
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Fall 2011

Design and development of a debris flow tracking
"Smart Rock"
Matthew J. Harding
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Harding, Matthew J., "Design and development of a debris flow tracking "Smart Rock"" (2011). Master's Theses and Capstones. 657.
https://scholars.unh.edu/thesis/657

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/657?utm_source=scholars.unh.edu%2Fthesis%2F657&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

DESIGN AND DEVELOPMENT OF A DEBRIS
FLOW TRACKING "SMART ROCK"

BY

MATTHEW J. HARDING
B.S., University of New Hampshire, 2010

THESIS

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Master of Science
in

Mechanical Engineering

September, 2011

UMI Number: 1504949

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 1504949
Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

uest
ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

This thesis has been examined and approved.

Thesis Director, Prof. Barry Fussell

Professor of Mechanical Engineering

Prof. Jean Benoit

Professor of Civil Engineering

Prof. May-Win Thein
Associate Prof, of Mechanical Engineering

Z~ A ^ c j ^ ^ j S o i l

Date

D E D I C A T I O N

In memory of Professor Pedro de Alba.

"Lo bailado nadie te lo quita"
"The dance you have danced no one can take away from you"

April 2, 1939 - February 20, 2011

A C K N O W L E D G M E N T S

There are many people to whom I owe thanks for aiding in the completion of this
project. First is to my parents and family for their love and support with everything
that came my way over the years. Of course, to my beautiful fiance and soulmate,
Amanda, who has already given me more than I could have ever asked for. As well as
to her family for their encouragement and assistance in both of our journeys through
academics and through life.

There were several people directly involved in initiating this project and helping
it to progress: Prof. Barry Fussell, Prof. Pedro de Alba, Prof. Jean Benoit, Prof.
May-Win Thein, and Richard LaHusen. In addition, several other members of the
UNH faculty, staff, and student body provided assistance in varying capacities with
every aspect. This includes Adam Perkins, Sheldon Parent, Sean Wadsworth, Prof.
Radim Bartos, Prof. L.G. Kraft, Graham Cullen, and many others including those
who had begun the project.

There are also a few thanks due to others outside of the University community
including Mike Dawson of Segway Inc., Mark Looney of Analog Devices, and Cheri
Marianetti of Mazzer Plastics.

Without the help of all of these people, as well as many others, this could not
have been completed and I could not have made it to where I am today.

Thank you.

Contents

Dedication iii

Acknowledgments iv

List of Tables viii

List of Figures x

Nomenclature xi

Abstract xiii

1 Introduction 1

1.1 Background 1
1.2 Objective 3
1.3 Thesis Overview 4

2 Inertial Navigation Basics 6
2.1 Introduction 6
2.2 Inertial Navigation Implementations 6

2.2.1 Unaided Inertial Navigation 9
2.3 Strapdown Navigation Algorithms 9

2.3.1 Attitude Calculations 10
2.3.2 Position Calculations 13

2.4 Summary 14

3 Instrumentation 15
3.1 Introduction 15
3.2 Sensors 15

3.2.1 Inertial Measurement Unit 15
3.2.2 Pressure Sensors 19
3.2.3 Calibration 20

3.3 microSD Card 29
3.4 Microcontroller 29
3.5 Firmware 30

3.5.1 Communications 31

v

3.5.2 Initialization and Configuration 32
3.5.3 Data Acquisition and Storage 32
3.5.4 Timing 33

3.6 Packaging 33
3.6.1 Electrical Packaging - PCB Design 34
3.6.2 Mechanical Packaging - Shell Design 34

3.7 Summary 36

4 Noise Characterization and Allan Variance 37
4.1 Introduction 37
4.2 Noise Types 38

4.2.1 White Noise 38
4.2.2 Colored Noise 39

4.3 Overview of Noise Effects in Inertial Navigation 41
4.4 Allan Variance 42

4.4.1 Background 42
4.4.2 Computation Procedure 42
4.4.3 Noise Source Determination 43

4.5 ADIS16367 Allan Variance Testing Procedure 44
4.6 Noise Level Comparisons 46
4.7 Final Noise Model 49
4.8 Summary 50

5 Simulation and Testing 51
5.1 Introduction 51
5.2 Stationary Simulation 51
5.3 Stationary Testing 54
5.4 Motion Simulation 55
5.5 Motion Testing 57
5.6 Discrepancy Reconciliation 58
5.7 Pressure Sensor Testing 62
5.8 Summary 62

6 Application Specific Inertial Navigation Filter 64
6.1 Introduction 64
6.2 Filter Assumptions 64
6.3 Filter Overview 65
6.4 Correction Algorithm 67
6.5 Summary 70

7 Results 72
7.1 Introduction 72
7.2 Experimental Data Acquisition 72
7.3 Tracking Position 73

7.3.1 Raw Data Results 73

VI

7.3.2 Filtered Results: 2 Set Points 74
7.3.3 Filtered Results: 3 Set Points 75
7.3.4 Filtered Results: 5 Set Points 76
7.3.5 Filtered Results: 26 Set Points 76

7.4 Small Motion Resolution 77
7.5 Rolling Motion 78
7.6 Straight Sliding Motion 79
7.7 Summary 81

8 Conclusions and Future Work 82
8.1 Conclusions 82
8.2 Future Work 84

A Detailed Strapdown Inertial Navigation Calculations 87
A.l Introduction 87
A.2 Attitude Calculations 87
A.3 Position Calculations 89

B Firmware 91

C P C B Design 110
C.l Introduction 110
C.2 Powering 110
C.3 IMU Interface I l l
C.4 Pressure Sensor Interface 112
C.5 microSD Interface 112
C.6 PCB Layout 112

D Shell Design 115

E User Manual 118
E.l Introduction 118
E.2 Setup 118
E.3 Recording Data 119
E.4 Extracting Usable Data 119
E.5 Analysis 120
E.6 Example Procedure 120
E.7 Advanced Options: Reprogramming 121

F Navigation Filter 122

G Data Sheets 142

vn

List of Tables

4.1 Noise colors, S(f) ex fa 39
4.2 Summary of Sensor Error Effects 41
4.3 Allan Deviation noise sources 44
4.4 Gyroscope white noise parameter summary 48
4.5 Gyroscope pink noise parameter summary 48
4.6 Accelerometer white noise parameter summary 48
4.7 Accelerometer pink noise parameter summary 49

vm

List of Figures

1.1 Mount St. Helens landslide destruction 2

2.1 Accelerometer diagram 7
2.2 Gimballed IMU diagram 8

3.1 ADIS16367 package 16
3.2 ADIS16367 communication diagram 17
3.3 ADIS16367 block diagram. SPI bus shown on top right 18
3.4 SPI timing diagram 19
3.5 26PC05SMT Pressure Sensor 20
3.6 IMU mounting unit 21
3.7 ADIS16367 gyroscope calibration plots 22
3.8 26PC05SMT pressure sensor calibration plots 28
3.9 Arduino Pro Mini 328 30
3.10 Populated PCB 34
3.11 Smart Rock shell 35

4.1 Example of Allan Variance slopes 43
4.2 Allan Deviation computed from recorded data sets 45
4.3 AVAR plot from ADIS16367 raw data recorded by Analog Devices . . 46
4.4 AVAR plot from ADIS16367 datasheet 47
4.5 Model of IMU noise in time and frequency domain 49

5.1 Mean Euclidean Drift for fabricated signals with average noise values 52
5.2 Time to reach 1 m drift varying white noise level 53
5.3 Raw IMU signals from stationary testing 54
5.4 Mean Euclidean Drift for actual IMU signals 55
5.5 Simulated results for a downhill slide with side-to-side oscillations . . 56
5.6 Experimental results for primarily translational motion 58
5.7 Experimental results for primarily rotational motion 59
5.8 Drift caused by noise and varying levels of sensor bias 60
5.9 Sample time series plot of bias effects 60
5.10 Comparison of errors caused by simple and complex motions with sen

sor noise and bias 61
5.11 Illustrated effect on calculated acceleration by miscalculated attitude. 63

I X

6.1 Filter nominal trajectory example 66
6.2 Filter nominal trajectory with boundaries 66
6.3 Rock crossing boundary after typical inertial navigation equations . . 67
6.4 Filter backtracked to Qcrn = 15° 67
6.5 Example to show how to choose 9crit 69
6.6 Flow chart of navigation filter 71

7.1 Experimental results using only raw data 73
7.2 Experimental results using the filter with 2 set points 74
7.3 Experimental results using the filter with 3 set points 75
7.4 Experimental results using the filter with 5 set points 76
7.5 Experimental results using the filter with 26 set points 77
7.6 Experimental results using the filter, examining small motion resolution 77
7.7 Experimental results from rolling motion without filtering 78
7.8 Experimental results from rolling motion with filtering 79
7.9 Experimental results from sliding motion without filtering 80
7.10 Experimental results from sliding motion with filtering 80

C.l PCB Powering I l l
C.2 IMU interface I l l
C.3 Pressure sensor interface 112
C.4 /xSD card interface 113
C.5 PCB top layer 114
C.6 PCB bottom layer 114

D.l Smart Rock shell, bottom half 116
D.2 Smart Rock shell, top half 117

x

Nomenclature

Inertial Navigation

t Time [s]
tjj Rotation rate in body coordinates [rad/s]
a Incremental rotation angle [rad]
S Skew symmetric matrix of rotation angles [rad]
q Attitude quaternion [-]
C Direction cosine attitude representation [-]
A Matrix transforming body axes at time tk to body axes at tk+i [-]
fb Body force in body coordinates [m/s2]
fg Body force in local geographic coordinates [m/s2]
g Gravity vector in local geographic coordinates [m/s2]
v Velocity in local geographic coordinates [m/s]
L Latitude [°]
nie Matrix to correct for the earth's rotation [rad/s]
ften Matrix to correct for the Coriolis effect [rad/s]

Allan Variance

T Averaging time (bin size)
y Bin averages
a\, AVAR Allan Variance
a A , ADEV Allan Deviation
ARW Angle Random Walk
VRW Velocity Random Walk
N Angle random walk coefficient
B Bias instability coefficient
BW Sensor bandwidth
awhite Standard deviation of white noise process
(jpmk Standard deviation of pink noise process

XI

Instrumentation Communication/Calibration

SPI Serial Peripheral Interface
SS, CS Slave Select,Chip Select
SCLK Clock
MOSI Master Out Slave In
MI SO Master In Slave Out
DIN Digital In
DOUT Digital Out
IRQ Interrupt Request
CPOL Clock Polarity
CPHA Clock Phase
LSB Least Significant Bit
U+- Accelerometer ouput with positive/negative input [m/s2]
K Accelerometer sensitivity matrix [m/s2/LSB]
B Accelerometer bias matrix [m/s2]
baxiS Accelerometer axis bias [m/s2]
PCB Printed Circuit Board

xn

A B S T R A C T

DESIGN AND DEVELOPMENT OF OF A DEBRIS FLOW TRACKING
"SMART ROCK"

by

Matthew J. Harding

University of New Hampshire, September, 2011

This thesis covers the design and development of a Smart Rock sensor package to
be used in U.S. Geological Survey research of debris flow phenomena. This instru
mented Rock, containing inertial sensors and pressure sensors, provides information
about the movement of the flow as well as the pressures seen within the flow. The
goal of the sensor package is to use this information to track the position of a particle
in the flow with an accuracy of 1 rn over the course of 10 s.

It is found that using an ad hoc filtering method provides the required level of
accuracy. Any known positions are incorporated into the filter. Large scale motions
over tens of meters can be distinguished as well as small scale motions on the order of
centimeters. Thus, the data gathered by the Smart Rock can be used to help verify
and refine debris flow models.

xin

Chapter 1

Introduction

1.1 Background

At 7 a.m. on the morning of May 18, 1980, a U.S. Geological Survey volcanologist

reported on the measurements he had just taken of Mount St. Helens from his post

six miles north: no changes from the trends of the previous month. There was nothing

out of the ordinary in the ground temperature readings, sulfur dioxide emissions, or

ground movement compared to the previous month.

At 8:32 that morning, a moderate 5.1 magnitude earthquake struck, centered

in the southwest of Washington State. Within just 15 seconds, this triggered the

largest landslide in recorded history. The volcano's bulge and summit broke into

three enormous masses and began to slide north towards Spirit Lake. With the

debris moving at speeds of up to 150 miles per hour, 23 square miles were buried by

3.7 billion cubic yards of debris. A 14 mile stretch of the North Fork Toutle River

Valley was buried at an average depth of 150 feet. Just below Spirit Lake, the debris

was the thickest with a depth of one mile [1] (see Figure 1.1).

1

Figure 1.1: Mount St. Helens landslide destruction (courtesy of USGS)

The beginning of this slide also triggered the subsequent eruption. This catas

trophic event not only changed the landscape of the entire area, but it brought this

danger to the attention of the general public and to relevant officials.

Clearly, debris flow phenomena merit a level of scientific research and investiga

tion. A greater understanding of these types of flows can increase awareness and

help to mitigate their effects. Theoretical models have been developed for overall

movement of this type of fluid mass, leading to some understanding of the underlying

processes However, experimental verification of these models proves to be challeng

ing.

In 1991, the U.S. Geological Survey (USGS) constructed a concrete flume in the

Willamette National Forest, OR, to recreate debris flow phenomena. In this facility,

controlled experiments are conducted to carefully record data on pressure, depth,

shear stress, etc. within the flowing mass. This instrumentation only allows for

measurements in fixed physical locations at the bed floor or on the surface of the

flow.

Observations from these experiments show that the coarser debris tends to move

2

outwards during the flow, forming "levees" which channelize the interior finer debris,

allowing this finer debris to run for longer distances. The mechanics of this behavior

are still not well understood and cannot be investigated using the tools that are cur

rently available in the flume. Consequently, the ability to measure internal pressures,

debris accelerations and to track the flow would be an invaluable tool.

The USGS has begun to undertake this project. Small, rugged, instrumented

packages were created to be placed in the flume to measure acceleration. Richard

LaHusen, a volcanologist at U.S.G.S., has developed small "Smart Rocks" using a

MEMS accelerometer and a Rabbit microcontroller to log the data. This project is

to be expanded upon.

1.2 Objective

The objective of this research is the development of an instrumented "rock" to be

placed in the debris flow to track particle movement. The proposed Smart Rock pack

age will include a six-degree-of-freedom inertial measurement unit (IMU) to measure

three axes of acceleration as well as rotation about three axes. In addition, two

pressure sensors will be instrumented to measure fluid pressure on the surface of the

Rock. This information will be stored on-board on a /uSD card for post-processing

and analysis. The instrumentation must be powered and be completely enclosed in a

durable and impermeable metal shell. It is desired that the entire device approximate

the size and density of a representative piece of the coarser debris that will be in the

flume.

The inertial measurements of acceleration and rotation rate can be processed

through a series of navigation calculations to find the position and orientation over

time. The inertial navigation process introduces many challenges. Because the mea

surements must be integrated in this calculation, twice for the acceleration data to

3

transform into position, the errors are also integrated. This means, any noise in the

signals can cause position errors that grow very quickly over time. This is especially

true of any uncorrected bias on the signals as is described later.

Microelectromechanical systems (MEMS) sensors will allow the device to be com

pact, low power, and inexpensive. However, their accuracy and noise characteristics

are less desirable than sensors made with other technologies. Without additional

sensors such as a magnetometer, GPS, or sun tracker, the error in position will grow

exponentially. This will severely limit the amount of time over which the calculated

position will be accurate.

Experiments at the U.S.G.S. flume show that accelerations of approximately 10 g

may appear in the slide. Thus, the dynamic range of the accelerometer must surpass

this. The rock rotation rates have not been measured and are estimated to be minimal,

not exceed 200 rpm for short durations or 30 rpm for sustained periods. The slide

created by the flume lasts only up to 15 s. With this information the tracking goal

has been set at tracking position within 1 m over 10 s. It is also desired to record

data from the inertial sensors as well as the fluid pressure sensors for a duration of

at least 10 minutes. From the data gathered by the Smart Rock, theoretical models

of the debris flow can be verified and refined.

1.3 Thesis Overview

Chapter 1 discussed the background and motivation for this project. Next, Chapter

2 introduces the process by which the position is calculated from accelerometer and

gyroscope measurements. Chapter 3 discusses the components of the "Smart Rock"

package including inertial sensors, pressure sensors, microprocessor and firmware,

along with the sensor calibration. Next, noise sources and the Allan Variance method

for characterizing these different types of noise are introduced in Chapter 4. These

4

methods are employed on the inertial sensors to quantify their inherent noise. Simu

lations using the results of the noise analysis are performed in Chapter 5 along with

testing of the sensor package to determine accuracy. It is found that MEMS sensors

are not adequate to provide the desired accuracy. Thus an ad hoc filtering method is

developed in order to constrain the error and improve accuracy. This is discussed in

Chapter 6. Final testing of the package with the newly developed filtering algorithm

and results are presented in Chapter 7. Conclusion and recommendations for future

work are summarized in Chapter 8.

5

Chapter 2

Inertial Navigation Basics

2.1 Introduction

The concepts of inertial navigation are central to the development and implementa

tion of the Smart Rock. In this chapter, we begin by discussing the basics of inertial

navigation and the different physical implementations of inertial navigation systems.

This is followed by the strapdown navigation algorithm, including calculation of at

titude and position using quaternion representation.

2.2 Inertial Navigation Implementations

Inertial navigation uses the inertial properties of sensors in order to calculate the

position and orientation of the system being analyzed. As summarized by Britting

[2]:

"All inertial navigation systems must perform the following functions:

• Instrument a reference frame

6

• Measure specific force

• Have knowledge of the gravitational field

• Time integrate the specific force data to obtain velocity and position

information"

This first function is performed by gyroscopes which measure rotation rate by

examining the effect of rotation on a vibrating mass. The gyroscope output is pro

portional to rotation rate about the sensing axis. From the information regarding

rotation about three mutually perpendicular axes, the orientation, or attitude, can

be found.

accelerometer
housing

Xi

I
displacement
transducer

Figure 2.1: Accelerometer diagram [3]

Measurement of specific force is performed by accelerometers. Accelerometers

can take several forms, but many are variations of the simple pendulum as shown in

Figure 2.1. The motion or deflection of this mass can be related to the acceleration of

the body to which it is mounted. However, accelerometers are not able to distinguish

between inertial acceleration and a gravitational field. This means that information

about the gravitational field must be known to compensate for this being added to

the acceleration measurement.

7

Finally, with known attitude and acceleration, the necessary integrations can be

performed to compute position over time. Typically, this is performed by an on-board

processor in real-time.

Figure 2.2: Gimballed IMU diagram [4]

There are traditionally three ways to implement this inertial navigation system.

The first, and oldest, is called geometric. This uses at least five mechanical gimbals,

as shown in Figure 2.2, to orient the sensors as needed, keeping the axes in a constant

configuration via a servo motor system. This allows the measurements of angular

displacement to be taken directly from the relative position of the gimbals. The next

system, called semi-analytic, is similar to a geometric system but uses only three

gimbals.

Finally, an analytic system uses no gimbals and has the inertial sensors directly

attached to the body in motion. This requires the most computation as direct mea

surements of attitude are no longer available, and it is the least accurate of the three

configurations. However, the mechanical gimbals and the associated servo position-

8

ing system require a significant amount of physical space to instrument whereas the

analytic, or strapdown, system can be implemented in very small packages. Because

of the physical size, short duration of time that will be investigated, and because the

computations do not need to be performed in real-time, a strapdown system will be

used and this will be the only type of system considered throughout the rest of this

thesis.

2.2.1 Unaided Inertial Navigation

The system described here uses only rate gyros and accelerometers, giving relative

inertial measurements (measurements of changes in attitude and position). Typically,

an inertial navigation system uses some other sensor to measure absolute position or

attitude. In a terrestrial or aerospace application, this could be a global positioning

system (GPS) or magnetometer. For a satellite or spacecraft, this sensor could be

a star tracker or sun sensor, giving information on the orientation with respect to

fixed celestial bodies. These sensors are not practical in this application due to

space constraints, depth under debris, and proximity to ferrous material. The lack

of additional sensors proves to be a difficult challenge as discussed in the subsequent

chapters.

2.3 Strapdown Navigation Algorithms

Strapdown, or analytic, inertial navigation takes measurements of rotation rate and

acceleration along with the initial state, and calculates position and attitude over

time. The calculation algorithm to track an object instrumented with strapdown

inertial sensors is fairly straightforward. This process assumes the axes of the triaxial

gyroscope and triaxial accelerometer are aligned in what is to be referred to as the

"body axes". An overview is given here, and this algorithm is discussed more in depth

9

in Appendix A.

2.3.1 Attitude Calculations

Attitude Representations

To calculate attitude over time, the only measurements needed are those from the

three gyroscopes. These measurements can be taken and processed using three pri

mary attitude representations:

1. Direction Cosines: A 3 x 3 direction cosine matrix (DCM) with columns repre

senting unit vectors in body axes expressed in reference coordinates.

2. Euler Angles: A coordinate transformation can be described as three succes

sive rotations about different axes. Euler angles represent these angles which

correspond to angles on mechanical gimbals.

3. Quaternions: A coordinate transformation can also be described by a single

rotation about a vector in the reference coordinates.

Euler angles are theoretically correct, but will not be used because they have in

herent singularities at certain angles. The quaternion method and direction cosine

method are generally regarded as the most accurate, each having their own merits [5].

Accuracy is generally not the only criterion for selecting attitude representation; pro

cessing efficiency is also very important for systems that are navigating in real-time.

While this application does not require real-time processing, quaternion representa

tion is still chosen over direction cosines because of the computational efficiency, and

simple correction to adjust for numerical inaccuracies.

10

Quaternion Algorithm

A quaternion is a four-element tensor which can be thought of as a three-dimensional

vector, corresponding to a vector in 3-D space, appended by a scalar. The quaternion

can also be regarded as a complex number with one real part and three complex parts,

i, j and k. In the context of inertial navigation, the quaternion is defined as follows:

where

and

q =

cosCy2)

(/ i x /^)s in('y 2)

(/iv / / i)sinCy2)

(fiz/fj,) sin (*y2)

/•* = l^x l^y ^z

(2.1)

(2.2)

/ ' • l/*l (2.3)

Notice how q is defined, with a scalar and three components relating to the compo

nents of a 3-D vector.

To transform one coordinate system to another, the first coordinate system can be

rotated about a single vector, fx, by an angle of magnitude fi, into the final coordinate

system. Note that this definition differs from the traditional mathematical definition

of the quaternion. The rotation magnitude, here shown as fi, is typically a separate

variable in applications outside of inertial navigation.

As we can see, the last three elements of the quaternion are proportional to the

three components of £/., while the first element is proportional to the magnitude of \x.

One nice property of the quaternion is that it always has a magnitude of unity. This

11

allows for a simple correction at any point in time. If the quaternion is divided by its

magnitude, it will then have the required unity magnitude. Because computational

speed is not a priority in this application, this correction can be applied at every time

step.

The quaternion attitude algorithm is shown in equations 2.4 - 2.7.

1. Compute the rotation angle, a, over the update time interval by integrating the

rotation rate, UJ.

f i+ l

cr = I w d t = cr?;

<J,.

(2.4)

2. Arrange the skew symmetric £ matrix from these rotation angles.

£ =

0

Ox

ay

c2

-&x

0

- C z

(J

-Oy

Oz

0

— &x

—a

-a

°x

0

(2.5)

3. Update the quaternion with this £ matrix.

q i + i = exp [- | q5
(2.6)

4. Finally, make any necessary magnitude correction.

qi+i
Qi+i

|qi+il
(2.7)

This can be iterated with new gyroscope measurements to compute the attitude

over time. Note that updating the quaternion q; to qi+i can also be done using

quaternion algebra. A quaternion can be made from a (in the same way that it is

12

created from /z in equation 2.1) and multiplied in the sense of the quaternion. The

matrix multiplication from equation 2.6 is mathematically equivalent, but clearer and

more straightforward. Refer to [2], [5], or [11] or Appendix A for more details of the

quaternion attitude algorithm.

2.3.2 Position Calculations

With the attitude computed, we can transform the acceleration measurements from

body coordinates to local geographic coordinates, correct for gravity, integrate to

find the velocity, and integrate again to find position. The equations for computing

velocity are shown here [5]:

1. The direction cosine matrix (DCM) Ct and A^ matrix are derived from the

quaternion, qi, as shown in Appendix A. These transform measurements in

body axes to local geographic axes.

2. Convert specific force in body axes, f;, to inertial force in local geographic

coordinates, if

if = CiAifi (2.8)

3. Correct for gravity and integrate to find velocity

Vi+^Vi + y" (ff-g)dt (2.9)

4. Corrections can be applied for the rotation of the earth, f2ie, and the Coriolis

effect, ilen-

V i+i = V i+1 (l - 2 / ftiedt - / ftendt) (2.10)

We now have a velocity as it changes in time which can simply be integrated to

find position over time.

13

2.4 Summary

In this chapter, we introduced the concepts and equations behind inertial navigation.

The system considered here is an unaided inertial navigation system consisting of

only a triaxial gyroscope and triaxial accelerometer. Typically, these inertial sensors

are not relied on completely and an aided system is used. In an aided system, another

sensor such as a GPS or magnetometer is used to assist in determining position or

attitude. Meeting the desired performance with no additional sensors proves to be a

challenge as described in later chapters.

14

Chapter 3

Instrumentation

3.1 Introduction

In this chapter, we discuss the individual components comprising the instrumenta

tion of the Smart Rock. We begin with the inertial measurement unit, followed by

the pressure sensors, and microcontroller. Calibrations for each of the sensors are

presented. For each of the components, the selection process and implementation

considerations are discussed.

3.2 Sensors

3.2.1 Inertial Measurement Unit

Overview

The inertial sensor used in the Smart Rock is the ADIS16367 from Analog Devices

(see Figure 3.1). This is an inertial system with a triaxial accelerometer and triaxial

gyroscope. Each of the sensor outputs are processed digitally through various levels

15

Figure 3.1: ADIS16367 package (different device shown, courtesy of Digikey)

of calibrations and corrections. They come from the factory calibrated for bias (zero

shift), sensitivity (ratio of change in output over change in input), alignment of sensor

axes, and acceleration-dependent bias on the gyroscopes. It is completely temperature

compensated within the device with internal temperature sensors at each axis. The

data is also passed through two averaging filters, in the form of a Bartlett window, to

act as a low-pass filter, removing any high frequency noise. This filter is adjustable

with maximum bandwidth of 330Hz. Finally, the wide dynamic range of each sensor

is necessary for the dramatic movements that may occur in the debris flow. The

accelerometers span ±18<7, and it is expected that flow accelerations may reach ±10g;

and the gyroscopes can measure up to ±1200°/s or 200 rpm, larger than the expected

angular velocities in the flow.

16

Interfacing a n d C o m m u n i c a t i o n

Communication is accomplished via a Serial Peripheral Interface (SPI) Bus. This is

a four-wire serial communication protocol in which one device acts as the "Master"

and the other acts as the "Slave". The ADIS16367 is configured to act only as an

SPI slave and thus needs the system processor to act as the SPI master as indicated

in Figure 3.2.

The communication lines of an SPI Bus as shown in Figure 3.2 are as follows:

• SS -> CS : Selects the SPI device with which to communicate, this allows several

slave devices to communicate with a single master.

• SCLK —> SCLK : Clock signal sent from master to slave

• MOSI -> DIN : "Master Out Slave In" sends digital signals to "Digital In"

• MISO <- DOUT : "Digital Out" sends digital signals to "Master In Slave Out"

• IRQ <- DIOl : Additional digital signal from the ADIS16367

VDD

SYSTEM
PROCESSOR
SPI MASTER

T

ss

SCLK

MOSI

MISO

IRQ

Figure 3.2: ADIS16367 communication diagram [6]

17

AUX_
ADC

AUX_
DAC

TEMPERATURE
SENSOR

MEMS
ANGULAR RATE

SENSOR

TRI-AXIS MEMS
ACCELERATION

SENSOR

J -
I

£

SIGNAL
CONDITIONING

AND
CONVERSION

CALIBRATION
AND

H DIGITAL
PROCESSING

OUTPUT
REGISTERS

AND SPI
INTERFACE

ALARMS

t - SELF-TEST

ADIS16367

DIGITAL
CONTROL

UM^

POWER
MANAGEMENT

RST DI01 DI02 DI03 DI04/
CLKIN

Figure 3.3: ADIS16367 block diagram. SPI bus shown on top right

The first four lines comprise a standard SPI bus. Additionally, DIOl sends a

"data ready" signal to the Interrupt Request pin to let the processor know when the

next sample is ready. This is also shown in the ADIS 16367 block diagram of Figure

3.3, with the pins for the SPI bus shown on the top right.

The SPI protocol operates in full duplex mode. This means data can be transfered

both ways between the master and slave on each clock pulse. This is accomplished

via the two data lines, MOSI and MISO, contributing to the high data rates that are

possible as compared with other digital communication protocols such as I2C.

The ADIS16367 uses SPI mode 3. There are four SPI modes which are desig

nated by clock polarity (CPOL) and clock phase (CPHA). In mode 3, CPOL=l and

CPHA=1. This means the polarity is high, or the default clock level is high. Also,

18

\ 1 f

(MSB I DB14 If DB13 [0B12 X DB11 V OB10 1

j~vrvf
K DB2 1 DBI K^V

77K ** P H f AS X M r̂ " I A; X/ jlZXZXZMI
Figure 3.4: SPI timing diagram [6]

the clock phase is such that data is sent on the leading (falling) edge and data is

retrieved on the trailing (rising) edge of the clock pulse. This is shown in the SPI

timing diagram of Figure 3.4.

The sensor stores data in a series of 16-bit registers. To read from or write to one

of these registers, two 8-bit data sequences must be transfered via the SPI bus. The

upper byte contains a 0 or 1 in the most significant bit (MSB), to signify a read or

write respectively, followed by the 7-bit address of the register of interest. The lower

byte is a "don't care" byte for a read, or is the data to be written to the register

indicated in the upper byte for a write operation.

For a read operation, once this 16-bit data transfer is completed the subsequent

16-bit sequence contains the data to be read. For different registers, the data may

be represented in a variety of binary representations such as 12-bit offset, 12-bit twos

complement, or 14-bit twos complement.

3.2.2 Pressure Sensors

The pressure sensors selected for this application are Honeywell's 26PC05SMT as

shown in Figure 3.5. In selecting a pressure sensor the following criteria were consid

ered,

• 0-5 psi range

19

• Small size

• Able to measure fluid pressure

• Low voltage and current draw for battery power

PortB

Figure 3.5: 26PC05SMT Pressure Sensor

This MEMS sensor has the required 0-5 psi range for liquid or gas pressure and

has a package that measures only 6 x 7 x 8 mm. It has a suggested input voltage of

10 V at an average current draw of only 2 mA. A Wheatstone bridge configuration is

used to provide a differential output proportional to the difference in pressure between

ports A and B. This interface is described in further detail in Appendix C.

3.2.3 Calibration

Because of the tight calibration specifications on the gyroscopes and accelerometers

(see Appendix G), the procedures discussed here are simply to confirm those specifica

tions. For the pressure sensors, a full calibration must be performed as the specifica

tions are not as tight and the direct sensor output is amplified by an instrumentation

amplifier.

20

Gyroscope Calibration

To perform the calibration, a mounting unit was created with a rapid prototyping

machine. This unit, shown in figure 3.6, uses two machine screws in the precision

alignment holes to keep each axis in line with those of the mounting unit. This

unit also has a custom printed circuit board to attach the IMU connector to a small

solderless prototyping board. With this, leads can easily be attached for powering

and communication. There are three points to mount the unit on a motor. Each of

these points aligns one of the sensor axes with the motor's axis of rotation. It also

has sides that are perpendicular to each sensor axis to allow gravity to be sensed on

a single axis of the accelerometer when it is placed on a flat surface.

' 't •"

• ' • • %

• ^

, •»

Figure 3.6: IMU mounting unit

To calibrate the gyroscopes, the mounting points are used to align the sensor axes

21

with the axis of rotation of a stepper motor. A stepper motor position and speed

can be precisely controlled, making this very useful in calibration. For each of the

axes, the unit is rotated at several know rates in each direction. This gives a total

of 39 calibration points between ±1710°/.s, extending 40% beyond the rated range.

In Figure 3.7 all of these plots are shown with the best-fit line. As can be see, each

of the coefficients of determination is greater than 0.999, thus the sensors show very

linear response well beyond the nominal operating range.

2000

1000

0

-1000

-2000

2000

1000

0

-1000

-2000

2000

1000

0

-1000
cc

-2000

X-Gyro Calibration
1 1 1 1

ox = 0 20702*LSB + 0 12789

R2 = 0 99957

* * * * * * *

i i i i i i i

-8000 -6000 -4000 -2000 0 2000
Measured Bits X-Gyro

Y-Gyro Calibration

4000

~i 1 1 1 1 r

a = 0 2063T.SB + 1 8682

R2 = 0 99971

jar®®"

.©•©• 3 -& -« & '

-0"

_ l i _

-8000 -6000 -4000 -2000 0 2000
Measured Bits Y-Gyro

Z-Gyro Calibration

4000

= 0 20661*LSB+-1 8

R2 = 0 99954

&»**

6000 8000

_J L.

6000 8000

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
Measured Bits Z-Gyro

Figure 3.7: ADIS16367 gyroscope calibration plots

22

The datasheet gives the sensitivity as 0.20±0.002°/.<?/L5i3 (degree per second per

least significant bit). The sensitivities found in this calibration are out of the rated

range, but are rather precise. It was found that the stepper motor control hardware

was driving the motor slower than was commanded. This systematic error comes

from the overhead associated with the pulse commands, causing an additional delay.

With this small delay, the stepper motor will rotate slower than expected, causing

this apparent increased sensitivity. Correcting for this overhead in post-processing

brings the sensitivity within the expected range.

This calibration also shows that the maximum bias is 1.8°/s, which is within

specifications. At a sensitivity of 0.20°/s/LSB, this leads is a bias of nine bits. This

seems very significant, but can be eliminated in post-processing. The data taken

with the Smart Rock will begin and end with a stationary period. This period of

no rotation can show us what the biases on the gyroscopes are, which can then be

subtracted from the output.

The apparent nonlinearities near 0 are attributed to the noise caused by the step

ping action of the stepper motor. When it rotates slowly, the movement becomes

choppy, causing erroneous measurements. This calibration is determined to confirm

the nominal calibration presented on the datasheet with a sensitivity of 0.20°/s/LSB

and zero bias when corrected in post processing.

Accelerometer Calibration

The accelerometer calibration is confirmed by using gravity to apply accelerations

to each axis. The method followed here is that described in [7]. When placed with

gravity acting along one of the positive sensing axes, one point can be taken, and

another when gravity is acting along the negative axis. This gives us a total of six

configurations. From the data taken in these six configurations, the following matrices

can be created,

23

u4

^xx+ ">yx+ uzx+

Lxy+ uyy+ uzy+
, [/_ =

" ' x x - Qyx— @z

i>zy-
(3.1)

These matrices have elements aap± with a as the axis along which gravity is acting,

/3 as the sensing axis, and ± indicating whether gravity is acting along the positive

or negative axis. The values of these matrices are found to be,

U4

292.18 3.25 -20.63

4.31 298.09 -0 .13

-7 .76 0.5649 294.54

U- =

-305.01 -13.24 -0 .68

0.06 -299.55 5.09

-8 .33 7.71 -304.51

(3.2)

The gain matrix, K, can be found from this data by taking the change in input

(2g), and dividing it by the change in the output (U+ — £/+). This is found to be,

0.003349

K= 0.003346 • (3.3)

0.003339

Since only the diagonal terms are of interest, the rest are omitted for clarity. These

terms indicate how each axis is affected by an input on that axis. These elements

shown are within the specifications and only 0.5% off from the nominal sensitivity of

0.003S3g/LSB.

0.1212 -0.1003

K= 0.4705 -0.3824 • (3.4)

3.4750 -0.2796

The off-diagonal terms indicate apparent cross-sensitivities between different axes.

24

The most significant of these could be caused by misaligning the sensor axes with

the gravitational field by only 5.74°. This is within the experimental error of this

procedure. This also confirms the calibration shown on the datasheet.

The bias matrix, B, can also be formed by averaging the U+ and [/_ matrices

element by element. It shows the apparent bias on each axis based on different

inputs. We find that,

-6.419 -5.00 -10.66

B= 2.19 -0 .73 2.48 • (3.5)

-8 .05 4.14 -4.98

The maximum of these biases is approximately 11 bits, which, using the nominal

sensitivity, is equivalent to S7mg or 0.23% of full scale. This is well within the

specifications given as 50mg. However, aligning the sensor with gravity can only

be done within approximately ±3°. It would only take a misalignment of 2.8° to

create an apparent bias of 50mg on any axis. Therefore, this misalignment must be

considered.

To more precisely find these accelerometer biases, the following procedure is de

veloped. This is based on the industry standard tumble test and static multipoint

test as described in [8]. This expanded procedure only requires a flat surface and a

right angle reference on the surface with which to align the sensor. These right angle

reference axes will be called axes 1 and 2 with axis 3 perpendicular to the plane.

Because the surface is not normal to gravity, the axes 1 and 2 are at some unknown

angles with respect to the horizontal, 6 and ip respectively. When the triaxial ac

celerometer is placed on the surface with axes aligned with the reference directions,

a reading is taken. From this, three equations can be written. In this example, the x

axis is aligned with 1, y is aligned with 2, and z is aligned with 3,

25

ax = bx - g sin(0) (3.6)

ay = by - g sin(ip) (3.7)

02 = 62 + 3 cos(0) cos(^) (3.8)

Here, the measurements are represented by aaxiS and the bias that is desired is

baxis- These equations can be linearized about a given (0O, ̂ 0), and the magnitude of

g is 1 (measured in units of <?s), leaving the following,

ax = bx - a6 (3.9)

Oy = by-pi/) (3.10)

az = bz~^f (3.11)

(3.12)

with,

a = cos(V'o) sin(0o) (3.13)

P = cos(0o) sin(^o) (3.14)

7 = cos(i/>o) sin(0o)0o + cos(0o) s i n ^ o ^ o + cos(0o) cos(ip0) (3.15)

These equations are now linear with respect to the biases and misalignment an

gles. With the accelerometer placed in several configurations, many equations can be

developed.

26

or

1 0 0 - 1 0

0 1 0 0 - 1

0 0 1 -a -p

bx

by

bz

9

. ^ .

+

0

0

- 7

- ' -

y = Ax + B

(3.16)

(3.17)

This overdetermined matrix system can be solved using the least-squares method, or

the "pseudo-inverse",

x=(ATA)'lAT(y~B) (3.18)

This finds the accelerometer biases and the angles of inclination of the surface in a

simple fashion. It does not require precise alignment with gravity or any other special

equipment. It is also insensitive to misalignments with the reference axes because the

signal will vary by the cosine of the misalignment, leading to an error of only 1.5%

for a misalignment of 3°.

6.45

0.73

4.99

LSB. (3.19)

Each of these biases for all of the sensors tested are found to be less than 8 bits,

or 27 mg. The bias values for each axis of each sensor can then be subtracted to

eliminate said bias.

27

Pressure Sensor Calibration

The pressure sensor's differential output is amplified by the AD620 instrumentation

amplifier and a I50il gain resistor, then recorded by the microprocessor A/D con

verter. These are both powered by a single 5VDC supply. Because this excitation is

lower than what is recommended for each of these devices, the calibration is found

to be nonlinear. To perform these tests, a shell with the sensors and amplifiers was

placed in a small pressure chamber, and the pressure was varies in small increments.

Two tests are performed to ensure reproducibility, and the results are shown here.

ED
en

800

600

400

?nm

26PC05SMT Pressure Sensor Calibration
" i i i i -

- ^ ^ « - « — w ^ * w .

£$3

j£g, ; 1 1 1

O Testl "
* Test2
i

2 4 6 8
psi

Mean Difference = 1.2235 LSB = 3.9428 rnV

4 6
psi

10

CD 0
CO

D
iff

er
en

ce
 (

L (^

1

^ -r-

- - • — i

.V : i
i i

r 1 ~ —

V y *.

i

10

Figure 3.8: 26PC05SMT pressure sensor calibration plots

The difference between the two tests is shown to be within just a few bits in Figure

3.8, showing that this is reproducible. However, the nonlinearity is very clear, and a

piecewise fit must be made. The fit equation is shown here:

28

pip si) = <

5.7664 x \0~2LSB - 11.7636 for LSB < 209

2.4080 x lO'^LSB - 0.2224 for 209 < LSB < 565

2.1309 x lO-^LSB2 - 0.2168LSB + 55.6052 for LSB > 565

(3.20)

The piecewise fit here, with R? = 0.9990, gives a very high sensitivity in the low

pressure range, which is the greatest region of concern. The calibration has a reduced

sensitivity at higher pressures, but does extend to nearly double the rated pressure

range of 5psi. The need for this piecewise fit can be attributed to the way in which

the sensor and amplifier are powered. The sensor is powered at 5VDC rather than

the suggested +10VDC, and the AD620 amplifier is powered in the same manner as

opposed to the suggested ±10VDC. Had the suggested power supplies been available

in the Smart Rock, this could have been made linear.

3.3 microSD Card

The data that is read from these sensors is written to a text file on a fiSD card. A card

socket breakout board is provided by SparkFun Electronics. This provides gigabytes

of storage in a very small form factor. A standard 4 GB card can store data for 250

hours. Refer to Appendix C for wiring diagram.

3.4 Microcontroller

The logging capabilities are driven by the Arduino Pro Mini 328 based on the Atmel

ATmega328 microprocessor (see Figure 3.9). This is a 3.3V 8 MHz microcontroller

unit that includes analog inputs for the pressure sensors as well as an SPI bus for

digital communication with the inertial measurement unit and the microSD card

29

socket At just 0 7" x 1 3" its small size makes it ideal for this space constrained

application. Refer to Appendix C for a wiring diagram and Appendix G for additional

detail.

Figure 3.9: Arduino Pro Mini 328

3.5 Firmware

The firmware running on this Arduino microcontroller was developed specifically for

this project. Several issues regarding communication between devices are addressed

including the /iSD card, IMU, and pressure sensors. In addition, the methods for

storing the data are discussed as well as other issues and features of the firmware.

Interested readers can consult Appendix B for further information on the program.

30

3.5.1 Communications

First, the microcontroller communicates with the /LXSD card through a standard SPI

interface. The Arduino has one hardware SPI port which is used for this communica

tion line. In order to implement the specific communication protocols required by the

/iSD card, Bill Greiman's SdFat library (licensed under the GNU General Public Li

cense v3) was used (h t t p : / / c o d e . g o o g l e . e o m / p / s d f a t l i b /) . This library includes

all basic functionality for high level commands to create files and write blocks of data

to the card as well as many low level commands. The "raw write" commands were

used to write a simple string of bytes to a file as quickly as possible.

As previously discussed, the microcontroller must also communicate with the IMU

which uses the same SPI protocol. SPI allows for one "master" (the Arduino) and

multiple "slaves" (the IMU or fiSD card) which can be selected by the master via a

simple high or low digital signal. This would allow the card and IMU to share the

single available SPI port. However, these two devices require different SPI modes.

The SPI protocol can be implemented in any of four different flavors. These differ

by the polarity of the clock signal (whether it begins high or low) and the phase of

the clock signal (whether it shifts data out first or latches incoming data first) and

cannot be mixed as would be required for this application. Thus, the hardware SPI

port is dedicated to the / J S D card and a software implementation of an SPI port is

created on four other general purpose input/output (GPIO) lines. This allows for the

SPI protocol to be implemented alongside the hardware bus, but at a lower rate as

the software bus is less efficient.

Finally, the Arduino must communicate with the pressure sensors. These sensors

have a differential voltage output on two analog lines. These are amplified in the

AD620 instrumentation amplifier which changes the differential signal to a single

ended signal. These analog signals are read by the Arduino on-board A/D converter.

31

http://code.google.eom/p/sdfatlib/

3.5.2 Initialization and Configuration

To begin, a configuration file (CONFIG.TXT) is searched for on the /xSD card. This file

shall contain a time for which to delay before recording begins, the desired sampling

frequency, and the duration of sampling. Once this initial data is read, a new file is

created on the fj,SD card to record data.

It is here that the IMU is also configured. This sets the gyroscope measurement

range to ±1200°/.s, sets the parameters for the internal Bartlett filter to reduce the

bandwidth to approximately 50Hz, initializes a correction on the gyroscope bias based

on linear acceleration, sets the DIOl line as a data ready indicator as mentioned

previously, and commands a self-test to determine if there are any problems with the

sensor.

3.5.3 Data Acquisition and Storage

Using the communication protocols discussed above, the sensor readings are taken

from the accelerometers, gyroscopes, and pressure sensors. This data is stored tem

porarily in SRAM (static random access memory). From the two byte word represen

tation, a string of hexadecimal characters is created such that it will be readable in

the destination text file. Every new sample is converted to a hexadecimal string and

concatenated onto the end of this character buffer. The SdFat library writes blocks

of 512 bytes. Once the buffer is filled to this level a card write sequence is initiated.

While writing, a new buffer begins with the next set of incoming data. If there is a

communication failure (i.e. power is lost or the /zSD card becomes dislodged), the

samples that had been written will be uncorrupted and readable, but no further data

can be taken.

32

3.5.4 Timing

The IMU and pressure sensors are polled for a reading at an interval specified by

the desired sampling frequency. This sampling is driven by an interrupt on the

Arduino Timer 1. This is driven by the TimerOne library provided by Jesse Tane

and issued under Creative Commons Attribution 3.0 United States License (h t t p :

//www. arduino . cc/playground/Code/Timerl) . It allows an interrupt to trigger an

interrupt service routine (ISR) at a given interval. With this configuration, writing to

the /MSD card is the primary operation while acquiring new data is interrupt driven.

In the ISR, the sensors are polled, the data is converted to the correct format in

the hexadecimal string buffer, and a counter is incremented. The counter is used to

determine when it is time to write the next block of data to the text file.

3.6 Packaging

With the components selected, packaging must be designed to allow them to function

together while:

1. Keeping the entire Rock as small as possible

2. Matching the density and mass distribution to that of real rock

3. Providing an appropriate interface for the pressure sensors

Adhering to these criteria ensure that the dynamics of the Rock will match that

of true rock. This allows for comparisons with models for the movement of courser

debris.

33

3.6.1 Electrical Packaging - P C B Design

The electrical components are held together on a printed circuit board (PCB), see

Figure 3.10. This board is a 7 cm diameter circle that fits into a shell close to the

shape of a real rock. The board has surface mount pin headers for the Arduino;

the appropriate surface mount header and mounting through holes for the IMU;

holes for a power connection, LEDs, and /iSD card socket; as well as pads for the

instrumentation amplifiers, pressure sensors, capacitors and resistors. More details,

including a schematic and board layout, can be seen in Appendix C.

Arduino processor ^, uSD card holder

3.6.2 Mechanical Packaging - Shell Design

With the electrical components on the circular PCB, a shell is designed to contain

them. This shell, and the interface in particular, are designed to meet the most

34

stringent ingress protection rating: IP68. This requires that the shell completely

protects the contents from dust as well as from water during extended immersion in

water at over 1 m depth. This shell has two halves that are joined with threads. An

o-ring is used to seal the interface.

Figure 3.11: Smart Rock shell

This shell is made of Aluminum 6061-T6 with thickness of at least 3 mm to protect

it from impact with other rocks and the concrete flume itself This shell has a known

volume and density, as well as a known cavity volume. From this, the required mass

to be placed in the cavity is found in order to match the overall density of real rock,

« 2 I9/cm?- Adding a mass of 250 g ensures the correct density.

To provide an interface for the pressure sensors, holes on opposite sides of the rock

are made. These holes allow a small tube to connect to the pressure sensor inside

the rock. These holes also have a countersink, allowing a brass sinter piece with

filtration rating of 40 microns to be inserted and held in place with two set screws

35

This sinter piece will protect the pressure sensor from any material with which it

comes into contact, and provides a conduit between the sensor and the surrounding

groundwater. Further details on the shell dimensions can be seen in Appendix D.

3.7 Summary

In this chapter, a detailed discussion of the instrumentation in the Smart Rock was

given. This included all applicable features of the sensors and Arduino microcon

troller. In addition, the calibration procedures are described for the gyroscopes,

accelerometers, and pressure sensors. The datasheet calibrations are confirmed for

the inertial sensors and a piecewise calibration curve is created for the amplified pres

sure sensor output. Also, the firmware running on the microcontroller is presented

with details on the communication protocols, timing, and data formatting. Finally,

the packaging is discussed in terms of electrical interfacing (PCB), and mechanical

considerations (shell).

36

Chapter 4

Noise Characterization and Allan

Variance

4.1 Introduction

In this chapter, noise types and their sources in electronic devices are investigated.

Their effects related to gyroscopes and accelerometers are then discussed.

Next, the Allan Variance test procedure that is used to quantify noise sources is

presented including the historical context and the computation procedure. It is shown

that noise sources can be determined from the plot of the Allan Deviation (ADEV),

and its application to gyroscopes and accelerometers is discussed. Finally, the testing

procedure and results for the ADIS 16367 IMU are presented. The resulting plots are

shown with full analysis in the following chapter.

37

4.2 Noise Types

4.2.1 Whi te Noise

When signal noise is discussed, one of the first types that comes to mind is so-called

white noise. By definition, white noise is a random signal with a flat power spectral

density. This means it has a completely fiat spectrum from DC to infinite frequency.

If this is true, the constant power integrated over the frequency means the signal has

infinite energy, which is clearly impossible. In reality, this flat power spectrum is only

an approximation. It appears nearly flat over a very broad range, but drops off at

some upper boundary, often in the far-infrared region.

In addition to frequency content, the magnitude distribution is also needed to

characterize the noise. This is typically taken to be a Gaussian distribution with a

given standard deviation, aw, and zero mean.

In electronics, white noise is caused by thermal noise and shot noise. Any dissi-

pative process has some thermal noise caused by thermal fluctuations. For example

the spectral density of thermal noise over a resistor is,

Sn(f) = ±kBTR (4.1)

where ks is the Boltzmann's constant, T is temperature and R is the nominal value

of the resistor. Clearly, this is independent of frequency, and thus is characterized as

white noise.

Shot noise is associated with a DC current flowing through a semiconductor. The

discrete electrons must cross potential barriers, such as those in p-n junctions, causing

discrete changes in current fluctuating about the DC mean. The spectral density of

shot noise is,

38

Sn(f) = 2qJDC (4.2)

where qe is the electron charge and Iuc is the DC current. Again, this spectrum is

independent of frequency and thus falls under the category of white noise [9].

Applied to inertial sensors, white noise introduces Angle Random Walk (ARW) in

gyroscopes and Velocity Random Walk (VRW) in accelerometers. When integrating

a noisy series of zero mean data, a "random walk" phenomenon occurs, with steps

of varying magnitudes in random directions. This causes a drift in the signal whose

standard deviation grows in time.

4.2.2 Colored Noise

In addition to white, noise can come in a variety of colors. These other varieties are

also categorized by their frequency spectrum. White noise is independent of frequency,

and thus the power spectrum is proportional to fa, where a = 0. Other colored noises

are characterized by other exponents. The color designations are not standardized

among all disciplines, but the designations used in this paper are summarized in Table

4.1.

Table 4.1: Noise colors, S(f) oc fa [10]
Noise Color

White
Pink

Brown
Black
Blue

Violet

Proportionality Exponent, a

0
-1
-2

<-2
1
2

Of these other noise types, the only one that will be considered is pink noise.

According to Woodman [11], pink and white noise are the primary types associated

39

with MEMS inertial sensors. This is both because many of the other colored noises

decay faster than pink noise and because of their sources in electronics.

Pink noise is often called " 1 / / " noise due to its power spectrum, or "flicker noise"

because "it can make the light-emitting filament in an old-fashioned vacuum tube

flicker like a candle in the wind" [10]. It arises because of the capture and release

of electrons in certain localized "trap" states in the semiconductor [10]. There is a

distribution of time for this capture and release process to take place which depends

logarithmically on the binding energy. It is found that the log of the distribution of

this binding energy forms a 1/ f spectrum, giving the same spectrum to the movement

of the electrons. The spectrum is given as,

Sn(f) = K { - ^ (4.3)

where Ipc is the DC current, and K and a are device dependent constants. Because

this is a low-frequency phenomenon, in terms of sensor output, it is often regarded as

a change in the bias over time. Thus, this bias instability must also be considered.

In a device where both pink and white noise are present, at some frequency the

pink (flicker) noise will equal the white (shot and thermal) noise. This is known as

the "flicker-noise corner frequency". Above this frequency, white noise dominates and

the overall spectrum is generally flat, while below this frequency the spectrum obeys

the 1 / / power law.

Now that the different types of noise in which we are interested are introduced, a

method to characterize and quantify them is found in the Allan Variance.

40

4.3 Overview of Noise Effects in Inertial Naviga

tion

In addition to the noise types discussed in the previous section, an uncorrected con

stant bias will also be considered. In table 4.2, we see a summary of how each type

of error that is being considered affects attitude and position calculations. This only

considers a single error type (constant bias, white noise, or pink noise) on a single

sensor (gyroscope or accelerometer).

Table 4.2: Summary of Sensor Error Effects [11]

Error
Type

Constant
Bias

White

Noise

Pink
Noise

Description

A constant

bias e
Gaussian noise

with standard

deviation a
Bias instability
modeled as bias

random walk

Gyroscope
Effects

Steadily growing error

6(t) = et
Angle Random Walk

ae{t) = ay/t/f

2nd Order Random Walk

Accelerometer
Effects

Quadratically growing error

S(t) = 4
Velocity Random Walk

crs(t) = <J^Jff

3rd Order Random Walk
as{t) oc i5/2

As seen here, errors in the accelerometer signals grow faster in time than the

same error on the gyroscope signals. This is because acceleration data must be

integrated twice to obtain position, whereas angular rate is integrated only once. From

this analysis, it may appear that noise on the accelerometer is the most significant.

However, noise in the gyroscopes cause errors in attitude. When gravity is subtracted

from the sensed body forces, the correction is then misaligned and adds an apparent

acceleration in a different direction. Thus, both accelerometer noise and gyroscope

noise are very important. This is discussed further in Chapters 5.

41

4.4 Allan Variance

It has now been shown that there are various sources of noise in MEMS sensors and

these different noise types have different effects on the navigation calculations. The

Allan Variance is a method to quantify the noise sources such that the theoretical

errors in calculated position can be estimated.

4.4.1 Background

During his time at the National Bureau of Standards (now the National Institute of

Standards and Technology, NIST), Dr. David Allan worked with characterizing the

stability and accuracy of oscillators for time keeping. He introduced the two-sample

variance, now known as the Allan Variance, as a means of doing so. The Allan Vari

ance (AVAR) is a time domain analysis technique that can be used to determine the

underlying processes that bring about the noise in data. It has since become a pre

ferred method by IEEE [12]. While it was originally developed to quantify the error

statistics of a cesium beam frequency standard employed by the U.S. Frequency Stan

dards from the 1960s, it can be generalized to analyze the noise in any measurement

instrument [13].

4.4.2 Computat ion Procedure

The computation of the Allan Variance is straightforward. Consider a time series

of data from a gyroscope, x-,. Divide this time series into clusters of length r , the

averaging time, and take the mean of each of these cluster. This results in a series

of N cluster averages, y .̂ Square the difference between successive y values and sum

them all. Finally, divide by twice the number of degrees of freedom, N — 1, less

one [14]. This can be calculated for different averaging times r , yielding the Allan

Variance, a2
a, as a function of r . This is represented in the following equation:

42

1
crA{T J>(r)i+1 - y^f (4.4)

2(N -1)

The Allan Deviation, ADEV, is the square root of the Allan Variance, and is used

in a similar fashion as the standard deviation. The value of the Allan Deviation, a A ,

can then be calculated for a series of r values, and plotted on a log-log scale.

Figure 4.1: Example of Allan Variance slopes. [15]

4.4.3 Noise Source Determinat ion

The Allan Variance computation procedure will produce a plot similar to the one

shown in Figure 4.1. Beginning at the lower averaging times, the ADEV decreases

with increasing r . This is analogous to taking a mean over a longer time and having

a lower standard deviation because of the increased number of data points. This

portion of the graph is referred to angle random walk (ARW). This trend changes at

a point where the ADEV begins to flatten and increase. This is due to rate random

walk (RRW), a separate and completely independent noise source in the data [14].

Herein lies the beauty of the Allan Variance procedure. Based on the slopes of

a A vs. r on a log-log scale, the different error types can be identified and quantified.

43

When presented with an Allan Deviation plot such as the one in Figure 4.1, these

characteristics are very evident. Each error type corresponds to a given slope on the

graph, and the deviation due to each can be calculated as shown in Table 4.3. The

values for N, B, etc., are found by finding a portion of the plot with the required

slope. The a value is taken off the plot at a given r in this region, and the value

can be calculated using the given equations. Note that the error types listed here

are in reference to those of gyroscopes, but each of these has an analogous errors for

accelerometers.

Table 4.3: Allan Deviation noise sources [13
Error Type

Quantization
Angle Random Walk

Bias Instability
Sinusoidal

Rate Random Walk
Rate Ramp

Symbol

Q
N
B

L)0

K
R

Allan Deviation

Pquant = \3Q /V

0 white = N/y/T
abias = S/0.6648

as = w0 (sm2(7r/0r)/7r/0r)

Vrw = K^JT/3

Vramp = - R T / A / 2

Slope of ADEV

-1
-1/2

0
Sine Curve

+1/2

+1

4.5 ADIS16367 Allan Variance Testing Procedure

To apply the Allan Variance technique to the ADIS16367, two data sets are recorded

with the sensor held stationary, once for 45 minutes at 200 Hz and once for 2 hours at

100 Hz. The Allan Deviation algorithm is performed on every data string, resulting

in six accelerometer and six gyroscope ADEV plots. A sampling of these can be seen

in Figure 4.2. As discussed previously, the primary noise types of concern are white

noise and pink or flicker noise, causing angle random walk (ARW) and bias instability

respectively, both of which are clearly identified in the ADEV plots. The plots that

are generated all follow the trend as expected with a slope of — 1/2 representing white

noise and ARW followed by a flat portion representing pink noise and bias instability.

44

It can be noted that an upward slope is present in many of these plots, indicating

rate random walk. However, this occurs at averaging times much greater than the

duration of the runs and thus will have minimal effects on the system

Gyroscope ADEV (deg/s) Accelerometer ADEV (g)

10'

10

10'

10
10 10

time (s)
10 10

time (s)

Figure 4.2: Allan Deviation computed from recorded data sets.

45

4.6 Noise Level Comparisons

In addition to the data collected by our test setup, Mark Looney, an iSensor Applica

tions Engineer at Analog Devices, provided us with sample data from the ADIS 16367

taken on their test setup This, along with the noise specifications on the datasheet

can be compared with our own data sets and calculations. Plots for the Allan Devi

ation created by our own tests are shown in Figure 4.2. Those created by the data

provided by Analog Devices are shown in Figure 4.3 and the plots from the datasheet

in Figure 4.4.

Gyroscope Allan Variance
10'

Accelerometer Allan Variance

TO
>
J5
<
o

10"4

104 io~2

I 1

Mean -
+1a •

-1a '

1

: "̂"\l$ 1W\vk
\
\
\
\

0 2
10 10 10

Figure 4.3: AVAR plot from ADIS16367 raw data recorded by Analog Devices

These seem to also have the same shape, beginning with the slope of —1/2 indi

cating white noise and flat area indicating pink noise However, the exact values on

the plots seem to be very different This is because the data was recorded at different

sampling rates To find a directly comparable measurement, we must first obtain

46

irH»-

10 100
Tau (Seconds)

10 100

Tau(Seconds)

Figure 4.4: AVAR plot from ADIS16367 datasheet [6]

the A" and B (see Table 4.3) values off the plots and convert them to the standard

deviation of the underlying noise sequence.

For Angle Random Walk (ARW) of gyroscopes and Velocity Random Walk (VRW)

of accelerometers, the conversion to find the white noise standard deviation is

Vwhite = Ny/BW (4.5)

where N is the ARW/VRW value with units of deg/ \fs or gy/s, BW is the bandwidth

in Hz and the white noise standard deviation value is in units of deg/s or g [16].

Similarly, for bias instability,

B
Vpink (4.6)

y/tX BW

where B is the bias instability coefficient from the ADEV plot in units of deg/s or g,

t is the time at which the ADEV reaches its minimum, BW is the bandwidth in Hz,

and the pink noise standard deviation value is in units of deg/s or g.

Summarized in tables 4.4 and 4.5 are these parameters for the gyroscopes. Also,

in tables 4.6 and 4.7 are these parameters for the accelerometers. Each table provides

values from the datasheet, from Analog Devices' sample data, and from our own two

47

experiments indicated by the subscripts 1 and 2 (i.e. wXil and OJX,2)-

Table 4.4: Gyroscope white noise parameter summary

Datasheet
Analog Devices Data

^ i , i

UJy,l

Uz,l

Wx,2

Uy,2

Uz,2

ARW (° /v^)

0.033
0.034
0.151
0.158
0.131
0.044
0.046
0.037

&white\ /s)

0.954
0.967
2.142
2.233
1.855
0.435
0.459
0.373

Table 4.5: Gyroscope pink noise parameter summary

Datasheet
Analog Devices Data

Wj,l

Wj/,1

wz,l
w x , 2

Uy,2

Uz,2

Bias Stability (%s)

0.0130
0.0183
0.0762
0.0770
0.0738
0.0187
0.0189
0.0162

Stability Time (s)

100.00
33.03
24.00
38.36
22.39
37.91
38.79
45.54

crpink(°/hr)

0.164
0.400
3.960
3.165
3.967
1.094
1.094
0.862

Table 4.6: Accelerometer white noise parameter summary

Datasheet
Analog Devices Data

&x,l

% i

az,i
ax,2

a2/,2

az,2

VRW {mgy/s)

0.340
0.331
0.200
0.132
0.369
0.405
0.347
0.431

crwhite{mg)

9.728
9.480
2.830
1.860
5.214
4.053
3.471
4.314

The final comparisons can be made for the rightmost columns in each of these

tables: the standard deviation of the underlying noise signals. While there is some

48

Table 4.7: Accelerometer pink noise parameter summary

Datasheet
Analog Devices Data

ax,i
G 2 / , l

az,i
&x,2

% 2

az,2

Bias Stability (mg)

0.200
0.579
0.130
0.135
0.347
0.272
0.363
0.361

Stability Time (s)

11.50
1.726
30.97
16.34
10.24
15.95
4.34
12.41

^pinki^g)
2.06
15.39
1.65
2.36
7.67
6.80
17.42
10.25

variation, all of the values in each of these rightmost columns are of the same order

of magnitude. This now gives us a mean and a range for each of these noise levels.

4.7 Final Noise Model

In order to use this data, a final noise model must be created with the parameters

shown in tables 4.4, 4.5, 4.6 and 4.7. We now know the magnitudes of the white and

pink noise on the signals and these can be simulated easily with the average a value

from the appropriate table.

10 20
time (s)

10 20
time (s)

0 50 100 150
Frequency (Hi)

0 50 100 150
Frequency (Hz)

Figure 4.5: Model of IMU noise in time and frequency domain

49

When the sensor is being used in the Smart Rock, it will employ an internal 4-tap

Bartlett filter. This cuts the bandwidth down to approximately bOHz. Additionally,

the data is quantized in magnitude, as the sensor has a digital output. Adding

the Bartlett filter and magnitude quantization yields the following noise model. In

Figure 4.5, we see the simulated gyro output (top) and the actual sensor output

(bottom) compared in the time (left) and frequency (right) domains. As can be seen,

this simulated data using the information from the Allan Variance technique and

processing it in the same manner as the actual IMU produces nearly identical data

strings.

4.8 Summary

In this chapter the general types of noise were described and their sources in elec

tronics were discussed. A method to characterize a variety of noise sources has been

introduced in the Allan Variance. This time domain technique takes a long series

of data and calculates variances based on averaging times. The slopes of this Allan

Variance on a log-log plot distinguish between the noise sources.

The Allan Variance was calculated for the inertial sensors being used in the Smart

Rock, Analog Device's ADIS 16367. It is seen that the plots follow a general trend

as expected indicating ARW and bias instability. From these, the underlying noise

standard deviations are determined.

Finally, a noise model is made which includes the white noise, pink noise, the

IMU's internal digital filter, as well as quantization effects.

50

Chapter 5

Simulation and Testing

5.1 Introduction

With the data that has been gathered, a "virtual IMU" can be made with simulated

data and this can be compared to the true inertial measurement unit (IMU). The vir

tual IMU will allow us to vary parameters to distinguish the important effects on the

signals. Conditions where the IMU is stationary and undergoing various motions are

considered and compared. Additionally, testing procedures for the pressure sensors

are discussed.

5.2 Stationary Simulation

Now that these noise parameters have been determined and a satisfactory noise model

has been created, signals can be created with these levels of noise to see their effect on

the navigation process. A stationary virtual IMU will first be considered with white

and pink noise added to the clean signals. Once one of these signals is run through

the navigation algorithm, the Euclidean drift can be computed simply by taking the

51

norm of the position vector. This gives us a single performance measure to consider.

First, using the mean values of the noise levels from tables 4.4, 4.5, 4.6 and 4.7,

a simulation is run. Because of the stochastic nature of these noisy signals, several

simulations are run with the same parameters and an average can be taken to find

the mean Euclidean drift. In Figure 5.1, 100 simulated signals are performed. This

shows there is a range over which the drift can reach in the given 10 s with a mean of

1.06 m and a standard deviation of 0.55 m. This drift appears approximately linear

on the log-log plot.

Drift From 100 Simulated Signals

i*= 4
Q
03
CD

1 2

LU

y

mean

• l l o -

Max Drift at 10 s: 2.421
Min Drift at 10 s: 0.11483

time (s)

10

10
CD

LU

10'
10'

_ l I • • < • i i I

1 m drift at 9.72 s

10'' 10"
time (s)

j i 11111 1—i—i—• • • • •

10*

Figure 5.1: Mean Euclidean Drift for fabricated signals with average noise values

These initial results for average noise values look promising, but other noise pa

rameters must be considered. The effects of different levels of white noise and pink

noise must now be considered. First using the average values for pink noise, the levels

52

of white noise are varied on both accelerometers and gyros, creating a contour plot.

The color represents the time it takes to reach 1 m drift with different combinations

of white noise on each of the sensors. The ranges considered here include the range

found from the ADEV analysis found in tables 4.4, 4.5, 4.6 and 4.7, plus and minus

one order of magnitude. Thus, the sensor noise levels will most likely fall near the

center of the plots. In Figure 5.2, the center of the plot shows approximately 10 s,

which is exactly what is desired. The broader region in the middle of the graph shows

between 8 and 12 s, which is also acceptable.

A similar analysis can be made for variations in pink noise. In Figure 5.2, we see

another surface plot representing the time it takes to reach 1 m drift for different

noise levels, this time varying pink noise. This appears to be a random pattern sug-

Time to reach 1 m drift (s)

log10(Acc White Noise) a (mg)
Time to reach 1 m drift (s)

log10(Acc Pink Noise) a (u.g)

Figure 5.2: Time to reach 1 m drift varying white noise level.

53

gesting very little effect of variations in pink noise on overall performance. Woodman

concludes that, for periods of 1 - 10 seconds, white noise has a much more dominant

effect than pink noise [11]. This is in good agreement with our findings here, and

only white noise will be considered in further simulations.

5.3 Stationary Testing

Several strings of data were then taken from the actual IMU to compare how the

drift propagates. In Figure 5.3, an example of the raw data taken during these tests

is shown.

Figure 5.4 shows a plot similar to 5.1, but this time using the actual IMU data.

For 20 actual signals from the IMU, we see an average drift at 10 s of 0.57 m with

a standard deviation of 0.19 m. While this is somewhat lower than the simulated

05

o

<_>
<_>
TO

•0 5

to

o
to
o

Stationary Acceleration Data

6 8 10
time (s)

Stationary Gyroscope Data

12

I 1 1 1 1 1

_

1 1 1 . 1 1)

a
X

y "

a z

1

14 16

Figure 5.3: Raw IMU signals from stationary testing

54

£ 4

Q 3

CD A

10

c 10
CO
CD

T 3

LU

10""
10"

Drift from 20 IMU Signals

• ± 1 o

Max Drift at 10 s: 0.91717
Min Drift at 10 s: 0.21036

10"

time (s)

1 m drift at 13.2 s-

• i i • •• I i 1 — I . I i i i H i 1—l l l . l l.j-l i i I. .i, I i i I

10" 10u

time (s)
10' itr

Figure 5.4: Mean Euclidean Drift for actual IMU signals

results, the mean of the test data is within the l a of the simulated mean. Thus, it

is confirmed that the drift, when stationary, will remain in the range of 1 m after a

period of 10 s.

5.4 Motion Simulation

In order to simulate motions, four virtual IMU data sets were created to represent

four different motions down a 31° slope over a length of 60 m. These sets represent:

1. A straight slide down 60 m

2. Sliding down the 60 m while oscillating side to side

55

3. Rolling straight down the entire length

4. Sliding down while oscillating in the two transverse directions

These are all simple motions that are representative of what the Smart Rock may

actually encounter in the slide. The fourth motion was simulated because it can be

easily tested by carrying the IMU over a 60 m length, as it will experience these

random vibrations in the transverse directions.

For each of these sets, the prescribed noise was added and run through the nav

igation calculations. The results for the second set is shown in Figure 5.5 as an

example.

Simulated Sliding while Oscillating

Figure 5.5: Simulated results for a downhill slide with side-to-side oscillations

56

This shows the rock moving along the 31° slope over distances of approximately

60sin(31°) = 30.90m in the downward direction and 60cos(31°) = 51.43m in the

North direction. This also distinguishes the 1 m amplitude oscillations in the East

direction. At the end of the slide, the error is 0.13 m. Similar results are found for

the other motions. Each of these has errors less than 1.5 m after ten seconds. This

appears to meet the original goal, but in the next testing section, we see this is not

realistic.

5.5 Motion Testing

In order to experimentally validate these simulations, actual data sets must be taken

of similar motions. The second simulated data set as described in Section 5.4 is used

for this. This simulated data set is recreated experimentally by having a subject hold

the Rock in one hand while running 60 m. This moves the IMU the desired 60 m

while introducing oscillations in a transverse direction. The results from this data set

are now discussed.

In Figure 5.6, we see what should be 5 seconds of no movement, followed by 19

seconds of movement over the 60 m, and 6 seconds with no motion at the end. After

10 seconds of motion (at the 15 second mark), the error has grown to 200 m. At the

end of the run, the error has grown to 927 m and continues to increase quadratically,

past the 24 second mark when it should be stationary. This clearly does not match

the simulations as described in Section 5.4.

While the previous test was primarily translation with limited rotation, now a

test with primarily rotational motion and limited translation is discussed. This test

rotates the Rock about all three axes at varying rates with translational motion that

is limited to 5 cm in any direction. This is to further exemplify the errors caused

by different motions. In Figure 5.7, the error caused during this motion is shown.

57

200
Position Calculations from Experimental Data Translation

-400

"D

O

-1000 -

-1200

-1400

Figure 5.6: Experimental results for primarily translational motion

Again, this begins with a period of no motion, followed by the remaining time under

rotation. In this experiment, the errors accumulate very quickly, reaching 1 m after

0.5 s, and over 800 m after 10 s.

5.6 Discrepancy Reconciliation

Because the experimental data and simulations do not match, this difference must

be reconciled. What was not yet considered in the simulations was a constant bias

on cither the accelerometer or gyros. A first order analysis shows that a bias on

the accelerometer would integrate twice and directly cause a quadratic drift. The

specifications for the ADIS 16367 show that this bias is within ±50mp on each axis.

If all three axes are at the extreme value while staying in spec, this would cause an

error of 220 m after 24 seconds. This is not enough to account for the errors seen in

58

the previous section. Gyroscope bias cannot be examined as easily.

To examine gyroscope bias and to fully understand the interaction between each

sensor bias, noise, etc., simulations from set 2 as introduced in section 5.4 are run

with varying levels of bias on each sensor to find what amount of drift this may cause.

This produces plots similar to those shown in the Stationary Simulation section 5.2.

Figure 5.8 shows the drift levels caused by noise and varying levels of accelerometer

and gyro bias.

Here we see the error is rather insensitive to accelerometer bias, but very sensitive

to gyroscope bias. With all three gyroscopes in spec, but at the maximum allowable

value of bias at 3°/s, an error of over 3000m will occur. A bias of less than l°/s would

be necessary to account for the errors that were shown experimentally. An example

time series of this is shown in Figure 5.9.

Additionally, it is seen that errors in the calculated position over time is motion-

dependent. For simple motions, such as a simple translation in one or two dimensions,

Position Calculations from Experimental Data Rotation

£
a
o
f,n
o
LL

() <t>

o
<D

u

400 r

200 -

-200 -

-400 -

-600 -

-800 -

-1000 -

-1200 -

-1400 -

-1600 -

time (s)

Figure 5.7: Experimental results for primarily rotational motion

59

Bias-Induced Error at end of slide (m)

Figure 5.8: Drift caused by noise and varying levels of sensor bias

Example of Drift Time Series (t>acc = 20 mg, b^m = 1 °/s)

800 r 1 1

time (s)

Figure 5.9: Sample time series plot of bias effects.

the calculated errors will be much lower than what is calculated from a more complex

motion, such as the oscillations described in the Motion Testing Section 5.5. To show

an example of this, cases 1 and 4 from section 5.4 are compared in Figure 5.10.

60

Case 1) Section 5 4 Case 2) Section 5 4

5 10
time (s)

'
N
E

Down

•

•->

5 10
time (s)

15

Figure 5.10: Comparison of errors caused by simple and complex motions with sensor
noise and bias.

On the left, the calculated position from a two dimensional translation is shown.

This is calculated from a simulated signal with the noise model described previously

with no bias. This position shows the movement is almost exactly 60 m as desired.

On the right, the error calculated over a motion experiencing oscillations is shown for

comparison. This simulates the same motion, with added rotational oscillations. As

can be seen, the errors accumulate quadratically and the error at the end of the slide

is well over 300 m due to the increased complexity of the motion.

This type of oscillatory motion will necessarily be encountered during a slide.

Thus, it can be concluded from this simulation and testing that it will not be SLifficient

to use only the inertial data to calculate position.

61

5.7 Pressure Sensor Testing

In order to test the pressure sensors, the Rock was first placed in a pressure chamber

of air. A known pressure can be applied in air and this is measured by the sensors.

This was the same procedure used to calibrate the sensors. Unsurprisingly, these

results match perfectly with the applied pressure in air.

This was also tested in water, submerging the Rock to a depth of 27.7" for 1 psi

and to 55.4" for 2 psi. This proves the sensors' ability to measure both gas and liquid

pressure.

Finally, the dynamic response was tested by submerging quickly submerging the

Rock in water and removing it. This was also done after sitting in dry air for 10

minutes, then again after sitting in dry soil for 10 minutes. Each of these showed

the same dynamic response. While it was only tested up to « 5 Hz, this is near

the maximum we expect to see. This shows that preparing the pressure interface in

advance and allowing it to partially dry will not allow enough air to enter the system

that it would affect the dynamics.

5.8 Summary

Simulation of a stationary IMU suggests the errors caused by this noise should not

exceed a few meters after 10s. This stationary simulation is verified experimentally.

However, testing and simulations of the IMU in motion show the errors will grow at

an unacceptable rate. This error can be attributed to the uncertainty in attitude.

When correcting for gravity in the navigation calculations, 1 g is subtracted from the

global downward direction. Because the attitude is now known with high accuracy,

this subtraction of 1 g to correct for gravity is subtracted in the incorrect direction.

This causes a fictitious acceleration in a different direction. This is illustrated in

62

Figure 5.11.

Acceleration incorrectly
transftxmed into global
coordinates

l g Calculated
acceleration

Figure 5.11: Illustrated effect on calculated acceleration by miscalculated attitude.

It is deemed that, using only the inertial data will not be sufficient to accurately

calculate the position of the Smart Rock during a slide. In the next chapter, an ad

hoc filter is created to bound the position errors, improving the performance of the

navigation algorithm. This new algorithm will then be tested via simulation and with

field tests.

It has also been shown that the pressure interface will perform adequately in

both air (gas pressure) and water (liquid pressure), and that the dynamics will not be

affected by the minimal amount of air that may enter the system during preparations.

63

Chapter 6

Application Specific Inertial

Navigation Filter

6.1 Introduction

It has been shown that the unaided inertial navigation system will not provide suffi

cient accuracy in this application over the time frame that is desired. In this chapter,

an ad hoc filter is created using the information that is known about the trajectory

and velocity. The filter will constrain the calculated position to a cylindrical region

about a known nominal trajectory.

6.2 Filter Assumptions

In order to create this ad hoc filter, the known information about the position and

velocity must be considered.

• Initial position will be set as the origin.

64

• Final position will be known (after finding the Smart Rock at the bottom of

the flume).

• Intermediate positions may be known from cameras focused on the slide. How

ever, this will not give accurate information about orientation or velocity.

• The beginning, end, and any known locations in between will be referred to as

"set points".

• Nominal trajectories can be found, connecting subsequent known set points

with straight lines.

• The Smart Rock will stay within a finite distance (« l m) of nominal trajectory

between the known set points. This forms cylinders between each of the set

points.

• When reaching the outer edges of these cylinders, the velocity can have no

component pointing further away from the nominal trajectory.

We will now use these assumptions to develop a simple correction algorithm that

will increase the accuracy of the calculated position.

6.3 Filter Overview

In this section, an illustrated overview of the filter is given, which is built upon in the

next section with further detail.

First, the set points are found (points of known position). Between these, a

nominal trajectory can be created. This is shown in Figure 6.1.

The position is constrained to a region about this set point. As illustrated in

Figure 6.2, a i m deviation is allowed.

65

Start

End

Figure 6.1: Filter nominal trajectory example.

When beginning the filter, the typical inertial navigation equations are used. At

some point, the position of the Rock will be calculated to cross the allowed boundary,

as shown in Figure 6.3.

Once this occurs, it is known that the position is inaccurate and a correction must

occur. The position is back tracked until the angle between the velocity and the

nominal trajectory is some selected 9mt. In Figure 6.4, this is shown as 15°.

At this point the correction is made, both the attitude and velocity is rotated

Figure 6.2: Filter nominal trajectory with boundaries.

66

Figure 6.3: Rock crossing boundary after typical inertial navigation equations

Figure 6.4: Filter backtracked to 9crit = 15°.

such that it is pointing down the slope. This allows the typical inertial navigation

algorithm to continue from this point on a corrected trajectory.

6.4 Correction Algorithm

The filter algorithm uses all the components described in Chapter 2 regarding the ba

sics of inertial navigation. Just as described, this algorithm loops through time steps

67

calculating the attitude quaternion from the gyroscope measurements, transforming

accelerometer measurements from body axes to local geographic axes, correcting for

gravity, and integrating twice to obtain position.

In addition to these basic calculations, at each time step, the distance between

the current position and the nominal trajectory is calculated. If this distance is

greater than some selected dcrit, a correction must be made. The angle, 9, between

the nominal trajectory and the velocity vector is calculated. This angle is a measure

of how quickly the position is diverging from its assumed nominal trajectory. The

filter then steps backwards in time until this angle is less than some selected 9crit.

This condition indicates that the Smart Rock is heading close to the correct direction.

At this point, the velocity vector is rotated such that it is parallel to the nominal

trajectory, ensuring that the position is no longer diverging. The attitude quaternion

is rotated in the same manner.

The parameters d^u and #„.# are chosen based on the expected motion for a

given experiment. A greater d^u allows greater deviation from the expected nominal

trajectory. The angle 9crit is chosen based on the expected volatility of the motion.

An example for 2D motion is shown in Figure 6.5.

Lower values of either dcrit or 9crit put greater restrictions on the motion of the

Rock and should be chosen according to the individual situation. This correction

scheme is summarized in the following pseudo-code.

At each time step

Calculate attitude quaternion from gyro measurements

Calculate acceleration in local geographic coordinates

Correct for gravity

Integrate to find velocity

Integrate to find position

68

Highe example
cnt

-0.5

4 5 6
x position

Low 0 example
cnt

10

c 0.5
o
I o
a.
^ - 0 . 5

-1

1

y

1

*> - 4 ~ ™

1

"-+-

1

1

^

i

1 >

^ \

Xcnt

1

' - i—

i

— i - ^ "

1

y
i

-

/

0 10
x position

Figure 6.5: Example to show how to choose 9crit

d = d i s t ance away from nominal t r a j e c t o r y

i f d > d_c r i t

t h e t a = angle between v e l o c i t y and nominal t r a j e c t o r y

backtrack t o where t h e t a < t h e t a _ c r i t

r o t a t e v e l o c i t y and a t t i t u d e towards nominal t r a j e c t o r y

end

end

With this method, a nominal trajectory is created from known positions at known

times. The calculated position of the Smart Rock is forced to be within d^u meters

of the nominal trajectory.

In addition to the corrections shown in the preceding pseudo-code, situation de

pendent options can be used in the filter. If it is determined that the Smart Rock is

moving primarily in a vertical plane, its motion can be restricted to two dimensions.

This is done by removing any portion of the sensed body force (in local geographic

69

coordinates) normal to this plane. Similarly, if it is determined that the Smart Rock

is moving primarily in a horizontal plane, such as at the bottom of the slide where it

may be moving on flat ground, the vertical component of the body force is removed,

restricting motion to the horizontal plane.

Finally, this entire filter and correction algorithm is incorporated into something

similar to the Kalman Smoother [17]. This takes the whole filter, runs it forwards in

time as well as backwards in time. The two resulting data sets can then be averaged

together in some fashion. A simple weighting that changes linearly in time can be

used, allowing the early points to be mostly affected by the forward filter and the

later points to be mostly affected by the backwards filter. This results in three total

sets of results to examine; forward, backward, and smoothed; each which may be used

for extracting different information about whatever may be desired.

While this does bound the error of the calculated position, there are some concerns.

It is known that noise on the gyros causes errors in calculated attitude. Because of

this attitude error, the measured body force from the accelerometers is not correctly

transformed from body axes to local geographic axes. When the gravity vector in

the local geographic downward direction is subtracted from this inaccurate body

force, a fictitious acceleration component is added. When the acceleration is double

integrated, a parabolic trajectory can be seen, caused by the fictitious acceleration

component.

This algorithm is also illustrated in the flow chart in Figure 6.6.

6.5 Summary

In this chapter, due to the need for more accurate position calculations, a simple

filtering algorithm has been created. This takes any known locations of the Smart

Rock, incorporating at a minimum the start and end points, and forces the calculated

70

Mo

Find gravity

vector from

data wh i tes t !

increment

time

Read gyros to

calculate new

attitude

Read accelerometers and

transform from body axes

tolocalgeographic axes

Integrate to

find position

Is position outside of

cylindrical region about

rtom in al traje ctory ?

Yes

Reorient attitude such that

velocity vector is parallel

to nominal trajectory

t
Move backwards in time

until angle between velocity

vector and nominal

trajectory is < 8 M

X

Figure 6.6: Flow chart of navigation filter

position to follow a trajectory moving through these points.

Motion is restricted to a cylindrical region about a nominal trajectory, bounding

the error as desired. If more restrictions are deemed appropriate for a given experi

ment, the motion can be restricted to two dimensions in either a horizontal or vertical

plane. This data can also be run through a forward and backward smoother to give

a final result for the calculated position.

71

Chapter 7

Results

7.1 Introduction

Now that the need for a filter has been determined and the filter has been developed,

this chapter discusses the results and performance of the IMU system with the filter.

In order to properly evaluate its performance, datasets that are representative of

that in the slide must be taken experimentally. Using various tuning parameters and

different numbers of set points, the overall efficacy of the filter can be determined. It

is found that the filter is able to provide highly accurate position estimates given few

known intermediate positions.

7.2 Experimental Data Acquisition

In order to obtain the necessary experimental data sets, the Smart Rock is trans

ported over a distance of 50 m by holding the device and quickly running along a

straight path. This induces movement primarily in one direction, with low amplitude

oscillations in the position, as well as low rotation rates. These characteristics de-

72

scribed for this experimental data set match very well with what is expected in the

flume.

In order to measure the absolute position, video tracking is used. Several markers

are placed along the course that are used to mark the distance traveled. The video

captures at what times the rock passes each of these points, providing 26 known 3D

coordinates along the path.

7.3 Tracking Position

The data from the previously described test has been obtained and is now used in

several ways to track position. First, just the raw data is used in the process described

in Chapter 2. Following this, the filter developed in Chapter 6 is implemented. This

is done with different numbers of known positions, or set points, taken from the video

to find how this affects the overall accuracy.

7.3.1 Raw Data Results

Raw Data Results Camera Data Position
100

-100

I -200 o
a.
I -300 •
=3
±J

ro
° -400

-500

-600
0

•

. N
E
Down

\
\

\
\
\

\ \ \ \
s

\

5 10
time (s)

15 20

0

-5

-10

-15
B
| -20

£ - 2 S r

e-30

-35

-40

-45 - -E
Down

0 5 10
time (s)

15 20

Figure 7.1: Experimental results using only raw data

73

Using solely the raw data, the position is calculated. The results from this are

presented in Figure 7.1. The Smart Rock is oriented such that East is pointing in the

direction of motion. When compared with the true 3D coordinates found from the

video, the calculated position is seen to have errors that grow very quickly. The error

grows to 33.1 m after 10 s and to over 200 m at the end of this run.

7.3.2 Filtered Results: 2 Set Points

As was seen, the errors grow unacceptably when using only the raw data. Here, the

filter is implemented with two set points, at the beginning and end of the run. In

this run, as well as those following that use the filter, the parameters for the critical

distance and critical trajectory angle are set at d^u = 1.5m and 9crit = 30° based on

the type of motion.

RMS error = 2.6277 m
~i 1 1 r

20

Figure 7.2: Experimental results using the filter with 2 set points

Figure 7.2 shows the results from the smoother, using data from the forward and

backward filters. This forces the position to begin and end at given locations. As

marked by the circled points, the set points constrain the error to relatively low

values. In the middle of the run, there is another section where the error decreases.

This results from the averaging method used to create the smoothed data set. The

74

accuracy can be quantified by the root-mean-square (RMS) error over this run, which

is 2.63 ?Ti.

7.3.3 Filtered Results: 3 Set Points

Now, one additional set point is added in the middle of the run to see how the accuracy

improves. This result is shown in Figure 7.3.

RMS error = 2.4352 m

0 2 4 6

Figure 7.3: Experimental results using the filter with 3 set points

The error at the beginning and end remain low, while the error in the middle

of the run is further decreased. Overall, this has the effect of decreasing the RMS

error slightly from 2.63 m to 2.44 m. While these data sets naturally have a drop in

the calculated error in the middle of the run with just two set points, this may not

appear when experiencing other motions. In another case where this is not present,

the added set point in the middle of the run will improve the RMS error to a greater

extent.

It can be noted that the middle set point, a point with known position, appears

to have a non-zero error. This can be explained as follows. Set points are used to

create the nominal trajectories, and these nominal trajectories are used to bound the

position. As long as the position remains within the bounded region, it is assumed

75

to be of reasonable accuracy. Bringing the error at these points to identically zero

would require further correction. Additional corrections reduce the filter's ability to

distinguish small scale motions. Thus, having zero error has been sacrificed for small

scale motion resolution, while maintaining the desired accuracy.

7.3.4 Filtered Results: 5 Set Points

Continuing with this trend, two more set points are added, for a total of five. This

greatly reduces the portion of time when the error grows relatively high. The overall

effect is to reduce the RMS error further to 1.39 m.

RMS error = 1.3874 m
o

E 2 5

>r
 A

ft
er

 F
ilt

e
ri

n
g
 (

->

en

ro

UJ 0.5

1 i

n
: / \

»—-"""""i i

1

V"

i

- i

"*^e /

i

1 1 !

^ N , /

1 1 1

I 1

-

A
\

10 12

time (s)
14 16 20

Figure 7.4: Experimental results using the filter with 5 set points

7.3.5 Filtered Results: 26 Set Points

Finally, all of the set points gained from the video data will be used with the filter.

This will help to set a theoretical minimum for the RMS error. These points are

now spaced very tightly throughout the time where motion is greatest. The total of

26 set points decreases the RMS error to 1.14 m. While this does lead to a modest

improvement in RMS error, it does not result in significantly greater knowledge about

the process.

76

RMS error =1 1407 m
25

1 2
c:

je 15
I X

<5 .i

<

ID 05

~\ 1 1 r

*&

/

<£"^~,y.

M 1 1 1_

0 2 4 6 8 10 12 14 16 18 20
time(s)

Figure 7.5: Experimental results using the filter with 26 set points

7.4 Small Motion Resolution

In addition to calculating position for the large scale motions as was investigated

above, small motions must also be resolved in order to gain the most information

Filter Results Small Motion Resolution Example

O

-0 39

-0 395

-0 4

-0 405

-0 41

-0415

-0 42

-0 425

-0 43

/

• rJ
-A I
1, °,

/V r

1 1 1

~y~~"
7 v>

-

-

-

105 11 11 5 12
time (s)

125 13 13 5

Figure 7.6: Experimental results using the filter, examining small motion resolution

77

from the Smart Rock. To evaluate the filter's ability to resolve these small motions,

the same data sets will be investigated over a shorter time period.

Here, we see a zoomed in region of the results from the forward filter using 5 set

points. Oscillations with amplitudes on the order of 5 cm can be seen in both of

the transverse directions. In various other motions, similar types of oscillations can

be resolved. Similar motions can be seen in the forward and backward filter. When

averaging these, some of the small scale motions are corrupted and are not as easily

distinguished. This shows that, in addition to tracking position over a large scale

(tens of meters), small scale motions (on the order of centimeters) can be identified

and resolved.

7.5 Rolling Motion

While it is not expected that the Smart Rock experience great rates of rotation, this

situation is still briefly investigated. The Rock is placed on an inclined, grassy surface

and allowed to roll 6 m. This motion nearly saturates the gyroscopes. Results are

compared with and without the filter.

Raw Data Results Rolling Motion
100

0

-100

•g-200

| -300
CO

% -400

1 -500
TO

° -600

-700

-800
-900 (

time (s)

Figure 7.7: Experimental results from rolling motion without filtering

N
E

Down

-

-

~=-=rrrrrr^ -

~ - - - ^

-

78

This shows a similar result to what has been shown previously. The error grows

very quickly once motion begins. In this run, motion began at 3.5 s. Now this can

be compared to the filtered results.

Rolling Experimental Results Filtered

Figure 7.8: Experimental results from rolling motion with filtering

Figure 7.8 shows the filter's calculated displacement using the known set point of

6 m. This comes to precisely 6 m at the end of the slide. Thus, even in extreme

motions involving high rotation rates that nearly saturate the sensors, the filter still

provides very accurate position information.

7.6 Straight Sliding Motion

In addition, the Smart Rock was tested under a straight sliding motion. This motion

was created by placing the Rock on a smooth, straight, inclined surface at approxi

mately 20° (i.e. a playground slide). This allowed the motion to be constrained to

essentially a single degree of freedom. Again, this results in hundreds of meters of

error, shown in Figure 7.9. While this is lower than the error found in a more complex

79

Raw Data Results Sliding Motion

o
Q.

o

3 4 5
time (s)

Figure 7.9: Experimental results from sliding motion without filtering

motion, it is still unacceptable.

Illustrated in Figure 7.10, the filtered results show, again, precisely 6 m of displace-

Slidmg Experimental Results Filtered

time (s)

Figure 7.10: Experimental results from sliding motion with filtering

80

ment over the 4 s motion after 1 s remaining stationary. This continues to exemplify

the ability of the filter to take the data from any given motion and accurately calculate

position with only the beginning and end positions being known.

7.7 Summary

In this chapter, the IMU data is used in several different ways to calculate the position

over time. First, only the raw data is used. This is again seen to induce errors that

are not acceptable for our application.

Next, the ad hoc filter was implemented using various numbers of set points.

Starting with just two, one at the beginning and one at the end, a great improvement

in error is seen, reducing the end error to less than 1.5m, with an RMS error of 2.63

771.

When adding one additional point in the middle of the run, the RMS error is

reduced to 2.44 m. A further reduction is seen in RMS error by adding two more set

points, bringing it down to 1.39 m. Finally, all the set points from the video data are

used, totaling 26 set points used in the filter. This reduces the RMS error to 1.14 m.

Additionally, the filter is further verified by allowing the Smart Rock to undergo

two more motions. These included a motion rolling down an incline (primarily rota

tion) and sliding down a similar incline (primarily translation). These filtered results

showed similar improvements of the calculated position.

From this, we see that just the beginning and end points will provide a great

improvement in accuracy. Further, any additional points in the middle of the run will

increase accuracy to a greater extent, but are not necessary to adequately calculate

the position. Based on these findings, 3 to 5 would be the optimal number of set

points for a run of up to 16 s.

81

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This study has focused on creating a device to measure the internal pressures, ac

celerations, and rotation rates of particles in a landslide flow. This was inspired by

work from the U.S. Geological Survey (USGS). In order to study this type of debris

flow phenomenon, the USGS has constructed a concrete flume in which these events

can be reproduced in a controlled environment. This allows for measurements of de

bris depth, pressure and shear forces at the walls, but these are only measurements

at fixed points. In order to take measurements along the flow, a new instrument is

needed. Thus, the Smart Rock has been designed, assembled, and tested. It is desired

that this Rock be able to gather data from inertial sensors and pressure sensors for

over 10 minutes and to use this data to track the position with an accuracy of 1 m

over the course of 10 s and to examine the decay of pore water pressure.

This Smart Rock includes several sensors with a microprocessor that can log the

data to a //SD card. The sensors onboard include two fluid pressure sensors on

82

opposite sides of the Rock as well as a triad of accelerometers and a triad of gyroscopes.

With the six inertial sensors, a series of calculations can be performed to calculate

the position of the Rock over time. This inertial navigation process is very sensitive

to errors in the signals.

In order to quantify the different errors and noise types on the gyroscopes and

accelerometers, the Allan Variance procedure was employed. This time domain cal

culation takes a long series of data and takes the averages of this data broken into

equal-sized bins. It then finds how the variance of these averages changes with re

spect to the size of the bins. This procedure is able to distinguish what types of noise

are on the signal and to quantify each of these. This reveals that the primary noise

sources of concern are white and pink noise. These are quantified and it is found that

the errors are quite low compared with other MEMS sensors. However, the errors on

these sensors are orders of magnitude greater than those typically used in an inertial

navigation system.

With the sensor noise quantified, the signals can be simulated for various motions.

These simulations are compared to experimental data. It is found that these match

quite well for a stationary IMU and that the drift is below the desired 1 m over

the course of a slide. However, when in motion, the errors grow much more quickly.

Several factors account for this, such as inaccuracies of numerical integration and

saturation. The primary reason, however, relates to the inaccuracies in calculated

attitude and gravity correction as was illustrated in Figure 5.11. When in motion, the

acceleration magnitudes are greater, and when the attitude is not known accurately,

this larger acceleration magnitude creates a larger velocity component in an incorrect

direction, thus the growing error.

In order to improve the accuracy of the calculated position, an ad hoc filter is cre

ated. This filter takes the inertial data as well as any known positions, and constrains

the calculated position to a small region. It was evaluated with various parameters

83

and numbers of known positions. This significantly improves the calculation and

meets the desired accuracy.

From this, it has been found that without any aiding from additional information

or other sensors, the calculated position is not reasonably accurate. The errors grow

to hundreds of meters within 10 s. With the filtering method that has been developed,

these errors are constrained, and the accuracy improves to less than 5 m error over

10 s. This will allow the debris to be tracked with great accuracy and to verify and

improve the current analytical debris flow models.

8.2 Future Work

The accuracy of the calculated position can be improved with the addition of other

sensors. Typically, inertial navigation systems are aided with a GPS or a magne

tometer. However, these were found to be impractical in this application. If another

sensor can be included, this will undoubtedly improve the accuracy of the calculated

position and reduce the need for the filter.

Something such as a ultrasonic range finder or RFID system was considered, but

was deemed beyond the scope of this project. Implementing one of these types of

sensor systems would require on site development and testing to determine feasibility.

If something like these is found to be possible, it could be installed in the current

Rock, as there is additional space in the top of the shell.

Beyond improvements to the Rock, the data must be gathered from a flume ex

periment and analyzed. Data on acceleration and rotation rate can be correlated with

the pressure measurements and movements can be compared to those suggested by

analytical models.

84

Bibliography

[1] 2005, Mount St. Helens - From the 1980 Eruption to 2000, U.S. Geological Survey,
h t t p : / / p u b s . u s g s . g o v / f s / 2 0 0 0 / f s 0 3 6 - 0 0 / , (J a n u a r y 21, 2011)

[2] Britting, K. R., 1971, Inertial Navigation Systems Analysis, John Wiley & Sons,
Inc., New York City, p. 1-10.

[3] 2011, MECH307, Mechatronics and Measurement Systems, Colorado State Uni
versity, h t tp : / /www.engr .co los ta te .edu/~dga/mech307/ , (May 16, 2011)

[4] 2011, Spacecraft Guidance, Navigation and Control Systems, what-when-how,
ht tp : / /www.ht tp : / /what -when-how.com/space-sc ience-and- technology/
spacec ra f t - gu idance -nav iga t i on -and -con t ro l - sy s t ems / , (July 11, 2011)

[5] Titterton, D., and Weston, J., 2005, Strapdown Inertial Navigation Technology,
The Institution of Engineering and Technology, Stevenage, UK, p. ...

[6] Analog Devices, "Six Degrees of Freedom Inertial Sensor," ADIS 16367 datasheet,
Jan. 2010.

[7] Olivares, A., Olivares, G., Gorriz, J.M., Ramirez, J., 2009, "High-efficiency low-
cost accelerometer-aided gyroscope calibration ," International Conference on
Test and Measurement 2009, pp. 4-7.

[8] IEEE STD 1293, 1998, IEEE Standard Specification Format Guide and Test
Procedure for Linear, Single-Axis, Non-Gyroscopic Accelerometers, pp. 55-59.

[9] Senturia, S., 2001, Microsystem Design, Kluwer Academic Publishers, Norwell,
MA, p. 436-441.

[10] Kosko, B., 2006, Noise, Penguin Group, New York, p. 90-94.

[11] Woodman, O., 2007, "An introduction to inertial navigation," Technical Report
No. 696, University of Cambridge, Cambridge, United Kingdom.

[12] IEEE STD 647, 2006, IEEE Standard Specification Format Guide and Test Pro
cedure for Single-Axis Laser Gyros, pp. 62-73.

[13] Kim, H., Lee, J.G., Park, C.G., 2004, "Performance Improvement of GPS/INS
Integrated System Using Allan Variance Analysis," International Symposium on
GNSS/GPS, pp. 2-6.

85

http://pubs.usgs.gov/fs/2000/fs036-00/,(January
http://www.engr.colostate.edu/~dga/mech307/
http://www.http://what-when-how.com/space-science-and-technology/

[14] Stockwell, W., "Bias Stability Measurement: Allan Variance:" Crossbow, Milpi-
tas, CA, http:/ /www.xbow.com/pdf/Bias_Stabili ty_Measurement.pdf.

[15] IEEE STD 952, 1997, IEEE Standard Specification Format Guide and Test Pro
cedure for Single-Axis Interferometric Fiber Optic Gyros, pp. 62-72.

[16] Stockwell, W., "Angle Random Walk," Crossbow, Milpitas, CA, http:/ /www.
xbow.com/pdf/AngleRandomWalkAppNote.pdf.

[17] Gelb, A., 1974, Applied Optimal Estimation, The MIT Press, Cambridge, MA,
p. 157-173.

86

http://www.xbow.com/pdf/Bias_Stability_Measurement.pdf
http://www
http://xbow.com/pdf/AngleRandomWalkAppNote.pdf

Appendix A

Detailed Strapdown Inertial
Navigation Calculations

A.l Introduction

Here, we discuss the inertial navigation calculations in full detail. A strapdown system
is considered with the sensor axes aligned with the "body axes". The attitude calcu
lations use the quaternion method introduced in Chapter 2 to find the relationship
between the "body axes" and the "local geographic" axes. These "local geographic"
axes point North, East, and down toward the center of the earth. The acceleration
calculations then take the acceleration readings, convert them from body axes to local
geographic axes, and track the position. This algorithm is taken from the Titterton
and Weston [5].

A.2 Att i tude Calculations

To solve for the attitude using quaternions, the following equation must be solved

q = 2 q , p (A J)

Here, q is the attitude quaternion and p = [0,wT] represents how the attitude is
changing. It can also be rewritten as

q = ^ W q (A.2)

where

87

w =
0

W i

Uly

UJZ

-Vx

0
-uiz

UJV

-Uy

uz

0
-w_

— UJ

~0J

OJx

0

(A.3)

and UJ are the gyroscope readings. It is reasonable to assume that c_ remains constant
over the time interval being considered. This is possible because the calculations are
performed at every sample. Thus, there is no information showing that w would
change over a given interval. This assumption allows the discretization of the differ
ential equation.

qi+i 6 X P _

i+i

W d t q i (A.4)

This can be simplified using

j + i

W d t = E

0
0~x

Oy

Or.

0
- o - z

Oy

-Oy

oz

0
—ox

-oz
-<Jy

ox

0

(A.5)

This is because fl wdt = a. Therefore, we have

q i + i = exp Qi (A.6)

This can also be represented in a different form eliminating the matrix exponential.

n = ;_-"/_;„:„;./-; (A.7)

cos (f)
(a_/o-) sin (7 2)
(a » s i n (7 2)
(a./o-)sin(72)

q i + i = q j • r i (A.8)

From the definition of a quaternion in Chapter 2, we see that r ; is a quaternion
representing a rotation of magnitude a about a.

This means that from the integral of the gyroscope output, we can find S, allowing
us to find the new qi+_. The quaternion can also be normalised because its magnitude
must always be unity.

Qi+i
q j + i

lOi+il
(A.9)

A.3 Position Calculations

The specific force measured by the accelerometers is represented in body axes as fb.
This must be transformed to local geographic navigation axes, fn.

fn = C£Afb (A.10)

The matrix C£ is the direction cosine representation of the quaternion found in
the previous section. If the quaternion has components a, b, c, and d;

" 1 - 2 (c2 + d2) 2 (be - ad) 2 (bd + ac)
2 (be + ad) l-2(b2 + d2) 2(cd-ab) (A.l l)
2 (bd - ac) 2 (cd + ab) 1 - 2 (b2 + c2)

The matrix A represents the transformation from body axes at time tk, to body
axes at time tfc+i- The matrix C^ makes the transformation from body axes at time
tk+i to local geographic coordinates at time tk+i-

. T sm(o) 1 - cos(a) 2 A = I -\ — [crx] H — [<rx]2

o o
In this equation for A, crx is a skew symmetric form of cr.

crx =

0 -oz

—0i,

Oy

0 ~ox

Ox 0

(A.12)

(A.13)

With the specific force in the local geographic axes, gravity is subtracted and the
next velocity can be found.

'i+i = Vi+ f (in-g)dt (A. 14)

Finally, corrections can be made for the Coriolis force and the rotation of the
earth.

ri+l
2 I f L > d t -

i + i

vl+i = vl+1 I / - 2 / fiiedt - / r2endt J (A. 15)

The matrices riie and ften are skew symmetric forms of the vectors u>ie and ujen.

UJir =

ficosL
0

—fisinL
, UJpn. —

Ro+h
~VN,i
Ro+h

—VE i t a n x
(A.16)

Ro+h

In these equations, RQ is the radius of the earth,L is the body's current latitude
and fi is the rotation rate of the Earth. The velocities in the east and north directions
are shown as VE and t'jv, with the height above the Earth shown as h.

To find position, a simple integration must be performed.

89

ri+1
Xj+i = Xi + / vdt (A.17)

This now gives a complete description of how to find the position over time.

90

Appendix B

Firmware

This section discusses the firmware that is running on the Arduino microprocessor.
We will now walk through each step of the program to explain all of its inner workings.
For those who are interested in the entire code, it is protected under the GNU GPL
v3 and can be found at h t t p : / / c o d e . g o o g l e . e o m / p / s m a r t - r o c k - l o g g e r / .

This code depends on the Timerl library created by Jesse Tane (h t t p : / / c o d e ,
google, com/p/arduino-t imerone/) , and the SdFat library by Bill Greiman (h t t p :
/ / c o d e . g o o g l e . c o m / p / s d f a t l i b /) . It also requires that an SD card socket be con
nected to the standard Arduino SPI bus, an ADIS16367 IMU be connected to the
software SPI bus as outlined in the code, as well as two analog inputs on AO and Al,
and two LEDs from GPIO pins 7 and 8.

The code begins by initializing many global variables and defining the addresses
of all of the IMU registers. It then goes into the se tup 0 section. In this section,
all communication lines are initialized. This includes the hardware SPI bus to the
SD card, the software SPI bus to the IMU, the ADC for reading pressures, as well
as initializing the pins to drive the LEDs. It also initializes a volume on the card in
which to create the text file.

In the next section of code, the SD interface is put to use. It searches the card's
root directory for a configuration file. If one is not found, the default values that were
set when the variables were initialized are used. If a configuration file is found, it
reads through each character, taking the first grouping of numbers as the delay time,
second as the sampling frequency, and third as the time to record. If there are any
further characters in the document, they are ignored.

A configuration file contains the three values discussed in the previous paragraph;
delay time, sampling frequency, and sample time; as shown in this example.

10 400 300

This sample configuration file contents indicates a 10 s delay time, followed by 300 s
of recording data at 400 samples per second.

91

http://code.google.eom/p/smart-rock-logger/
http://code

If there is a delay time, it occurs at this point. After the delay, the sensor is
configured. Registers are set to configure the digital filter to four taps, apply a
correction on the gyro bias, setup the data ready indicator, and perform a self-test.

It then tries to find a text file titled DATAOO. TXT. If this already exists, the number
is incremented until the file does not yet exist, and it is created. A cache is initialized
that points to the volume containing this newly created text document. Another data
buffer is created to compile the samples as they are read. It is initialized as a series of
spaces with new line characters. This allows for the data to be read in and written,
one sample per line.

Now that everything has been configured satisfactorily, the recording begins. The
timer is initialized that will trigger an ISR (interrupt service routine). In the ISR,
all sensors are read, the data is formatted as a series of hex characters, and they are
written into the appropriate location of the data buffer. The ISR also keeps track of
how many samples are in the buffer with a simple counter. Once the buffer is full,
it is copied to the cache location such that it can be appended to the text file. A
flag is set when the data begins to be written to the file. If the buffer becomes full
before the previous block of data is written completely, the flag indicates this and the
data in the buffer is dumped. This prevents any hangups that may occur in the SD
communication lines.

After the prescribed amount of time, the timer is then deactivated. At the bot
tom of the text file, a few lines are written to indicate the recording has completed
successfully. It also prints the number of skipped data blocks, maximum amount of
time it took to write a single data block, the sampling frequency, and the contents of
the IMU diagnostic register to show if any errors occurred.

Finally, the file is closed and communication to the card is cut off. The appropriate
register bits are set to sleep the IMU. The Arduino is then put into standby mode to
conserve power further. The code then enters an infinite loop of NOP (no operation)
calls for the remainder of the time that power is supplied.

This process creates a text file with columns of data in hexadecimal format, as
well as certain diagnostic information as supplementary information. The recording
process was streamlined to facilitate the fastest sample rates possible. It also conserves
power by using certain functionality of the IMU and microcontroller.

Here is a sample excerpt of a resulting data text file. It has columns of hex
numbers for time, gyroscope x, y, and z readings, accelerometer x, y, and z readings,
as well as the two pressure senor readings.

002845
002847
002849
00284B
00284F
002851
002853

0002
0002
0003
0003
0003
0003
0003

3FF7
3FF7
3FF7
3FF7
3FF6
3FF6
3FF6

3FFB
3FFB
3FFC
3FFD
3FFE
3FFE
3FFF

3F68
3F68
3F68
3F68
3F68
3F68
3F68

00E5
00E4
00E4
00E4
00E3
00E3
00E3

0071
0071
0071
0071
0071
0071
0071

OCC
OCC
OCC
OCC
OCC
OCC
OCC

097
0B6
0C1
0C6
0C7
0C7
0C9

The full text of this program can be seen here:

92

/ *
SmartRockLogger

Creates bit-banged SPI implementation for ADIS16367
This is able to use readAHToStringO which reads
data from sensor, writes to string, and prints it
once the buffer has been filled

It does so using an interrupt triggered by Timerl

Writes to SD card once there has been a sufficient
number of samples to fill the buffer.

If it has not completed writing a block, but a new
block of data is ready to be written, it skips this
new block to finish the one in progress.

It requires a file CONFIG.TXT to exist in the root
directory of the SD card. It must contain 3 numbers
the delay time (s), sampling frequency (1/s), and
recording time (s) in that order. All other characters
in the file are ignored. If there is no CONFIG.TXT or
config.txt, default values are used.

After logging, the sleep mode is initialized on the
IMU and on the microcontroller to minimize power usage
after logging is complete.

One must add the files TimerOne.cpp and TimerOne.h to
this Sketch from http://code.google.eom/p/arduino-timerone/

IMU:
Arduino
IRQ: pin 2
CS: pin 6
DI/MOSI: pin 3
DOUT/MISO: pin 5
SCLK: pin 4

SD Card:
Arduino
MOSI: pin 11
MISO: pin 12
SCK: pin 13
CS: pin 10

->

->

->

->

->

->

->

->

->

->

->

ADIS 16367
DIOl: pin 7
CS: pin 6
DIN: pin 5
DOUT: pin 4
SCLK: pin 3

SD Card
DI
DO
SCK
CS

93

http://code.google.eom/p/arduino-timerone/

Other:
Arduino -> Other
power LED: pin 7 -> Red LED
status LED: pin 8 -> Green LED
AO -> Inst Amp 1
Al -> Inst Amp 2

Notes:
If left running for over ~4 hours 30 minutes,

time will roll over to 0
- Will skip blocks of data if SD card has not
finished writing when the new block of
data has become available

- Tested and works consistently up to 540
Hz using 1 GB Transcend uSD card

- Performance may vary with different uSD cards

created 22 Feb 2011
modified 27 June 2011
by Matt Harding

Thank you to:
Bill Greiman for his SdFat library
http://code.google.com/p/sdfatlib/

Jesse Tane for the Timerl library
http://perfectverse.com/jesse/portfolio/projects/timerOne/...
index.html

Copyright 2011 Matthew Harding

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/

94

http://code.google.com/p/sdfatlib/
http://perfectverse.com/jesse/portfolio/projects/timerOne/
http://www.gnu.org/licenses/

#include <SdFat.h>
#include <SdFatUtil.h>
#include "TimerOne.h"

unsigned int fs = 100;
unsigned long time = 5;
const unsigned int sample_size = 46;
unsigned int samples_per_block = 512/sample_size;
unsigned long delaytime = 1;

// counters etc
volatile unsigned int samplecounter = 0;
volatile unsigned int counter = 0;
volatile boolean readyForNextBlock = true;
volatile unsigned int skippedBlocks = 0;

// data strings
volatile char dataString[512];
uint8_t* pCache;

// pins
const byte dataReadyPin = 2;
const byte chipSelectPin = 6;
const byte mosiPin = 3;
const byte misoPin = 5;
const byte sclkPin = 4;
const byte SDcs = 10;
const byte powerLEDpin = 7;
const byte statusLEDpin = 8;

Sd2Card card;
SdVolume volume;
SdFile root;
SdFile file;
SdFile configfile;

uint32_t bgnBlock, endBlock;

// store error strings in flash to save RAM
#define error(s) error_P(PSTR(s))

void error_P(const char* str) {
PgmPrint("error: ") ;
SerialPrintln_P(str);
if (card.errorCodeO) {

95

PgmPrintC'SD error: ") ;
Serial.print(card.errorCode(), HEX);
Serial.print(',');
Serial.println(card.errorDataO, HEX);

>

while(1);

}

//Sensor's
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte
const byte

memory register addresses:
SUPPLY_OUT = 0x02;
XGYR0_0UT = 0x04;
YGYR0_0UT = 0x06
ZGYR0_0UT = 0x08
XACCL_0UT = OxOA
YACCL_0UT = OxOC
ZACCL_0UT = OxOE
XTEMP_0UT = 0x10
YTEMP_0UT = 0x12
ZTEMP_0UT = 0x14
AUX_ADC = 0x16;
XGYR0_0FF= OxlA;
YGYR0_0FF= OxlC;
ZGYR0_0FF= OxlE;
XACCL_0FF= 0x20;
YACCL_0FF= 0x22;
ZACCL_0FF= 0x24;
ALM_MAG1 = 0x26;
ALM_MAG2 = 0x28;
ALM_SMPL1 = 0x2A;
ALM_SMPL2 = 0x2C;
ALM_CTRL = 0x2E;
AUX_DAC = 0x30;
GPI0_CTRL = 0x32;
MSC_CTRL = 0x34;
SMPL_PRD = 0x36;
SENS_AVG = 0x38;
SLP.CNT = 0x3A;
DIAG.STAT = 0x3C;
GL0B_CMD = 0x3E;
PR0D_ID = 0x56;
SERIAL_NUM = 0x58;

// Power supply reading
// X gyro
// Y gyro
// Z gyro
// X acceleration
// Y acceleration
// Z acceleration
// X temperature
// Y temperature
// Z temperature
// Auxilary ADC
// X-gyro offset
// Y-gyro offset
// Z-gyro offset
// X-accelerometer offset
// Y-accelerometer offset
// Z-accelerometer offset
// Alarm 1 amplitude threshold
// Alarm 2 amplitude threshold
// Alarm 1 sample size
// Alarm 2 sample size
// Alarm control
// Auxiliary DAC
// Auxiliary digital 1/0 control
// Data-ready, self-test, etc.
// internal sample rate control
// range and filter control
// Sleep mode control
// System status
// System Command
// Product ID number (16367)
// Serial number

//Sensor commands
const byte READ = ObOOOOOOOO; // ADIS16367 read command (2 bytes)
const byte WRITE = OblOOOOOOO; // ADIS16367 write command

96

const byte BURST_READ = 0x3E; // ADIS16367 burst read command

void setup() {
// Clear sleep mode just to make sure it doesn't shut off
clear_sleep();

// Show power LED
pinMode(powerLEDpin, OUTPUT);
pinMode(statusLEDpin, OUTPUT);
digitalWrite(powerLEDpin, HIGH);
digitalWrite(statusLEDpin, LOW);

// Setup communications
Serial.begin(115200);

// Set ADC to clock prescale of 8 (~10x faster than default)
initADCO ;

Serial.flushO ;

// Initialize ADIS SPI bus
SPIbegin(chipSelectPin);

// Initialize SD card
unsigned long start = millisO;
pinMode(SDcs, OUTPUT);
digitalWrite(SDcs, LOW);
// initialize the SD card at SPI_FULL_SPEED for best performance.
// try SPI_HALF_SPEED if bus errors occur.
if (!card.init(SPI_FULL_SPEED)) error("card.init");

start = millisO - start;

// initialize a FAT volume
if (!volume.init(fecard)) error("volume.init");

// open the root directory

if (!root.openRoot(&volume)) error("openRoot failed");

>

void loopO {
char nextchar;

97

// Look for configuration file
if (configfile.open(&root, "CONFIG.TXT", 0_READ)...

II configfile.open(&root, "config.txt", 0_READ)) {

// Start with delay time
delaytime = 0;
nextchar = conf igf ile.readO ;

// Read all numbers
while(nextchar>='0' && nextchar<='9') {
delaytime = delaytime*10 + (nextchar-'0');
nextchar = conf igf ile.readO ;

}
// Then skip all the non-numbers
while(nextchar<='0' I I nextchar>='9') {

nextchar = conf igf ile.readO ;

}

// And do the same for sampling frequency
fs = 0;
while(nextchar>='0' && nextchar<='9') {
fs = fs*10 + (nextchar-'0');
nextchar = conf igf ile.readO ;

}
while(nextchar<='0' II nextchar>='9') {
nextchar = conf igf ile.readO ;

}

//And finally for recording time
time = 0;
while(nextchar>='0' && nextchar<='9') {
time = time*10 + (nextchar-'O');

nextchar = conf igf ile.readO ;

}

// All done close the config file
conf igf ile.closeO ;

>

else {
// No CONFIG.TXT found, use default values set
// at variable definitions
}

98

unsigned int block_count = (fs*time)/samples_per_block + 1;

// Begin Delay
delay(delaytime*1000);

// Begin device configuration
// Set range
byte whichBitsl [] = {2,1,0};
byte setToWhatl [] = {1,0,0};
setRegister(SENS_AVG,HIGH,whichBitsl,setToWhat1,3);
// Set filter to 4 taps
setRegister(SENS_AVG,LOW,whichBitsl,setToWhatl,3);
// Precision Autonull, delay 30s (decided not to use it)
// writeRegister(GL0B_CMD,0xl0);
//GL0B_CMD [4] = 1 (DIN = OxBElO)
// delay(33000);
// Correct gyro bias for acceleration
setRegister(MSC_CTRL,LOW,(byte*)7,(byte*)1,1);
//MSC_CTRL[7] = 1 (DIN = 0xB486)
// Set DIOl as data ready indicator
setRegister(MSC_CTRL,LOW,whichBitsl,setToWhatl,3);
//MSC_CTRL[2:0] = 100
// Command self-test, this allows diagnostic
// register to be printed at end
setRegister(MSC_CTRL,HIGH,(byte*)2,(byte*)1,1);
delay(2000);

// Set gyro offsets to 0
byte allBitsG = {7,6,5,4,3,2,1,0};
byte allZerosD = {0,0,0,0,0,0,0,0};
setRegister(XGYR0_0FF,HIGH,allBits,allZeros,8);
setRegister(XGYR0_0FF,LOW,allBits,allZeros,8);
setRegister(YGYR0_0FF,HIGH,allBits,allZeros,8);
setRegister(YGYR0_0FF,LOW,allBits,allZeros,8);
setRegister(ZGYR0_0FF,HIGH,allBits,allZeros,8);
setRegister(ZGYR0_0FF,LOW,allBits,allZeros,8);

// Set up file to write
char filename [] = "DATA00.TXT";
byte filenum = 0;
while (file.open(&root, filename, 0_READ)) {
file. closeO ;
filenum++;
filename[4] = (filenum/10)+'0';

filename[5] = (filenum°/J0) + '0';

}

99

// Create a contiguous file
if (!file.createContiguous(&root, filename, 512UL*block_count)) {

error("createContiguous failed");

}
// Get the location of the file's blocks
if (!file.contiguousRange(&bgnBlock, feendBlock)) {

error("contiguousRange failed");

}

// NO SdFile calls are allowed while cache is used for raw writes

// Clear the cache and use it as a 512 byte buffer
pCache = volume.cacheClearO ;

// Fill cache with samples_per_block lines
for(int i = 0 ; i<512 ; i++) {
dataString[i] = ' ';
pCache[i] = ' ';

}
// Loop through each sample
for (int i = 0 ; i < 512-sample_size; i += sample_size) {
// And put newline/carriage return at end of line
dataStringCi] = '\r';

dataString[i+l] = '\n';

}

// tell card to setup for multiple block write with pre-erase
if (!card.erase(bgnBlock, endBlock)) error("card.erase");
if (!card.writeStart(bgnBlock, block_count)) {

error("writeStart");

}

// Indicate with LEDS recoding is beginning
digitalWrite(powerLEDpin, LOW);
digitalWrite(statusLEDpin, HIGH);

// Init stats
unsigned int maxWriteTime = 0;
unsigned long start = millisO;
unsigned long writeTime = 0;

100

// Start Timerl at fs samples/sec
Timerl.initialize((lOOOOOOUL/fs));
// Attach timer interrupt
Timerl.attachlnterrupt(isr);

// Stay in loop until we reach desired time
while((millisO-start) < (time*1000)) {
// If we are ready to write
if (sampleco_nter==samples_per_block && readyForNextBlock) {
// Reset sample counter
samplecounter = 0;
// Warn that we are not ready for a new block yet
readyForNextBlock = false;
// Write a 512 byte block
writeTime = microsO;
if (lcard.writeData(pCache)) {
error("writeData");
while(l);

}
// Set new block flag
readyForNextBlock = true;
// Calculate time it took to write block
writeTime = micros0 - writeTime;
// Check for max write time
if (writeTime > maxWriteTime) {
maxWriteTime = writeTime;

}
}

}

// Stop the interrupt
Timerl.detachlnterrupt 0;

// This can't be the best way to do the following,
// but it works and it won't affect performace.

// Print how many blocks were skipped
for(int i = 0 ; i<512 ; i++) {
pCache[i] = ' ';

}
pCache[0] = ' \ r ' ;
pCache[1] = ' \ n ' ;
pCache[20] = pCache[0];
pCache[21] = pCache[1];
pCache[40] = pCache[0];

101

pCache[41] = pCache[1]
pCache[60] = pCache[0]
pCache[61] = pCache [1]
pCache[80] = pCache[0]
pCache[81] = pCache[1]
pCache[7] = 'E';
pCache[8] = 'N';
pCache[9] = 'D';
pCache[10] = '!';
pCache[11] = pCache[10];

// Print skipped blocks
unsigned int digit = 0;
unsigned int temp = skippedBlocks;
for(int ii=0 ; ii<5 ; ii++) {
digit = floor(temp/word(pow(10,4-ii)));

pCache[ii+22] =digit+'0';
temp = temp-digit*pow(10,4-ii);

}
char label [8] = "skipped";
for(in t ii=0 ; ii<7 ; ii++) {

pCache [ii+22+6] = l a b e l [i i] ;
}

/ / Print max write time in microseconds
digi t = 0;
temp = maxWriteTime;
for(int ii=0 ; ii<5 ; ii++) {
digit = floor(temp/word(pow(10,4-ii)));
pCache[ii+42] =digit+'0';

temp = temp-digit*pow(10,4-ii);

}
char label2[ll] = "t write us";
for(int ii=0 ; ii<10 ; ii++) {

pCache[ii+42+6] = label2[ii];

}

// Print sampling frequency
digit = 0;
temp = fs;
for(int ii=0 ; ii<5 ; ii++) {
digit = floor(temp/word(pow(10,4-ii)));
pCache[ii+62] = d i g i t + ' 0 ' ;
temp = temp-digit*pow(10,4-ii);

}

102

char label3[3] = "fs";
for(int ii=0 ; ii<2 ; ii++) {

pCache[ii+62+6] = l a b e l 3 [i i] ;
}

/ / P r i n t f l a g s
d i g i t = 0;
temp = readRegister(DIAG_STAT);
f o r (i n t i i=0 ; i i<15 ; i i++) {

pCache[ii+82] = (t e m p » (1 4 - i i)) + ' 0 ' ;
}
char l abe l4[40] = " f l a g s : see ADIS16367 da tashee t Table 26";
f o r (i n t i i=0 ; i i<39 ; i i++) {

pCache[ii+82+16] = l a b e l 4 [i i] ;
}

pCache[511] = ' \ 0 ' ;
i f (!card .wri teData(pCache)) {

e r r o r (" w r i t e D a t a ") ;
wh i l e (1) ;

}

// End multiple block write mode
if (Icard.writeStopO) error("writeStop") ;

// Close files for next pass of loop
root.close 0;
f ile.closeO ;
Serial.printlnO ;

// Indicate with LEDS recoding is complete
digitalWrite(powerLEDpin, HIGH);
digitalWrite(statusLEDpin, HIGH);

// Put sensor to sleep to save power
setRegister(SLP_CNT,HIGH,(byte*)1,(byte*)1,1);

// All done, stop here and put MCU to sleep
go_to_sleep();
while(l);

}

103

// The ISR is triggered by Timerl at intervals defined
// by the sampling frequency
void isr() {
// Read all the data to a string
readAHToStringO ;
// Increment the sample counter
samplecounter++;
// If that is enough to fill a block,
if(samplecounter==samples_per_block){
// And if we are ready for the next block
if(readyForNextBlock) {
// Copy it to the cache so it can be written in
// the main loop
strlcpy((char*)pCache,(char*)dataString,...
samples_per_block*sample_size+l);

}
else {
// Otherwise, skip it
skippedBlocks++;
// And reset the sample counter
samplecounter = 0;

}
}

}

//Sends a read command to the ADIS16367:
int readRegister(byte thisRegister) {
int result = 0 ; // result to return
// take the chip select low to select the device:
bitClear(PORTD,chipSelectPin);
// ADIS16367 expects the register address in the lower 7 bits
// now combine the register address and the command into one byte:
byte dataToSend = thisRegister I READ;
// send the device the register you want to read:
SPItransfer2(dataToSend,0);
delayMicroseconds(4);
result = SPItransfer2(0,0);
bitSet(PORTD,chipSelectPin);
// return the result:
return(result);

}

104

// Sends write command to ADIS16367
void writeRegister(byte reg, byte data) {
bitClear(PORTD,chipSelectPin); // Select device
SPItransfer2(regI WRITE,data); // Writes data to register
bitSet(PORTD,chipSelectPin); // Deselect device

}

// Transfer 2 bytes via SPI and combine the results
// into a 16 bit int
int SPItransfer2(byte datal, byte data2) {
int result = SPItransfer(datal)«8;
result |= SPItransfer(data2);

return(result);

}

// Transfer a single byte via SPI
// This deals with individual bits
byte SPItransfer(byte data) {
// SCK begins high
for(byte bit=0 ; bit<8 ; bit++) {
bitClear(PORTD,sclkPin); // SCK fall low
bitWrite(P0RTD,mosiPin,(data»7) & 0x01);
// Write data to MOSI pin
data = data « 1; // Shift left 1
bitSet(PORTD,sclkPin); // SCK rise high
data |= bitRead(PIND,misoPin);
// read data from MISO pin

}

return(data);

}

// Read all registers and write to string
// String begins with new line (0-1)
// Time takes 6 hex chars (2-7)
// Each of gyro/acc takes 4 hex chars,
// 14 bits (8-11,12-15,16-19...8+i*5-8+i*5+3)
// Analog read takes 3 hex chars, 10 bits (39-41,...)
void readAHToString(void) {
// take the chip select low to select the device
bitClear(PORTD,chipSelectPin);

105

addhexchar(dataString, millisO, 2 +...
(samplecounter*sample_size),6);

// Get time and write to string
SPItransfer2(XGYR0_0UT,0);
// Ask for X Gyro

int data = SPItransfer2(YGYR0_0UT,0);
// Get X Gyro and ask for Y Gyro

addhexchar(dataString, data&0x3FFF, 9+(0*5) +...
(samplecounter*sample_size),4);

// Save to text string
data = SPItransfer2(ZGYR0_0UT,0);
// Get Y Gyro and ask for Z Gyro

addhexchar(dataString, data&0x3FFF, 9+(l*5) +...
(samplecounter*sample_size),4);

// Save to text string
data = SPItransfer2(XACCL_0UT,0);
// Get Z Gyro and ask for X Ace

addhexchar(dataString, data&0x3FFF, 9+(2*5) +...
(samplecounter*sample_size),4);

// Save to text string
data = SPItransfer2(YACCL_0UT,0);

// Get X Ace and ask for Y Ace
addhexchar(dataString, data&0x3FFF, 9+(3*5) +...

(samplecounter*sample_size),4);
// Save to text string

data = SPItransfer2(ZACCL_0UT,0);
// Get Y Ace and ask for Z Ace

addhexchar(dataString, data&0x3FFF, 9+(4*5) +...
(samplecounter*sample_size),4);

// Save to text string
data = SPItransfer2(0,0);

// Get Z Ace
addhexchar(dataString, data&0x3FFF, 9+(5*5) +...

(samplecounter*sample_size),4);
// Save to text string

addhexchar(dataString, analogReadFast(0)&0xFFF,.
39+(0*4) + (samplecounter*sample_size),3);

// Save analog PI to text string
addhexchar(dataString, analogReadFast(2)&0xFFF,.
39+(l*4) + (samplecounter*sample_size),3);

// Save analog P2 to text string
// Pull chip select HIGH to delect
bitSet(PORTD,chipSelectPin);

106

// Initializes software SPI bus for sensor
void SPIbegin(byte CSpin) {
// Set correct pin modes
pinMode(dataReadyPin, INPUT);
pinMode(CSpin, OUTPUT);
pinMode(mosiPin,OUTPUT);
pinMode(misoPin,INPUT);
pinMode(sclkPin,OUTPUT);
//Clock polarity in mode 3 is high
digitalWrite(sclkPin,HIGH);
//Set chip select low to activate device

digitalWrite(CSpin, HIGH);

}

// creates char[] from int in hex with digits chars
void addhexchar(volatile char* c, unsigned long n,..
int start, int digits)
{
byte nextchar;
// Loop through the hex chars to make
for(int ii=0; iKdigits ; ii++) {
// Calculate what the next character should be
nextchar = (n » (digits-ii-l)*4) & Oxf;
// Add it to the end of the string
if(nextchar<=9) {
c[start+ii] = '0' + nextchar;

}
else {

c[start+ii] = 'A' + nextchar-10;

}

// Sends commands to set a given register
void setRegister(int reg, boolean highOrLow,...
byte* whichBits, byte* setTo, byte n) {
// Not sure why we need the delay, but we do...
delay(500);
// Read in data from register

107

int regdata;
if(highOrLow==HIGH) {
regdata = highByte(readRegister(reg));

}
else {

regdata = lowByte(readRegister(reg));

}

// Set or clear bits as needed
byte working = regdata;
for (int ii=0 ; ii<n ; ii++) {
if(setTo[ii]==l) {
bitSet(working,whichBits[ii]);

}
else {
bitClear(working,whichBits[ii]);

}
}

//Write to register
if(working!=regdata) {

writeRegister(reg+highOrLow,working);

}

delay(lOO);

}

// Initialize ADC with different prescaler
// to make it faster
void initADC(void) {
// Set to AO with Vcc as reference
ADMUX = (1«6) |0;
// Set prescaler to Oil = division by 8
ADCSRA &= Obll111000;
ADCSRA |= ObOll;
// Begin first dummy conversion
ADCSRA |= Obi1000000;
// Wait for it to compelete (while flag is low)
while (! (ADCSRA&(1«ADIF)));
// Clear flag (set it high)
ADCSRA |= (1«ADIF);
// Ready to go!

}

// Read from ADC faster

108

unsigned int analogReadFast(int pin) {
// Set mux with Vcc as reference
ADMUX = (1«6) |pin;
// Begin conversion
ADCSRA |= ObOlOOOOOO;
// Wait for it to compelete (while flag is low)
while (! (ADCSRA& (1«ADIF))) ;
// Clear flag (set it high)
ADCSRA |= (1«ADIF);
// Return data

return ADCLI (ADCH«8) ;

}

// Clear sleep bit to make sure it doesnt fall
// back asleep mid-run
void clear_sleep(void) {
// Clear the Sleep Mode Control Register

SMCR &= 0;

}

// Set sleep bits to enable standby mode, saving power
void go_to_sleep(void) {
SMCR |= ObOl; // Enable sleep mode SE = 1
SMCR |= ObllO « 1; // Enter Standby Mode

109

Appendix C

PCB Design

C.l Introduction

The design of the PCB was undertaken with a few general goals in mind.

1. Keep it as small as possible in a shape that could fit inside of a rock-like shell

2. Limit noise and crosstalk as much as possible

3. Create a layout that will allow for a user-friendly interface

In this appendix, we discuss the components used, the interfaces used between
them, as well as how the design relates to these goals.

C.2 Powering

The components used required two separate voltages, +5V and +3.3V. First a battery
must be selected. A standard 9V battery has the required voltage and capacity
to allow the Smart Rock to run for several hours, thus meeting the requirements.
The battery ground and positive connections are connected to POWER — 1 and
POWER - 2 as shown in figure C.l.

To provide the required voltages, the TLE4476 dual, low-drop voltage regulator
is used. This takes the 9V and provides clean 5V and 3.31/ supplies. Filtering
capacitors are used at the input and both outputs to ensure the supplies are clean.
Additionally, several filtering capacitors are used closer to the power input pins of
other components to further clean the supplies.

110

T* i* T" r«p

i

i

i

I i ' ',

*

*

Figure C.l: PCB Powering

C.3 IMU Interface

With the proper power supplies provided, the components can now be connected
together. The ADIS16367 IMU, shown on the left of figure C.2, is powered with
51/ and has another filtering capacitor This interfaces with the Arduino Pro Mini
microcontroller via an SPI bus, connected to pins 2 through 7 on the Arduino. Also
shown here, are two LEDs to show the user the current status of the Smart Rock.
These are driven with two GPIO pins from the microcontroller. The two resistors are
used to limit the current through LEDs.

£¥
A

_3

<

O •<; O
z. -J z
O «C Q

_
-z

u
D

1 \J _ >

o z

o
?f

TX1
RX.1

RST3
GNDO

3ZiS__Zl
« 2

. Lb
. P C

ARDJNO
ARD'JINQ

T / r

RbTQ
ONPO
2

enr GND

Figure C.2: IMU interface

111

C.4 Pressure Sensor Interface

In addition to the inertial sensors in the IMU, two pressure sensors are used, one
of which is shown in figure C.3. These are also powered by the 5V supply. These
26PC05SMT sensors provide differential analog output on pins 2 and 4. For each
sensor, these are fed into an AD620 instrumentation amplifier. The amplifier is also
powered at 5V, taking the differential output and providing a single ended output
relative to ground. The gain of the amplifier is set by a simple resistor between two
pins.

4

",

r_

~~~ 

f 
. 

, 

-, 

-\ k y 

— A A A A 
——^Pfff™ 

* Si"1 

+ 

___!___. . 

- , 

f 
-

To 
A/D 

Figure C.3: Pressure sensor interface 

C.5 microSD Interface 

Now that the sensors can be read by the microcontroller, this data must be written to 
a /iSD card. In figure C.4, the standard SPI bus is shown. This also shows that both 
the card and the microcontroller are powered with 3.31/. It can be noted that there 
is a floating connection on the card socket. There are two standard communication 
methods with which /iSD cards are compatible. These are with the SPI bus, used 
here, as well as with the SD bus, which uses one additional communication line. 

C.6 P C B Layout 

The board layout, designed in Eagle (Easily Applicable Graphical Layout Editor), is 
shown in figures C.5 and C.6. First, it can be noted that it is circular, in order to 
fit within a circular rock-like shell. The size was constrained by the battery and /iSD 
card socket. These must both be accessible to the user and are positioned adjacent 
to one another on the top of the board. To the left of the card socket are the two 
status LEDs. On the top layer we see that the power comes in on the top right, and 

112 



ARDUIN-
iDUJM 

O! 

TXO 
RX! 
RSTO 
GNDO 

11 
10 

GNE 
RST1 
VO 

PRO MINI_SMT 
RAW 

RAW ---
GND1 
RST1 

A3 
A2 
A1 
AO 
13 

A3 
A,2 

Mi 
AO 
13 
12 

10 

| B a _ _ 8 5 8 S _ 

IS 

') 1uF 

t-I If 

,3V 
A 

GN[ 

CD 
DO 
GMD 
SCK 
VCC 
LJI 

CS 
^ 

Figure C.4: //SD card interface 

is fed to the regulator just next to it. Also included are the pressure sensors, facing 
outwards to interface with the outside fluid via the shell. 

On the bottom layer, the IMU is shown with the header at the top of the board. 
It is held in place with two screws in the large diameter through holes. The only 
other components on the bottom of the board are the instrumentation amplifiers and 
their gain resistors. These are placed just below the pressure sensors. 

113 



Figure C.5: PCB top layer 

Figure C.6: PCB bottom layer 

114 



Appendix D 

Shell Design 

In this appendix, the design of the Smart Rock shell is discussed. This shell approx
imates the size and shape of the larger pieces of debris in the flow. The drawings are 
shown in figures D.l and D.2. 

The bottom half of the shell is a hemisphere with a small cylindrical extrusion. A 
cavity is created with a stepped bore hole. The PCB assembly is shaped such that 
the IMU electronics protrude downward. This fits in the smaller, deeper portion of 
this hole. The PCB then sits on the ledge, aligning the pressure sensors with their 
interfacing holes. 

In the cylindrical section, several holes are drilled. On each side, there is one 
counterbored through hole, as well as smaller tapped holes beside each. The larger 
center hole is for the pressure interface. A tube can be inserted from the inside 
connecting to the pressure sensor. In the counterbore, a brass sinter piece filtration 
rating of 40 microns can be inserted to protect the sensor from debris while allowing 
pressure transmission. The tapped holes beside these are for set screws to hold in the 
brass sinter piece. 

On the top there can also be seen a groove for an o-ring and a face with female 
threads. These features allow it to be assembled with the top section and seals the 
interface to IP68. 

The top half of the shell is a simple cylinder with a filleted edge and a bored hole 
to hold the electronics and battery that will protrude from the bottom half of the 
shell. This also has a male threaded face for assembly. 

115 



o 
x> 
O 

X3 

# 0 x 0 2 
CSK Holes (4x| 

O-Ring Groove 

Female Th'ded 
Face 

_ 

O 

o 

CO 

t o 

UNLESS ©IHEHWBE3PECLFIE 

H M E H H O h t t A M l N I H C H E f 
I ^ U E A H C E t 
H A C I I O H A L * 
AMGULAE ( o m e n ; (EMC •* 

two PUCE DECIMAL d 
IHKEE PLACE OECiAML -

lOLEKPHCfHOfEP. 

6061 ABoy 
FiHttH 

DOHOUCALEPSAWIHC 

3 

D 

DitflVuH 

CHECKED 

t N C A P M 

SWCAPfP, 

« A 

COMMENTS 

NAME 

M i t t 

[ •A l t 

< i / 2 i / l 

2 

UNH/USGS Smart Rock 
TITLE: 

Shell Bottom 
SEE DWG NO. REV 

A 1A B 
SCALE-12 WEIGHT SHEET | OF 1 

1 



>¥" 

1 I 

UNLESS O I H E H W B E S P t C l f l E 

M iWENt lOHtA tE IN tNCHEl 

I O t £ t * H C E ( 
FCACIK lHKL i 

A H 6 U L M foWCH_ »EHD -
I W O PLACE DECIMAL J 
! H R £ ( f L A C E DECIMAL ± 

lHf«PREf GEO METRIC 
tOLERANCIHG PEt 

6061 AHoy 

f lHKH 

DON0UvAL£DRAW,H<J 

3 

D 

DfcAVttl 

CHECKED 

EHCACP* 

MFOAPPC 

* A 

CVMWiEHT* 

H A M -

MUM 

PATE 

* / f l 4 / 1 

2 

UNH/USGS Smart Rock 
TITLE 

Shell Top 
SIZE~DWG~NO ' REV" ~ 

A, _1B___ B 
S C A L E ] 1 W E I G H T . SHEET I OF 1 

1 

X 

O 

0) 
X 

CO 

u 
o 

P 

b -



Appendix E 

User Manual 

E.l Introduction 
In this appendix, a manual is given to specify how the Smart Rock functions, and 
how to ensure the most accurate data collection. This covers setup, recording data, 
extracting the data, and using this gathered information to calculate position. 

E.2 Setup 

Before using the Smart Rock there are a few preliminary steps. The pressure sensor 
interface must first be prepared. To do so, remove the set screws and sinter pieces. 
This reveals a cavity leading directly to the pressure sensor diaphragm. This cavity 
must be filled with water to eliminate added dynamics of having air in the liquid 
pressure system. This can be done using a syringe. At this time, the brass sinter piece 
must also be saturated with water. This also helps to eliminate air bubbles. Once the 
cavity has been filled and the sinter piece is saturated, both are placed underwater 
in the same container. The sinter piece can be placed in the counterbored hole and 
held in place with set screws. This process must be repeated for the second pressure 
sensor as well. Inserting these underwater further ensures no air is trapped in the 
system. 

Also, the configuration file must be made before using the Smart Rock. This 
configuration file must be named CONFIG.TXT or c o n f i g . t x t and reside in the root 
directory of the /iSD card. This simple text file contains only three numbers: delay 
time, sample rate, and sample duration. For example, if the configuration file contains 
the characters, 30 400 3600, there will be a delay of 30 seconds, then the Rock will 
record data at a rate of 400 samples per second for 3600 seconds, or 1 hour. 

118 



E.3 Recording Data 

To record data, make sure the //SD card is inserted and the battery is connected 
properly. Flip the switch, and recording will begin. The power LED will light to 
signify that it has turned on and will remain lit for the duration of the delay time. 
Note that even if the delay time is set to 0, there will be a delay of ~ 20 seconds to 
set up the IMU, etc. 

Once the delay is complete, the first LED will turn off and the second LED will 
light. When this happens, the Rock has begun recording data. This will continue for 
the specified duration. When recording is complete, both LEDs will light. At this 
point the power can be turned off and the card removed. If power is lost or the card 
becomes dislodged while recording, all data that has been logged up to that point 
will be saved and readable. 

When placing the Smart Rock, the orientation must be noted. This will be used 
when analyzing the data. It may be convenient to align one of the sensor axes, such 
as the x axis, with the primary axis of motion. This will result in motion in the North 
direction in global coordinates. 

E.4 Extracting Usable Data 

The Smart Rock writes data to a text file with 9 columns of hexadecimal numbers. 
The first column is the time in milliseconds. After this are the x, y, and z gyroscope 
readings and the x, y, and z accelerometer readings. The final two columns are the 
pressure sensor readings. The first of these pressure readings is from the sensor on 
the negative y-axis, and the second reading is from the sensor on the positive y-axis. 

At the bottom of the file are a few additional pieces of information. This includes 
the number of 14-sample blocks of data that were missed, the maximum write time for 
a block of data in microseconds, the sampling frequency, and the contents of the IMUs 
flag register. The write time can be used as a performance measure for a given //SD 
card. This time can vary with size, brand, file system, etc. For a 1GB Transcend, 
FAT16 formatted card, this time is typically 2800 lis. The flag register contents are 
described in Table 26 of the ADIS16367 data sheet [6]. This contains information 
about the self-test, supply voltage, communication failures, and other diagnostics. 
The additional information at the bottom of this file is removed automatically when 
running the program to read the data. 

A MATLAB program has been written called ReadlMUO to take this text file 
and put the data in a usable form. This will create a second text file with the 
additional information removed as well as a MAT-file containing all the sensor data 
in engineering units. Alternatively, the sensor data can be converted with other 
calibrations or other methods if desired. Note that the gyro and accelerometer data 
are printed in the original text file in 14-bit twos complement format. The inertial data 
can be converted using the datasheet calibrations, and the pressure sensor readings 
can be converted using the calibration from section 3.2.3. 

119 



E.5 Analysis 

With the extracted and usable data, it can now be used to calculate position. This 
is done using the MATLAB program AdHocFi l terO. This program takes all of the 
inertial sensor data and the time vector and performs the filter that was described in 
chapter 6. This gives the calculated position from the forward filter and backward 
filter, allowing the user to average these in any desired method. 

This is where the original orientation must be known. The inertial navigation 
process takes data in body coordinates and transforms it into local geographic coor
dinates. However, the Rock is not able to detect the directions of local geographic 
North and East, just down as this aligns with gravity. Thus, it takes the initial 
orientation, and rotates it such that the z axis aligns with the downward direction. 
The resulting orientations of the x and y axes are the North and East directions 
respectively. Because the filter takes as arguments known positions in local geo
graphic coordinates, it must be known how the initial orientation relates to the local 
geographic orientation, and thus how the local geographic coordinates are oriented. 

E.6 Example Procedure 

To summarize, an example procedure is given here. This includes everything described 
above in a sequential manner. 

1. Create appropriate configuration file on / J S D card. 

2. Ensure battery is properly inserted. 

3. Insert /LtSD card into slot. 

4. Flip power switch to "On". After a slight delay the power LED will illuminate. 

5. Tightly close the shell. Hand tightening is typically enough to prevent water 
leakage. 

6. Prepare pressure interface by filling cavity and saturating sinter pieces. 

7. Place the Rock in the desired position, noting orientation. 

8. The configuration file will be read and the Rock will delay the the prescribed 
amount of time. At this time, the first LED will turn off and the second LED 
will illuminate to indicate recording is in progress. 

9. The Rock will record for a duration and at a sampling frequency as indicated 
in the configuration file. 

10. When recording is complete, both LEDs will illuminate. At this time, it is safe 
to flip the power switch off. 

120 



11. Remove the /y,SD card and read data with ReadlMUO MATLAB function. 

12. Use the newly created MAT-file to calculate position using the AdHocFil terO 
MATLAB function. 

E.7 Advanced Options: Reprogramming 

Next to the /iSD socket, there is a 6-pin header. This header allows for reprogramming 
of the microcontroller. If it is desired, the firmware can be altered. This is done using 
the FTDI Basic 3.3V board from Sparkfun and a USB-A to USB-mini cable. This 
must be plugged into the Smart Rock with the top of the FTDI board facing the 
LEDs. Note that there is nothing preventing the insertion of the plug in the opposite 
orientation and that doing so may cause permanent damage to the microcontroller. 

The appropriate software to upload new code to the Smart Rock can be down
loaded for free at www. arduino . cc. With this, a "sketch" can be created and uploaded 
to the Smart Rock with a single click of a button. For instructions on how to use this 
IDE, please see the Arduino website. 

121 



Appendix F 

Navigation Filter 

For the interested reader, the full text of the filtering program is given here. 

funct ion [p, p2, v , v2, q, q2, N, M, t _ s e t , p _ s e t , k_set] = . . . 
AdHocTestSmoother(omega, f_b, t , t _ s e t , p_se t , twoD, which_v_cor) 

U 
Input arguments 

omega = measure spin rate (3xlxN) [rad/s] 
f_b = measured body force (3xlxN) [m/s"2] 
t = time vector (Nxl) [s] 
t_set = lxM vector of times at which the position is known 
p_set = 3xM vector of known positions (x,y,z are rows) 
twoD = lxM vector: 1 to restrict to 2D motion plane (in gravity 

and downhill plane), 2 to restrict to no downward 
motion, 0 to allow 3D 

Output parameters 
p = position (3xlxN) [m] 
v = velocity (3xlxN) [m/s] 
q = quaternion after compensation (4xlxN) [] 
q_uncomp = uncompensated quaternion (4xlxN) [] 
g = calculated gravity vector in local geographic coordinates 

from average of first 100 points of f_b [ms/~2] 
C = direction cosine matrix (DCM) attitude representation 
A = transforms body axes to next time step 
fO = initial gravity vector in body coordinates from first 100 

122 



points of f_b [m/s~2] 
f_b_g = acceleration [m/s~2] in local geographic coordinates 
sigma = rotation about each axis [rad] over time interval 
dt = time between data points [s] 
sigma_mag = magnitude of total rotation [rad] over time interval 
L = latitude [rad] 

N=size(f_b,3); "/. Number of points in set 
if size(t,l)==l;t=t';end 
dt = t(2:end)-t(l:end-l); "/. Create dt 
fs = length(t)/max(t); 
M = length(t_set); 
t_set = [0,t_set]; 
p_set = [[0;0;0],p_set]; 

0/ oI o/ o/ o/ o/ o/ oI ai o/ o/ o/ o/ o / o/ o/ o i o/ at y o/ o/ o/ o/ o i o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ ov o/ o/ o/ o/ o/ o/ o i 
/o /o A /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o 

y//. Run the Whole Thing Forward %l 
V °/ V V V V V V V V V V V V V °/ V V V V °/ V °/ V °/ V °/ V °/ V V °/ V V V V V V V V V V V /o /o /o /o /o /o /o /o /o /o /o A /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o 

Omega = 2*pi/(23*3600+56*60+4.09053); "/.Rotation r a t e of e a r t h ( r a d / s ) 
"/.Period from: 
°/.http: / / imag ine . gsf c. nasa . gov/docs /ask_as t ro /answers /970401c. html 

fO = m e a n ( f _ b ( : , l , l : 1 0 0 ) , 3 ) ; 
g = [0 0 norm(fO)] ' ; "/.Gravity v e c t o r , l o c a l geographic coord ina tes (m/s) 

"/.http : / / n s s d c . gsf c n a s a . g o v / p l a n e t a r y / f a c t s h e e t / e a r t h f a c t .html 
Ro = (6378135+6356750)/2; "/. (m) 

7. h t t p s : / / v i s u a l i z a t i o n . hpc.mil /wiki /Radius_of _the_Earth 

%"/, I n i t i a l i z e Var iab les 
sigma = z e r o s ( 3 , 1 , N ) ; 
q_uncomp = zeros(4,1,N); 
q = zeros(4,l,N); 
C = zeros(3,3,N); 
sigma_mag = zeros(1,1,N); 
sigmax = zeros(3,3,N); 
A = zeros(3,3,N); 
f_b_g = zeros(3,l,N); 
L = zeros(l,l,N); L(l) = (43.08)*pi/180; 
"/.Durham, NH 43.08 N Latitude http://www.bcca.org/misc/qiblih/latlong.html 
v = zeros(3,l,N); v(:,l,l) = [ 0 0 0]> ; 
"/.Velocity in l o c a l geographic coord ina tes (m/s) [v_N v_E v_h] ' 
p = z e r o s ( 3 , l , N ) ; p ( : , l , l ) = [ 0 0 0 ] ' ; 
"/.Position in l o c a l geographic coord ina tes (m) [x_N x_E h] ' 
omega_ie = z e r o s ( 3 , 1 , N ) ; 
omega_iex = z e r o s ( 3 , 3 , N ) ; 

123 

http://cnasa.gov/planetary/factsheet/earthfact
http://www.bcca.org/misc/qiblih/latlong.html


omega_en = zeros(3,l,N); 
omega_enx = zeros(3,3,N); 
theta = zeros(N,l); "/. Angle between velocity vector and downhill 
downhill = p_set(:,l)/norm(p_set(:,1)); 
transverse = cross([0;0;1],downhill)/... 

norm(cross( [0;0;1] ,downhill)) ;"/. What is the third direction 
correct_factor = zeros(1,length(t_set)); 

"/„"/. Attitude Computations 
"/, Set rotation rate initially to 0 
omega = omega - repmat(mean(omega(:,1,1:100),3),[1,1,N]); 
"/. Find initial quaternion from gravity vector 
sigmaO = cross( [0;0;1] , fO ) ... 

/ norm( cross( [0;0;1] , f0 ) ) ... 
* acos( dot( [0;0;1] , f0/norm(f0) ) ); 

q(:,l,l) = vec2quat(sigma0); 
"/. Equivalent to q(:,l,l) = expm(skewsymW(sigmaO)/2) * [1;0;0;0]; 

if isnan(mean(q(:,1,1))) 
q(:,l,l) = [1;0;0;0]; 

end 
q_uncomp(:,1,1) = q(:,l,l); 
sigma(:,:,l:end-l) = (-omega(:,:,1:end-1)-omega(:,:,2:end))/2.*... 

repmat (reshape (dt,l,l,N-l) ,3,1) ; "/.NOTE: negative was found late in 
"/. the process here, changes from 
"/. rotating local to body, to 
% rotating body to local. 

"/„"/. Navigation Algorithm 
v_corrections = 0; 
a_corrections = 0; 
marked = 0; 

t_crit = .5; % [s] time to allow acceleration over a_crit 
a_crit = 0.5*norm(g); "/. [m/s~2] max allowable acceleration 
phi_crit = atan(a_crit/norm(g)); "/. [rad] 
v_crit = 2; "/. [m/s] minimum velocity to attempt velocity filter 
v_rot_per = 1.1; "/.Percentage of the way to rotate velocity vector 
d_crit = 1.5; "/. [m] deviation from nominal at which correction is applied 
theta_crit = 30*pi/180; "/„ [rad] 

k_crit = 20; "/.minimum steps to backtrack when deviation>d_crit 
k_last = 1; 
skip2 = false; "/. Skips 2nd stage if correction is made from 1st stage 

"/."/. Begin loop for each section with known endpoints 
k_set = zeros(size(t_set)); 
for ii=l:length(t_set) 

k_set(ii) = find(t>=t_set(ii),1,'first'); 

124 



end 
for m = 2:M+1 

downhill = (p_set(:,m)-p_set(:,m-l))/... 
norm(p_set(:,m)-p_set(:,m-l)); 

transverse = cross([0;0;1].downhill)/... 
norm(cross( [0;0; 1] ,downhill)) ;°/. What is the third direction 

k = k_set(m-l); 
while(k<k_set(m)) 

"/. Convert to DCM for use in calculating acceleration 
C(:,:,k) = quat2dcm(q(:,:,k)); 
"/. Find magnitude of rotation 
sigma_mag(l,l,k) = sqrt(sum(sigma(:,:,k).~2,1)); 
"/. Make sure it is not < eps 
sigma_mag(l,l,k) = sigma_mag(l,1,k) + eps*(sigma_mag(l,l,k)<le-16); 
"/. Skew symmetric form of the sigma vector 
sigmax(:,:,k) = skewsym(sigma(:,:,k)); 
"/. Find A matrix to update body coordinates 
A(:,:,k) = bodytimeupdate(sigma_mag(l,1,k),sigmax(:,:,k)); 
"/. Calculate velocity change in global coordinates 
f_b_g(:,l,k) = C(:,:,k)*A(:,:,k)*f_b(:,l,k); 
if twoD(m-l)==l 

"/. What portion of f_b_g is in transverse direction? 
transverse_mag = dot(f_b_g(:,l,k), transverse); 
"/. Remove that transverse portion 
f_b_g(:,l,k) = f_b_g(:,l,k) - transverse_mag*transverse; 
"/. What portion of v is in transverse direction? 
transverse_mag = dot(v(:,l,k), transverse); 
"/. Remove that transverse portion 
v(:,l,k) = v(:,l,k) - transverse_mag*transverse; 

elseif twoD(m-l)==2 
"/. Remove portion in downward direction 
f_b_g(3,l,k) = g(3); 
"/. Set velocity to 0 in downward direction 
v(3,l,k) = 0; 

end 
"/„ ??? 
omega_ie(:,l,k) = [Omega*cos(L(k));0;-0mega*sin(L(k))]; 
"/. Skew symmetric form 
omega_iex(:,:,k) = skewsym(omega_ie(:,1,k)); 
"/„ ??? 
omega_en(:,l,k) = v(:,l,k).*[l/(Ro+p(3,l,k)) 

-l/(Ro+p(3,l,k)) 
-tan(L(D)/(Ro+p(3,l,k))] ; 

125 



"/. Skew symmetric form 
omega_enx(:,:,k) = skewsym(omega_en(:,l,k)); 
% Calculate next velocity vector 
v(:,l,k+l) = (eye(3) - 2*omega_iex(:,:,k)*dt(k)... 

- omega_enx(:,:,k)*dt(k))... 
* (v(:,l,k) + (f_b_g(:,l,k) - g)*dt(k)); 

"/, Compute new latitude 
L(k+1) = L(k) + v(l,l,k)/(Ro+p(3,l,k))*dt(k); 
°/0 Integrate to find position 
for ii=l:3 

p(ii,l,k+l) = p(ii,l,k) + trapz(t(k:k+l),v(ii,1,k:k+l)); 
end 

"/X/X/X/X/. C a l c u l a t i o n s Complete "/."/c"/."/."/."/."/."/."/."/."/.'/."/.'/.'/. 

•/:/:/:/:/:/:/;/:/, Begin Filter mmyx/x/x/x/. 

"/. If we are far enough into it 
if (k>fs*4) 

r/."/.'/x/.r/x/."/x/. n i ter stage i yx/x/x/x/x/x/, 
"/. Enter the filter if the velocity has at least this magnitude 

if ( norm(v(:,l,k))>v_crit && k>k_crit ) 
"/. Find distance from nominal trajectory 

"/. (http: //mathworld. wolfram. com/Point-LineDistance3-Dimensional. html) 
d_nom = norm(cross(p(:,:,k)-p_set(:,m-l),... 

p(:,:,k)-p_set(:,m)))... 
/ norm(p_set(:,m-l)-p_set(:,m)); 

"/. If we're more than d_crit meters away 
if (d_nom>d_crit) 

"/. fprintf (['V_correct k = ' ,num2str(k) , ' -> ']); 
"/. Save the current location 
marked = k; 
"/. Calculate angle between velcity and downhill 
theta(k) = acos(dot(downhill,v(:,l,k)/norm(v(:,l,k)))); 
"/. Backtrack to where theta<theta_crit 

while (theta(k) > theta_crit... 
&& norm(v(:,l,k))>v_crit... 
&& k>k_set(m-l)) 

k = k-1; 
theta(k) = acos( dot( downhill,... 

v(:,l,k)/norm(v(:,l,k)) ) ); 
end 

"/, Make sure we went back far enough 
if (marked-k)<k_crit 

k = marked - k_crit; 
end 

126 



"/. Make correction to quaternion 
if k<=k_last 

k = k + k_crit; 
end 
"/. Save this spot to see if we go back there 
k_last = k; 
if which_v_cor==2 

v(:,l,k) = correct_vel2(downhill,v(:,l,k)); 
else 

[q(:,l,k),v(:,l,k)] = correct_vel(q(:,1,k),... 
downhill,v(:,l,k),v_rot_per); 

end 
v_corrections = v_corrections + 1; 

"/. fprintf ([num2str(k) , '\n']) ; 
skip2 = true; 

"/. Re-do previous calculations 
C(:,:,k) = quat2dcm(q(:,:,k)); 
°/. Find magnitude of rotation 
sigma_mag(l,l,k) = sqrt(sum(sigma(:,:,k)."2,1)); 
"/. Make sure it is not < eps 
sigma_mag(l,l,k) = sigma_mag(l,l,k)... 

+ eps*(sigma_mag(l,l,k)<le-16); 
"/. Skew symmetric form of the sigma vector 
sigmax(:,:,k) = skewsym(sigma(:,:,k)); 
"/. Find A matrix to update body coordinates 
A(:,:,k) = bodytimeupdate(sigma_mag(l,l,k),sigmax(:,:,k)); 
"/. Calculate velocity change in global coordinates 
f_b_g(:,l,k) = C(:,:,k)*A(:,:,k)*f_b(:,l,k); 
if twoD(m-l)==l 

"/„ What portion of f_b_g is in transverse direction? 
transverse_mag = dot(f_b_g(:,l,k), transverse); 
°/. Remove that transverse portion 
f_b_g(:,l,k) = f_b_g(:,l,k)... 

- transverse_mag*transverse; 
"/. What portion of v is in transverse direction? 
transverse_mag = dot(v(:,l,k), transverse); 
"/. Remove that transverse portion 
v(:,l,k) = v(:,l,k) - transverse_mag*transverse; 

elseif twoD(m-l)==2 
"/„ Remove portion in downward direction 
f_b_g(3,l,k) = g(3); 
"/. Set velocity to 0 in downward direction 
v(3,l,k) = 0; 

end 

127 



"/. ??? 
omega_ie(:,l,k) = [Omega*cos(L(k));0;-Omega*sin(L(k))]; 
% Skew symmetric form 
omega_iex(:,:,k) = skewsym(omega_ie(:,l,k)); 
% ??? 
omega_en(:,l,k) = v(:,1,k).*[l/(Ro+p(3,1,k)) 

-l/(Ro+p(3,l,k)) 
-tan(L(l))/(Ro+p(3,l,k))]; 

"/, Skew symmetric form 
omega_enx(:,:,k) = skewsym(omega_en(:,l,k)); 
"/, Calculate next velocity vector 
v(:,l,k+l) = (eye(3) - 2*omega_iex(:,:,k)*dt(k)... 

- omega_enx(:,:,k)*dt(k))... 
* (v(:,l,k) + (f_b_g(:,l,k) - g)*dt(k)); 

°/. Compute new latitude 
L(k+1) = L(k) + v(l,l,k)/(Ro+p(3,l,k))*dt(k); 
"/. Integrate to find position 
for ii=l:3 

p(ii,l,k+l) = p(ii,l,k)... 
+ trapz(t(k:k+l),v(ii,l,k:k+l)); 

end 
else 

skip2 = fa lse ; 
end 

else 
skip2 = fa lse; 

end 

yX/X/X/X/.n F i l t e r Stage 2 "/X/X/X/X/X/X/. 
if 0°/.skip2==false 

"/. Start a new counter from current spot 
kk=k; 
"/, Step back until the angle between the sensed acceleration 
"/. and down is less than phi_crit 
while ( acos(dot(f_b_g(:,l,kk),g)... 

/norm(f_b_g(:,:,kk))/norm(g)) > phi_crit ) 
kk=kk-l; 

end 
"/. If sensed angle > phi_crit for at least t_crit seconds 
if ( kk <= k-floor(fs*t_crit)+l && kk>k_set(m-l) ) 

"/. fprintf ( ['a_correct k = ' ,num2str(k) , ' -> ']); 
"/. Bring us back to that time 
k = kk; 
°/. If we went back too far 
if k<=k_last 

128 



k = k + k_crit; 
end 
k_last = k; 
"/. Make correction to quaternion 
q(:,l,k) = correct_acc(q(:,l,k),f_b_g(:,l,k), g); 
a_corrections = a_corrections + 1; 

% fprintf([num2str(k),'\n']); 

°/. Re-do previous calculations 
C(:,:,k) = quat2dcm(q(:,:,k)); 
"/. Find magnitude of rotation 
sigma_mag(l,l,k) = sqrt(sum(sigma(:,:,k).~2,1)); 
"/. Make sure it is not < eps 
sigma_mag(l,l,k) = sigma_mag(l,l,k)... 

+ eps*(sigma_mag(l,l,k)<le-16); 
°/. Skew symmetric form of the sigma vector 
sigmax(:,:,k) = skewsym(sigma(:,:,k)); 
"/. Find A matrix to update body coordinates 
A(:,:,k) = bodytimeupdate(sigma_mag(l,l,k),sigmax(:,:,k)); 
"/. Calculate velocity change in global coordinates 
f_b_g(:,l,k) = C(:,:,k)*A(:,:,k)*f_b(:,l,k); 
if twoD(m-l)==l 

°/. What portion of f_b_g is in transverse direction? 
transverse_mag = dot(f_b_g(:,l,k), transverse); 
% Remove that transverse portion 
f_b_g(:,l,k) = f_b_g(:,l,k)... 

- transverse_mag*transverse; 
"/. What portion of v is in transverse direction? 
transverse_mag = dot(v(:,l,k), transverse); 
"/. Remove that transverse portion 
v(:,l,k) = v(:,l,k) - transverse_mag*transverse; 

elseif twoD(m-l)==2 
% Remove portion in downward direction 
f_b_g(3,l,k) = g(3); 
"/. Set velocity to 0 in downward direction 
v(3,l,k) = 0; 

end 
*/. ??? 
omega_ie(:,l,k) = [Omega*cos(L(k));0;-0mega*sin(L(k))]; 
"/. Skew symmetric form 
omega_iex(:,:,k) = skewsym(omega_ie(:,l,k)); 
7. ??? 
omega_en(:,l,k) = v(:,l,k).*[l/(Ro+p(3,l,k)) 

-l/(Ro+p(3,l,k)) 
-tan(L(l))/(Ro+p(3,l,k))]'; 

129 



"/. Skew symmetric form 
omega_enx(:,:,k) = skewsym(omega_en(:,l,k)); 
"/. Calculate next velocity vector 
v(:,l,k+l) = (eye(3) - 2*omega_iex(:,:,k)*dt(k)... 

- omega_enx(:,:,k)*dt(k))... 
* (v(:,l,k) + (f_b_g(:,l,k) - g)*dt(k)); 

"/. Compute new latitude 
L(k+1) = L(k) + v(l,l,k)/(Ro+p(3,l,k))*dt(k); 
°/. Integrate to find position 
for ii=l:3 

p(ii,l,k+l) = p(ii,l,k)... 
+ trapz(t(k:k+l),v(ii,l,k:k+l)); 

end 
end 

end 
end 

yX/X/.yX/X/X/. Filter Complete yX/.'/X/X/X/X/o"/. 

"/. Calculate new quaternion 
q_uncomp(:,l,k+l) = expm(skewsymW(sigma(:,l,k))/2) * q(:,l,k); 
% Normalize 
q(:,l,k+l) = q_uncomp(:,l,k+l)/norm(q_uncomp(:,l,k+l)); 
"/. Increment counter, k 
k = k+1; 
if ~rem(k,1000); fprintf(['k= ',num2str(k),'\n']); end 

end 

"/.Finished calculating for the m'th section, normalize position, velocity 
correct_factor(m-1) = l/norm(p(:,:,k_set(m))-p(:,:,k_set(m-l)))... 

* norm(p_set(:,m)-p_set(:,m-l)); 
if dot(p(:,:,k_set(m)),downhill)<0 

correct_factor(m-1) = -correct_factor(m-l); 
end 

p(:,:,k_set(m-l):k_set(m)) = ( (p(:,:,k_set(m-l):k_set(m))... 
-repmat(p(:,:,k_set(m-l)),[1,1,k_set(m)-k_set(m-l)+l]))... 
* correct_factor(m-l) )... 
+ repmat(p(:,:,k_set(m-l)),[1,1,k_set(m)-k_set(m-l)+l]); 

v(:,:,k_set(m-l):k_set(m)) = ( (v(:,:,k_set(m-l):k_set(m))... 
-repmat(v(:,:,k_set(m-l)),[l,l,k_set(m)-k_set(m-l)+l]))... 
* correct_factor(m-1) )... 
+ repmat(v(:,:,k_set(m-l)),[1,l,k_set(m)-k_set(m-l)+l]); 

130 



end 

fprintf(['velocity corrections : ',num2str(v_corrections),'\n']); 
fprintf(['ace corrections : ',num2str(a_corrections),'\n']); 

fl / 0 / 010 / 0 / 0/ ft/ 0 / 07 0 / 0 / 0 / 0 / fl I 0 / 0/ 0 / fl / 0 / 07 ft/ ft 10 / 07 fl / 0/ 0 / ft / 0 / 0 / 0/ 0 / 0 / 0 / 0/ ft/ 0 / ft / 0 / 0 / 0 / 0 / 0 / 
/o /o /o /o /o /o /o In /o /o /o /o /o /o /o /o /o /o /o /o /o /ft /. /o /o /o /o /o /o /o /o /o /o /o /o /o /o /o /. /o /ft /ft /ft 

"/."/. R u n t h e W h o l e T h i n g B a c k w a r d "/."/. 
0 / 0 / 0/ 0/ 0/ 0/ 0/ 0/ 07 07 0/ 0/ 07 0/ 0/ 0/ 0/ 07 0/ 07 07 0/ 07 07 07 07 07 07 ft/ 07 07 ft/ 07 07 0/ 0/ 07 0/ 07 07 07 07 07 

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

f02 = mean(f_b(:,1,end-100:end),3); 
g2 = [0 0 norm(f02)] ' ;°/,Gravity vector, local geographic coordinates (m/s) 

"/.http: //nssdc. gsf c. nasa. gov/planetary/f actsheet/earthf act. html 
'/°L Initialize Variables 
v_corrections = 0; 
a_corrections = 0; 
sigma2 = zeros(3,1,N); 
q_uncomp2 = zeros(4,1,N); 
q2 = zeros(4,l,N); 
C2 = zeros(3,3,N); 
sigma_mag2 = zeros(1,1,N); 
sigmax2 = zeros(3,3,N); 
A2 = zeros(3,3,N); 
f_b_g2 = zeros(3,l,N); 
L2 = zeros(l,l,N); L(l) = (43.08)*pi/180; 
"/.Durham, NH 43.08 N Latitude http://www.bcca.org/misc/qiblih/latlong.html 
v2 = zeros(3,l,N); v2(:,l,k_set(end)) = [000]'; 

"/.Velocity in local geographic coordinates (m/s) [v_N v_E v_h] ' 
p2 = zeros(3,1,N); p2(:,l,k_set(end)) = p_set(:,end); 

"/.Position in local geographic coordinates (m) [x_N x_E h] ' 
omega_ie2 = zeros(3,1,N); 
omega_iex2 = zeros(3,3,N); 
omega_en2 = zeros(3,l,N); 
omega_enx2 = zeros(3,3,N); 
theta2 = zeros(N,l); "/. Angle between velocity vector and downhill 
downhill2 = -(p_set(:,end)-p_set(:,end-l))... 

/norm(p_set(:,end)-p_set(:,end-l)); 
transverse2 = cross([0;0;1],downhill2)... 

/norm(cross( [0;0;1] ,downhill2)) ;"/. What is the third direction 
correct_factor2 = zeros(1,length(t_set)); 

131 

http://www.bcca.org/misc/qiblih/latlong.html


%% Attitude Computations 
"/. Set rotation rate initially to 0 
omega2 = omega - repmat(mean(omega(:,l,end-100:end),3),[1,1,N]); 
"/. Find initial quaternion from gravity vector 
sigma02 = cross( [0;0;1] , fO ) ... 

/ norm( cross( [0;0;1] , f0 ) ) ... 
* acos( dot( [0;0;1] , f0/norm(f0) ) ); 

q2(:,l,k_set(end)) = vec2quat(sigma02); 
"/. Equivalent to q(:,l,l) = expm(skewsymW(sigma0)/2) * [1;0;0;0]; 

if isnan(mean(q2(:,l,k_set(end)))) 
q2(:,l,k_set(end)) = [1;0;0;0]; 

end 
q_uncomp2(:,l,end) = q2(:,l,end); 
sigma2(:,:,2:end) = -(-omega2(:,:,1:end-l)-omega2(:,:,2:end))/2.*... 

repmat (reshape (dt, 1,1, N-1) ,3,1) ; "/.NOTE: negative was found late in 
% the process here, changes from 
"/. rotating local to body, to 
"/. rotating body to local. 

%% Begin loop for each section with known endpoints 
for m = M:-l:1 

downhill2 = -(p_set(:,m+l)-p_set(:,m))... 
/norm(p_set(:,m+l)-p_set(:,m)); 

transverse2 = cross([0;0;1],downhill2)... 
/norm(cross( [0;0; 1] ,downhill2)) ;"/„ What is the third direction 

k = k_set(m+l); 
while(k>k_set(m)) 

°/. Convert to DCM for use in calculating acceleration 
C2(:,:,k) = quat2dcm(q2(:,:,k)); 
"/. Find magnitude of rotation 
sigma_mag2(l,l,k) = sqrt(sum(sigma2(:,:,k)."2,1)); 
"/. Make sure it is not < eps 
sigma_mag2(l,l,k) = sigma_mag2(l,1,k)... 

+ eps*(sigma_mag2(l,l,k)<le-16); 
"/. Skew symmetric form of the sigma vector 
sigmax2(:,:,k) = skewsym(sigma2(:,:,k)); 
% Find A matrix to update body coordinates 

A2(:,:,k) = bodytimeupdate(sigma_mag2(l,l,k),sigmax2(:,:,k)); 
"/. Calculate velocity change in global coordinates 
f_b_g2(:,l,k) = - C2(:,:,k)*A2(:,:,k)*f_b(:,l,k); 
if twoD(m)==l 

"/. What portion of f_b_g is in transverse direction? 
transverse_mag2 = dot(f_b_g2(:,l,k), transverse2); 

132 



"/. Remove that transverse portion 
f_b_g2(:,l,k) = f_b_g2(:,l,k) - transverse_mag2*transverse2; 
°/. What portion of v is in transverse direction? 
transverse_mag2 = dot(v2(:,l,k), transverse2); 
"/. Remove that transverse portion 
v2(:,l,k) = v2(:,l,k) - transverse_mag2*transverse2; 

elseif twoD(m)==2 
"/. Remove portion in downward direction 
f_b_g2(3,l,k) = g2(3); 
% Set velocity to 0 in downward direction 
v2(3,l,k) = 0; 

end 
"/. ??? 
omega_ie2(:,l,k) = [0mega*cos(L2(k));0;-0mega*sin(L2(k))]; 
"/. Skew symmetric form 
omega_iex2(:,:,k) = skewsym(omega_ie2(:,l,k)); 
"/. ??? 
omega_en2(:,l,k) = v2(:,1,k).*[l/(Ro+p2(3,l,k)) 

-l/(Ro+p2(3,l,k)) 
-tan(L2(l))/(Ro+p2(3,l,k))]'; 

"/. Skew symmetric form 
omega_enx2(:,:,k) = skewsym(omega_en2(:,l,k)); 
"/. Calculate next velocity vector 
v2(:,l,k-l) = (eye(3) - 2*omega_iex2(:,:,k)*dt(k)... 

- omega_enx2(:,:,k)*dt(k))... 
* (v2(:,l,k) + (f_b_g2(:,l,k) - g2)*dt(k)); 

"/. Compute new latitude 
L2(k-1) = L2(k) + v2(l,l,k)/(Ro+p2(3,l,k))*dt(k); 
"/. Integrate to find position 
for ii=l:3 

p2(ii,l,k-l) = p2(ii,l,k) - trapz(t(k-1:k),v2(ii,l,k-l:k)); 
end 

'/X/X/X/XL Calculations Complete V/X/X/X/X/X/X/X 
V/X/X/Xa Begin F i l t e r V/X/X/XIX/XIXIX 

% If we are far enough into i t 
if (k< k_set(end)-fs*2) 

7X/X/X/X/X/X/. F i l t e r Stage 1 V/X/X/X/X/X/X 
"/. Enter the f i l t e r if the velocity has at least t h i s magnitude 

if ( norm(v2(:, l ,k))>v_crit && k>k_crit ) 
"/. Find distance from nominal t ra jectory 

% (http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html) 
d_nom2 = norm(cross(p2( : , : ,k)-p_set( : ,m+l) . . . 

, p2 ( : , : , k )+p_se t ( : ,m) ) ) . . . 

133 

http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html


/ norm(p_set(:,m+l)-p_set(:,m)); 
"/„ If we're more than d_crit meters away 

if (d_nom2>d_crit) 
fprintf(['V.correct k = ',num2str(k),' -> ']); 

"/. Save the current location 
marked = k; 
°/. Calculate angle between velcity and downhill 
theta2(k) = acos( dot( downhill2,... 

v2(:,l,k)/norm(v2(:,l,k)) ) ); 
"/. Backtrack to where theta<theta_crit 

while (theta2(k) > theta_crit... 
&& norm(v2(:,l,k))>v_crit... 
&& k<k_set(m)) 

k = k+1; 
theta2(k) = acos( dot( downhill2,... 

v2(:,l,k)/norm(v2(:,l,k)) ) ); 
end 

"/. Make sure we went back far enough 
if (k-marked)<k_crit 

k = marked + k_crit; 
end 

"/. Make correction to quaternion 
if k>=k_last 

k = k - k_crit; 
end 
"/. Save this spot to see if we go back there 
k_last = k; 
if which_v_cor==2 

v2(:,l,k) = correct_vel2(downhill2,v2(:,l,k)); 
else 

[q2(:,l,k),v2(:,l,k)] = correct_vel(q2(:,l,k),.. 
downhill2,v2(:,l,k),v_rot_per); 

end 
v_corrections = v_corrections + 1; 
fprintf([num2str(k),'\n']); 

skip2 = true; 

"/. Re-do previous calculations 
C2(:,:,k) = quat2dcm(q2(:,:,k)); 
"/. Find magnitude of rotation 
sigma_mag2(l,l,k) = sqrt(sum(sigma2(:,:,k)."2,1)); 
°/. Make sure it is not < eps 
sigma_mag2(l,l,k) = sigma_mag2(l,l,k)... 

+ eps*(sigma_mag2(l,l,k)<le-16); 
% Skew symmetric form of the sigma vector 

134 



sigmax2(:,:,k) = skewsym(sigma2(:,:,k)); 
"/. Find A matrix to update body coordinates 
A2(:,:,k) = bodytimeupdate(sigma_mag2(l,l,k)... 

,sigmax2(:,:,k)); 
"/. Calculate velocity change in global coordinates 
f_b_g2(:,l,k) = C2(:,:,k)*A2(:,:,k)*f_b(:,l,k); 
if twoD(m)==l 

"/. What portion of f_b_g is in transverse direction? 
transverse_mag2 = dot(f_b_g2(:,l,k), transverse2); 
"/. Remove that transverse portion 
f_b_g2(:,l,k) = f_b_g2(:,l,k)... 

- transverse_mag2*transverse2; 
"/. What portion of v is in transverse direction? 
transverse_mag2 = dot(v2(:,l,k), transverse2); 
"/. Remove that transverse portion 
v2(:,l,k) = v2(:,l,k) - transverse_mag2*transverse2; 

elseif twoD(m)==2 
"/. Remove portion in downward direction 
f_b_g2(3,l,k) = g2(3); 
"/, Set velocity to 0 in downward direction 
v2(3,l,k) = 0; 

end 
"/. ??? 
omega_ie2(:,l,k) = [0mega*cos(L2(k)) 

0 
-0mega*sin(L2(k))]; 

"/. Skew symmetric form 
omega_iex2(:,:,k) = skewsym(omega_ie2(:,l,k)); 
"/. ??? 
omega_en2(:,l,k) = v2(:,l,k).*[l/(Ro+p2(3,l,k)) 

-l/(Ro+p2(3,l,k)) 
-tan(L2(l))/(Ro+p2(3,l,k))]; 

°/. Skew symmetric form 
omega_enx2(:,:,k) = skewsym(omega_en2(:,l,k)); 
"/, Calculate next velocity vector 
v2(:,l,k-l) = (eye(3) - 2*omega_iex2(:,:,k)*dt(k)... 

- omega_enx2(:,:,k)*dt(k))... 
* (v2(:,l,k) + (f_b_g2(:,l,k) - g2)*dt(k)); 

"/. Compute new latitude 
L2(k-1) = L2(k) + v2(l,l,k)/(Ro+p2(3,l,k))*dt(k); 
°/. Integrate to find position 
for ii=l:3 

p2(ii,l,k+l) = p2(ii,l,k)... 
- trapz(t(k-l:k),v2(ii,l,k-l:k)); 

end 

135 



else 
skip2 = false; 

end 
else 

skip2 = false; 
end 

V/X/X/X/XIX F i l t e r Stage 2 WX/X/X/X/XL 
if 0°/.skip2==false 

"/, Star t a new counter from current spot 
kk=k; 
"/. Step back until the angle between the sensed acceleration 
"/. and down is less than phi_crit 
while ( acos(dot(f_b_g(:,l,kk),g)/... 

norm(f_b_g(:,:,kk))/norm(g)) > phi_crit ) 
kk=kk-l; 

end 
"/. If sensed angle > phi_crit for at least t_crit seconds 
if ( kk <= k-floor(fs*t_crit)+l kk kk>k_set(m-1) ) 

°/„ fprintf (['a_correct k = ' ,num2str(k),' -> ']); 
% Bring us back to that time 
k = kk; 
"/. If we went back too far 
if k<=k_last 

k = k + k_crit; 
end 
k_last = k; 
"/. Make correction to quaternion 
q(:,l,k) = correct_acc(q(:,l,k),f_b_g(:,l,k), g); 
a_corrections = a_corrections + 1; 

"/. fprintf ([num2str (k) ,' \n' ]); 

"/. Re-do previous calculations 
C(:,:,k) = quat2dcm(q(:,:,k)); 
°/. Find magnitude of rotation 
sigma_mag(l,l,k) = sqrt(sum(sigma(:,:,k).~2,1)); 
"/, Make sure it is not < eps 
sigma_mag(l,l,k) = sigma_mag(l,l,k)... 

+ eps*(sigma_mag(l,l,k)<le-16); 
"/. Skew symmetric form of the sigma vector 
sigmax(:,:,k) = skewsym(sigma(:,:,k)); 
"/. Find A matrix to update body coordinates 
A(:,:,k) = bodytimeupdate(sigma_mag(l,l,k),sigmax(:,:,k)); 
°/. Calculate velocity change in global coordinates 
f_b_g(:,l,k) = C(:,:,k)*A(:,:,k)*f_b(:,l,k); 

136 



if twoD(m)==l 
"/. What portion of f_b_g is in transverse direction? 
transverse_mag = dot(f_b_g(:,1,k), transverse); 
"/. Remove that transverse portion 
f_b_g(:,l,k) = f_b_g(:,l,k)... 

- transverse_mag*transverse; 
"/. What portion of v is in transverse direction? 
transverse_mag = dot(v(:,l,k), transverse); 
°/. Remove that transverse portion 
v(:,l,k) = v(:,l,k) - transverse_mag*transverse; 

elseif twoD(m)==2 
"/, Remove portion in downward direction 
f_b_g(3,l,k) = g(3); 
"/. Set velocity to 0 in downward direction 
v(3,l,k) = 0; 

end 
7. ??? 
omega_ie(:,l,k) = [Omega*cos(L(k));0;-0mega*sin(L(k))]; 
"/. Skew symmetric form 
omega_iex(:,:,k) = skewsym(omega_ie(:,l,k)); 

7. ??? 
omega_en(:,l,k) = v(:,l,k).*[l/(Ro+p(3,l,k)) 

-l/(Ro+p(3,l,k)) 
-tan(L(l))/(Ro+p(3,l,k))]'; 

°/. Skew symmetric form 
omega_enx(:,:,k) = skewsym(omega_en(:,1,k)); 
"/. Calculate next velocity vector 
v(:,l,k+l) = (eye(3) - 2*omega_iex(:,:,k)*dt(k)... 

- omega_enx(:,:,k)*dt(k))... 
* (v(:,l,k) + (f_b_g(:,l,k) - g)*dt(k)); 

"/. Compute new latitude 
L(k+1) = L(k) + v(l,l,k)/(Ro+p(3,l,k))*dt(k); 
"/. Integrate to find position 
for ii=l:3 

p(ii,l,k+l) = p(ii,l,k)... 
- trapz(t(k:k+l),v(ii,1,k:k+l)); 

end 
end 

end 
end 

V/X/X/XIX/Xh F i l t e r Complete °/X/X/X/X/X/Xh 

"/. Ca lcu la te new quatern ion 
q_uncomp2( : , l ,k - l ) = expm(skewsymW(sigma2(:,1,k))/2) * q 2 ( : , l , k ) ; 

137 



"/. Normalize 
q2(:,l,k-l) = q_uncomp2(:,1,k-1)/norm(q_uncomp2(:,l,k-l)); 
% Increment counter, k 
k = k-1; 
if ~rem(k,1000); fprintf(['k= ',num2str(k),'\n']); end 

end 

"/.Finished calculating for the m'th section, normalize position, velocity 
correct_factor2(m) = l/norm(p2(:,:,k_set(m+l))-p2(:,:,k_set(m)))... 

* norm(p_set(:,m+l)-p_set(:,m)); 
if dot(p2(:,:,k_set(m))-p2(:,:,k_set(m+l)),downhill2)<0 

correct_factor2(m) = -correct_factor2(m); 
end 

p2(:,:,k_set(m):k_set(m+l)) = ( (p2(:,:,k_set(m):k_set(m+1))... 
-repmat(p2(:,:,k_set(m+l)),[1,1,k_set(m+l)-k_set(m)+l]))... 
* correct_factor2(m) )... 
+ repmat(p2(:,:,k_set(m+l)),[1,l,k_set(m+l)-k_set(m)+l]); 

v2(:,:,k_set(m):k_set(m+l)) = ( (v2(:,:,k_set(m):k_set(m+1))... 
-repmat(v2(:,:,k_set(m+l)),[1,l,k_set(m+l)-k_set(m)+l]))... 
* correct_factor(m) )... 
+ repmat(v2(:,:,k_set(m+l)),[1,1,k_set(m+l)-k_set(m)+l]); 

end 

fprintf(['velocity corrections : ',num2str(v_corrections),'\n']); 
fprintf(['ace corrections : ',num2str(a_corrections),'\n']); 

07 07 0/ 0/ 07 0 / 0/ 0/ 0/ 0/ 0 / 07 07 0 / 0/ 0/ 07 0/ 07 0/ 07 07 07 07 07 0 / ft7 0 / 07 07 0 / 07 07 07 07 0/ 07 07 0 / 07 07 0 / 07 0/ 07 07 07 0/ 07 07 0/ 07 07 07 07 07 ft7 07 07 07 0 / 07 07 07 07 07 07 07 

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 

function A = bodytimeupdate(sigma_mag, sigmax) 
"/. Computes matrix to update body coordinates over time interval 
"/. sigma_mag = vector of magnitudes of sigma vectors 
"/. sigmax = vector of skew symetric matrix forms of sigma vectors 

138 



A = repmat(eye(3),[1,1,size(sigmax,3)]) + ... 
repmat(sin(sigma_mag)./sigma_mag,3,3).*sigmax + ... 
repmat((l-cos(sigma_mag))./sigma_mag,3,3).*squared(sigmax); 

function [q, v] = correct_vel(quat, downhill, velocity, percent) 
"/. Find unit vector about which to rotate 
rot_vec = cross(downhill, velocity)/norm(cross(downhill, velocity)); 
"/. Rotate percent"/, of the way towards downhill 
rot_vec = rot_vec*percent*acos(dot( downhill,... 

velocity/norm(velocity) )); 
"/. Calculate new quaternion 
q = expm(skewsymW(rot_vec/2)) * quat; 

"/. Calculate new rotated velocity 
v = quat2dcm(vec2quat(rot_vec)) * velocity; 

function v = correct_vel2(downhill, velocity) 
°/0 Normalize downhill just in case 
downhill = downhill/norm(downhill); 
"/, Find magnitude of v in downhill direction 
d_mag = dot(velocity,downhill); 
"/. Make velocity just in the downhill direction 
v = d_mag*downhill; 

function C=quat2dcm(q) 
qO = q(l,:,:) 
ql = q(2,:,:) 
q2 = q(3,:,:) 
q3 = q(4,:,:). 
"/. http: //www. mathworks. com/help/toolbox/aeroblks/ 
"/, directioncosinematrixtoquaternions.html 
C = [q0.~2+ql.-2-q2.~2-q3.~2, 2*(ql.*q2+q0.*q3), 2*(ql.*q3-q0.*q2) 

2*(ql.*q2-q0.*q3), qO.~2-ql."2+q2.~2-q3."2, 2*(q2.*q3+q0.*ql) 
2*(ql.*q3+q0.*q2), 2*(q2.*q3-q0.*ql), qO.~2-ql.~2-q2.~2+q3.~2]; 

function mx = skewsym( m ) 

139 



"/.This function takes a 3 x 1 x N matrix and creates the skew symmetric 
"/.matrix 3 x 3 x N 

mx=zeros(size(m,1), size(m,l), size(m,3)); 
mx(2,l,:) = m(3,l,:); 
mx(l,2,:) = -m(3,l,:); 

mx(3,l,:) = -m(2,l,:); 
mx(l,3,:) = m(2,l,:); 

mx(3,2,:) = m(l,l,:); 
mx(2,3,:) = -m(l,l,:); 

function mx = skewsymW( m ) 

"/. This function takes a 3 x 1 x N matrix and creates the skew symmetric 
% matrix 4 x 4 x N 

mx=zeros(size(m,l), size(m,l), size(m,3)); 
mx(2,1, 
mx(1,2, 

mx(3 , l , 
mx(1,3, 

mx(4 , l , 
mx( l ,4 , 

mx(3,2, 
mx(2,3, 

mx(4,2, 
mx(2,4, 

mx(4,3, 
mx(3,4, 

:) 
:) 

:) 
:) 

:) 
:) 

:) 
:) 

:) 
:) 

:) 
:) 

= 
= 

= 
= 

= 
= 

= 
= 

= 
= 

= 
= 

m ( l , l , : ) ; 
- m ( l , l , : ) ; 

m(2 , l , : ) ; 
- m ( 2 , l , : ) ; 

m ( 3 , l , : ) ; 
- m ( 3 , l , : ) ; 

- m ( 3 , l , : ) ; 
m ( 3 , l , : ) ; 

m ( 2 , l , : ) ; 
- m ( 2 , l , : ) ; 

- m ( l , l , : ) ; 
m ( l , l , : ) ; 

140 



function m2 = squared( m ) 

m2=zeros(size(m)); 
for ii=l:size(m,3) 

m2(: , : ,ii) = m(:,:,ii)"2; 
end 

function q=vec2quat(v) 

q = [cos(norm(v)/2) 
v(1)/norm(v)*sin(norm(v)/2) 
v(2)/norm(v)*sin(norm(v)/2) 
v(3)/norm(v)*sin(norm(v)/2)]; 

141 



Appendix G 

Data Sheets 

This appendix serves to provide supplementary information regarding the instrumen
tation and electronic components used in creation of the Smart Rock. Attached are 
the data sheets for each of the sensors and components used. 

142 



ANALOG 
DEVICES Six Degrees of Freedom Inertial Sensor 

ADIS16367 
FEATURES 
Tri-axis digital gyroscope with digital range scaling 

±3007sec, ±6007sec ± 12007sec settings 
Tight orthogonal alignment: 0.05° 

Tri-axis digital accelerometer: ±189 
Autonomous operation and data collection 

No external configuration commands required 
Start-uptime: 180 ms 
Sleep mode recovery time: 4 ms 

Factory-calibrated sensitivity, bias, and axial alignment 
Calibration temperature range: -40°C to +85°C 

SPI-compatible serial interface 
Wide bandwidth: 330 Hz 
Embedded temperature sensor 
Programmable operation and control 

Automatic and manual bias correction controls 
Bartlett window, FIR filter length, number of taps 
Digital I/O: data ready, alarm indicator, general-purpose 
Alarms for condition monitoring 
Sleep mode for power management 
DAC output voltage 
Enable external sample clock input: up to 1.2 kHz 
Single-command self-test 

Single-supply operation: 4.75 V to 5.25 V 
2000 g shock survivability 
Operating temperature range: -40°C to +105°C 

APPLICATIONS 
Medical instrumentation 
Robotics 
Platform controls 
Navigation 

GENERAL DESCRIPTION 

The ADIS16367 Sensor18 is a complete inertial system that includes 
a tri-axis gyroscope and tri-axis accelerometer. Each sensor in 
the ADIS16367 combines industry-leading /MEMS8 technology 
with signal conditioning that optimizes dynamic performance. 
The factory calibration characterizes each sensor for sensitivity, 
bias, alignment, and linear acceleration (gyro bias). As a result, each 
sensor has its own dynamic compensation formulas that provide 
accurate sensor measurements over a temperature range of 
-40°C to +85°C. 

The ADIS16367 provides a simple, cost-effective method for 
integrating accurate, multiaxis inertial sensing into industrial 
systems, especially when compared with the complexity and 
investment associated with discrete designs. All necessary motion 
testing and calibration are part of the production process at the 
factory, greatly reducing system integration time. Tight orthogonal 
alignment simplifies inertial frame alignment in navigation 
systems. An improved SPI interface and register structure provide 
faster data collection and configuration control. 

The ADIS 16367 uses a compatible pinout and the same package 
as the ADIS1635x family. Therefore, systems that currently use 
the ADIS1635x family can upgrade their performance with minor 
firmware adjustments in their processor designs. 

This compact module is approximately 23 mm x 23 mm x 23 mm 
and provides a flexible connector interface that enables multiple 
mounting orientation options. 

FUNCTIONAL BLOCK DIAGRAM 

RST DI01 DI02 DI03 DIO« 
CLKIN 

figure 1. 

Rev. A 
Information famished by Analog Devices is beBeved to be ace__e and reiabte. However, no 
responsfeGty is assumed by Analog Devices far its use, nor for any infringements of patents or other 
rights of thW parti_ that may result fromtausaSp 
ioense is granted by impGcaDon or otherwise under any pa__ or patent rights of Al~rog Devices. 
Traden_rksar_regT5_redfiaden_fearethe property oftfi^ 

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. 
Tel: 781.329.4700 
Fax: 781.461.3113 ©2010-2011 Analog Devices, Inc. All rights reserved. 



ADIS16367 

SPECIFICATIONS 
TA = 25°C, VCC = 5.0 V, angular rate = 0°/sec, dynamic range = ±300°/sec ± 1 g, unless otherwise noted. 

Table 1. 
Parameter 

GYROSCOPES 
Dynamic Range 
Initial Sensitivity 

Sensitivity Temperature Coefficient 
Misalignment 

Nonlinearity 
Initial Bias Error 
In-Run Bias Stability 
Angular Random Walk 
Bias Temperature Coefficient 
Linear Acceleration Effect on Bias 
Bias Voltage Sensitivity 
Output Noise 
Rate Noise Density 
3 dB Bandwidth 
Sensor Resonant Frequency 
Self-Test Change in Output Response 

ACCELEROMETERS 
Dynamic Range 
Initial Sensitivity 

Sensitivity Temperature Coefficient 
Misalignment 

Nonlinearity 
Initial Bias Error 
In-Run Bias Stability 
Velocity Random Walk 
Bias Temperature Coefficient 
Bias Voltage Sensitivity 
Output Noise 

Noise Density 
3 dB Bandwidth 
Sensor Resonant Frequency 
Self-Test Change in Output Response 

TEMPERATURE SENSOR 
Scale Factor 

ADC INPUT 
Resolution 
Integral Nonlinearity 
Differential Nonlinearity 
Offset Error 
Gain Error 
Input Range 
Input Capacitance 

Test Conditions/Comments 

Dynamic range = ±12007sec 
Dynamic range = ±6007sec 
Dynamic range = ±3007sec 

- 4 0 ° C S T A S + 8 5 ° C 

Axis-to-axis 
Axis-to-frame (package) 
Best-fit straight line 
±1o 
1o,SMPL_PRD = 0x0001 
1 a, SMPL_PR0 = 0x0001 
- 4 0 ° C _ T A _ + 8 5 ° C 

Any axis, 1 o (MSC_CTRL[7] = 1) 
VCC = 4.75 V to 5.25 V 
±12007sec range, no filtering 
f = 25 Hz, ±12007sec range, no filtering 

±12007sec range setting 

Each axis 

- 4 0 ° C < T A < + 8 5 ° C 

Axis-to-axis 
Axis-to-frame (package) 
Best-fit straight line 
±1o 
l a 
1 0 
- 4 0 ° C < T A : S + 8 5 O C 

VCC = 4.75 V to 5.25 V 
No filtering 
No filtering 

X-axis and y-axis 

Output = 0x0000 at 25°C (±5°C) 

During acquisition 

Min Typ Max 

±1200 ±1400 
0.198 0.2 0.202 

0.1 
0.05 
±40 
±0.05 
±0.5 
±0.1 
±3 
0.013 
2.0 
±0.01 
0.075 
±0.3 
0.8 
0.044 
330 
14.5 

±170 +350 ±625 

±18 
3.285 3.33 3.38 

±50 
0.2 
±0.5 
0.1 
±50 
0.2 
0.2 
±0.3 
2.5 
9 
0.5 
330 
5.5 

59 151 

0.136 

12 
±2 
±1 
±4 
±2 

0 3.3 
20 

Unit 

Ysec 
7sec/LSB 
Ysec/LSB 
7sec/LSB 
ppm/°C 
Degrees 
Degrees 

%ofFS 
7sec 
7sec 
7Vhr 
7sec/°C 
7sec/g 
7sec/V 
7sec rms 
7secA/Hz rms 
Hz 
kHz 
LSB 

9 
mg/LSB 
ppm/°C 
Degrees 
Degrees 
%ofFS 
mg 
mg 
m/sec/Vhr 
mg/°C 
mg/V 
mgrms 

mg/VHz rms 
Hz 
kHz 
LSB 

T/LSB 

Bits 
LSB 
LSB 
LSB 
LSB 
V 

pF 

Rev. A | Page 3 of 20 



ADIS16367 

Parameter 

DAC OUTPUT 

Resolution 

Relative Accuracy 

Differential Nonlinearity 

Offset Error 

Gain Error 

Output Range 

Output Impedance 

Output Settling Time 

LOGIC INPUTS1 

Input High Voltage, VIH 

Input Low Voltage, W 

CS Wake-Up Pulse Width 

Logic 1 Input Current, IIH 

Logic 0 Input Current, In. 

All Pins Except RST 

RSTPin 

Input Capacitance, GN 

DIGITAL OUTPUTS1 

Output High Voltage, VOH 

Output Low Voltage, VOL 

FLASH MEMORY 

Data Retention3 

FUNCTIONAL TIMES" 

Power-On, Start-UpTime 

Reset Recovery Time 

Sleep Mode Recovery Time 

Flash Memory Test Time 

Automatic Self-Test Time 

CONVERSION RATE 

Clock Accuracy 

Sync Input Clock5 

POWER SUPPLY 

Power Supply Current 

Test Conditions/Comments 

5 k n / 1 0 0 p F t o G N D 

101 LSB < input code < 4095 LSB 

CS signal t o wake up from sleep mode 

VIH = 3.3V 

ViL = 0 V 

ISOURCE = 1.6 mA 

ISINK = 1.6 mA 

Endurance2 

Tj = 85°C 

Time unti l data is available 

Normal mode, SMPL_PRD _ 0x09 

Low power mode, SMPL_PRD > OxOA 

Normal mode, SMPL_PRD < 0x09 

Low power mode, SMPL_PRD > OxOA 

Normal mode, SMPL_PRD <, 0x09 

Low power mode, SMPL_PRD a OxOA 

Normal mode, SMPL_PRD <, 0x09 

Low power mode, SMPL_PRD > OxOA 

SMPL_PRD = 0x0001 

SMPL_PRD = 0x0001 to OxOOFF 

Operating voltage range, VCC 

Low power mode 

Normal mode 

Sleep mode 

Min Typ Max 

12 

+4 

±1 

±5 

±0.5 

0 3.3 

2 

10 

2.0 

0.8 

0.55 

20 

±0.2 ±10 

40 60 

1 

10 

2.4 

0.4 

10,000 

20 

180 

250 

60 

130 

4 

9 

17 

90 

12 

0.413 819.2 

±3 

0.8 1.2 

4.75 5.0 5.25 

24 

49 

500 

Unit 

Bits 

LSB 

LSB 

mV 

% 

V 

n 
us 

V 

V 

V 

MS 

uA 

uA 

mA 

PF 

V 

V 

Cycles 

Years 

ms 

ms 

ms 

ms 

ms 

ms 

ms 

ms 

ms 

SPS 

% 
kHz 

V 

mA 

mA 

MA 

1 The digital I/O signals are driven by an internal 3.3 V supply, and the inputs are 5 V tolerant 
2 Endurance is qualified as per JEDEC Standard 22, Method Al 17, and measured at -40°C +25°C, +85°C, and +125°C 
3 The data retention lifetime equivalent is at a junction temperature (Tj) of 85°C as per JEDEC Standard 22, Method Al 17. Data retention lifetime deaeases with junction 
temperature. 

4 These times do not include thermal settling and internal filter response times (330 Hz bandwidth), which may affect overall accuracy. 
5 The sync input clock functions below the specified minimum value, at reduced performance levels. 

Rev. A | Page 4 of 20 



ADIS16367 

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 

9 _ S ° e . 2 _ 
_ < n _ a o > ( 9 0 

1 

u 
n 
2 

3 

u 
n 
4 

5 

u 
D 
6 

7 

u 
n 
8 

9 

u 
n 
10 

11 
U 

n 
12 

13 

u 
n 
14 

15 

u 
n 
16 

17 

u 
n 
IS 

19 

u 
n 
20 

21 
LI 

n 
22 

23 

u 
n 
24 

o 
I 

2 ADIS16367 < 
Q TOP VIEW 

(Not to Scale) 
NOTES 
1 THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT 

FOR THE MATING SOCKET CONNECTOR. 
2. THE ACTUAL CONNECTOR PINS ARE NOT VISIBLE FROM THE TOP VIEW 
3 MATING CONNECTOR SAMTEC CLM-112-02 OR EQUIVALENT 
4. DNC = DO NOT CONNECT 

Figure 5 Pin Configuration 

, < J ^ 

PIN 

9x 

ORIGIN ALIGNMENT REFERENCE POINT 
SEE MSC_CTRL[6] 

NOTES 
1 ACCELERATION (ax, ay, az) AND ROTATIONAL (gx , gy , gz) ARROWS 

INDICATE THE DIRECTION OF MOTION THAT PRODUCES 
A POSITIVE OUTPUT 

figure 6 Axial Orientation 

Table 5. Pin Function Descriptions 
Pin No. 
1 
2 
3 
4 
5 
6 
7,9 
8 
10,11,12 
13,14,15 
16,17,18,19,22,23,24 
20 
21 

Mnemonic 
DI03 
DI04/CLKIN 
SCLK 
DOUT 
DIN 
CS 
DI01,DI02 
RST 
VCC 
GND 
DNC 
AUX_DAC 
AUX_ADC 

Type1 

I/O 
I/O 
1 
0 
1 
1 
I/O 
1 

s 
s 
N/A 
O 
1 

Description 
Configurable Digital Input/Output 
Configurable Digital Input/Output or Sync Clock Input 
SPI Serial Clock 
SPI Data Output Clocks output on SCLK falling edge 
SPI Data Input Clocks input on SCLK rising edge 
SPI Chip Select 
Configurable Digital Input/Output 
Reset 
Power Supply 
Power Ground 
Do Not Connect 
Auxiliary, 12 Bit DAC Output 
Auxiliary, 12 Bit ADC Input 

1 I/O is input/output, I is input O is output, S is supply, and N/A is not applicable 

Rev A | Page 7 of 20 



Honeywell 

Microstructure Pressure Sensors 
26PC SMT (1 psi, 5 psi, 15 psi) 26PC SMT Series 

FEATURES 
• Alignment pins for position 

accuracy 
• Small package size (less 

than one half the size of the 
26PC) and compact surface 
mount profile 

• 3,18 mm [0.125 in] diameter 
pick-up feature for use in 
pick and place machines 

• Max peak reflow 
temperature of 260 °C 
[500 °F] 

• Gage, vacuum gage, 
differential, wet/wet 
differential sensing 
available in one package 

• True wet/wet differential 
sensing 

• Proven elastomeric 
interconnections of the 
20PC family 

• Temperature compensation 
• End point calibration 
• Sensor consists of only five 

components 
• Elastomeric construction 
• Wide operating temperature 

range of -40 °C to 85 °C 
H0°Fto185°F] 

TYPICAL APPLICATIONS 
• Blood glucose monitors 
• Oxygen conservers 
• Infusion pumps 
• Ventilators 
• CPAP (Continuous Positive 

Airway Pressure) 
equipment 

• Residential fuel cells 

The 26PC SMT (Surface Mount Technology) Series pressure sensor, the 
first offering in the 20PC SMT family of pressure sensors, is a small, low 
cost, high value, pressure sensing solution for use with printed circuit 
boards (PCBs). Based on the long established reliability and accuracy of 
the 26PC pressure sensor, the 26PC SMT offers reduced size with true 
SMT capability. The smaller size reduces the sensor's footprint on the 
PCB, thereby reducing the size of the PCB. The 26PC SMT is the first 
pressure sensor capable of being used with other SMT components on the 
PCB, helping to lower installation costs and eliminate secondary 
operations. 

The sensor features Wheatstone bridge construction, silicon 
piezoresistive technology, and ratiometric output for proven application 
flexibility, design simplicity and ease of manufacture. 

Although primarily designed for the medical industry, the 20PC SMT 
pressure sensor may be applied in any industry that requires a surface 
mount pressure sensor. 

AWARNING 
PERSONAL INJURY 
• DO NOT USE these products as safety or emergency stop devices, or in 

any other application where failure of the product could result in personal 
injury. 

Failure to comply with these instructions could result in death or 
serious injury. 

AWARNING 
MISUSE OF DOCUMENTATION 
• The information presented in this product sheet is for reference only. Do 

not use this document as system installation information. 
• Complete installation, operation, and maintenance information is 

provided in the instructions supplied with each product. 
Failure to comply with these instructions could result in death or 
serious injury. 

Sensing and Control 



Microstructure Pressure Sensors 
26PC SMT (1 psi, 5 psi, 15 psi) 26PC SMT Series 

26PC SMT PERFORMANCE CHARACTERISTICS (AT 

Excitation Voltage 
Response Time 
Input Resistance 
Output Resistance 
Span P2>Pfv 

0to1 
0 to5 
0to15 
Null Offset 
0 to1 
0 to5 
0to15 
Linearity (BFSL P2>P1) 
0to1 
0 to5 
0to15 
Null Shift 25 °C to 0 °C, 25 °C to 50c 

0to1 
0 to5 
0to15 

c* 

Span Shift 25 °C to 0 °C, 25 °C to 50°C"" 
0to1 
0 to5 
0to15 
Repeatability and Hysteresis 
0to1 
0 t o 5 
0to15 
Overpressure P2>P1; P1>P2 
0to1 
0 to5 
0to15 

Min. 
— 
— 
5.5 k 
1.5k 
Min. 
14.7 
47 
96 
Min. 
-2.0 
-2.0 
-2.0 

— 
— 
— 

— 
— 
— 

— 
— 
— 

— 
— 
— 

— 
— 
— 

10 VDC ±0.01 VDC EXCITATION, \ 
Typ. 
10.0 
— 
7.5 k 
2.5 k 
Typ. 
16.7 
50 
100 
Typ. 
0 
0 
0 
Typ. 
±0.50 
+0.50 
+0.50 
Typ. 
— 
— 
— 
Typ. 
+1.5 
±1.0 
±0.75 
Typ. 
±0.2 
±0.2 
+0.2 
Typ. 
— 
— 
— 

Max. 
16.0 
1.0 
11.5k 
3.0 k 
Max. 
18.7 
53 
104 
Max. 
+2.0 
+2.0 
+2.0 
Max. 
±1.75 
±1.5 
±1.0 
Max. 
±1.0 
±1.0 
±1.0 
Max. 
±4.5 
±1.7 
+1.5 
Max. 
— 
— 
— 
Max. 
20 
20 
45 

25 °C) 
Units 
Vdc 
ms 
Ohm 
Ohm 

mV 
mV 
mV 

mV 
mV 
mV 

% span 
% span 
% span 

mV 
mV 
mV 

% span 
% span 
% span 

% span 
% span 
% span 

psi 
psi 
psi 

Notes: 
1. Span is the algebraic difference between output at 
2. Temperature error is calculated with respect to 25° 

maximum rated operating pressures and output at 0 psi. 
C. 

SPECIFICATIONS 
Characteristic 
Storage Temperature 
Operating Temperature 
Compensated Temperature 
Alignment Pins 
Port Diameter 
Port Orientation 
Pick Up Feature 
SMT Solder 

SMT Reflow Profile 
Media Compatibility 

Shock 
Vibration 

Weight 

Description 
-55 °C to 100 °C [-67 °F to 212 °F] 
-40 °C to 85 °C [-40 °F to 185 °Fl 
0 °C to 50 °C [32 °F to 122 °F] 
0,86 mm [0.034 in] diameter pins extend through PCB 
1,88 mm [0.074 in] diameter uses standard 0,59 mm [0.0625 in] ID tubing 
Parallel to PCB (low profile on board) 
3,18 mm [0.125 in] feature on port cover 
• Sn 96.5 Ag 3.5 No Clean Flux 
• Sn 63 Pb 37 No Clean Flux 
Max peak temperature of 260 °C [500 °F] for 10 seconds 
Both ports are limited to media that are compatible with polyphthalamide, 
fluorosilicone and silicon. 
Qualification tested to 150 g 
MIL-STD-202. Method 213 
(150 g half sine 11 ms) 
0.5 grams [0.0176 oz] 

2 Honeywell • Sensing and Control www.honeywell.com/sensing 

http://www.honeywell.com/sensing


Microstructure Pressure Sensors 
26PC SMT (1 psi, 5 psi, 15 psi) 26PC SMT Series 

MOUNTING DIMENSIONS mm[in] (for reference only) 

2 _ „ _ _ 3 

03, 
[0.125] 

2X0,94 
[0.037] 

L0.13 
[0.005] 

2X1,40_ 
[0.055] 

10,41 
10.41] 

l l 0 , 4 1 
[0.016] 

d ¥ 
.2X00,86 

[0.034] 

EQ-

_e 
t 

5,08 
[0.200] 

SUGGESTED LAND PATTERN 
2X00,99 

{•$#§ V0,0391 

t i 5,08 
1 j [0.200] 

-B-4--__-i 
L 6.73 J 
^ 1 0 . 2 6 5 ^ 

11,23 
[0.442]' 

CIRCUIT DIAGRAM OUTPUT VOLTAGE 
Output A increases as P2 
pressure increases. 

Output B decreases as P2 
pressure increases. 

www.honeywell.com/sensing Honeywell • Sensing and Control 3 

http://www.honeywell.com/sensing


Microstructure Pressure Sensors 
26PC SMT (1 psi, 5 psi,15 psi) 26PC SMT Series 

DATE CODE 

Week: Two Digits 

Year: Four Digits 

CATALOG LISTING NOMENCLATURE 
26 PC SMT 

Package Style: SMT (Surface Mount Technology) 

Pressure Range: 
01 = 1 psi 
05 = 5 psi 
15 = 15 psi 

Family: PC 
Type: Compensated 

BRANDING SCHEME 
6 F 

Seal: Fluorosilicone 
Pressure Range: 
01 = 1 psi 
05 = 5 psi 
15 = 15 psi 

Type: Compensated 

TECHNICAL NOTES 
Technical Notes that provide further application information on the 26PC SMT are available on the 
Honeywell web site at: http://www.honeywell.com/sensing/prodinfo/pressure/20pc 

WARRANTY/REMEDY 
Honeywell warrants goods of its 

manufacture as being free of 
defective materials and faulty 
workmanship. Contact your local 
sales office for warranty information. 
If warranted goods are returned to 
Honeywell during the period of 
coverage, Honeywell will repair or 
replace without charge those items it 
finds defective. The foregoing is 
Buyer's sole remedy and is in lieu 
of all other warranties, expressed 
or implied, including those of 

merchantability and fitness for a 
particular purpose. 

Specifications may change without 
notice. The information we supply is 
believed to be accurate and reliable 
as of this printing. However, we 
assume no responsibility for its use. 

While we provide application 
assistance personally, through our 
literature and the Honeywell web 
site, it is up to the customer to 
determine the suitability of the 
product in the application. 

For application assistance, current 
specifications, or name of the 
nearest Authorized Distributor, 
check the Honeywell web site or call: 
1-800-537-6945 USA 
1-800-737-3360 Canada 
1-815-235-6847 International 
FAX 
1-815-235-6545 USA 
INTERNET 
www.honeywell.com/sensing 
info.sc@honeywell.com 

Honeywell 
Sensing and Control 
Honeywell 
11 West Spring Street 
Freeport, Illinois 61032 

® Printed with Soy Ink 
on 50% Recycled Paper 

00806M-ENt_50GLO 0601 Printed in USA 

www.honeywell.com/sensing 

http://www.honeywell.com/sensing/prodinfo/pressure/20pc
http://www.honeywell.com/sensing
mailto:info.sc@honeywell.com
http://www.honeywell.com/sensing


Guide to the Arduino Mini 

To get started with the Arduino Mini, follow the directions for the regular Arduino on your operating system 

(Windows, Mac OS X, Linux), with the following modifications. 

• Connecting the Arduino Mini is a bit more complicated than a regular Arduino board (see below for 

instructions and photos). 

• You need to select Arduino Mini from the Tools | Board menu of the Arduino environment. 

• To upload a new sketch to the Arduino Mini, you need to press the reset button on the board 

immediately before pressing the upload button in the Arduino environment. 

Information about the Arduino Mini 

The microcontroller (an ATmegal68) on the Arduino Mini is a physically smaller version of the chip on the USB 

Arduino boards, with the following small difference-

• There are two extra analog inputs on the Mini (8 tota l ) . Four of these, however, are not connected 

to the legs that come on the Arduino Mini, requiring you to solder wires to their holes to use them. 

Two of these unconnected pins are also used by the Wire library (I2C), meaning that its use will 

require soldering as well. 

Also, the Arduino Mini is more fragile and easy to break than a regular Arduino board. 

• Don't connect more than 9 volts to the +9V pin or reverse the power and ground pins of your power 

supply, or you might kill the ATmegal68 on the Arduino Mini. 

• You can't remove the ATmegal68, so if you kill it, you need a new Mini. 



Connecting the Arduino Mini 

Here's a diagram of the pin layout of the Arduino Mini 

Mini 03 pmout (compatible with earlier revisions) 

To use the Arduino Mini, you need to connect 

Mini 04 pmout (the ground on the left has moved down 
one pin) 

Power This can be a regulated +5V power source (e.g. from the +5V pin of the Mini USB Adapter or 

an Arduino NG) connected to the +5V pin of the Arduino Mini. Or, a +9V power source (e.g. a 9 volt 

battery) connected to the +9V pin of the Arduino Mini. 

Ground. One of the ground pins on the Arduino Mini must be connected to ground of the power 

source. 

TX/RX. These pins are used both for uploading new sketches to the board and communicating with 

a computer or other device 

Reset. Whenever this pin is connected to ground, the Arduino Mini resets. You can wire it to a 

pushbutton, or connect it to +5V to prevent the Arduino Mini from resetting (except when it loses 

power) I f you leave the reset pin unconnected, the Arduino Mini will reset randomly. 

An LED. While not technically necessary, connecting an LED to the Arduino Mini makes it easier to 

check if it's working. Pin 13 has a 1 KB resistor on it, so you can connect an LED to it directly 

between it and ground When using another pin, you will need an external resistor. 

You have a few options for connecting the board the Mini USB Adapter, a regular Arduino board, or your own 

power supply and USB/Serial adapter. 



Connecting the Arduino Mini and Mini USB Adapter 

Here is a photo showing the Arduino Mini connected to the Mini USB adapter Notice that the reset pin is 
connected directly to +5V (the orange wire), without a pushbutton. Thus, to reset the Arduino Mini, you will need 
to unplug and reconnect the USB cable to the Mini USB Adapter, or manually move the orange wire connected to 
the reset pin from +5V to ground and back 

Connecting the Arduino Mini and a regular Arduino 

Here's a photo of the Arduino Mini connected to an Arduino NG. The NG has its ATmega8 removed and is being 
used for its USB connection, power source, and reset button. Thus, you can reset the Arduino Mini just by 
pressing the button on the NG 



[ * _ * 

p _^i^_-,v:,-^4vi 

Sfc mm 
! * _ * » * T t t * * Cr) '̂f̂ r̂ %&'>"4*"' .:^S" -

* f f fib* * * * « * 

The text of the Arduino getting started guide is licensed under a Creative Commons Attribution-ShareAlike 3.0 
License Code samples in the guide are released into the public domain 


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Fall 2011

	Design and development of a debris flow tracking "Smart Rock"
	Matthew J. Harding
	Recommended Citation


	tmp.1520441287.pdf.qshEi

