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ABSTRACT 

Alveolar Micromechanics 
By 

Danielle Nangle 
University of New Hampshire, September, 2011 

Pulmonary micromechanics (at the scale of alveoli) involves a delicate balance 

among tissue material properties, geometry, surface tension, pressure and stress 

distribution. To date, there is not a consensus among alveolar mechanics 

researchers about how these factors interact, in part because alveoli are so 

difficult to image and study in vivo. Here, we propose a basic mathematical 

model of a two-dimensional hexagonal network of mechanically coupled alveoli. 

We investigate equilibrium configurations of both dry and wet, internally 

pressurized elastic networks. Specifically, we compute pressure-area curves to 

quantify the differences among networks with different spring constants, internal 

pressures, network size and surface tensions. We conclude that a two-

dimensional hexagonal network in force equilibrium is an appropriate first step in 

modeling the mechanics of the dynamic lung. 

x 



CHAPTER 1. 

Introduction: Literature Review and Motivation 

Section 1.1. What is the lung? 

The mammalian lung is an organ which serves as the primary site of gas 

exchange that oxygenates the blood and removes carbon dioxide from the 

cardiovascular system. It also traps pathogens as part of mechanical immune 

defense (Guyton & Hall 1996). These core functions are fundamentally 

mechanical. The muscles attached to the rib cage and diaphragm expand and 

contract the lung, transmitting force throughout the parenchyma (lung body) to 

the alveoli (the smallest unit of the lung) (Ricci et al. 2002). When the lung is 

inflated, stresses are induced in the alveolar walls, or "septa" (Fung 1975b). 

Because gas is exchanged by diffusion, the alveolar walls must be thin; but they 

also must be strong enough to withstand billions of strain cycles (breaths) in a life 

time. Alveolar mechanics involves a delicate balance between structural stability 

and gas permeability: "That is to say that in the biological design of the pathway 

for oxygen there is little wasted structure and no over design" (Fredberg & Kamm 

2006). 

Remarkably, there are no attachments between the lung and the wall of the rib 

cage except where the pulmonary artery enters the lung. As a result, the lung 
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literally floats in the thoracic cavity surrounded by a thin layer of pleural fluid that 

lubricates movements of the lung within the cavity. A slight suction is maintained 

between the surface of the lung pleura and the surface of the thoracic cavity. 

Therefore the lungs are held to the thoracic wall as if glued there, except they 

can move freely as the chest expands and contracts (think of two damp 

microscope slides that are difficult to pull apart) (Guyton & Hall 1996). 

Physiologically, the lung originates at the trachea in the throat. The trachea then 

bisects forming bronchioles which then arborize into terminal bronchioles which 

end in alveolar clusters. It is important to recognize that these clusters can be 

joined to one another so that in general there is no pressure difference in 

neighboring groups of alveoli. 

The human lung is composed of about 500 million alveoli, which totals 90 square 

meters of surface area available for gas exchange (Fredberg & Kamm 2006, 

Weibel 2008)*. In the body, alveoli are irregular polygons with mutually shared 

walls between neighbors. They have been modeled with spheres, cubes, and 

shapes like dodecahedrons and 14-hedrons (see Figure 1). The mechanical 

properties of the alveolar walls will be discussed in a few paragraphs 

(Karakaplan et al. 1980). 

1Another fascinating fact is that alveolar duct size and alveolar diameters are roughly the same 
across many animal species. Alveolar size is similar in the shrew and elephant even though body 
mass magnitude is a five-fold difference between the two (Fredberg & Kamm 2006). 
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Figure 1: Shapes used to model alveoli (from Karakaplan et al. 1980). 

Before we move to an introduction of lung mechanics, we would like to define 

frequently used terms below in Table 1: 

Term 
Alveoli 
Septa 
Parenchyma 
Pores of Kohn 

Alveolar Ducts 

Liquid Lining 

Surfactant 

Definition 
The smallest unit of the lung and site of gas exchange 
Alveolar wall; usually shared by two to four neighbors 
The main body of the lung 
Small pores in the septa that equalize pressure in 
neighboring alveoli 
Smallest airways; they connect alveoli to primary airways 
(terminal bronchioles) 
Thin liquid layer of fluid that coats the inside of an alveoli; 
there is not a consensus of the physiologic volume 
Surface active agent that reduces surface tension of thin film 
lining (released by Type II alveolar cells) 

Table 1: Frequently used terms. 

As mentioned above, each alveolus shares its walls with its neighbors; this 

aspect of alveolar structure has been termed "interdependence." Because of this, 

an inhale or exhale causes stresses to be transmitted throughout the entire lung 

from organ to cell to molecule (Fredberg & Kamm 2006). Parenchymal integrity is 
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ensured by the tension of the alveolar wall network (which itself is an 

interconnected network of collagen, elastin, fibrin, glycosaminoglycans, smooth 

muscle, and capillaries) (Weibel 2008, Suki et al. 2005). 

Section 1.2. Introduction to alveolar mechanics 

One way stress in the lung can be quantified is by measuring strain, defined as a 

resulting length change per initial length. During a human lifetime the lung as well 

as the cells within it must withstand 109 strain cycles with amplitudes that 

approach 4% during quiet tidal breathing and 107 strain cycles with amplitudes 

that approach 25% during sighs, deep inspirations, or heavy exercise (Fredberg 

& Kamm 2006). By classical engineering standards these loads would require 

robust structures, but since the primary purpose of the lung is gas exchange, thin 

membranes that allow diffusion are favored. 

Stress can also be quantified by energy considerations. The parenchyma is 

viscoelastic due to the viscoelasticity of its constituents and thin film lining. 

Energetically, viscoelasticity means that any initial energy imposed on the system 

will be dissipated over time as the material "rearranges" itself toward a state of 

lower global energy (Bates 2007). In the case of the lung, an alveolar wall is 

exceptionally structurally complex (see Table 2). Because the lung parenchyma 

is viscoelastic, there are viscous losses during cycling (breathing). In reference to 

the septal wall alone (not including surface tension) it is thought that 10-20% of 

the energy of breathing is lost to friction between septal constituents. However it 
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is unknown how much energy is lost to the dynamic cycling of the thin film of fluid 

lining the lung (Fredberg & Kamm 2006). 

Constituent 
Type 1 and II Collagen 
Elastic fibers (elastin) 
Microfibrils 

ECM (extracellular matrix) and 
glycosaminoglycans 

Smooth muscle cells 

Myofibroblasts and fibroblasts 

Function 
Primary structural framework 
Secondary connective tissue 
Continuous, intertwined mantle around 
elastin fibers 
Provides structural support as a 
hydrated gel/ matrix in which 
connective tissues are embedded 
Line and regulate patency of alveolar 
ducts and septal capillaries 
Additional connective tissue also 
responsible for making ECM and some 
types of collagen 

Table 2: Constituents of alveolar septa (from Suki etal. 2005). 

Now that we have a basic understanding of lung physiology and mechanics we 

can discuss the following questions: What can go wrong with the lung? Why is it 

difficult to study the lung? And what are the disagreements about how the lung 

works? 

Section 1.3. What can go wrong with the lung? 

Because stress is concentrated as incident area decreases, an obstructed or 

collapsed alveoli or lung segment will put more stress on its neighbors. This 

increased stress greatly changes the local stress distribution, which means that 

parts of the lung that are not meant to bear loads may bear significant loads, 

potentially prompting a harmful feedback, in which inflammatory agents are 

released causing edema and possibly further degrading of lung tissue. 
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It is crucial to realize that healthy, normal alveoli do not collapse during normal 

breathing (Fredberg & Kamm 2006, DiRocco et al. 2006, Wilson et al. 2001, 

Fung 1975a, Hubmayr 2002). Alveolar collapse (also called atelectasis) is often 

an indicator of disease or injury and is usually diagnosed when alveolar walls 

collapse inward on themselves, so that internal sides of the alveoli come in 

contact. Atelectasis is serious because it indicates that the interconnectedness of 

the alveoli has been ruptured and that greater pressure is required to overcome 

the surface tension of the fluid lining the septa that have collapsed onto each 

other and "stick" together. Furthermore, injured lungs tend to have a larger shear 

modulus which is thought to be due to edema, increased surface tension, 

extracellular matrix remodeling, or scar formation (Faffe & Zin 2009). Table 3 lists 

some primary lung diseases and malfunctions; the following text describes each 

disease in detail. 

6 



Disease/ 
Problem 
ARDS-Adult 
Respiratory 
Distress 
Syndrome 
IRDS-lnfant 
Respiratory 
Distress 
Syndrome 
Asthma 

Emphysema 

Pulmonary 
Fibrosis 

VILI-
Ventilator 
Induced Lung 
Injury 

Pulmonary 
Edema 

Impact 

Oxygen not 
transported to blood; 
can be caused by 
injury or disease 
Infant mortality due to 
structural immaturity 
and lack of surfactant 
production 
Inflammation and 
constriction of 
airways causing lack 
of oxygen transport 

A COPD- Chronic 
Obstructive 
Pulmonary Disease 
that destroys lung 
tissue causing less 
oxygen to be 
delivered to body 
The parenchyma 
becomes fibrous or 
scarred causing less 
oxygen to be 
delivered to body 
Mechanical injuries 
due to overstretching 
of parenchyma; 
collapse and 
reopening of alveoli 
Fluid accumulation in 
lungs. If not treated 
sufferer will die of 
drowning 

Statistics 

150,000 Americans will be diagnosed 
with acute respiratory distress syndrome 
each year and 42% of those will die from 
ARDS. (The ARDS Foundation 2011) 
20 infant deaths in 100,000 in 2000 (The 
ARDS Foundation 2011) 

In the US, 7.7% of adults and 9.6% of 
children have asthma. There were 3,447 
deaths due to asthma in 2007 (Centers 
for Disease Control and Prevention 
2010). 
In the US, 4.9 million people were 
diagnosed and 12,790 people died in 
2007 from emphysema (Centers for 
Disease Control and Prevention 2011). 
This disease increases lung compliance 
which causes the lung to become 
"floppy." 
200,000 adults have been diagnosed in 
the US in 2011 (Pulmonary Fibrosis 
Foundation 2011). This disease 
decreases lung compliance which 
causes the lung to become "stiff." 
Anyone with ARDS or ALI- Acute Lung 
Injury is susceptible to VILI 

Occurs in 1-2% of the US population 
(MD Guidelines 2000) 

Table 3: Table of most prevalent lung problems. See text for more details. 
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1.3.1 ARDS-Adult Respiratory Distress Syndrome 

ARDS is a general term referring to any problem that causes breathing trouble 

and is usually caused by some kind of inflammation of the lung tissue; one 

example is that alveoli can collapse due to increased fluid or edema. 

1.3.2 IRDS-lnfant Respiratory Distress Syndrome 

Although the name is similar to ARDS, IRDS has a specific cause. This type of 

respiratory distress is generally diagnosed in premature infants. It results when 

not enough surfactant is produced or is not of adequate concentration to coat the 

infant lung, decreasing the surface tension of the liquid lining to cause it to 

become patent after birth. 

1.3.3 Asthma 

Asthma is characterized by airway hyper-responsiveness and inflammation. This 

chronic inflammation is thought to cause tissue injury and structural remodeling 

in cells and tissue, manifesting as thickening airway walls, and increased 

collagen deposition making airways and septa less compliant. In contrast, 

elastase can be triggered to digest elastic fibers which would make airways more 

compliant (Faffe & Zin 2009). Because sub-bronchioles and alveolar ducts could 

be affected by asthma, a complete model of alveolar mechanics would 

incorporate the effects of hyper-responsiveness and inflammation on airways and 

alveoli. 
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1.3.4 Emphysema 

Emphysema has been defined as an irreversible destruction of the alveoli and 

airways causing increased lung compliance (see SEM of emphysematous lung in 

Figure 2). Major mechanisms thought to be responsible for emphysema include 

inflammatory agents, cell death in the alveolar walls, and extracellular matrix 

remodeling among others (Faffe & Zin 2009). In animal models of emphysema, 

elastase and collagenase is administered digesting the elastic fibers in the septal 

walls (Brewer et al. 2003). The result is that after this treatment, the number of 

intact collagen and elastin fibers decreases leading to a higher lung compliance 

(Yuan et al. 2000). The danger is that highly compliant lung tissue collapses onto 

itself, decreasing surface area for gas exchange and requiring greater pressure 

to open the collapsed alveoli. In mammals, this to leads shorter, shallower 

breaths and decreased oxygen delivery. 

Normal Emphysema 

Figure 2: SEM of healthy (left) and emphysematous (right) lung (from Suki & Bates 2008). 

Extensive study has been focused on what role the extracellular matrix plays in 

emphysema. Suki & Bates (2008), used a 2D hexagonal spring network to model 
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a group of interconnected alveoli that was strained uniaxially (top and bottom). 

To model emphysema some springs were either "cut" or certain spring constants 

were randomly decreased relative to the spring constants of the remaining 

springs. The yellow color in Figure 3 indicates springs experiencing high stress 

and the blue, low stress. 

Figure 3: Hexagonal spring model, showing progression of emphysema (from (Suki & Bates 2008) 

According to their model, the low stress picture to the far right shows that 

extreme emphysema is characterized by very low stress in septal walls. In other 

words, the emphysematous lung has very low compliance and can almost be 

thought of as "floppy". Ito et al. (2005) conclude that collagen is significantly 

remodeled in the alveolar wall, which produces many weak nonlinearly elastic 

fibers. This causes the alveolar walls to fail and rupture leading to the holes like 

those in the model of Suki & Bates (2008). 

1.3.5 Pulmonary Fibrosis 

Unlike emphysema, pulmonary fibrosis is characterized by excessive production 

of collagen, elastin, and proteoglycans, which are constituents of alveolar walls 

(Faffe & Zin 2009). This excess causes the septal walls to stiffen making 
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inhalation very difficult. If emphysema is characterized as slackening of the 

alveolar walls, pulmonary fibrosis is stiffening. Just as Suki and Bates (2008) 

investigated emphysema in a spring network model, they also analyzed 

pulmonary fibrosis using the same model, as seen in Figure 4. 

Figure 4: These three images show a progression of spring stiffness from uniform spring constants 
on the left to highly varied spring constants on the right (from Suki & Bates 2008). 

In order to model pulmonary fibrosis, spring constants in the model were 

changed randomly to be stiffer than their neighbors. Eventually a few very stiff 

springs dominated the mechanics of the network, as seen in the far right picture 

of Figure 4. It has been hypothesized that increasing lung stiffness can also be 

triggered by areas of low oxygen or hypoxia, creating a feedback loop in the 

fibrosed lung (Sakai et al. 1999). In addition, the effects of age also stiffen lung 

tissue (Tanaka & Ludwig 1999, Lai-Fook & Hyatt 2000, Salerno & Ludwig 1999). 

To date, there is no way to reverse emphysema or pulmonary fibrosis (Suki & 

Bates 2008). 

1.3.6 VILI-Ventilator Induced Lung Injury & pulmonary edema 

A mechanically induced disease is Ventilator Induced Lung Injury (VILI). When 

oxygen is delivered via mechanical ventilation, VILI can occur if the parenchyma 
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is over-stretched, resulting in higher shear stress that causes alveolar walls to 

rupture. Inflammation then occurs which can lead to edema or other cell trauma 

(DiRocco et al. 2006). Because it is extremely difficult to image the dynamic lung 

in vivo, it is not known how much airways and alveoli expand and contract during 

ventilation. It can be reasoned therefore that it is also not clear how airway 

pathology or alveolar function pathology relate to lung injury (Gatto & Fluck 

2004). However, it is generally agreed that mechanical ventilation causes 

extracellular matrix remodeling and changes the biomechanical behavior of the 

lung. Changes in the extracellular matrix alter the mechanical forces on the cells, 

and redistribute how stress and strain are distributed in the parenchyma and 

alveolar walls (Pelosi & Rocco 2008). VILI is most dangerous when the alveoli 

actually begin to collapse. Atelectasis can occur in other disease states and as a 

result of lung injury. Once the alveoli are collapsed, the thin liquid lining or edema 

(if present) will hold the alveoli shut, requiring greater pressures to inflate them. 

Increasing the pressure delivered by a mechanical ventilator further increases 

the risk of alveolar rupture and collapse. 

1.3.7 Conclusion of "What can go wrong with the lung?" 

Research in lung mechanics thus requires understanding of some of the major 

ways the lung can become diseased or injured, so that relevant mathematical, 

laboratory and in vivo models can be developed and relevant questions 

addressed. From the perspective of Hubmayr (2002): When a clinician asks 

"How should I ventilate this patient?" the investigator should contemplate "How 

does an alveolus deform during a breath; what is the accompanying stress; how 
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do cells sense and respond to this stress; and finally can the cell and molecular 

responses of deformation be manipulated?" Because parenchymal compliance in 

the healthy lung is balanced to withstand cyclical strains and maximize gas 

exchange, any major alteration to that compliance, either stiffening as in 

pulmonary fibrosis or a slackening as in emphysema, or a spasm between the 

two as in asthma, will result in a disease state. And yet today, Tschumperlin et al. 

(2010) state that the role that stiffness (one aspect of lung compliance) plays in 

initiating, amplifying or prolonging these disease processes presents a fertile but 

as yet unexplored territory. 

This discussion makes clear that every lung disease develops as the result of 

micromechanical changes. Lung injury and disease cannot be treated without 

adequate understanding of alveolar mechanics. 

Section 1.4. How 60 scientists and researchers study the lung? 

To obtain pressure-volume (PV) relationships for given patients, clinicians use a 

spirometer to measure volume and a pressure transducer to measure the 

difference between the tracheal (throat) and esophageal (thoracic) pressure. This 

pressure difference approximates the transpulmonary pressure, or the pressure 

difference between the outside and inside of the lung, and is usually thought of 

as the pressure required to inflate the lung (Mead 1973). 

In the lab, a researcher could generate a PV curve using an animal model, an 

excised lung, or even a computer model. It is convenient to include generated PV 
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curves in published research so that clinicians can apply the findings. Studying 

and imaging the lung on a scale that resolves groups or individual alveoli is 

challenging. Animal lungs can be treated, fixed, excised and imaged, but 

sometimes these processes change inherent mechanical properties 

(Tschumperlin et al. 2010). However difficult, the lung has been imaged in vivo 

(Figure 5), most successfully and elegantly by Perlman & Bhattacharya (2007). 

This landmark study shows that there is a bright future for the development of 

visualization and measurement techniques of alveoli in vivo. 

Figure 5: A) A low magnification image of a group of alveoli. B) A few alveoli and the marking 
technique and definitions used by the authors. C) Length change in a single alveolar wall imaged in 
vivo (from Perlman & Bhattacharya 2007). 

As noted previously, the lung can be studied in vivo, in vitro and mathematically/ 

computationally. There is a wide variety of computational lung models. Some 

researchers have focused on the air flow in the airway tree, the inspiratory pump 

muscles, and even the dynamics of alveoli around and adjacent to an alveolar 

duct (Kitaoka et al. 1999, Ricci et al. 2002, Adler & Bates 2000). Regardless of 

the method of study, understanding of the lung is not yet complete. 
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Section 1.5. Contradictions in the lung research community 

Researchers have proposed competing and contradictory mechanisms of lung 

inflation at the alveolar level, based on discordant descriptions and assessments 

of lung function (Gatto & Fluck 2004). In addition, conflicting results have been 

reported on the changes in the distribution of pleural pressures caused by 

alterations of chest shape (Vawter et al. 1975). Even today researchers disagree 

about how lung inflation affects alveoli, how the Law of Laplace is relevant in the 

lung, and the extent to which the thin film coats the alveoli, among other issues. 

These disagreements stem from the difficulty to excise and fix the lung to image 

it, and the fact that doing so changes thermo-chemical mechanical tissue 

properties. Even an in vivo measurement disrupts alveolar mechanics and is 

subject to resolution limitations. As an example of the sometimes extreme 

disagreement that exists in this community, the Journal of Applied Physiology 

(JAP) frequently publishes "Letters to the Editor" and "Controversies in 

Physiology" which are short discussions, often including rebuttals of lung 

mechanics researchers who have published articles in JAP. Both are forums in 

which contributing authors can debate each other's ideas and hypotheses 

(compare Hills 1999, Scarpelli & Hills 2000, and Gil 1983). In addition the 

following articles make conflicting statements about surface tension: Hoppin et al. 

(1998), Ingenito et al. (2005), West (2005), Hubmayr (2002), the Law of Laplace: 

West (2005), Prange (2003), Fung (1975a), Hamm et al. (1996), alveolar wetting: 

Hills (1999), Scarpelli & Hills (2000), Gil (1983), Gatto & Fluck (2004), and 

edema distribution: Bachofen et al. (1993). 
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Section 1.6. Motivation and method 

Motivated by the contention between lung researchers and the need for improved 

fundamental understanding of alveolar mechanics, we developed and 

investigated a mathematical model of an alveolar network that includes pressure, 

surface tension, geometrical considerations, and material behavior. Our model is 

close to that of Suki & Bates (2008) and Flicker and Lee (1974), but we augment 

the simplified spring model by including the effect of both pressure and surface 

tension. Pressure is the essential driving force of every inhale and exhale and 

must be included in a lung mechanics model for completeness. In addition, we 

specifically seek to understand how surface tension impacts alveolar mechanics. 

We have developed two related models to study alveolar mechanics: An 

analytical model of a small network of alveoli and a computational model (using 

Matlab) of an arbitrary sized network. Our primary focus is on static force 

balances in these model alveolar networks. Although the lung is a dynamic 

organ, static balances are necessary to build the foundation for dynamic models. 

Because this model is an abstraction of an alveolar network, retaining only 

essential physical and geometrical ingredients, results of this research may be 

applicable to other systems. Any material, biological to industrial, composed of 

unit cells (hexagonal cells would be most similar) could be modeled using a 

similar approach. 
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Our overarching goal is to understand the relationship between surface tension, 

geometry, and material properties as manifested in a model alveolar network. 

More specifically, we would like to know how the PV curve, in our case the 

pressure-area (PA) curve, is impacted by these factors. We aim to isolate the 

impacts of these various factors and ultimately incorporate work of colleagues 

(James Melfi and others) who have modeled alveolar septal dynamics. 
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CHAPTER 2. 

Problem Formulation 

Section 2.1. Physiological model justification 

2.1.1 Geometrical considerations 

In this investigation, we model the geometry of a group of alveoli as a two-

dimensional (2D) hexagonal network. To justify this choice as an appropriate first 

step in a lung model, see Table 4, which includes pictures, artistic renditions, 

casts and SEM images of the lung from organ to cell for intuition regarding scale 

and physiological form. Previous investigators have modeled the lung as either 

an open (Mead 1973) or closed system (Haber 2000). We opted to follow the 

latter approach so that we could study the conformations of a pressurized 

network. 
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Organ 

The trachea 
leads from the 

nose and mouth 
to the bronchi 

which bifurcate 
and terminate at 
the alveoli. The 
right picture is a 
resin cast of a 
human lung. 

Nasal cavity (nose) 

__ Oral cavity (mouth) 

_, Epiglottis 

Trachea 

Bronchi 

Red and blue vessels carry 
oxygenated and deoxygenated 

blood, airways are yellow. 
Alveolar 
clusters 

The airways 
terminate in 

alveolar clusters 
that are the site 

of gas 
exchange and 

are highly 
intervasculated. 

Septal walls 

All alveoli share 
their walls with 
their neighbors. 
The walls are 
slightly wider 
than a blood 
cell. The left 
SEM image 

shows a roughly 
hexagonal 
network. 

Jtfrao&r nacR| •1**9*^ tnarm*tnie*ti*iz»tft-*nf 

Table 4: The lung from organ to cell. As the reader progresses from the top left image to the bottom 
right image the scale decreases from about 1 meter across a human rib cage to 100 microns across 
a single alveoli, with the septal walls being about 10 microns thick (from European Lung Foundation 
2011, Bautista et al. 2011). 
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2.1.2 Springs used as tissue models in the literature 

As can be seen in the SEM image in Table 4, a hexagonal network model is a 

reasonable (albeit abstracted) representation of a cross-section of the lung. Of 

course, for pressure to impact alveolar septa, the septal faces must be 2D (i.e. 

generally planar surfaces). In our 2D network model, one edge of each septal 

face is assumed to be very long (as in a honeycomb-like structure) and every 

relevant input is divided by "width" to create one-dimensional elements that we 

term "springs". This terminology should not be interpreted literally; indeed, it is 

hard to conceptualize how pressure would impact a spring network. The idea is 

that we are representing membrane behavior with springs but maintaining the 

pressure effect. 

In fact, alveolar walls have commonly been modeled as springs in the field of 

pulmonary micromechanics. For instance, Mead, Takishima, and Leith in 1970 

designed a spring table with interconnected springs in a hexagonal pattern and 

the outermost springs attached to weights. They could modify the shape of the 

inner-most hexagon and then visually assess the consequent changes in their 36 

hexagon network (see Figure 6). 
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Figure 6: From Mead, Takishima and Leith 1970 On the left is Figure 15 from Mead et al paper. On 
the right is a sample of our computational results for visual comparison. 

Another widely cited report was authored by Cavalcante et al. (2005). Regarding 

their numerical model, they state that "The elastic behavior of the tissue sheet 

was modeled by using a two dimensional network of nonlinearly elastic springs 

joined by pin joints. Each spring represented the combined mechanical behavior 

of elastin and collagen fibers within the alveolar wall ... Where k is the linear 

spring constant and b is the nonlinear spring constant." This report compared 

numerical simulations of nonlinear springs in a hexagonal network with in vivo 

measurements of alveolar septa. 

Lastly, we cite the work of Hung et al. (2010) who modeled the sclera (or outer

most membrane) of the eye-ball with a network of interconnected springs (see 

Figure 7). These authors modeled eye tissue mechanics with Hooke's Law and 

treated the system as time dependent (dynamic) to capture changes in 

viscoelasticity of the nonlinear spring network. 
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Figure 7: Spring model of the sclera (from Hung et al. 2010). 

In addition to the research cited above, numerous other articles incorporate 

spring models of mechanics including Bates (2007), Faffe & Zin (2009), Suki & 

Bates (2008), Bachofen et al. (1993), Fung & Sobin (1972), Adler & Bates 

(2000). 

2.1.3 Surface tension discussion 

Although the extent to which a thin film of fluid lines the lung (see Introduction), it 

is agreed by researchers, that there is some liquid lining the lung. We have 

chosen to approximate this lining, as a thin film of fluid that forms pools in the 

corners of alveoli and resists inflation. In this project we have not defined the 

volume or constituents of the fluid, but we have assumed that it makes a zero 

contact angle with the septa it lines; thus the surface tension force acts parallel to 

the resistive spring force. Figure 8 shows a simple drawing of how we have 

assumed the thin film lining the lung to pool in alveolar corners. The blue arrows 

are the "border" of the pool and represent the surface tension force that is 

multiplied by the width of the septal membrane and is parallel to the resisting 
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"spring" force of the membrane. To clarify, if we were to express the force due to 

surface tension on this particular membrane it would be yb. 

Figure 8: 2D conceptualization of liquid lining pools in the corner of an alveoli. 

2.1.4 Pressure discussion 

The lung is a remarkably efficient organ; the pressure required to move gas 

through the airways is very small, about 2 cm of water to move air about 1 

liter/second (West 2005). Physiologists have many names and many ways to 

describe pressure. For our purposes we will familiarize the reader with the most 

commonly used terminology. (Usually, when referring to the lung pressure has 

units of cm H20 and volume is measured in liters.) 
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Figure 9: Changes in lung volume, alveolar pressure, pleural pressure and transpulmonary pressure 
during normal breathing (from Brown 2010). 

Alveolar pressure: Alveolar pressure (Palv) in Figure 9 is the pressure inside 

the alveoli. When the mouth and throat is open (specifically the glottis) and no air 

is flowing into or out of the lungs, the pressure in all parts of the respiratory tree, 

all the way to the alveoli, is equal to atmospheric pressure, which is considered 

to be the primary reference pressure (Guyton & Hall 1996). 

Pleural pressure: (First recall that there are no attachments between the lung 

and the wall of the rib cage. Therefore the lungs are held to the thoracic wall as if 

glued there, except they can move freely as the chest expands and contracts.) 

Pleural pressure (Ppl in Figure 9) is the pressure of the fluid in the narrow space 

between the lung pleura and the thoracic wall pleura. There is normally a slight 

suction, which means a slightly negative pressure about -5 cm H2O. Facilitated by 

suction, the rib cage "pulls" on the surface of the lung pleura causing it to expand 

and the pleural pressure decreases to about -8 cm H20 (Guyton & Hall 1996). 
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Transpulmonary pressure: Transpulmonary pressure is the difference between 

the alveolar pressure and the pleural pressure (the shaded region in Figure 9). 

Essentially it is the measure of pressure required to keep the lung patent (Guyton 

& Hall 1996). 

In order for air to flow into the lung, the pressure in the alveoli must fall to a value 

slightly below atmospheric pressure, about -1 cm H2O. During expiration the 

opposite changes occur, and alveolar pressure rises to about +1 cm H2O (Guyton 

& Hall 1996). PV curves usually plot volume change (ordinate) versus 

transpulmonary pressure (abscissa) but it is not uncommon to see volume versus 

pleural pressure or alveolar pressure. 

Very closely related to the PV curve is the lung compliance curve. Just as the 

name suggests, lung compliance is a measure of how much the lung expands for 

given changes in transpulmonary pressure. In a healthy lung at rest, the lung 

expands by 200 ml for a transpulmonary pressure increase of 1 cm H2O (Guyton 

& Hall 1996). Because lung tissue is viscoelastic the PV curve (or stress strain 

a — e curve) will always be hysteretically shaped. Drawings of common PV and 

compliance curves are shown below. 
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Figure 10: Three PV curves of the lung with total lung volume versus pressure in cm H20. The 
arrows on the center curves indicate inspiration ("Up" arrow) and expiration ("Down" arrow).The 
saline filled lung requires lower pressure to fill the lungs to physiologic volume. The air filled lung, 
by area inside PV curve, requires the greatest work to fill the lung. The surfactant washed lung has 
no active surfactant, so the liquid lining in the lung acts on the alveolar septa with greater surface 
tension force. This leads to alveolar collapse, widening of alveolar ducts; septa are "sucked" 
together to widen the ducts even more. 

Figure 11: Compliance curves showing disease states from (Johns Hopkin's School of Medicine 
1995) 

As can be seen in Figure 10 and Figure 11, the PV curve can change shape 

depending on what is happening inside the lung, and can be used as an initial 

screening or diagnostic tool, or it can be used by non clinical researchers as a 

dynamic picture of lung mechanics. 

Hysteretic PV curves can be generated from measurements on graphs like 

Figure 9. Although not apparent by inspection, the PV curve and Figure 9, plot 

the same data in different ways. For this discussion and plots see APPENDIX A. 

Also in this appendix are references about how pressure and volume are 

measured in humans in a clinical setting. 
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Section 2.2. Framing the force balance 

As noted above, using springs to model biological tissue is accepted in the field 

of lung mechanics research and also other biomechanical fields. Using springs 

enables researchers to model highly complex tissues with simple force balances. 

In our model, we use linearly elastic springs, meaning that they have a one to 

one relationship between the force in each spring and the amount it is stretched. 

This relationship is known as Hooke's Law: 

F = KAx, 

where F is the force, K is the spring constant, and Ax is the change in length of 

the spring from its unstretched length. Of course, a more accurate model of an 

alveolar wall would be a viscoelastic or nonlinearly elastic spring, however using 

a linearly elastic spring network is an appropriate first step. 

Also we have assumed that surface tension has a zero contact angle along the 

septal "springs", and that it acts parallel to the resistive spring force. So an 

inflation pressure is resisted by the spring force and the force due to surface 

tension. This figure illustrates a sample free body diagram with surface tension 

and described in detail in Section 3.3. 
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Figure 12: 2D conceptualization of surface tension. 

In addition to spring and surface tension forces, we impose a pressure difference 

to deform the network. Our approach is similar to that of Flicker and Lee (1974). 

As can be seen in Figure 13, these researchers derived a force balance for a 

roughly hexagonal, 2D network with an imposed pressure (denoted as PL). 
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Figure 13: Roughly hexagonal network illustrated by Flicker & Lee 1974, with corresponding side 
view below. 
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A force balance of static alveolar mechanics must include a pressure difference 

and a sum of forces over some area in two dimensions. To illustrate the analysis, 

consider a force balance on a network consisting of seven complete hexagons 

(Figure 14). 

Figure 14: Seven hexagon network. 

The internal, inflating pressure acts outward in all alveoli, just as if each alveolus 

had its own pressure source. Calculating a force balance on an internal node, the 

pressure on all three adjacent springs is equalized by an opposing pressure from 

the neighboring alveoli. Hence, for a homogeneous pressure distribution, 

pressure only makes a net contribution to the force balance on the pleural nodes 

since there is no (relative) pressure acting outside the network. In addition to 

developing a computational model by imposing a force balance for each node, 

internal and pleural, we also have obtained an analytical pressure area (PA) 

solution in the case of a seven hexagon network possessing a high degree of 

symmetry. For the seven hexagon network, Figure 15 shows a pleural node free 

body diagram, (see Section 3.3 for complete explanation of forces and 

equations). 
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Figure 15: Pleural node free body diagram. 

2.2.1 Model assumptions 

In order to model this complex system, certain assumptions must be made. 

Depending on the goals and uses of the model, different assumptions may be 

relevant. For our specific model, applicable assumptions are listed in Table 5. 

Physiological 
Characteristic 

Alveolar shape 

Alveolar Dimension 

Pressure 

Pleural Surface 

Septal material 
properties 

Force Balance 

Breathing 

Assumption 

Regular Hexagons 

2 Dimensional 

Internal pressure 

Planar 

Linear springs 

2D lattice in plane 

Static 

Consequence 

Lung is highly heterogeneous in 
shape and parenchymal tissue 
properties, mechanics may or may 
not be comparable 
2D extrapolation of 3D structure 
not complete, may omit crucial 
mechanical details 
Lung is not inflated from the 
inside, it is expanded by the 
external action of muscles 
The surface of the lung 
encompasses the entire lung not a 
small group of alveoli and is 
curved not planar 
Does not capture time 
dependence of viscoelastic or 
nonlinearly elastic tissue 
Pressure acts uniformly along 
each element 
Static force balance does not 
capture any time dependent 
aspects of alveolar mechanics 
which is inherently dynamic 

Table 5: Assumptions made in computational model and input parameters. 
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As is clear in this table, our model captures only static (i.e. equilibrium) behavior: 

there is no time dependence in our equations or variables. This is deemed to be 

necessary and a natural first step toward developing a dynamic model. 

2.2.2 Nondimensionalization 

To most conveniently assess the relative magnitudes of different physical, 

material, and geometrical effects, it is helpful to non-dimensionalize the various 

terms arising in the nodal force balance. First we define constituent material 

properties: a table listing these properties is shown below. 

Physiological Parameter 

Transpulmonary pressure about 
5 cm/H20 

Unstretched length of alveolar septa 

Elastic modulus of alveolar septa 
Thickness of alveolar septa is slightly 
thicker than a blood cell (8um) 
Surface tension in the lung varies 
with area from about 5 to 60 
dynes/cm 

Variable 

P 

Lo 

E 

t 

Y 

Computational 
Input 

490 N/m2 

50e"6 m 

5000 N/m2 

10e"6m 

0.06 N/m 

Source 

West 2005 

Perlman & 
Bhattacharya 2007 

Suki et al. 2005 

West 2005 

West 2005 

Table 6: Physiological values of constituent material properties. 

Using Table 6 as a reference, we will now derive non-dimensional force balance 

equations and non-dimensional parameters. Starred terms are dimensional. As 

defined in Equation 1, strain es is a change in length of a septa over original 

length. The force in a single septa (spring) Fs follows Hooke's Law in Equation 2. 

Fs acting on a septa with width b and thickness t is defined as stress as. Stress 

can also be defined as elastic modulus E of a membrane multiplied by the strain 

(Equation 5). Using these relationships we derive a non-dimensional force 

balance and parameters: 
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L* - L*0 Equation 1 
6s= V 

Fs* = K*(L*-L*0) Equation 2 

p* Equation 3 

°"s b*V 

* ; = 

b*t* 

K*(L* 

E*e*s = 

I* 
= E* — 

- L*0) 

L*-L\ 

-11 

E*(L* -

} 

L*o) 

Equation 4 

Equation 5 

Equation 6 

K* = 

b*t* L*0 

E*b*t* Equation 7 

i*o 

Note, although we are stretching the springs, we are assuming the thickness of 

the spring does not change. We can now use these relationships in our typical 

force equations, which will be derived in detail in Section 3.1 and are of the form: 

Equation 8 
V Fs* = K*(L* - L*0) ± P*L*b* ± yb*. 

Dividing each term by b, the width of the membrane, we obtain 

Z p* E*t* Equation 9 

-^ = -[ra*-L*0)±P*L*±y* 

Further division by LQ and the spring constant per unit width KQ = - ^y ie lds 

Z p* p*t* P*L* y* Equation 10 
£ = (j* _ I*} -I u _ 

U*IS*T* J* 17*1* K OS — JS*1* — IS*!* ' 
D K0L0 L0ti0L0 A 0 L 0 tiQL0 

Also note, KT = ^f. 

Thus the non-dimensional, generic force equation becomes: 
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where the non-dimensional parameters are: 

p — F* is — £L V —-IL K =— I = — P = — v = y* 
h*v*i*' i v*' B v* i "-S „*•> u r* ' v* < i v*i*' 

D ti0L0 K0 Kj Kt L0 K0 « o L 0 

Using values from Table 6, an order of magnitude calculation gives: 

4904 

P* = *%- = 0.49 
1000—5 

Equation 11 

n2 

0.06 -N 

Y*= N
 m

 fi = 1 . 2 . 
1000 —5-*50e - 6 m 

When assessing these values in the force balance equation, we note that the 

magnitudes of the non-dimensional pressure and surface tension are 

comparable. From now on, these non-dimensionalized parameters are referred 

to as their "un-starred" equivalents (e.g. F* = F), unless specifically noted 

otherwise. 

Section 2.3. Stretching versus bending 

As forces are applied to the springs, we consider only that they stretch and not 

bend. Mechanically, membranes and springs have no resistance to bending, but 

they do resist stretching. Realistically, alveolar septa may have resistance to 

bending in two or three dimensions. We could model this by adding a rotational 

resistance around each node, so that the springs would resist tension as well as 

rotational bending around a node. Our current model, however does not include 

bending resistance. 

33 



Section 2.4. Statics and dynamics 

2.4.1 Statics 

As noted previously, we consider only (quasi-) equilibrium conformations of our 

network model. We calculate our network force balance by accounting for the 

forces on each node. To calculate pressure forces, we assign one-half the 

pressure on a given "septa" to each of the two nodes to which that septa is 

attached. Proceeding in this way we obtain a system of nonlinear algebraic 

equations for the unknown (deformed) positions of each node. But there seems 

to be a contradiction here: "If the springs are linear springs and the equations are 

linear how can this be a nonlinear system?" The answer is that the equations are, 

in fact, not linear, because the spring forces are of the form 

Ax 
F = K~Ar Equation 12: Hooke's Law 

\xi _|_ y2 and unit vector direction 

In Equation 12 we recognize Hooke's Law with an additional term: In order to 

describe the direction of the spring force we must also have a directional unit 

vector which can be described in the form of sines and cosines or in vector 

notation as it is in Equation 12. It can now be seen, with this general example, 

that our system of equations is nonlinear when expressed in terms of the 

unknown (x and y) coordinate locations of the nodes. To solve this nonlinear 

system, we use an iterative Newton-Raphson method in Matlab. 

2.4.2 Dynamics 

Once we have validated the computational models with an analytical solution, we 

can move beyond analytical solution methods by increasing network size, 
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introducing viscoelastic material properties and explore the thin film's impact in a 

dynamic cycling simulation. One goal would be to increase the level of 

complexity of the model to approach the complexity of the lung and capture 

realistic alveolar mechanics. Another goal would be to incorporate computational 

work of colleagues who are solving a thin film equation for a corner in a regular 

hexagon in a dynamic state. This approach would yield systems of nonlinear 

algebraic equations to systems of partial differential equations that would more 

fully capture alveolar mechanics. 
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CHAPTER 3. 

Analytical Predictions 

The motivation for deriving analytical solutions for a network force balance was 

two-fold. First, we wanted to have an independently derived solution to validate 

the computational solution. Second, the analytical solution makes clear the 

parametric dependencies of outputs. 

Section 3.1. Method 

Throughout this text we will reference two types of analytical predictions: exact 

analytical solutions and approximate analytical solutions. In this chapter we will 

frame how we derived the exact analytical solutions. The next chapter will refer to 

estimated solutions for larger networks. 

Exact analytical solutions were derived only for the single and seven hexagon 

networks due to the additional degree of freedom needed for larger networks (as 

will be described in Section 3.4 of this chapter). These expressions came directly 

from the force balances of these networks as introduced in Section 2.2. 

Section 3.2. Single hexagon network 

To verify that the code for a single hexagon (with 6 nodal force balances) 

converged to an equilibrium solution, we compared the computational stretched 

length of one spring to the exact analytical solution derived from the force 
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balance, (where all lengths are the same in a hexagonal equilibrium 

configuration). The exact analytical solution was calculated using the following 

(non-dimensional) equation: 

•J3 Equation 13 
Kt-^-P 

We used non-physiological, dimensional values to test the single hexagon, 

because the solution would be valid for a zero solution to the force balance. The 

single hexagon had sides with unstretched length of 1 coordinate unit, pressure 

and the spring constant were also chosen to be on a comparable order. The 

relative error for the single hexagon below 10"12%, indicating a precise 

correspondence for the solution of the single hexagon. After this first check of 

code validity, we were satisfied to increase complexity to a network of seven 

hexagons. 

Section 3.3. Seven hexagon network 

To obtain an analytical solution for the seven hexagon network, we sought a 

deformed conformation that maintained a high degree of symmetry. Specifically, 

this network can be divided into twelve symmetric wedges. 

37 



Figure 16: Seven hexagon network can be divided into twelve symmetric wedges. 

Consider the wedge labeled "A" in Figure 16. Inside wedge A, there are four 

nodes, shown in bold. Working out the force balance, including pressure but not 

surface tension, for each node, we find that the three internal nodes trivially 

satisfy the X and Y force balances. For the pleural node (bold node with arrow), 

however, the non-dimensional force equations are not trivially zero. They are: 

Fx = 0: PL = - i ( L - 1) + T-^(2L - 1), 
V3 2V3 

V Fy = 0: PL = 2iCs(V3L - l ) - V3 KB(2L - 1), 

Equation 14 

Equation 15 

with 
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2 , ,_. Equation 16 
KB=-(l + y/3)Kit 

1 Equation 17 
Ks=-(3 + 2y/3)Kt, 

Note that Kj is prescribed as is P (and Lo in dimensional form). Thus, the only 

unknown in these two equations is L, the stretched length. To obtain a unique 

solution, Ks and KB must be chosen according to Equation 16 and Equation 17, 

for the stretched length (i.e. the equations become redundant), we also require 

that these material properties are independent of stretched length L. 

A more physical model, such as Mead, Takishima, and Leith's (1970), would 

have equal spring constants and initial spring lengths to correspond with the 

chosen equilibrium shape. Computationally however, we found that this set-up 

would not have an equilibrium solution for any non-zero pressure. 

In this way, we obtain one equation where we prescribe the pressure, 

unstretched length, and spring constants and which yields the stretched length. 

Furthermore, since we have determined the pleural node is the only node that 

has a non-trivial force balance in the wedge and the wedge is the network's unit 

of symmetry, this one equation governs the force balance for the entire network: 

for a given input pressure, the new stretched length for all the springs in the 

network can be determined. 
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In addition to varying the spring constants and pressure, we can also vary the 

magnitude of the surface tension y. For a dry network, y is set to zero, but for wet 

networks y > 0. As a rule of thumb, y must be of a comparable order as the 

pressure and spring constants for surface tension to play a role. Figure 17 shows 

a free body diagram (FBD) of a pleural node with surface tension included and 

the corresponding (non-dimensional) force balances are given in Equation 18 

and Equation 19. 

•fW 
-» m 

Figure 17: Free body diagram of pleural node with surface tension y. Equation 18 and Equation 19 
were derived from this FBD. Note the surface tension force on the two pleural elements is y while on 
the internal element is 1y. 

^•" I=| ( 1-1 '+^-1 ) t 'Q 2V3 2̂V3V 

V Fy = 0: PL = 2Ks(y/3L - l ) - V3 tfB(2L - 1) + y{2 - V3) 

Equation 18 

Equation 19 

with 

_ ^ + (2V3-^)y 
5 ~ 2V3-3 

Equation 20 
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SKS — K( 
KB = Equation 21 

As above, K's, P, LO are all prescribed and the only unknown for these redundant 

two equations is stretched length L. Specifically, we rearranged Equation 19, to 

get an (non-dimensional) expression for stretched length L to be 

( 2 / r s - V 3 f f B ) - r ( 2 - V 3 ) 

2V3(/CS -KB)-P 

As will be seen in the next chapter, the average percent error between the 

computational and analytical solution for the seven hexagon network is 1%, 

which is greater than the computational/ analytical error for the single hexagon, 

but we continued with the model do to its convergence properties, force balance 

satisfaction, and small error most likely due to round off error. 

Section 3.4. Larger networks 

Just as a single element has specific material properties, so can an entire 

network. In their book, Cellular Solids: Structure and Properties, Gibson and 

Ashby describe how to find effective properties of honeycomb networks in 

Chapter 4. Because this chapter was written from a mechanics of manufacturing 

perspective, they do not derive any relationships for inflated honey-comb 

networks. 

We have chosen a very specific geometry for these networks: the sides of the 

networks are prescribed as flat and the flat edges extend as network size 

increases. 
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Figure 18: Increasing network size. With this prescribed geometry, the external geometry remains as 
the inside is filled with more and more hexagons. 

To attempt to find an analytical pressure-length relationship for these larger 

networks, we again divided the network into symmetric wedges. The force 

balance from the seven hexagon network was included in each larger network. 

For each additional annular "ring" of hexagons, another equation became 

relevant. The vertical portions of the networks had multiple nodes that accounted 

for an outward directed pressure and inward directed spring resistive force. 

However, herein lies the barrier to finding an analytical force balance for larger 

networks. For every second size increase, a new equation describing the force 

on a vertical node is added. This means that every new equation brings with it a 

new degree of freedom that is required to solve three equations for two 

unknowns. So as the number of hexagons increases, the necessary degrees of 

freedom also increases, preventing us from deriving a size dependent force 

balance. Bear in mind however, for a different geometry this problem may not be 

encountered. For instance, if a rounder external geometry (Figure 19) was 

approached highly symmetric solutions for increasing number of hexagons may 

be possible. 
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Figure 19: Rounder network. 

Although the geometry we have chosen has prevented us from obtaining highly 

symmetric analytical solutions for larger networks, we have been able to derive 

analytical approximations for the effective modulus of large networks. First, we 

determined the effective (network-wide) force of an inflated network, assuming 

regular hexagonal geometry. 

Figure 20: A cut through a network to find effective properties. The drawing on the right is from 
(Mead et al. 1970) and shows how effective force (FN) was approximated with a similar method. 

To find the effective force Fnet we define network characteristics, e.g. network 

diameter, the number of hexagons in the network and the number of hexagons 

adjacent to the cut. We have defined Fnet to be equal to a coefficient of effective 

force multiplied by the force in a single spring element as follows: 
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Ket = P*D* = CFFS* COS 6. Equation 22 

The pressure force exposed over the diameter of the network is opposed by the 

forces in all of the cut springs. The following network characteristics are useful in 

calculating effective properties: 

Rings around 
center (rg) 

0 
1 
2 
3 
4 
5 

Relationships: 

Total Hexagons 
(N) 
1 
7 
19 
37 
61 
91 

N = 1 + 6 V n 
n=0 

Hexagons 
across cut 

1 
3 
5 
7 
9 
11 

Force Coefficient 
(CF) 

2 
4 
6 
8 
10 
12 

CF = 2(rg + 1) 

Table 7: Network relationships. 

Using reasoning parallel to that in Section 2.2.2, we can also express network 

strain and effective properties. The variables used below are as follows: stress as 

in a single spring, elastic modulus E, stretched length L, width b, thickness t, 

diameter of the network Dnet (as a horizontal measurement from left to right), 

coefficient in the effective force equation CF, stress in the network anet, resultant 

force of cutting the network in half Fnet, and force in a single spring Fs. Equation 

23 and Equation 24 are dimensional expressions for the stress in a single spring, 

and Equation 25 is a dimensional expression for a spring constant: 

, A L * 
°s = E* ~TT' Equation 23 

Lo 

Fs* 
at = -, , Equation 24 
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K* = 
E*b*t* 
1* " ^o 

Equation 25 

Next, we give an expression for the diameter of a network in terms of the 

stretched length of a single spring and CF. We claim that network strain and 

(single) spring strain are equal according to Equation 28. To show this we use a 

derived expression for Dnet and an approximate relationship between spring and 

network strain. 

D*net = L*(-CF-l) 

AL* AD* 
^s ~ j * ~Enet i->* 

Lin LJn 

Equation 26 

Equation 27 

Equation 27 holds by the following: 

'3 
AD* 
n* uo 

D-wt-Dl_(?C*-l)W-LV_V-Vo_ 
K I* 

AL* 

IT Equation 28 

V2 ^F ~ "U ^° 

With these equations we derive an effective modulus relationship. 

Equation 29: Rearrange Equation 26 

E*b*t*AL* 
F: = + 2y*b* 

I* 
Lin 

0 

Equation 30 

Equation 31: Derived from 
nondimensionalization 

V3/D* 
^."T(^0 

E*b*t*AL* 
2y*b* Equation 32 

Now we have an expression for the total net force of a horizontally sliced network 

under strain imposed by inflation pressure. Recall, Equation 23 and Equation 24 
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are the stresses in a single spring. Equation 33 expresses the (dimensional) 

stress analog for a network in terms of the network size and initial parameters. 

P*D*b* = m = F*net J$E*t*(D*net _ ^AD* , 2y* 

b*D*0 
net b*D* 3 

Equation 33 

£ r r _ i / L*/L*0 
2LF i 

, L* 2y* 
Equation 34: Dimensional solution for L 

CF \j[Ki(L-l) + 2y] 
CF-1,L 

Equation 35: Non-dimensional form 

We use this equation to predict the solution for larger networks (that have no 

analytical solution) in Section 4.4. In addition, we have found a simple method to 

generate larger networks which is described in APPENDIX C. 

46 



CHAPTER 4. 

Computational Results 

Section 4.1. Numerical algorithm 

To arrive at solutions of larger networks, we calculated nodal force balances for 

each node in the network. To solve the resulting system of nonlinear algebraic 

equations we used the Newton-Raphson (NR) method. Our approach is similar to 

that of Adler & Bates (2000), who developed a computational model of an airway 

surrounded by concentric rings of alveoli (which they termed an "alveolar ring 

model"). These researchers minimized the potential energy functional with a 

nonlinear least squares minimization. We go one step further: rather than 

minimizing the energy functional, we force the residual net force on each node to 

vanish (to within some prescribed tolerance). 

Figure 21: Alveolar ring model (from Adler & Bates 2000). 

Our computational algorithm consists of three nested functions. The main 

function provides inputs for the sub-functions, executes the NP solver, and plots 

the results. One of the sub-functions calculates the Jacobian which is used in the 
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NR solver and the second calculates the forces on each node. The Jacobian 

matrix of first partial derivatives with respect to each variable is approximated 

using a simple first-order, finite-difference method. The force balance sub-

function calculates the forces on each node using information about the size, 

properties and geometry of the network. All functions can be found in APPENDIX 

B with annotation. 

Of the networks analyzed (i.e. single hexagon, seven, nineteen, and thirty-seven 

hexagon networks), we predicted the solution of stretched length by using the 

formula for the approximate analytical (non-dimensional) solution which is: 

Ki-2y 
L = 

Kt- V3/3 
2 \2Cp 1 ) 

CF represents the number of springs cut when cutting the pressurized network 

horizontally through the center as in Figure 20. This equation will be used to 

predict the approximate analytical solution for the networks studied in Section 4.4 

This equation has two regimes that depend on the value of y for very large 

networks or as CF goes to infinity: 

\fv<— T n e n f o r L > ° . P c n t < p <Pmax. 
r 2 

If y > *L Then for L>0, P > Pmax. 
1 2 

Kj is a "typical" value of a spring constants, for our case we set Kt = ——. Pcrit is 

the minimum inflation pressure required to cause the network to become patent 

and Pmax is the maximum inflation pressure that causes stretched length L to 

48 



approach positive infinity. The first case seems more physiologically relevant due 

to the pressure bounds. On the other hand, the second case may be more 

relevant due to the surface tension and spring constant relationship. It is as yet 

unclear, which regime would be more physiologically applicable and under what 

specific conditions. 

Section 4.2. Single hexagon network 

To validate the code, we first derived equations for and modeled a "dry" single 

hexagon (i.e. in which the effects of surface tension were not included). To start, 

we input an initial guess of an equilibrium hexagonal shape and incrementally 

increased the pressure (see Figure 22). Note, that we "pinned" the top right hand 

node (node 1) to fix the hexagon's position in space. The corresponding nodes 

were numbered from one to six counting clockwise around the hexagon. The 

table below compares the dimensional values of computational and analytical 

solutions. 

Pressure 
(N/m2) 
0.1 
0.08 
0.05 
0.03 
0.02 

Mm): 
computational 
1.764 
1.530 
1.276 
1.149 
1.095 

L(m): exact analytical 
solution 
1.764 
1.530 
1.276 
1.149 
1.095 

Error % 

7.16E-12 
-1.6E-12 
-8.2E-13 
-3.7E-13 
-3.7E-13 

Table 8: Exact analytical solutions for the single hexagon, with single hex k=0.2N/m, y=0 N/m and 
computational-exact 

L0=1(m). Error was calculated as * 100. 

In Figure 22, the coordinate axes are omitted for clarity. This plot confirms that 

the network size increases with increasing pressure, as expected. We also 
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verified that this indeed was an equilibrium solution confirming that all edge 

lengths were the same and that the sum of forces on each node was zero. 

P= 0.03 
P=0.05 

/ / / 

P=0.1 

Figure 22: Incremental progression in network size with increasing pressure. The red hexagon (with 
stared points) is the initial guess and the green hexagons (with round points) are solutions for each 
pressure. k=0.2N/m, y=0N/m and L0=1(m) and pressure has units of N/m2. 

As another test, we altered the initial guess and iteration number. The aim of 

altering the initial guess was to test the robustness of the code to find the 

equilibrium shape with an inflating pressure. As shown in Figure 23, even with a 

differently shaped initial guess, the computational model converges to a 

hexagonal shape. However, note that the hexagons rotate about the pinned 

node. This indicates that although the code is able to find an equilibrium solution, 

there are many equilibrium solutions that satisfy the force balance. Therefore, 

depending on the final iteration count, different orientations are displayed. We 
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confirmed that all the edge lengths were the same, and that the net force on each 

node was zero to verify that the solution was the equilibrium solution. 

Figure 23: Rectangular initial guess for hexagon with pressure. Each hexagon is the solution for 
P=0.01 N/m2, k=0.2 N/m, y=0 N/m and L0=1 m and with different final iteration count. 

In addition, we also investigated how the network would deform in the presence 

of material heterogeneities. Keeping the inflating pressure constant, we altered 

the spring constant of the bottommost spring to be less than the neighboring 

springs, and found that increasing a spring constant in one element caused that 

element to resist expansion. Decreasing a spring constant caused the element to 

be more compliant, compared to the adjacent springs as shown in Figure 24. 

itial Guess 

k=0.9 

k=0.2 

k=0.0'6" 

Figure 24: Single hexagon with equal inflation pressures and different spring constants for the 
bottommost spring (all other springs were k=0.2 N/m) y=0 N/m, L0=1 m for P=0.01(N/m2) for all cases. 
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As a final note, we also documented the convergence of the solution of the single 

hexagon, for dimensional non-physiological values of P=0.03N/m2, K=0.2N/m, 

and L0=1m for various iteration number. 

Iteration 
1 
5 
10 
100 
200 

L0(m) 
1 
1 
1 
1 
1 

K 
(N/m) 
0.2 
0.2 
0.2 
0.2 
0.2 

P 
(N/m2) 
0.03 
0.03 
0.03 
0.03 
0.03 

Mm) 
Analytical 
1.1493 
1.1493 
1.1493 
1.1493 
1.1493 

Mm) 
Computational 
1.1510 
1.1493 
1.1493 
1.1493 
1.1493 

Error % 
0.14463 
1E-04 
7.9E-06 
-3.7E-13 
-3.7E-13 

Table 9: Relative error for the single hexagon with different iteration number. There was not surface 
computational—exact 

tension for this test Error was calculated as * 100. 

The relative error clearly decreases for increasing iteration count. Depending on 

the exactness of desired outputs, iteration count between 10 and 100 are 

sufficiently converged to the exact solution. 

Section 4.3. Seven hexagon network 

After validating our model of a single hexagon, we then examined a seven 

hexagon network. For this network we incorporated pressure, surface tension, 

and changes in the spring constants and used physiological estimations for 

parameters. Network area was calculated with a built-in Matlab function called 

polyarea, which calculates the interior area of the polygon defined by the pleural 

node x and y coordinate positions. With the solution derived from the force 

balance we can calculate the exact dimensional solution for the seven hexagon 

network and compare that value to the computational solution (see Table 10). 
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Pressure 
(N/m2) 
400 
450 
500 
550 
600 

Mm) 
computational 
6.391 E-05 
6.943E-05 
7.601 E-05 
8.396E-05 
9.377E-05 

L (m) exact analytical 
solution 
6.326E-05 
6.864E-05 
7.501 E-05 
8.269E-05 
9.210E-05 

Error 
% 
-1.02 
-1.15 
-1.31 
-1.52 
-1.78 

Table 10: Comparison an analytical and computational solutions of stretched length for the seven 
hexagon network, y is 0.03N/m for all cases and K=1000N/m. Error was calculated as 
computational-exact ^ nf. 

4.3.1 Variations in spring constants 

First, we will look at the effect of changing the spring constants for the entire 

network. In Figure 25, we see a pressure versus area (PA) plot and three 

corresponding images of the seven hexagon network. The circle dotted curve 

and largest network correspond to the lowest spring constant of the three; the 

smallest network and long dashed curve correspond to the network with the 

highest spring constant. It can be seen that in networks with the same inflation 

pressure but different spring constants, stiffer networks require more pressure to 

inflate than the less stiff networks, as expected. The axes are non-

dimensionalized and scaled to start area and pressure at unity. Pcrit is the lowest 

pressure (500N/m2) and Acrit is the smallest circumferential area at Pcrit. 
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Figure 25: This figure shows PA curves for three different "dry" network-wide spring constants. The 
circle dotted curve shows the spring constant of the interior springs (/f,) to be 110ON/m, the medium 
dashed curve, if,=1200 N/m, and the long dashed curve, /ft=1300 N/m. Corresponding network result 
also shown in corresponding colors. 

Notice that a seemingly very small change in spring constant magnitude results 

in larger changes as pressure increases. For the seven hexagon network as well, 

we studied convergence for one case. We used physiologival, dimensional 

values of L0 = 50 microns, K =1000 N/m, and P=500 N/m2 and set the surface 

tension magnitude to be zero. We also considered the average interior L to be 

the computational solution of stretched length. 

Iteration 
1 
5 
10 
100 
200 

L (m) Analytical 
7.601 E-05 
7.601 E-05 
7.601 E-05 
7.601 E-05 
7.601 E-05 

L (m)Computational 
7.280E-05 
7.501 E-05 
7.501 E-05 
7.501 E-05 
7.501 E-05 

Error% 
-4.22032 
-1.30933 
-1.31229 
-1.31258 
-1.31258 

Table 11: Relative error for the seven hexagon network with different iteration number. There was 
not surface tension for this test. Error was calculated as computational-exact *100. 
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It is clear that the computational solution converges to the analytical solution with 

increasing iteration number. For our analysis, we chose iterations between 10 

and 100 to be well converged, and sufficiently close to the analytical solution. 

This one percent error is most likely due to round off error resulting from the very 

small dimensions of the unstretched lengths and the very large magnitudes of 

pressure and surface tension interacting. 

4.3.2 Variations in surface tension 

Networks with non-zero surface tension are of primary interest. In Figure 26, we 

again can see that with increased surface tension, the network becomes stiffer. 

We have assumed surface tension force to act parallel to the resistive spring 

force but this does not mean that increasing surface tension acts as if the spring 

constant was made stiffer. Rather, the spring force depends on AL and the force 

due to surface tension is independent of AL even though it is parallel to the 

spring force. The equivalent network picture would be similar to that in Figure 25. 
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Figure 26: This plot shows the PA curves for three different network-wide y values. The circle dotted 
curve shows y = 0.02N/m, the medium dashed curve shows y = 0.03N/m, and the long dashed 
curve shows y = 0.04N/m. For these network simulations, Kt = llOON/m. 

Here also, the general trend in wet networks is seen as a lessening of slope, 

meaning more pressure is required to inflate a "wetter" network to a given area. 

4.3.3 Variations in both spring constants and surface tension 

For completeness, we also compared networks having various spring constants 

and various surface tensions. Plotted in Figure 27, are curves of a network with 

two different spring constants, both with different surface tension magnitudes. 
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Figure 27: Various y and K PA plots. The pairs of curves with parallel slopes have the same K, the 
top two are K=1100N/m and the bottom two, K=1200 N/m. There are also two cases for y, y=0.02 and 
y = 0.03. 

The curves with parallel slopes have the same spring constant, but are shifted 

down as y increases. Comparing the two cases of spring constants, the curves 

with the greater spring constant have a slightly less steep slope. These trends 

indicate that changing surface tension greatly changes the area of the network, 

but increasing the spring constant magnitude causes the slope to be shallower. 

Intuitively, surface tension makes the networks more difficult to inflate, and the 

changing the spring constants essentially changes the elastic modulus of the 

network. 

Section 4.4. Larger networks 

Notice also the increasing slope in the plots as pressure increases. In the low 

pressure region, increasing pressure one unit results in a small area increase. In 

the higher pressure region, increasing the pressure one unit results in a much 
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greater increase in network area. To clarify, these networks composed of time 

independent, linearly elastic springs (wet or dry) become "easier" to inflate with 

increasing area. Liken this to a balloon that is difficult to inflate when first starting 

to inflate, then gets easier to blow up as the volume increases. With different 

spring properties (e.g. nonlinearly elastic or viscoelastic) this property could be 

changed, we could instead easily configure a network to decrease in compliance 

with inflation pressure. 

The following plots show PA curves for various sized networks with various 

spring constants and surface tensions, a plot of critical pressure required to 

inflate the networks, a maximum pressure before the linearity of the springs 

causes the stretched length to go to positive infinity, and a table comparing 

approximate analytical and computational solutions. The values for stretched 

length L were obtained from the (non-dimensional) approximate analytical 

solution equation: 

1 V3 CF 

2 G',-1) 
As can be seen in the table below, the approximate analytical and computational 

solutions are not expected to match for smaller networks, but it seems that with 

increasing network size solutions may become more similar. 

58 



Network 
size 

1 

7 
19 
37 

L*o 

1 

5.00E-05 
1.50E-04 
5.00E-05 

K* 

0.2 

1000 
1000 
1000 

cF 

2 

4 
6 
8 

Y* 

0 

0.03 
0.03 
0.01 

P* 

0.0 
3 
500 
500 
500 

L* 

1.21 

1.17E-04 
6.01 E-04 
2.29E-04 

Computa 
-tional L* 

1.2 

1.03E-04 
1.89E-04 
7.85E-05 

Error% 

0.78 

387.44 
51.76 
46.06 

Table 12: Approximate solutions for different networks. Computational solutions for small networks 
are not expected to match approx. analytical solution. But as network size increases, approx. 
analytical solution is hypothesized to approach computational solution. L's have units of m, K N/m, y 
N/m, P N/m2, and network size is m2. 

For the nineteen and thirty seven hexagon networks, we found the forces on 

each node for these specific cases was slightly less than 10"3, (compared to the 

spring constant term on the order of 0.028 and 0.012, respectively,) and 

considered solutions on this order to be "zero" solutions. Also the sum squared 

error of the nodal forces was slightly less than 10"6 for both cases. So although 

the approximate analytical and computational solutions do not match, the 

computational model provided solutions that converged to satisfy the zero nodal 

force balance. 

To identify any trends, we plotted three sized networks (seven, nineteen, and 

thirty seven hexagons) for various spring constants and surface tensions. The 

vertical axis is a normalized area scaled to unity. Each network area was scaled 

by the corresponding critical area (Acrit). For example, the thrity seven hexagon 

network data was scaled by the area of the thrity seven hexagon network at the 

smallest y or K. So each network area was normalized to unity. Pressure was 

also normalized to unity in the same way for Figure 28 and Figure 29. 
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Figure 28: Various y in three different sized networks. Various surface tension magnitudes for three 
differently-sized networks for K=1000N/m. The short line in the legend represents the long dashed 
curve, the long line represents the solid, continuous line with non-dimensionalized axes. 

For each of the three networks, the cases with the lowest surface tension have 

the greatest area, and the cases with the highest surface tension have smaller 

areas. Figure 29 shows the relationships between the three networks and various 

spring constants. 
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Figure 29: Three different networks with various spring constants. Various spring constant 
magnitudes for three differently-sized networks for y=0. The short line in the legend represents the 
long dashed curve, the long line represents the solid, continuous line with non-dimensionalized 
axes. 

The cases with the smallest spring constant shoe the greatest area, and 

increasing spring constants results in less area for a given pressure, as 

expected. Note the nineteen hexagon network for K=1100 as the only outlier. 

We also plot the minimum pressure required for initial inflation of the networks 

and a maximum pressure where the stretched length solution approaches 

positive infinity as another way to understand the network wide properties. If the 

force due to surface tension increases in any size network, the initial pressure 

required to inflate the network would also logically increase. Figure 30 shows that 

as the surface tension force increases in the networks, so too does the pressure 

required to inflate the networks. The seven hexagon network most clearly shows 
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this trend, and although the thirty seven hexagon network does not show as 

dramatic an increase y does increase from — to -^- while the pressure 
m m 

increased from —=- to —r. However this plot shows a surface tension effect 
m2 m2 

opposite to what we would expect. We hypothesized that because larger 

networks have more membranes and hence, more fluid lining the membranes, 

that as network size increased so would the over-all pressure required to initially 

inflate the network. But what we see below is that a larger network requires less 

pressure to inflate. We assume this is effect is caused by the dominance that the 

pleural edges have on the smaller networks. The larger networks are less 

dominated by what happens at the pleural surface, and although the net surface 

tension force may be greater in the larger network, its dynamics are dominated 

by the internal membranes as opposed to the pleural membranes. 

•7 hex 

>19hex 

37 hex 

0 0.02 0.04 0.06 

Figure 30: Critical pressure versus force due to surface tension. 
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We also examined the relationship between the maximum inflation pressure and 

surface tension. For all cases the spring constant was 1000W . The smaller the 

network, the greater the surface tension can be with a convergent solution. For 

the thirty seven hexagon network, the solution only converges for y < 0.02, 

hence the curves terminate at the maximum y for which the networks converge. 

1100 -i 

1050 -

1000 

950 -

Pmax 900 -

850 

800 
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- 37hex 

'-19hex 
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0 0.02 0.04 0.06 

Figure 31: Maximum pressure that a network can sustain before solution of stretched length shoots 
to positive infinity. 

In order to make appropriate first guesses for each new pressure, the analytical 

solution is used as the initial guess. As an example the non-dimensional exact 

analytical solution for the seven hexagon is: 

(2KS - V3tfB) 
L = 

2J3(KS - KB) - P 
Equation 36 

The figures above show the scaled/ non-dimensionalized circumferential area 

versus pressure. If we look at Equation 36, we can see that the numerator will be 
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positive for KB < Ks, which in fact is the case. Because these spring constants do 

not change with pressure, the numerator is constant for all pressure. But we also 

see that as the pressure increases the denominator approaches positive infinity. 

L approaching infinity does not correspond to a logical physical situation and 

therefore we exclude plots past this maximum. 

Just as very large pressures cause the stretched length to approach positive 

infinity, increasing the magnitude of the surface tension causes the solution to 

become negative. Recall the non-dimensional equation 

L_(2Ks-y[3KB)-y(2-y[3) 
2j3(Ks -KB)-P 

we see that if y > 2KS - y[3KB stretched length will be negative. Negative L does 

not correspond to a physical solution; since we have chosen only to consider 

expanded networks and disregard any negative solutions. 

The exact analytical and computational solutions match to (round off error) for 

the single and seven hexagon solutions. The primary solution discrepancies are 

between the approximate analytical and computational solutions for nineteen and 

thirty seven hexagon networks, and lack of consistent trends in the nineteen 

hexagon network. The approximate analytical solutions, although not precisely 

equal to the computational solution, are useful to provide close initial guesses for 

computing solutions for larger networks because of the comparable order and we 

hypothesize will approach the computational solutions as the network size 

increases. In addition, the lack of trends of the nineteen hexagon network in the 
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various surface tension and spring constant plots may be due to a slightly 

different unstretched length as compared to the other networks. 
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CHAPTER 5. 

Future Work 

Section 5.1. Dynamics 

As introduced in 2.4.2, we are ultimately concerned with understanding the 

mechanics of a dynamic lung. While static force balance analysis has provided 

us with a solid foundation for a lung model, the next logical step will be to include 

time dependence, which will allow us to incorporate viscoelastic material 

properties and other viscous effects from the thin film lining the lung. 

Additionally, we modeled a single tri-junction (where three hexagons meet) 

dynamically. Each element was modeled as a linearly elastic spring that could 

experience a time-dependent damping following the damped harmonic oscillator 

equation: 

0 = Mx + Cx + Kx 

We were able to fix the outside edges and perturb the center node to initiate 

oscillations, see Figure 32. By converting this second order differential equation 

to a first order differential equation then using a built in Matlab ODE solver, we 

were able to capture the dynamics of this coupled system. 
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Figure 32: Three coupled, damped harmonic oscillators modeling a septal tri-junction. 

Physiologically, a septal tri-junction would not move from the center, instead the 

dynamics would come from inflating and deflating an entire network. 

Nevertheless, we modeled this system and generated phase plots like in Figure 

33. 

Figure 33: Phase plot of X position and velocity for coupled oscillators. Note the concentric cycles 
indicating some energy conservation. 

For a simple pendulum with no friction, the phase plot can look oblate or even 

circular which indicates some sort of energy conservation. In the figure above, it 

seems there is energy conservation occurring, but in an irregular way. It would be 

exceedingly interesting to dynamically model coupled oscillators that more 
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closely approximate cycling in the lung, and would surely be part of this project's 

future. 

Section 5.1. Experiment 

A natural complement to a computational model would be an experimental model 

of a small network of alveoli. Potential experiments may be: a method to study 

the fluid lining in the corners of alveoli, a sealed and pressurized single hexagon, 

a micro-etched, to-scale network of channels, even a rudimentary linked, rubber 

band model. 

Section 5.2. Material properties 

In addition to viscous effects of the fluid lining, properties of the lung tissue itself 

can be modeled as nonlineariy elastic or viscoelastic (Fung & Sobin 1972; Gardel 

et al. 2004; Hoppin et al. 1998). Recall samples of PV curves. The hysteresis in 

these curves is due to the viscoelasticity of lung tissue and liquid lining. 

Specifically there is a time-volume dependence that causes the lower part of the 

curve (inhale) to be different than the top half of the curve (exhale). A nonlinear 

elastic model may not be able to capture this "material memory" of the PV 

curve's marked hysteresis, but a time dependent viscoelastic model would show 

definite hysteresis. 

Section 5.3. Local deformation 

In the future, we would seek to determine more specific effective properties of 

our network composed of isotropic or heterogeneous materials. The networks 

studied in this way would be similar to that of Suki and Bates 2008. 
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Figure 34: These three images show a progression of spring stiffness from uniform spring constants 
on the left to highly varied spring constants on the right (from Suki & Bates 2008). 

We would predict that curves of progressively heterogeneous networks would 

change slopes on both the inhale and exhale. Networks with stiffer spring 

constants would locally deform the network and cause the PV or compliance 

curve to have a less steep slope, meaning more pressure would be required to 

inflate to a lesser volume, modeling pulmonary fibrosis. The inverse would be 

true for a network with randomly distributed compliant springs or membranes, 

modeling emphysema. As a first look we cut one spring in the nineteen hexagon 

network. It is conceivable that this network would have different effective 

properties than that of a heterogeneous network without any cut springs. 

Figure 35: Nineteen hexagon network with one cut spring. 
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In addition to network heterogeneity, the pressure distribution could also be 

locally changed. If a network was composed of isotropic membranes but had a 

pressure distribution that was not equal in all unit cells, then the network would 

also tend to resemble a heterogeneous network. This change would alter the 

stress distribution in the network and may change the PV and compliance curves 

as well. 

Section 5.4. Geometry 

To more closely approximate the lung, our model could also have variable 

geometry. The model could have more hexagons, shapes other than hexagons, 

could be three dimensional and could account for the presence of other lung 

structures like peripheral airways and alveolar ducts. 

Section 5.5. Numerical solver 

At this stage in the development of the model, we have found one of the simplest 

and most straightforward numerical solvers to be effective. Because the Newton-

Raphson method is locally convergent, it can quickly diverge if the initial input 

guess to the solver is too far from the final solution. However, for our model, we 

found it converges very quickly to a solution. As potentially useful for larger and 

more complex models, we coded a globally convergent variation on Newton-

Raphson that included line searching and backtracking. Numerical Recipes 3rd 

Ed. served as the primary reference for this script (Press et al. 2007). This code 

can also be found in APPENDIX B. Moreover, we would optimize and automate 
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how the adjacency matrix, XY points, node numbering and initial guess based on 

the analytical solution is generated. 
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CHAPTER 6. 

Conclusion 

Section 6.1. Discussion of dry and wet networks 

We have found that mechanics of networks composed of linearly elastic springs 

and a constant surface tension force is somewhat predictable, once intuition is 

established. The effective properties would not be as predictable with different 

spring and surface tension properties. In vivo, surface tension does vary. It can 

vary because of the concentration of surfactant or volume of fluid. At one 

extreme, a fluid filled lung has no surface tension and at the other extreme a lung 

with no surfactant has very high surface tension. In a healthy lung however, Type 

II epithelial cells release surfactant, initiated by calcium ion activated pathways 

and mechano-transduction2, causing surface tension to vary only slightly (Rice 

2000; Ashino et al. 2000). In addition, extractions of surfactant, measured in a 

Wilhelmy plate set-up, will display an area dependence. 

2 Essentially, a deep breath signals Type II cells to release surfactant, which decreases alveolar 
surface tension, making the next breath easier! 
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Figure 36: Shows area dependence of lung washings from (West 2005). 

In fact the plot is hysteretic. In a complete lung model, this characteristic must be 

taken into account when studying alveolar mechanics: y would be a function of 

area not constant. 

Section 6.2. Intuitive findings and model discussion 

In summary, we found different types of solutions useful for different aspects of 

this study. The exact analytical solutions were useful for verifying and validating 

the computational mathematics for the single and seven hexagon networks. The 

approximate analytical solutions were also useful in validating the computations, 

but we intended the approximate analytical solutions to be close approximations 

of the computational solution in order to predict trends and PV curves of much 

larger networks analytically. Although the approximate analytical solutions are 

not comparable to the computational solutions they may prove to be very useful 

as initial guesses to more complex computations. And of course, now that our 

computational mathematics have been validated, we can move to any size 

network or any other progressions as mentioned in the Future Work chapter. 
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Furthermore, the plots in Section 4.4 show generally, intuitive trends. However 

the nineteen hexagon network seems to have non-intuitive properties in the 

various spring constants and surface tension plots, but it does fall into place in 

the critical and maximum pressure plots. Recall the discussion of two regimes for 

the analytical and computational solutions and the solution for the "wet" seven 

hexagon network: 

L . = (2KS* - V3^)L* 0 - y*(2 - V3) 

2yf3(Ks* - KB~) - P* 

From this equation we can see that the numerator must satisfy 

_ {2KS* - V3K£)L*0 

Y > 2-V3 

We will call this critical value of y*, y*rit. All results reported in this paper have 

been for y* < y*rit. The plot below shows curves for the two regimes. Essentially 

we see that if the magnitude of surface tension gets large enough thtne the 

network as a whole is dominated by surface tension and the magnitude of the 

spring constants do not have a large impact. Note, the lengths in the plot below 

are lengths of a single alveolar septa. 
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Figure 37: Two surface tension regimes. 

Two additional observations are relevant. First, we confidently predict that 

analytical solutions for larger networks could be found if rounder external 

geometries were used as opposed to the "straight edge" geometry. And because 

the network would be rounder, a high degree of symmetry would also be 

expected to facilitate an exact analytical solution. Secondly, 

physiological/dimensional (and non-physiological) values can be used in the 

computations. The value of using physiologically derived values is that PA or PV 

curves can be directly compared to those obtained from patients in vitro, a highly 

valuable comparison when studied by clinicians or treatment of disease is 

involved. 

In conclusion, we have shown how a linearly elastic spring model with surface 

tension and pressure effects is an appropriate first step in modeling alveolar 

mechanics. Although in its current state, this model is quite limited and only 

vaguely resembles a section of lung, the parameters and inputs can be changed 
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straightforwardly. This model forms the foundation to a more complex and even 

dynamic computational model of alveolar micromechanics. 
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APPENDIX A 

For a clearly presented and easily understandable lesson on how lung pressure 
and volume are measured in the living human lung, see the references: Johns 
Hopkins' School of Medicine Interactive Respiratory Physiology: Alveolar 
Pressure (Johns Hopkin's School of Medicine 1995) and Airway structure and 
function by SpirXpert (SpirXpert: Philip H. Quanjer 1999), and Textbook of 
Medical Physiology by Guyton and Hall (Guyton & Hall 1996). 

The left plot in Figure 38 shows that rough Pressure-Volume curves can be 
generated from plots of data like the right plot in Figure 38. 

Transpulmonary 
pleural 
alveolar 

ExhalB 

Pressures 

Figure 38: PV curves plotted from the data in the right graph. These are two different ways of 
plotting the same data. 

Left plot in Figure 38 was generated from the following Matlab code: 

INPUT 
volume=[2.85 2.95 2.98 3 2.73 2.61 2.53 2.52 2.51 2.5]; 
pleural_pressure=[-5 -7 -7.7 -7.9 -8 -6 -5.5 -5.3 -5.2 -5.1 -5]; 
alv_pressure=[0 -3 -2 -.5 0 3 1.7 .5 .2 0 .1]; 
transpulmonary_pressure=alv_pressure-pleural_pressure; 

OUTPUT 
plot(transpulmonary_pressure, volume); hold on 
plot(pleural_pressure, volume, V); hold on 
plot(alv_pressure, volume, 'g'); hold on 
xlabel('Pressures') 
ylabel(Volume') 
legend('Transpulmonary', 'pleural', 'alveolar') 
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APPENDIX B 

In this appendix there are four Matlab functions. The first one, "Please_Work" is 
the main function, uses Newton-Raphson solver and plots solution by calling the 
other two functions. The second function, "Force_eq" calculates the nodal force 
balance and "Jac" calculates a finite difference Jacobian. The fourth function 
"newt_temp" is a globally convergent version of Newton Raphson. 

"Please_Work" is the calling function. 

function [inner_edge_calculated plsmall_edge_calculated plbig_edge_calculated]... 
=wet_SL_please_work_seven_hex( p, ki, anafactor, sor, maxiter) 

%lnitial Guess 
xy=anafactor.*[4,6.49519052800000;4.75000000000000,6.06217782600000;5.25000000000000, 
5.19615242300000;5.25000000000000,4.33012701900000;4.75000000000000,3.464101615000 
00;4,3.03108891300000;3,3.03108891300000;2.25000000000000,3.46410161500000;1.750000 
00000000,4.33012701900000;1.75000000000000,5.19615242300000;2.25000000000000,6.062 
17782600000;3,6.49519052800000;3.25000000000000,6.06217782600000;3.75000000000000, 
6.06217782600000;4,5.62916512500000;4.50000000000000,5.62916512500000;4.7500000000 
0000,5.19615242300000;4.50000000000000,4.76313972100000;4.75000000000000,4.3301270 
1900000;4.50000000000000,3.89711431700000;4,3.89711431700000;3.75000000000000,3.464 
10161500000;3.25000000000000,3.46410161500000;3,3.89711431700000;2.50000000000000, 
3.89711431700000;2.25000000000000,4.33012701900000;2.50000000000000,4.763139721000 
00;2.25000000000000,5.19615242300000;2.50000000000000,5.62916512500000;3,5.62916512 
500000;3.25000000000000,5.19615242300000;3.75000000000000,5.19615242300000;4,4.7631 
3972100000;3.75000000000000,4.33012701900000;3.25000000000000,4.33012701900000;3,4. 
76313972100000;]; 

xy=reshape(xy,72,1); 
xytemp=[xy(2:36); xy(38:end)]'; 
NN=length(xy); 
xyoldtem p=xytem p; 

for n=1: maxiter 
xynewtemp= xyoldtemp -sor.*(wet_SLJac_seven_hex( p, ki, anafactor.xyoldtemp)... 

\wet_SL_force_eq_seven_hex(p,ki,anafactor, xyoldtemp))'; 
xyoldtemp = xynewtemp; 
new_force(n)=sqrt(sum((wet_SL_force_eq_seven_hex(p,ki,anafactor, xynewtemp)).A2)); 

end 

forcesjn_network=wet_SL_force_eq_seven_hex(p, ki,anafactor, xynewtemp); 

close all 
set(0,'DefaultFigureWindowStyle','docked') 

xynew=NaN(1,72); 
xynew(1)=xy(1); 
xynew(2:36)=xynewtemp(1:35); 
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xynew(37)=xy(37); 
xynew(38:end)=xynewtemp(36:end); 

figure(1) 
stem (f orces_i n_network); 
title('Plotofforces=feval(f,xynewtemp)','FontSize',12,'FontWeight','bold'); 
xlabel('Node Number (remember to + 1)','FontSize',12,'FontWeight','bold'); 
ylabel('Force','FontSize',12,'FontWeight','bold'); 

figure(2) 
plot(new_force); 
title('Sum Error=sqrt(sum((force eq seven hex(xynewtemp)) A2))','FontSize',12, 

'FontWeight'/bold'); 
ylabel('Force','FontSize',12,'FontWeight','bold'); 

figure(3) 
adjacency = zeros(N.N); 
connections_sparse=sparse([1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 
8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 
17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 23 24 24 24 25 25 25 
26 26 26 27 27 27 28 28 28 29 29 29 30 30 30 31 31 31 32 32 32 33 33 33 34 34 
34 35 35 35 36 36 36], 

[12 2 14 1 3 16 2 4 17 3 5 19 4 6 20 5 7 22 6 8 23 7 9 25 
8 10 26 9 11 28 10 12 29 11 1 13 30 14 12 13 15 1 14 16 32 15 17 2 16 18 3 
17 19 33 18 20 4 19 21 5 20 22 34 21 23 6 22 24 7 23 25 35 24 26 8 25 27 9 
26 28 36 27 29 10 28 30 11 29 13 31 36 32 30 31 33 15 32 34 18 33 35 21 34 36 
24 35 31 27], 108); 

xy=reshape(xy,36,2); 
gplot(connections_sparse,xy,'-r'); 
hold on 

gplot(connections_sparse,xynew,' -g'); 
h=findobj('type','line'); 
axis square 
set(h,'linewidth',2); 
title('Resultant Shape due to Imposed Pressure ','FontSize',12,'FontWeight','bold') 
legend('lnitial Guess','Final Configuration','Location'/SouthOutside') 

inner_edge_calculated=((((xynew(32)-xynew(31)).A2+ 
(xynew(32+NN/2)-xynew(31+NN/2)).A2)).A.5); 

plbig_edge_calculated=((((xynew(7)-xynew(6)).A2+(xynew(7+NN/2)-xynew(6+NN/2)).A2)).A.5); 
plsmall_edge_calculated=((((xynew(6)-xynew(5)).A2+(xynew(6+NN/2)-xynew(5+NN/2)).A2)).A.5); 

end 
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"Force_Eq" calculates evey nodal force balance. 

function [FXFYequations]=wet_SL_force_eq_seven_hex(p,ki,anafactor, xytemp) 

%%%%Calculate LO from P=0 
xyeq=[4,6.49519052800000;4.75000000000000,6.06217782600000;5.25000000000000,5.19615 
242300000;5.25000000000000,4.33012701900000;4.75000000000000,3.46410161500000;4,3.0 
3108891300000;3,3.03108891300000;2.25000000000000,3.46410161500000; 1.7500000000000 
0,4.33012701900000;1.75000000000000,5.19615242300000;2.25000000000000,6.0621778260 
0000; 3,6.49519052800000; 3.25000000000000,6.06217782600000; 3.75000000000000,6.062177 
82600000;4,5.62916512500000;4.50000000000000,5.62916512500000;4.75000000000000,5.19 
615242300000;4.50000000000000,4.76313972100000;4.75000000000000,4.33012701900000;4 
.50000000000000,3.89711431700000;4,3.89711431700000; 3.75000000000000,3.46410161500 
000;3.25000000000000,3.46410161500000;3,3.89711431700000;2.50000000000000,3.8971143 
1700000;2.25000000000000,4.33012701900000;2.50000000000000,4.76313972100000;2.2500 
0000000000,5.19615242300000;2.50000000000000,5.62916512500000;3,5.62916512500000;3. 
25000000000000,5.19615242300000; 3.75000000000000,5.19615242300000;4,4.763139721000 
00;3.75000000000000,4.33012701900000;3.25000000000000,4.33012701900000;3,4.76313972 
100000;]; 

xyeq=reshape(xyeq,72,1); 
xyeqtemp=[xyeq(2:36);xyeq(38:end)]'; 

N=36; 
adjacency = zeros(N,N); 
connections_sparse=sparse([1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 
8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 
17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 23 24 24 24 25 25 25 
26 26 26 27 27 27 28 28 28 29 29 29 30 30 30 31 31 31 32 32 32 33 33 33 34 34 
34 35 35 35 36 36 36],... 

[12 2 14 1 3 16 2 4 17 3 5 19 4 6 20 5 7 22 6 8 23 7 9 25 
8 10 26 9 11 28 10 12 29 11 1 13 30 14 12 13 15 1 14 16 32 15 17 2 16 18 3 
17 19 33 18 20 4 19 21 5 20 22 34 21 23 6 22 24 7 23 25 35 24 26 8 25 27 9 
26 28 36 27 29 10 28 30 11 29 13 31 36 32 30 31 33 15 32 34 18 33 35 21 34 36 
24 35 31 27], 108); 
connections=spones(connections_sparse); 
connections=full(connections); 
adjacency=connections; 
dim=length(adjacency); 
onv=[14 16 17 19 20 22 23 25 26 28 29 13]; 
% 
%pleural edge lengths 
pleural_edge_length=zeros(length(onv), 1); 
for n=1 :length(onv)-1 

pleural_edge_length(n)=((((xyeq(n+1)-xyeq(n)).A2+(xyeq(n+1+N)-xyeq(n+N)).A2)).A.5); 
end 

pleural_edgeJength(length(onv))=((((xyeq(1)-xyeq(n+1)).A2+(xyeq(1+N)-
xyeq(n+1+N)).A2)).A.5); 

%outer edge lengths 
outer_edge_length=zeros(length(onv), 1); 
forn=1:length(onv) 

outer_edge_length(n)=((((xyeq(onv(n))-xyeq(n)).A2+(xyeq(onv(n)+N)-xyeq(n+N)).A2)).A.5); 
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end 

%inner edge lengths 
inner_edge_length=((((xyeq(31)-xyeq(30)).A2+(xyeq(31+N)-xyeq(30+N)).A2)).A.5); 
IO=zeros(size(adjacency)); 
%Sections 3+4 
forg=length(onv)+1:dim %rows 

for h=1 :dim %columns 
if adjacency(g,h)==1 

IO(g,h)=inner_edge_length; 
end 

end 
end 
%Section 4 
for g=onv %rows 

forh=1:length(onv) %columns 
if adjacency(g,h)==1 

IO(g,h)=outer_edge_length(h); 
end 

end 
end 
%Section 1 all pleural edges 
forg=1:length(onv) %rows 

for h=1:length(onv) %columns 
if adjacency(g,h)==1 

IO(h,g)=pleural_edge_length(h); 
IO(g,h)=pleural_edge_length(h); 
IO(length(onv), 1 )=pleural_edge_length(length(onv)); 
I0(1,length(onv))=pleural_edge_length(length(onv)); 

end 
end 

%Section 2 all outer edges 
forj=length(onv)+1:dim %columns 

if adjacency(g,j)==1 
I0(g,j)=outer_edge_length(g); 

end 
end 

end 

%%%%%%%K's different LO the same 
%ki=io, 
I0=.5.*adjacency; 

%ki=10, 
kb=(2/7)*(1+sqrt(3))*ki; 
ks=(1/6)*(3+2*sqrt(3))*ki; 
pleural_edge_k=zeros(length(onv), 1); 
pleural_edge_k(1:2:end)=kb; 
pleural_edge_k(2:2:end)=ks; 
% 
k=ki*adjacency; 

forg=1:length(onv) %rows 
forh=1:length(onv) %columns 
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if k(g,h)==ki; 
k(h,g)=pleural_edge_k(h); 
k(g,h)=pleural_edge_k(h); 

end 
end 

end 

%%%%%%%Gerneric P 
xy(1)=4*anafactor; 
xy(N+1)=6.49519052800000*anafactor; 

fori=1:N-1 
xy(i+1)=xytemp(i); 
xy(i+N+1 )=xytemp(i+N-1); 

end 

fori =1:N 
forj = 1:N 

if adjacency(i,j)==1 
l(ij) = sqrt((xy(j)-xy(i))A2+(xy(j+N)-xy(i+N))A2); 
fx(ij) = k(i,jr(l(i,j)-IO(i,j))*((xyG)-xy(i))/l(i,j)); 
fy(iJ) = k(i,jr(l(i,j)-IO(i,j))*((xy(j+N)-xy(i+N))/l(i,j)); 

end 
end 

end 

%%%%%%%Adding puddles to interior nodes via 2*gamma*b 
gam=1; 
fori=13:N 

forj = 13:N 
if adjacency(ij)==1 

l(i,j) = sqrt((xyG)-xy(i))A2+(xy(j+N)-xy(i+N))A2); 
fx(ij) = fx(i,j)+2*gam*((xyG)-xy(i))/l(i,j)); 
fy(ij) = fy(i,j)+2*gam*((xy(j+N)-xy(i+N))/l(i,j)); 

end 
end 

end 

%%%%%%%Adding puddles to pleural nodes nodes via gamma*b 
fori=1:length(onv)-1 

fx(i+1,i)=fx(i+1,i)+p/2*(xy(i+N)-xy(i+1+N))+gam*((xy(i)-xy(i+1))/l(i,i+1)); 
fx(i,i+1)=fx(i,i+1)+p/2*(xy(i+N)-xy(i+1+N))+gam*((xy(i+1)-xy(i))/l(i+1,i)); 
fy(i+1,i)=fy(i+1,i)+p/2*(xy(i+1)-xy(i))+gam*((xy(i+N)-xy(i+N+1))/l(i,i+1)); 
fy(i,i+1)=fy(i,i+1)+p/2*(xy(i+1)-xy(i))+gam*((xy(i+N+1)-xy(i+N))/l(i+1,i)); 

end 

lastn=length(onv); %12 
fx(1,lastn)=fx(1,lastn) +p/2 * (xy(lastn+N)-xy(N+1))+gam*((xy(lastn)-xy(1))/l(lastn,1)): 
fx(lastn,1)=fx(lastn,1) +p/2 * (xy(lastn+N)-xy(N+1))+gam*((xy(1)-xy(lastn))/l(1,lastn)); 
fy(1,lastn)=fy(1,lastn) +p/2 * (xy(1)-xy(lastn))+gam*((xy(N+lastn)-xy(N+1))/l(lastn,1)) 
fy(lastn,1)=fy(lastn,1) +p/2 * (xy(1)-xy(lastn))+gam*((xy(N+1)-xy(lastn+N))/l(1,lastn)); 
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for i=1:N 

FX(i)=sum(fx(i,:)); 
FY(i)=sum(fy(i,:)); 

end 
FX=FX(2:end)'; 
FY=FY(2:end)'; 
FXFYequations=[FX; FY]; %this puts everything in a 70x1 vector 

end 
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"Jac" calculates the Jacobian. 

function [J]=wet_SLJac_seven_hex(p, ki, anafactor.xytemp) 
n=length(xytemp); 
J=zeros(n,n); 
del=01; 
xyperturb=xytemp; 
for i=1:n 
xyperturb(i)=xyperturb(i)+del; 
%Constructs Jacobian by columns (n x n) 
J(:,i)=(wet_SL_force_eq_seven_hex(p, ki, anafactor,xyperturb)-wet_SL_force_eq_seven_hex(p, 
ki, anafactor,xytemp))/del; 
xyperturb(i)=xytemp(i); 
end 
end 
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"newt_temp" uses a variation on Newton-Raphson method that involves 
numerical line searching and a numerical solver technique called backtracking to 
essentially transform NR method into a globally convergent method. 

function [xynewtemp, new_force]= newt_temp(xynewtemp) 

xy=[4,6.49519052800000;4.75000000000000,6.06217782600000;5.25000000000000,5.1961524 
2300000;5.25000000000000,4.33012701900000;4.75000000000000,3.46410161500000;4,3.031 
08891300000;3,3.03108891300000;2.25000000000000,3.46410161500000;1.75000000000000, 
4.33012701900000; 1.75000000000000,5.19615242300000;2.25000000000000,6.062177826000 
00;3,6.49519052800000;3.25000000000000,6.06217782600000;3.75000000000000,6.06217782 
600000;4,5.62916512500000;4.50000000000000,5.62916512500000;4.75000000000000,5.1961 
5242300000;4.50000000000000,4.76313972100000;4.75000000000000,4.33012701900000;4.5 
0000000000000,3.89711431700000;4,3.89711431700000;3.75000000000000,3.4641016150000 
0;3.25000000000000,3.46410161500000;3,3.89711431700000;2.50000000000000,3.897114317 
00000;2.25000000000000,4.33012701900000;2.50000000000000,4.76313972100000;2.250000 
00000000,5.19615242300000;2.50000000000000,5.62916512500000;3,5.62916512500000;3.25 
000000000000,5.19615242300000;3.75000000000000,5.19615242300000;4,4.76313972100000 
;3.75000000000000,4.33012701900000;3.25000000000000,4.33012701900000;3,4.7631397210 
0000;]; 
xy=reshape(xy,72,1); 
xyini=[xy(2:36); xy(38:end)]'; 
xynewtemp=xyini; 

TOLF=1e-4; 
TOLMIN=1e-6; 
TOLXY=eps; 
STPMX=100; 
MAXITS=200; 
lam=1; 

%%%%Check if initial guess is a root 
if max(abs(force_eq_seven_hex( xynewtemp))) < .01*TOLF 

check=0; 
return 

end 

NRf=sqrt(sum(force_eq_seven_hex(xynewtemp).A2))/2; 

% stpmax=STPMX*max(abs(xynewtemp),real(size(xynewtemp))); ?????? 

forn=1:MAXITS 
N Rg=force_eq_seven_hex(xy newtem p)'*jac_seven_hex(xy newtem p); 
xyoldtemp= xynewtemp; 
NRfold= NRf; 
fvec=(jac_seven_hex(xyoldtemp)\force_eq_seven_hex(xyoldtemp))'; 
NRp=-fvec; 

lam=1; 
lam_min=.1; 
alpha=1e-4; 
check=0; 
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slope=dot(NRg,NRp); 

%slope must be negative 
if slope >=0 

waming('Roundoff error in line search') 
% break 

end 

while check==0 

xynewtemp= xyoldtemp +lam.*NRp; 
NRf=sqrt(sum(force_eq_seven_hex(xynewtemp).A2))/2; 

% if lam<lam_min 
% xynewtemp= xyoldtemp; 
% disp('Break out of line search and let Newt check convergence'); 
% check=1; 

if NRf < NRfold+(alpha*lam*slope) 
disp('Sufficient function decrease'); 
break 

else 
if lam==1 

tmplam=-slope/(2*(NRf-NRfold-slope)); 
else 

rhsl =NRf-NRfold-lam*slope; 
rhs2=NRf2-NRfold-lam2*slope; 
a=((rhs1/lamA2)-(rhs2/lam2A2))*(1/(lam-lam2)); 
b=((-rhs1*lam2/lamA2)+(rhs2*lam/lam2A2))*(1/(lam-lam2)); 
if a==0 

tmplam=-slope/(2*b); 
else 

disc=b*b-3*a*slope; 
if disc<0 

tmplam=.5*lam; 
elseif b<=0 

tmplam=(-b+sqrt(disc))/(3*a); 
else 

tmplam=-slope/(-b+sqrt(disc)); 
end 

end 
if tmplam>.5*lam 

tmplam=.5*lam; 
end 

end 
end 
Iam2=lam; 
NRf2=NRf; 
lam=max(tmplam, .1*lam); 

end 
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if max(abs(fvec))< TOLF 
check=0; 
break 

end 

if check==1 
check=max(abs(NRg))*max(abs(xynewtemp)) || max(f, .5*size(xynewtemp))<TOLMIN; 
break 

end 

if max(abs(xynewtemp-xyoldtemp))/max(abs(xynewtemp))<TOLXY 
break 

end 

new_force(n)=sqrt(sum((force_eq_seven_hex(xynewtemp)).A2)); 
% newJbrce(n)=sum(force_eq_seven_hex(xynewtemp)) ; 

end 
end 
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APPENDIX C 

Plotting larger and more irregular networks can be accomplished by finding the 
XY points using an image digitizing software. The screenshot below shows the 
format of a few digitized points of a drawn network. This application is called Plot 
Digitizer, others include Engague Digitizer, Digitzelt, ORIGIN, and Dagra. 
Essentially the program will automatically select points from lines and give XY 
coordinates in exportable format, which can be used in Matlab. 

* » » * 
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Figure 39: Screenshot of Plot Digitizer 
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