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ABSTRACT 

ACCELEROMETER CALIBRATION 

FOR NASA's MAGNETOSPHERIC 

MULTISCALE MISSION SPACECRAFT 

by 

Benjamin Jenkins 

University of New Hampshire, September, 2011 

This thesis presents several methods for the on-board and/or ground-based cali­

bration of accelerometers for the spacecraft (s/c) of the NASA Magnetospheric Multi-

Scale (MMS) Mission during mission operation. A lumped bias is estimated to correct 

for the total effect of the MMS accelerometer sensor bias, orthogonal misalignment 

and the shift in the s/c's center of mass. 

Various estimation techniques are evaluated and compared, including both dynam­

ically driven real-time filters/observers and post processing batch algorithms. Both 

methods are shown to accurately determine lumped bias, so long as the s/c inertia 

tensor is well known. If, however, there is any uncertainty in the inertia tensor, only 

post processing methods yield accurate lumped bias estimates. Analytical simula­

tions show that these methods are able to correct accelerometer readings to within 1 

micro-g of true acceleration. Preliminary experimental verification also shows proof 

of concept. 

xv 



INTRODUCTION 

The NASA Magnetospheric MultiScale (MMS) mission is expected to launch in 

2014 The mission purpose is to explore three fundamental plasma processes in 

Earth's magnetosphere: magnetic reconnection, energetic particle acceleration and 

turbulence 

Figure T Earth's magnetosphere [5] 

Since the plasma processes being investigated are four-dimensional (three spatial 

dimensions and a time dimension), in order to fully understand their physics, mea­

surements must be made at a minimum of four locations at all times To satisfy 

this requirement, the MMS mission will consist of a constellation of four identical 

spacecraft (s/c), flying m a precise tetrahedron formation 

1 



Figure 2: Tetrahedron formation [7] 

The European Space Agency (ESA) already launched a similar mission named 

Cluster, which is investigating the Earth's magnetic environment and its interaction 

with the solar wind in three dimensions [1]. The MMS mission will build upon Clus­

ter's success with substantially higher resolution data, both spatially and temporally. 

This higher resolution data will be collected by each of the spin-stabilized spacecraft, 

each having four 60m spin-plane Double-Probe (SDP) wire booms extending out 

radially and two 13m truss-type structure Axial-Plan Double-Probe (ADP) booms 

extending out axially. 
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Figure 3: Rendering of MMS spacecraft with extended booms (to scale) [24] 

A very large area of space can be monitored by four spinning spacecraft. Forma­

tions and spinning, however, add complications to the mission. Since four individual 

spacecraft will be used, the location of each must be known very accurately in order 

to compile data effectively. Additionally, the spin rate of each s/c must be pre­

cisely known as well. There are no on-board sensors (i.e., gyros) to directly measure 

spin rate. Estimation algorithms will be used to determine the spin rate from indi­

rect measurements of attitude and acceleration, as well as knowledge of the system's 

dynamic/kinematic equations. State estimation for a similar spacecraft has been pre­

sented in [17] and for this specific MMS mission by Thienel in [39] and [40]. Recent 

developments, however, in stricter mission requirements and sensor findings neces­

sitated the estimation of a total of three parameters. Orthogonal misalignment, in 
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addition to accelerometer sensor bias and accelerometer shift in location with respect 

to center of mass, is now required. 

Accelerometer calibration is essential to allow accurate attitude estimation through­

out the mission. The location of the accelerometer relative to the center of mass and 

its orthogonal alignment with the body axes are expected to shift due to launch 

vibrations and sun/shade transitions during orbit. The presented calibration meth­

ods intend to correct these errors that will develop. Formation missions necessitate 

extremely high precision controllers to minimize wasted fuel and obtain accurate sci­

entific data and for these controllers to perform as they were designed they must have 

accurate sensor measurements and estimated states. 

The addition of this new parameter to the two existing parameters contribute a 

total of nine augmented states that need to be estimated since each consists of a 

three-component vector. In combination with the six state variables to fully define 

attitude and angular rates, the estimation problem requires a 15th order state esti­

mator, with only six measured states. The questionable observability of these states 

and parameters has led to the investigation of the feasibility of using a single lumped 

accelerometer bias to replace the nine accelerometer calibration parameters with only 

three parameters. The result is a 9th order state estimation algorithm. 

This thesis will present the various methods used to calibrate the accelerometer 

in order to provide the most accurate measurements possible. These methods will 

be compared using simulated and experimental data. Additionally, both dynamic 

and batch estimators will be developed to estimate the 9 states and 3 parameters 

proposed to be necessary. 
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1 Past Work 

A review of the literature surrounding this topic yielded many papers present­

ing portions of the work evaluated here or concepts applied to alternative missions. 

Although much research has been done on portions of concepts applied to alterna­

tive missions, there is no existing research found that studies the multiple techniques 

for lumped bias estimation or even a justification of practicality of determining the 

lumped bias. 

Thienel and Markley's Paper on MMS state estimation [39] and their second pa­

per written with Harman [40] present the original MMS accelerometer calibration 

approach. They presented an Extended Kalman Filter (EKF) for the estimation of 

attitude, angular rates, accelerometer bias and center of mass shift. Their work did 

not, however, account for accelerometer misalignment. This study strives to avoid 

some of the assumptions that are made in prior research. Additional work performed 

on MMS-specific observers includes the comparative study of various observer based 

control techniques by Mushaweh et. al. [23] [24]. A limitation of this paper was that 

the observers only estimated attitude and body rates. Koprubasi and Thein designed 

a Sliding Mode Observer based on the mission requirements of the CATSat satellite, 

presenting an EKF additionally [14] - [17]. CATSat was a very different spacecraft, 

with no accelerometer calibration requirement, however, many of fundamental ob­

server concepts and design apply to this study. 

A common method for ground based accelerometer calibration involves using cen-
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trifuges [20]. Spinning an accelerometer at a known speed will induce a known radial 

acceleration on the accelerometer, allowing for it to be properly calibrated [27]. Since 

the MMS spacecraft will be spinning, a similar effect is produced which can be used 

to calibrate the accelerometer. Orthogonal misalignment is easily developed for ac-

celerometers and other vector measurement devices. These vector measurements often 

play an important role in the spacecraft's state estimation, and require calibration to 

eliminate or reduce the unknown misalignment. Attitude estimation is both heavily 

dependent on the accelerometer yet used for the accelerometer's misalignment esti­

mation in [27]. This was accomplished by using an off-line iterative algorithm using 

multiple accelerometers. 

Shuster has authored several papers describing methods to determine sensor mis­

alignment with and without knowledge of the spacecraft states [33] [42]. Many of 

the misalignment algorithms he presents involve aligning like sensors, such as atti­

tude sensors with other attitude sensors, or accelerometers with accelerometers, which 

does not directly correlate to this work. It provides a solid foundation to build upon 

for misalignment determination. Shuster also published an extremely thorough work 

presenting nearly every attitude description possible [31]. 

If there is very little knowledge about the expected dynamics of a system, then 

spline fitting may provide an effective method to attenuate noise and/or determine 

the derivative at a point. Park et. al. use polynomial fitting to interpolate positions 

in [26] and Lee successfully used splines to smooth position and velocity information 

[19]. Although there is substantial knowledge of the model for this project, the lumped 

bias term has been found to have a very high sensitivity to the inertia tensor. Splines 
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are proposed to provide an alternative to the dynamic filters, avoiding all dependence 

of the state estimates on the inertia tensor. 

2 Sensors 

Figure 4: Internal layout of spacecraft 

The three sensors typically used for state determination on spacecraft are star 

trackers, gyroscopes and accelerometers. The combination of these three sensors 

provide direct measurements to define the typical spacecraft states such as attitude 

and angular spin rate. Not all spacecraft will use all three of these measurements but 

a dynamic filter can be used to estimate the unmeasured states. Whether measured 

or not, knowledge of every state is required for control of the spacecraft. 

A star tracker is an opto-electronic instrument used to provide the absolute three-
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axis attitude of a spacecraft utilizing star observations. They employ a vision based 

system which takes a picture of the stars in its line of sight. It then compares this 

picture to a data bank of star maps to determine the attitude of the spacecraft with 

respect to a designated inertial frame. Star trackers are relatively accurate devices, 

however, they cannot provide measurements when pointing towards the Sun, Earth 

or Moon. In their paper presenting the calibration of a star tracker, Yang et. al. 

indicate that the uncertainties of the measured star direction vectors can be calibrated 

to within 4.0 x 10"5 rad of accuracy [4]. 

Gyroscopes directly measure the rotational velocity of the spacecraft. They are 

commonly manufactured in one of two ways: the mechanical gyro and the micro-

electrical-mechanical system (MEMS) device. The mechanical gyro consists of a 

spinning disc or ring mounted on gimbals. The rotational inertia of the disk is sub­

stantially higher than the friction from the gimbals, allowing the disk to maintain its 

original attitude after its base has rotated. A second, more recent development of the 

gyro, is a MEMS device. These small electronics require much less electricity and are 

smaller and lighter. A drawback is that they are not as accurate or as reliable. Due 

to this, they are not typically used for spacecraft. If they are used, it is typically for 

smaller crafts with less stringent attitude constraints. A MEMS gyroscope has been 

used for the experimental verification in this thesis in Chapters V and ??. Although 

a gyro is included in the experimental test bed for this research, there will not be a 

gyro onboard the MMS spacecraft. Instead the angular rates will be estimated using 

the system model and star tracker and accelerometer measurements. 

Accelerometers directly measure the acceleration of the spacecraft. Depending on 
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where they are located on the spacecraft they may be measuring only the translational 

acceleration of the spacecraft or may be measuring a combination of translational and 

rotational accelerations. Utilized by an inertial navigation system unit, accelerometers 

allow for "dead reckoning", which allows for the estimation of the position, attitude 

and velocity of an object without any external references. 

Spinning spacecraft will often fly missions without gyros. This reduces launch 

costs since this cost is spacecraft is proportional to that of the spacecraft mass. It 

also reduces the power requirements of the spacecraft and eliminates a relatively high 

failure rate device from the design. NASA has chosen to fly the MMS mission without 

gyros, thus requiring an observer to estimate the spacecraft angular rates. Estimating 

angular rates does not present a large problem. Intensive accelerometer calibrations 

are usually not performed for spacecraft with such limited sensors. 

3 Sources of Error 

Multiple corruptions are included in the analytical simulations in this thesis to 

better represent the true MMS spacecraft. The corruptions tax each filter differently 

and sometimes violate the basic assumptions required for each particular filter. These 

corruptions test the robustness of each, albeit possibly degrading the performance of 

an optimally designed filter. Random numbers from a Gaussian distribution are in­

cluded on the start tracker quaternion measurement and the accelerometer sensor 

output to simulate noise. Modeling uncertainty is incorporated by altering the in­

ertia tensor. Three 3-component parameters are used to corrupt the accelerometer 
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output. A constant offset is used to simulate the sensors bias. The location of the 

accelerometer relative to the s/c center of mass is altered to simulate fuel usage, 

launch vibrations and thermal shifting. The three accelerometer measurement axes 

are assumed to always be orthogonal and a small orthogonal angle misalignment from 

the s/c body axes is introduced. 

Various combinations of these corruptions are used to evaluate estimator perfor­

mance and determining the robustness of each filter to these parametric uncertainties. 

4 Methods 

Three inherently different types of estimators are presented in this thesis. The first 

technique for accelerometer calibration is a cascading filter which estimates all nine 

terms of accelerometer calibration. The first six terms of accelerometer calibration as 

well as the attitude's six state variables were determined using an Extended Kalman 

Filter (EKF) designed by Thienel and presented in [39] and [40]. Using outputs 

from her filter and the equations required to describe the acceleration vector, the 

misalignment is calculated using a Least Squares Algorithm. 

The second approach presented consists of dynamic filters/observers such as the 

Extended Kalman Filter, the Hoo filter and the Sliding Mode Observer to estimate 

the six attitude states as well as a 3-parameter lumped bias accelerometer calibration 

term. Kalman and Hoo filters both provide estimations based on some optimality 

criterion. The Sliding Mode Observer, although not defined as optimal, can be proven 

stable for bounded uncertainties. These dynamic filters are designed to propagate in 
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real-time onboard the spacecraft or via a ground station. 

The last approach presented is designed to post-process measurement data (or run 

onboard a finite number of measurement samples behind the actual system). This 

approach is robust since it makes no assumptions about the system model other than 

the basic kinematic equations which describe a rotating body. It is assumed that all 

system state variables are smooth and continuous. 

All methods are analytically tested. Only the post-process estimation routine is 

tested using experimental data. 

5 Thesis Outline 

This thesis is organized as follows: 

• Chapter I, Spacecraft Attitude Dynamics and Kinematics - The equations de­

scribing s/c motion are presented and three attitude representations are de­

scribed: Euler Angles, Direct Cosine Matrix and quaternions. Sensor models 

are also described. 

• Chapter II, Lumped Bias Justification - Analytical and numerical justifications 

are made for the simplification of sensor bias, shift in center of mass and or­

thogonal misalignment to a single 3-element lumped bias. 

• Chapter III, Estimation Techniques - 3 structurally independent filter categories 

are presented: a cascading filter built upon an existing EKF, three dynamic 

filters (EKF, Hoc Filter and SMO), and a batch filter designed for robustness 
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when the inertia tensor is not known. 

• Chapter IV, Analytical Simulations - The MatLab simulation setup and results 

from all filters described in Chapter III are presented. 

• Chapter V, Experimental Verification - The batch filter is qualitatively verified 

using an experimental testbed. 

• Chapter VI, Conclusions - The work presented is summarized and conclusions 

are drawn. Future work is suggested. 
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Chapter I 

SPACECRAFT ATTITUDE 

DYNAMICS AND KINEMATICS 

There are many representations that can be used to define a spacecraft's attitude. 

Common parameter selections can be divided into rank-3 definitions which are all 

susceptible to gimbal lock (singularities at specific attitudes) or 4-component tensor 

representations which include a redundant term but avoid singularity issues [21]. 

Shuster provides a detailed description of applicable attitude representations in [31]. 

The following section briefly introduces Euler Angles and the Direct Cosine Matrix 

but focuses on the description of quaternions, the attitude representation used for 

this work. 

1 Euler Angle Representation 

Euler angles are a common and intuitive description of attitude but are susceptible 

to gimbal-lock singularities. To be able to describe all attitudes accurately, at least 

two different Euler Angle sequences must be employed to maintain continuity if a 

singularity is encountered [31]. When two sets are used, more redundant data is 

produced than is produced when using quaternions. 
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A theorem by Euler states: [18] -

Any two independent orthonormal coordinate frames can be related by a sequence 

of rotations (not more than three) about coordinate axes, where no two successive 

rotations may be about the same axis. 

Essentially, he showed that the rotation of any orthonormal coordinate frame onto 

another can be defined by three angles, representing a sequence of rotations about 

the coordinate frame's primary axes, so long as the same axis is not used twice in a 

row. Figure 1.1 shows this graphically [9]. 

Z 

2 

,̂ » 

o r 

Figure 1.1: Euler angles. 3-2-3 rotation [cv,/3,7p 

Rotation of a about z: x y z —>• x' y' z 

Rotation of /5 about y': x y z —>• x" y' z' 

Rotation of 7 about z': x y z —>• x'" y" z' 

The non-sequential restriction of axes yields 12 potential axes sequences. (3-2-

3 is shown above). The sequence definition describes which axis each Euler angle 

corresponds to. The 3-2-3 rotation [a, ft, cf)]T requires a rotation of a about the z-axis, 

/? about y', the new y-axis, and (f> about z' the new z-axis. 
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2 Direct Cosine Matr ix 

In order to mathematically perform a rotation defined by Euler Angles, it is con­

venient to assemble it into a direct cosine matrix (DCM). This creates a 3x3 pure 

rotation matrix which need only be multiplied by a vector to yield the rotated equiv­

alent vector. The DCM can be compiled by multiplying the three rotation matrices 

which define primary axis rotations in the corresponding order (equations 1.1, 1.2 

and 1.3). All 12 Euler sequences' DCMs have been computed and presented in many 

resources including [34] and are shown in Appendix A. 

R(l,8) 
1 0 0 
0 cos{6) sin(6) 
0 -sin{6) cos{9) 

(1.1) 

R(2,9) = 
cos{9) 0 -sin{9) 

0 1 0 
sin(6) 0 cos(9) 

(1.2) 

R(1,0) = 
cos{9) sin{9) 0 

-sin(6) cos(9) 0 
0 0 1 

(1.3) 

2.1 Small Angle Approximations 

For small angles both the sin and cos functions can be simplified: 

sind ~ 6 
cosd ~ 1 

(1.4) 
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B(l,i 

R(2, 

R(l,9) = 

D l 2 3 
-"-7/30 

1 0 
0 1 

_ 0 -9 

" 1 0 -
0 1 

.e ° 
1 9 

-9 1 
0 0 

1 a 
a 1 

P - 7 

0 
9 
1 

-9 ' 
0 
1 _ 

0 " 
0 

1 

-p 
7 
1 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

3 Quaternion Representation 

The quaternion is another widely used attitude representation for spacecraft at­

titude and control. The quaternion, coined by Hamilton, has other common names 

such as Euler symmetric parameters or Rodrigues symmetric parameters [32]. One 

distinct advantage quaternions have over Euler angles is the absence of any singu­

larities. The quaternion is a 4-component tensor that includes a redundant scalar 

term. Quaternions are hyper-complex numbers of rank 4 [17]. They consist of a 

scalar value as well as an imaginary vector in three-dimensional space. Obviously, 

as quaternions are tensors, ordinary linear algebra does not apply. Detailed explana­

tions of quaternion algebra can be found in [18], [31] and [32]. Brief definitions for 

quaternion terminology are provided below. 
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3.1 Quaternion Functions 

Quaternions consist of a scalar term, q0, and a three-element imaginary vector 

[qii q2J qzk]T. In this thesis the scalar value is designated to be the first element. 

(1.9) q = 
<7o 

. 1 . 
= 

Qo 

9i i 
<?2J 

. 93k _ 

The four components of the quaternion must satisfy the following constraint: 

ql + ql + ql + (& = 1 (1.10) 

Similar to computing vector cross products, the use of hyper-imaginary numbers 

is subject to the following identities, the only difference being unit vectors squared 

equal -1 rather than 0: 

•2 -2 -2 
1 = J = J = - 1 

ij = - j i = k 

jk = - k j = i 

ki = - i k = j 

;i.n) 

Quaternion multiplication is commonly denoted by <g> and is used to determine the 

error between two quaternions: 

qe = qm®q (1-12) 

When referring to spacecraft attitudes, this error is known as "multiplicative error", 

as opposed to the standard error compilation using subtraction: 

e = qm - q 
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which is referred to as "additive error". Quaternion multiplicative error is often used 

as an alternative to additive error because the resulting multiplicative error is a proper 

orthogonal rotation defined by qe. Additive error does not constrain the error to be 

orthogonal. [21] 

Given the quaternion form of Eq. (1.9), (i.e., q = [qo, q]1), the following notation 

can be used: 

qA®qB = ti{qA)QB (1.14) 

where Q,(q) G 9ft4x4 is defined as: 

n(q) = qo -q 
q -[qx} + I3x3q0 

qo - < 7 i - < ? 2 - < 7 3 

<7i qo 9 3 -q2 

<72 - ? 3 qo <7i 

93 <?2 - 9 i 90 

(1.15) 

Here, [qx] is a skew-symmetric matrix and is defined as: 

[qx\ = 
0 - 9 3 92 

93 0 -qi 

-92 9i 0 

(1.16) 

Quaternion multiplication is required to formulate the spacecraft kinematic equation 

defining the time derivative of q for modeling and is as follows: 

Q = 2Wb/° ® ^( f) (1.17) 

where Qb/0 is a vector that represents the spin rate of the spacecraft (s/c) body with 

respect to the s/c center of mass and is augmented with a zero to allow its use with 

quaternion multiplication: 

Wfe/o 
0 

_ Wb/o 

0 
wx 

UJy 

(1.18) 
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The quaternion multiplication equations can also be expressed similarly to Eq. (1.14), 

Vb/o ®q = VL(u>b/0)q (1.19) 

where, 

n(wb/„) 
o -u> T 

b/o 

I UJb/o -[ujb/ox] 

-UJ-r. 

UJT 

-UJy 

UJZ 

OJ,i —U)7. 0 

-LOz 

-L)„ 

OJx 

UJz Uv -UJr 0 

(1.20) 

A more detailed and thorough description of quaternion functions can be found 

in [11], [17], [18], [31] and 

4 At t i tude Representation Conversions 

Euler angles and quaternions can easily be converted to each other using some 

simple mathematical expressions and equations. To perform this conversion the DCM 

is required as a middle step. A quaternion can be used to formulate a DCM as follows: 

A(q) = 
9o + 9i - ql - ql 2gi<?2 + 2g093 2gi<?3 - 2q0q2 

2qxq2 - 2q0q3 q2 - q\ + q\ - q\ 2q2q3 + 2q0qx 

2qrq3 + 2go92 2<j293 - 29o9i 9o ~ 9? - ql + ql 

2q2 + 2ql-l 2qxq2 + 2q0q3 2q1q3 - 2g092 
2qtq2 - 2q0q3 2q2 + 2q%-l 2q2q3 + 2g09i 
2gig3 + 2q0q2 2q2q3 - 2qQqx 2q\ + 2g| - 1 

(1.21) 

(1.22) 

where Eq. (1.22) simplifies Eq. (1.21) using the quaternion constraint presented in 

Eq. (1.10). The reverse conversion of a DCM to quaternions is described by: 

90 = ± X V ^ 1 1 + 4 2 2 + ^33 + 1 

r 
qi = —(A23-A32) 

49o 
q2 = -—(A31-A13) 

49o 
q3 = —(A12-A21) 

49o 

(1.23) 
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the non-exclusivity of quaternions can be seen in this equation due to the "±" . Since 

q = —q, a series of converted quaternions may not be continuous. A check for 

discontinuity and inversion of the quaternion can restore the quaternions expected 

continuous nature without effecting the quaternion's attitude definition. 

When converting Euler angles to a DCM one of the twelve possible sequences 

must be chosen. For the 1-2-3 rotation sequence euler angle e = [<fi, 9, ri/j]T the DCM 

is formulated as follows: 

A(e) = 

cos (0) cos (tp) cos (0) sin(i/>) — sin(#) 

sin (<p) sin (6) cos (tp) — cos (<p) sin (tp) sin (cf>) sin (8) sin (tb) + cos (<p) c o s (VO s i n (0) c o s (0) 

cos ((/>) sin (6) cos (tp) + sin (<fi) sin (ip) cos (<̂ ) sin (6) sin (i/.') — sin (<p) cos (i/>) cos (<p) cos (0) 

(1.24) 

DCM's for the remaining eleven sequences are defined in Appendix A. The conversion 

of the DCM to Euler Angles is performed by solving the following: 

^4l2 
tan w = —— 

An 

sin 9 = -Al3 (1.25) 

^ 2 3 
tan d> = —— 

-433 

5 Spacecraft Kinematics and Dynamics 

As previously stated, Eq. (1.26) below defines the time derivative of attitude as 

1/2 the multiplication of a quaternion assembled of the angular velocity and the 

attitude quaternion: 

Q = ^Wo ® q(t) (1-26) 
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The dynamic equations for angular rates are given as: 

d> = J ^ ^ T - [JWX]U) (1.27) 

The above set of Euler's equations can be written more concisely and accurately if 

the entire inertia tensor, J, is known, 

wx = Ixx{J2Tx - {hz - Iw)UyU}z) 
™v = TyyiYlTy - {hx - hz)uxuz) (1.28) 
u>z = hz\J2Tz- (lyy- f* 

By expanding Eq. (1.26) and combining it with a simplified Eq. (1.28) with no in­

put torques, one can derive the nonlinear equation /(£), which describes the system 

assuming the s/c body coordinate axes lie along the principle axes of inertia: 

- | ( ^ x 9 i + ^ 9 2 + ^ g 3 ) 

7,(^x90 + ujzq2 -0Jyqz) 
2 ( ^ 0 ~uzqi +uJxq3) 

f(x,t)= \{oJzqo + toyq1 - uxq2) (1.29) 
~Ixx {hz - hy)uyw^ 
~Iyy {hx — hzJ^xUJz 

zz \ yy - i x j ^ i ^ j 

If the spacecraft axes do not lie along the principle axes of inertia the nonlinear 

equation, accounting for torques on the body, becomes 

f(x,t) 
\wb/o (g> q(t) 

J _ 1 ( X ) T - [ J u ; x ] w ) (1.30) 

6 Sensor Models 

Simulating mission data requires models of the star tracker and accelerometer. 

The star tracker model is the attitude quaternion generated by the simulation with 

added noise. The accelerometer has a more complicated form, shown in Eq. (1.32). 
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To simulate a higher integrity accelerometer measurement, 4 vectors are used to 

artificially corrupt the measurement relative to the nominal acceleration model. 

The quaternion measurement is of the form: 

qm = qSim + l/q (1-31) 

where qsim is the simulated quaternion and uq represents white noise. 

The typical accelerometer model is: 

anom = [d>x}r + [u>simx]2r + asc/inertm (1.32) 

where 0Jsim is the simulated body rate, CJ is generated from u}sim using Eq. (1.27), 

r is the location of the accelerometer on the s/c relative to the center of mass, and 

asc/mertm is the acceleration of the s/c due to external forces or thrusters. 

If the location of the accelerometer relative to the center of mass shifts, and 

the acceleration of the s/c relative to the inertial frame is neglected, the resulting 

accelerometer model is: 

aahlft = [Cjx](r + Sr) + [ujx]2(r + 6r) (1.33) 

where Sr is the location shift. If the accelerometer rotates relative to its initial 

alignment and maintains orthogonal alignment, this rotational misalignment can be 

accounted for using the following equation: 

amis = A[ashlft] (1-34) 

where A is the rotation matrix defining the misalignment. For MMS mission purposes 

one can safely assume small misalignments, allowing for small angle approximations 
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when constructing the rotation matrix. The symbol 6 denotes the 1-2-3 Euler rotation 

sequence such that 

6-
01 

S2 

A = I 3x3 [Sx] 

(1.35) 

(1.36) 

Here, [<5x] is a skew symmetric matrix defined previously in Section 3.1 

To properly construct a higher integrity accelerometer model, sensor bias (ab) and 

white noise (y'acceieromter) are also added such t h a t 

^measured [dmis > ^*biasj "r ^accelerometer (1.37) 

This thesis proposes that for the MMS s/c the accelerometer can be adaquately 

represented by a constant lumped bias to correct for 6r, 6 and ab. That is, 

anom ~ [ttm + aLfi] (1.38) 

where anom is the nominal acceleration, am is the measured acceleration and CLLB is 

a lumped bias to account for all corruptions. 

23 



Chapter II 

LUMPED BIAS 

JUSTIFICATION 

This thesis proposes the estimation of a lumped bias to account for the accelerom­

eter's bias, shift in location and orthogonal misalignment. Before investigating meth­

ods to estimate this lumped bias, a lumped bias assumption is confirmed to be ade­

quate given two additional assumptions: (1) a near constant spin rate primarily about 

a single axis and (2) significantly larger inertia tensor terms on the primary axes than 

that of the secondary axes. 

1 Analytical Justification 

The nominal acceleration, anom, can be represented and predicted by Eq. (2.1): 

an0m = [wx]r + [ux] 2 r + a s c / i n e rtia (2.1) 

where ui is the angular body rate, CJ is the angular acceleration of the body, r is the 

location of the accelerometer relative to the s/c center of mass, and asc/inerUa is the 

acceleration of the spacecraft due to external forces. 

Given a small shift in the location of the accelerometer with respect to the center 
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of mass, denoted by Sr, the true acceleration is: 

atrue = anom + aLB = [Cjx](r + Sr) + [u>x)2(r + Sr) + a 'sc/rnertia (2.2) 

where aLB denotes the lumped bias. 

Taking the difference between the nominal and true accelerations yields the re­

sulting lumped bias as a function of Sr: 

aLB = [Cjx](Sr) + [ujx]2(Sr) (2.3) 

The CJ term can be neglected if assumption (2) is made and there are no applied 

torques on the MMS s/c and, therefore, angular acceleration can be simplified to: 

CJ = J 1[JUJX]UJ RS 0 3 x l (2.4) 

Given [«x] is 

Then [ux] 2 is such that 

[wx] = 
0 

to* 

w x r = 

2 2 
-U\ - ^y 

U)xU)y 

UJXUJZ 

-UJZ UJy 

0 -wT 

UJXUJy bJXt>Jz 

-Ul - UJI UJyUJ, 

UyUJZ - J 2 ~ UJ2 

Furthermore, if uix and ujy are sufficiently small, then 

,2 

[cvxf 
-u; 0 UJXUJZ 

0 — UJ2 LOyOJz 

2 2 
UJXUZ UJyUJz —ujy — UJX 

-u2 0 0 
0 -UJ2 0 

0 0 0 

(2.5) 

(2.6) 

(2.7) 

The resulting accelerometer lumped bias, aLB is dependent only upon uiz and the 

shift in center of mass in the lateral directions on the s/c spin plane. If these terms 

are constant then aLB c&n safely be represented by a constant vector: 

aLB{8r) = [ujx)28r 
\ ~ ^ z 

0 
0 

0 0 " 
-UJ2 0 

0 0 _ 

5rx 

Sry — 

-uj25rx 

-uj26ry 

0 
(2 i 
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If the same approximations are made and only a misalignment is considered, then the 

true acceleration can be simplified to: 

air 
CJ: 

-«* 

0 
0 

0 

~^z 

0 

0 " 
0 
0 

rx 

ry 

. 7'2 . 

= 
~Uzrx 

-u2
zry 

0 

(2.9) 

If an orthogonal small angle misalignment, represented by [Sx], is present, the mea­

sured acceleration, amis, can be described as: 

a„ atrue + aLB — {13x3 ~ Sx) 

-uJ2rx 

-u2
zry 

0 
(2.10) 

The difference between the true acceleration and amis, then, represents the lumped 

bias due to a small-angle orthogonal misalignment of the accelerometer: 

OLB(<5) 

0 

-oz 

5y 

$z 

0 

~0~x 

- ° ~ y 

0~x 

0 

" -"Irx ' 
-U2zrV 

0 
= 

-8zryuj2 

Szrxui2
z 

_ {o~xry - o~yrx)uj2
z 

(2.11) 

Equations (2.8) and (2.11) each describe the lumped bias as a function of their re­

spective accelerometer corruption, Sr or S. The approximated total lumped bias is, 

then, 

aLB{Sr,S) 
-5zryuj2 

5zrx^l 
_ {5xry - Syrx)uj2 _ 

+ 
" -uj2Jrx ' 

-uj25ry 

0 
(2.12) 

So long as the parameters in Eq. (2.12) are constant, the lumped bias approximation 

does in fact hold. 

2 Numerical Validation of the Lumped Bias Model 

In addition to an analytical inspection of the sensor and system equations to verify 

that the lumped bias is adequate, numerical simulations are run and accelerometer 

errors are computed under conditions of accelerometer bias, center of mass shift and 
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orthogonal misalignment. The results are consistent with those of the analytical re­

sults previously presented. For all simulations the measured acceleration is computed 

using the following: 

am = A [ c J x ] ( r + Sr) + [cJX]2(r + Sr) +ab + V accelerometer (2.13) 

The resulting error due to a static accelerometer bias, ab, is obviously apparent, but is 

shown, nonetheless, for the sake of visual comparison to other sources of accelerometer 

measurement error. A representative plot of the effects of static accelerometer bias is 

presented in Figure 2.1. Here, the x-component effect of am is shown for abx = — 1 x 

10"4 m/s2. 

_4 a, minus a (Lumped Bias) 
X 10 true raw' K ' 

0 i v r I v i 

Accel x 
Accel y 
Accel z 

-0 2 -

-0 4 -

1-06-

-0 8 -

-1 

-1 2' L ' ' >- —' ' L- — 

0 100 200 300 400 500 600 700 800 
Sample # (@4Hz) 

Figure 2.1: Numerically predicted bias from a^x component 

Figures 2.2 through 2.4 show resulting accelerometer measurement error due to 

a lcm shift in accelerometer location, Sr, in the x, y and z axes respectively. Each 

shift along each individual axis is performed independently and no sensor bias or 

misalignment is introduced. 
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a minus a (Lumped Bias) 

- Accel x 
Accel y 

- Accel 2 

100 200 300 400 500 600 700 
Sample #(@4 Hz) 

Figure 2.2: Numerically predicted bias from 5rx = lcm 

a minus a (Lumped Bias) 

-Accel x 
Accel y 

- Accel z 

0 100 200 300 400 500 600 700 800 
Sample # (@4Hz) 

Figure 2.3: Numerically predicted bias from 5ry = lcm 
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a minus a {Lumped Bias) 

A " 
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- Accel z 
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Figure 2.4: Numerically predicted bias from 5rz = lcm 

Uncertainties in 6rx and 5ry both yield a near constant bias error on the accelerom­

eter. The oscillation error amplitudes, which cannot be seen above are on the order 

of 3 x 10~6 m/s2. The magnitude and static nature both agree with the predicted 

analytical results of aLB = w25rx = 9.8 x 10~4m/s2. An uncertainty on 5rz appears 

to yield an oscillating error, however, the scale is much smaller and the amplitudes 

of oscillations are within ±0.05/ig. In short, all oscillations for Sr are considered 

negligible in light of the required mission accuracy for determining the true lumped 

bias to within lfig. 

Figures 2.5 through 2.7 show the accelerometer measurement errors, aLB, due to 

an orthogonal misalignment about each of the x, y and z-axes respectively. Each 

misalignment is 20arcsec, and no sensor bias or shift in accelerometer location are 

introduced. 
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a minus a (Lumped Bias) 
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Figure 2 5: Numerically predicted bias from 5X = 20arcsec 

a minus a {Lumped Bias) 

Accel x 
Accel y 

— Accel z 

0 100 200 300 400 500 600 700 800 
Sample # «94Hz) 

Figure 2 6. Numerically predicted bias from 5y = 20arcsec 
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6 a minus a (Lumped Bias) 
x 10 ,me raw 
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Figure 2.7: Numerically predicted bias from 5Z = 20arcsec 

The errors are again nearly constant, allowing them to be corrected for by a 

constant lumped bias. The magnitudes match those predicted by our analytical 

results which indicated aLB = [0 0 7.12]T x 10~6 m/s2 for 5X = 20arcsec, aLB = 

[0 0 -7 .12] T x 10"6 m/s2 for 5y = 20arcsec, and aLB = [7.12 -7 .12 0 ] r x 10~6 m/s2 

for 8Z — 20arcsec. 

From these results it is apparent that the errors due to Sr and S are so similar 

to a static ab that any filter would have difficulty distinguishing between the three 

Not only is a lumped bias adequate, but it also provides a more stable and accurate 

filter It should be noted that all the numerical results presented make none of the 

assumptions that are relied on for the analytical lumped-bias justification, such as 

only u>z rotation and axes of inertia aligned with the center of mass. 
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Chapter III 

ESTIMATION TECHNIQUES 

Various estimation techniques are presented here, including both batch processes 

and real-time dynamically driven filtering methods. The first method is a cascad­

ing filter design, driven by an existing Extended Kalman Filter (EKF) designed by 

Thienel [39]. The second stage of the cascading filter design uses the method of 

least squares to determine the accelerometer's orthogonal misalignment. This design 

may have benefited from an iterative process. Some of the assumptions made by the 

EKF were inappropriate and therefore additional techniques are investigated. The 

remaining estimation routines involve the estimation of a 3-component lumped-bias 

parameter rather than the 9 components required to fully define the 3-component 

accelerometer's output bias, the 3-component location bias and three component 

orthogonal misalignment. This lumped bias is verified to be adequate using ana­

lytical, numerical and experimental methods. Three real-time filters/estimators are 

presented: an Extended Kalman Filter, an Hoo filter and a Sliding Mode Observer. 

These filters/estimators are subjected to various model and measurement errors to 

test for robustness. In addition to these real-time filters, a post processing estimation 

routine is presented using a spline smoothing technique to smooth and differenti­

ate measurements to solve the s/c kinematic equations and robustly determine the 

lumped bias. 
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1 Cascading Filter 

The initial cascading filter was first proposed when NASA became concerned with 

the orthogonal misalignment of the accelerometer on board the MMS spacecraft. This 

accelerometer is crucial for driving state estimates at times when the s/c star tracker 

is unavailable or for performing precise thruster burns for crucial orbital maneuvers 

and maintaining formation. Previous substantial work has already been performed 

developing an Extended Kalman Filter for the estimation of the spacecraft's attitude, 

the spacecraft angular body rates, accelerometer bias, and the differential shift in the 

spacecraft's center of mass relative to the accelerometer [39] [40]. Concerns of the 

state's observability and filter stability if three additional states are added to the EKF 

lead to the concept of a cascading filter. Here the output of stable EKF estimates 

are used to determine the orthogonal misalignment via the method of least squares. 

The full description of the MMS s/c acceleration is: 

am = A [ [ u x ] ( r + Sr) + [ w x f ( r + Sr)] +ab + uaccelerometer (3.1) 

where am is the measured acceleration, A is the rotation matrix for the small angle 

orthogonal misalignment of the s/c accelerometer, w represents the angular body 

rates, r is the location of the accelerometer on the s/c relative to the s/c center of 

mass in s/c body coordinates, Sr is the shift in accelerometer location, ab is the 

accelerometer bias, and vaccelerometer represents white noise. 

The misalignment corruption can be isolated using Eq. (3.2) which was first in-
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troduced in Chapter I: 

amis = A [ashift] (3.2) 

where amis is the acceleration due to an orthogonal misalignment from ashift-

In Eq. (3.2), A is easy solved for using a least squares algorithm with several batch 

samples of am%s and ash%ft • Solving this over-constrained equation allows attenuation 

of noise and other random uncertainties. 

If amis and a s ^/ t are computed as 

amis — ^m ab /„ r,\ 

ashift = [Cjx](r + rc) + [u)x]2(r + rc) 

Using N measurements, an augmented measurement vector may be obtained to 

form Amis and Ashlft: 

•"•mis — [annsiamis2'• •amisN\ /o t\ 

Ashift — [ashiftiaShift2---ashiftN] 

The least-square algorithm is used to obtain the generic matrix x using Y and H 

which satisfy the equation below: 

Y = XH (3.5) 
Arms = (-^3x3 — [Sx])Ashift 

The second relation in Eq. (3.5) replaces generic variables with parameters relevant 

to this research. Replacing A in Eq. (3.2) by ( I ^ — [<5x]), 

i"3x3 - [Sx] = AmisA
T

shlft(AshlftA
T

shlft)-
1 (3.6) 

The rotation matrix (i"3X3 — [^x]) is solved for by using Eq. (3.5) taking the pseudo-

inverse and using the method of least squares. With N x 3 equations and only 3 x 3 
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unknowns, the solution is over constrained, and the method of least squares provides 

a minimal-variance error solution. 

The result is a small-angle rotation matrix, which in theory should be (I3x3 — 

[5x]) G K3x3. Findings show that the output of the method of least squares, due 

to errors in the accelerometer bias and location of the center of mass, result in an 

ill-conditioned rotation matrix output. Results are presented in the following chapter. 

2 Dynamic Filters/Estimators 

The MMS s/c requires 7 states to define its attitude and angular body rates. 

x' = q 
UJ 

(3.7) 

Although the s/c is fully defined by these 7 states, in order to estimate the ac­

celerometer lumped bias, the state vector x is augmented with three terms to repre­

sent this bias: 

q 
x= UJ (3.8) 

. aLB . 

The system model / defined in Eq. (1.30) must also be augmented with the 

description of the aLB kinematics. It can be safely assumed that the lumped bias is 

constant. That is, 

aLB = 0 3 x 3 (3.9) 

The resulting augmented non-linear model is, 

/ ( x , t ) = 
\ub/o <g> q(t) 

J_ 1(X)T-[Jwx]w) 
03x3 

(3.10) 
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Two sensors are used for filter updates: a star tracker and an accelerometer. The 

measurement equation relating these sensors to the augmented state vector x is 

9(x,t) = 

2.1 Kalman Filter 

The Kalman Filter (KF) is an optimal filter provided certain conditions are met. 

The KF assumes that the model is linear and that the model and statistical data 

describing any model uncertainties and Gaussian measurement noise is known a priori. 

If these assumptions are not valid then the filter may still provide acceptable results, 

however, not necessarily optimal. 

Optimality is accomplished by minimizing the expected variance of the estimation 

error. Utilizing knowledge of the system model uncertainty as well as the noise statis­

tics for each sensor, the KF estimates future states using the known system model 

and then performs a weighted average of these estimates as well as the measurements. 

The Kalman algorithm provides optimal weightings for this process. 

The discretized linear model is defined such that: 

xk+1 = Akxk + Bkuk + Tkrjk (3.12) 

yk = Ckxk + uk 

where xk G 3?nx l is the vector of n states, uk G Wxl represents the vector of p known 

inputs. Model uncertainties are lumped in to a single term Tkrik G 3?™xl, where r)k 

represents model uncertainty (modeled as Gaussian process noise). Ak G Wixn and 
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Bk G !Rnxm represent the model in discrete state space form. 

In the measurement equation, yk G !ftmxl is the sensor output, uk G $Rmxl repre­

sents the sensor noise and Ck G 3?mxn is the state space measurement matrix. 

The Kalman algorithm is described in [8] as: 

P 0 | 0 = Var(x0) 

x0{0 = E(x0) 

xk\k-i = Ak_ixk^i\k-i 

Pk\k-i = Ak-tPk-iA^-t + rk_iQlc_lrk_1 

Gk = Pfc|fc_iCfc (CkPk\k-\Ck + Rk)~ (3.13) 

&k\k = £fc|fc-i + Gk(yk — Ckxk\k^i) 

Pk\k = {I — GkCk)Pk\k-l 

For use in the Kalman algorithm, Qk G K n x n is the covariance matrix correspond­

ing to model process noise, rjk. Rk G 3?"xn is the covariance matrix corresponding 

to sensor noise, vk. Pk is an estimated covariance matrix corresponding to the KF's 

estimate error. The quantity (yk — Ckxk\k_i) is referred to as the innovation and is 

used by the Kalman gain, Gk, to update the estimates after each measurement, yk. 

The subscript k\k — 1 represents a quantity estimated at time k using using the 

model and estimate from time k — 1. Subscript k\k represents an estimate at time A; 

using the measurement at time k. 

The five steps of the Kalman Filter are sometimes reduced to three where the 

propagation and measurement updates are combined. 
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£fc+i = Akxk + AkGk(yk — Ckxk) 

Gk = Pk(I + ClR^CkP^ClR-1 (3.14) 

Pk+i — AkPk(I + Ck Rk CkPk) Ak -\- YkQkTk 

The KF uses the known variances of sensors and the system in addition to known 

system dynamics to form an optimal Kalman Gain, Gk. This gain takes a weighted 

average of the dynamically expected states and a measurement of the states. By 

performing this weighted average at discrete sensor measurement times, the KF can 

accurately attenuate noise and estimate states not directly measured (assuming the 

system is observable). It also provides the covariance of the estimate error, indicating 

how accurate the state estimates are expected to be. 

2.2 Extended Kalman Filter 

The Kalman Filter is designed for linear systems [8]. A modified algorithm, the 

Extended Kalman Filter, was designed to accommodate nonlinear systems. The 

process is the same, except that linear matrices are replaced by either nonlinear 

functions or Jacobians of the nonlinear functions. A nonlinear discrete-time system 

is represented as 

Xk+i = fk{xk) + rfe77fc (3.15) 

Vk = 9k{xk) + vk 

In the propagation equation, 

&k\k-\ = fk - i (xk- i ) (3.16) 
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the nonlinear function, / , is used to propagate states. The error covariance is prop­

agated such that 

Pk,k-1 — 

_9xk_i 
fc-l,fc-l 

dfk- i 

ax k _i 
(Xfc- l ) + r fe_i(£ fc_i)Q fc_ir^_1(x fc_i) 

(3.17) 

where the Jacobian, | ^ , is used in place of A. For the measurement update, the state 

estimates are propagated such that 

xk\k = xk\k-i + Gk(yk — gk{.xk\k-i)) (3.18) 

Here the full nonlinear function g is used to form the innovation in place of Cx. 

When updating the error covariance and Kalman gain after the measurement, the 

Jacobian -^- is used in place of C and 

#gk 
Pk,k ~ I-Gk dxk 

(Xfclfc-l) 

Gk — P*. fc-i (Xfelfe-J 
dxk 

Pk,k-i 

9gk 
(Xfel^x) 

0Xk 
Pk,k-1 

9^ 
T;—Vxfe|fe-iJ d x k 

(3.19) 

+ Rk 

(3.20) 

The EKF algorithm in its operating structure is defined as: 
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Po,o = Var(x0) 

x0 = E(x0) 

Pk,k-
5f k _i 

9 x k _ i 

Xk\k-1 = f k - i ( x k _ i ) 

( X f e _ l ) fe-l,fe-l 
0fk- l 

. d x k _ ! 
( X f e - l ) + r f c _i (£ f c _i )Q f e _i r^_ 1 (£ f c _ 1 ) 

(3.21) 

Gk — i:>fc)fc_i 

•Ffe.fe I - G f e 

dgk 
(Xfc |fc_l) 

d x k 

-—(Xfc|fc_ij 
# x k 

~ (Xfc | f c - l j 
„ d x k 

J"fc,fc-1 

fe,fc-l 
0 g k , „ . 
~Z (X f c | fe_iJ 
OXw 

+ Rk 

xk\k = xfe|fc-i + Gk(yk — 0fc(£fc|fc-i)) 

All Jacobians and matrices are evaluated at the most recent state estimate in each 

step. 

For the spacecraft system in this research: 

q 
CJ 

l^b/o ® q 
J-1(YJT-[JUJX]UJ) 

(3.22) 

The Jacobian can be divided into smaller Jacobians, many of which are null: 

dx 

dq dw '4x3 

J3x4 
dfw 
dw 

03x4 03x3 

J3x3 

0 3xJ 

(3.23) 

The three non-zero Jacobians are: 

9U 
dq 

\wx 

2WV 

-,wx 

\w. 

•%Wz 2U)y 2^z 

\wz -\wy 

0 \wx 

L \wz \wy -\VJX 

(3.24) 
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dfq 

dw 

dfw 

dw 

-\qi 

\qo 

| ? 3 

-\q2 

0 

•Wz 

0 

- | ? 2 

— §93 

|?o 

| g i 

-\wz 

0 

0 

- | ? 3 " 

2^2 

-1^1 
2 % . 

- | < % " 

\wx 

0 

(3.25) 

(3.26) 

Eq. (3.24) and (3.25) are independent of system parameters, Eq. (3.26) is simplified 

for only principal axes of inertia and includes constants which are dependent on the 

inertia tensor. The factor | in Eq. (3.26) will need to change if the inertia tensor is 

changed. 

For the measurement equation: 

q 

[ujx](r) + [ujx)2(r)\ + aLB 

The Jacobian can similarly be divided into simpler Jacobians: 
d9q 

(3.27) 

dx 

The three non-zero Jacobians are: 

di o. 4x3 0 4 X 3 

2s. 
3 x 4 dw da 

(3.28) 

9gg 

dq 
= L 4x4 

dga 

dw 

13 -^wz8rz + 8rywy —2wy8rx + 8rywx -^5rzwx — 28rxw 

wy5rx - 28rywx 
13 wz8rz + wx8rx Y^rzwy ~ ^Tywz 

\8rxwz - 28rzwx \8rywz - 28rzwy \wx8rx + \8r, 

dga T 

yWy 

da 13x3 

(3.29) 

(3.30) 

(3.31) 

The basic principles of the Extended Kalman Filter are the same as those of the 

Kalman Filter. They are redesigned and applied towards nonlinear systems. Due to 
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the linearization that occurs, the EKF is not an optimal filter More accurately it 

is the optimal first order Taylor series approximation of the minimum error variance 

filter. 

2.3 Hoo F i l t er 

Due to the Kalman Filter's great success in the 1970s with aerospace applications, 

there were attempts to apply it to industrial processes. Many of the assumptions nec­

essary for the success of the KF could not be made for industrial state estimation 

problems. The primary issue was that the system models are not nearly as accurate 

as those used in aerospace applications [35]. This led to the need for a more robust 

filter which could more effectively take into account modeling error and noise uncer­

tainty. The product is the Hoc Filter. Also known as the "minimax" filter, the Hoo 

Filter is designed to minimize the worst case estimation error. This contrasts the 

KF's minimization of the expected value of the variance of the estimation error. In 

addition to minimizing a different error quantity, the Hoo Filter makes no assump­

tions regarding the characterization of either of the process or measurement noise, Q 

and R, respectively. A thorough derivation of the Hoo Filter is provided in [35]. 

Consider the cost function in Eq. (3.32): 

s-^N-l || _ - ||2 

J = 2^=o \\*k-zk\\8h 
II ' 112 i V ^ T - l Ml 112 , II 112 \ 

||aj0 - xo||p-i + Efc=o (Jl»7fcllQ-i + I M R - I J 

By minimizing J, the worst case estimation error is also minimized. In practice, 
however, obtaining the function minimum is not practical. Instead, it is constrained 

by a user-determined set of bounds. Using Lagrange multipliers for this minimization 
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process results in the equations describing the Hoo algorithm below. For the linear 

system described as: 

xx+i = Akxk + r]k 

yk = Ckxk + vk (3.33) 

•Zfc = Lkxk 

Where x and y are the same state and measurement vectors as previously seen, 

z G 3?10xl is a linear combination of the states being estimated; for this research all 

states are required independently and thus L G 5R10xl° is the identity matrix. The 

Hoo algorithm is such that 

S>k = Lk SkLk 

Gk = Pk[I — 6SkPk + CkRk CkPk] Ck Rk (3.34) 

xk+i = Akxk + AkGk(yk — Ckxk) 

Pk+1 = AkPk[I - dSkPk + ClR^CkP^Al + Qk 

The Hoo Filter presented in [35] is similar to the Kalman Filter described in 

Eq. (3.14) with the addition of several filter parameters allowing for much greater 

design flexibility than for the EKF. Filter parameters added are: 

• Sk which allows the weighting of states in the cost function 

• L defines the linear combination of states being estimated 

• 1/9 defines the bound on the cost function 

In order for the algorithm to provide the expected minimization, the following 

condition must be met: 

P- 1 - 6Sk + HlRk
xHk > 0 (3.35) 
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The Hoo Filter is an EKF modified for robustness. Q and R are no longer strictly 

prescribed as the system and sensor noise variances. Rather, if there is knowledge 

about them, this additional information can be incorporated, although this is not 

necessary. An additional term is added to the EKF equations to bound the cost 

function, where the limit is set to 1/9. Too large a 9 will result in a unrealistic bound 

and may cause the estimator to go unstable. 

Although not commonly described as such, the H^ filter may also be similarly 

modified to accommodate nonlinear processes. Given the following nonlinear system: 

Xk+i = fk{xk) + rjk 

Vk = gk{xk) + "k 

(3.36) 

the Hoo Filter can be modified to allow for nonlinear state estimation as follows: 

Po,o = Var(x0) 

x0 = E(x0) 

Pk,k-1 — 
0fl k - 1 

. # X k _ i 

Xk\k-1 — f k - i ( x k _ i ) 

(Xfc_l) Pk-l,k-
Qfk- i 

9 x k _ i 
(Xfe- l ) + Qk-i 

(3.37) 

Pk,k — i + espk,k-! + 

\X-k\k-l) 

dgk 
(X f c | f c_i) 

9 x k 
T 

Rk1 

R - i 
-—{Xk\k-i) 
9 x k 

fe,fe-i 

9xk 

Xk\k = £fc|fc-i + Gk(yk — 5fe(*fc|fc-i)) 

It should be noted that if the minimization constraint 9 is set to zero, implying a 

constraint bound of infinity, the Hoo filter is equivalent to that of the Kalman Filter. 
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2.4 Sliding Mode Observer 

Although the standard form of the Sliding Mode Observer (SMO) is is not an op­

timized filter and is susceptible to measurement noise, the SMO does offer significant 

computational savings over that of optimal filters by using a constant correctional 

gain. 

The SMO assumes the following nonlinear system: 

xk+i = fk(xk) + Bkuk + r)k (3.38) 

Vk = gk{xk) + vk 

The Sliding Mode Observer algorithm is similar to previous filters, however, no 

error covariance matrix is computed: 

x0 = E(x0) 

xk\k-i = /0E f c_i) (3.39) 

y = Uk — g{xk\k-x) 

1(S) = sat(ay) 

Xk\k = £fc|fc-i + GSMO y — KSMO 1{S) 

Here, a switching term, KSMO^-{S), is incorporated for added robustness against 

model uncertainties and is a function of a sliding surface S. The constant gain portion 

can be designed using a Luenberger observer, or a steady state Kalman Filter gain. 

The switching term can be defined by various functions, the simplest being the signum 

function, or more practically the saturation function. The saturation function allows 

significant reduction in chatter, as well as attenuation of noise since each correction 
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has a predefined maximum update magnitude. 

1 

\ ^ ^ i 
i i 

i 

^ s 

Figure 3.1: Saturation function 

Although the equations for the algorithm are somewhat simpler than those of the 

Kalman or Hoc filters, more work is performed designing the constant gain matrix, 

the switching term and the sliding surface. True sliding can occur in continuous-time 

systems due to the available infinite frequency of the switching function. The SMO 

in this research, on the other hand, is applied in discrete-time and, therefore, has 

limited switching frequency. This type of sliding is referred to as "quasi-sliding." 

The condition for quasi-sliding is given as [38] 

S(k)[S(k + l)- S(k)} < 0 (3.40) 

Unlike optimal filters, convergence of the discrete-time SMO estimates can be guar­

anteed if 

S(k + 1) < S(k) (3.41) 
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3 Batch Calibration Routine 

Issues with the model uncertainty, specifically of the inertia tensor, lead to the 

design of an additional filter. If the inertia tensor is not perfectly known, then the dy­

namic filters' lumped bias estimates result in an offset error, thus yielding an incorrect 

lumped bias estimate. Although a solution is proposed for the dynamic filters in the 

future work chapter, this research also develops a method that is robust against this 

specific parametric uncertainty and is presented in this section. Since the MMS s/c 

attitude dynamics Eq. (3.42) is greatly affected by its inertia tensor, another dynamic 

relationship is used to calculate the s/c body rate: 

CJ = J1 (JT T - [ J w x ] « ) (3.42) 

The proposed technique is to estimate the body rates using quaternion kinematic 

relations as shown below. 

•\{uixqi + uiyq2 + UJzq3) 

q = -zWb/o ®q = 
l(ujxq0 + ujzq2 -ujyq3) 
\{u)yqQ -ujzqx +uxq3) 
fazqo + Uyqi ~uxq2) 

(3.43) 

Note that these relations are not directly affected by the errors in the inertia 

tensor or disturbance torques. As a result, using collected quaternion measurements, 

one can determine these angular rates by solving for them in Eq. (3.43), assuming 

the time derivative is known. Since the quaternion is a smooth function one can fit a 

polynomial spline to a collection of measurements to estimate the quaternion and its 

derivative while minimizing the effects of noise. 
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Noisy quaternion Fit line 
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Figure 3.2: Quaternion fit and derivative lines 

Figure 3.2 shows the spline on top of the measured quaternion in the top plot and 

the estimated slope at point 0 in the bottom plot. The nth order fit is performed 

on 2M + 1 measurements using the method of least squares. The equation solved is 

compiled as, 

-M)n (-M) n-l 

0" 0 n - l 

Mn M n - l 

( - M ) o i 

AI° 

an 

" n - l 

ax 

a0 

= 

qm{k = -M) 

qm(k = 0) 

qm(k = M) 

(3.44) 

The 2M+1 measurements are indexed — M through M and assembled to create the 

rightmost vector. For a given M and n the leftmost matrix will remain the same and 

must only be compiled once. The center vector contains the coefficients for the nth 

order fit. Since the indices are centered about the quaternion of interest, qm(k = 0), 
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the filtered quaternion is ao and the slope at that point is ax. The coefficient a\ must 

take into account the equivalent 8t per each unit index, k, to scale to qm{k = 0) 

Both the number of measurements used for each spline fit and the order of polyno­

mial used can be adjusted for desired accuracy and noise attenuation. By performing 

this spline fit sequentially along the collected data, the body rate can be estimated. 

Since the time derivatives of the angular rates rely on the inertia tensor as well, and 

this matrix is being avoided, the same method of spline fitting can be applied to the 

angular rate estimate to smooth it as well as determine the slope at each point, thus 

providing an estimate of CJ, which is required for estimating the acceleration. 

Using the nominal acceleration equation and the newly estimated CJ and cL>, 

an0m = [ujx]r + [ujxfr (3.45) 

An estimate of the nominal acceleration can be made, which when subtracted from 

the measured acceleration allows the calculation of the lumped bias. 
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Chapter IV 

ANALYTICAL SIMULATIONS 

1 Simulation Conditions 

Using the dynamic equations presented in Chapter I, a simulation is created using 

numerical simulation software. The differential equation solution is found using a 

variable step Dormand-Prince solver. Both the calculated quaternion and body rate 

are recorded at a sample rate of 0.25Hz based on simulation time. The full, nonlinear 

dynamic equations are used, 

q=2&b/o®q{t) (4.1) 

UJ = J-1C^JT-[JUJX}UJ) (4.2) 

Block diagrams representing the numerical solutions are: 
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Figure 4.1: Simulink dynamic simulation 

Figure 4.2: Simulink subsystem: plant 

Per MMS mission requirements, the initial spin rates have a magnitude of three 
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revolutions per minute. If the angular velocity vector is not parallel to the major or 

minor axes of the s/c then the body is nutating and the angular offset from parallel 

is the coning angle. The magnitude of the nutation and coning angles are randomly 

generated within a set of bounds. The same bound definitions are used as were 

defined in [39] and [40]. Eq. (4.3) shows the construction of the initial body rate. To 

maintain as fair a comparison as possible, a random Wi is generated and used for all 

the filters/estimators. 

o \sin K,\uXy ,. ns 
u> = ' " rpm 4.3) 

6 cos n J 

Where K is the coning angle selected from a normal distribution with zero mean and 

a standard deviation of 0.2 deg. The vector uxy is the unit vector direction of the 

angular velocity in the x-y plane, constructed from a uniform distribution [39]. 

1.1 Simulation Inertia Tensor 

Two different inertia tensors are defined; one for the compact spacecraft, and 

another for the spacecraft with SDP and ADP booms deployed. For the majority of 

the simulations the compact inertia tensor is used since it has a higher sensitivity to 

corruptions and disturbances, offering the more conservative of results. 

The true compact inertia tensor is given as 

783.35 -12.28 -4.84 
-12.28 803.79 -7.67 
-4.84 -7.67 1332.99 

kg • m2 (4.4) 

The s/c axes may not be aligned with the s/c principal axes of inertia. Any 

resulting cross products of inertia are considered as unknown parametric uncertainties. 
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800 0 0 
0 800 0 
0 0 1300 

(4.5) 

Hence, the nominal inertia tensor, J, used by filters in this research is 

kg • m2 

True and nominal inertia tensors for the s/c with ADP and SDP booms deployed are 

kg • m2 (4-6) Jo = 
3160.32 -225.92 -4.82 
-225.92 3135.18 -7.42 

-4.82 -7.42 5475.89 

J 2 = 
3100 0 0 

0 3100 0 
0 0 5500 

kg • m2 (4.7) 

1.2 Sensor Output and Simulation 

Sensor data is synthesized using the states generated by the numerical modeling 

software using the equations in section 1:6. Four corruptions, which are unknown 

to the estimator, are present in the accelerometer model. Using definitions used by 

Markley et. al. in [40], each is randomly selected from a normal distribution with a 

mean of zero and standard deviations defined as: 

ua Gaussian noise, a = 1.465 x 10~4 m/s2 

Sr Center of mass shift, a = 5 cm 

ab Accelerometer bias, a = 10~5 m/s2 

S Orthogonal misalignment, a = 20 arcsec 

53 



Noise added to the sensor models is generated using a Gaussian description, with 

a mean of zero and the standard deviations below. 

" 0.0486 
0.0485 

aq ~ 0.1145 
_ 0.1143 

Standard deviations of the noise for the quaternion arc defined for each component 

since the noise is actually defined as a misalignment of Euler angles. For the mission 

definition, the misalignment standard deviations convert to those shown in Eq. (4.16). 

aa = 10"4 m/s2 (4.9) 

1.3 Single and Multi-rate Filter Results 

1.3.1 4Hz Measurement and Propagation 

This section addresses limitations of the star tracker measurement sampling rate 

by propagating filters/estimators dynamic state estimate at a higher rate. Without 

loss of generality the EKF is used to exemplify the issues of the slow sampling rate as 

well as to show the resulting benefits of higher frequency propagation. The star tracker 

is the limiting sensor on the spacecraft, providing measurements at a rate of only 4Hz. 

The standard Extended Kalman Filter propagates its state estimates once between 

each measurement update. The EKF results without modeling errors/uncertianties 

or sensor noise are shown in Figures 4.3 through 4.5 for estimates of attitude, angular 

body rates and lumped biases, respectively. Each figure shows the estimated values, 

the actual values and the resulting estimate errors. 

x 10" (4i 
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Estimated Quaternion 
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Figure 4.3: EKF estimated quaternion for lx propagation 

Estimated Body Rates 
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Actual Body Rates 
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Figure 4.4: EKF estimated body rates for lx propagation 
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Estimated Accel Bias 

Accel x 
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Figure 4.5: EKF estimated accelerometer bias for lx propagation 

In Figure 4.3 significant errors in the estimated quaternion are present even though 

the EKF has perfect knowledge of the system. This is due to the discretization of the 

nonlinear system model using a 8t of 0.25 s. Errors in CJ and a LB are also present. 

The accelerometer lumped bias estimate error is already at the limit of MMS mission 

specifications without any filter errors introduced. 

1.3.2 4Hz Measurement Updates and 400Hz Propagation Rate 

To address the issues of estimate errors caused by the slow propagation rate within 

the filter, the estimation propagation frequency is increased, thus significantly reduc­

ing estimation errors in the highly nonlinear s/c system. The following Kalman Filter 
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steps are calculated 100 times in between each measurement update: 

Pk,k-
Sfk-i 

_dxk_! 

Xk\k-1 = f k - l ( X k - l ) 

(Xfc- l ) -Pfe- l , - l , f e - l 
0 f k - l , . 
9xk_x 

(Xfc- l ) + Q fc-1 

(4.10) 

The result is a multi-rate estimation algorithm propagating dynamic estimates at 

400Hz and updating estimates with measurements at 4Hz. 

Figures 4.6 through 4.8 show the improved accuracy in state and parameter esti­

mates for the proposed multirate estimation technique with a propagation rate that 

is 100 times that of the star tracker measurement output. 
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Figure 4.6: EKF estimated quaternion for lOOx propagation 
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Estimated Body Rates 
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Figure 4.7: EKF estimated body rates for lOOx propagation 

Estimated Accel Bias 
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Figure 4.8: EKF estimated accelerometer bias for lOOx propagation 

Estimate error variances and means are both reduced by at least two orders of 

magnitude through the implementation of a 400Hz propagation rate allowing full 
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utilization of the system knowlege. Additional benefit from increased rates is investi­

gated, however, errors did not noticeably improve. In addition to improving estimate 

accuracies by introducing such a small discretization timestep, it is not necessary to 

compute the discrete system uncertainty covariance matrix Qfe, 

pAt 

Qk = E[r,kr,Z] = / Ak(At - r)QcAk(At - T)T8T (4.11) 
Jo 

where Ak is the discretized system matrix and Qc is the continuous system uncertainty 

covariance matrix. This integration is now performed numerically within the filter 

estimate covariance propagation. 

2 Analytical Filter/Estimation Results 

2.1 Cascading filter results 

The first stage in this study involves a feasibility study to observe the efficacy of 

using cascading filters to accurately estimate the accelerometer misalignment. Con­

tinuing work previously initiated by NASA engineers, an Extended Kalman Filter is 

used to obtain state estimates, which, in turn is used to determine the accelerometer 

misalignment via method of least squares. The resulting misalignment estimate errors 

are significant and do not meet NASA MMS requirements. 

The preliminary tests were to determine the expected misalignment error, given 

an error in the EKF estimate. Numerous simulations were run using varying EKF 

output errors, the root-mean-square of the resulting misalignment errors were plotted 

against the root-mean-square of the input errors to find the largest allowable EKF 
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error. 

RMS of the 8 Estimation Error as a function of RMS Uncertianty in a (log-log) 
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Figure 4.9: RMS misalignment error due to RMS of accelerometer bias error 

Output accuracies of the EKF for the accelerometer bias estimation are on the 

order of 10~5. Using Figure 4.9 the misalignment estimation error is expected to be 

on the order of 10~4 for 8X and 8y 

% Error of 8 Estimation as a function of RMS Uncertianty in a 

/, 
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Figure 4.10: Percent misalignment error due to RMS of accelerometer bias error 

Subject to the EKF estimate outputs predicted and the nominal misalignment 

used for simulations, the percent error of the accelerometer's orthogonal misalignment 
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estimation error will be over 300% of the nominal value. 

RMS of the 8 Estimation Error as a function of RMS Uncertianty in 8r (log-log) 
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Figure 4.11: RMS misalignment error due to RMS of center of mass error 

Output accuracies of the EKF for the accelerometer location shift are on the order 

of 10~4 for Srx, Sry and 8rz. The corresponding estimation errors for 8X, 8y and 8Z 

are 10~5, 10~5 and 10~4 respectively. 
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Figure 4.12: Percent misalignment error due to RMS of center of mass error 

Subject to its inputs, the estimate of the least squares algorithm will have a 250% 

error for 8Z. Low sensitivity of 8X and 8y to Sr allows estimates of these to within 5% 
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accuracy. 

It should be noted that the percent error of the misalignment estimation error is 

entirely dependent on the size of the misalignment used in the numerical simulation. 

If the true misalignment is large, then the cascading filter may provide an estimate 

with a smaller percent error. If the true misalignment is small, however, the percent 

error will easily be larger than 100%. 

An iterative procedure, allowing the EKF to account for the estimated misalign­

ment, may have provided more accurate results. The EKF's assumption of a perfectly 

known inertia tensor may not be valid. Therefore, alternative methods are investi­

gated that do not require this assumption. 

2.2 Known Inert ia Tensor Results 

The first of many dynamic filter results are presented in this section. Each figure 

contains the variance and mean of the estimation errors on the bottom left. Although 

very small, these numbers are included to preserve the statistical analysis of the error 

for each individual simulation. All relevant statistics used for determining each filter's 

performance and comparison are included in tables following each different simulated 

condition. The tabulated statistics include mean or root-mean-square values of error 

variances or means respectively, from 100 simulations preformed with random ini­

tial conditions and corruptions selected from Gaussian distributions. For the plots 

presenting visual results the initial conditions, corruptions and noise vectors are all 

identical. 
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In this section of results, three general test scenarios are observed under assumed 

perfect knowledge of the MMS s/c inertia tensor: 

Case 1 state and parameter estimation including all three sources of bias errors 

without sensor noise 

Case 2 state and parameter estimation including all three sources of bias errors with 

sensor noise 

Case 3 state and parameter estimation including all three sources of bias errors with 

10 times the expected sensor noise 

All three filters/observers are subjected to each of the three scenarios. The first 

scenario tests whether the filter is capable of the required task provided perfect mea­

surements, the second scenario tests the filter under expected mission conditions, and 

the third scenario assesses the robustness of the filter/observer if additional noise is 

present. 

2.2.1 Extended Kalman Filter for Known Inertia Tensor 

For the EKF design the system uncertainty covariance matrix is: 

(4.12) 

Qq = /4X4 x 1 0 " n 

Qw = I3x3 x 10-11 (4.13) 

Qa = 73 x 3 x 10-20 

Q = 
Qa 

Qu 
Qa 
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and all other values for Q are 0. 

The sensor noise covariance is: 

R = Ra 
R„ 

(4.14) 

where Rq and Ra are both defined using the same sensor noise variance used to 

simulate the data and all other elements are 0. Such accurate knowledge of the noise 

statistics may not be known. This, however, provides the optimal EKF for comparison 

to the other filters: 

Rq = J4x4 x 10 - 1 1 

Ra '3x3 X 10" 

The expected noise standard deviations are, 

0.0486 
0.0485 
0.1145 
0.1143 

x 10" 

aa = 10-Am/s2 

(4.15) 

(4.16) 

(4.17) 

Figures 6.1 through 6.6 in Appendix A show the EKF results for Cases 1 and 3. 

Case 2 results are presented below, 
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Estimated Quaternion 
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Figure 4.13: EKF q subjected to bias errors and measurement noise (known inertia) 

Attitude estimation is expected to perform well since the star trackers are very 

accurate, this is the case and the error variance is reduced below sensor noise inputs. 

Estimated Body Rates 
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Figure 4.14: EKF CJ subjected to bias errors and measurement noise (known inertia) 
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Angular rate estimates have no sensor to directly compare to so a reduction in 

the error variance can not be evaluated. The errors do converge to zero quickly due 

to the variable Kalman Gain, and both error variance and mean are very small. 

x ifj 3 Estimated Accel Bias 

- Accel x 
Accel y 

_____ A c c e | Z : 

_ - __. 
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2 r 1 1 1 1 1 1 1 1 1 1 

- 2 ' ' r ~ '———n r — - j p-—— | - - _ — - . 
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3 (aberror) a minus a adjusted by lumped bias (wout noise) 
2 * , , , , , , , , , . 
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vanarx* 2 20766-0 125205e-.11 B748. 013 Sample # (@4Hz) 
mean 4 5475.-007 4 3406e-0064 8O83e-O07 

Figure 4.15: EKF a LB subjected to bias errors and measurement noise (known inertia) 

The most important state estimated for this research is the accelerometer bias, 

by modeling it as a constant with little uncertainty the accelerometer noise is nearly 

entirely attenuated. 

The error variance of the later 50% of the filter output is calculated for 100 sim­

ulations with random initial conditions and accelerometer corruptions. The means 

of those 100 simulations are presented below to compare the average performance of 

each filter. Since the accelerometer lumped bias is the parameter of largest concern, 

and is expected to be constant, only the steady state results are analyzed. 
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Table 4.1: Means of the error variances of 100 trials (known inertia) - EKF 

a;, rc a n d A 

a;, i c and A wi th noise 

a\y rc and A wi th 10 x noise 

q error var iance 

' 0 0299 ' 
0 0050 
0 0637 
0 2918 

" 0 0848 ' 
0 0845 
0 2259 
0 2207 

0 0810 ' 
0 0841 
0 2085 
0 1942 

x I O " 9 

x I O - 8 

x I O " 6 

UJ error var iance (rad/s)2 

0 4379 ' 
0 2582 
0 1577 

" 0 1 7 0 3 ' 
0 1229 
0 1260 

0 9062 
0 7200 
0 9849 

x I O " 9 

x I O " 8 

X I O - 7 

ab error var iance ( m / . s 2 ) 2 

0 3293 " 
0 3309 
0 0100 

" 0 5802 ' 
0 5854 

_ 0 0207 

0 6462 
0 6220 
0 2172 

x I O " 9 

x I O - 9 

X I O " 9 

The EKF error variances are very robust to sensor noise, the lumped bias specifically 

shows extremely small increases for 100 x noise inputs. 

Similarly to the error variances, the mean error is calculated from the later 50% 

of each simulations results. The RMS of the 100 mean errors is calculated and is used 

to show the filter's stead state performance. Mission tolerances are only defined for 

the accelerometer lumped bias for this work and are IO - 5 m/s2. 
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Table 4.2: RMS of the mean errors for 100 trials (known inertia) - EKF 

ab Sr and A 

ab Sr and A with noise 

ab Sr and A with 10 x noise 

mean error 

" 0.1775 " 
0.0477 
0.1371 

_ 0.6292 

" 0.1612 " 
0.1533 
0.3544 

_ 0.3588 _ 

" 0.0011 " 
0.0132 
0.1021 
0.0278 

x 10 - 6 

x IO"5 

x l 0 ~ 4 

CJ mean error (rad/s) 

' 0.6917 " 
0.4426 
0.4580 _ 

" 0.4013 " 
0.2380 
0.4609 

" 0.7737 " 
0.4678 
0.0053 

x IO"6 

x 10~5 

x IO"3 

ab mean error (m/s2) 

' 0.5163 " 
0.5238 
0.1161 

" 0.4360 " 
0.4010 

_ 0.3863 

" 0.0304 " 
0.0618 
0.3148 

x 10~6 

x 10"5 

x IO - 3 

Both no noise and expected noise cases result in accelerometer lumped biases 

within the defined bounds. When the EKF designed for expected noise levels is 

subjected to 100 x the noise power, estimate errors of all states suffer dramatically. 

2.2.2 Hoo Filter for Known Inertia Tensor 

All common parameters of the Hoc and EKF, such as Q and R, are defined iden­

tically. The additional Hoo terms are designed to be tuned by the engineer and for 

this filter are defined as 

k — 10x10 (4.18) 

Lk reduces the states required to be estimated as a linear combination of the filter 

states, since every state and parameter is required, Lk is set as an identity matrix. 

4 X 4 

Sk = 10 x 3 X 3 (4.19) 
3 X 3 
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Table 4.1: Means of the error variances of 100 trials (known inertia) - EKF 

a;, Sr and A 

at, Sr and A with noise 

af, Sr and A with 10 x noise 

q error variance 

" 0.0299 " 
0.0050 
0.0637 

_ 0.2918 _ 

* 0.0848 ' 
0.0845 
0.2259 
0.2207 

' 0.0810 " 
0.0841 
0.2085 
0.1942 

x IO" 9 

x 1 0 " 8 

x 1 0 " 6 

a) error variance (rad/s)2 

' 0.4379 
0.2582 

_ 0.1577 

" 0.1703 
0.1229 

_ 0.1260 _ 

" 0.9062 " 
0.7200 
0.9849 

x 1 0 " 9 

x IO" 8 

x IO" 7 

at, error variance (m/s2)2 

' 0.3293 ' 
0.3309 
0.0100 _ 

" 0.5802 
0.5854 
0.0207 _ 

0.6462 " 
0.6220 
0.2172 

x IO" 9 

x IO" 9 

x IO" 9 

The EKF error variances are very robust to sensor noise; the lumped bias specifically 

shows extremely small increases for 100 x noise inputs. 

Similarly to the error variances, the mean error is calculated from the later 50% 

of each simulations results. The RMS of the 100 mean errors is calculated and is used 

to show the filter's stead state performance. Mission tolerances are only defined for 

the accelerometer lumped bias for this work and are 10~5 m/s2. 
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Figure 4.17: H^ CJ subjected to bias errors and measurement noise (known inertia) 
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Figure 4.18: Hoo &LB subjected to bias errors and measurement noise (known inertia) 

In the same fashion that EKF means of error variances and RMS of mean errors 

are calculated, values for the Hoo are presented. 
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Table 4.3: Means of the error variances of 100 trials (known inertia) - ifc 

a), Sr and A 

ai, Sr and A with noise 

ai, Sr and A with 10 X noise 

q error variance 

" 0.0298 
0.0048 
0.0598 
0.2910 

0.0848 
0.0848 
0.2199 
0.2186 

' 0.0808 ' 
0.0828 
0.2105 
0.1933 

x 10~9 

x 1 0 " 8 

x IO" 6 

ui error variance (rad/s)2 

0.4088 
0.2384 
0.1468 

" 0.1376 ' 
0.0994 
0.1107 

" 0.0912 " 
0.0719 
0.1004 

x IO" 9 

x 1 0 - 8 

x I O - 6 

at, error variance (m/s2)2 

0.3083 " 
0.3089 
0.0090 

0.3531 
0.3543 

_ 0.0208 _ 

" 0.7291 
0.7338 
0.1871 

x 1 0 " 9 

x IO" 9 

x IO" 9 

Interestingly the error variances are most noticeably improved over the EKF re­

sults for Case 2, whereas, Case 1 and 3 show only minimal differences if not increases 

in error variance. 

Table 4.4: RMS of the mean errors for 100 trials (known inertia) - i/c 

ab Sr and A 

ab Sr and A with noise 

ab Sr and A with 10 x noise 

mean error 

" 0.1886 " 
0.0591 
0.1316 
0.6576 

" 0.1584 " 
0.1582 
0.3528 
0.3702 

" 0.1568 " 
0.1526 
0.3763 
0.3263 

x 10~6 

x IO"5 

x 10"4 

w mean error (rad/s) 

' 0.6616 " 
0.4843 
0.3957 

" 0.3821 " 
0.2692 

_ 0.4510 _ 

" 0.3162 " 
0.2447 
0.4714 

x IO"6 

x 10~5 

x l O " 4 

ab mean error (m/s2) 

' 0.5399 " 
0.4283 

_ 0.1169 _ 

" 0.3673 ' 
0.3830 
0.3287 

" 0.3534 " 
0.3804 
0.3515 

x IO""6 

x IO"5 

x 10"4 
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Similarly to the mean error variances, the RMS of the mean errors show the 

most noticeable decrease in error over the EKF for case 2. Both cases 1 and 2 allow 

estimation of the accelerometer lumped bias to values within mission tolerances. 

2.2.3 Sliding M o d e Observer 

For the simulations performed, a steady state Kalman gain is used for GSMO'-

rSMO — 

0.6755 
-0.0103 
-0.0004 
-0.0000 
-0.0004 
-0.0019 
0.0086 
0.0133 
0.0140 
0.0008 

-0.0103 
0.7257 

-0.0001 
0.0002 
0.0016 
0.0087 
0.0018 

-0.0010 
-0.0042 
-0.0037 

-0.0004 
-0.0001 
0.7254 
0.0110 

-0.0088 
0.0016 

-0.0005 
0.0053 

-0.0052 
0.0011 

-0.0000 
0.0002 
0.0110 
0.6755 

-0.0019 
0.0004 
0.0020 
0.0089 
0.0067 
0.0003 

0.0000 
-0.0000 
0.0000 
0.0000 
0.0003 

-0.0000 
-0.0004 
0.0088 

-0.0002 
-0.0000 

0.0000 
-0.0000 
-0.0000 
0.0000 

-0.0000 
0.0003 

-0.0004 
-0.0002 
0.0088 

-0.0000 

0.0000 
-0.0000 
0.0000 
0.0000 
0.0001 
0.0001 
0.0000 

-0.0000 
-0.0000 
0.0091 

(4.20) 

The sliding gain is chosen after analysis of the system and measurement functions to 

be: 

KSMO — 0.075 x [SKqfq SKq/w SKa/ab] (4.21) 

Where Kq/q, Kq/w and Ka/ab are: 

Kq/q = I 4x4 

K, q/w 
dq_ 

duj 

9i 
92 

93 

-9o 
93 

- 9 2 

-9s 
-9o 
9i 

92 

- 9 i 
-qo 

Ka/ab — 03x4 

(4.22) 

(4.23) 

(4.24) 

The sliding surface S is the quaternion estimate error and allows the full angular 

body rate vector to be estimated even though a constant Kalman gain drives the 
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system. 

S = y = 0 (4.25) 

The switching function 1{S) is chosen to be the saturation function with a boundary 

layer </> = 5 x IO - 7 such that 

1 (5 ) = sat (4.26) 

Figures 6.13 through 6.18 in Appendix A show the SMO results for Cases 1 and 

3. Case 2 is presented below, 

Estimated Quaternion 

\ !\ A' A 'A /A ¥ A' 'v'A' '/\ p ^ 
%T¥fiW* W M ^ ^ V Ai^ \4'^ —: 
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\), \/.. \L \1 \l, 1/, \i ¥. j.. \/, \;, 1/ 
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Estimation Errors 
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Figure 4.19: SMO q subjected to bias errors and measurement noise (known inertia) 

The transient response until error convergence is longer than the EKF or H^ and 

the noise attenuations seems comparable. 
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Estimated Body Rates 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Actual Body Rates 

03 

« 02 -
•o 
2 0 1 

200 400 600 800 1000 1200 1400 1600 1800 2000 

Estimation Errors 

^$s—<?- • • f t - ^ » t ^ '•SrtfBvtHpa-O'ie 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

8 6219e-010 7 5065e-010 A 7098e-009 Sample # (@4Hz) 
3 0881e-006 -5 2497e-CC7 1 7243e-007 

Figure 4.20: SMO CJ subjected to bias errors and measurement noise (known inertia) 

Since there is no sensor directly measuring the body rates its time until conver­

gence is significantly longer and could be of concern if required for s/c control. This 

filter is designed primarily for accelerometer lumped bias estimation, however, and 

the transient is acceptable. 
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Estimated Accel Bias 
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Figure 4.21: SMO CLLB subjected to bias errors and measurement noise (known inertia) 

Due to the slow error convergence of the angular body rates, the accelerometer 

lumped bias exibits a similar transient portion of its response. The steady state 

lumped bias is of interest, however, and exhibits error variances and means similar to 

those of the optimal filters. 

As is compiled for the EKF and Hoo Filter, means or the SMO error variances 

and RMS of the mean errors are presented gathered from 100 random simulations. 

75 



Table 4.5: Means of the error variances of 100 trials (known inertia) - SMO 

a0 Sr and A 

ai, Sr and A with noise 

df, Sr and A with 10 x noise 

q error variance 

0 8628 
0 0029 
0 0030 
0 8405 

0 1231 
0 1342 
0 7466 
0 6696 

" 01219 " 
0 1330 
0 7431 
0 6636 

x 1 0 " 1 1 

x IO" 8 

x IO" 6 

UJ error variance (rad/s)2 

0 1390 " 
0 0758 
0 6686 

0 0834 
0 0839 
0 4619 

0 3190 " 
0 3209 
0 2632 

x 1 0 " 9 

x IO" 8 

x IO" 7 

Of, error variance (m/s2)2 

0 3191 
0 3270 
0 0138 _ 

" 0 7772 " 
0 7777 

_ 0 0978 _ 

" 0 1083 
0 1025 
0 0850 

x I O - 9 

x IO" 9 

x IO" 7 

SMO error variances are on par with the EKF and H^ Filters for Cases 1 and 2, 

however, degrade significantly for Case 3. 

Table 4.6: RMS of the mean errors for 100 trials (known inertia) - SMO 

ab Sr and A 

ab Sr and A with noise 

ab Sr and A with 10 x noise 

mean error 

" 0.1286 " 
0.0043 
0.0044 

_ 0.0743 _ 

" 0.1638 " 
0.1535 
0.3724 

_ 0.3989 

" 0.1773 " 
0 1721 
0.3762 
0.3463 

x 10"6 

x 10"5 

x l O " 4 

w mean error (rad/s) 

' 0.0015 " 
0.0024 

_ 0.1545 

" 0.0220 " 
0.0228 

_ 0.1204 

" 0.0578 " 
0.0517 
0.9480 

x l O " 4 

x 10"4 

x 10-4 

ab mean error (m/s2) 

' 0.7639 " 
0.7541 
0.0109 _ 

" 0.6520 ' 
0.7106 
0 4466 

" 0.6171 " 
0.5976 
0.3539 

x 10"5 

x IO"5 

x IO"4 

Although not as small as the EKF's and H^ Filter's, accelerometer lumped bias 
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mean errors are within the mission tolerances for Cases 1 and 2. Similarly to the 

optimal filters for Case 3 estimation errors are no longer within bounds. 

2.2.4 Summary of Results for Known Inertia Tensor 

The statistical results previously shown for Case 2 (expected conditions) are com­

piled together for direct comparison of the three filters in the tables below. 

Table 4.7: Summary of the means of the error variances for filters with known inertia 

EKF 

Hoo 

SMO 

q error variance 

" 0.0848 " 
0.0845 
0.2259 

_ 0.2207 _ 

" 0.0848 " 
0.0848 
0.2199 

_ 0.2186 

" 0.1231 " 
0.1342 
0.7466 
0.6696 

x IO"8 

x IO"8 

x IO"8 

UJ error variance (rad/s)2 

' 0.1703 " 
0.1229 

_ 0.1260 

" 0.1376 " 
0.0994 

_ 0.1107 _ 

" 0.0834 ' 
0.0839 
0.4619 

x IO"8 

x IO"8 

x IO"8 

ab error variance (m/s2)2 

' 0.5802 " 
0.5854 

_ 0.0207 _ 

" 0.3531 " 
0.3543 

_ 0.0208 _ 

" 0.7772 " 
0.7777 
0.0978 

x IO"9 

x IO"9 

x 10"9 

Although different filter/observer structures are used, the resulting error variance 

are all within 1 order of magnitude and substantially lower than the sensor noise 

variances input to the filters/observers. 
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Table 4.8: Summary of the RMS of the mean errors for filters with known inertia 

EKF 

Hoo 

SMO 

q mean error 

" 0.1612 " 
0.1533 
0.3544 

_ 0.3588 _ 

" 0.1584 " 
0.1582 
0.3528 

_ 0.3702 _ 

" 0.1638 " 
0.1535 
0.3724 
0.3989 

x IO"5 

x IO"5 

x IO"5 

ui mean error (rad/s) 

' 0.4013 " 
0.2380 

_ 0.4609 _ 

" 0.3821 ' 
0.2692 

_ 0.4510 _ 

" 0.0220 " 
0.0228 

_ 0.1204 _ 

x IO"5 

x IO"5 

x 10"4 

ab mean error (m/s2) 

' 0.4360 " 
0.4010 

_ 0.3863 

" 0.3673 " 
0.3830 

_ 0.3287 _ 

" 0.6520 " 
0.7106 
0.4466 

x IO"5 

x IO"5 

x IO"5 

The numbers are primarily self explanatory, with a mission defined tolerance of 

10~5 m/s2 on aLB every filter will provide adequate performance. The decrease in 

error mean for the Hoc Filter over the EKF is clearly seen. While the SMO error mean 

is the highest, it offers significant computational savings which will be explained in 

the Conclusions. 

2.3 Corrupt Inertia Tensor Results 

The primary reason for investigating additional filtering techniques is to design 

a filter robust to a corrupt/unknown inertia tensor. Each dynamic filter/observer is 

tested with expected conditions (same as Case 2 previously described), however, the 
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true inertia tensor is reduced from 

783.35 -12.28 -4.84 
-12.28 803.79 -7.67 
-4.84 -7.67 1332.99 

kg • m2 

to the diagonal nominal matrix 

800 0 0 
0 800 0 
0 0 1300 

kg • m2 

The same filters used with known inertia tensors are used here. 

2.3.1 EKF Results for Corrupt Inertia Tensor 

(4.27) 

(4.28) 

Estimated Quaternion 

]V 7T 7V A ' A 7T" 

\H A\\ /K{ /k 4 /k<\ AxA, A\\ /k\ AsA /k\> /k-\ / 
\ k , / \ y / ! \ y / f \VJ \i/A \ w vK-i \Vsi A/A \ kA \ k . 

1 ! \ i i ; \ / i / > / i / i / 1 / i i i I 
\l . \/ ' 1/ ̂  U, V- . V. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Actual Quaternion 

7\" 
\ / \ 

v i / M A\i /k \ / kA ¥:\ Ai\\ /k\ / k 4 /KA S$\A /k\ / M 
\ k 1 \y -, \yA -AAA \yj\ \ k 1 <K-f 'M'-i M>O<J VV-I A**" < ^ W v 

\/. \/ iV/ ./ \ / . \l I \i 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

x 1 f j - 3 Estimation Errors 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
6 872e- 010 5 7749e-009 5 2452e-0OB 5 1849a-O09 S a m p l e # ( @ 4 H z ) 
7 9522e 007 1 3298e-005 9 4966-006 5 3753e-006 

Figure 4.22: EKF q subjected to bias errors and measurement noise (unknown inertia) 

Although the system dynamics describing quaternion propagation are not directly 

dependent on the inertia tensor, the errors developed in the angular rate estimation 

seen below cause significant errors in the quaternion estimation. 
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-0 2 

Estimated Body Rates 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Actual Body Rates 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

x ,Q - 3 Estimation Errors 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
468ie-00992711e-009t 1365e-009 Sample # (@4Hz) 
0O0D776S7 000046636 1 1IT3e-O05 

Figure 4.23: EKF CJ subjected to bias errors and measurement noise (unknown inertia) 

Errors in the inertia tensor will cause a near constant error in the angular rate 

estimation. The offset is primarily proportional to the J ( l , 3) and J(2, 3) terms which 

are multiplied by the dominant angular rate, UJZ, at each time step. 
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Estimated Accel Bias 

- —- Accel x 
- - — Accel y 

Accel z . 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

3 a minus a {Lumped Bias) 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

-3 (aberror) a minus a adjusted by lumped bias {wout noise) 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
e 1 7ue-oto 16744e-mo 3 5o83E-oi2 Sample # {@4Hz) 

3149e-005 5 7766e-005 0 00031537 

Figure 4.24: EKF aLB subjected to bias errors and measurement noise (unknown 

inertia) 

Since the error in UJ develops during the propagation stage, the measurement 

equation g(x), used to formulate the innovations, will always contain errors and the 

resulting estimate lumped bias will converge to an incorrect value. 

2.3.2 H^ Filter Results for Corrupt Inertia Tensor 

The Hoc Filter results are nearly identical, however, shown for the readers visual 

comparison. 
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Estimated Quaternion 

\ A IX A ' A ' A / v A' A1 A ' A 'A 

\ / , , \ / ' A/. lA \/.; \/ , \ /- ' ' t e < i \ I 

tfs 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Actual Quaternion 

200 400 600 800 1000 1200 1400 1600 1800 2000 

Estimation Errors 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

8B735e-O10 5 7B95e-O09 5261e-008 5 1866e 009 Sample # (@4Hz) 
-7 9603e-O0? 1 3318e-OOS 9 51E2B-O06 5 3615e-006 

Figure 4.25: Hoo q subjected to bias errors and measurement noise (unknown inertia) 

Estimated Body Rates 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Actual Body Rates 

2 01 
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0 200 400 600 800 1000 1200 1400 1600 1800 2000 

„ 10
-3 Estimation Errors 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
a 4704e 00993106e-0091 1373a-O09 Sample # (@4HZJ 

000077701 000046776 1 1523e-C0E 

Figure 4.26: Hoc CJ subjected to bias errors and measurement noise (unknown inertia) 
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^01 

2 

0 

x10"3 Estimated Accel Bias 

Accel x 
- ——- Accel y 

Accel z . 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

-3 a minus a (Lumped Bias) 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

-3 (aberror) a minus a adjusted by lumped bias (wout notse) 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
Sample # (@4Hz) 

Figure 4.27: H^ CLLB subjected to bias errors and measurement noise (unknown 

inertia) 

2.4 SMO Results for Corrupt Inertia Tensor 

The SMO robustness can be seen in its corrupt inertia tensor results, the quater­

nion and angular rate mean estimate errors are smaller than those of the EKF or Hoc 

Filter. 

83 



Estimated Quaternion 

A A A' A ' A 'A A", /\' A ' /\ 'A 
1 yA \yJi-s'i \VA \VAf AvAKyj ^y{-vJ A/A\Sxi-

' ' ' ' \ ' \ / i / ; ' ' \ \ I ' i i i ./ i ' 
\ I I J 1 J \ ! ' ! \ ! \ , \ / J 

\J \t. \) '•/•• V A; U \A \A, \A M hv. 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Actual Quaternion 

A' 'A" A' ^ TV 7\" 1\ AT" T\ 
!\ l\ i\ l\ 
a{ Atc{ rh-t /ki /jx-A yk \ ',AA . h\ \4A, A<A / 
." vJ \Y^ AAA, AA' A M " J M MC-/ A i l VVM A<' 

u \ 

A A i\ 11 ¥ 
:- \A \ 
\/. \A A. 

\i. A/.. \J. \f 
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Estimation Errors 

200 400 600 BOO 1000 1200 1400 1600 1800 2000 
Sample # (@4Hz) 

Figure 4.28: SMO q subjected to bias errors and measurement noise (unknown inertia) 

03 
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n 
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Actual Body Rates 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

x 1 0
- 3 Estimation Errors 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
Sample # (@4Hz) 

Figure 4.29: SMO CJ subjected to bias errors and measurement noise (unknown iner­

tia) 

The figure below shows the SMO aLB error converging to zero. However, closer 
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inspection of the statistical data shows error means no better than the EKF and H( 

Filter. 

Estimated Accel Bias 

- Accel x 
Accel y 
Accel z . 

0 200 400 600 

x 1 0 3 

1000 1200 1400 1600 1800 2000 

a minus a (Lumped Bias) 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

(aberror) a minus a adjusted by lumped bias (wout noise) 

600 800 1000 1200 1400 1600 1800 2000 
Sample #(@4 Hz) 

Figure 4.30: SMO ais subjected to bias errors and measurement noise (unknown 

inertia) 
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2.4.1 Summary of Filter Results for Corrupt Inertia Tensor 

Table 4.9: Mean of the error variances of 100 trials (uncertain inertia) 

EKF 

Hoo 

SMO 

q error variance 

" 0.0010 " 
0.0517 
0.4959 
0.0407 

" 0.0010 " 
0.0519 
0.4977 

_ 0.0409 

" 0.0089 " 
0.1753 
0.1767 
0.0078 

x IO"7 

x 10"7 

x IO"8 

UJ error variance (rad/s)2 

' 0.3774 " 
0.7305 

_ 0.0368 _ 

" 0.4206 " 
0.8095 
0.0423 

" 0.2102 " 
0.2532 
0.0343 

x IO-8 

x IO"8 

x IO"6 

ab error variance (m/s2)2 

' 0.4857 " 
0.4785 

_ 0.0340 

" 0.5738 " 
0.5641 

_ 0.0416 

" 0.2206 " 
0.1702 
0.0263 

x IO"9 

x IO"9 

x IO"8 

86 



Table 4.10: RMS of the mean errors for 100 trials (uncertain inertia) 

EKF 

Hoo 

SMO 

q mean error 

" 0.0011 " 
0.0132 
0.1021 

_ 0.0278 

" 0.0012 " 
0.0134 
0.1016 
0.0278 

" 0.0713 " 
0.0505 
0.1826 
0.0497 

x 10"4 

x IO"4 

x 10-5 

u mean error (rad/s) 

' 0.7737 " 
0.4678 

_ 0.0053 _ 

" 0.7742 " 
0.4689 

_ 0.0056 _ 

" 0.6771 " 
0.8364 
0.0168 

x IO"3 

x IO"3 

x IO"3 

ab mean error (m/s2) 

' 0.0304 " 
0.0618 

_ 0.3148 _ 

" 0.0308 " 
0.0616 

_ 0.3148 

" 0.1280 " 
0.1281 
0.3557 

x 10~3 

x IO"3 

x IO"3 

Table 4.10 shows the RMS of the mean errors over 100 trials. From the third col­

umn it is apparent that the inertia tensor error that the filters/observers are subjected 

to causes errors in the aLB estimation that are unacceptable for the MMS mission. 

2.5 Batch Filter Results 

In this section of results, the first two general test scenarios (Case 1 and 2) for 

filters/estimators are observed for that of the batch filter (BF), under the condition 

of a known inertia tensor: 

For the condition of a corrupt inertia tensor as is described for the dynamic filters 

in Case 2 is also observed for the batch filter. 
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2.5.1 Known Inertia Tensor Results 

Figures 4.31 through 4 33 present the batch filter results for Case 1 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

qfilt - qsim (q without noise) 

_ 0 0 4 L M a )LJ—i_j_^ L^ * v j — - j _ _ ^ i d i a 1 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

variance 0 00074302 3 222e 005 3 1S0Be-O05 0 00073546 Sample # (@4Hz) 
mean l 0084e-005 2 3711e 006 4 1117a 005 000019986 

Figure 4.31: BF quaternion estimation with 3-corruptions and noise (known inertia) 

Significant errors can be seen on the filtered quaternion, however, this does not 

affect the lumped bias estimation. Since the batch process does not estimate in real 

time, the s/c requires a dynamic filter on board to estimate states in real time. This 

dynamic filter could use a lumped bias parameter estimate provided by the batch 

process and not estimate one on board. 
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omegafitt 
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0 200 400 600 800 1000 1200 1400 1600 1800 2000 
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Figure 4.32: BF angular rate estimation with 3-corruptions and noise (known inertia) 

(aberror) a minus a adjusted by lumped bias (wout noise) 

•;' s', «s i if i „f, 

V f I* f I . in 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
Sample # (@4Hz) 

Figure 4.33: BF lumped accelerometer bias estimation with 3-corruptions and noise 

(known inertia) 
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Table 4.11: Batch lumped bias estimation for all corruptions & no noise 

True aLB 

CLLB Error 

&LB % Error 

aLB error 

[0 0008 0.0017 - O.OOOlf m/s2 

[-0.1422 -0.0759 - 0.0028]T x 10" "5 m/s2 

[-0.1829 - 0 0449 0 0348]T % 

Figures 4.31 through 4.33 present the batch filter results for Case 2 

Filtered Quaternion 
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ure 4.34: BF quaternion estimation with 3-corruptions and noise (known inertia) 
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Figure 4.35: BF angular rate estimation with 3-corruptions and noise (known inertia) 

(aberror) a minus a adjusted by lumped bias (wout noise) 
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Figure 4.36: BF lumped accelerometer bias estimation with 3-corruptions and noise 

(known inertia) 
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Table 4.12: Batch lumped bias estimation for all corruptions with noise 

True aLB 

OULB Error 

aLB % Error 

aLB error 

[0 0008 0.0017 - 0.0001]'r m/s2 

[-0.0831 - 0.1451 - 0.0164]r x IO"5 m/s2 

[-0 1066 - 0.0860 0.1961]T % 

2.5.2 Corrupt Inertia Tensor Results 

Figures 4.31 through 4.33 present the batch filter results for scenario 2, however, 

with a corrupt inertia tensor used within the filter. 

Filtered Quaternion 
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Figure 4.37: BF quaternion estimation with 3-corruptions and noise (unknown iner­

tia) 
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Figure 4.38: BF angular rate estimation with 3-corruptions and noise (unknown 

inertia) 
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Figure 4.39: BF lumped accelerometer bias estimation with 3-corruptions and noise 

(unknown inertia) 
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Table 4.13: Batch lumped bias estimation for all corruptions with noise and inertia 

uncertainty 

True a LB 

CLLB Error 

aLB % Error 

§LB error 

[0.0008 0.0017 - 0.0001]T m/s2 

[-0.1042 - 0.0449 0.0963]T x 10~5 m/s2 

[-0.1345 - 0.0266 - 1.2205]T % 

2.5.3 Batch Filter Tabulated Results 

Analysis of the batch filter shows that there is no dependence on the inertia tensor. 

Varying errors are only due to random statistical differences between simulation cases. 

Table 4.14: Batch lumped bias estimation summary 

True aLB 

aLB Error (a6, rc, 8) 

CLLB Error (ab: rc, 8, noise) 

aLB Error (ab,rc, 5, noise, J error) 

^LB error 

[0.0008 0.0017 - 0.0001]T m/s2 

[-0.1422 - 0.0759 - 0.0028]r x IO"5 m/s2 

[-0.0831 - 0.1451 - 0.0164]r x IO"5 m/s2 

[-0.1042 - 0.0449 0.0963]r x IO"5 m/s2 
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Chapter V 

EXPERIMENTAL 

VERIFICATION 

1 NASA MMS TableSat Generation I 

The proposed accelerometer bias estimation technique is implemented in an ex­

perimental testbed. The NASA MMS TableSat Generation I is a limited 3-DOF 

model of the MMS spacecraft, primarily designed for the analysis of the MMS s/c at­

titude dynamics and kinematics and the dynamic effects of the SDP and ADP flexible 

booms. 

95 



I » » * » • 

' - »&•*: » . # * •»-.. - . ^ „•. 

Figure 5.1: TableSat I 
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Figure 5.2: TableSat I components 

For the purpose of this experimental analysis, a secondary TableSat I unit is used. 

Here, all electrical components, save one fan, have been removed from the TableSat 
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because of an unidentifiable electromagnetic field being emitted and corrupting the 

IMU magnetometer measurements. A new electronics package is designed for data 

collection, while rotation is accomplished by attaching a battery directly to a fan 

thruster. The new package includes a 6-DOF inertial measurement unit (IMU), an 

additional high-precision MEMS accelerometer, a microSD data-logging card and a 

microcontroller. 

Figure 5.3: TableSat for experimental accelerometer calibration - View 1 

1.1 Experimental Hardware 

As previously mentioned, all existing hardware on the TableSat is removed and 

an entirely new electronics package is assembled. 

Parallax Propeller Platform - 80MHz, 8-core 32-bit P8X32A microprocessor, with 

onboard USB communication for programming, 32 digital I /O pins, and inte­

grated microSD card accessability through SPI communication 
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Sparkfun 9-DOF Razor I M U - 9 total combined measurements from a gyro, ac­

celerometer and magnetometer utilized by an 8-bit microprocessor to provide 

attitude "measurements" as well as raw sensor data over UART serial commu­

nication 

B M A 1 8 0 Accelerometer Breakout Board - High sensitivity, 14-bit resolution 

±2g accelerometer with low-noise and SPI communication 

2 x Lithium Ion batteries - 11.1 V for fan thrust and 7.4 V for powering the mi­

crocontroller, both 900mAh 

80mm Computer Fan - Used for rotational thrust 

1.2 Experimental Software 

The propeller platform includes a substantial library of objects contributed by the 

company's engineers and the general public. Some existing open source objects are 

used to simplify the process of writing the required software code: 

Software Serial - emulated UART serial port utilizing a single core, used for com­

munication with the IMU 

Software SPI - emulated Serial Peripheral Interface using a single core for microSD 

access and an additional core for BMA180 communication 

Clock - emulated real-time clock for measurement time-stamping, uses a single core 

FAT Library - collection of functions to access the microSD's FAT file structure, 

specifically creating text files and appending to them 
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All items are obtained through the Propeller Object Exchange [25]. 

The main program uses its own core to collect all measurements, obtain a times-

tamp and store all information to the microSD card for analysis in a separate numer­

ical simulation software package. To decrease the required computational effort all 

values are left in their raw format and converted afterwards to appropriate numerical 

values. The IMU firmware is customized to output all raw sensor data as well as 

the estimated Euler angles (a 1-2-3 rotation sequence) and Direct Cosine Matrix. All 

values are transmitted at 4800 baud as ASCII characters. The real-time clock output 

is a time-stamp with a resolution of 0.01 seconds in ASCII format. Communication 

with the accelerometer is performed with the SPI protocol, which uses a clock line 

to synchronize the two devices rather than enforcing a specified BAUD rate used by 

UART. Communication over SPI is performed one byte at a time and must be initial­

ized by the host sending a command byte and address byte. The BMA180 responds 

with 6 bytes containing acceleration measurements in 3 axes and a measurement of 

the temperature for temperature compensation. 

Measuring attitude typically requires an expensive and sophisticated vision sys­

tem. Since such a system is not available for this research, an Inertial Measure­

ment Unit (IMU) is used to estimate the attitude using a magnetometer, gyro and 

accelerometer, each providing measurements along all three orthogonal axes. The 

resulting attitude measurement is relatively accurate, albeit far from perfect, and is 

sufficient for preliminary experimental results. The accelerometer provides an inertial 

gravity measurement allowing correction for pitch and roll. The magnetometer allows 

corrections for drift from integrated gyro output about the body z-axis. 
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Integrating the gyro provides redundant information and allows for the combining 

and filtering of measurement output. This filtering is critical, as the system's MEMS 

sensors have excessive noise. The IMU utilizes open source firmware, which incorpo­

rates an EKF for attitude dead reckoning, using gyro and accelerometer measurements 

and an additional magnetometer update of rotation about the body z-axis. 

2 Experimental Results 

To further validate the performance of the Batch Process Filter in this study, 

experimental testing is performed. Unfortunately, it is not possible to measure the 

three accelerometer calibration parameters with enough accuracy to predict what the 

accelerometer lumped bias is. Instead, a qualitative analysis approach is attempted. 

Here, a trend is expected from the estimated lumped bias estimator, provided a 

specific input trend. Analytical calculations are performed to identify the trend cor­

relations. In addition to inspecting the performance of the lumped bias estimation, 

an on-board gyro is used to evaluate the angular body rate estimates. 
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Figure 5.4. TableSat for experimental accelerometer calibration - View 2 

v.rtk. r t ••! 

Figure 5.5: TableSat for experimental accelerometer calibration - View 3 

Figure 5.5 shows an aerial view of the experimental testbed with standard x-y 

coordinates overlayed. The accelerometer can be seen on the bottom right quadrant 

101 



and the location relative to the center of mass is: 

r = 

-11.69 
-14.35 
-2 .13 

cm (5.1) 

The batch filter does not require the inertia tensor for its calculations and, therefore, 

it is not calculated. 

2.1 Accelerometer Pre-Calibration 

Prior to the accelerometer data being used, components due to gravity must be 

taken into account. These terms do not remain constant between tests since the 

accelerometer is rotated. This pre-calibration is performed using the first few seconds 

of data from each test while the model is still stationary. From the gyro output, the 

point in time of the TableSat's initial spin becomes obviously apparent. 
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Figure 5.6: Settled model gyro output 

To determine the gravity components, the acceleration prior to any rotational 
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motion/movement is used. Averaging the BMA180 accelerometer measurement data 

that correspond to this "pre-spin" time period serves to determine the pre-calibration 

bias which takes into account the sensor bias as well as gravitational acceleration. 

The resulting lumped bias that is to be estimated for these experiments is a result of 

any error in the accelerometer location between where it is measured to be and the 

orthogonal misalignment of the sensor, which is deliberately varied about the body 

y-axis. 
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Figure 5.7: Accelerometer signal for initial calibration 

2.2 Experimental Lumped Accelerometer Bias Est imation 

The lumped accelerometer bias is estimated as the average error between the 

predicted acceleration and the measured acceleration for the last one-third of the data 

analyzed. Only this portion of the data is used to ensure a near constant angular 

rate which is required for accurate lumped bias estimation. Residual transients in the 
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angular rate are present and should show the robustness of the filter 

For the experiment three test cases are analyzed 

1 "neutral" alignment: 8y ~ 0 

Figure 5 8 Experimental accelerometer neutral rotation about y-axis 

2. "positive" alignment: 8y > 0 

Figure 5 9 Experimental accelerometer positive rotation about y-axis 
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3. "negative" alignment: 8y < 0 

Figure 5 10 Experimental accelerometer negative rotation about y-axis 

2.2.1 Neutral 8y 

Mounted at a neutral angle data is collected for processing through the batch 

filter 

The batch process consists of two sequential spline fits The first is performed on 

the quaternion measurements, it provides a filtered quaternion measurement and an 

estimate of q. 
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Filtered Quaternion 
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Figure 5.11: Filtered quaternion from first spline 

The q and thee filtered quaternion are used to estimate the angular body rates 

using Eq. (5.2). 

q = ^b/o ® q(t) (5.2) 

The gyro measurements and the angular body rate estimates are shown in Figure 

5.12 
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Figure 5 12- Angular rate estimate from first spline 

A second spline fit is performed on the estimated body rates to filter then as well 

as estimate CJ. Using these two values the nominal acceleration can be estimated, it 

is shown along with the measured accelerations as, 
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Figure 5 13 Predicted and measured acceleration with error 

107 



The resulting estimated lumped bias is: 

O-LB = 

0.0240 
-0.2174 
-0.0198 

m/s2 

2.2.2 Positive 8V 

The BMA180 accelerometer is rotated about the y-axis to an 

angle relative to the neutral 8y for the following results. 

Filtered Quaternion 

Figure 5.14: Filtered quaternion from first spline 
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Figure 5 15: Angular rate estimate from first spline 
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Figure 5.16' Predicted and measured acceleration with error 

The predicted acceleration assumes that the BMA180 accelerometer axis are co-

linear with the model's reference frame. This alignment is performed as closely as 
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possible for the x and z-axes, however, Sx and 8Z will exist. 8y is not known, but is 

positive for this test. 

The estimated accelerometer bias for this first case of positive 8y is: 

aiB 

-0.1008 
-0.1291 
-0.0953 

m/s2 (5.4) 

2.2.3 Negat ive 8y 

For the third test 8y is rotated negative from the neutral rotation. 
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Figure 5.17: Filtered quaternion from first spline 
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Figure 5.18: Angular rate estimate from first spline 
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Figure 5.19: Predicted and measured acceleration with error 

The resulting estimated lumped bias is: 

U-LB = 

-0.1657 
0.1429 
0.0832 

m/V (5 
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2.3 Summary of Experimental Results 

Changes in aLBx and aLBy can be attributed to rotations of the BMA180 about 

the z-axis while y-axis rotations were being made. Table 5.1 summarizes the three 

&LBZ and the expected trend of an increasing bias while 8y decreases is seen. The fact 

that the increase is not constant is likely due to small changes in 8X between tests. 

(Recall from the lumped bias justification that 8X has an inverse relationship with 

&LBz-) 

Table 5.1: Lumped accelerometer bias trend for decreasing 8y 

aLB{m/s2) 

Sy+ 

-0.0953 

8y0 

-0.0198 

Sy-

0.0832 

Although the true lumped bias value cannot be obtained for these experimental 

tests, the increasing trend of the lumped bias estimate with respect to the decreasing 

rotation of the accelerometer shows a qualitative confirmation of the batch filter 

method. 
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Chapter VI 

CONCLUSIONS 

The MMS spacecraft will be collecting high resolution (spatially and temporally) 

scientific data while flying in a precise tetrahedron formation. To maintain this for­

mation the attitude observer and controller must both have accurate sensor mea­

surements. Due to vibrations during launch, thermal shifting during sun-shade tran­

sitions while in orbit and fuel usage, three errors will develop in the accelerometer 

measurements: internal sensor bias, shift in location and orthogonal misalignment. 

The observer will have to operate without direct knowledge of the angular body rates 

since no gyro is on board. 

This research intends to estimate a lumped bias parameter to correct for ac­

celerometer bias, shift in accelerometer location and orthogonal misalignment. The 

lumped bias should be shown to be capable of such a correction and should be esti­

mated using real-time or ground-based techniques. The lumped bias must be accu­

rately estimated with or without perfect knowledge of the spacecraft inertia tensor 

and be able to correct the measured acceleration to within 1 \xg of the nominal ac­

celeration. 

It is shown that an accurate determination of the accelerometer lumped bias can 

adequately and collectively correct for accelerometer bias, shift in the accelerometer's 

location with respect to the center of mass and an orthogonal misalignment. This 
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capability, however, assumes a near constant angular spin rate of the MMS space­

craft. Otherwise, the lumped bias may not accurately represent all the errors. In this 

research the lumped bias approximation is verified analytically, numerically and ex­

perimentally for mission conditions. For known inertia tensors, the lumped bias can 

be estimated in real time as a system parameter within an augmented state vector 

using a dynamic filter such as an Extended Kalman Filter, H^ Filter or Sliding Mode 

Observer. 

Analytical simulations are run on a quad-core Intel i7 processor running at 2.4Ghz. 

Here, computational demand is estimated using MatLab's "tic" and "toe" commands 

to record the time required by each filter/observer. Using numerical simulations 

with conditions defined for the MMS mission, the dynamic filters are all capable of 

estimating the lumped bias within mission tolerances. The Hoc Filter is the best 

performing filter of the three, on average estimating the accelerometer bias to within 

1/3 jxg and with approximately 10% more accuracy than the EKF. This accuracy 

comes at the cost requiring 110% of the computational demand the EKF required. 

Although the SMO yields the least accurate lumped bias estimation, it is still within 

mission specifications and uses 50% of the EKF's computational demand. There are 

also many adaptations which could be applied to the SMO to improve its performance. 

Uncertainties in the inertia tensor result in an incorrect lumped bias estimation 

primarily as a result of constant drift error arising from the angular rate propagation. 

Additionally, the function g(x) utilizes the inertia tensor when computing the nom­

inal acceleration for the filter innovations. If there is not perfect knowledge of the 

inertia tensor, the predicted nominal acceleration will be incorrect and the resulting 
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lumped accelerometer bias will also be incorrect. None of the filters meet the mission 

specification of 1 x IO - 5 m/s2. 

Alternatively, regardless of any existing uncertainties in the inertia tensor, the 

spline fitting batch filter provides an accurate estimate of the lumped accelerometer 

bias to within 1 ug. The batch filter can be run periodically offline, or online at a delay 

of 5 seconds. This method, however, requires a large amount of computational power. 

The batch filter is verified numerically and qualitatively confirmed experimentally. 

The cascading filter initially analyzed does not reliably provide an accurate esti­

mate of the misalignment. Its estimate is entirely dependent on the residual error of 

the estimated bias and center of mass. Since the spacecraft has very little nutation, 

the misalignment and center of mass shift are nearly undistinguishable, as seen by 

the fact that both sources of error can be modeled as a single lumped bias. 

1 Future Work for Filters/Estimators 

Two changes can be made to the initial cascading filter to potentially provide 

more accurate results. Further research is suggested in attempting to constrain the 

rotation matrix in the least-square algorithm to output the best-fit orthogonal matrix, 

rather than the best-fit matrix. Additionally, it is suggested that the filter be run 

iteratively, re-estimating the accelerometer bias and center of mass shift after each 

misalignment estimate. 

Filter performance is adequate but an EKF using multiplicative quaternion error 

may provide improved accuracy. The angular rate estimates are highly dependent on 
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the quaternion estimates and would likely see improvements if the quaternion errors 

are decreased. 

A parallel EKF scheme as is outlined in [8] may be better able to estimate the 

lumped bias if the inertia tensor is not known. The state vector would likely need to 

be augmented by the angular acceleration as well. 

2 Future Work for the Experimental Test Bed 

The BMA180 has a number of unique features which can be used to improve 

the measurement noise levels and accuracy. Most of these features were not used, 

but could be enabled to improve the measurements. Specifically, two improvements 

are suggested. The accelerometer includes an interrupt line to indicate when new 

accelerometer values have been computed. If used appropriately, the microprocessor 

can use this information to communicate with the BMA180 while the less important 

temperature conversion is being performed. This reduces noise on the accelerometer 

measurement due to communication. To utilize this feature, a dedicated core is needed 

to anticipate and obtain accelerometer values when they are available. Secondly, 

filters can be enabled onboard the BMA180. Since measurements are only taken at 

25 Hz, the accelerometer can enable a low pass filter attenuating higher frequencies 

than this. 

The ad-hoc addition of the magnetometer was an update to previous IMU's using 

only a gyro and accelerometer. If a true KF or EKF is designed for the IMU utilizing 

all three sensors, the output attitude could likely be improved. A realtime clock 
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would also improve the IMU estimation and the data collection, providing a higher 

resolution and more accurate time stamp for each measurement. 

Acceleration measurements due to gravity are assumed to be constant for each ex­

periment. To improve the accelerometer measurement the gravity magnitude should 

be determined from the static calibration and then the gravity vector should be ro­

tated to account for changes in attitude. The new rotated gravity vector should be 

used to correct the measurement accordingly. Since the accelerometer lumped bias is 

calculated using an average error over many rotations this has no effect on the overall 

estimation accuracy. 
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Appendix A - Miscellaneous 
Content 

1 Additional Dynamic Filter Results 

Figures 6.1 through 6.3 present the EKF results for case 1 
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Figure 6.1: q subjected to bias errors and no measurement noise (known inertia) 
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Figure 6.2: a) subjected to bias errors and no measurement noise (known inertia) 
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Estimated Accel Bias 
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Figure 6.3: CLLB'- subjected to bias errors and no measurement noise (known inertia) 

Figures 6.4 through 6.6 present the EKF results for case 3 
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Figure 6.4: q subjected to bias errors and 1 Ox-measurement noise (known inertia) 
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Figure 6.5: CJ subjected to bias errors and lOx-measurement noise (known inertia) 
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Figure 6.6: CLLB subjected to bias errors and 1 Ox-measurement noise (known inertia) 

Figures 6.7 through 6.9 present the Hoc results for case 1 
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Figure 6.9: CLLB subjected to bias errors and no measurement noise (known inertia) 

Figures 6.10 through 6.12 present the H^ results for case 3 
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Figure 6.10: q subjected to bias errors and 1 Ox-measurement noise (known inertia) 
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Figure 6.11: CJ subjected to bias errors and lOx-measurement noise (known inertia) 
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Figure 6.12: a LB subjected to bias errors and 1 Ox-measurement noise (known inertia) 

Figures 6.13 through 6.15 present the SMO results for case 1 
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Estimated Quaternion 
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Figure 6.13: q subjected to bias errors and no measurement noise (known inertia) 
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Figure 6.14: CJ subjected to bias errors and no measurement noise (known inertia) 
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x 1 0 " Estimated Accel Bias 
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Figure 6.15: aLB subjected to bias errors and no measurement noise (known inertia) 

Figures 6.16 through 6.18 present the SMO results for case 3 
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Figure 6.16: q subjected to bias errors and 1 Ox-measurement noise (known inertia) 
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Estimated Body Rates 
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igure 6.17: CJ subjected to bias errors and lOx-measurement noise (known inertia) 
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gure 6.18: a LB subjected to bias errors and 1 Ox-measurement noise (known inertia) 

Euler Angle Rotat ion Matrices 

all in order of 0, 6, ip 
Roll - Pitch - Yaw (123) 

cos (9) cos (ip) cos (9) sin (ip) — sin (6) 

sin (<p) sin (9) cos (ip) — cos (<j>) sin (t/i) sin (<p) sin (9) sin (ip) + cos (4>) cos (ip) sin (<p) cos (9) 

cos ((p) sin (9) cos (ip) + sin ((/>) sin (ip) cos ((p) sin (9) sin (ip) — sin (4>) cos (ip) cos (tp) cos (9) 
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RPR (121) 

cos (9) sin (9) sm (i/.) — sm (9) cos (ip) 

sm (0) sin (9) — sin (0) cos (9) sin (0>) + cos (tp) cos (i/>) sm (cp) cos (0) cos (0) + cos (0) sm (-0) 

_ cos (tp) sm (0) — cos (tp) cos (6) sin (ip) — sin (0) cos (ip) cos (0) cos (9) cos (^) — sin (d>) sin (-0) . 

RYR (131) 

cos (ip) sin (i/>) cos (ip) (sin(if)) 

— cos (tp) sm (i/>) cos (0) (cos (ip))2 — sm (0) sin (ip) cos (0) cos (ip) sin (-0) + sm (tp) cos (-0) 

sm(f lsm(i f ) — sin(0) (cos (i/1))2 — cos (tp) sm (-0) — sin (tp) cos (i/A sm (i/)) + cos (tp) cos (•0) . 

RYP (132) 

cos (0) cos (ip) sm (9) — cos (6) sm (i/>) 

— cos (tp) sin (0) cos (ip) + sm (0) sm (ip) cos (0) cos (0) cos (tp) sin (0) sm (ip) + sin (0) cos (ip) 

. sin (0) sm (9) cos (V') + cos (tp) sm (V') — sin (tp) cos (0) - sm (tp) sm ((9) sm (I/J) + cos (tp) cos (i/>) . 

PYR (231) 

cos (tp) cos (9) cos (</>) sin (9) cos (i/>) + sin (tp) sin (I/J) cos (0) sm (9) sm (i/A — sm (tp) cos (i/>) 

- s m ( 8 ) cos (9) cos (0) cos (9) sm (0) 

. sin (0) cos (9) sm(0) sin (9) cos (VO — cos (0) sm (ip) sin (0) sin (9) sin (I/J) + cos (0) cos (ip) . 

PYP (232) 

cos (0) cos (9) cos (ip) — sm (0) sm (ip) cos (0) sin (9) — cos (0) cos (9) sin (I/J) — sin (0) cos (ip) 

— sm (9) cos (I/J) cos (9) sm (9) sm (I/J) 

sm (0) cos (9) cos (ij>) + cos (0) sin (ip) sin (0) sin (0) — sm (0) cos (9) sm (ip) + cos (0) cos (ij>) . 

PRP (212) 

(cos (tp))2 — (sin(0)) cos (0) sin (0) sin (0) — cos (0) sin (0) — sin (0) cos (9) cos (0) 

sin (0) sin (9) cos (9) cos (tp) sm (0) 

cos (0) sin (0) + sin (0) cos (9) cos (0) — cos (0) sin (9) — (sin(0)) + (cos (0))2 cos (9) 

PRY (213) 

cos (0) cos (ip) — sin(0) sin (0) sin (ip) cos (0) sm (ip) + sin (0)sin (0)cos (ip) — sin (0) cos (9) 

— cos (0) sm (ip) cos (9) cos (ip) sm (0) 

. sin (0) cos (ip) + cos (0) sin (9) sin (I/J) sin (0) sin (ip) — cos (0) sin (9) cos (ip) cos (0) cos (0) . 

YRP (312) 

cos (0) cos (tp) + sin (0) sm (9) sm (-0) sin (0) cos (9) — cos (0) sm (ip) + sin (0) sm (9) cos (ip) 

— sin (0) cos (ip) + cos (0) sin (9) sin (ip) cos (0) cos (9) sin (0) sin (1/.) + cos (0) sm (9) cos (ip) 

cos (0) sin (ip) — sin (0) cos (0) cos (i/>) 

YRY (313) 

— sin (0) cos (0) sm (ip) + cos (tp) cos (ip) sin (0) cos (0) cos (iP) + cos (0) sm (ip) sin (0) sin (0) 

— cos (0) cos (0) sin (ip) — sin (0) cos (-0) cos (0) cos (0) cos (ip) — sin (0) sm (ip) cos (0) sin (0) 

sm (0) sin (̂ >) — sin (0) cos (ip) cos (0) 

YPY (323) 

cos (0) cos (0) cos (-0) — sm (0) sin (ip) cos (0) cos (0) sm (ip) + sin (0) cos (tp) — cos (0)sin (0) 

— sm (0) cos (0) cos (ip) — cos (0) sin (ip) — sm (0) cos (0) sin (tp) + cos (0) cos (-0) sin (0) sm (0) 

sm (0) cos (ip) sin (0)sin (V') cos (0) 

YPR (321) 

cos (0) cos (0) sm (0) cos (ip) + cos (0)sin (0)sin (ip) sm(tp)sm(ip) — cos(0) sm (9) cos (ip) 

— sin (0) cos (0) cos (0) cos (V') — sm (0) sm (0) sm (ip) cos (0) sin (ip) + sin (0) sm (9) cos (i/>) 

sin (0) — cos (0) sm (ip) cos (0) cos (ip) 
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3 Microcontroller Code 
{{ 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 
// SD3.01 FATEngine Demo 
// 
// Author: Kwabena W. Agyeman 
// Updated: 1/2/2011 
// Designed For: P8X32A 
// Version: 1.0 
// 
// Copyright (c) 2011 Kwabena W. Agyeman 
// See end of file for terms of use. 
// 
// Update History: 
// 
// vl.O - Original release - 7/27/2010. 
// vl.l - Updated code for new file system driver - 1/2/2011. 
// 
// Type "help" into the serial terminal and press enter after 
// connecting to display the command list. 
// 
// Nyamekye, 
////////////////////////////////////////////////////////////// 
}> 
CON 
_clkmode = xtall + plll6x 
_xinfreq = 5_000_000 
_baudRateSpeed = 115_200 
_newLineCharacter = 13 
_clearScreenCharacter = 16 
_homeCursorCharacter = 1 
_NL = 10 ' works in wordpad but not notepad 
_CR = 13 
_comma = 44 
_semi = 59 
_receiverPin = 31 
_transmitterPin = 30 
RTC DAT = -1 ' -
RTC CLK = -1 ' -
SD DO = 0 
SD CLK = 1 
SD DI = 2 
SD CS = 3 
SD WP = -1 ' -1 
SD CD = -1 ' -1 
imuRX =13 
imuTX =12 
imuBAUD = 57600 

-1 ifnot installed. 
-1 ifnot installed. 

ifnot installed, 
ifnot installed. 

_imuM0DE = 0 
_accCS = 4 
_accSCK = 5 
_accSD0 = 6 
_accSDI = 7 
_MSBFIRST = 5 'for shiftOUT 
_MSBP0ST = 2 'for shiftIN 
_accXlsb = 130 

OBJ 
fat: "SD3.01_FATEngine.spin" 

' taf: "SD3.01_FATEngine.spin" 
' rtc: "DS1307_RTCEngine.spin" 
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' com: "RS232_C0MEngine.spin" 
str: "ASCIIO_STREngine.spin" 
pst: "Parallax Serial Terminal" 
imu: "FullDuplexSerial" 

' spi: "SPI_Spin" 
spi: "SPI_Asm" 
timer: "Timer2" ' modified timer2 to have "," instead of 

VAR 
byte tbyte 
byte buf 
byte i, j 
byte imuOUT[256] 
byte accOUT[256] 
byte accTMP[8] 
byte teststring[256] 
byte value 
byte Bl, B2, B3 
byte command 
long clockPTR 

PUB main 
fat.FATEngineStart(_SD_DO, _SD_CLK, _SD_DI, _SD_CS,... 

_SD_WP, _SD_CD, _RTC_DAT, _RTC_CLK, -1) 
pst.start(_baudRateSpeed) 
imu.start(_imuRX,_imuTX,_imuM0DE,_imuBAUD) 
pst.str(string("starting up",13)) 
teststring := stringC'test string stuff2") 
pst.str(teststring) 
fat.mountPartition(O) 
pst.str(string("partition mounted")) 
f at. openFile (stringCTESTTXT4.txt"), "A") 
fat.deleteEntry(string("IMU010.txt")) 
pst.str(string("File Deleted")) 
fat.newFile(string("IMU010.txt")) 
fat.openFile(string("IMU010.txt"), "A") 
pst.str(string("file opened for write")) 
timer.start 
timer.run 

repeat 10000 
clockPTR := timer.showTimer 
readIMU(@imuOUT) 
readACC(<3accOUT) 

' pst.str(clockPTR) 
' pst.str(OimuOUT) 
' pst.str(OaccOUT) 

fat.writeString(clockPTR) 
fat.writeByte(_comma) 
fat.writeString(@imuOUT) 
fat.writeByte(_comma) 
fat.writeString(@accOUT) 

' fat.writeByte(_comma) 
fat.writeByte(_CR) 

' pst.char(13) 
pst.str(string("Closing File and Unmounting System")) 
fat.closeFile 
fat.unmountPartition 
pst.str(string("you may now shut off the uC")) 

136 



PRI readACC(strPtr) 
' SHIFTOUT(Dpin, Cpin, Mode, Bits, Value) 
' SHIFTIN(Dpin, Cpin, Mode, Bits)I Value 
' PUB start(_ClockDelay, _ClockState) 

' clockdelay in uS and clock state Oorl 
dira[_accCS]~~ 

' make chip select pin output 
outaLaccCS] := 0 
i := 0 
spi.start(1,1) ' 20 works 
command := _accXlsb 
spi.SHIFTOUT(_accSDI,_accSCK,_MSBFIRST,8,command) 

' pst.str(String("command sent")) 
repeat 7 
byte[@accTMP + i] := spi.SHIFTIN(_accSD0,_accSCK,_MSBP0ST,8) 

' byte [<§accTMP + i] := 123 
' pst.char(byte[OaccTMP + i] ) 

i++ 
outaLaccCS] := 1 

' pst.str(String("done shiftin")) 
i := 0 
j := 0 
repeat 7 
value := byte[OaccTMP + i] 
Bl := value/100 
B2 := (value // 100)/10 
B3 := (value // 10) 
byte[strPtr + j] 

byte[strPtr + j] 
j + + 

byte[strPtr + j] 
j + + 

byte[strPtr + j] := "," 
j + + 

i++ 
byte[strPtr + j] := 0 

PRI readlMU(strPtr) 
buf := imu.rx 
i := 0 
repeat until buf == "!" 
buf := imu.rx 

buf : = imu. rx 
repeat until buf == "@" 
byte[strPtr + i] := buf 
buf := imu.rx 
i++ 

' byteEstrPtr + i] := buf 
byte[strPtr + i] := 0 

PRI multiplyDivide(dividen, divisor) I productHigh, productLow 
productHigh := clkfreq ** dividen 
productLow := clkfreq * dividen 
if(productHigh => divisor) 
return posx 

repeat 32 
dividen := (productHigh < 0) 
productHigh := ((productHigh << 1) + (productLow » 31)) 
productLow « = 1 

= 

= 

= 

Bl 

B2 

B3 

+ 

+ 

+ 

48 

48 

48 
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result « = 1 
if((productHigh => divisor) or dividen) 
productHigh -= divisor 
result += 1 

{{ 
///////////////////////////////////////////////////////////////// 
// TERMS OF USE: MIT License 
///////////////////////////////////////////////////////////////// 
// Permission is hereby granted, free of charge, to any person 
// obtaining a copy of this software and associated documentation 
// files (the "Software"), to deal in the Software without 
// restriction, including without limitation the rights to use, 
// copy, modify, merge, publish, distribute, sublicense, and/or 
// sell copies of the Software, and to permit persons to whom the 
// Software is furnished to do so, subject to the following 
// conditions: 
// 
// The above copyright notice and this permission notice shall 
// be included in all copies or substantial portions of the 
// Software. 
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY 
// KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR 
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 
// USE OR OTHER DEALINGS IN THE SOFTWARE. 
////////////////////////////////////////////////////////////////// 
}} 
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Appendix B - MatLab Code 
file_00010_EKF09.m - primary file used, calls all other .m files to perform simu­

lations 

c o n s t a n t s . m - declares all the system constants required for simulations 

gen_sim_data.m - formulates all the sensor measurements from the simulation 
quaternions and angular rates 

1 Constants, m 
% Constants .m f i l e 
°/0 s e t s up t h e : I n e r t i a , I C ' s 

Declare Inertias 
J = [783.35, -12.28, -4.84;... 

-12.28, 803.79, -7.67; ... 
-4.84, -7.67, 1332.99]; 

Jhat = [800, 0, 0;... 
0, 800, 0;... 
0, 0, 1300]; 

if Jknown == 1 
J = Jhat; % use a simple J for initial testing 

end 
Jneg = J~-l; 
1x0 = J(l,l); 
IyO = J(2,2); 
IzO = J(3,3); 
°/„ For the angular velocity estimatJn 
IwxO = (Iy0-Iz0)/Ix0; 
IwyO = (Iz0-Ix0)/Iy0; 
IwzO = (Ix0-Iy0)/Iz0; 
Declare Initial Conditions (attitude, body rate, torques, bias, 
COM, COM 
error 
Attitude note that the last element is the scalar (from Dr Thineil) whereas i use the 
FIRST element as the SCALAR 

q i = [0 .0183;0 .2026; -0 .9751;0 .0880] ; 
qOi = q i ( 4 ) ; 
q l i = q i ( l ) ; 
q2i = q i ( 2 ) ; 
q3i = q i ( 3 ) ; 
q i = [qOi; q l i ; q2 i ; q 3 i ] ; 
% Body Rates 
uxy = r a n d ( 2 , 1 ) ; 
uxy = uxy/norm(uxy); 
coning = normrnd(0 ,0 .2*pi /180) ; 
wi = [3*sin(coning)*uxy;3*cos(coning)]*2*pi /60 
wxi = w i ( l ) ; 
wyi = w i (2 ) ; 
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wzi = wi(3); 
% Torques 
Ti = [0;0;0]; 
% Accelerometer Bias 
abi = normrnd(0,le-5,3,1) ; 
% Center of Mass 
rci = normrnd(0,5/100,3,1); 
7„ rci = normrnd(0,1/100,3,1) ; 
% Measured Center of Mass 
rAi = [0.75;0.75;0.5]; 
*/. rci = rci/10; % REDUCED THE SIZE OF rc 
ri = rAi + rci; 

¥2 ™ 
-0.0011 
-0.0011 
0.3142 

Calculate Initial Conditions (angular velocity) 
widot = Jneg*fcross(J*wi)*wi + Jneg*Ti 

widot = 
1.0e-003 * 
0.2202 
-0.2185 
-0.0000 

Filter Initial Conditions 
q j i a t i = [1 ;0 ;0 ;0 ] ; 
w j i a t i = [0 ,0 ,0 ] ; 
r c j i a t i = [0;0;0] ; 
a b . h a t i = [ 0 ; 0 ; 0 ] ; 
xO = [qi ;wi] 
s t a t e _ r a t e = 1 

xO = 
0 
0 
0 
-0 
--0 
-0 
0 

state. 

0880 
0183 
2026 
9751 
0011 
0011 
3142 
.rate 

2 gen_sim_data.m 

% need to change this since we add noise directly to the quaternions 
% qnoisesigma = 3.23209*10~-4; % converts to 3 sigma of 200 arcsec 
qnoisevar = qnoisesigma~2; 
°L anoisesigma = l*10~-4; 
anoisevar = anoisesigma"2; 

Error using ==> evalin 
Undefined function or variable 'qnoisesigma'. 
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run simulation 
sim('Plant2') 
N = size(qsim,l) - 1; 
rc = rci; 
r = ri; 
rl = r(l); 
r2 = r(2); 
r3 = r(3); 
rci = r(l); 
rc2 = r(2); 
rc3 = r(3); 
RC = [ r c l , r c 2 , r c 3 ] ; 
rA = rAi ; 
Jw = J; 
% x i = [ q i ; w i ] ; 

account for corruptions 
DELTA = eye(3) + fcross(delta); 
qsim = qsim'; 
wsim = wsim'; 
if Jknown == 1; 

J = Jhat; V/'/'/XV/'/'/'L this is for testing purposes 
end 
% preallocate measurement and true state arrays 
anoise = zeros(3,N); 
wdotsim = zeros(3,N); 
areal = zeros(3,N); 
amis = zeros(3,N); 
asim = zeros(3,N); 
a_m = zeros(3,N); 
esim = zeros(3,N); 
e2qsim = zeros(4,N); 
r = ri; 
for i = 1:N 
*/. esim(l:3,i) = Q2E_B(qsim(l :4,i) , 1) ; 
% e2qsim(l:4,i) = E2Q_B(esim(l:3,i),6); 

q = [qsim(2:4,i);qsim(l,i)]; 
e s i m ( l : 3 , i ) = S p i n C a l c ( ' Q t o E A 3 2 1 ' , q ' , e p s , 0 ) ' ; 
i f e s im(2 , i ) > 90 

e s im(2 , i ) = e s im(2 , i ) - 360; 
end 
qtemp = SpinCalc( 'EA321toQ', e s i m ( l : 3 , i ) ' , e p s , 1 ) ' ; 
e 2 q s i m ( l : 4 , i ) = [q temp(4) ;q temp(1:3)] ; 

% a n o i s e ( l : 3 , i ) = r a n d o m C n o r m ' , 0 , 1 , 3 , 1 ) ' * s q r t ( a n o i s e v a r ) ; 
a n o i s e ( l : 3 , i ) = r andom( 'no rm ' , 0 , ano i se s igma ,3 ,1 ) ' ; 
wdo t s im( l : 3 , i ) = J \ f c r o s s ( J * w s i m ( l : 3 , i ) ) * w s i m ( l : 3 , i ) ; 
a r e a l ( l : 3 , i ) = f c ro s s (wdo t s im( l : 3 , i ) ) * rA + fc ross (ws im( l :3 , i ) )~2*rA; 
a r e a l 2 ( l : 3 , i ) = f c r o s s ( w d o t s i m ( l : 3 , i ) ) * r + f c r o s s ( w s i m ( l : 3 , i ) ) ~ 2 * r ; 
a m i s ( l : 3 , i ) = DELTA*areal2( l :3 , i ) ; 
a s i m ( l : 3 , i ) = a m i s ( l : 3 , i ) + ab; 
a_m( l :3 , i ) = a s i m ( l : 3 , i ) + a n o i s e d : 3 , i ) ; 
q_m(l:4,i) = qsim(l:4,i) + random('norm',0,1,4,1).*qnoisesigmavec; 

end 
wdot_true = wdotsim; 
a_true = areal; 
a_raw = asim; % accelerometer measurement minus the noise 
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°/c (accounts for uncerts) 

3 file_00010_EKF09.m 
clc 
clear 
tic 
printplots = 1; 

Declare simulation parameters 
Jknown = 1 ; % toggle J = Jhat 
% Constants 
constants_smallr 
'/disturbance torques on? 
ampl = 0*0.01; °/0 amplitudes of the disturbance torques 
Tbiasl = 0; % bias on sinusoidal torque 
Tfreql = 0*2*pi/100; '/„ freq for sinusoidal torque 
amp2 = 0*0.01; 
Tbias2 = 0; 
Tfreq2 = 0; 
amp3 = 0*0.01; 
Tbias3 = 0; 
Tfreq3 = 0; 
°/0 clear r 
°/.rci = [0.005; -0.005; 0.005] ; 
°/„ri = rAi + rci; 

0.0001 
0.0007 
0.3142 

widot = 
1.0e-003 

-0.0000 
xO 

0 
0 
0 
-0 
0 
0 
0 

08S0 
0183 
2026 
9751 
0001 
0007 

state_rate = 
i 

Generate simulation data 
°/0use first two lines to change simulation runtime and sensor rate 
EndTime = 500; % was 500 % 5000 averages out random 

% means to close to zero 
state_rate = 0.25;7.0.25; use for experimental 0.02 
7o specify noise levels (variances calculated in next m file) 
qnoisesigma = 0*3.23209*10^-4; 
qnoisesigmavec = 0*[0.0486;0.0485;0.1145;0.1143]*10~-3; 
anoisesigma = 0*1.465*10~-4; 
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% qnoisesigmavec = [0.0486;0.0485;0.1145;0.1143]*10~-2; 

7, specify corruption levels here 
ab = 0*[2;-2;l]*10~-4; '/, m/sec~2 
*/. ab = l*[l;0;0]*10~-4; 
*/. ab = l*[0;l;0]*10~-4; 
% ab = l*[0;0;l]*10~-4; 
delta = 0*[l;l;l]*10~-4; % radians: 1CT-4 » 20 arcsec 
*/. delta = l*[l;0;0]*10~-4; 
7. delta = l*[0;l;0]*10~-4; 
I delta = l*[0;0;l]*10"-4; 
delta = 10*0.01745* [1;0;0]; % 1 degree » 0.01745 rad 
rci = 0*[l;l;-l]*10~-2; % meters 
7. rci = l*[l;0;0]*10~-2; 7. 5cm 
1 rci = l*[0;l;0]*10~-2; 
7. rci = l*[0;0;l]*10~-2; 
ri = rAi + rci; 
gen_sim_data %calls an m file 

7o change "Plant2" to "Plant2_sinusoidaltorques' 
7o in "gen_sim_data" for sinusoidal 
7o torques 

Error using ==> sim 
Error using ==> targetman>throw_make_error at 517 
(SLSF Diagnostic). 

print('-sPlant2','-deps','-r300','-loose','Plant2print.eps') 
print('-sPlant','-deps','-r300','-loose','Plant2subPlantprint.eps') 
7o importTdata 
7o importTdata02_const 

7o check_conv 

run the EKF filter 
% % declare the propagation timestep divisor (dT = state_rate/divisor) 

divisor = 50; 
7. 7. 
7o 7o 7o comp_ekf (q_m,a_m,qsim,wsim,a_raw,a_true, .. . 
7o 7o % state_rate,divisor,anoisevar,RC,J) 
7. 7. 7. pause(l) 
°/o 7o 7o comp_hinf(q_m,a_m,qsim,wsim,a_raw,a_true, . . . 
7o 7o 7« state_rate,divisor,anoisevar,RC,J) 
7o 7o 
% % 7. run_hinf02 
% 7» 7o run_smo01; 
7. 7. 7. run_ekf01 
7. 7. 7. batchab 
7. 7. 
7o 7o 
7! 7! 7. run_ekf08_new02 
7. 7. 7. run_ekf08 
7. 7. 7. run_ekf09 
7. 7. 
Jreal = J; 
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J = Jhat; 
run_ekf46_multtest 
7. run_ekf46 
7. run_ekf43_sliding 
7. run_avgekf 43_smo04 
7. run_hinf23 

plot results 

if exist('images','dir') == 0 
mkdirC images') 

end 
plot_ekf08ekf 
7. 
7. figure(8), plot(esim'); 
7. legendCroll','pitch','yaw') 
7. 
7. figure(9), plot(e2qsim') ; 
7. 
7! 7. 7. 7. 7. plot_ekf08_new01 
7. 
pause(1) 
7. clear Xhat 
7. run_hinf01 
7. plot_hinf01 
f i t t ing cu rve t e s t 

COMMENT HERE DOWN TO GET RID OF BATCH PROCESS 

N = 1800; %Nexp; < for experimental run M should be about 1/4 of a cycle worth 
of samples 

M = 45; 7.101; 7.45 7.21 '/, 45 works better for axis 1 and 2 
7. but worse for 3 

7. 35 is great 7. must be odd 
omegahat = zeros(3,N-M*2); 
fitorder = 6 7. 4 causes a bias in one of the terms 7. 6 works well 
fitline = 0; 7o determines if the fitline plots should be shown 
if fitline == 1 

aviobj = avifile('qfitavi','compression','none','fps',10) 
end 
for s = 1:N-M*2 

point = s+M; 
qfit03 • 7. this calls the fit 

7o function for the quaternion 
qfilt(: ,s) = qfilt_0'; 
qdothat(:,s) = qdot'; 
omegahat(:,s) = omega3(:); 
qhat2(:,s) = y(ceil(M/2),:)'; 

end 
if fitline == 1 

aviobj = close(aviobj); 
end 
errorvarbatchqfilt = var(qfilt' - qsim(:,M:N-M-1)') 
errormeanbatchqfilt = mean(qfilt' - qsim(:,M:N-M-1)') 
figure(41), subplot(2,1,1), plot(qfilt') 
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% figure(12), subplot(2,1,1), plot(t2(M:N-M-l),omegahat¥ 
title('Filtered Quaternion') 
ylabel('Quaternion') 
7. ylim([-l,l]*10~-3) 
subplot(2,1,2), plot(qfilt' - qsim(:,M:N-M-1)') 
ylabel('Quaternion') 
title('qfilt - qsim (q without noise)') 
xlabelC Sample # «34Hz)') 
7. legend(num2str(errorvarbatchqfilt)) 
annotation('textbox',[0.01,0.075,0,0],'string',strvcat(... 
['variance: ' num2str(errorvarbatchqfilt)],['mean: '... 
num2str(errormeanbatchqfilt)]),'FitBoxToText','on',... 
'FontSize',7,'LineStyle','none') 

if printplots == 1 
print -depsc -tiff images\omegahatbatch 
print -dpdf images\omegahatbatch 

end 
errorvarbatchwhat = var(omegahat' - wsim(:,M:N-M-1)') 
errormeanbatchwhat = var(omegahat' - wsim(:,M:N-M-1)') 
figure(12), subplot(2,1,1), plot(omegahat') 
7. figure(12), subplot(2,l, 1) , plot(t2(M:N-M-l) ,omegahat') 
title('omegahat') 
ylabel('rad/s') 
7. ylim([-l,l]*10~-3) 
subplot(2,1,2), plot(omegahat' - wsim(:,M:N-M-1)') 
ylabel('rad/s') 
title('omegahat - wsim') 
xlabelC Sample # «§4Hz)') 
legend(num2str(errorvarbatchwhat)) 
annotation('textbox',[0.01,0.075,0,0],'string',strvcat(... 
['variance: ' num2str(errorvarbatchwhat)],['mean: '... 
num2str(errormeanbatchwhat)]),'FitBoxToText','on',... 
'FontSize',7,'LineStyle','none') 

if printplots == 1 
print -depsc -tiff images\omegahatbatch 
print -dpdf images\omegahatbatch 

end 
7. point = 70; 
7, M = 23 
7. 
7. 
°l qfit02 
N2 = size(omegahat,2) 
M = 51; 7.101; 7.51 7.51 
omegafilt = zeros(3,N2-M*2); 
fitorder = 2 
for s = 1:N2-M*2 

point = s+M; 
wfitOl 7. calls fit function for omega 
omegafilt(:,s) = what2; 
omegadot(:,s) = wdot; 

end 
begin = (N - (N2-2*M))/2 
errorvarbatchwfilt = var(omegafilt' - wsim(:,begin+l:N-begin)') 
errormeanbatchwfilt = mean(omegafilt' - wsim(:,begin+l:N-begin)') 
figure(13), subplot(2,1,1), plot(omegafilt') 
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ylabel('rad/s') 
title('omegafilt') 
subplot(2,1,2), plot(omegafilt' - wsim(:,begin+l:N-begin)') 
ylabel('rad/s') 
title('omegafilt - wsim') 
xlabelC Sample # (@4Hz)') 
legend(num2str(errorvarbatchwfilt)) 
annotation('textbox',[0.01,0.075,0,0],'string',strvcat(... 
['variance: ' num2str(errorvarbatchwfilt)],['mean: '... 
num2str(errormeanbatchwfilt)]),'FitBoxToText','on',... 
'FontSize',7,'LineStyle','none') 

if printplots == 1 
print -depsc -tiff images\omegafilt 
print -dpdf images\omegafilt 

end 
figure(14), subplot(2,1,1), plot(omegadot') 
ylabel Crad/s"2') 
title('omegadot, estimated from q') 
subplot(2,1,2), plot(wdotsim(:,begin+l:N-begin)') 
ylabel Crad/s"2') 
title('wdotsim, real wdot') 
xlabelC Sample # (<34Hz)') 
7. myf f t2 (omegahat (1,:), dT) 
rO = r; 
N3 = size(omegafilt,2) 
for i = 1:N3 

ahat(:,i) = fcross(omegadot(:,i))*r0 + fcross(omegafilt(:,i))~2*r0; 
end 
abreal = mean(areal(:,begin+l:N-begin)' - a_m(:,begin+l:N-begin)') 
abhat = mean(ahat' - a_m(:,begin+l:N-begin)') 
aberror = abreal - abhat 
abpercent = aberror./abreal*100 
figure(15), subplot(3,1,1), plot(ahat') 
title('ahat') 
ylabel('m/s~2') 
subplot(3,1,2), plot(areal(:,begin+1:N-begin)') 
title('areal') 
ylabel Cm/s~2') 
subplot(3,1,3), plot(ahat' - areal(:,begin+1:N-begin)') 
title('ahat - areal') 
ylabel Cm/s~2') 
xlabelC Sample # (@4Hz)') 
if printplots == 1 

print -depsc -tiff images\abiasbatchl 
print -dpdf images\abiasbatchl 

end 
figure(16), subplot(2,1,1), plot(areal(:,begin+1:N-begin)'... 
- asim(:,begin+1:N-begin)') 
title('areal - asim (asim = am w/out noise)') 
ylabel('m/s~2') 
subplot(2,1,2), plot(ahat' - asim(:,begin+1:N-begin)') 
titleCahat - asim (asim = am w/out noise)') 
ylabel('m/s~2') 
xlabelC Sample # (<§4Hz)') 
if printplots == 1 

print -depsc -tiff images\accelcorrectionsbatchl 
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print -dpdf images\accelcorrectionsbatchl 
end 

for i=l:N 
abhatsim(:,i) = -abhat'; 

end 
errormean2nd50ab = mean(-abhatsim(:,floor(N/2):N)'... 
- (a_true(:,floor(N/2):N)'- a_raw(:,floor(N/2):N)')); 
errorvar2nd50ab = var(-abhatsim(:,floor(N/2):N)'... 
- (a_true(:,floor(N/2):N)'- a_raw(:,floor(N/2):N)')); 
figure(17), plot(a_true' - (a_raw' - abhatsim')) 
title ('(aberror) a_{true]- minus a_m adjusted by... 
lumped bias (w\out noise)') 

ylabel Cm/s-2') 
xlabelC Sample # (@4Hz)') 
7. legend(strvcat( ['variance: ' num2str(errorvar2nd50ab)] . . . 
,['mean: ' num2str(errormean2nd50ab)])) 
annotation('textbox',[0.01,0.075,0,0],'string' 
strvcat(['variance: ' num2str(errorvar2nd50ab)],... 
['mean: ' num2str(errormean2nd50ab)]),... 
'FitBoxToText','on','FontSize',7,'LineStyle','none') 
if printplots == 1 

print -depsc -tiff images\acorrectedbatchl 
print -dpdf images\acorrectedbatchl 

end 
toe 

4 run_efk46propR.m 

VL ekfOl - estimate spin rate from just quaternions 
dT = state_rate/divisor; 
7. checkQ 
a = 1; 
b = 1; 
7. a = 1/2; 
7. b = 1/2; 
rci = rAi(l); 
rc2 = rAi(2); 
rc3 = rAi(3); 
r = rAi; 
VL Define P0 xO Q0 and R0 
POO = eye(10); 
abhatOO = zeros(3,l); 
xhatOO = [0;0;0;0;0;0;0.31;abhat00]; 
Qq = eye(4)*10~-97. *5; 7, 11 
Qa = eye(3)*10~-10 7.9 for J unknown; 11 for known 
Qab = eye(3)*10~-20; 7.13; 7.20; 
Q = [Qq, zeros(4,6); zeros(3,4), Qa, zeros(3,3); zeros(3,7), Qab]; 
7, Q = diag([Q_what,10~-20,10~-20,10~-20]); 
Rq = [2,0,0,0;0,2,0,0;0,0,13,0;0,0,0,13]*10'--9; 
7. Rq = eye(4)*10~-ll;7.*100; 7.15 
Ra = eye(3)*anoisevar; 
Ra = eye(3)*10"-8;7.*100 7.5; 7.8; changed 3/23/2011 
R = [Rq, zeros(4,3); zeros(3,4), Ra]; 
VL initialize values for Kalman Filter loop 
Pklkl = POO; 
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Qkl = Q; 
Rk = R; 
xhatklkl = xhatOO; 
abhatkl = abhatOO; 
i = i; 
Xhat(:,i) = xhatklkl; 
°/X 

IX 

7. 
7. 

N = size(qsim,2) - 1; 
Gkhist = zeros(10,7,N-l); 
for i = 1:N-1 

xhatsub = xhatklkl; 
Psub = Pklkl; 
Propagation loop is divided into smaller steps to improve errors 
for m = 1:divisor 

X = xhatsub; 
qO = X(l) 
ql = X(2) 
q2 = X(3) 
q3 = X(4) 
wl = X(5) 
w2 = X(6) 
w3 = X(7) 
abl = X(8); 
ab2 = X(9); 
ab3 = X(10); 
VL formulate linearized A matrix 
AlinO = [... 

0, -l/2*wl, -l/2*w2, -l/2*w3, 
-l/2*ql, -l/2*q2, -l/2*q3,0,0,0] 

l/2*wl, 0, l/2*w3, -l/2*w2, 
l/2*q0, -l/2*q3, l/2*q2,0,0,0] 

l/2*w2, -l/2*w3, 0, l/2*wl, 
l/2*q3, l/2*q0, -l/2*ql,0,0,0]; 

l/2*w3, l/2*w2, -l/2*wl, 0, 
-l/2*q2, l/2*ql, l/2*q0,0,0,0]; 

0, 0, 0, 0, 
0, -5/8*w3, -5/8*w2,0,0,0];. 
0, 0, 0, 0, 

5/8*w3, 0, 5/8*wl,0,0,0]; 
0, 0, 0, 0, 
0, 0, 0,0,0,0]; 

zeros(3,10)]; 
Alind = eye(10) + dT*Alin0 + (dT*Alin0)~2/2; 
Ad = Alind; 
Hcoeff = 1; 
Hcoeff2 = 1; 
Hcoeff =0.5; 
Hcoeff2 =0.5; 

Haw = [[ 13/8*w3*rc3*Hcoeff+rc2*w2*Hcoeff,... 
-2*w2*rcl*Hcoeff2+rc2*wl*Hcoeff,... 
13/8*rc3*wl*Hcoeff-2*rcl*w3*Hcoeff2]; 

[ w2*rcl*Hcoeff-2*rc2*wl*Hcoeff2,... 
13/8*w3*rc3*Hcoeff+wl*rcl*Hcoeff,... 
13/8*rc3*w2*Hcoeff-2*rc2*w3*Hcoeff2]; 

[ 3/8*rcl*w3*Hcoeff-2*rc3*wl*Hcoeff2,... 
3/8*rc2*w3*Hcoeff-2*rc3*w2*Hcoeff2,... 
3/8*wl*rcl*Hcoeff+3/8*rc2*w2*Hcoeff]]; 

Hq = eye(4); 

a*[ 

a*[ 

a*[ 

a*[ 

b*[ 

b*[ 

b*[ 
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Hab = eye(3); 
Ck = [Hq, zeros(4,6); zeros(3,4), Haw, Hab]; 
Akl = Ad; 
Psub = Akl*Psub*Akl' + Qkl/divisor; 

7. xhatsub = Akl*xhatsub; 
xhatsub = func_f(xhatsub,J,dT); 

end 
7.7o back to measurement update portion of ekf loop 

xhatkkl = xhatsub; 
Pkkl = Psub; 
Gk = Pkkl*Ck'/(Ck*Pkkl*Ck' + Rk); 
GkhistC , : ,i) = Gk; 
Pkk = (eye(10) - Gk*Ck)*Pkkl; 

7. rhok = [q_m(l:4,i+l) ;a_m(: ,i+l)] - Ck*xhatkkl; 
rhok = [q_m(l:4,i+l);a_m(:,i+l)] - func_h(xhatkkl,Jhat,r); 
rhokhistC ,i) = rhok; 
xhatkk = xhatkkl + Gk*rhok; 
updatehist(:,i) = Gk*rhok; 
XhatC ,i+l) = xhatkk; 
7. added a plus one to the estimator storage 
X = xhatkk; 
xhatklkl = xhatkk; 
Pklkl = Pkk; 
qhat = xhatklkl(1:4); 
what = xhatklkl(5:7); 
7.formulate ahat from w 

7. 7. wdothat = J\fcross (J*what)*what; 
7. 7o ahat(:,i+l) = f cross (wdothat) *r + f cross (what) ~2*r; 
end 

5 run_hinf26_propR.m 

7Xo ekfOl - estimate spin rate from just quaternions 
dT = state_rate/divisor; 
a = 1; 
b = 1; 
7. a = 1/2; 
7. b = 1/2; 
rci = rAi(l); 
rc2 = rAi(2); 
rc3 = rAi(3); 
r = rAi; 
°/X Define P0 xO QO and R0 
POO = eye(10); 
abhatOO = zeros(3,l); 
xhatOO = [0;0;0;0;0;0;0.31;abhatOO]; 
Qq = eye(4)*10~-97. *5; 7. 11 
Qa = eye(3)*10~-10 7.9 for J unknown; 11 for known 
Qab = eye(3)*10~-20; 
Q = [Qq, zeros(4,6); zeros(3,4), Qa, zeros(3,3); zeros(3,7), Qab]; 
7. Q = diag([Q_what,10~-20,10~-20,10~-20]); 
Rq = [2,0,0,0;0,2,0,0;0,0,13,0;0,0,0,13]*10"-9; 
7. Rq = eye(4)*10~-ll;7.*100; 7.15 
Ra = eye(3)*anoisevar; 
Ra = eye(3)*10~-8;7.*100 7.5; 7.8; changed 3/23/2011 
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R = [Rq, zeros(4,3); zeros(3,4), Ra] ; 
Lk = eye(10); 
7, Sk = eye (10); 
Sk = [eye(4),zeros(4,6);... 

zeros(3,4),10*[1,0,0;0,1,0;0,0,1],zeros(3); 
zeros(3,7),eye(3)]; 

sigma = 0*50000; 
sigma = 1000000; 
7. sigma = 0; 
Sbar = Lk'*Sk*Lk; 
°/X initialize values for Kalman Filter loop 
Pklkl = POO; 
Qkl = Q; 
Rk = R; 
xhatklkl = xhatOO; 
abhatkl = abhatOO; 
i = l; 
XhatC , i ) = xhatklkl; 
IX 

l ; N = size(qsim,2) 
for i = 1:N-1 

xhatsub = xhatklkl; 
Psub = Pklkl; 

°/Xo Propagation loop is divided into smaller steps to improve errors 
for m = 1:divisor 

X = xhatsub; 
qO = X(l) 
ql = X(2) 
q2 = X(3) 
q3 = X(4) 
wl = X(5) 
w2 = X(6) 
w3 = X(7) 
abl = X(8); 
ab2 = X(9); 
ab3 = X(10); 
VL formulate linearized A matrix 
AlinO = [... 

0, -l/2*wl, -l/2*w2, -l/2*w3, 
-l/2*ql, -l/2*q2, -l/2*q3,0,0,0] 
l/2*wl, 0, l/2*w3, -l/2*w2, 
l/2*q0, -l/2*q3, l/2*q2,0,0,0] 

l/2*w2, -l/2*w3, 0, l/2*wl. 
l/2*q3, l/2*q0, -l/2*ql,0,0,0] 

a*[ l/2*w3, l/2*w2, -l/2*wl, 0, 
-l/2*q2, l/2*ql, l/2*q0,0,0,0] 

0, 0, 0, 0, 
0, -5/8*w3, -5/8*w2,0,0,0] 

0, 0, 0, 0, 
5/8*w3, 0, 5/8*wl,0,0,0] 

0, 0, 0, 0, 
0, 0, 0,0,0,0];... 

zeros(3,10)]; 
Alind = eye(10) + dT*AlinO + (dT*AlinO)"2/2; 
Ad = Alind; 
Hcoeff = 1; 
Hcoeff2 = 1; 

a*[ 

a*[ 

a*[ 

b*[ 

b*[ 

b*[ 
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IX 

Haw = [[ 13/8*w3*rc3*Hcoeff+rc2*w2*Hcoeff,... 
-2*w2*rcl*Hcoeff2+rc2*wl*Hcoeff,... 
13/8*rc3*wl*Hcoeff-2*rcl*w3*Hcoeff2]; 

[ w2*rcl*Hcoeff-2*rc2*wl*Hcoeff2,... 
13/8*w3*rc3*Hcoeff+wl*rcl*Hcoeff,... 
13/8*rc3*w2*Hcoeff-2*rc2*w3*Hcoeff2]; 

[ 3/8*rcl*w3*Hcoeff-2*rc3*wl*Hcoeff2,... 
3/8*rc2*w3*Hcoeff-2*rc3*w2*Hcoeff2,... 
3/8*wl*rcl*Hcoeff+3/8*rc2*w2*Hcoeff]]; 

Hq = eye(4); 
Hab = eye(3); 
Ck = [Hq, zeros(4,6); zeros(3,4), Haw, Hab]; 
Akl = Ad; 
Psub = Akl*Psub*Akl' + Qkl/divisor; 
xhatsub = Akl*xhatsub; 

xhatsub = func_f(xhatsub,J,dT); 
end 
back to measurement update portion of ekf loop 
xhatkkl = xhatsub; 
Pkkl = Psub; 
Pkk = Pkkl/(eye(10) + sigma*Sbar*Pkkl + Ck'/Rk*Ck*Pkkl); 
Gk = Pkk*Ck'/Rk; 
GkhistC , : ,i) = Gk; 
hinftestC,i) = eig(Pkk~-l - sigma*Sbar + Ck'/Rk*Ck); 
hinftestlogicC,i) = hinftest(:,i) > zeros(10,1); 
rhok = [q_m(l:4,i+l);a_m(:,i+l)] - func_h(xhatkkl,Jhat,r); 
rhokhistC ,i) = rhok; 
xhatkk = xhatkkl + Gk*rhok; 
Xhat(:,i+1) = xhatkk; 
7. added a plus one to the estimator storage 
X = xhatkk; 
xhatklkl = xhatkk; 
Pklkl = Pkk; 
qhat = xhatklkl(1:4); 
what = xhatklkl(5:7); 
7.formulate ahat from w 
wdothat = J\fcross(J*what)*what; 
ahat(:,i+l) = fcross(wdothat)*r + fcross(what)"2*r; 

end 

"figuredll), setdll,'Position', [100, 100, 650, 200]),... 
plot(hinftestlogic') 

title('H_-[\infty} Test Condition') 
xlabelC Sample # (4Hz)') 
if printplots == 1 

print -depsc -tiff images\hinftestcondition 
print -dpdf images\hinftestcondition 

end 

6 run_avgekf43_smo05.m 

n ekf01 - estimate spin rate from just quaternions dT = state_rate/divisor; 
a = 1; 
b = 1; 

151 



7. a = 1/2; 
7. b = 1/2; 
r c i = r A i ( l ) ; 
rc2 = r A i ( 2 ) ; 
r c 3 = r A i ( 3 ) ; 
r = rAi ; 
7X Define PO xO QO and ] 
POO = eye(10) 
abhatOO = z e r o s ( 3 , 1 ) ; 
xhatOO = [0;0 0 ; 0 ; 0 ; 0 ; 0 
xha tk lk l = xhatOO; 
abhatk l = abh; 
i = 1; 
XhatC , i ) = xl 
7X 
N = s ize(qs im 
Gk = [[0.6755 

0.0000 
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0.0016 

0.0001] 
-0.0005 

0.0000] 
0.0053 
-0.0000] 

-0.0052 
-0.0000] 
0.0011 

0.0091]] 

0 

0 

'6 
-6 

0 

0 

0 

0 

0 
; 
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0002. . 

0110. . 

6755. . 

0019. . 

0004. . 

0020. . 

0089. . 

0067. . 

0003 . . 

7. added *0.1 for known J 

SKwq = [0.25,-1,-1,0.25;... 
0.25,1,-1,-0.25;... 
1,-0.25,0.25,-1]*250*(1/250); 

SKqq = eye(4); 
SKab = zeros(3,4); 
SK = 0.1*[SKqq;SKwq;SKab]*1; 
alpha = 1; 
for i = 1:N-1 

xhatsub = xhatklkl; 
7. Psub = Pklkl; 
"/Xt, Propagation loop is divided into smaller steps to improve errors 

for m = 1:divisor 
X = xhatsub; 
qO = X(l) 
ql = X(2) 
q2 = X(3) 
q3 = X(4) 
wl = X(5) 
w2 = X(6) 
w3 = X(7) 
abl = X(8); 
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ab2 = X(9); 
ab3 = X(10); 
VL formulate linearized A matrix 
xhatsub = func_f(xhatsub,J,dT); 

end 
°/Xt back to measurement update portion of ekf loop 

xhatkkl = xhatsub; 
SKwq = -I*[l*[ql,-q0,-q3,q2];... 
I*[q2,q3,-q0,-ql];... 
5*[q3,-q2,ql,-qO]]*250*0.75; 
SK = 0. 075* [0.125*SKqq; SKwq; SKab] ; 7. added 0.1* for known J 
cutoff = 5*10"-7; 7. 7 works well; 
rhok = [q_m(l:4,i+l);a_m(:,i+l)] - func_h(xhatkkl,Jhat,r); 

7. Surf = rhok (1:4); 
7. Surf = sign(rhok(l:4))*10"-7*8; 

rhok_l = rhok; 
rhok = alpha*rhok; 
for rhoi = 1:size(rhok,1) 

if abs(rhok(rhoi)) > cutoff 
rhok(rhoi) = cutoff*sign(rhok(rhoi)); 

end 
end 
Surf = rhok(1:4); 

7. SK = Gk; 
7. Surf = rhok (1:4). "3; 

SurfhistC ,i) = Surf; 
xhatkk = xhatkkl + Gk*rhok_l + SK*Surf; 7.*0.002; 
XhatC ,i+l) = xhatkk; 
7. added a plus one to the estimator storage 
X = xhatkk; 
xhatklkl = xhatkk; 
qhat = xhatklkl(1:4); 
what = xhatklkl(5:7); 

end 
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