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Abstract 

EXPERIMENTAL INVESTIGATION OF HELICAL CROSS-FLOW AXIS 

HYDROKINETIC TURBINES, INCLUDING EFFECTS OF WAVES AND 

TURBULENCE 

by 

Peter Bachant 

University of New Hampshire, September, 2011 

A test bed for cross-flow axis (CFA) hydrokinetic turbines for the UNH tow and wave 

tank was designed and built, and two different turbines were evaluated. The effects of 

waves and turbulence on performance were also observed. Drag (thrust) and mechanical 

power output were measured at tow speeds of 0.6-1.5 m/s for a Gorlov Helical Turbine 

(GHT) and a Lucid Spherical (helical) Turbine (LST), both provided by Lucid Energy 

Technologies, LLP. Overall, the GHT performed with a higher power and drag 

coefficient than the LST. GHT performance was enhanced by progressive waves, but 

waves caused stalling at higher tip speed ratios compared to the steady case. Grid 

turbulence enabled the GHT to operate at lower tip speed ratios and did not alter 

maximum power coefficient, but increased drag on the turbine. Performance in a cylinder 

wake was highly dependent on the cylinder's cross-stream location, ranging from benign 

to detrimental. 



1. Introduction 

Industrial and human development, often measured in terms of life expectancy, literacy 

or per-capita income - are closely coupled to the availability and use of energy in a 

society. Presently, useful energy is derived mainly from fossil fuels such as coal and oil, 

which are essentially solar energy that has been stored in the Earth's crust over very long 

timescales (McKay, 2009). Unfortunately, the rate of fossil fuel use far outpaces their rate 

of natural creation (McKay, 2009). Therefore, to sustain human development and the 

technical complexity of our society beyond the depletion of fossil fuels, we must develop 

ways to capture more of the solar power incident on the Earth, i.e. renewable energy. 

Improved renewable energy conversion technology will improve quality of life for 

humans on longer timescales than continuing to predominantly rely on non-renewable 

energy sources. 

Hydrokinetic turbines are devices that can remove energy from moving water, 

which is found in river flows, tidal and ocean currents, as well as in waves. These sources 

of energy are considered renewable, and can mostly be attributed to the Earth's moon and 

Sun. Solar energy is converted into kinetic energy in river flows through the water cycle, 

whereas the kinetic energy in tidal flows is the result of gravitational forcing from 

celestial bodies, mainly the Earth's moon, and to a lesser degree the Sun. This forcing 

does work on the oceans of the Earth, creating flows of water, whose energy is dissipated 

through viscous dissipation at the seabed (bottom friction) and turbulence as a result of 

moving water through natural restrictions and around coast lines. This in turn dissipates 

energy from the astronomical system. However, the Earth's loss of rotational energy is 
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only noticeable over millions of years (Williams, 2000), meaning the kinetic energy 

within these flows can be extracted with negligible effects on the astronomical dynamics. 

It is estimated that hydrokinetic power sources, namely waves, tides, ocean currents, and 

river flows have the potential to provide 10% of the total power consumption of the 

world (Electric Power Research Institute, 2006) (World Energy Council, 2007). 

The use of hydrokinetic power began with early waterwheels, which were invented 

by the Greeks in the Hellenistic period and extensively used by the Greeks and Romans 

for milling (Dormers, Waelkens, & Deckers, 2002). Increasingly, dams and 

impoundments were used to increase the available net head, and hydropower developed 

into the conventional hydroelectric stations we know today. Conventional hydropower is 

presently the largest renewable energy source in the world with approximately a 16% 

share of global electric energy production (International Energy Agency, 2010), and 

about 6% in the United States (United States Department of Energy, 2010). While a 

conventional hydropower installation can extract the available energy more efficiently 

than a hydrokinetic system, the environmental effects due to the massive dams, flooded 

areas and changes in sediment and nutrient transport processes are much more 

pronounced, and can be ecologically detrimental. Large hydro turbines (w/ Francis, 

Kaplan or Pelton runners) can achieve energy conversion efficiencies of greater than 90% 

(Arndt, 1991), whereas efficiencies of sparsely deployed hydrokinetic turbines are limited 

to 59.3%o by Betz' law, and in practice are approaching 50%) for the largest hydrokinetic 

installations, similar to large wind turbines. 

Commercial development of tidal energy is not new. Small barrage scheme tidal 

"mills" with conventional water wheels were used in Southern England and Northern 
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France in the Middle Ages, as well as in New England (e.g., Boston Mill Pond) through 

the 1800s. In the latter half of the 20th century (in particular after 1973 oil crisis), tides 

and waves have been seriously re-examined as potential sources of (electric) energy. A 

240 MW tidal-barrage power plant has been in operation at La Ranee in Brittany, France 

since 1966 (Banal & Bichon, 1981). However, similar to conventional hydroelectric 

installations, large-scale barrages have the downside that they significantly alter 

ecosystems and are very costly to build. 

Cross-flow axis (CFA) turbines are defined as having their axis of rotation 

perpendicular to the incoming flow direction. They differ from in-stream axis turbines in 

that they rotate the same direction regardless of inflow direction, negating the need for 

yaw control to turn the rotors into the flow. This decrease in system complexity comes 

with more complicated, and arguably more interesting fluid dynamics. The first fully 

submerged cross-flow axis turbine was likely a Savonius rotor, a design that was 

originally intended for wind power, patented in 1930 (Savonius, 1930). It is a simple drag 

driven device that resembles two halves of a barrel reattached with an offset of one 

diameter (sometimes slightly less). Savonius rotors are still being used today despite their 

relatively lower efficiencies compared with other designs. They are considered very 

robust and will start to rotate as soon as fluid dynamic drag force (moment) exerted on 

the rotor exceeds the bearing friction force (moment), resulting in lower "cut in speeds." 

The cut in speed is defined as the wind or water velocity at which the rotor begins 

turning, allowing energy extraction. In the 1930s, Darrieus invented a CFA turbine that 

replaced the mostly drag driven "buckets" of the Savonius rotor with mostly lift driven 

foils to increase conversion efficiency by allowing the blade tangential velocity to exceed 
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the free stream velocity (Darrieus, 1931). Excerpts of Darrieus' patent are shown in 

Figure 1.1. 

Darrieus devices were explored extensively for wind energy applications during the 

1980s into the 1990s, leading to the deployment of a 34 m wind turbine by Sandia 

National Laboratories in collaboration with the US Department of Energy (DOE), and 

culminating with the installation of the world's largest vertical axis wind turbine, Eole, 

rated at 4 MW, at Cap Chat in Quebec, Canada in 1985 (Paraschivoiu, 2002). Despite 

their respectable power outputs, development of these straight-bladed (with respect to 

azimuth location) cross-flow axis turbines was essentially abandoned, since the large 

variations in torque, due to large variations in lift as the blade angle of attack varies 

throughout the rotation, caused structural fatigue failures of the turbines. 
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Figure 1.1 Drawings from Darrieus' patent (Darrieus, 1931). 

In 1995 Alexander Gorlov designed a cross-flow axis turbine with its blades swept 

helically to help average the periodically unsteady torques inherent in the straight-bladed 

concept (Gorlov, 1995). The swept blades also made the device more prone to self-

starting, which for a Darrieus is highly dependent on the number of blades, initial rotor 

position, etc. Gorlov Helical Turbines (GHTs) are practically identical in two dimensions 
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compared to their straight-bladed counterparts. Consequently, Darrieus turbine 

performance models and experimental observations are relevant. 

26 '°~\ 102 108 104 s 
i,i,t, /, a, t / u tj, ft t,L<uu,ttjju(ut,iJU,lut IJJJJJ iii/mu/tiij. 

20 

102b^ ""• ^-102 ^I02a ^28 

Figure 1.2 Drawing from Gorlov's helical turbine patent (Gorlov, 1995). 

To date, there is a scarcity of performance data for helical devices in the literature. 

The limited information available shows Gorlov Helical Turbines to reach efficiencies as 

high as 35%o (Gorlov, Development of the Helical Reaction Hydraulic Turbine, 1998). 

Peak efficiencies for smaller straight-bladed Darrieus turbines in water have been 

reported around 23%> (Shiono, Suzuki, & Kiho, 2000), whereas the peak efficiencies of a 

17 m diameter Darrieus wind turbine at Sandia National Laboratory were reported to 

exceed 40%> (Paraschivoiu, 2002). 

Lucid Energy Technologies, LLP (Lucid), formerly GCK Technologies (where "G" 

stood for Gorlov), carried on the development of the GHT, and succeeded with several 

small-scale installations over the years. Lucid/GCK also provided two prototypes to the 

Korean Ocean Research and Development Institute (KORDI) for testing in the Uldolmok 

Tidal Strait (GCK Technologies, 2002-2006). Based on the experience with the 

Lucid/GCK GHTs, in 2009, KORDI completed their Uldolmok Tidal Current Power 

Plant, a full scale test project rated at 1 MW. The 6.5 m/s maximum currents are 

6 



harnessed via two vertical axis helical devices (Lee, Yum, Park, & Park, 2009). In the 

United States, the Ocean Renewable Power Company (ORPC) is using Gorlov Helical 

Turbines arranged in pairs on either side of a common generator with horizontal axis in a 

demonstration installation in Eastport, ME (Ocean Renewable Power Company, 2008) 

(Testing the Waters with Tidal Energy, 2010). 

Recently, Lucid developed vertical axis spherical-helical turbines to be installed in 

pipe sections, with the goal to harvest excess energy available in large gravity-fed water 

pipes, for example in irrigation or wastewater systems. The drop-in installation has been 

given the name Northwest PowerPipe™ (Schlabach, 2010). Since these turbines are 

installed in a high blockage closed conduit, they are similar to traditional hydropower 

installations and the efficiency limit for turbines installed in a free stream, also known as 

the "Betz limit," does not apply. 

The UNH Center for Ocean Renewable Energy (UNH-CORE) was founded in 2008 

as a collaborative environment for academic research and commercial development of 

marine renewable energy devices. Starting in late 2008 through 2010, TECH 797 senior 

design project groups working with UNH-CORE faculty deployed two sizes of Gorlov 

Helical Turbines from a 3 5 f t x l 0 f t test platform at the UNH-CORE Tidal Energy Test 

Site in the Great Bay Estuary in New Hampshire. 

This thesis describes the first steps of a more thorough experimental investigation 

of helical cross-flow axis hydrokinetic turbines. Regarding practical value, if turbine 

performance is optimized, more energy is captured. If peak performance operating 

parameters are known (namely tip speed ratio, defined in Chapter 2), turbine control is a 

matter of keeping the turbine rotating at a tip speed ratio where efficiency is maximized. 
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This could be approached iteratively with closed loop feedback control, or it could be 

prescribed based on measurements of the environment the device is placed in; namely 

mean flow speed and direction, turbulence characteristics, and wave action. It's possible 

that all of these could be lumped into one velocity measurement where an inlet velocity 

spectrum and mean velocity could completely describe the flow conditions, thereby 

providing input to the controller for a target tip speed ratio. Currently, this would not be 

possible, as sites are generally evaluated for their mean velocities only, mainly due to the 

low sampling rates (on the order of 1 Hz or less) of commonly used Acoustic Doppler 

Current Meters or Profilers (ACMs or ADCPs). For example, in the Piscataqua 

River/Great Bay Estuary the last (long-term) tidal current survey was conducted with one 

ADCP measurement every 6 minutes (Kammere, 2007). 

A stakeholder meeting at UNH-CORE with ocean renewable energy technology 

developers revealed that there seems to be a significant demand to get these devices out 

into the field for testing. However, doing so before getting plenty of data from controlled 

scaled laboratory experiments increases risk of failure. Deploying a device in open water 

is a larger investment and should occur after its performance has been optimized in a 

laboratory setting. 

1.1 Objectives 

First, it was of interest to measure and compare steady state, steady flow performance of 

a Lucid GHT and Lucid Spherical Turbine (LST), of similar size and construction. To do 

this, a test bed for these types of turbines was developed using the UNH Tow & Wave 

Tank. Next, the effects of progressive waves on GHT performance were observed and an 
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attempt was made to explain the results. Next, it was of interest to observe the effects of 

isotropic homogeneous turbulence on the GHT. Lastly, the effects on GHT performance 

from a cylinder wake inflow with diameter on the order of turbine blade chord were 

observed. 

9 



2. Cross-Flow Axis Hydrokinetic Turbines: A Theoretical Overview 

2.1 Capturing Fluid Kinetic Energy - Single Actuator Disk Theory 

To begin analyzing a turbine in a free flow, the "highest level" analytical tool is one-

dimensional momentum, or "actuator disk" theory, originally developed for analyzing 

propeller performance by Rankine in 1865 and Froude in 1887 (Carlton, 2007). Like a 

propeller or in-stream axis wind turbine, a cross-flow axis hydrokinetic turbine can be 

approximated as an infinitesimally thin actuator disk removing a fluid's momentum 

kinetic energy inside a control volume enclosed within a "streamtube," shown in Figure 

2.1 (Manwell, McGowan, & Rogers, 2002). The streamtube is, in a way, a generalization 

of the concept of a streamline; Velocities and fluid properties are assumed to be constant 

over the entire cross-section at any given streamwise location, and no fluid crosses the 

boundary of the streamtube. 

Streamtube 

Actuator disk 

Figure 2.1 Representative control volume. Adapted from Manwell, McGowan, & 
Rogers (2002). 
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Control volume analysis in general can be performed using the Reynolds transport 

theorem: 

^L = ^pvdV+\pV(U-n)dA, (2.1) 

where r\ is any quantity N per unit mass and n is a unit vector normal to a control surface 

(Fox, Pritchard, & McDonald, 2009). If the quantity N is chosen to be the mass inside the 

control volume, conservation of mass for the incompressible, steady, uniform, one-

dimensional flow becomes 

AlUx=A2U2=AAUA, (2.2) 

where U\ is the free stream velocity and A is the cross sectional area of the streamtube, Aj 

being the turbine frontal area. The velocities just before and just after the disk, Uj and U3, 

must be equal to satisfy continuity since the disk is assumed to be infinitesimally thin. To 

simplify analysis, the concept of a streamwise induction factor is introduced. The 

streamwise induction factor, a, is defined as the fractional decrease in streamwise 

velocity from the free stream to the rotor: 

a = U]~Ul . (2.3) 

Ux 

Thus fluid velocity at the disk is 

U2=(\-a)Ux. (2.4) 

Using the Reynolds transport theorem for the rate of change of fluid momentum (in other 

words, N = mil), the drag force on the control volume, equal to the thrust force on the 

disk, is simply 
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Fdrag=PAU2-pAAU2. (2.5) 

Equation (2.2) allows this to be rearranged as 

Fdrag=PAU2{Ux-UA). (2.6) 

The drag force is also equal to the disk area times the pressure difference from 

location 2 to 3. These pressures can be solved for using Bernoulli's equation. Bernoulli's 

equation is derived by integrating the Euler equations (Navier-Stokes equations without 

viscous terms) along a streamline. It is an integration of a conservation equation for the 

rate of change of momentum (i.e. a force), and therefore it becomes an equation 

governing the conservation of mechanical energy for an inviscid flow. Since a streamtube 

is a spatial generalization of a streamline, Bernoulli's equation can be written between 

any two cross-stream planes of the streamtube, excluding the rotor. Using the Bernoulli 

equation to equate mechanical energy at locations on either side of the disk produces 

Pi+\pUx
2=P2+~pU2

2 (2.7) 

and 

Pi+lpU2=pA+~pU2. (2.8) 

Assuming that the static pressure in the wake (p^) has returned to that in the free stream, 

the drag force becomes 

Fdrag=\pA2(u
2-U2). (2.9) 

The drag force can also be defined using a non-dimensional drag coefficient as: 

Fdrag=\pCdA2U
2. (2.10) 
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Solving for the drag coefficient using Equation (2.9) and Equation (2.10) yields 

The wake velocity U* is solved as 

U,=(l-2a)U19 (2.12) 

which when substituted back into Equation (2.11) allows the drag coefficient to be 

expressed in terms of the streamwise induction factor as 

Cd=4a(\-a). (2.13) 

The power removed by the actuator disk is equal to the difference in kinetic energy 

flux between Aj and A4, or the drag force times the fluid velocity at the disk, Ui, written 

as 

Pdlsk=\pAU2{U2-U2). (2.14) 

Similar to the definition for the drag coefficient, shaft power is also defined using a non-

dimensional power coefficient as 

Pshaft=-pCA2Ux\ (2.15) 

which in this model is equal to the disk power. Power coefficient can then be expressed 

in terms of the streamwise induction factor only, as 

u2(u
2-u2) 2 

C , = l ' 3 ; = 4 a ( l - a ) . (2.16) 
^ i 

Differentiating the power coefficient relation with respect to a and finding where 

dC' /da = 0 is how the traditional maximum power coefficient, or Betz limit, 16/27 

(59%) is calculated (Manwell, McGowan, & Rogers, 2002). 
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While the power coefficient is the fraction of total kinetic power in the flow 

converted to shaft power, in this simple model there are no losses. Therefore the kinetic 

power flux at the outlet is that at the inlet minus the power out at the actuator disk. Of 

course, real world operation will not be ideal, and for the simple one-dimensional 

momentum theory any induction factor above 0.5 will theoretically produce a negative 

wake velocity. Despite its shortcomings, one-dimensional momentum theory can be used 

to define and estimate a "second law efficiency," or the fraction of the (linear) kinetic 

energy removed from the flow (the available energy, or "exergy") that is actually 

converted to shaft work. 

First, the second law efficiency or kinetic exergy efficiency is defined as 

7 , , = ^ , (2.17) 
"disk 

where the rate of energy extracted by the rotor disk is calculated as drag (thrust) force 

time velocity at the rotor. Using Equation (2.14) and (2.15), this can be written as 

- - p ' (2.18) 
'" u2(u

2-u2
Ay 

In terms of drag coefficient, power coefficient, and induction factor this becomes 

Vn=-, \—• (2-19) 
(\-a)Cd 

By definition, the ideal actuator disk described by Equations (2.13) and (2.16) 

operates at 100% kinetic exergy efficiency. For a real device, knowing the power 

coefficient and kinetic exergy efficiency allows prediction of power output and kinetic 

energy flux out of the turbine, which is important for environmental modeling and for 

predicting performance when turbines are used in arrays. It is assumed that any kinetic 
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power removed from the fluid that is not converted to shaft work is redistributed into heat 

'or turbulent kinetic energy in the wake. This energy may or may not be available for 

subsequent turbines to convert into shaft work. 

2.2 Blockage Effects and Correction 

Putting a turbine in a constrained flow such as a channel or pipe changes the assumption 

used to derive Betz theory, not allowing streamlines to diverge as freely, therefore 

increasing velocity at the turbine. A correction can be derived from the blocked actuator 

disc model shown in Figure 2.2 by using the principles of continuity and conservation of 

momentum. The following derivation is taken from Appendix A of Bahaj, Molland, 

Chaplin, & Batten (2007). Note that this correction does not take into account the 

deformation of the free surface at the top of the channel or tank. 
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Figure 2.2 Turbine control volume in a blocked flow. Adapted from Bahaj, Molland, 
Chaplin, & Batten, (2007). 

First, from continuity the ratio of disk velocity to wake velocity is written as 

u2 -i+Ji+(4M({u5/uj-i) 

uA (A2/Ac)({U5/UA)-l) 
(2.20) 

where Ac is the tank cross-sectional area. Next, the ratio of free stream velocity to wake 

velocity can be written as 

Ux _ U5 A2 U2 

U4 UA ACUA 

^ - 1 
V ^ 4 J 

(2.21) 

Using conservation of momentum, the drag coefficient in the tank or channel becomes 

cd = 
ru,^ 
KUU 

rU^ 
2 A 

-1 
KU*J J 

(2.22) 

Therefore, the ratio of free stream to wake velocity is 
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cA 

' ( (^M) 2- i ) ' 
(2.23) 

The main principle of correction is that blocked turbine performance will be 

equivalent when U2, turbine RPM, and drag force are the same as they would be in free 

flow. By iteratively solving Equation (2.21) and Equation (2.23) to find the ratio U5/U4, 

then substituting this ratio back into Equation (2.20), the ratio U2/U1 can be found. This 

ratio is then used to calculate the ratio of tank velocity to an equivalent free flow velocity 

U, u2/uy 
U, (UJU.Y+CJ4 

(2.24) 

Using this velocity ratio, turbine tip speed ratio, drag coefficient, and power coefficient 

can be corrected as 

Af = 
I free KUfJ 

I 
blocked 

c„ \free 

\UfJ 
c. 

(2.25) 

(2.26) 

blocked 

and 

C 
\free 

C, (2.27) 

blocked 

Note that this type of correction, namely one with a constant induction across the actuator 

disk, may overcorrect for CFA turbines, due to their inherently non-uniform induction 

characteristics (Ferreira, van Kuik, van Bussel, & Scarano, 2009). 

17 

file:///free
file:///free


2.3 Flow and Forces on a Turbine Blade 

The fluid dynamics of the lift driven CFA turbines of interest to this study are 

approximated by a number of 2D foils moving in a circular path with a superimposed 

uniform flow. Since foil lift and drag coefficient data are available for many common 

shapes, this is a useful first estimate at predicting blade forces, and from those torque and 

power. By vector addition of the negative of the blade tangential velocity to the induced 

(or slowed) free stream, the turbine blade angle of attack can be calculated. Since the 

blade tangential velocity is constantly changing direction throughout its path, the turbine 

blade angle of attack and incident fluid velocity, or relative velocity, are likewise 

oscillating throughout the turbine's rotation. 

Turbine operation can be prescribed by one nondimensional operating parameter, 

the tip speed ratio, X. It is defined as the ratio of blade tangential velocity to free stream 

velocity. It can be thought of as non-dimensional rate of rotation, written as 

X = — , (2.28) 

U„ 

where co is the turbine shaft angular velocity, r is the radius of the turbine, and £/«, is the 

free stream velocity. Two examples of velocity vector and force diagrams are shown in 

Figure 2.3, one (top) for an unstalled foil at an azimuthal angle 8 = 45 degrees, and one 

(bottom) for a stalled foil at 8 = 100 degrees. The diagrams were drawn for an 

approximate tip speed ratio of 2, with a streamwise induction factor of 1/3. 
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Figure 2.3 Blade geometry and force diagrams for unstalled (top) and stalled 
(bottom) conditions. 8, a, and /? are turbine blade azimuthal angle, angle of attack, and 
angle between resultant force F (the vector addition of lift force Fi and drag force FD) 

and the radius r, respectively, [/is the free stream velocity multiplied by (1-a), where a is 
the streamwise induction factor, cor is the negative of the blade tangential velocity. UR is 

the relative velocity, calculated by the vector addition of cor and U. 

Using the geometry shown in Figure 2.3, turbine blade angle of attack can be 

calculated as 

a = tan 
Usin0 

cor + U cos 6 
(2.29) 
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where Uis the free stream velocity multiplied by (I-a), where a is the previously defined 

streamwise induction factor. Relative fluid velocity seen by the blade is the vector 

subtraction of the blade velocity from the induced free stream, 

UR =0-6)7, (2.30) 

which has the magnitude 

UR Ju2 +2Ucorcos(0 + (cor)2\. (2.31) 

Fluid dynamic lift and drag are defined as 

FL = X-pApCtU
2, (2.32) 

and 

FD^pApCdU
2, (2.33) 

respectively, where Ap is the planform area of the blade, equal to the chord length times 

the blade span. The angle between the radius and resultant fluid force can be expressed as 

P = a- tan 
fF A 

1 D 

KFLJ 

(2.34) 

making the torque about the turbine axis 

T = Frsm(p). (2.35) 

When the angle /? is larger, a larger component of the hydrodynamic force acts to produce 

torque about the axis of rotation. This means that to produce maximum torque, angle of 

attack and lift to drag ratio should be as high as possible. However, these two criteria 

conflict with each other to the right of the peaks of the curves shown in Figure 2.6, 

especially after the stall point, or angle at with lift to drag ratio decreases sharply. 
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Looking again at the diagram in Figure 2.3, the larger drag force associated with a stalled 

blade reduces the angle, /?, between the radius and resultant force, and can even turn it 

negative, if drag is high enough. Following this logic, foils with high stall angles are ideal 

for CFA turbines, such that maximum angle of attack throughout a rotation can remain 

high without stall, keeping fi as high as possible. 

Figure 2.4 and Figure 2.5 show turbine blade angle of attack and relative velocity, 

respectively, plotted versus turbine azimuthal angle for one blade throughout one rotation 

using the linear induction relationship estimate a = 0.1838/1 + 0.1623, the justification for 

which is discussed in Chapter 5. Using this induction estimate, the amplitude of the angle 

of attack and relative velocity oscillation decreases with tip speed ratio more quickly than 

it would with a constant induction factor. Nevertheless, the unsteady flow behavior 

around a blade of a CFA turbine is apparent. Note that this calculation doesn't take into 

account the slower velocity seen by the downstream half of the blade's rotation, due to 

the fluid interaction with the first half of the rotation. This will effectively decrease the 

angle of attack and relative velocity on the downstream half of the rotor. 
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Figure 2.4 Theoretical turbine blade angle of attack at various tip speed ratios, 
including estimated induction. Dashed horizontal lines show typical static stall angle. 

150 200 
6 (degrees) 

Figure 2.5 Plot of theoretical relative velocity seen by a turbine blade throughout one 
rotation in a free stream velocity of 1 m/s. 
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Figure 2.6 shows various NACA symmetrical foils' lift to drag ratio versus angle of 

attack for a chord Reynolds number of 700,000, taken from a report by Sandia National 

Laboratories (Sheldahl & Klimas, 1981). The last two digits of the foil number are the 

thickness of the foil as a percentage of the chord length. For each foil, static stall angles 

of attack can be identified as the angle at which the lift to drag ratio sharply decreases 

with increasing angle of attack. In general, for these foils a thinner profile maximizes lift 

to drag ratio at the expense of a lower static stall angle. 

0 

e-NACA0012 
€3™NACA0015 
- NACA0018 

NACA0021 

40 10 20 30 

Angle of Attack (Degrees) 

Figure 2.6 Lift to drag ratio versus angle of attack for various airfoils at Rec 

700,000 (Sheldahl & Klimas, 1981). 

So far, consideration has only been given to static stall criteria. Though this is a 

good place to start, an oscillating foil undergoes dynamic stall in certain conditions. 

Dynamic stall is an unsteady phenomenon occurring when a foil operates with an angle 

of attack oscillation whose amplitude exceeds the foil's static stall angle. Examining its 

effects on a turbine blade is further complicated by the periodic unsteadiness of the 

relative velocity seen by the blade. However, in general the phenomenon is characterized 
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by a separated flow causing an initial increase or "overshoot" in lift and drag beyond 

static values, followed by an "undershoot" where lift and drag fall below static values 

before flow reattaches to the foil. Despite this "undershoot," dynamic stall generally 

improves performance in models (Paraschivoiu, 2002). In general, dynamic stall occurs at 

angles of attack beyond those of static stall, depending on mean angle, rate of oscillation, 

foil shape, and Reynolds number (Sheng, Galbraith, & Coton, 2008). Datasets for foils in 

dynamic stall experiments are difficult to apply to CFA turbines since they are usually 

performed with a foil in a sinusoidal angle of attack oscillation in a constant free stream, 

whereas a CFA turbine blade sees an oscillation that is not quite sinusoidal, along with an 

oscillation in relative velocity. 

There have been studies to visualize and measure the velocity field around a foil in 

Darrieus motion during dynamic stall (Ferreira, van Kuik, van Bussel, & Scarano, 2009) 

(Fujisawa & Shibuya, 2001). In general, dynamic stall is characterized by the shedding of 

two counter-rotating vortices that are convected downstream, which may or may not 

interact with blades on the downstream half of the rotor, depending on tip speed ratio. 

2.4 Foil Performance in Turbulence 

Since any real world application of these turbines will no doubt be in turbulent flow, it is 

important for turbine performance prediction to understand how individual foils perform 

in similar turbulent flows. In general, turbulence can delay separation on the foil's 

suction side, and hence stall, but will also increase drag on the foil due to increased 

momentum transport by the turbulence. 
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Experiments were performed measuring lift and drag on a NACA0021 foil in 

various levels of grid turbulence. A delay of static stall to higher angles of attack was 

observed with increasing turbulence intensity (Swalwell, Sheridan, & Melbourne, 2001). 

As for the effects of grid turbulence on dynamic stall, the lift coefficient 

"undershoot" is reduced (Amandolese & Szechenyi, 2004). It follows that grid turbulence 

would have a positive effect on CFA performance. 

Larger scale turbulence or vortices on the same scale as the vorticity created by a 

blade in dynamic stall would have a drastic effect, which could only be predicted if the 

convection velocity and phase of the vortices were known. Oscillating foils have been 

shown to be able to achieve high propulsive efficiency (Anderson, Streitlien, Barrett, & 

Triantafyllou, 1998). Also, foils have been shown to produce thrust without any energy 

input when placed in the wake of a bluff body (Beal, 2006). However, this situation is 

somewhat different from what will happen when a CFA turbine is downstream of a bluff 

body, where an individual blade will not be directly downstream of the object's wake at 

all times. 

2.5 Rotating Rigid Body Dynamics 

The dynamics of the entire turbine assembly are approximated by a single hydrodynamic 

torque resisted by a load torque (including bearing friction or tare torque), the difference 

between which being equal to the rate of change of angular momentum of the device, 

written as 
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where J is the rotational inertia of the device about its axis. This shows that in order to 

measure hydrodynamic performance, it is necessary to measure steady state performance 

to avoid the additional uncertainty of estimating the rotational inertia of the system. In 

other words, measurements should be taken when the angular velocity of the rotor is 

approximately constant. 

2.6 Cross-Flow Axis Turbine Design Parameters 

One important design parameter for a cross-flow axis hydrokinetic turbine is its solidity, 

defined as the ratio of total blade planform area to swept area, which can be written as 

where N is the number of blades, c is the chord length perpendicular to the blade span, Ls 

is the blade span length, and As is the turbine swept area. Note that other definitions for 

solidity for Darrieus devices occur in the literature. For example, Paraschivoiu defines 

solidity as the ratio of total chord length to radius (Paraschivoiu, 2002). This definition is 

less useful for non-cylindrical devices since their radii vary with height. For this reason, 

the area ratio definition of Equation (2.37) was used in this study. 

Another parameter for helical devices is blade overlap. This is the ratio of how 

much total blade span is projected onto the circumference of the device's rotation, which 

is related to helical sweep angle and turbine height. 

2.7 Linear Progressive Surface Wave Theory 

A progressive surface wave induces an elliptical motion in the fluid particles below 

whose amplitude decreases with depth from the equilibrium surface. When a turbine is 
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operated beneath a wave, this wave induced velocity is superimposed upon the free 

stream. The elliptical fluid trajectories beneath a progressive wave can be derived from 

linear (Airy) wave theory using a velocity potential formulation. The horizontal 

component of this velocity is then found to be 

gHk cosh k(h + z) , A 

u = - -coslkx-crt), (2.38) 

2<r cosh kh 

where g is the gravitational acceleration, H is the wave height from crest to trough, a is 

the radian frequency of the wave, k is the wavenumber, h is depth, z is depth from 

equilibrium surface, x is the spatial coordinate in the direction of propagation, and t is 

time (Dean & Dalrymple, 1991). 

For this study, the turbine will be mounted such that its axis of rotation is oriented 

vertically in the plane of wave-induced fluid particle motion. Other wave energy 

conversion research including working scale models has been performed using a Darrieus 

turbine with its axis oriented horizontally while perpendicular to the plane of wave 

induced fluid particle motion, for example (Siegel, Jeans, & McLaughlin, 2010). Whales 

have also been shown to use their flukes to capture some of the energy in waves for their 

own propulsion (Bose & Lien, 1990). 
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3. Development of a Hydrokinetic Turbine Test Bed for the UNH Tow 

& Wave Tank 

Laboratory testing in a large cross-section tow tank or flume presents an opportunity to 

test turbines in a more controlled, less expensive way compared to open-water 

deployment, for example at the UNH-CORE Tidal Energy Test Site. In Fall 2009, the 

idea for using the UNH Tow and Wave Tank for testing hydrokinetic turbines was 

conceived. 

3.1 Turbines Tested 

Lucid Energy Technologies, LLP sent their Gorlov Helical Turbine (GHT) and Lucid 

Spherical Turbine (LST) to the UNH Center for Ocean Renewable Energy for 

performance evaluation under an industry research project, and the test bed was designed 

around their dimensions. The two turbines are shown in Figure 3.1 and turbine 

specifications are presented in Table 3.1. Both turbines are made from extruded 

aluminum NACA 0020 foil sections with 14 cm chord length. However, the blades of the 

GHT are technically not a NACA 0020 swept along a helix but the foil tilted at the helix 

angle and wrapped around cylindrically. Therefore, the 2D blade section in the plane of 

rotation is not a NACA 0020. The actual projected foil shape of the GHT is shown in 

Figure 3.2. The GHT has an effective chord along its blade path that is higher due to the 

method of construction. Taking the tilt into consideration, the thickness is roughly 19% 

of the projected 15 cm chord, making the foil more like a NACA 0019 in its plane of 

motion. Similarly, the LST is not technically a helical sweep, but a foil bent in a circular 
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arc then tilted at the helix angle. The LST foil projections are more complicated, varying 

with height, depicted at the equator, quarter-height, and top/bottom locations in Figure 

3.3, Figure 3.4, and Figure 3.5, respectively. Technically, along its path, the projected 

blade sections closer to the top and bottom of the LST look like cambered sections, with 

progressively larger camber and chord length further from the equator. Since the LST's 

radius is not constant, local tip speed ratio and local (two-dimensional) solidity vary with 

height, with the highest tip speed ratio and lowest solidity located at the equator. This 

also illustrates the difficulty of estimating performance simply from the NACA foil data 

given in (Sheldahl & Klimas, 1981). Note that the solidity of the LST was calculated 

using the CAD models provided by Lucid to measure blade span and swept area, since 

the LST is not perfectly spherical. 

Figure 3.1 Sketch of the GHT (left) and LST (right). 
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Table 3.1 Turbine specifications. 

Diameter (m) 
Height (m) 
Blade profile 
Chord (cm) 
Solidity 
Af(m

2) 
Blade overlap 

GHT 
1.00 
1.32 
NACA 0020 
14 
0.14 
1.32 
1/2 

LST 
1.14 
0.97 
NACA 0020 
14 
0.22 
0.96 
2 

Figure 3.2 Projected GHT foil shape along counter-clockwise path. Radius points 
upwards. Dashed lines are non-projected NACA 0020. 

2.8 cm 

14 cm 
16 cm 

Figure 3.3 Projected LST foil shape along counter-clockwise path at equator. Radius 
points upwards. Dashed lines are non-projected NACA 0020. 
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Figure 3.4 Projected LST foil shape along counter-clockwise path at % height. Radius 
points upwards. Dashed lines are non-projected NACA 0020. 

Figure 3.5 Projected LST foil shape along counter-clockwise path near the poles. 
Radius points upwards. Dashed lines are non-projected NACA 0020. 

3.2 The UNH Tow & Wave Tank 

The UNH Tow & Wave Tank, shown in Figure 3.6, located at the Chase Ocean 

Engineering Laboratory, was constructed in 1994. The carriage and tow mechanism were 

designed and built as part of a master's thesis, completed in 1996 (Darnell, 1996). It is a 

36.6 m (120 ft) long, 3.66 m (12 ft) wide, 2.44 m (8 ft) deep facility capable of towing at 

speeds up to 7 m/s and a flap style wave maker at one end is capable of producing waves 

with 1-5 s periods up to 0.4 m wave height. 

The tow mechanism consists of a Yaskawa V7 drive powering a Baldor 10 hp AC 

motor run through a Dodge Maxum gearbox, driving a V" diameter steel cable (wire 
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rope). The specifications of the system are listed in Table 3.2. The system is an open loop 

design, consisting of a LabVIEW VI that outputs a DC voltage to the motor drive 

proportional to desired speed. The drive then sends power to the motor at the correct 

frequency. There is no compensation for slip in the system, but velocities are fairly 

accurate at low to moderate loads (Darnell, 1996). 

Table 3.2 Tow system specifications (Darnell, 1996). 
Maximum speeds 
Max. tow force 
Cable preload 
Power limit (kW) 
Acceleration 

Max. pitch torque 

1.54, 3.70, and 7.12 m/s (measured) 
700 lbf (design), 507 lbf (measured) 
1000 lbf 
4 kW if U< 1.8 m/s, 7.5 kW if U> 1.8 m/s 
90% of max speed reached in 1, 2, and 5 m, for low, 
mid, and high speed ranges, respectively (measured). 
3300 Nm 

: •> « * 

vs 
•4 -» ~t 

Figure 3.6 The UNH tow & wave tank. 

3.3 Test Bed Design: Desired Characteristics and Concept Selection 

At the beginning of the project, the following desired characteristics and target metrics 

were established: 

• Ability to tow turbines up to 1.3 m2 frontal area up to 1.5 m/s, 3 m/s for 

smaller turbines. 
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• Measurement of shaft torque, RPM, and streamwise drag force. 

• Corrosion resistance for weeks in the tank at a time. 

• Ability to easily mount turbulence generators. 

• No drilling or welding to carriage. 

The first logical step in assessing the ability of the existing facility to accommodate 

the turbine test bed was to determine if the tow mechanism would be able to produce 

enough force and power to tow the turbines at the desired speeds. Overall turbine drag 

coefficient based on turbine frontal area was estimated from Equation (2.13) to be a 

maximum of unity. Accordingly, it was predicted that when towed at 1.5 m/s in the tank, 

the GHT (worst case scenario due to its larger frontal area) would create approximately 

1500 N (340 lbf) of drag force, which is below the 2250 N force limit measured by 

Darnell. At 1.5 m/s, a 1500 N drag force will require 2250 W to operate, which is also 

below the 4 kW maximum power output of the tow mechanism in this speed range. 

Based on the maximum tow force, a maximum speed of 1.8 m/s was estimated. 

Since this speed would require gear changing with questionable benefits (also with no 

factor of safety included), it was decided that a 1.5 m/s would be the limit for tow speed 

until the tow mechanism was upgraded or a smaller turbine model was available. 

In order to remove mechanical power from the rotating turbine, a resistive torque 

must be applied. A passive dynamometer style system was chosen for simplicity and 

avoiding the need for any sort of auxiliary energy storage method on board the carriage. 

Other options include a DC motor and closed loop controller, which would allow 

prescription of tip speed ratio and could be used to start the turbine. This concept was not 

chosen due to the limited electrical power onboard the tow carriage. 
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For turbine drag measurements, two load cells were chosen, one for each side, as 

opposed to connecting both rails to one cross member and using one load cell. This was 

done to allow for uneven loading of either side without binding. 

Lucid provided additional lengths of extruded aluminum NACA 0020 struts (the 

same extrusions that the turbine blades are made from), which were chosen to be the 

main submerged structural members. This facilitated the design of a low-drag tow frame. 

To minimize the effects of blockage, the test bed was designed so that the turbine 

would be roughly centered in the tank cross section. The turbine frame was designed to 

tow in one direction, away from the wave maker. While the installed test bed could be 

towed in both directions, symmetrical foil support struts would be better in this case. 

Since the turbine frame could possibly be submerged in the tank for a period of a 

week or so, corrosion was a small concern. All submerged parts are 6061-T6 aluminum, 

304, or 316 stainless steel. Galvanic corrosion from contact of dissimilar metals was a 

slight concern, but it was not considered crucial to isolate these components due to the 

short submergence periods. 

3.4 Main Frame Assembly: Turbine Mounting, Loading, and RPM Measurement 

The hydrokinetic turbines mount inside the main frame assembly between two mounting 

flanges, whose bolt patterns were designed to match those on the Lucid turbines. The 

main frame assembly, shown in Figure 3.7, is also where the drive shaft, brake, torque 

transducer, and shaft speed sensor are located. 

Since the design involved supporting the turbine, shaft, torque transducer, and 

couplers with the horizontal foil members, it was first confirmed that these NACA 0020 
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members could withstand the bending loads imposed on them by the weight of these 

components. These calculations can be found in Appendix A. 

An appropriate shaft was chosen to transmit power from the turbine to the loading 

mechanism. Based on a report by Gorlov stating maximum power coefficients of 0.35 at 

a tip speed ratio of 2 (Gorlov, Development of the Helical Reaction Hydraulic Turbine, 

1998), maximum torque at 1.5 m/s was estimated to be 130 Nm at approximately 60 

RPM. A 1.25 inch diameter 304 stainless steel shaft was chosen based on the criteria of 

moderate corrosion resistance, shear stress, and critical angular frequency. With a 130 

Nm torque load along its axis of rotation, the shaft would incur a shear stress off 

approximately 3,000 psi, which is a safe shear stress for 304 stainless steel, having a yield 

stress of 35,000 psi in an annealed state (Deutschman, Michels, & Wilson, 1975). The 

critical (resonant) speed of the shaft is calculated to be 11,000 RPM using the equation 

RPMcntwal=4,160,W0j, (3.1) 

where d is the shaft diameter in inches and / is the distance between bearings in inches 

(Oberg & Jones, 1959). Since this is roughly two orders of magnitude higher than the 

expected maximum RPM, the shaft is well within safe limitations. 

Flexible shaft couplers were chosen to prevent binding from any misalignment in 

the mechanism. The shaft has keyways for ease of coupling at each end. The turbine is 

supported by two flanged corrosion resistant ball bearing assemblies. The thrust loads on 

these main shaft bearings are low, on the order of 130 lbf, negating the need for an actual 

thrust bearing since the entire load would produce an estimated shear stress of 2500 psi if 

entirely loaded on one of the 0.27 inch diameter balls. The shaft is held from moving 
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radially below the torque transducer by a low force capacity plain bearing made from oil-

impregnated sintered bronze with a built-in rubber radial damper. 

The GHT and LST both have similar bolt patterns at their upper and lower mating 

surfaces. However, the LST is shorter in height than the GHT. To allow the test frame to 

easily fit both turbines, a pair of identical shaft extensions were designed and fabricated 

to be attached to the LST to match the GHT height. 

3/8" spherical 
rod ends 

Lifting points 

40mm x 80mm 
T-slot framing 

Torque transducer 

Flexible couplings 

Plain beann 

Flanged ball 
bearings 

-Aluminum 
NACA 0020 
extrusions 

-Hydraulic 
disk brake & 
hub/bearing 
assembly 

Rigid coupling 

Coped spacers-

-Turbme 
mounting 
flanges 

Figure 3.7 Main frame assembly. 

Resistive torque is provided by a hydraulic disc brake above the torque transducer. 

Conveniently, the automotive industry manufactures integrated hub/bearings that include 
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a toothed ring and magnetic pickup for sensing wheel speed, on which a brake rotor can 

be easily mounted. One such hub assembly was chosen for the uppermost bearing of the 

main frame assembly. The magnetic pickup (a Hall-effect device) provides a 54 pulse-

per-revolution signal that does not require excitation voltage, the frequency of which can 

be measured to calculate turbine shaft RPM. This bearing normally mates to an axle shaft 

via internal splines, so the male end of an axle shaft was modified to fit the hub on one 

side and a flexible coupler on the other. The flexible coupler halves that attach to the 

torque transducer were modified to make them clamp the shaft, since the torque 

transducer shaft has no keyway. 

The brake master cylinder is a Wilwood 260-6766 with a 1 inch diameter bore and 

is connected to the brake caliper with a flexible braided stainless steel hose with -3 AN 

flared fittings on each end. A lever and bracket were fabricated to allow manual actuation 

of the brake. With a lever ratio of approximately 7 and an area ratio (between slave and 

master cylinders) of approximately 8, the brake system can produce 200 Nm of resistive 

torque with roughly 80 N of force applied at the lever, assuming a kinetic friction 

coefficient of 0.35. A block, screw, and jam nut are attached to the master cylinder to 

allow the limiting of maximum brake force. A mechanical pressure gauge was installed to 

monitor brake fluid pressure, helping with load repeatability. The brake lever bracket 

assembly is designed to be clamped by four 1/4-20 bolts and two flat bars to one of the 2 

inch square members of the carriage, allowing the brake lever bracket assembly to be 

removed with the turbine frame subassembly, preventing the need for disconnecting the 

hydraulic line. 
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The brake is mounted so its force points in the cross-stream direction; this way it 

will not affect drag measurements. A free body diagram is shown in Figure 3.8. 

Figure 3.8 Free body diagram of loads on test frame. 

From this free body diagram, it was determined that brake force would not affect total 

drag measurements, though it would affect each individual load cell's measurement. 

Summing forces in the vertical direction gives 

F +F =F 
M T J 2 l d• 

While summing moments about point O gives 

rFb=L/2(F2-Fx), 

showing how brake force, and therefore torque, will affect each load cell's reading. 

(3.2) 

(3.3) 
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Brake lever 

Sleeve bearing 
MDS nylon 

2X flanged sleeve bearing 
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Pressure gauge -

Figure 3.9 Exploded view of brake lever bracket assembly. 

Mounting plate 

Most of the parts made from flat plate (6061-T6 aluminum and 316 stainless) were 

sent out to be machined with a water jet cutter to save time. 

Regarding user friendliness, lifting points are located on the upper cross member of 

the turbine frame assembly to aid in removal from the tank. The frame was originally 

designed to be able to be flipped up about the horizontal axis of the main frame's 

spherical rod ends, for swapping out turbines. However, after some use it became 

apparent that it was easier to remove the entire turbine frame assembly and install the 

turbines outside of the tank. This process takes roughly one hour for two people to 

complete. 
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3.5 Drag Measurement - Rail Subassemblies 

The purpose of the two rail subassemblies, one shown in Figure 3.10, is to support the 

main frame, while allowing all streamwise force to be transferred to force measurement 

transducers. It was determined that the loading due to drag force on the turbine was low 

enough to allow the vertical foil struts of the main frame to be cantilevered below the 

water surface. This meant the rail subassemblies could attach to the main frame assembly 

right above the water surface, helping to further minimize drag. 

Precision bearing slides 

25 mm x 50 mm T-slot framing 

-Threaded rods for clamping to carnage 

-40 mm x 80 mm T-slot framing 

-Quick release pin 

Figure 3.10 Rail subassembly. 

The main frame attaches to each rail subassembly at two points per side. The 

uppermost point is a spherical rod end to allow pivoting upward along the cross-tank 

axis, which also helps eliminate binding from non-uniform streamwise loading, though 

deflection of the load cells is quite small even at maximum rated force. 

In order to measure streamwise drag, the frame to which the turbine is mounted is 

free to move in the streamwise direction so load cells can measure the force required to 

hold it in place. Two precision bearing slides per side permit freedom of motion in this 
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direction. These were chosen due to their load capacity and similarity of hole position 

(hardened material would be hard to modify) to the slots in 8020 framing. Custom T-slot 

nuts were fabricated to keep the rails in line with each other and to accommodate the 

smaller 4mm screws used with the bearing slides. These small screws were a concern for 

strength since they support the entire weight of the test frame, though since there are 12 

of them the calculated stress in each is lower than their yield strength. If the test frame 

was made heavier by a significant amount, more bearing slides could easily be added to 

increase load capacity. 

Two Sentran ZB 500 lbf capacity load cells were chosen for measuring drag force. 

They are rigidly mounted at one side and mounted by a spherical rod end at the other. 

Their combined capacities would allow the GHT to be towed up to approximately 2.6 

m/s, though the design of the rails is such that swapping to larger capacity load cells 

would be extremely simple, since the form factor of the 500 lbf cells is the same for cells 

up to 1500 lbf capacity. 

3.6 Signal Conditioning and Data Acquisition 

Torque is measured by an Interface T8 200 Nm torque transducer mounted between the 

brake and turbine. The uppermost bearing features an integral 54 pulse-per-revolution 

magnetic pickup used to measure shaft angular speed, whose frequency is measured with 

a Dataforth DSCA45 frequency signal conditioner. Load cell excitation voltage and 

signal conditioning are supplied by Dataforth DSC A3 8 strain gage signal conditioners. 

Carriage speed is measured by a 60 pulse-per-revolution encoder driven by a 4.8 cm 

diameter wheel, which rides along the main carriage rail. This encoder pulse frequency is 
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measured with a Dataforth DSCA45 frequency signal conditioner. A National 

Instruments USB-6211 DAQ device is used to record all analog voltages. An attempt was 

made to use the counter inputs on the USB-6211 to record the frequencies of the 

tachometer and carriage speed measurement encoder directly. Unfortunately, there were 

not sufficient memory resources to accomplish this while simultaneously recording the 

other required analog voltages. 

3.7 Tare Drag and Torque 

In order to estimate only the streamwise drag on the turbine, the drag of the frame alone 

was measured to be subtracted later. Since towing the LST required two extra shaft 

extensions, its tare drag was measured separately with these installed. Tare drag in both 

configurations is plotted versus carriage velocity in Figure 3.11. The tare drag of the test 

bed is low, roughly 25 times lower than the measured turbine drag (for the GHT). 
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Figure 3.11 Frame tare drag versus carriage velocity. 
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Similarly, to estimate the true hydrodynamic torque, friction in the bearings below 

the torque transducer was measured by rotating them in air, regressed linearly versus 

shaft rotational speed, and added to the measured value in post-processing. Figure 3.12 

shows the measured tare torque plotted versus RPM for the shaft speed ascending in 

forward and reverse directions of rotation. The hysteresis observed was within the 

manufacturer's combined error specification (±0.5 Nm). It is assumed the ascending 

values will be a better estimation of the true tare torque, so a linear regression is used 

with these values. 
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Figure 3.12 Tare torque versus RPM for forward and reverse directions with 
corresponding linear regression. 
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3.8 Final Test Bed Design Summary 

The test bed consists of four main assemblies: The main frame assembly, two rail 

subassemblies, and the brake lever bracket assembly, all of which are attached to the tow 

carriage. The entire test bed outline is shown in Figure 3.13 and photos of the test bed 

with the turbines installed are shown in Figure 3.14. Table 3.3 gives a summary of the 

test bed characteristics, including the power law fits for tare drag and linear fit for tare 

torque with ascending RPM. 
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Brake lever bracket assembly Tow carriage 

Turbine-

Water level 

2 44 m 

• 3 66 m -

Figure 3.13 UNH-CORE hydrokinetic turbine test bed outline. 
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Figure 3.14 GHT (top) and LST (bottom) installed in the UNH-CORE hydrokinetic 
turbine test bed. 

Table 3.3 Turbine test bed characteristics as built. 
Max. turbine height 

Max. turbine diameter 
Max. turbine frontal area 

Max. shaft torque 
Max. drag force 

Tare drag estimate 

Tare torque estimate 

1.32 m 
1.5 m 

1.3 m2 (up to 1.5 m/s) 
200 Nm (transducer limit) 

1000 lbf (load cell limit), 507 lbf 
(tow mechanism limit) 

F.„ =4.98£/ 221 

for GHT; 
^ = 6 - 7 4 l ^ ' w i t h L S T 

extensions 
,=0.0038&PM +0.9599 
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3.9 Add-ons: Turbulence Generators 

In order to generate turbulence, various objects can be placed upstream of the turbine. 

Two types of turbulence were desired for this study, grid (isotropic homogeneous) 

turbulence and the turbulent wake of a cylinder with diameter on order of the turbine 

blade chord length. To generate grid turbulence, a grid was designed and fabricated from 

0.5 inch diameter steel re-bar with a 2.5 inch mesh width, resulting in a 0.36 solidity, 

shown in Figure 3.15. This 0.36 solidity is the lowest that will produce isotropic 

homogeneous turbulence (Groth & Johansson, 1988), but kept drag to a minimum to 

conserve tow power. The turbulence generators are designed to mount in the inner 

streamwise slots of the larger T-slot framing of the rail subassemblies, independent of 

drag measurement. This mounting configuration allows varying streamwise position to 

some extent. Similarly a cross-member was fabricated from T-slot framing that allows 

the mounting of a cylinder at various streamwise or cross-stream locations, shown in 

Figure 3.16. Both the grid and cylinder are kept vertical with guy wires running to the 

front of the carriage. 
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Mounting holes 

54.5" 

Eye bolts for guy 
wire attachment 

Figure 3.16 Cylinder wake turbulence generator. 

3.10 Add-ons: Flow Measurement Devices 

Fluid velocity can be measured in a number of ways. One is a simple Pitot-static tube 

with a pressure transducer. This method works well for mean velocities but is not 

appropriate for measurements of high frequency fluctuations such as those in turbulence. 

Flow in water can be measured using acoustic Doppler techniques, using devices that 

calculate fluid velocity from the Doppler shift of sound waves scattered off particles 

moving with the water. The Doppler shift is the change in frequency of a scattered sound 

due to relative velocity of the scatterer. These devices fall into two major categories, 

acoustic Doppler current meters or profilers (ACMs or ADCPs) and acoustic Doppler 
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velocimeters (ADVs). ADCPs measure velocity by emitting one or more diverging 

beams, then "listening" for the scattered signal. By temporally gating the return signal it 

can be divided into "bins" which each correspond to a volume at a certain mean distance 

from the instrument. The ADCP measurement assumes isotropy and homogeneity along 

the diverging beams. ADVs measure velocity inside a much smaller volume and at a 

much higher sample rate than ACMs or ADCPSs. In general, an ADV provides a "quasi-

point" measurement (measurement volume on the order of 1 cm3 with temporal 

resolution in the 100s of Hz), whereas the spatial averaging along diverging beams of the 

ADCP measurements results in a measurement volume on the order of (10 cm) or larger 

with a temporal resolution on the order of 1 Hz. Since this study would require measuring 

velocity in grid turbulence an ADV was chosen as the appropriate flow measurement 

device for these experiments. A Nortek-AS Vectrino+ in particular can measure velocity 

at sample rates up to 200 Hz. 

Bracketry for mounting the ADV was designed and fabricated. The main ADV 

mounting structure is a piece of 1 inch x 3 inch T-slot framing. Brackets were designed 

and fabricated to clamp this strut to one of the 3 inch square members of the tow carriage, 

allowing for cross-tank and vertical adjustment of probe position. The ADV itself is 

clamped to the strut with two sets of HDPE straps. A similar mounting structure was 

designed and fabricated for mounting a Nortek-AS Aquadopp ACM, though this device 

was not used in the later experiments reported here. 
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4. Turbine Performance in Steady Uniform Flow 

4.1 Data Collection Procedure 

At first, it was assumed the turbine could be allowed to self start. This became a problem 

due to the rapid increase in drag force as the turbine begins to rotate. This change in drag 

force applied a shock load to the towing mechanism and lead to large oscillations. These 

oscillations are present even when simply towing an unloaded carriage, but the turbine 

certainly exacerbated the problem. Darnell took note of this low frequency resonance in 

1996, but to date no measures have been taken to reduce it. Due to the lack of damping in 

the system, the carriage will oscillate. More details about this issue are discussed in 

Appendix B. 

To avoid these unsteady forces and subsequent oscillations, the turbine was started 

manually before starting each tow. Once the carriage has almost fully accelerated the 

brake is applied until the lever hits the stop, approximating a step input of loading. Once 

this load torque is applied, turbine shaft RPM decreases until reaching a steady state 

value. All signals were sampled at 500 Hz via a VI (Virtual Instrument) programmed in 

LabVIEW. 

Figure 4.1 shows a sample data collection run (in arbitrary units, after applying a 

500 sample wide moving average smoothing filter in MATLAB) for one tow to illustrate 

how measurements vary with each other and to show a typical steady state duration of 

interest, on the order of a few seconds. Measurements were averaged over this steady 

state duration, producing one operating data point for the turbine under tow. Note that the 

very beginning of the run shows the turbine being started manually, hence the negative 
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torque readings. In addition to reducing transient drag forces explained earlier, manual 

starting helped the turbine reach steady state more quickly, since tank length is limited. 
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Figure 4.1 Sample data collection time series towing the GHT at U= 1 m/s showing 
carriage speed, turbine shaft RPM, torque, and overall drag force (in arbitrary units). 

Each day during testing, a sample of water was taken from the tank and its density 

was measured with a hydrometer. The water level in the tank was also measured with a 

tape measure, for calculating the tank cross-sectional area used in the blockage 

corrections. 

4.2 Data Reduction and Uncertainty Estimates 

As with all experimental research, it is important to fully document the measurement and 

data reduction methods used and provide best estimates of experimental uncertainty. 

Factory calibrations for the load cells and torque transducer were used for data 
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processing. The Dataforth signal conditioners were also used with their factory 

calibrations. See Appendix A for calibration sheets. 

The drag on the device is assumed to be zero when the carriage is not moving, so 

the average measurement of the drag signal for the first few seconds of each run is 

subtracted as the zero load value. This compensates for any long term zero drift and in 

effect zeroes/tares the system for each run. 

Error is estimated using the manufacturer's "combined error" specifications from 

their respective datasheets, which are higher than the values from their provided 

calibration sheets, serving as a conservative estimate. Errors for each individual 

component considered are tabulated in Appendix A. The experimental error for a 

parameter calculated from multiple measured quantities is calculated using the general 

formula for error propagation 

d(i SS\2 , , ( d(i 
dx ) dz 

Sq = J\—Sx +...+ — Sz , (4.1) 

where q is any function of the variables x through z (Taylor, 1997). Tip speed ratio, drag 

coefficient, and power coefficient are examples of variables calculated from several 

measurements. Experimental error estimates are summarized in Table 4.1. 
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Table 4.1 Summary of experimental error estimates. 
Quantity, q Error, Sq 

Carriage Speed, U (m/s) 

Torque, r(Nm) 
RPM 

Drag, F (both sides, tare 
subtracted, lbf) 

Tip speed ratio, X 

Power coefficient, Cp 

Drag coefficient, Cj 

V7.9xl0"8L/2+4.2xl0"5 

1 
0.6 

3.6xKr7F2+0.20-i-(ll£/12<ft/)2 

0.0001 
RPM 
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y u 
f RPM ^2 r 

1.6x10" -ST 
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U3 

su 
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t/2 

A 

-&F + 4.0x10"° — 
£/2 

+ 2.0x10" 
p\2 f 

V £/2 + 
F ^ 

0.003—SU 
u2 

After applying instrument calibrations, data for each run was examined and the time 

values of the boundaries of its steady state duration (if it was reached) were determined. 

These times are stored in a ".mat" file so all runs can be processed by running one 

MATLAB script. This script then calculated all the relevant values for each run, averaged 

over the steady state time window. 

Kinetic exergy efficiency was calculated with the measured power and drag 

coefficients. The induction factor used in the calculation was computed using the 

measured power coefficient and the momentum theory relation described in Equation 

(2.16). If one-dimensional momentum theory can be applied, this value would be on the 
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right of the value corresponding to peak power coefficient, or greater than 1/3. This 

makes sense if drag coefficients are greater than 0.8 (Manwell, McGowan, & Rogers, 

2002), which they are for these experiments. 

4.3 Results - GHT in Steady Flow 

Once the steady data from each run is extracted and processed, the measured power is 

normalized by the available kinetic power flux in the free stream through an area the size 

of the turbine's frontal area to calculate the power coefficient as described in Chapter 2. 

Figure 4.2 shows the GHT power coefficient plotted versus tip speed ratio before the 

blockage correction is applied. Figure 4.3 shows these same values after applying the 

blockage correction described in Section 2.2. Overall there was not a significant change 

observed in power coefficients at different free stream velocities. However, one result of 

interest is the significant increase in performance when carriage speed was increased 

from 0.8 m/s to 0.9 m/s. It should be investigated further as to whether this is 

experimental error or a real consequence of increasing Reynolds number, which leads to 

higher stall angles, improving foil performance. A maximum blockage-corrected power 

coefficient of 28% was observed at a tip speed ratio of 2.1. Before blockage correction, a 

maximum power coefficient of 36% was reached at a tip speed ratio of 2.3. This power 

coefficient is closer to the 35% reported by Gorlov (Gorlov, Development of the Helical 

Reaction Hydraulic Turbine, 1998). 
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Figure 4.2 GHT power coefficient versus tip speed ratio without blockage correction. 
Average error for Cp = 0.02; for X = 0.04. 
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speed ratio. 
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Similar to the calculation of power coefficient, the measured drag is normalized 

using the drag coefficient defined in Chapter 2. Figure 4.4 shows GHT drag coefficient 

versus tip speed ratio without blockage correction. A slight increase in drag coefficients 

for higher tip speed ratios was observed. The values remain quite constant, slightly 

increasing as tip speed ratio increases. This makes sense since increasing tip speed ratio 

makes the turbine appear more and more like a solid body. In other words, the likelihood 

of a fluid particle passing through the device without a reduction in its momentum 

decreases. It is interesting that the drag on the device remained fairly constant regardless 

of the power taken out at the shaft. This is useful information for designing mounting 

structures and predicting environmental effects of these devices since it implies removal 

of momentum from the flow whether or not useful shaft power is extracted. Figure 4.5 

shows blockage-corrected GHT drag coefficient plotted versus blockage-corrected tip 

speed ratio. All values are close to but do not exceed unity. 

In 2000, Shiono et. al. performed an experimental study on a similar Darrieus 

turbine in a water channel. Peak power coefficient of 23.5% was achieved at a tip speed 

ratio of 1.82 and a solidity of 0.179. Their peak power coefficient for a solidity of 0.366 

occurred at a free stream speed of 0.8 m/s, with a significant decrease for a free stream 

speed of 1.4 m/s (Shiono, Suzuki, & Kiho, 2000). This could be a similar phenomenon as 

the reduced power for the GHT at 0.8 m/s. 
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Figure 4.4 GHT drag coefficient versus tip speed ratio without blockage correction. 
Average error for Cd = 0.004; for X = 0.04. 
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Figure 4.6 shows GHT kinetic exergy efficiency versus tip speed ratio (calculated 

using non-blockage-corrected power and drag coefficients). The device reaches a peak 

kinetic exergy efficiency of 87% at a tip speed ratio of 2.2. It is remarkable how the 

kinetic exergy efficiency collapses more to a single curve at lower tip speed ratios 

compared to the power and drag coefficients. 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

O X n *̂ 

vC*fi 

x 

o: 

0.6 m/s 

O0.8m/s 

1.0 m/s 

X 1.2 m/s 

OQ.lmls 

D 0.9 m/s 

Xl.l m/s 

I 1.3 m/s 

x 
X 

1.7 2.2 2.7 

X 

3.2 3.7 

Figure 4.6 GHT kinetic exergy efficiency versus tip speed ratio. 

4.4 Results - LST in Steady Flow 

Figure 4.7 shows LST power coefficient versus tip speed ratio without blockage 

corrections. Compared with the GHT, power coefficients are lower and the device tends 

to operate at lower tip speed ratios. Low power can be explained by the device's circular 

cross section placing blade sections farther from the equator closer to the axis of rotation, 

therefore lowering local tip speed ratio, increasing local angle of attack oscillation 
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amplitude, and inducing stall earlier at these blade sections. These blade section' lower 

radii also mean that blade forces impart a lower moment with respect to the turbine axis. 

Tendency to operate at lower tip speed ratios can be attributed to the device's higher 

solidity, consistent with findings on the operation of the Darrieus wind turbine 

(Paraschivoiu, 2002). Note that the power conversion efficiency of the LST has been 

measured at up to 46% when installed in a closed conduit of 4 ft (1.22 m) diameter 

(Schlabach R. , 2010). This flow configuration will change the induction characteristics 

and therefore performance. 
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Figure 4.7 LST power coefficient versus tip speed ratio without blockage correction. 
Average error for Cp = 0.01; for X = 0.03. 
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Figure 4.8 Blockage-corrected LST power coefficient versus blockage-corrected tip 
speed ratio. 

Figure 4.9 and Figure 4.10 show the LST drag coefficient data plotted against tip 

speed ratio before and after blockage correction, respectively. Similar to the GHT, the 

values remain fairly constant with a slight trend toward higher Cd at higher X. However, 

the LST overall has a lower drag coefficient. This can be partially attributed to its lack of 

center shaft. 
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Average error for Cd = 0.002; for X = 0.03. 

•a 

u 

l 

09 

08 -

07 -

06 

05 -

04 -; 

03 

02 -

01 

0 — 
1 9 

a o 

2 1 23 

'jl> a 

25 

X 

X 
OlX 

2 7 

O0 8 m/s 

• 0 9 m/s 

1 Om/s 

x l 1 m/s 

X1 2 m/s 

~ 1 3 m/s 

1 4 m/s 

1 5 m/s 

29 3 1 

Figure 4.10 Blockage-corrected LST drag coefficient versus blockage-corrected tip 
speed ratio. 
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Figure 4.11 shows LST kinetic exergy efficiency plotted versus tip speed ratio 

(calculated using power and drag coefficients that have not been corrected for blockage). 

Like the GHT, kinetic exergy efficiency plotted against tip speed ratio has the same 

general shape as the power coefficient versus tip speed ratio, and the maximum value 

around 90% corresponds to the tip speed ratio for maximum power coefficient. 

The LST's lower radius at its poles could actually be helpful if inside a pipe 

boundary layer, where there will be lower fluid velocity, therefore lower angle of attack 

for a given tip speed ratio. 
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Figure 4.11 LST kinetic exergy efficiency versus tip speed ratio. 
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4.5 Tip Speed Ratio Limitations in Passive Loading Configuration 

Due to the nature of the experiments, during each run the turbine reaches its no load tip 

speed ratio and decelerates down to its operating point for a given load. In general, torque 

increases with decreasing tip speed ratio until blades begin to stall, which decreases 

hydrodynamic torque. The nondimensional torque coefficients, defined as 

T 
C, 

\pAfUx 
2 ' (4.2) 

is plotted versus tip speed ratio in Figure 4.12. This illustrates how hydrodynamic torque 

varies with tip speed ratio in the unstalled regime. 
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Figure 4.12 GHT torque coefficient versus tip speed ratio. 
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Operating at tip speed ratios lower than those of peak torque will require some sort 

of control beyond a simple step loading. It may be possible to actuate the brake before it 

reaches high enough tip speed ratio to stay left of the torque peak, but that would possibly 

require a more complicated control and actuator system than an "active" style 

dynamometer, where the turbine tip speed ratio would be set by feedback controlled 

motor system, acting as a generator to produce load torque. Regarding the rigid body 

dynamics, if the turbine has a relatively low rotational inertia, the load (generator, 

controller, etc.) will need to have a fast frequency response for stable operation at tip 

speed ratios where stalling occurs. This effect has been seen in other experimental studies 

(McAdam, Houlsby, Oldfield, & McCulloch, 2009). 

4.6 GHT Transient Measurements 

After sorting out the steady measurements, it was of interest to look at the dynamic 

measurements, i.e. cases where turbine RPM was not constant. In order to do this, the 

rotational inertia of the turbine and shaft was estimated to be 3 kg-m from the 

Solidworks CAD models. This rotational inertia was multiplied by the differentiated shaft 

angular velocity signal to estimate inertial torque. Figure 4.13 shows the transient data for 

one run at U = 1 m/s versus the steady measurements. 
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Figure 4.13 GHT steady and transient power coefficients versus tip speed ratio for U '-
1 m/s. 

This shows it may be possible to get the entire operating envelope from one tow, as long 

as the rotational inertia can be measured accurately enough. This data also extends into 

the dynamic stall regime, though the flow during these transient measurements is likely 

different from that when shaft RPM is constant. 

4.7 Conclusions - Steady Performance 

Firstly, comparing the two devices, the GHT is a more effective converter of fluid kinetic 

energy than the LST. The GHT reached a maximum power coefficient of 36% whereas 

the LST only reached 25%. This is to be expected given that the LST's intended 

environment is quite different from this low blockage tow tank scenario. The LST also 

tends to operate a lower tip speed ratios due to its higher solidity. 

In the operating range of tip speed ratios seen here, drag coefficients remain quite 

constant, slightly increasing with tip speed ratio. The LST is in general a lower drag 
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device compared to the GHT. Both devices have drag coefficients near unity, showing 

that they behave almost like solid bluff bodies when rotating. It would be interesting to 

see how the LST would perform with its center shaft installed; also, the GHT without its 

center shaft installed. These objects only provide resistance to flow through the turbine. 

Regarding kinetic exergy efficiency, at peak power output, both devices convert 

roughly 90% of the streamwise kinetic energy they remove from the flow into shaft work. 

This shows that although the LST captures less of the fluid's available energy, it's not 

"wasting" any more energy than the GHT, so the energy is still available in the flow for 

other devices to capture. The remaining 10% not converted to shaft work could have been 

converted to heat via viscous dissipation or the mean kinetic energy could have been 

transformed to rotational or turbulent kinetic energy. 

Transient power coefficient data seems to correspond well to the steady data with 

an estimate for rotational inertia. It should be investigated further as to whether this 

technique is a valid way to compare to, or even predict steady performance. 

Note that there could be an introduction of error into the steady measurements from 

small unsteadiness inherent in the experiments. For example, change in carriage speed 

will cause inertial forces to alter drag measurements. Likewise, changes in shaft RPM 

will alter torque measurements. 
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5. Turbine Performance in Waves 

The presence of a progressive surface wave induces a periodic velocity fluctuation whose 

amplitude decreases with depth from the equilibrium surface. This can be derived 

analytically from linear (Airy) wave theory (Dean & Dalrymple, 1991), as shown in 

Chapter 2. 

Since a cross-flow axis turbine rotates in the same direction regardless of the 

direction of incoming flow, one might hypothesize these devices could extract energy 

even with a vertical axis in the plane of wave induced fluid velocity. For this reason, one 

would not expect an in-stream axis turbine to see any increase in power output due to 

progressive waves. One question that arises is whether there are limits of the frequency of 

flow reversal at which CFA devices can no longer extract power. For example, a tidal 

flow is an oscillating velocity in more or less one dimension over a relatively long period 

while a propagating surface wave period, therefore its period of fluid velocity oscillation 

is significantly shorter. Of interest is the upper limit of the ratio of turbine rotational 

period to velocity oscillation period at which the turbine can still convert fluid kinetic 

energy to shaft work. 

Turbine performance for the GHT was measured while being towed 1.0-1.1 m/s 

against the direction of propagation of four different types of 0.15 m high waves, having 

periods 1, 1.5, 2, and 2.5 s. Figure 5.1 is a sketch illustrating the approximate relative size 

of particle orbits, tank depth, wave height, and turbine dimensions. Figure 5.2 shows how 

the amplitude of the theoretical horizontal wave velocity and particle displacement vary 
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with depth, as calculated from Equation (2.38). These parameters averaged over turbine 

height are shown along with theoretical wavelength in Table 5.1. 

U-

Figure 5.1 Sketch of the GHT operating under a wave in the tow tank. 
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Figure 5.2 Theoretical horizontal wave velocity and displacement amplitudes versus 
depth for a 0.15 m high 1.5 s period wave. Dashed horizontal lines indicate turbine 

location. 
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Table 5.1 Theoretical wave parameters averaged over turbine height. 
Period (s) 

Height (m) 
Wavelength (m) 

Horiz. disp. amp. (m) 
Horiz. vel. amp. (m/s) 

1.0 
0.15 
1.6 

0.003 
0.02 

1.5 
0.15 
3.5 
0.01 
0.06 

2.0 
0.15 
6.1 

0.03 
0.09 

2.5 
0.15 
9.0 

0.05 
0.1 

5.1 Results - GHT Performance in Waves 

Figure 5.3 shows a sample data collection run, including ADV measurements in the 

streamwise, cross-stream, and vertical directions for a carriage speed of 1 m/s towed in a 

2.5 s period progressive wave. Notice how in the sample run the carriage velocity 

fluctuates from the fluctuating drag on the turbine caused by the waves. This extra 

carriage motion could be adding or subtracting to the streamwise component of wave 

induced velocity, which needs to be kept in mind when observing the results, though 

smaller wave periods had less effect. At the very least, this observation shows the need 

for more carriage position damping, a stiffer tow mechanism, and closed loop speed 

control for the tow system. Note how the horizontal and vertical wave-induced velocities 

are captured by the ADV measurements, and how the cross-stream velocity is non-zero, 

showing how flow tends to "avoid" the turbine. 
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Figure 5.3 Sample data collection run in 2.5 s period waves (in arbitrary units). 

Figure 5.4 shows GHT power coefficient plotted versus tip speed ratio (not 

corrected for blockage) for carriage speeds of 1.0-1.1 m/s. In general, an increase in 

power coefficient and tip speed ratio is observed towing in waves, including an 

approximate 11% increase in maximum power coefficient in the 1.5 s period wave. With 

increasing brake torque, the turbine stalled at higher tip speed ratios in waves than in 

steady flow. For the longest wave period, 2.5 s, the turbine stalled at a much higher tip 

speed ratio than usual. An attempt to explain this behavior is made in the following 

section. Drag coefficients, plotted in Figure 5.5, are also higher than the steady flow case. 
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Figure 5.4 GHT power coefficient versus tip speed ratio for U= 1.0-1.1 m/s with and 
without 0.15 m high waves present. 
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Figure 5.5 GHT drag coefficient versus tip speed ratio for U = 1.0-1.1 m/s with and 
without 0.15 m high waves present. 
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5.2 Developing a 2D Model to Explain Results 

To attempt to explain some of the observed effects of waves, a 2D blade element type 

method was developed using three equally spaced 14.8 cm chord blades at radius r = 0.5 

m (similar to the GHT), using static lift and drag coefficient data for a NACA 0020 taken 

from (Johnston, 2011). This dataset was created by linearly interpolating between the 

NACA 0018 and NACA 0021 datasets in (Sheldahl & Klimas, 1981). Using the 

equations presented in Chapter 2, angle of attack and relative velocity are calculated. 

Reynolds number is calculated with respect to relative velocity and chord length. Using 

angle of attack and Reynolds number, the lift and drag coefficients are taken from the 

interpolated dataset, from which lift and drag are calculated. Streamwise induction factor 

is estimated by first setting induction as a constant value (uniform across the entire 

turbine), running the model, and estimating at which tip speed ratio the power coefficient 

intersects the experimental data. Repeating this process for a range of induction factors 

produces an approximate relationship for how induction varies with tip speed ratio. 

Power coefficient curves for constant induction are shown in Figure 5.6. 
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Figure 5.6 Model power coefficient for various constant induction factors and 
experimental results plotted versus tip speed ratio. 

A linear regression between streamwise induction and tip speed ratio, a = 0.1838A + 

0.1623, is chosen to fit the data the best. The positive slope of this relationship makes 

sense since the turbine should slow down the incoming flow more as it becomes more 

solid "in time" with increasing tip speed ratio. Another way to look at this is the 

likelihood of a fluid particle transferring its momentum to a blade increases when the 

blades are moving faster compared to the free stream. 

Once the induction relationship is built into the model, turbine power and drag 

coefficients are plotted versus tip speed ratio for the steady case, in Figure 5.7 and Figure 

5.8, respectively. Also plotted are the results from the ID momentum equations in 

Chapter 2, using the estimated streamwise induction. The close match of the model with 

experimental data for both power and drag shows the validity of this induction 

approximation, but there are no flow data to confirm. It's remarkable how well the drag 
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coefficient is predicted at tip speed ratios below 3 in spite of the model being "calibrated" 

with only power coefficient data. The induction estimate used also makes sense when 

looking at the amplitude of the theoretical angle of attack at which the turbine stalls in 

experiments, which approximately corresponds to the foil's static stall angle. This also 

shows that for the experiments, the blades may only reach static stall when the turbine 

stops, so dynamic stall may not be encountered. 
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Figure 5.7 Power coefficient versus tip speed ratio for steady model at U= 1 m/s, 
experiments at U= 1 m/s, and results from ID momentum theory based on induction 

estimates. 
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Figure 5.8 Drag coefficient versus tip speed ratio for steady model at U = 1 m/s, 
experiments at U= 1 m/s, and results from ID momentum theory. 

This model can be used to explain the lower bound of tip speed ratios encountered 

in the experiments. Figure 5.9 shows the theoretical lift to drag ratio versus angle of 

attack calculated with the model for tip speed ratios of 2.0 and 2.3, the latter being near 

the tip speed ratio corresponding to peak torque and the former being lower. For a tip 

speed ratio of 2.3 it can be seen that the blade comes close to stall while at a tip speed 

ratio of 2.0 the blade certainly enters stall, explaining the drop in average torque at the 

shaft. 
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Figure 5.9 Lift to drag ratio versus angle of attack for one half rotation, for two tip 
speed ratios at U = 1.0 m/s, calculated with the 2D model. Arrows show progression of 

turbine rotation angle or time, with the origin corresponding to 8 = 0° or 180°. 

Figure 5.10 shows the spectrum of the theoretical torque contributions of all three 

blades. Beyond a tip speed ratio of 2.2 or so, there is very little variance, or "torque 

ripple," compared to when tip speed ratio is below 2.2 This theoretical variance is mainly 

due to blade stall, hence it occurs at three (the number of blades) times the turbine 

rotational frequency and should be taken into account when specifying the required 

frequency response of a turbine loading system if it will encounter stall, for example from 

sudden increases in free stream velocity. 
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Figure 5.10 Spectrum of model output torque for various tip speed ratios without 
waves present. 

The 2D model was then modified to attempt to analyze the effects of the waves' 

streamwise velocity fluctuations on turbine performance. First, wavenumber, k, is solved 

for iteratively with the wave and tank parameters using the linear dispersion relation 

(Dean & Dalrymple, 1991), 

cr2 =gktanh(kh), (5.1) 

to an accuracy of 

gktanh(kh)-a2 <0.00l, (5.2) 

where a is the wave radian frequency. Next, the amplitude of velocity fluctuation is 

calculated using Equation (2.38), and is averaged over the turbine's height in the tank. 

This fluctuating velocity is then added to the free stream multiplied by (1-a), the 
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estimated effect of streamwise induction. The incident wave velocity at a blade takes into 

account the three different blade positions changing with rotation angle and time as 

Xblade
=rS'm0blade-Ut. (5.3) 

Figure 5.11 shows the model's calculated power coefficient plotted versus tip speed 

ratio averaged over six rotations under a 1.5 s wave along with steady experimental 

results at U= 1 m/s. 
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Figure 5.11 Power coefficient versus tip speed ratio calculated for six rotations with 
and without 1.5 s period waves present in the 2D model at U= 1 m/s. 

Looking at Figure 5.11, something is apparently not accurate in the model since 

experiments showed substantial increases in power coefficient, shown in Figure 5.4. 

Perhaps the lack of three dimensionality in the model, failing to account for blade sweep, 

variation of wave velocities with height, etc., are causing this discrepancy. Despite the 

lack of the ability to predict power increases, the model can show how an increase in 

torque variance may be caused by the presence of a wave, causing unstable operation at 
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lower tip speed ratios. This variance is due to the wave velocity pushing angle of attack 

beyond the stall point for different blades at different times. 

Figure 5.12 shows the model torque variance predicted under a 2.5 s period wave. 

Looking back at Figure 5.4, the lowest tip speed ratio at which the turbine would operate 

in experiments was 2.85. Figure 5.12 shows that below this tip speed ratio there is a large 

increase in low frequency variance of the torque output. If this were present during the 

experiments, the turbine would decelerate during times of lower torque, lowering tip 

speed ratio, worsening blade stall, and would eventually lead to the halting of the turbine 

altogether. This could possibly explain the experimental observations. 
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Figure 5.12 Torque spectral density predicted by the model under a 2.5 s period wave. 
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5.3 Conclusions - Performance in Waves 

GHT power coefficients in waves are higher than those in steady flow. A simplified 2D 

blade element type model developed cannot adequately explain why the turbine power 

output is increased. However, the model does show that the presence of waves is a source 

of low frequency variance in the torque output, therefore explaining the experimental 

observations that stable operation was not possible with the passive dynamometer setup 

below certain tip speed ratios. The additional low frequency components of the torque 

signal shown by the model have implications for turbine and generator design, namely in 

the inertia of the rotor and the frequency response of any generator system. At the very 

least, for potential deployments, wave induced velocities should be taken into account for 

modeling and control purposes. 

In the future it is necessary to observe how the turbine operates in wave conditions 

more akin to what would be present in real world tidal flows. It is also necessary to 

perform more experiments with a feedback controller for tip speed ratio, to observe 

whether or not power output will still increase under the longer period waves at lower tip 

speed ratios. Another question is whether or not the direction of propagation will affect 

the observations. 
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6. Turbine Performance in Turbulence 

Since a real world flow in which these turbines might be placed is surely turbulent, it was 

of interest to observe changes in performance due to introduction of turbulence to the 

inflow. For example, a tidal flow has an approximate Reynolds number of 1 million per 

m depth and per m/s flow velocity. The blade element Reynolds number for a cross-flow 

(vertical or horizontal) axis turbine can be written as 

Rec=(pt/ooc(l + 2/l(r/i?)cos6' + A2(r/7?)2)1 / 2 / / /) , (6.1) 

while for an in-stream (horizontal) axis turbine it can be written as 

Rec=(pUxc(l + Z2(r/R)2y,2/M), (6.2) 

neglecting effects of induction for this argument. Here c is the blade chord, Uoo is the 

free-stream velocity, A is the rotor tip speed ratio, // is the dynamic viscosity, 9 is the 

angle of rotation for the cross-flow axis turbine, and r/R is the non-dimensional radial 

position. The US Department of Energy (DOE) has designed Marine Hydrokinetic 

(MHK) "reference turbines," to have fully specified turbines in the open literature for 

numerical and physical model studies. For the DOE MHK Reference Tidal Turbines 

(ORNL, Sandia NL, NREL, 2011), the blade Reynolds numbers vary between 

approximately 1 and 2 million for the 6.45 m diameter vertical axis reference turbine, and 

between 4 and 8 million for the 20 m diameter horizontal axis reference turbine for the 

given operating regimes. Hence, for these turbines a high Reynolds number turbulent 

flow interacts with high Reynolds number flow surfaces. For similar turbines that are 

smaller than the DOE reference turbines, the tip speed ratio in the scaled turbine is 

matched to achieve kinematic similarity of velocity vector diagrams, and effects due to a 
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lower Reynolds number can come into play. However, the scale of the turbines used in 

this study is still sufficiently large that effects of turbulence will be important. This 

chapter presents first results of effects of turbulence generators on CFA hydrokinetic 

turbines. Data of this type do not yet exist in the literature. 

In 2001, Swalwell et. al. measured lift and drag coefficients for a NACA 0021 foil 

in various grid turbulence intensities in a wind tunnel. Some of the results are reproduced 

in Figure 6.1. A delay of static stall to higher angles of attack was observed with 

increased turbulence intensity. Due to the delay of stall, lower drag coefficients were 

observed over a range of angles of attack from about 10 to 40 degrees as well. 

Turbulence enhances momentum transfer from the fluid to the wall of the hydrofoil, 

providing higher local momentum to help move fluid downstream against the adverse 

pressure gradient on the suction side of the foil. Turbulence thus increases friction drag 

(Reynolds stresses act like effective viscous stresses to transfer momentum), but reduces 

the pressure drag since the flow remains attached longer. If the pressure drag reduction is 

larger than the viscous drag increase the overall drag will decrease, which was observed 

here, c.f. Figure 6.1. 
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Figure 6.1 Lift (top) and drag (bottom) coefficients versus angle of attack for a 
NACA 0021 foil in various levels of grid turbulence. Taken from Swalwell, Sheridan, & 

Melbourne (2001). 

6.1 Delay of Static Stall - PIV Measurements 

To observe the flow associated with the static stall delay phenomenon, a 36% solid grid 

with 3.18 cm mesh size was placed 10 mesh widths upstream of a 7 cm chord NACA 

0012 hydrofoil in a small 15.2 cm (6 inch) square cross section UNH water channel. The 

foil was placed at 9 degrees angle of attack in a 0.3 m/s free stream velocity (Rec = 
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21,000). Figure 6.2 shows lift over drag ratio data for a NACA 0012 at higher Reynolds 

numbers, showing how stall angles increase with increasing Reynolds number. Flow was 

measured using high frame-rate stereo PIV. A photograph of the experimental setup is 

shown in Figure 6.3. 

The Field of View (FOV) was 120 mm x 120 mm, for a magnification factor of 

0.145 (CMOS sensor dimensions are 17.408 mm x 17.408 mm). 4000 PIV images were 

acquired at 400 Hz, producing 10 seconds worth of data. The raw data were processed 

using an FFT cross-correlation with a final interrogation spot size of 16 x 16 pixels with 

50% overlap, resulting in a "structural resolution" of 1.875 mm. 

Results for the hydrofoil's instantaneous velocity and vorticity fields with 

streamwise turbulence levels of 1% (tunnel background turbulence) and 5% (with 

upstream grid), defined as (Panton, 1933) 

RMS(u') 
1 = K,), (6-3) 

CO 

are shown in Figure 6.4. Figure 6.5 shows mean velocity magnitude contours for each 

case normalized by its respective free stream velocity averaged across a rectangular 

region with corners at (40, -26) and (50, -19) mm. In the higher turbulence case, the wake 

appears to be thinner (though the effect is subtle), indicating a reduction in pressure on 

the lower surface, hence higher lift compared with the lower turbulence case. 
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Figure 6.2 Lift to drag ratio for a NACA 0012 foil at various Reynolds numbers 
(Sheldahl & Klimas, 1981). 
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Figure 6.3 Delay of stall experimental setup. Flow is from right to left. 

Figure 6.4 Instantaneous velocity vectors for NACA0012 hydrofoil AT a = 9°, Rec = 
21,000; Free stream turbulence level of 1% (top) and 5% (bottom). Background color 

indicates in-plane vorticity. 
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Figure 6.5 Mean velocity contours normalized by free stream velocity with (bottom) 
and without (top) grid turbulence. 

6.2 GHT Performance in Grid Turbulence 

The hydrokinetic turbine test bed was expanded to enable testing of turbines in grid 

turbulence. A turbulence generating grid was fabricated with a 36%> solidity and mesh 

size of 2.5 inches (6.4 cm), placed 10 mesh widths upstream (10M) from the edge of the 

turbine blade sweep, shown in Figure 6.6. The grid wire diameter Reynolds number at 1 

m/s is about 12,000, and the turbine location is between lOMand 25M downstream. A 

Nortek Vectrino+ Acoustic Doppler Velocimeter (ADV) was mounted approximately 5 
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mesh widths downstream from the grid, measuring velocity at a sample rate of 200 Hz. 

Average turbulence intensities in the cross and streamwise directions were measured to 

be 23% at this location, confirming the finding of (Groth & Johansson, 1988) that 

turbulence anisotropics quickly subside downstream of high Reynolds number, 

supercritical grids (i.e., the anisotropy measure vrms/urms quickly converges to one). Upon 

further comparison to the results of (Groth & Johansson, 1988), the turbulence intensities 

at the front edge of the turbine sweep (10M from the grid) should be approximately 

halved, or 11%>. The (undisturbed) grid turbulence would then experience a power law 

decay as described by Batchelor & Townsend (1948). However, here the decay of 

turbulence intensity is more complicated due to the induction exerted by the turbine, as 

well as the interaction with turbine blades, and will be less rapid than that reported by 

Groth & Johansson (1988). 

r ' " sasase -

Figure 6.6 UNH-CORE hydrokinetic turbine test bed with grid turbulence generator 
installed. 

In order to calculate tip speed ratio, drag coefficients, and power coefficients to be 

compared with the steady flow case, a mean post-grid flow velocity must be estimated; 
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otherwise, all values will be much lower than the steady case. This is done by measuring 

velocity with the ADV with only the grid installed, the results of which showed an 

equivalent free stream velocity behind the grid of 0.88 times the carriage velocity. 

Experimental error is estimated by adding the ADVs error and the carriage speed error in 

quadrature, hence the slightly higher average experimental errors compared with the 

steady case. 

Figure 6.7 shows power coefficient plotted versus tip speed ratio for the GHT in 

grid turbulence. The trends look similar to the steady case, with about the same maximum 

performance, but with an overall shift to lower tip speed ratios. Maximum tip speed ratio 

is lowered slightly while minimum tip speed ratio is decreased with no noticeable 

decrease in power coefficient. This suggests that blade stall is being delayed by the 

presence of grid turbulence. Delay of stall also would result in lower shaft torque 

variance (at least for straight-bladed turbines) at lower tip speed ratios compared with the 

non-turbulent case. Turbulence can thus have a favorable effect on CFA turbines. 
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Figure 6.7 GHT power coefficient versus tip speed ratio in grid turbulence for U = 
0.8-1.1 m/s. Average error for Cp = 0.02; for X = 0.05. 

Figure 6.8 shows the GHT's drag coefficient in grid turbulence plotted versus tip 

speed ratio. A small increase in drag coefficients is observed over the entire range of tip 

speed ratios compared with the non-turbulent case. This drag increase could explain why 

the turbine would need to operate at a lower tip speed ratio to lower streamwise 

induction, allowing the same flow velocity through the turbine, explaining the leftward 

shift in the power coefficient curve. 
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Figure 6.8 GHT drag coefficient versus tip speed ratio in grid turbulence for U= 0.8-
1.1 m/s. Average error for Cd = 0.007; for X = 0.05. 

6.3 GHT Performance in Turbulent Cylinder Wake 

Grid turbulence is approximately isotropic and homogenous, but real world flows have 

larger coherent structures that originate from complex bathymetry typically found in 

regions of high tidal current velocities or obstructions such as bridge piers, which will 

interact with turbine hydrofoils in a more unsteady manner. To make an attempt at a first 

observation into the effects of larger scale turbulence, GHT performance was measured 

with a 4.5 inch diameter cylinder wake at various cross stream locations for U= 1.1-1.2 

m/s. The center of the cylinder was 60 inches or 13d upstream of the center of the 

turbine. The experimental setup is shown in Figure 6.9. 
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Figure 6.9 UNH-CORE hydrokinetic turbine test bed with cylinder wake turbulence 
generator installed. 

Cylinder flow is mainly characterized by two nondimensional parameters, the 

Reynolds number with respect to cylinder diameter, Red, and Strouhal number, St. 

Reynolds number gives a measure of how turbulent the wake is and Strouhal number is a 

measure of the vortex shedding frequency behind the cylinder as (Zdravkovich, 1997) 

yed=St^. (6.4) 

d 

From Zdravkovich (1997), the Strouhal number can be identified to be approximately 1.9 

for the range of Reynolds numbers encountered in these experiments. Table 6.1 shows 

relevant parameters and flow characteristics for the cylinder wake used for these 

experiments. Figure 6.10 shows a sketch of the experimental setup and cylinder 

placement coordinate system. Note that for positive values of Y, turbine blades are 

moving toward the cylinder when they are directly downstream, whereas for negative 

values of Y, turbine blades are moving away from the cylinder when directly 

downstream. 
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Turbine 

4.5" Cylinder 

Flow 
Figure 6.10 Schematic showing cylinder wake experimental setup. 

Table 6.1 Cylinder flow parameters. 
<J(m/s) 
d (in) 
Red 

St 
fshed (Hz) 

1.1-1.2 
4.5 

13000-14000 
0.19 

1.8-2.0 

Figure 6.11 shows the GHT's power coefficient versus tip speed ratio in wake of a 

cylinder at various cross-stream locations. Note that these coefficients are not calculated 

with the actual mean velocity taking into account the deficit of the cylinder. 
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Figure 6.11 GHT power coefficient in 4.5 inch diameter cylinder wake at various 
cross-stream locations for U= 1.1-1.2 m/s. 

Turbine performance is degraded the most by a significant margin when the 

cylinder is on center. The turbine stalls near where it would for the uniform flow case, but 

power coefficients and tip speed ratios above this point are much lower. This can be 

explained by looking at what the cylinder velocity deficit does. At this angle of rotation, 

the turbine blade is encountering its highest angle of attack, therefore this is where the 

majority of hydrodynamic torque is produced during a blade's rotation. With the cylinder 

on center drag coefficient is also significantly reduced while drag coefficient remains 

fairly unchanged for other cylinder positions. 

At location Y = XIAD, performance is degraded more and more as tip speed ratio 

decreases. At location Y= -MAD, performance is very similar to that of the non-turbulent 

case, but shifted to lower tip speed ratios. If the velocity deficit of the wake was taken 
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into account, power coefficient would be substantially higher. The velocity deficit seems 

to be reducing velocity at a location where blade stalling would normally occur. At 

location Y - -II2D, maximum power coefficient seems to be shifted to a lower tip speed 

ratio, though at higher tip speed ratios power coefficients are comparable to the steady 

case. At location Y= 1/2D, performance is comparable to that in uniform flow except for 

the early stalling at a tip speed ratio of 2.6. This hints at the possibility of the cylinder 

wake causing low frequency variance in the hydrodynamic torque, therefore instability in 

the passive loading scenario, similar to the experiments in progressive waves. 

Figure 6.12 shows GHT drag coefficient plotted versus tip speed ratio. Data for all 

cylinder locations seem to be comparable to the uniform flow case except when the 

cylinder was directly in line with the turbine axis (7= 0). This was likely due to the mean 

velocity deficit of the cylinder wake reducing fluid velocity at the turbine. 

1.4 -

1.2 — 

O 

0.8 

0.6 

0.4 

X 
+ ? ° D * 

DNo cylinder 
OY=0 

Y=1/4D 
XY=-1/4D 
+ Y=-1/2D 
,Y=1/2D 

0.2 

0 •-, -

1.7 2.2 2.7 

X 

3.2 3.7 

Figure 6.12 GHT drag coefficient in 4.5 inch diameter cylinder wake at various cross-
stream locations for U— 1.1-1.2 m/s. 
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6.4 Conclusions - Performance in Turbulence 

In grid turbulence, the maximum power coefficients measured for the GHT were not 

much different from the non-turbulent case, though the lower tip speed ratio limit was 

expanded, which is likely due to the turbulence delaying stall of the turbine blades. Grid 

turbulence increased measured drag coefficients for all tip speed ratios tested. It appears 

that this increase in drag in grid turbulence changes the induction characteristics of the 

rotor, shifting operation to lower tip speed ratios, or decreasing performance at higher tip 

speed ratios relative to the non-turbulent case. 

It is unclear which of the observed effects are from the cylinder wake fluctuations 

and which are merely from the change in mean velocity profile. Further investigation is 

required, possibly with the help of CFD simulations. Experimentally, PIV measurements 

in the tow tank would help greatly to visualize any sort of interaction between blades and 

coherent structures in the cylinder wake, and how these differ for different tip speed 

ratios. These interactions could be vortex-foil or even vortex-vortex interaction between 

those created by the cylinder wake and those produced by turbine blades in dynamic stall. 

A summary of vortex-body interaction dynamics can be found in Rockwell (1998). 

From a practical standpoint, these cylinder wake experiments have implications for 

where to place structural members if they need to be in the flow path. For example, if an 

array of turbines is to be placed somewhere behind bridge pilings, support struts, etc. 

This preliminary investigation helped formulate new questions that need to be addressed. 

Further research is required, with different upstream turbulence generators, 

position/spacing, and flow measurement/visualization. 
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7. Conclusions and Future Work 

7.1 Conclusions 

A test bed for cross-flow axis hydrokinetic turbines was developed using the UNH Tow 

& Wave Tank. This test bed allows measurement of torque, RPM, and streamwise drag 

for cross-flow axis (CFA) turbines with up to 1.3 m frontal area at speeds up to 1.5 m/s 

with the tow tank's towing mechanism in its present condition. For steady uniform flow, 

tip speed ratios can range between the no load and peak torque operating conditions, but 

no lower, due to the passive loading setup. The test bed can also test turbine performance 

in propagating surface waves along with grid and cylinder wake turbulence. 

The test bed was used to measure the performance of two different helical cross-

flow axis hydrokinetic turbines, one spherical (LST) and one cylindrical (GHT). A 

blockage correction based on a single streamtube model was applied to the data. The 

GHT is shown to be a more effective converter of fluid kinetic energy in the relatively 

low blockage tow tank environment. The performance difference between the GHT and 

LST can be attributed partially to its higher solidity and smaller average radius. The 

solidity also explains the lower operating tip speed ratios of the LST. Drag coefficients 

for both turbines remain fairly constant regardless of power extraction and the LST is in 

general a lower drag device. 

Using one dimensional momentum theory, an expression for estimating linear 

kinetic exergy efficiency - a Second Law efficiency - was derived. Peak kinetic exergy 

efficiencies for both the GHT and LST are calculated to be around 90%. This shows that 
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although the LST in general operates at lower power coefficients, its lower drag means it 

is not "wasting" any more kinetic power than the GHT. 

GHT performance was then tested while towed against 0.15 m high propagating 

waves of various periods. A significant increase in power and drag coefficients was 

observed. However, longer period waves prevent stable operation at lower tip speed 

ratios in the passive loading configuration. 

A simple two-dimensional computer model was developed to attempt to explain 

measured performance. An approximate linear relationship between streamwise induction 

and tip speed ratio was chosen to best fit the experimental data. This model seems to 

sufficiently explain power and drag coefficients based on static foil performance data. 

When the streamwise wave-induced velocity fluctuation, calculated from linear small 

amplitude wave theory, is added to the model's free stream velocity, foil forces can be 

shown to increase the shaft torque variance significantly at low frequencies, explaining 

the inability to operate at lower tip speed ratios. This variance is due to the wave velocity 

augmenting blade angle of attack past its stall angle for some rotations. This also shows 

the need for a feedback controlled load system to keep tip speed ratio at a desired value. 

The simple model cannot, however, explain the increase in turbine power output. 

In isotropic homogeneous turbulence, the GHT's power coefficient is shown to be 

similar to the non-turbulent case, but shifted to lower tip speed ratios. Drag coefficients 

are also higher, suggesting streamwise induction is increased, hence the tendency to 

operate a lower tip speed ratios. The lowest operable tip speed ratio is expanded slightly, 

most likely due to the turbulence delaying blade stall. 
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When operating in a cylinder wake with a diameter on the order of the turbine blade 

chord length 13 diameters upstream of the center of the turbine, turbine performance is 

most negatively affected when the turbine is directly on center downstream of the 

cylinder. Other locations have less of a negative effect, but will generally shift the tip 

speed ratio of optimal performance to lower values. In the experiments conducted to date 

the effects from the turbulence in the cylinder wake and the effects from the mean 

velocity deficit could not be separated. This question could be first investigated by adding 

cylinder wake mean velocity profiles to the previously developed 2D model. 

Overall, waves and turbulence were shown to have significant effects on turbine 

performance. This shows the need for more detailed data regarding turbine operation and 

the need to better characterize potential deployment sites. In the future, it is 

recommended that a velocity spectrum be used as input to a prediction model, instead of 

simply a constant free stream. 

7.2 Future Work 

Although this study somewhat sacrificed depth for breadth, it has opened up some 

new avenues and questions for investigation. 

The mechanical load application of the turbine test bed built for the experiments 

described in this thesis allows only for the operation of the turbines at tip speed ratios 

above those of peak torque. Feedback control of turbine tip speed ratio is highly desirable 

for future testing. Using a motor with closed-loop feedback control of rotational speed 

would allow prescription of tip speed ratio, changing turbine loading from a passive to an 
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active load. This would also allow for the acquisition of higher resolution data from the 

smaller increments of tip speed ratio. 

Regarding experimental setups, for any future testing of these devices the speed 

control and dynamics of the tow carriage must be addressed. It may be helpful to allow 

programmed waveforms of speed (sine, triangle, etc) to observe how the turbine reacts to 

unsteady inflows. Also, a new physical model CFA turbine should be developed with 

flexibility and modularity in mind. This means allowing for ease of changing blades to 

test different profiles (including cambered profiles), non-uniform blade spacing, helical 

versus straight blades, removing the center shaft, allowing for blade pitch adjustments, 

etc. It would also be useful to build a turbine model and instrumentation to record blade 

position, tangential and normal forces, and possibly even include pressure taps to 

determine angle of attack. Better flow measurement/visualization, e.g. PIV or an ADV 

array, would greatly help with understanding fluid flow through the rotor, also allowing a 

more detailed look at the effects of turbulence. Using PIV to observe the fluid flow 

through the turbine underneath a progressive wave will also help explain the increase in 

turbine power output. 

For the experiments reported here, only a simple blockage correction based on a 

streamtube model was used. While the observed deformation of the free surface during 

experiments was very small, for future experiments a more sophisticated correction 

including a free surface deformation correction should be investigated. CFD studies could 

also be helpful in estimating blockage effects. Further, it would be interesting to see how 

the calculated kinetic exergy efficiencies change for different blockage scenarios. 
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Regarding optimization of CFA turbines, obtaining maximum power from one of 

these devices seems to be a balance between keeping angle of attack high (to maximize 

/?), avoiding stall (to maximize lift to drag ratio), while rotating at high angular velocity, 

but not so fast as to obstruct too much flow. For lower solidity devices, induction is 

lower, therefore the angle of attack at which stall (and also maximum power coefficient) 

occurs will be reached at a higher tip speed ratio. However, lower solidity means 

relatively less blade surface area, and therefore hydrodynamic torque. According to the 

2D model developed, streamwise induction in the GHT used in this study appears to be 

high. From ID momentum (Betz) theory, the power coefficient would be optimized at an 

induction factor of 1/3. Two ways for lowering induction are hypothesized: lowering 

solidity or lowering tip speed ratio. Lowering tip speed ratio is not a good option since it 

lowers rotational speed, thereby lowering power output, and may increases angle of 

attack oscillations to stall. A lower solidity turbine with thicker blades, having higher 

stall angles, may improve performance. For equal solidity, it has been shown in 

experiments that a one-bladed device performs best in terms of average power output, 

while a two-bladed device is not far behind, and a three-bladed turbine performing 

significantly worse (Shiono, Suzuki, & Kiho, 2000). It's possible the increase in 

performance is due to higher Reynolds number from longer chord lengths in the lower 

blade number cases. Though a one-bladed Darrieus device would surely have issues with 

large torque pulsations, a one-bladed GHT may allow less torque pulsation at the shaft, 

enabling practical operation. These considerations can be tested with a new physical 

model, working towards reaching the maximum performance of a CFA hydrokinetic 

turbine. 
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One question that remains is whether or not the GHT is a higher performing device 

compared to a Darrieus turbine of identical solidity, number of blades, and blade profile. 

The easier self starting and less shaft torque ripple of the Gorlov is one advantage, but 

this could be offset by the extra manufacturing cost of helical blades. Also, the high 

transient forces in allowing to self start may mean it's preferable to start manually 

anyway to prevent damage to the mounting structure. According to one computational 

study, there seems to be no difference in average power output between a Gorlov versus a 

Darrieus turbine, just a difference in how torque varies at the shaft (Winchester & 

Quayle, 2009). Furthermore, the helical blades of the GHT do not eliminate the 

unsteadiness in hydrodynamic forces on the blades, but cause these forces to move up 

and down a blade, possibly leading to blade fatigue, despite the reduction in shaft torque 

ripple. Blade end effects could be one way the GHT differs. The swept blades may 

behave similarly to swept aircraft wings, avoiding the induced drag from tip vortices. On 

a related note, for a helical blade, flow may be different from that of a straight blade due 

to pressure gradients along the blade caused by differences in lift. 

Many ideas for novel experiments have arisen from the initial observations from 

the experiments reported in this thesis. Will the effects of waves change when the tow 

direction is the same as the direction of wave propagation? How would different wave 

height distributions, akin to what would be seen in real world tidal flows, affect turbine 

performance? What are the effects of waves propagating in the cross-stream direction? 

How will performance be affected by a transverse cylinder wake? Different grid 

positions? Would some type of flexible blade allow higher performance through 

manipulation of vorticity present in the flow? Lastly, it would be interesting to see if the 
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effects of different types of waves and turbulence add "linearly?" In other words, will the 

effects add and subtract independently of each other? 

103 



This page intentionally left blank. 

104 



References 

Amandolese, X., & Szechenyi, E. (2004). Experimental Study of the Effect of Turbulence 
on a Section Model Blade Oscillating in Stall. Wind Energy , 267-282. 

Anderson, J., Streitlien, K., Barrett, D., & Triantafyllou, M. (1998). Oscillating Foils of 
High Propulsive Efficiency. Journal of Fluid Mechanics, 360, 41-72. 

Arndt, R. (1991). Hydraulic Turbines. In J. Gulliver, & R. Arndt, Hydropower 
Engineering Handbook. McGraw-Hill. 

Bahaj, A., Molland, A., Chaplin, J., & Batten, W. (2007). Power and Thrust 
Measurements of Marine Current Turbines Under Various Hydrodynamic Flow 
Conditions in a Cavitation Tunnel and a Towing Tank. Renewable Energy , 407-426. 

Banal, M., & Bichon, A. (1981). Tidal Energy in France, The Ranee Tidal Power Station 
- Some Results After 15 Years in Operation. Proceedings of the Second International 
Symposium on Wave and Tidal Energy. Cambridge. 

Batchelor, G., & Townsend, A. (1948). Decay of Vorticity in Isotropic Turbulence. Proc. 
ofR. Soc. London , 539-558. 

Beal, D. (2006). Passive Propulsion in Vortex Wakes. Journal of Fluid Mechanics , 549, 
385-402. 

Beer, F., Johnston, E., & DeWolf, J. (2006). Mechanics of Materials (4th Edition ed.). 
New York: McGraw-Hill. 

Bose, N., & Lien, J. (1990). Energy Absorption from Ocean Waves: a Free Ride for 
Cetaceans. Proceedings of the Royal Society of London , 591-605. 

Carlton, J. (2007). Marine Propellers and Propulsion. Oxford: Elsevier. 

Darnell, L. (1996). A Towing Carriage for the University of New Hampshire Towing and 
Wave Making Basin. Master's Thesis. 

Darrieus, G. J. (1931). Patent No. 1,835,018. United States of America. 

Dean, R., & Dalrymple, R. (1991). Water Wave Mechanics for Engineers and Scientists 
(1 ed., Vol. 2). Hackensack: World Scientific. 

Deutschman, A., Michels, W., & Wilson, C. (1975). Machine Design Theory and 
Practice. New York: Macmillan Publishing Co. 

Dormers, K., Waelkens, M., & Deckers, J. (2002). Water Mills in the Area of Sagalassos: 
A Disappearing Ancient Technology. Anatolian Studies , 1-17. 

105 



Electric Power Research Institute. (2006). Methodology for Estimating Tidal Current 
Energy Resources and Power Production by Tidal In-Stream Energy Conversion (TISEC) 
Devices. Retrieved from http://www.epri.com/oceanenergy 

Ferreira, C , van Kuik, G., van Bussel, G., & Scarano, F. (2009). Visualization by PIV of 
Dynamic Stall on a Vertical Axis Wind Turbine. Experimental Fluids , 97-108. 

Fox, R., Pritchard, P., & McDonald, A. (2009). Introduction to Fluid Mechanics. 
Hoboken: John Wiley & Sons. 

Fujisawa, N., & Shibuya, S. (2001). Observations of Dynamic Stall on Darrieus Wind 
Turbine Blades. Journal of Wind Engineering and Industrial Aerodynamics ,201-214. 

GCK Technologies. (2002-2006). Gorlov Helical Turbines, Production for Korea Ocean 
Research and Development Institute (KORDI) and Testing by KORDI. Internal Reports. 

Gorlov, A. (1995). Patent No. 5,451,137. United States of America. 

Gorlov, A. (1998). Development of the Helical Reaction Hydraulic Turbine. Washington, 
DC: US Department of Energy. 

Groth, J., & Johansson, A. (1988). Turbulence Reduction by Screens. Journal of Fluid 
Mechanics, 139-155. 

International Energy Agency. (2010). Key World Energy Statistics 2010. Retrieved from 
http ://iea. org/stats/index. asp 

Johnston, A. (2011). Analytical and Numerical Modeling of Performance Characteristics 
of Cross-flow Hydrokinetic Turbines. Durham: University of New Hampshire. 

Kammere. (2007). NOS/NOAA Current Survey of Piscataqua River. 

Lee, K., Yum, K., Park, J., & Park, J. (2009). Tidal Current Power Development in 
Korea. East Asian Sea Congress. Philippines. 

Manwell, J., McGowan, A., & Rogers, A. (2002). Wind Energy Explained. Hoboken: 
John Wiley & Sons. 

McAdam, R., Houlsby, G., Oldfield, M., & McCulloch, M. (2009). Experimental Testing 
of the Transverse Horizontal Axis Water Turbine. Proceedings of the 8th European Wave 
and Tidal Energy Conference, (pp. 360-365). Uppsala, Sweden. 

McKay, D. (2009). Sustainable Energy - Without the Hot Air. UIT Cambridge. 
Oberg, E., & Jones, F. D. (1959). Machinery's Handbook. New York: The Industrial 
Press. 

106 

http://www.epri.com/oceanenergy


Ocean Renewable Power Company. (2008). Status Report 4: OCGen Prototype Tidal 
Turbine Generator Unit Demonstration. 

ORNL, Sandia NL, NREL. (2011). RFP for DOE MHK Reference Turbine Laboratory 
Studies, W/Supplements for Horizontal and Vertical Axis Wind Turbines. Oak Ridge 
National Laboratory. 

Panton, R. (1933). Incompressible Flow. Hoboken: John Wiley & Sons. 

Paraschivoiu, I. (2002). Wind Turbine Design With Emphasis on Darrieus Concept. 
Montreal, Quebec, Canada: Polytechnic International. 

Rockwell, D. (1998). Vortex-body Interactions. Annu. Rev. Fluid Meek , 199-229. 

Savonius, S. (1930). Patent No. 1,766,765. United States of America. 

Schlabach. (2010). In-Pipe Hydro-Electric Power System and Turbine. Northwest Pipe 
and Lucid Energy. 

Schlabach, R. (2010). Lucid Energy Technologies In-Conduit Hydro Power Testing at 
Utah Water Research Laboratory. Lucid Energy Technologies. 

Sheldahl, R., & Klimas, P. (1981). Aerodynamic Characteristics of Seven Symmetrical 
Airfoil Sections Through 180-Degree Angle of Attack for use in Aerodynamic Analysis or 
Vertical Axis Wind Turbines. Albuquerque, NM: Sandia National Labs. 

Sheng, W., Galbraith, R. A., & Coton, F. N. (2008). Prediction of Dynamic Stall Onset 
for Oscillatory Low-Speed Airfoils. ASME Journal of Fluids Engineering . 

Shiono, M., Suzuki, K., & Kiho, S. (2000). An Experimental Study of the Characteristics 
of a Darrieus Turbine for Tidal Power Generation. Electrical Engineering in Japan , 38-
46. 

Siegel, S., Jeans, T., & McLaughlin, T. (2010). Intermediate Ocean Wave Termination 
Using a Cycloidal Wave Energy Converter. 29th International Conference on Ocean, 
Offshore, and Arctic Engineering. 

Swalwell, K. E., Sheridan, J., & Melbourne, W. H. (2001). The Effect of Turbulence 
Intensity on Stall of a NACA 0021 Aerofoil. Nth Australasian Fluid Mechanics 
Conference, (pp. 941-944). Adelaide, Australia. 

Taylor, J. (1997). An Introduction to Error Analysis. Sausalito, CA: University Science 
Books. 

Testing the Waters with Tidal Energy. (2010, December). Scientific American . 

107 



United States Department of Energy. (2010). Annual Energy Review 2009. Washington, 
DC. 

Vanek, F., & Albright, L. (2008). Energy Systems Engineering. New York: McGraw-
Hill. 

Williams, G. E. (2000). Geological Constraints on the Precambrian History of Earth's 
Rotation and the Moon's Orbit. Reviews of Geophysics , 37-60. 

Winchester, J. D., & Quayle, S. D. (2009). Torque Ripple and Variable Blade Force: A 
Comparison of Darrieus and Gorlov-type Turbines for Tidal Stream Energy Conversion. 

Proceedings of the 8th European Wave and Tidal Energy Conference, (pp. 668-676). 
Uppsala, Sweden. 

World Energy Council. (2007). 2007 Survey of Energy Resources. London: World 
Energy Council. 

Zdravkovich, M. M. (1997). Flow Around Circular Cylinders Vol 1: Fundamentals. New 
York: Oxford University Press. 

108 



Appendix A 

A.l Tips for Test Bed Operation and Lessons Learned 

It was determined that the ideal test bed operation is as follows: 

• Start data acquisition. 

• Person onboard carriage begins turbine rotation manually. 

• Start carriage motion. 

• Person onboard carriage applies brake when carriage is around 1/3 the length of 

the tank. 

• Send the command to stop the carriage with about 30 ft left until the wave 

maker to allow adequate coasting distance. 

• Stop data acquisition. 

• Adjust brake stop screw. Do this in increments of 1/6 of a turn from no load up 

until the turbine stalls. 

One important lesson learned is that drag force on a rotating turbine is much greater 

than when stopped. As described earlier, this can cause high transient forces in the tow 

mechanism if the turbine is allowed to self-start. 

A.2 Selected Design Calculations 

Since the weight of the turbine, shaft, torque transducer, and couplers would need to be 

supported by the horizontal foil members of the main frame assembly, bending stresses 

had to be checked for safety. It was assumed that the full load would need to be supported 

by the lower horizontal only and that this beam would be fixed at both ends. Since there 
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were two through holes and a small area milled flat near the center of the foil, this is the 

section of lowest area moment of inertia, calculated to be 0.199 in4 in Solidworks, and is 

highlighted in Figure A. 1. The bending stress at the center for a beam fixed at both ends 

with a point load at the center is given by 

WL SA n 
^ m a x= — , (A . l ) 

where W is the load, L is the length of the beam, and / is the area moment of inertia 

(Oberg & Jones, 1959). The maximum deflection at the center of the beam is given by 

WL3 

5™ = W2EI' ( A ' 2 ) 

where E is the modulus of elasticity of the material (Oberg & Jones, 1959). 

l ! IPf ' ' \ , .Vv t fi ' " -S?J> j^ppsipts:,- >:-"/fji, f , , | ! 1 | 

Figure A.l Cross-section of the lower horizontal foil member. 

Using Equation (A.l), a load of 134 lbf (estimated weight of the components in air 

computed by Solidworks), and the beam length of 65.5 inches, the predicted maximum 

stress in the beam was approximately 5,500 psi, which is well below the 35,000 psi yield 
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stress for 6061-T6 aluminum (Beer, Johnston, & DeWolf, 2006). Similarly, using 

Equation (A.2), the predicted maximum deflection was approximately 0.1 inches, which 

was considered acceptable for this application. 

A.3 Additional Instrumentation and Component Details 

Experimental error estimates given in Table 4.1 were calculated using the manufacturer's 

published accuracy specifications from their respective datasheets. Table A. 1 shows each 

source of error considered in the calculations. Figures A.2-A.6 are the individual factory 

calibrations used for data processing. Note that these sheets show each device to be 

within factory specifications for accuracy, illustrating how the individual component 

errors were conservative estimates. 

Table A.l Individual component error considered. 
Quantity 

Speed encoder dia. 
Sentran ZB load cell 

Interface T8 torque trans. 
Dataforth DSCA45 freq. cond. 

Dataforth DSC A3 8 exc. 
Dataforth DSC A3 8 amp. 

Hydrometer (water density) 
USB-6211DAQ 

Vectrino+ velocity 

Error 
.001" 

0.125 lbf 
INm 

0.1% span 

0.006 V 
0.06% span 

2 kg/m3 

2.690 mV 
1% of 

meas. val. 
±0.001 m/s 

Notes 
Measured with calipers 

500 lbf capacity 
200 Nm capacity 

500 Hz span for RPM, 2.5 kHz s 
for carriage speed 

10 V nominal output 
±10V span 

1002 kg/m3 measured 
Device in ±10 V range mode 

Table A.2 contains part numbers for selected purchased items. These may be useful 

if replacement is necessary. 
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Table A.2 Part numbers for selected purchased items. 
Item Part Number 

Brake rotor 
Brake caliper 

Upper shaft bearing 
Brake hose 

Brake master cylinder 
Precision bearing slides 

Lower (submerged) shaft bearings 

NAPA NB 4886576 
NAPACALSE5157A 

NAPA PGB PBR930252 
Summit 634510 

Wilwood 260-6766 
McMaster 6709K11 & 6709K301 

McMaster 3756T140 
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Figure A.2 Factory calibration sheets for left (top) and right (bottom) load cells. 
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Figure A.3 Factory calibration sheet for load cell signal conditioners. 
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Figure A.4 Factory calibration sheet for RPM frequency signal conditioner. 
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Figure A.5 Factory calibration sheet for carriage speed signal conditioner. 
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Figure A.6 Factory calibration sheet for torque transducer. 
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Appendix B 

B.l Suggestions for Tow Tank Improvement 

To further develop the hydrokinetic turbine test bed and for other towing requirements, 

modifications to the tow tank system are recommended. To begin to understand the 

dynamics of the tow system, a simulation involving a simplified model, depicted in 

Figure B.l, was performed using MATLAB's ODE45 routine to solve the equation of 

motion for the system. 

Figure B.l Simplified model of tow carriage system. 

Parameters used: 

M= 168 kg (Darnell, 1996) 

a - 1/6 m/s (estimated from measurements) 

• c = 0 

• k = 14000 N/m (estimated from cable dimensions and modulus of elasticity of 

steel) 
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Assumptions: 

• Cable is accelerating at constant value, a. 

Governing equations: 

MXx+cXx+kXx=kX2 

Assuming zero initial position and velocity 

_A 2 — ~T at 

X2=a 

Substitute X2 

MXx+cXx+kXx=\at2 

Break down into 1st order equations for MATLAB ODE45 solver: 

X,=Y 

Y = — 
M 

1 fk 
-t2-cY-kX, 

v-

(B.l) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 
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Figure B.2 shows carriage speed measurements taken using the 60 pulse-per-

revolution encoder wheel riding with the carriage, running into a frequency signal 

conditioner along with the model carriage speed (_¥}) with zero initial conditions from 0 

to 3 seconds. Sample rate for the measurements is is 500 Hz and data is filtered with 

MATLAB's smoothing filter, using a 100 sample wide window. A Nortek-AS Vectrino+ 

ADV was the only object in the tank producing drag, but it is neglected in the model. 
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Figure B.2 Tow carriage velocity during acceleration for the model and 
measurements. 

The simulation is quite close to the measurements, showing that the system behaves 

as if it has negligible damping or friction. Introducing friction could help system stability, 

but will require more tow power. Adding damping could be as simple as increasing 

friction at the carriage wheel bearings. The carriage wheels could also be replaced by a 
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sort of plain bearing slide type system, but this may introduce wear issues. Positioning 

accuracy would be improved by stiffer cable, but will oscillate at higher frequencies. This 

could be improved with more damping, requiring more tow power. It also needs to be 

taken into account that fluid drag and mass of gear on carriage will change dynamics of 

system. Some resonance in the tow system was observed during some of the turbine 

towing experiments that seemed to be excited by the rotating turbine. 

Other than the dynamics issues, more tow power is necessary to tow similar frontal 

area turbines at higher speeds. Also, higher acceleration is necessary to improve steady 

state operation times. To begin to address these issues, a list of tow tank performance 

assumptions and target metrics was created: 

Assumptions: 

• Carriage mass: 1000 lbm (Conservative estimate, 370 lbm from Darnell, 1996) 

• Maximum onboard equipment mass (carriage excluded): 500 lbm 

• Max total mass (carriage plus onboard equipment): 1500 lbm (680 kg) 

Target metrics: 

• Target maximum speed: 3 m/s 

• Maximum steady state drag @ 3 m/s: 425 lbf (corresponds with 0.6 m turbine 

frontal area) 

• Maximum steady ideal tow power @ 3 m/s: -5.7 kW (7.6 hp) 

• Max tow speed for 1.3 m turbine: 2.0 m/s 

• Target acceleration/deceleration (constant): 1.5 m/s 

• Maximum transient load with 1500 lbm to 3 m/s (drag plus mass times 

acceleration): 654 lbf 

121 



• Resulting ideal transient tow power to reach 3 m/s: ~8.7 kW (11.7 hp) 

• Resulting steady state time @ 3 m/s (assuming 30m usable length): 8 s 

• Resulting steady time @ 1.5 m/s: 19 s 

B.2 Suggestions for Hydrokinetic Turbine Test Bed Improvement 

As mentioned earlier, the greatest deficiency of the test bed is the inability to control 

turbine RPM, and therefore turbine tip speed ratio. It is recommended that a brushless DC 

servo motor be used to control speed, being used as a generator when load needs to be 

provided to the turbine. When being used as a generator, a voltage regulator can be used 

to recharge the batteries onboard the carriage. 

Some of the resonance in the tow system was also present in the uppermost 

crossmember of the main frame assembly during some tows. If this becomes a problem, it 

is recommend that non submerged struts be added at a 45 degree angle to stiffen the main 

frame assembly. 
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