 Air Voids Content, %

Table 30C: Air Voids Percentage (Mixture design)

CODE	PERCENT AIR VOIDS
V1 (Control)	4.0
V2	5.0
V3	6.0

None mixture design Air Voids (in-situ air voids at construction site) will be based on percent compaction in specification:

- Range 3.5 to 9.5 (90.5 to 96.5)
- Target 6.5 (93.5) recommended

6.10 Mix Coefficient of Thermal Contraction (CTC)

CODE	COEFFICIENT OF THERMAL	
	CONTRACTION	
N1	1.0 E-07	
N2 (Control)	1.3 E-05	
N3	1.0 E-04	

Table 31C: Mix Coefficient of Thermal Contraction

The Mix CTC default value of 1.3 E-05 is used for Level 3 sensitivity analysis.

To see the effect of the CTC value on the sensitivity analysis the broad ranges were selected based on the M-E PDG help menu from 1.0×10^{-7} to 1.0×10^{-4} .

6.11 Aggregate Coefficient of Thermal Contraction

The M-E PDG default value is $5.0*10^{-6}/{}^{\circ}$ F.

6.12 Initial IRI values for new pavement design

PAVEMENT TYPE	IRI (IN/MI)		
	MINIMUM	AVERAGE	MAXIMUM
NEW HMA AND			
HMA/HMA*	32	70	106

 Table 32C: Suggested Initial IRI Values for New Pavement Design

*- Initial IRI for HMA pavements shall be set within the range of 70 to 85 in/mi.

Table 33C: Sensitivity Analysis Initial IRI Values

CODE	Initial IRI (in/mi)
S1	32
S2 (Control)	75
S3	106

.

7. MA State M-E PDG Level 3 Sensitivity Analysis

7.1 Effect of Traffic Inputs on Pavement Distresses

Figure 19C: Effect of Truck Class Distribution on Bottom-Up Cracking

Figure 20C: Effect of Truck Class Distribution on Top-Down Cracking

Figure 21C: Effect of Truck Class Distribution on Subtotal AC Rutting

Figure 22C: Effect of Truck Class Distribution on Total Rutting

Figure 23C: Effect of Truck Class Distribution on IRI

Figure 24C: Effect of Traffic Growth Rate at Bottom-Up Cracking

Figure 25C: Effect of Traffic Growth Rate on Top-Down Cracking

Figure 26C: Effect of Traffic Growth on Subtotal AC Rutting

Figure 27C: Effect of Traffic Growth Rate on Total Rutting

Figure 28C: Effect of Traffic Growth Rate on IRI

Figure 29C: Effect of Traffic Speed on Bottom-Up Cracking with PG 64-22

Figure 30C: Effect of Traffic Speed on Top-Down Cracking with PG 64-22

Figure 31C: Effect of Traffic Speed on Subtotal AC Rutting with PG 64-22

Figure 32C: Effect of Traffic Speed on Total Rutting with PG 64-22

Figure 33C: Effect of Traffic Speed on IRI with PG 64-22

Figure 34C: Effect of AADTT on Bottom-Up Cracking

Figure 35C: Effect of AADTT on Top-Down Cracking

Figure 36C: Effect of AADTT on Subtotal AC Rutting

Figure 37C: Effect of AADTT on Total Rutting

Figure 38C: Effect of AADTT on IRI

7.2 Effect of Climate Inputs on Pavement Distresses

Figure 39C: Effect of Climate on Bottom-Up Cracking

Figure 40C: Effect of Climate on Top-Down Cracking

Figure 41C: Effect of Climate on Subtotal AC Rutting

Figure 42C: Effect of Climate on Total Rutting

Figure 43C: Effect of Climate on IRI

Figure 44C: Effect of Water Table Depth on Bottom-Up Cracking

Figure 45C: Effect of Water Table Depth on Top-Down Cracking

Figure 46C: Effect of Water Table Depth on Subtotal AC Rutting

Figure 47C: Effect of Water Table Depth on Total Rutting

Figure 48C: Effect of Water Table Depth on IRI

7.3 Effect of Material Inputs on Pavement Distresses

Figure 49C: Effect of Effective Binder Content on Bottom-Up Cracking

Figure 50C: Effect of Effective Binder Content on Top-Down Cracking

Figure 51C: Effect of Effective Binder Content on Subtotal AC Rutting

Figure 52C: Effect of Effective Binder Content on Total Rutting

Figure 53C: Effect of Effective Binder Content on IRI

Figure 54C: Effect of Percent Air Voids on Bottom-Up Cracking

Figure 55C: Effect of Percent Air Voids on Top-Down Cracking

Figure 56C: Effect of Percent Air Voids on Subtotal AC Rutting

Figure 57C: Effect of Percent Air Voids on Total Rutting

Figure 58C: Effect of Percent Air Voids on IRI

Figure 59C: Effect of AC Layer Thickness on Bottom-Up Cracking

Figure 60C: Effect of AC Layer Thickness on Top-Down Cracking

Figure 61C: Effect of AC Layer Thickness on Subtotal AC Rutting

Figure 62C: Effect of AC Layer Thickness on Total Rutting

Figure 63C: Effect of AC Layer Thickness on IRI

7.4 Effect of Asphalt Concrete Mix Gradation

Figure 64C: Effect of Aggregate Gradation of 9.5 mm AC mix on Bottom-Up Cracking

Figure 65C: Effect of Aggregate Gradation of 9.5 mm AC mix on Top-Down Cracking

Figure 66C: Effect of Aggregate Gradation of 9.5 mm AC mix on Subtotal AC Rutting

Figure 67C: Effect of Aggregate Gradation of 9.5 mm AC mix on Total Rutting

Figure 68C: Effect of Aggregate Gradation of 9.5 mm AC mix on IRI

Figure 69C: Effect of Aggregate Gradation of 19.0 mm mix on Bottom-Up Cracking

Figure 70C: Effect of Aggregate Gradation of 19.0 mm mix on Top-Down Cracking

Figure 71C: Effect of Aggregate Gradation of 19.0 mm mix on Subtotal AC Rutting

Figure 72C: Effect of Aggregate Gradation of 19.0 mm mix on Total Rutting

Figure 73C: Effect of Aggregate Gradation of 19.0 mm mix on IRI

Figure 74C: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Bottom-Up Cracking

Figure 75C: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Top-Down Cracking

Figure 76C: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Subtotal AC Rutting

Figure 77C: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on Total Rutting

Figure 78C: Effect of Aggregate Gradation of 9.5 mm & 19.0 mm mix on IRI

Figure 79C: Effect of Binder Grade on Bottom-Up Cracking at Speed 5 mph

Figure 80C: Effect of Binder Grade on Top-Down Cracking at Speed 5 mph

Figure 81C: Effect of Binder Grade on Subtotal AC Rutting at Speed 5 mph

Figure 82C: Effect of Binder Grade on Total Rutting at Speed 5 mph

Figure 83C: Effect of Binder Grade on IRI at Speed 5 mph

Figure 84C: Effect of Binder Grade on Bottom-Up Cracking at Speed 25 mph

Figure 85C: Effect of Binder Grade on Top-Down Cracking at Speed 25 mph

Figure 86C: Effect of Binder Grade on Subtotal AC Rutting at Speed 25 mph

Figure 87C: Effect of Binder Grade on Total Rutting at Speed 25 mph

Figure 88C: Effect of Binder Grade on IRI at Speed 25 mph

Figure 89C: Effect of Binder Grade on Bottom-Up Cracking at Speed 65 mph

Figure 90C: Effect of Binder Grade on Top-Down Cracking at Speed 65 mph

Figure 91C: Effect of Binder Grade on Subtotal AC Rutting at Speed 65 mph

Figure 92C: Effect of Binder Grade on Total Rutting at Speed 65 mph

Figure 93C: Effect of Binder Grade on IRI at Speed 65 mph

7.5 Effect of Base Subbase Inputs on Pavement Distresses

Figure 94C: Effect of Base Course Material on Bottom-Up Cracking

Figure 95C: Effect of Base Course Material on Top-Down Cracking

Figure 96C: Effect of Base Course Material on Subtotal AC Rutting

Figure 97C: Effect of Base Course Material on Total Rutting

Figure 98C: Effect of Base Course Material on IRI

Figure 99C: Effect of Subgrade Type on Bottom-Up Cracking

Figure 100C: Effect of Subgrade Type on Top-Down Cracking

Figure 101C: Effect of Subgrade Type on Subtotal AC Rutting

Figure 102C: Effect of Subgrade Type on Total Rutting

Figure 103C: Effect of Subgrade Type on IRI

Figure 104C: Effect of Water Table on Bottom-Up Cracking with Weakest Subgrade

Figure 105C: Effect of Water Table on Top-Down Cracking with Weakest Subgrade

Figure 106C: Effect of Water Table on Subtotal AC Rutting with Weakest Subgrade

Figure 107C: Effect of Water Table on Total Rutting with Weakest Subgrade

Figure 108C: Effect of Water Table on IRI with Weakest Subgrade

Figure 109C: Effect of HMA CTC on Bottom-Up Cracking

Figure 110C: Effect of HMA CTC on Top-Down Cracking

Figure 111C: Effect of HMA CTC on Subtotal AC Rutting

Figure 112C: Effect of HMA CTC on Total AC Rutting

Figure 113C: Effect of HMA CTC on IRI

Figure 114C: Effect of Initial IRI on Bottom-Up Cracking

Figure 115C: Effect of Initial IRI on Top-Down Cracking

Figure 116C: Effect of Initial IRI on Subtotal AC Rutting

Figure 117C: Effect of Initial IRI on Total Rutting

Figure 118C: Effect of Initial IRI on IRI

8. Sensitivity Analysis Summary Level 3

Normalization of the distresses was done to compare the effects of each input parameter on predicted distresses.

The normalized distress levels are calculated as the ratio of the difference between the maximum and minimum predicted distresses for each input variable to the distress levels corresponding to the control set of input values.

$N = \frac{Maximum \ Distress - Minimum \ Distress}{Distress \ for \ control \ input \ set}$

N - Normalized Value

	MA LEVEL 3											
Input Variable	Bottom-Up	Top-Down	AC Rutting	Total	IRI							
	0.16	1000.25	0.02	Rutting								
HMA thickness	0.16	1020.35	0.03	0.111	5.66							
HMA mix	0.02	201.37	0.046	0.057	2.89							
gradation			1									
HMA air voids	0.13	656.0	0.026	0.032	1.67							
HMA effective	0.02	71.91	0.014	0.018	0.89							
binder content												
HMA binder	0.05	628.13	0.148	0.173	8.67							
grade					1							
Base	0.04	251.04	0.017	0.043	2.18							
type/modulus												
Subgrade	0.02	433.93	0.009	0.086	13.85							
type/modulus												
Ground water	0.02	242.76	0.012	0.041	2.0							
table												
WT with weakest	0.03	10.24	0.009	0.027	1.33							
subgrade												
Climate	0.04	352.37	0.092	0.1	6.39							
AADTT value	0.04	286.01	0.065	0.088	4.45							
Operational	0.07	763.21	0.206	0.237	11.9							
speed												
Traffic growth	0.01	47.76	0.013	0.017	0.81							
rate												
Traffic	0.13	632.25	0.084	0.123	7.26							
distribution												
HMA CTC	0	0	0	0	14.34							
Initial IRI	0	0	0	0	96.96							

Table 34C: Difference between Maximum and Minimum Distresses – Level 3

	MA LEVEL 3											
Input	Botto	m-Up	Top-l	Down	AC R	utting	То	tal	IF	RI		
Variable							Rut	ting				
	Value	Rank	Value	Rank	Value	Rank	Value	Rank	Value	Rank		
HMA	0.106	1	1.465	1	0.153	7	0.261	4	0.034	8		
thickness												
HMA mix	0.013	7	0.289	11	0.235	6	0.134	8	0.018	10		
gradation												
HMA air	0.086	2	0.942	3	0.133	8	0.075	11	0.010	13		
voids												
HMA	0.013	7	0.103	12	0.071	10	0.042	13	0.005	15		
effective												
binder content												
HMA binder	0.033	4	0.902	5	0.755	2	0.406	2	0.053	5		
grade												
Base	0.026	5	0.360	9	0.087	9	0.101	9	0.013	11		
type/modulus												
Subgrade	0.013	7	0.623	6	0.046	13	0.202	7	0.084	3		
type/modulus												
Ground water	0.013	7	0.349	10	0.061	12	0.096	10	0.012	12		
table												
WT with	0.020	6	0.015	14	0.046	13	0.063	12	0.008	14		
weakest												
subgrade												
Climate	0.026	5	0.506	7	0.469	3	0.235	5	0.039	7		
AADTT value	0.026	5	0.411	8	0.332	5	0.207	6	0.027	9		
Operational	0.046	3	1.096	2	1.051	1	0.556	1	0.072	4		
speed	eed land land land land land land land lan											
Traffic growth	0.007	8	0.069	13	0.066	11	0.040	14	0.005	15		
rate						_						
Traffic	0.086	2	0.908	4	0.429	4	0.289	3	0.044	6		
distribution												
HMA CTC	0.000	9	0.000	15	0.000	14	0.000	15	0.087	2		
Initial IRI	0.000	9	0.000	15	0.000	14	0.000	15	0.588	1		

Table 35C: Normalized Values and Ranks for MA Level 3

Bollom-Up	Top-Down	AC Ruthing	Total Ruiting	n Rit
HMA thickness	HMA thickness	Operational speed	Operational speed	Initial IRI
HMA air voids	Operational speed	HMA binder grade	HMA binder grade	НМА СТС
Traffic distribution	HMA air voids	Climate	Traffic distribution	Subgrade type/modulus
Operational speed	Traffic distribution	Traffic distribution	HMA thickness	Operational speed
HMA binder grade	HMA binder grade	AADTT value	Climate	HMA binder grade
AADTT value	Subgrade type/modulus	HMA mix gradation	AADTT value	Traffic distribution

Table 36C: Sensitivity Analysis Results Level 3

Figure 119C: Significance of Effect of Input Variables on Bottom-Up Cracking (Pie Graph)

Figure 120C: Significance of Effect of Input Variables on Top-Down Cracking

Figure 121C: Significance of Effect of Input Variables on AC Rutting

Figure 122C: Significance of Effect of Input Variables on Total Rutting

Figure 123C: Significance of Effect of Input Variables on IRI

Figure 124C: Significance of Effect of Input Variables on Bottom-Up Cracking

Top-Down

Figure 125C: Significance of Effect of Input Variables on Top-Down Cracking

AC Rutting

Figure 126C: Significance of Effect of Input Variables on AC Rutting

Total Rutting

Figure 127C: Significance of Effect of Input Variables on Total Rutting

Figure 128C: Significance of Effect of Input Variables on IRI

Design/	Distress/Smoothness										
Material	Bottom-Up	Top-Down	AC Rutting	Total	IRI						
Variable	Cracking	Cracking	(in)	Rutting (in)	(in/mi)						
	(%)	(ft/mi)									
HMA thickness	XXX	X	XXX	Х							
HMA mix	X	XX	XX	Х							
gradation											
HMA air voids	XXX	X									
HMA effective	X	X	X	X							
binder content											
HMA binder	XX	XXX	XXX	XXX	XX						
grade											
Base	XX	XX	X	X							
type/modulus				-							
Subgrade	X	XX	X	XX	XX						
type/modulus											
Ground water	X	XX	X	X							
table											
WT with	XX		X	X							
weakest											
subgrade											
Climate	XX	XX	XXX	XXX	XX						
AADTT value	XX	XX	XX	XX	X						
Operational	XX	XXX	XXX	XXX	XX						
speed											
Traffic growth	X	X	X	X							
rate											
Traffic	XXX	XXX	XXX	XX							
distribution											
HMA CTC					XX						
Initial IRI					XXX						
No	ote: X – Small ef	ffect									

Table 37C: MA Sensitivity Analysis Summary Level 3

X – Small effect

XX – moderate effect XXX – large effect

 Table 38C: MA Overall Ranking Summary of Significance of Each Input Parameter on the Performance of Flexible

 Pavement

	MASSACHUSETTS LEVEL 3										
Input Variable	Bottom-Up	Top-Down	AC Rutting	Total Rutting	IRI	Total Ranking Points	Overall Order of Significance				
	Rank	Rank	Rank	Rank	Rank						
HMA thickness	1	1	7	4	8	21	4				
HMA mix gradation		11	б	S	10	42	9				
HMA air voids	2	3	8	11	13	37	8				
HMA effective binder content	-	12	10	13	15	57	14				
HMA binder grade	+	5	2	2	5	18	2				
Base type modulus	Ś	9	9	9	11	43	10				
Subgrade type modulus	~	б	13	7	3	36	7				
Ground water table	_	10	12	10	12	51	11				
WT with weakest subgrade	б	14	13	12	1+	59	15				
Climate	۲ <u>-</u>	7	3	5	7	27	5				
AADTT value	5	S	5	6	9	33	б				
Operational speed	3	-	1	1	4	11	1				
Traffic growth rate	S	13	11	14	15	61	16				
Traffic distribution	2	4	+	3	б	19	3				
HMA CTC	9	15	14	15	2	55	13				
Initial IRI	9	15	14	15	1 54		12				

References (Massachusetts)

- 1. http://groundwaterwatch.usgs.gov
- 2. http://www.ltpp-products.com/DataPave/index.asp
- 3. Sensitivity Study of Design Input Parameters for Two Flexible Pavement Systems Using the MEPDG; Sunghwan Kim, Iowa State University, (August 2005)
- 4. Standard Specification for Highway and Bridges, (1988)
- 5. Standard Special Provisions, Section M3, Bituminous Material (February, 2011)
- Sensitivity Analysis of Pavement Performance Predicted Using the M-E PDG; Dinesh Ayyala, (May 2009)
- 7. http://www.massdot.state.ma.us/Highway/
- Analysis of Vehicle Classification and Truck Weight Data of the New England States, Rick Schmoyer and Patricia S. Hu, (September, 1998)
- 9. Hot Mix Asphalt Job Mix Formulas
- 10. Performance-graded Asphalt Binder Suppliers, 2009
- 11. Network Level Pavement Condition Assessment (March, 2010)
- 12. Superpave Series No. 1 (SP-1) and No. 2 (SP-2)
- 13. Report No. UT-09.11a Draft User's Guide for UDOT MEPDG; October 2009
- 14. ASTM Standards Volume 04.03, 2008
- 15. ASTM Standards Volume 04.08, 2009

Appen	dix A:	Code	Descri	ptions ((Massachus	etts)
		0040			(1.1.1.0.0.1.1.1.0.0.1.1.1.0.0.0.0.0.0.0	

CODE	DESCRIPTION
A1, A2, A3	3/8" (9.5 mm) HMA mix gradation
B1, B2, B3	3/4" (19 mm) HMA mix gradation
A1B1, A2B2, A3B3	Mean, coarse, fine HMA mix gradation
D1, D2, D3, D4	Truck class distribution
E1, E2, E3	Subgrade type
F1, F2, F3	Effective binder content
G1, G2, G3	AC Binder grade
M1, M2, M3	Base course aggregate gradation level 3
N1, N2, N3	Coefficient of Thermal Contraction
Q1, Q2, Q3	AADTT value
R1, R2, R3	Traffic growth rate
S1, S2, S3	Initial IRI
T1, T2, T3	HMA layer thickness
U1, U2, U3	Traffic operational speed
V1, V2, V3	Binder air content
WT1, WT2, WT3	Ground water table level

.

Appendix B: Specification for Hot Mix Asphalt (Massachusetts)

Sieve Designation and % Binder Content	HMA Base Course	HMA Base/ Intermed. Course - Binder	HMA Intermed. Course Dense Binder	HMA Surface Course - Dense Binder	HMA Surface Course – Standard Top	HMA Surface Course - Modified Top	HMA Dense Mix	HMA Surface Treatment	HMA OGFC
2 inches	100								
1 inch	57 – 87	100	100	100		100			
¾ inch		80 - 100	80 – 100	80 – 100		95 - 100			
5/8 inch					100				
½ inch	40 - 65	55 - 75	65 – 80	65 – 80	95 - 100	79 – 100	100		100
3/8 inch					80 - 100	68 - 88	80 - 100	100	90
No. 4	20 - 45	28 - 50	48 – 65	48 – 65	50 - 76	48 - 68	55 - 80	80 - 100	30 – 50
No. 8	15 - 33	20 - 38	37 – 49	37 – 49	37 - 49	33 – 46	48 - 59	64 - 85	5 - 15
No. 16					26 - 40	20 – 40	36 - 49	46 - 68	
No. 30	8 - 17	8 - 22	17 – 30	17 – 30	17 - 29	14 – 30	24 - 38	26 - 50	
No. 50	4 - 12	5 - 15	10 – 22	10 – 22	10 - 21	9 – 21	14 - 27	13 - 31	
No. 100					5 - 16	6 – 16	6 - 18	7 - 17	
No. 200	0 - 4	0 - 5	0 – 6	0 – 6	2 - 7	2 – 6	4 - 8	3 - 8	1 – 3
Binder	4 - 5	4.5 - 5.5	5 – 6	5.1 – 6	5.6 - 7.0	5.1 – 6	7 - 8	7 - 8	6 – 7

Specifications for Hot Mix Asphalt Percent by Weight Passing Sieve Designation

.

Appendix C: Engineering Limits for HMA Aggregate Gradation and PG Binder Content (Massachusetts)

Sieve Designation / Binder Content	Engineering Limit for OGFC	Engineering Limit for all other mixes
Passing No. 4 sieve and larger sieve sizes	JMF Target ± 5%	JMF Target ± 7%
Passing No. 8 to No. 100 sieves (inclusive)	JMF Target ± 3%	JMF Target ± 4%
Passing No. 200 sieve	JMF Target ± 1%	JMF Target ± 2%
Binder	JMF Target ± .3%	JMF Target ± 0.4%

Engineering Limits for HMA Aggregate Gradation and PG Binder Content

Material Classification	M _r Range	Typical M _r *
A-1-a	38,500 - 42,000	40,000
A-1-b	35,500 - 40,000	38,000
A-2-4	28,000 - 37,500	32,000
A-2-5	24,000 - 33,000	28,000
A-2-6	21,500 - 31,000	26,000
A-2-7	21,500 - 28,000	24,000
A-3	24,500 - 35,500	29,000
A-4	21,500 - 29,000	24,000
A-5	17,000 - 25,500	20,000
A-6	13,500 - 24,000	17,000
A-7-5	8,000 - 17,500	12,000
A-7-6	5,000 - 13,500	8,000
СН	5,000 - 13,500	8,000
MH	8,000 - 17,500	11,500
CL	13,500 - 24,000	17,000
ML	17,000 - 25,500	20,000
SW	28,000 - 37,500	32,000
SP	24,000 - 33,000	28,000
SW-SC	21,500 - 31,000	25,500
SW-SM	24,000 - 33,000	28,000
SP-SC	21,500 - 31,000	25,500
SP-SM	24,000 - 33,000	28,000
SC	21,500 - 28,000	24,000
SM	28,000 - 37,500	32,000
GW	39,500 - 42,000	41,000
GP	35,500 - 40,000	38,000
GW-GC	28,000 - 40,000	34,500
GW-GM	35,500 - 40,500	38,500
GP-GC	28,000 - 39,000	34,000
GP-GM	31,000 - 40,000	36,000
GC	24,000 - 37,500	31,000
GM	33,000 - 42,000	38,500

Appendix D: Material Classification (Massachusetts)

Appendix E: MassDOT Hot Mix Asphalt Formulas (Massachusetts)

				1																
PLANTS	iD#	Batch/	Drum Size	Automat c	Controps (ĸ	PC BIN	DER TALK	s	HDX 1	SILOS Insu	V≓eat (X)					ALLOV A	BLE TOLE	R-NCES	
TO BE		/	ch	part	iuliw/	prntr	@		gal.	@	on	ins	Htd		Siev+ Des	ignation/	Enginee	rngLm	Engine	er ng L mit
USED		^on/	°ch	part	iuli wł	protr	@		gais	@	Ton	ins	/Htd		Binder Co	ntent	allr	IKés	(oc c
		Cn/	Ch	part	ful_ w/	pinki	@		gas	@_		ins	~Hd		⊃as~ng‡	4 5 8+8	JINF Targe	4 - 7 🧠	¶ir Targ≁	: + < °o
					C	<u>109110</u>	IENT LIA	ATERIAL	.s						and larger	s eve sizes				
CO-RSE		Nom				Produ	Ler								¤ass ng #	8 to \$ 100	JI'r Targe	12-0	J1 ‴arge	t = 3 °′
AGGREC	SATE	SILES	Carecolo			S City Brodu									S °VE S LE	9 (RC+LSIV=)	Dia Tata			6 . I W
ACCRE	ATE	د بر	Streenin Stone So	gs nd		1 1000	ei								Passing ∓.	260	JIN- arge		Mr arge	1 1 1%
BLEND	3/112	5	Natural S	and		Citz									% Birde	ſ	P1T Targe	1 - 0 - %	JINF Tarce	1 = 0 3 %
RAP	Base	' =_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	W	PG	mod	nier	MINERAL	FILLER,	PC BRID'	NIODF&	Crade &	Source		1					
THي	Interme	ediate =	~~5		w PG	mo	difier	✓ and Kind							NOTE	LINIT-TION:	S (Unless	Desiyn	Data -ppr	o ed)
FOR	Surface	<u> </u>	%	W	PG	mod	lifier								Unless a	uthon_ed by	the Engl	neer no	Job [lix F	ormula
SPECIAL	HATL							ANTI-STR	IP	% of	Bt Kind				will be ap	pro ed whi	ch sperifi	-s		
OGFC	Polym	er		% and Kit	1d	_		SILICON	E		oz Per			gais	* Less th	an 6 6 bindi	er for HI12	² Surface	Course S	tandard Top
			FORM	ULAS (MF	≺=Maste	er Range	e of Spei	cification	ns JM=.	Job Mix	rormula)			** Less t	han bib 6 bi	nder for H	III- Surfa	ce Course	•
		Aggre	gate perc	entages l	below at	e propo	rtional p	ercenta	ges of to	tal aggr	egate fo	r the mi	<u>×</u>		Dense B	inder and H	odifired To	op for mo	es contair	ung RAP
	HU1	A Base	Hr14	Base/	HI IA Inte	rmediate	** HLIA	Surface	*HNA	Surface	™ HMA	Surface	н	114		INA	[н	MA	J	
Sie e	Cou	urse	Intermedi	ate Course	Co	ntse	Cou	irse	Cou	irse	Cou	irse			Su	rfale				
	B	ASE	BIN	DER	DELISE	BILIDER	DENSE	BINDER	ST-ND/	RD TOP	MODIFI	ED TOP	DENS	SETIK	Trea	atment	00	<u>SFC</u>	[
Size	MR	. 11L	MR	JN	NR	nL I	1 IR	JH	MR	١IL	MR	Jt1	HR	, I IL	IIR	JM	tiR	JII	LIR	ЛL
2	100		mm	nnn	mm	1 1111	mm	mm	mm	mm	111111	mm	mm	11111	11111	11/11	111111	mm		
1	57 87		100		100		100		mm	mm	100		mm	mm	1.001	11917	11 11	m		
?/ -	unn		80 100		80 100		80 100		mm	mm	95 100		mm	11111	mm	1.101	mm	mm	1	
8	hunn		mm		hen		min		100		mm		mm	1.00	in av	mm	1.00	1.1111] '	
1/2	40 55		20.75		b- 80		b5-80		95 100		79 100		100		mu	0.01	100			
2	1 ma	·	1.	,	mm		1		80 100		58.89	• • • • • •	80 100		100		90 100	<u> </u>	1 1	
÷.,	20.45		28 60		39.05		18.65		=0.7h	· · · ·	18 68		55.90	,	80,100		30.50		1 1	
* 2	48 33	·	20.20		27 40		27 10	• • • • • • • • • • • • • • • • • • • •	27 10	,	22 16		49 -0	· · · ·	- 100 IOO		2 1 Z		1	
40	10 33	·	20.30	•	37 -3		37 45		57 45	,	33 40	•	40.09	·					1	
∓ 10 	111.		1 0.00		47.00		47.00		20 -0	·	20.20	·	35 49	·					4	
# 30	81/		8 22	• • • • •	1730		17 30		17.29		14 30		24 38	r	25-0		f eun		{ '	
⇒ ~C	- 12		5 15		10 22		10 22	•	10.21		8 21	·	14 27		13 31		mint		4 1	
# 1CO	mur		1111		11111		l nun :	:	515		5 15		ь 18		7 17		11111		4	
≠ 200	04		0 5		05		06		27		20		18	,	38		13			
%Bnđ	40 5 0	• • • • • • • •	4555		5050		5150		5670		5150		7080		7080		0070	<u>ا</u>		
lak Theo	So Gr		1 1111		1111		H H		um.		1111		11111		11111		- 111			

Туре	Material Classification	M _r Range	Typical M _r		
	A-1-a	38,500 - 42,000	40,000		
	A-1-b	35,500 - 40,000	38,000		
	A-2-4	28,000 - 37,500	32,000		
	A-2-5	24,000 - 33,000	28,000		
	A-2-6	21,500 - 31,000	26,000		
AASHTO	A-2-7	21,500 - 28,000	24,000		
11101110	A-3	24,500 - 35,500	29,000		
	A-4	21,500 - 29,000	24,000		
	A-5	17,000 - 25,500	20,000		
	A-6	13,500 - 24,000	17,000		
	A-7-5	8,000 - 17,500	12,000		
	A-7-6	5,000 - 13,500	8,000		
	СН	5,000 - 13,500	8,000		
	MH	8,000 - 17,500	11,500		
	CL	13,500 - 24,000	17,000		
	ML	17,000 - 25,500	20,000		
	SW	28,000 - 37,500	32,000		
	SP	24,000 - 33,000	28,000		
	SW-SC	21,500 - 31,000	25,500		
	SW-SM	24,000 - 33,000	28,000		
	SP-SC	21,500 - 31,000	25,500		
Unified	SP-SM	24,000 - 33,000	28,000		
	SC	21,500 - 28,000	24,000		
	SM	28,000 - 37,500	32,000		
	GW	39,500 - 42,000	41,000		
	GP	35,500 - 40,000	38,000		
	GW-GC	28,000 - 40,000	34,500		
	GW-GM	35,500 - 40,500	38,500		
:	GP-GC	28,000 - 39,000	34,000		
	GP-GM	31,000 - 40,000	36,000		
	GC	24,000 - 37,500	31,000		
	GM	33,000 - 42,000	38,500		

Appendix D: AASHTO and Unified Material Classifications

.