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ABSTRACT 

ANALYSIS OF ARABIDOPSIS THALIANA PROTEIN PHOSPHATASE 2A 

C SUBUNIT EXPRESSION 

by 

Megan M Thompson 

University of New Hampshire, May, 2011 

Estelle M. Hrabak 

Reversible protein phosphorylation is required for presumably most biological 

pathways. One of the major enzymes involved in eukaryotic dephosphorylation is 

Protein Phosphatase 2A (PP2A). PP2A is composed of three subunits: A (scaffolding), B 

(regulatory), and C (catalytic). Our lab is interested in determining the function of the 

five C subunits (CI, C2, C3, C4 and C5) in Arabidopsis thaliana. We have identified a 

Na+-induced altered root growth phenotype in c4 mutant plants. The goal of this project 

was to determine expression of the five C subunit genes throughout the life cycle of 

Arabidopsis with emphasis on correlating the location of C4 subunit expression to the 

known root phenotype. C4 gene expression was observed in the roots and expression 

was not changed in the presence of additional NaCl or mannitol. Expression of all C 

subunits was ubiquitous and similar throughout the Arabidopsis life cycle with the 

highest expression in the root tips. 

xiv 



CHAPTER I 

INTRODUCTION 

One striking difference between animals and plants is that plants are not mobile. 

When faced with undesirable conditions, most animals will seek out a more comfortable 

location. Plants, on the other hand, are sessile and must be able to readily adapt to a 

myriad of stresses such as excessive or insufficient water, changes in light intensity, 

pathogen attack, and soil contaminants such as salts or heavy metals. Survival requires 

the regulation of molecular pathways to produce appropriate responses to stimuli. The 

stimuli can be inter- or intra-cellular and result in regulation of signaling pathways. 

Signal transduction pathways typically involve protein-protein interactions and/or protein 

modifications. ' 

Coordinated modifications of proteins are required to properly regulate signaling 

networks (Yang, 2005). Protein modifications include sulfation, ADP-ribosylation, 

biotinylation, methylation, ubiquitination, and phosphorylation. The most common and 

ubiquitous form of protein modification is the addition and removal of a charged 

phosphate moiety by reversible phosphorylation. Reversible phosphorylation requires the 

antagonistic action of both protein kinases and phosphatases (Hunter, 1995). All living 

organisms, from the smallest and simplest bacterium to the larger and more complex 

animals and plants, regulate protein function through phosphorylation (Cozzone, 1997; 

Moorhead et al., 2009). In eukaryotes, protein phosphorylation most commonly occurs at 

the hydroxyl group on serine, threonine and tyrosine residues (Luan, 2003). In humans, 

phosphorylation occurs on serine and threonine approximately 86.4% and 11.8% of the 
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time, respectively, while about 1.8% of phosphorylations occur on tyrosine (Olsen et al., 

2006). The presence of a charged phosphate moiety may cause allosteric changes in 

protein conformation that either block or expose an enzyme's active site to its substrates, 

target proteins to a specific cellular location, encourage or inhibit protein-protein 

interaction, or have other regulatory effects (Luan, 2003). 

Since the discovery of protein phosphorylation in the mid 1900's, it has become 

apparent that these reactions are critical for all aspects of growth and development 

(Cohen, 2002). Many individual phosphatases and kinases are required for survival and 

their absence is detrimental to the cell (MacKeigan et al., 2005). Reversible 

phosphorylation allows the essential fine tuning of multiple cell signaling networks. 

Proteins regulated by phosphorylation are often enzymes involved in fundamental 

cellular processes, such as metabolic pathways, transcription, cell cycle regulation, and 

stress responses, but phosphorylation also occurs on structural proteins like tubulin or 

regulatory proteins such as transcription factors. The exact number of phosphorylatable 

proteins is unknown, but in humans the current estimate is that 30% of proteins 

(approximately 10,000 proteins) might undergo phosphorylation at 25,000 or more 

phosphorylation sites (Cohen, 2000; Olsen et al., 2006; Lemeer and Heck, 2009). Many 

proteins contain multiple phosphorylation sites which can be targeted by different kinases 

and phosphatases. 

In the human genome, there are 650 known or putative protein kinases and 222 

protein phosphatases, representing approximately 3-4% of the protein coding genes 

(Bernards, 2005). In plants, the Arabidopsis thaliana genome contains approximately 

1000 protein kinase and 112 protein phosphatase catalytic subunits (Wang et al., 2009). 

2 



In general, there are more protein kinase than protein phosphatase catalytic subunits 

(Dombradi et al., 2002). Many protein phosphatases are further regulated by the 

interaction of regulatory subunits to form multi-subunit holoenzymes. 

Due to the importance of protein phosphorylation, considerable research has been 

published on this process. However, much of this research has been focused on kinases 

including identifying substrates and phosphorylation motifs. Even though the importance 

of dephosphorylation is recognized, our current understanding of protein phosphatases is 

still limited compared to kinases (Luan, 2003; Pais et al., 2009b). 

Protein phosphatases can be classified based upon amino acid sequence similarity 

or whether dephosphorylation occurs specifically at serine/threonine or tyrosine residues 

or both (Luan, 2003; Moorhead, 2007). Sequence classification is more accurate than 

residue specificity because some phosphatases have dual specificity and dephosphorylate 

all three amino acids. Based on sequence classification, two families of protein 

phosphatases which typically act on serines and/or threonines are the phosphoprotein 

phosphatases (PPP) and Mg2+-dependent protein phosphatases (PPM) (Moorhead, 2007). 

PPM is the largest family and contains protein phosphatases such as protein phosphatase 

2A (PP2A), calcineurin (protein phosphatase 2B - PP2B) and protein phosphatase 1 

(PP1). 

The serine/threonine phosphatases PP2A and PP1 account for 80-90% of the total 

protein dephosphorylation activity in eukaryotic cells and are important regulators of the 

cell cycle, of development and differentiation of cells, and of other cellular activities 

(Janssens and Goris, 2001). PP2A is one of the most critical proteins involved in 

signaling pathways and comprises about 1% of the total cellular protein (Eichhorn et al., 
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2009). PP2A is a multimeric protein requiring interactions between the A, B and C 

subunits to form a functional heterotrimer (Janssens and Goris, 2001). The A subunit 

primarily consists of 15 protein-binding domains termed HEAT repeats and functions as 

the scaffolding subunit that binds the B and C subunits. The B subunit is implicated in 

determining substrate specificity and localization of the PP2A holoenzyme. The C 

subunit is the site of catalytic activity and is a highly conserved protein in eukaryotes 

(Kerk et al., 2002). Study of mutants containing knockouts of A or C subunits in model 

organisms such as mice, yeast, and Arabidopsis thaliana, revealed that the complete 

absence of either type of PP2A subunit is lethal (Ronne et al., 1991; Gotz et al., 1998; 

Michniewicz et al., 2007). 

Our lab studies Protein Phosphatase 2A in the popular model plant Arabidopsis 

thaliana. Arabidopsis is a small plant with a short life span that is easy to grow and 

transform. One important feature of Arabidopsis is that the genome has been sequenced 

(The Arabidopsis Genome Initiative, 2000). Over 25,000 genes have been identified and 

gene annotations and sequence data are available online. Other community resources 

include microarray expression data, extensive collections of mutants, cDNA clones, 

mutant seed stocks, and other useful tools, most of which are centralized at The 

Arabidopsis Information Resource (TAIR, http://www.arabidopsis.org/) and at the 

Arabidopsis Biological Resource Center (http://abrc.osu.edu/) for use by the Arabidopsis 

community. 

A search of the Arabidopsis genome reveals that there are 3 genes encoding PP2A 

A subunits, 5 genes for C subunits and 17 B subunit genes (Table 1). The B and C 

subunits are further classified into subfamilies based on sequence similarities. If all 
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Table 1. Nomenclature and locus number of the Protein Phosphatase 2 A subunits in 
Arabidopsis thaliana. 

Subunit Sub- Gene Symbol & 
family Aliases 

A RCN1,PP2A-A1, 
EERLAtAa 

PP2AA2, 

PP2AA3, 

C I PP2AC-1, 
PP2Ac-2, 

PP2Ac-5, 
II PP2AC-3, 

PP2Ac-4, 
B B AtBa 

AtBp 
B' AtBa 

AtB'p 
AtB'y 
AtB'5 
AtB'e 
AtB'^ 
AtB'ii 
AtB'0 
AtB'i 

B ' ' AtB 'a 

AtB'p 

AtB "y 

AtB "8 

AtB "e 

AtAp 

AtAy 

PP2A-1 
PP2A-2 

PP2A-5 
PP2A-3 
PP2A-4 

FASS (FS), 
GORDO (GDO), 
TONNEAU 2 
(TON2),, AtB X 

Arabidopsis 
Locus 

Number 
Atlg25490 

At3g25800 

Atlgl3320 

Atlg59830 
Atlgl0430 

Atlg69960 
At2g42500 
At3g58500 
Atlg51690 
Atlgl7720 
At5g03470 
At3g09880 
At4gl5415 
At3g26030 
At3g54930 
At3g21650 
At3g26020 
Atlgl3460 
At5g25510 
At5g44090 

At5g28900 

Atlg54450 

At5g28850 

Atlg03960 

At5gl8580 

NCBI 
Gene 

ID 
839135 

822171 

837892 

842276 
837583 

843333 
818850 
825019 
841594 
838348 
831828 
820146 
827211 
822200 
824658 
821719 
822199 
837906 
832626 
834432 

833013 

841887 

833004 

839361 

831976 

Reference 

(Garbers et al., 1996; 
Thakore et al., 1999; 
Larsen and Cancel, 2003; 
Michniewicz et al., 2007) 
(Thakore et al., 1999; 
Zhou et al., 2004) 
(Thakore et al., 1999; 
Zhou et al., 2004) 
(Arino etal., 1993) 
(Arino et al., 1993; Pernas 
et al., 2007) 

(Arino etal., 1993) 
(Casamayor et al., 1994) 
(Thakore et al., 1999) 
(Thakore et al., 1999) 
(Latorre et al., 1997) 
(Latorre et al., 1997) 
(Latorre et al., 1997) 
(Terol et al., 2002) 
(Terol et al., 2002) 
(Terol et al., 2002) 
(Terol et al., 2002) 
(Terol et al., 2002) 
(Terol et al., 2002) 
(Day et al., 2002; Reddy 
and Reddy, 2004) 
(Day et al., 2002; Reddy 
and Reddy, 2004) 
(Day et al., 2002; Reddy 
and Reddy, 2004) 
(Day et al., 2002; Reddy 
and Reddy, 2004) 
(Day et al., 2002; Reddy 
and Reddy, 2004) 
(Torres-Ruiz and Jurgens, 
1994; Fisher etal., 1996; 
Camilleri et al., 2002) 



possible combinations of heterotrimers were able to form, there would be a total of 255 

different combinations. Based on the numerous potential combinations of heterotrimers, 

there is opportunity for both specialization and redundancy. Conversely, a mutation in 

one A subunit could potentially affect the formation of 90 heterotrimers. 

Pharmacological approaches have provided much information about the function 

of PP2A (Janssens and Goris, 2001). Okadaic acid (OA), a toxin extracted from marine 

invertebrates, is a non-competitive inhibitor of both PP1, PP2A, PP4, and PP5. PP4 (0.1 

nM) is inhibited within the same range as PP2A (0.1-0.3 nM) and PP2A is sensitive to 

lower concentrations of OA than PP5 (3.5 nM) and PP1 (15-50 nM; Bialojan and Takai, 

1988; Moorhead, 2007). A major drawback with using a pharmacological approach is 

the non-specific interactions off the inhibitor and effecting more than one phosphatase. 

Some of the potential functions of PP2A uncovered using OA include cell cycle control, 

arrangement of microtubules, and regulation of sucrose phosphate synthase, nitrate 

reductase, and K+ channels (Li et al., 1994; Smith and Walker, 1996; Ayaydin et al., 

2000; Polit and Kazmierczak, 2007). 

A more nuanced understanding of the functions of PP2A has been revealed from 

analysis of plant mutants. In particular, analysis of the Al subunit mutant rcnl has been 

very fruitful. The rcnl mutant exhibits a decrease in total cellular phosphatase activity 

indicating that the Al subunit is likely a member of many critical holoenzymes and 

reinforcing the role of PP2A as a major phosphatase in plant cells (Deruere et al., 1999). 

Many of the phenotypes identified for rcnl mutants indicate involvement in hormone 

responses, especially auxin responses. For example, the rcnl mutant was originally 

identified in a screen for seedlings with an altered response to the auxin efflux inhibitor 
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N-1-naphthylphthalamic acid (NPA; Garbers et al., 1996). Subsequent studies 

monitoring the movement of radioactive auxin or visualizing the location of auxin with 

an auxin responsive promoter: ireporter construct showed that rcnl mutants had increased 

basipetal auxin transport in roots (Rashotte et al., 2000). The functions of the other two 

A subunits, A2 and A3, are less well understood. There is no phenotype observed with 

single or double a2 or a3 mutants; however, double mutants between either a2 or a3 and 

rcnl had a severe phenotype (Zhou et al., 2004). Seven day old seedlings of rcn x a2 or 

rcnl x a3 double mutants grown in light exhibited an extreme decrease in root length and 

increased isotropic cell expansion compared to wild type. The rcn x a2 and rcnl x a3 

mutants exhibited alterations in the number of cotyledons as well as their symmetry 

(Zhou et al., 2004). The cotyledon defects resembled defects observed in other mutants 

implicated in auxin efflux or regulation of auxin efflux. 

Less is known about plants with mutations in the C and B subunit genes of PP2A. 

There are currently two reports on B or C subunit mutants in Arabidopsis. The PP2A C2 

subunit was implicated as a negative regulator of abscisic acid responses (Pernas et al., 

2007) while plants with mutations in a potential B subunit gene named tonneau2 (ton!) 

have extreme developmental abnormalities including disorganization of the cortical 

cytoskeleton (Camilleri et al., 2002). Interestingly, none of the A subunit single or double 

mutant phenotypes were as extreme as the weakest ton2 phenotype (Zhou et al., 2004). 

Needless to say, there is a need for additional PP2A mutant studies to further elucidate 

the function of PP2A in plants. 

The Hrabak lab has been focusing on Protein Phosphatase 2A with the goal of 

understanding the function of the PP2A C subunits in Arabidopsis using a reverse 
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genetics approach. A previous graduate student, Enhua Wang, identified plants with T-

DNA insertions in all five Protein Phosphatase 2A C subunit genes, for a total of 13 

different alleles. T-DNA is a large (4-5 kb) fragment of DNA which can function as an 

insertional mutagen, disrupting genes into which it inserts (Alonso et al., 2003). DNA 

sequencing was used to determine the exact insertion site for the T-DNA in each allele. 

Homozygous lines were subjected to RT-PCR to determine if transcript was produced. 

At the time of this writing, three of the 13 homozygous C subunit mutant lines had been 

shown to have no detectable transcript and these three lines are considered to be null 

mutants (Table 2; M. Thompson, unpublished data). 

These three null mutants looked very similar to wild type plants when grown 

under normal conditions (M. Thompson, personal observations; Wang, 2008). To detect 

potential phenotypes, the homozygous mutant plants were subjected to many of the 

screens described at the Arabidopsis Gantlet website (http://thale.biol.wwu.edu/). Some 

of the screens included growth at low temperature and growth in the presence of 

exogenous hormones or various salts. Of the 23 screens performed, a phenotype was 

observed for seedlings grown on vertically-oriented plates on medium supplemented with 

additional NaCl (Wang, 2008). In this screen, seedlings were germinated and grown for 

three days on vertically-oriented plates containing standard growth medium, then 

carefully transferred to new vertically-oriented plates containing additional NaCl and 

grown for seven days. Control seedlings were transferred to the same medium without 

supplemental NaCl. When grown on medium with no additional NaCl, roots of the wild 

type and c4 mutant skewed slightly to the left (Figure 1). Skewing direction is based on 

viewing the seedlings from the back of the plate through the agar and a slight leftward 
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Table 2. C subunit knockout collection. 

C Subunit Allele Number T DNA Identifier Confirmed T-DNA 
Number Insertion Site 

CI ell Salk-1025991 6thof6exons 
c4-l Salk-0350091 9 thofllexons 

C4 
c4-2 GABI-800G052 1st of 10 introns 

'Salk Institute (LaJolla, CA) 
2German Plant Genomic Program (Potsdam, Germany). 



wildtype c4 mutant 

0.5 x MS 

0.5 x MS 
+ 75mMNaCI 

Figure 1, Growth of wildtype and PP2A c4 mutant seedlings on standard medium or 
medium supplemented with NaCl. 
Three day old seedlings grown on 0.5X MS were transferred to media containing either 
0.5X MS or 0.5X MS + 75 mM NaCl and seedlings were transferred so their root tips 
were aligned. Seedlings were grown for another 7 days and photographed through the 
back of the plate. 
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angle is normal for Arabidopsis thaliana roots (Rutherford and Masson, 1996). In the 

presence of additional NaCl, the roots of c4 mutant seedlings skewed strongly to the right 

while the wild type roots skewed slightly but the root angle was significantly different 

from the c4 mutant roots (Figure 1; Wang, 2008). Supplementing the medium with other 

salts (LiCl, KC1 or CaC^) did not cause root skewing nor did growth on medium 

containing mannitol at the same osmotic strength as the NaCl (data not shown), 

indicating that the phenotype is specific for sodium. The phenotype was complemented 

by transformation of the wildtype C4 gene into the c4-l mutant plants, indicating that the 

skewing phenotype was due to a mutation in the C4 gene (Wang, 2008). Although other 

root skewing mutants have been identified, to our knowledge, no other mutants have been 

identified which show root skewing only in the presence of Na+. 

The overall goal of this research is to generate a detailed cell expression profile of 

all of the C subunit genes to determine whether the expression patterns overlap and to 

correlate mutant phenotypes to the sites of gene expression. Online microarray data 

(assembled from www.genevestigator.com) cannot be used to answer this question 

because microarrays do not capture data at the cellular level. In addition, the Affymetrix 

Arabidopsis chip cannot differentiate between the C3 and C4 genes. The 557 bp probe 

(265857_S_AT) is located in the C3 cDNA sequence, beginning 342 bp from the start 

codon, and is 91.7% identical to the corresponding C4 cDNA region. Immunodetection 

would also not be a useful approach to distinguish the expression patterns of the C4 and 

C3 subunits because the two subunits are 98% identical at the protein level so that 

antibodies would not distinguish between the two subunits. I chose to study the 

expression pattern of the C subunits using a reporter gene approach. The reporter chosen 
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was the enzyme P-glucuronidase (GUS). The GUS histochemical assay can be used to 

determine global expression of a gene of interest, in this case the C subunit, at the level of 

single cells. Whenever the C subunit is normally expressed, the fused C subunit and 

GUS enzyme should be produced. When the tissue is incubated with the GUS substrate 

(X-Gluc), the GUS enzyme will cleave the substrate forming blue precipitate product that 

can accumulate over time. Therefore, by increasing the assay time, expression of genes 

with weak promoters can be detected. In addition, promoter strength can be determined 

by using a time course. Since the optimum pH for the plant's endogenous P-

glucuronidase is pH 5 and there is little activity at neutral pH, these experiments were 

performed at pH 7 so that endogenous P-glucuronidase activity was not detected 

(Gallagher, 1992). The E. coli GUS or uidA gene was cloned downstream of the last 

codon of a large DNA fragment containing the genomic coding sequence and the C 

subunit promoter region. Following the production of multiple lines of transgenic plants, 

expression of each of the C subunit genes in Arabidopsis was determined. 

The first goal of this research is to determine if the C4 gene is expressed in roots 

during the developmental time period used for the NaCl root skewing assay (Figure 1). 

While the C4 gene may be expressed in other places, I hypothesize that there will be 

expression in the roots because of the root-specific phenotype. The second goal is to 

determine where and when the C4 gene is expressed throughout the Arabidopsis life 

cycle. My rationale for examining the global expression pattern is that, if a phenotype in 

another organ is discovered, it can be correlated with the established expression pattern. 

The third goal is to determine the expression pattern of the other four PP2A C subunit 

genes through the Arabidopsis life cycle and to investigate where the expression patterns 
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overlap and where they are distinct. The microarray data from CI, C2, and C5 genes 

indicates similar organ- and tissue-specific expression; thus, I hypothesize that these 

genes will have overlapping expression patterns. It will be important to determine where 

the C3 and C4 genes are expressed because they cannot be distinguished on the 

microarray. The final goal is to examine the expression pattern of the C4 gene and its 

close homologue C3 in the presence of NaCl to determine if expression changes when 

seedlings are exposed to NaCl. This research will provide a detailed understanding of the 

expression pattern of the protein phosphatase 2 A C subunits. 
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CHAPTER II 

RESULTS 

II.A. Generation of DNA constructs and transgenic plants 

II.A.l. Plasmid construction 

A translational fusion approach was used to document the expression pattern of 

the PP2A C subunit genes. In a translational fusion, the promoter and at least some the 

coding sequence of the gene-of-interest is cloned in-frame with a reporter gene. The 

amino-terminal sequence of a protein is one of the primary determinants of protein half-

life (Varshavsky, 1997). Since the amino terminus of the fusion protein is identical to the 

native protein, the fusion construct is expected to have the same half-life as the native 

PP2A C subunit. This approach may yield more accurate results than using a 

transcriptional fusion approach in which only the promoter is fused to the reporter gene 

and no part of the native protein is expressed. 

In the C subunit constructs used in this study, all of the introns and exons, except 

for the stop codon and 3' untranslated sequences downstream of the stop codon, were 

included. The reporter gene was inserted following the final codon of each C subunit 

gene (Figure 2-6). Splice variants have been documented from cDNA sequences for both 

the CI and C3 transcripts (Figure 2 and 4). For the C3 gene, the splice variation occurs 

after the first exon, thus both variants could be produced from the translational fusion 

construct. For CI, on the other hand, the splice variant occurs in the last exon, and the 

stop codon is affected. Only splice variant Atlg59830.1 was fused to the reporter gene. 

In the expression constructs, the last codon of each C subunit gene was cloned in 
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1KB 

A) 
Atlg59833 

Atlg59830.1 

CtOffltCD Atlg59820 

CHHHtD 

B) 
• 

1635 bp upstream 
| "promoter" region 

Atlg59830.2 

CI gene without stop 1 
codon 1 

P-glucuronidase 
(GUS) gene | 

Figure 2. Schematic of the CI genomic region (Atlg59830). 
A) Genomic view of the chromosomal region encoding both splice variants for CI 
subunit of Protein Phosphatase 2A (drawn to scale). Light grey boxes are exons and 
white boxes are introns. Black arrows indicate orientation of the upstream and 
downstream genes. B) Dashed lines delineate the approximate location of the genomic 
region amplified by PCR and fused in vitro to the GUS reporter gene in the CI construct 
(not to scale). 
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1KB 

Atlgl0450 Atlgl0440 Atlgl0430 Atlgl0419 Atlgl0417 

A) 

B) 
1036 bp upstream 
"promoter" region 

C2 gene without stop codon p-glucuronidase 
(GUS) gene 

Figure 3. Schematic of the C2 genomic region (Atlgl0430). 
A) Genomic view of the chromosomal region encoding the C2 subunit of Protein 
Phosphatase 2A (drawn to scale). Light grey boxes are exons and white boxes are 
introns. Black arrows indicate orientation of the upstream and downstream genes. B) 
Dashed lines delineate the approximate location of the genomic region amplified by PCR 
and fused in vitro to the GUS reporter gene in the C2 construct (not to scale). 
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1KB 

At2g42510 

At2g42500.1 

At2g42490 

B) 

C) 

i n m7-^r^ î™ s 
J At2g42500.2 J 

156 bp upstream 
"promoter" region 

C3gene without stop codon 1 p-glucuronidase 
J (GUS) gene | 

2498 bp upstream 
| "promoter" region 

C3 gene without stop codon p-glucuronidase 
(GUS) gene | 

Figure 4. Schematic of the C3 genomic region (At2g42500). 
A) Genomic view of the chromosomal region encoding the C3 subunit of Protein 
Phosphatase 2A (drawn to scale). Light grey boxes are exons and white boxes are 
introns. Black arrows indicate orientation of the upstream and downstream genes. B) 
Dashed lines delineate the approximate location of the genomic region amplified by PCR 
and fused in vitro to the GUS reporter gene in the sC3 construct (not to scale). C) 
Dashed line delineate the genomic region amplified by PCR and fused in vitro to the 
GUS reporter gene in the LC3 construct (not to scale). 

17 



1KB 

A) 
At3g58510 

B) 

At3g58500 

mm At3g58490 

1546 bp upstream 
"promoter" region 

C4 gene without stop codon p-glucuronidase 
(GUS) gene 

Figure 5. Schematic of the C4 genomic region (At3g58500). 
A) Genomic view of the chromosomal region encoding the C4 subunit of Protein 
Phosphatase 2A (drawn to scale). Light grey boxes are exons and white boxes are 
introns. Black arrows indicate orientation of the upstream and downstream genes. B) 
Dashed lines delineate the approximate location of the genomic region amplified by PCR 
and fused in vitro to the GUS reporter gene in the C4 construct (not to scale). 
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1KB 

Atlg69970 
Atlg69960 

Atlg69950 

1 3330 bp upstream "promoter" region C5 gene 
without stop codon 

p-glucuronidase 
(GUS) gene 

Figure 6. Schematic of the C5 genomic region (Atlg69960). 
A) Genomic view of the chromosomal region encoding the C5 subunit of Protein 
Phosphatase 2A (drawn to scale). Light grey boxes are exons and white boxes are 
introns. Black arrows indicate orientation of the upstream and downstream genes. B) 
Dashed lines delineate the approximate location of the genomic region amplified by PCR 
and fused in vitro to the GUS reporter gene in the C5 construct (not to scale). 
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frame with the uidA reporter gene encoding ^-glucuronidase (GUS). A short spacer 

region of 96 base pairs was introduced from the cloning vectors. When translated, the 

resulting fusion protein is predicted to consist of the full-length C subunit with its 

carboxy-terminus fused to a 32 amino acid spacer followed by the GUS reporter protein. 

The expression of genes is controlled by their promoters. Promoters are essential 

for gene regulation but it is technically difficult to identify the exact location of all of the 

regulatory elements of a promoter from sequence data alone. Promoters include a core 

and an extended promoter region. The core promoter region (-1 to -70 bp) contains the 

basic regulatory sequences while the extended promoter (-70 to -500 or more bp) 

modifies expression. The extended promoter might contain binding sites for factors that 

regulate expression in response to light, stress, etc. (Riechmann, 2009). In Arabidopsis, 

the core promoter extends approximately 70 bp upstream of the transcription start site 

(Molina and Grotewold, 2005). Within this core region, the Y patch and TATA box are 

located at approximately -13 and -35 bp (Yamamoto et al., 2007). Within the extended 

promoter, most cis regulatory regions occur less than 1000 bp from the transcription start 

site (Yamamoto et al., 2007), although enhancers can be located much further away 

(Dean, 2006). In addition to the regulatory region upstream of transcription start, 

multiple studies indicate that cis-regulatory elements can be found in introns, untranslated 

regions (UTR), and downstream sequences (Larkin et al., 1993; Hong et al., 2003; Fiume 

et al., 2004). For this study, the 'promoter1 region was defined as the intergenic region 

from the transcription start site of the C subunit gene to the transcribed sequence of the 

next upstream gene. Exceptions to this general approach were made for the C2 and C3 

promoter regions as described below. 
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The Arabidopsis genome sequence was first released in 2000 and completely 

reannotated in 2003 (The Arabidopsis Genome Initiative, 2000; Wortman et al., 2003). 

The sequence in the 2007 Arabidopsis Information Resource genome release 

((http://www.arabidopsis.org/; Swarbreck et al., 2008) was used for in silico construction 

of plasmids. Each of the five C subunit 'promoter' regions was determined from the 

annotated sequence available on the TAIR website (Figure 2-6). Promoter regions were 

defined as described previously except for the C2 and C3 constructs. For the C2 gene 

construct, the upstream "promoter" region included a gene encoding a proline tRNA 

(Atlgl0440; Figure 3). For the C3 gene constructs, the intergenic region containing the 

C3 'promoter' region was small (153 bp) and the adjacent gene (At2g42510) is likely a 

pseudogene because there are few expressed sequence tags (EST) for this gene and no 

reported full-length cDNA. Two constructs were made for the C3 gene: one containing 

only the 153 bp intergenic region up to the next annotated gene (Figure 4B) and the other, 

termed the LC3 construct, extending 2313 bp upstream from the transcription start of the 

C3 gene into the pseudogene (Figure 4C). 

After the promoter region was defined, a two-step cloning process was used to 

create constructs which could be used to transform plants. Primers were designed to 

amplify the regions of interest by PCR from Arabidopsis thaliana Col-0 genomic 

template. An example of the PCR product is shown in Figure 7. To eliminate having to 

sequence the entire construct to check for PCR errors, three independent PCR products 

were amplified and cloned. The rationale was that, since each independent PCR product 

was from a separate reaction, if a PCR error which affected gene expression or 

introduced a stop codon or amino acid change in the open reading frame occurred in one 
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Figure 7. Amplification of C4 genomic region from Arabidopsis thaliana Col-0 wild 
type genomic template. 
The expected PCR product was 4974 bp. Ladder sizes are in base pairs. 
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reaction, it would not be present in a duplicate reaction. Thus, if the plants containing 

products from different PCRs had expression patterns that were indistinguishable, any 

PCR errors that might be present were inconsequential. After amplification, PCR 

products were inserted into the pCR8/GW/TOPO vector by TOPO cloning. 

pCR8/GW/TOPO is designed to clone PCR products with A-overhangs produced by Taq 

DNA polymerase. Some of the resulting clones were digested to determine insert 

orientation. An example of digestions to determine insert orientation is shown in Figure 

8. pCR8/GW/TOPO is a Gateway entry vector and contains attLl and attL2 sites. The 

correct orientation for all genes would have the attLl site adjacent to the C subunit 

promoter region. One clone with the insert in the desired orientation was selected and 

Gateway cloned into pMDC163, a plant binary vector containing the P-glucuronidase 

(GUS) reporter gene after the attR2 site (Figure 9). After Gateway cloning, the PP2A C 

gene will be in-frame with the GUS gene. Several clones were restriction digested to 

identify those with the correct fragment patterns based on maps of the expected plasmid 

structures constructed in silico (Figures 10-15). An example of restriction digests of the 

PP2A C4 subunit genomic region cloned into pMDC163 is shown in Figure 16. The 

fusion junction between the C subunit gene and the GUS gene was sequenced for all 

constructs to determine that the C subunit gene was in-frame with the GUS gene. 

II.A.2. Generation of the negative control construct 

A common control for experiments utilizing transgenic plants is to transform 

plants with an "empty" vector to ensure that the vector alone does not affect the plants. 

When the plasmid contains a reporter gene such as the GUS gene in pMDC163 (Figure 
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Figure 8. Restriction digests of plasmids putatively containing the C4 genomic 
region cloned into pCR8/GW/TOPO. 
Each clone was digested in two different reactions (.EcoRI or BamHl & EcoRY). EcoRI 
digests showed the insert released from the vector so all correct clones (#2-7) are 
expected to have the same digestion pattern. BamHl and EcoRV digests were used to 
distinguish the orientation of the C4 gene insert. In the desired clones (#2, 5 and 7), the 
inserts are oriented such that the attLl site of pCR8/GW/TOPO is adjacent to the gene's 
promoter region. Clones with undesirable digest patterns are marked with an X. Ladder 
sizes are in base pairs. 
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Figure 9. Plasmid map of pMDC163. 
The ccdB gene, located between attRl and attR2, is exchanged with the DNA fragment-
of-interest from the entry clone during Gateway cloning. Plasmid map from Curtis and 
Grossniklaus (2003). 
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Figure 10. CI genomic region cloned into binary vector pMDC163. 
CI genomic region is diagrammed in Figure 2. Only the restriction enzymes used in 
digests are shown. Total plasmid size is 14.217 kb. Constructs from three independent 
PCRs are named pC 1-4-2, pClB-1-4, and pClC-4-2. 

26 



<o / - / -

< . > ^ % 

u ^ ' ^ . V * 

i ^ 

/ 

<*&« (11373) 

C2 genomic region 
£coRV (3SZ0) 

*a*ce 

PBR322 o^g/n 

Figure 11. C2 genomic region cloned into binary vector pMDC163. 
C2 genomic region is diagrammed in Figure 3. Restriction enzymes shown were used in 
digests. Total plasmid size is 14.961 kb. Constructs from three independent PCRs are 
named pC2A-3-4, pC2E-l-4, and pC2D-4-l. 
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Figure 12. sC5 genomic region cloned into binary vector pMDC163. 
sC3 genomic region is diagrammed in Figure 4A and B. Restriction enzymes shown 
were used in digests. Total plasmid size is 15.065 kb. Constructs from three independent 
PCRs are named pC3-3-4, pC3B-9-5, and pC3C-5-3. 

28 



% *&> 
I i 

^ 

<f 
$ 

* 

* ^ - 0 

LC3 genomic region 

a * * *» 

pBR322 origin 

>< 
£ ^ 
£ £ 

^̂  

%«* 

10 
o 

Figure 13. ZC5 genomic region cloned into binary vector pMDC163. 
LC3 genomic region is diagrammed in Figure 4A and C. Restriction enzymes shown 
were used in digests. Total plasmid size is 17.219 kb. Constructs from three independent 
PCRs are named pLC3B-4-5, pLC3D-4-4, and pLC3E-4-5. 
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Figure 14. C4 genomic region cloned into binary vector pMDC163. 
C4 genomic region is diagrammed in Figure 5. Restriction enzymes shown were used in 
digests. Total plasmid size is 16.589 kb. Constructs from three independent PCRs are 
named pC4-5, pC4-7, and pC4B-4-2. 
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Figure 15. C5 genomic region cloned into binary vector pMDC163. 
C5 genomic region is diagrammed in Figure 6. Restriction enzymes shown were used in 
digests. Total plasmid size is 16.543 kb. Constructs from three independent PCRs are 
named pC5-7-12, pC5B-9-3, 
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Figure 16. Digest of C4 genomic region Gateway cloned into destination vector 
pMDC163. 
Putative pC4-5 clones were digested with BstXl and all clones showed the digest pattern 
expected from Figure 14. 
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9), a control construct would determine whether there are any cis regulatory sites 

upstream of the attRl site that could act as a promoter and induce expression of the GUS 

gene. pMDC163 contains the ccdB gene whose product was assumed to be lethal to 

Agrobacterium as it is to E. coli; thus a fragment of "neutral" DNA was Gateway cloned 

into pMDC163 to replace the ccdB gene. Ideally, a neutral DNA fragment would not 

contain any transcription factor binding sites and thus not be able to promote expression 

of the GUS gene, allowing evaluation of the region upstream of the attRl site. For this 

project, the C4 cDNA open reading frame (ORF) was cloned into pMDC163 in reverse 

orientation so that the start codon was immediately upstream of the attR2 site. The 

PLACE database of plant cis elements (http://www.dna.affrc.go.jp/PLACE/; Higo et al., 

1999) was used to search for regulatory elements in the 939 bp C4 ORF and the 356 bp 

region between the RB and the insert. The results from this search showed that many 

potential regulatory motifs were present in both regions (Figure 17-18). In eukaryotes, 

the typical length for transcription factor binding sites is 5-15 bp (Fickett and 

Hatzigeorgiou, 1997). Most of the regulatory regions found by PLACE were short 

sequences of about 5 bp and the odds that a particular 5 bp sequence will occur in a 

random sequence are 1 in 1024. Thus, it is almost impossible to identify a truly "neutral" 

DNA fragment for use in a control construct. Even though potential regulatory sequences 

are present, it is debatable whether any of these sequences would bind transcription 

factors and promote expression as the precise location, orientation and combination of cis 

regulatory sites is crucial for transcription factors to induce expression (Venter and 

Botha, 2004). 
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Figure 17. Location and orientation of transcription factor binding sites in the non-
coding strand of the C4 open reading frame cloned into pMDC163. 
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Nucleotides originating from pCR8/GW/TOPO are single underlined and double 
underlined nucleotides are the attB2 site. The Arabidopsis thaliana cw-regulatory sites 
are: 1) TTGAC - WBOXATNPR1 (Eulgem et al., 2000); 2) TGACG - ASF1MOTIFCAMV 
(Benfey and Chua, 1990; Klinedinst et al., 2000); 3) CCAAT- CCAATBOX1 - CAAT box 
(Haralampidis et al., 2002; Wenkel et al., 2006); 4) AACGG - MYBCOREATCYCB1 
(Planchais et al., 2002; Abe et al., 2003) ; 5) CAACA - RAV1AAT (Kagaya et al., 1999); 
6) ACGTG - ABRELATERD1 (Simpson et al., 2003; Nakashima et al., 2006) ; 7) 
MACGYGB - ABRERATCAL (Kaplan et al., 2006); 8) ACGT - ACGTATERD1 (Simpson 
et al., 2003); 9) AACGTT - ACGTTBOX (Foster et al., 1994); 10) NGATT - ARR1AT 
(Sakai et al., 2000); 11) ACACNNG - DPBFCOREDCDC3; 12) WTTSSCSS -
E2FCONSENSUS (Vandepoele et al., 2005); 13) GAT A - GATABOX (Benfey and Chua, 
1990; Teakle et al., 2002); 14) GRWAAW - GT1CONSENSUS (Le Gourrierec et al., 
1999); 15) CCGAC - LTRECOREATCOR15 (Busk and Pages, 1998); 16) CNGTTR -
MYBCORE (Urao et al., 1993); 17) CATGTG - MYCATERD1 (Simpson et al., 2003); 18) 
CACATG - MYCATRD22 (Abe et al., 1997); 19) CANNTG - MYCCONSENSUSAT 
(Chinnusamy et al., 2003); 20) CACCTG - RAV1BAT (Kagaya et al., 1999); 21) GCCAC -
SORLIP1AT (Hudson and Quail, 2003); 22) GGGCC - SORLIP2AT (Hudson and Quail, 
2003); 23) GAGAC - SURECOREATSULTR11 (Maruyama-Nakashita et al., 2005); 24) 
AACGTG - T/GBOXATPIN2 (Boter et al., 2004); 25) ACTTTG - TBOXATGAPB (Chan 
et al., 2001); 26) CCNNNNNNNNNNNNCCACG - UPRMOTIFIIAT (Martinez and 
Chrispeels, 2003); 27) TTTGACY - WBBOXPCWRKY1 (de Pater et al., 1996) 
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Figure 18. Location and orientation of transcription factor binding sites down 
stream of the RB site in pMDC163. 
Single underlined nucleotides are the RB site, dashed underlined nucleotides are the attBl 
site and nucleotides originating from pCR8/GW/TOPO are double underlined. The 
Arabidopsis thaliana c/s-regulatory sites are: 1) ACGT - ACGTATERD1 (Simpson et al., 
2003); 2) AGCAGC - ANAER02CONSENSUS (Mohanty et al., 2005); 3) NGATT -
ARR1AT (Sakai et al , 2000); 4) TTTCCCGC - E2FANTRNR (de Jager et al., 2001); 5) 
TYTCCCGCC - E2FAT (Ramirez-Parra et al., 2003); 6) WTTSSCSS - E2FCONSENSUS 
(Vandepoele et al., 2005); 7) GAT A - GATABOX (Benfey and Chua, 1990; Teakle et al., 
2002); 8) GRWAAW- GT1CONSENSUS (Le Gourrierec et al., 1999); 9) CCGTCG -
HEXAMERATH4 (Chaubet et al., 1996); 10) YAACKG - MYB2CONSENSUSAT (Abe 
et al., 2003); 11) CNGTTR - MYBCORE (Urao et al., 1993); 12) CAACA - RAVIAAT 
(Kagaya et al., 1999); 13) KCACGW - RHERPATEXPA7 (Kim et al., 2006); 14) 
GGGCC - SORLIP2AT (Hudson and Quail, 2003). 
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II.A.3. Generation and genotyping of transgenic lines 

All C gene constructs and the control construct were transformed into wildtype 

Col-0 plants by the floral dip method (Clough and Bent, 1998). Ti seeds were selected 

on medium containing 65 mM hygromycin. From each independently-derived PCR 

construct, the goal was to select five independent Ti lines. Nomenclatures for both 

plasmids and plants are in Table 3. For most of the Ti lines, the presence of the T-DNA 

from the pMDC 163-based constructs was detected by PCR with one primer in the C gene 

and the other primer in the GUS gene. An example of PCR genotyping is shown in 

Figure 19. For some Ti lines, the presence of the T-DNA was confirmed by direct 

detection of the C subunit-GUS fusion protein in leaves using the GUS assay. Ti plants 

confirmed to contain the T-DNA were allowed to self-pollinate and T2 seeds were 

collected, representing segregating populations of hemizygous and homozygous plants. 

T3 seeds from individual numbered T2 plants were germinated on medium containing 

hygromycin to select for the T-DNA were genotyped by a progeny test to infer the 

genotype of the T2 plant (Table 4). For the progeny test, T3 progeny from individual T2 

plants were collected and expression of the GUS gene was assayed under non-selective 

conditions using at least 50 3-day-old T3 seedlings from each T2 plant. The pool of T3 

progeny were classified as: i) all showing GUS expression, ii) not all showing GUS 

expression or iii) other. If all of the T3 progeny showed GUS expression, the genotype of 

the T2 plant was inferred to be homozygous for the T-DNA and not undergoing silencing. 

If there were non-GUS-expressing T3 progeny, then the T2 plants in this class could be 

heterozygous for one or multiple T-DNAs or be homozygous undergoing silencing of the 

transgene. No inferences were made for the other category which might have displayed 
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Table 3. Nomenclature of constructs and plant lines. 

DNA region 

CI 

C2 

sC3 

LC3 

C4 

C5 

"Empty" 

Name of clone in 
pCR8/GW/TOPO 
Cl-4 
C1B-1 
C1C-4 
C2A-3 
C2E-1 
C2D-4 
C3-3 
C3B-9 
C3C-5 
LC3B-4 
LC3D-4 
LC3E-4 
C4-5 
C4-7 
C4B-4 
C5-7 
C5B-9 
C5C-3 
C400D-1 

Name of clone in 
pMDC163 
CI-4-2 
C1B-1-4 
C1C-4-2 
C2A-3-4 
C2E-1-4 
C2D-4-1 
C3-3-4 
C3B-9-5 
C3C-5-3 
LC3B-4-5 
LC3D-4-4 
LC3E-4-5 
C4-5-2 
C4-7-2 
C4B-4-2 
C5-7-12 
C5B-9-3 
C5C-3-3 
revC4::GUS 

Name of Ti transgenic 
plant lines 
AC1::C1:GUS 
BC1::C1:GUS 
CC1::C1:GUS 
AC2::C2:GUS 
EC2::C2:GUS 
DC2::C2:GUS 
AC3::C3:GUS 
BC3::C3:GUS 
CC3::C3:GUS 
BLC3::C3:GUS 
DLC3::C3:GUS 
ELC3::C3:GUS 
AC4::C4:GUS 
CC4::C4:GUS 
BC4::C4:GUS 
AC5::C5:GUS 
BC5::C5:GUS 
CC5::C5:GUS 
Rev 
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Figure 19. Genotyping of Ti plants. 
Detection of CC4::C4:GUS T-DNA in independent Ti plants by PCR genotyping. 
markers are in base pairs. Expected size of PCR product is 1207 bp. 

Size 
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Table 4. Name and phenotype of transformed T2 lines based of phenotype of T3 
progeny. 

Ti line 
Line 

ACl::Cl:GUS-2 
ACl::Cl:GUS-4 
BC1::C1:GUS-1 
BCl::Cl:GUS-3 
BC1::C1:GUS-3.1 
BCl::Cl:GUS-6 
BC1::C1:GUS-6.1 

AC2::C2:GUS-3 
AC2::C2:GUS-4 
AC2::C2:GUS-5 
AC2::C2:GUS-7 
AC2::C2:GUS-8 
AC2::C2:GUS-11 
DC2::C2:GUS-1 
EC2::C2:GUS-2 
EC2::C2:GUS-3 
EC2::C2:GUS-5 
EC2::C2:GUS-10 

AC3::C3:GUS-1 
AC3::C3:GUS-3 
AC3::C3:GUS-5 
AC3::C3:GUS-6 
BC3::C3:GUS-4 
BC3::C3:GUS-8 
CC3::C3:GUS-1 
CC3::C3:GUS-8 
CC3::C3:GUS-9 
CC3::C3:GUS-11 
CC3::C3:GUS-12 

BLC3::C3:GUS-2 
BLC3::C3:GUS-3 

DLC3::C3:GUS-4 

DLC3::C3:GUS-6 
DLC3::C3:GUS-7 
DLC3::C3:GUS-11 

All T3 progeny 
GUS expressing 

1 5 6 8 9 
1 2 3 5 7 9 
23 6 12 
34 

2 4 

2 7 9 1 1 
1 
2910 

4 9 
12 
1 8 
7 
8 
1 6 9 10 
1 2 3 5 6 7 

9 13 
2 3 4 5 8 12 
1 2 3 4 5 6 
3 
2 6 10 12 

8 10 
1 3 4 5 6 7 8 9 1 1 
4 6 1 1 
67 

2 3 4 7 

1 3 4 6 7 8 9 1 0 1 1 
12 
2 5 8 
2 3 4 5 9 
37 

Phenotype of T2 Line 
Not all progeny GUS Othert 

expressing 

2 3 4 7 
4 6 8 1 0 1 1 12 
1 4 5 7 8 9 1 0 1 1 
1 2 5 6 7 
1 2 3 
1 2 4 
1 3 5 6 7 8 9 

13 45 68 10 
2 
1 3 4 5 6 7 8 11 
1 2 3 4 5 6 7 8 9 1 0 1 1 * 
1 2 3 5 6 7 8 1 0 
3 4 5 6 7 
2 3 4 5 6 7 9 1 0 
6 8 9 1 0 1 1 
6 7 9 1 0 1 1 12 13 
2 3 4 5 7 8 
4 8 9 1 0 1 1 

1 2 3 4 5 6 7 8 1 0 1 1 12 14 
91011 1 6 7 
78 
1 5 9 1 1 2 4 6 7 8 1 0 
1 3 4 5 7 8 9 1 1 
2 4 5 6 7 8 13 
1 2 3 4 5 6 7 8 9 1 0 1 1 12 
1 2 3 4 5 6 7 9 1 1 
2 10 12 
1 2 3 5 7 8 9 1 0 1 2 
1 2 3 4 5 

1 56 
1 2 3 4 5 6 7 

25 

1 3 4 6 7 9 1 0 1 1 12 
1 6 7 8 1 0 
1 2 4 5 6 
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DLC3::C3:GUS-12 

AC4: 
AC4: 
AC4: 
AC4: 
AC4: 
AC4: 
AC4: 
BC4: 
CC4: 
CC4: 
CC4: 
CC4: 
CC4: 
CC4: 

C4.GUS-2 
C4.GUS-3 
C4.GUS-4 
C4.GUS-5 
C4.GUS-6 
C4.GUS-7 
C4.GUS-8 
C4.GUS-3 
C4.GUS-1 
C4.GUS-2 
C4.GUS-4 
C4.GUS-5 
C4.GUS-6 

:C4:GUS-9 

AC5::C5:GUS-1 
AC5::C5:GUS-6 
AC5::C5:GUS-9 

AC5::C5:GUS-10 
BC5::C5:GUS-1 
BC5::C5:GUS-3 
BC5::C5:GUS-4 
BC5::C5:GUS-5 
BC5::C5:GUS-7 

2578 

13689 
234567 

12346789 
1 568 
3 5 10 
235781011 
8 9 10 

1346 

1234679 
357 10 
123456789 
125671011 
1467 
789 10 
1234567891011 
1234 
1234567 
123456791011 
134567891011 12 
123456789 
2345678 
12 

245 
1 8 

346 
5 10 
2347 
124678911 12 
1469 
123456711 12 

5 8 10 
12468911 

3489 
235 
123456 

9 10 
34568 

7 10 
9 
12345678 
9 10 11 12 
127 

* All lines have few individuals with no GUS expression. 
f No or low seedling germination, severe contamination in assay well, no GUS expression 
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poor seedling germination, fungal contamination, or no GUS expression. When T2 seeds 

were used for experiments, hygromycin-resistant (T-DNA-containing) plants were 

selected on agar plates. Homozygous T3 lines were used in some experiments and those 

which were grown on plates were selected for hygromycin resistance while those which 

were grown on soil were not. 

GUS construct-containing lines which were inferred to be homozygous and not 

silencing were isolated from most of the C subunits except for C4 gene constructs. Of 

the 129 lines observed, only two C4 gene constructs were homozygous for GUS 

expression. The exact reason for the limited number of plant lines observed to be 

homozygous for C4 expression is unknown. One explanation could be that the position 

of the T-DNA in the genome inhibits the expression of the transgene gene. This is 

unlikely because each of the fourteen C4 construct lines are likely in a different location 

in the genome and this effect is seen from all of the fourteen lines. Another explanation 

is that the lack of homozygous lines was due to the inability to produce plants 

homozygous for the T-DNA construct. This can occur because the insertion process of 

T-DNA into the genome can cause chromosomal translocations (Nacry et al., 1998). 

However, this also unlikely because T-DNA induced chromosomal arrangements do not 

occur every time the T-DNA is inserted. Also, from a hemizygous parent, 25% of the 

offspring would be expected to lack the transgene and thus be unable to generate GUS 

expression and this was observed for CI, C2, sC3, LC3, and C5 construct lines. 

However, in the C4 construct lines typically greater than 25% of the T3 progeny lacked 

GUS expression. A third explanation is that the plant cannot tolerate extra copies of the 

C4 subunit gene and will randomly silence (Schubert et al., 2004). Therefore, it is 
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possible that the C4 lines are silencing. 

II.B. Expression of Protein Phosphatse 2 A C4 subunit gene 

The expression pattern of the PP2A C4 subunit gene was determined from 

transgenic lines generated using constructs from three independent PCRs. First, the 

phenotype of Ti plants and subsequent generations was examined. Ideally, the Ti plants 

would: i) contain a single copy of the intact T-DNA inserted in an innocuous nuclear 

genomic region that does not disrupt a native gene; ii) appear phenotypically similar to 

wild type plants; and iii) have similar expression patterns to each other. 

Different factors, including location of double stranded DNA breaks, affect where 

the T-DNA will insert (Windels et al., 2003). The -130 Mb Arabidopsis genome 

contains 44.4% coding region (defined as the open reading frame) where 28.8% are 

coding sequences and 15.6% are introns (The Arabidopsis Genome Initiative, 2000). 

Ideally, my experimental plants should not contain a T-DNA insert within the coding 

sequence of any genes. Since the genome contains 44.4%) coding sequence, there is a 

55.6% chance that the T-DNA will insert in a non-coding region or promoter region; 

however the actual frequency of insertion into these regions has been found to be about 

64.5% (Szabados et al., 2002; Kim et al., 2007) indicating that about 35% of the T-DNAs 

will insert into a gene. However, even if the T-DNA inserts into a gene, there may not be 

a detectable phenotype because Arabidopsis has many genes which appear to be 

functionally redundant (Briggs et al., 2006). Thus, I expect to find very few mutant 

plants with obvious phenotypes under normal growth conditions. In my experiments, the 

exact location and number of T-DNAs inserted were not determined. Instead, mutant 
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plant phenotypes were compared to wildtype plants. From the initial selection on 

hygromycin medium, up to 12 Ti plants were saved. Only plants which were similar to 

wildtype under normal growth conditions were used for further experiments. Ti plants 

which exhibited severe phenotypes (dwarfism, abnormal floral structure, etc.) were 

occasionally observed, and these lines were discarded from further analysis. 

It is common to observe the same expression pattern but different expression 

levels from plants transformed with the same construct (Jones et al., 1985; Peach and 

Velten, 1991). Historically, such differences have been attributed to position effects, i.e., 

the location of the T-DNA in the genome affects its expression (Jaenisch et al., 1981). 

However, in studies using plants containing only single, intact, T-DNA inserts, similar 

expression of the reporter was usually found among the unique T-DNA insertion sites 

(Hobbs et al., 1990; Schubert et al., 2004; Nagaya et al., 2005). Thus differences in 

expression levels are better correlated with plant lines that contain multiple single copy 

insertions of the transgene or tandem copies of the transgene at a single insertion site 

(Hobbs et al., 1993; Schubert et al., 2004). After the visual screening and genotyping of 

the Ti transgenic lines (Table 3), multiple T2 and T3 lines from the each independent PCR 

(Table 4) were generated and used in the GUS histochemical assay. Lines that were not 

consistent with the expression pattern observed in the majority of the population were 

discarded. Figure 20 shows an example of GUS assay results from different 4-week-old 

T3 plant lines which arose from a single PCR (AC4::C4:GUS). These plants show very 

similar expression patterns as well as similar expression intensity in the leaves. In 

addition, these lines had very similar expression patterns in other developmental stages 

and tissues (data not shown). No expression or patchy expression seen in some of the 
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Figure 20. C4 expression in 4-week-old plants from five independent lines. 
All lines were incubated in the GUS substrate for 12 hours. The five independent lines 
are A) AC4::C4:GUS-2; B) AC4. C4.GUS-4; C) AC4::C4:GUS-5; D) AC4::C4:GUS-8; 
E)AC4::C4:GUS-7. 
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leaves could be due to the GUS substrate ineffectively penetrating the leaves. 

As described in section LA, constructs were made from three independent PCRs 

for each C subunit. Taq DNA polymerase is known to randomly introduce errors during 

DNA synthesis. To determine if unknown errors might affect the expression pattern, for 

each of the C subunits, plants transformed with T-DNA from each of the three 

independent PCRs were compared at different developmental stages. Examples of the C4 

gene expression patterns from plants transformed with the products of two independent 

PCRs (AC4::C4:GUS and CC4::C4:GUS) are shown in Figure 21. The expression 

pattern of BC4::C4:GUS was also compared (data not shown). In all three constructs, the 

GUS expression pattern at different developmental stages was very similar. This result 

indicates that any DNA polymerase errors that occurred did not affect the expression 

pattern. 

II.B.l. C4 gene expression in organs, tissues and cell types throughout Arabidopsis 

thaliana development 

To document the expression pattern of the C4 gene throughout the Arabidopsis 

life cycle, GUS expression was observed at 1, 2, 3 or 4, 6 or 7, 10, and 14 days after 

germination and in 4- to 6-week-old plants. These time points were chosen because they 

represent major developmental transitions in Arabidopsis post-germination development 

(Boyes et al., 2001). C4 gene expression was observed in various organs throughout the 

Arabidopsis life cycle (Figure 22). The details of C4 gene expression will be described in 

following sections. A general trend was that the expression pattern in a particular organ 

remained constant even when the organ was compared over time. For example, expressio 
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Figure 21. C4 gene expression pattern of plants transformed with T-DNA from two 
independent PCRs. 
1-day-old seedlings from A) AC4::C4:GUS-2 and B) CC4::C4:GUS-1 lines; 7-day-old 
seedlings from C) AC4::C4:GUS-2 and D) CC4::C4:GUS-1 lines; 4-week-old plants 
from E) AC4::C4:GUS and F) CC4::C4:GUS lines. Samples were incubated in the GUS 
substrate for A) 16 hours; B) 12 hours; C-D) 14 hours; E-F) 24 hours. 
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Figure 22. Expression pattern of the C4 gene in Arabidopsis plants at different 
developmental stages. 
A) 1-day-old AC4::C4:GUS-2; B) 4-day-old AC4::C4:GUS-2 C) 7-day-old 
AC4::C4:GUS-2; D) 10-day-old; E) 14-day-old AC4::C4:GUS-2; F) 4-week-old 
AC4::C4:GUS-7. Lines used were A-E) AC4::C4:GUS-2 and AC4::C4:GUS-7 F). 
Samples were incubated in the GUS substrate for A-B) 24 hours; C) 14 hours; D) 12 
hours; E) 18 hours; F) 24 hours. 
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expression in the root meristem was constantly strong no matter the age of the plant. 

To determine the relative expression levels during development, the plants were 

assayed for different periods of time. The products of the GUS enzyme accumulate as 

insoluble diX-indigo and as a result, it is possible to determine the strength of the 

promoter by incubating the sample in the GUS substrate solution for various times. For 

1-14 day-old plants, assay times of 1, 3, 12 and 24 hours were selected because, at each 

of these times, expression was detectable at additional sites that were not apparent at 

shorter assay times. For plants older than 14 days, the 1-hour assay time was not used 

because little product was detectable at that time. Twenty-four hours was chosen as the 

maximum assay time because preliminary experiments indicated that no additional 

information was gained from longer times (data not shown). 

II.B.2. C4 gene expression in roots 

II.B.2.a. C4 gene expression in primary roots 

The root contains four zones: meristematic, elongation, differentiation, and 

mature (Dolan et al., 1993). Cells which are actively dividing are located in the 

meristematic zone and contain dense cytoplasm (Figure 23). The distal end of the 

meristematic region contains four mitotically inactive quiescent cells which maintain the 

identity of the surrounding stem cells and undergo cell division as needed to replenish the 

stem cells of the meristem (van den Berg et al., 1995; Kidner et al., 2000). Cell divisions 

establish columns or files of cells which extend along the length of the root. Cells in the 

elongation zone undergo anisotropic expansion and beginning to form large central 

vacuoles (Fluckiger et al., 2003). In the differentiation zone (not shown), cells begin to 
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Figure 23. Arabidopsis thaliana root anatomy. 
DIC image of 4-day-old Arabidopsis thaliana ecotype Columbia root tip. Photo courtesy 
of Whitney Hunter. 
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assume their final identity. A marker for the differentiation zone is the appearance of 

root hairs on trichoblast cells in the epidermal layer (Dolan et al., 1994). Root hairs are 

first detected on approximately three-day-old seedlings (Schiefelbein et al., 2009) 

indicating that it takes that long for cells to progress from the meristematic zone to the 

differentiation zone. 

A cross section through a mature region of the root reveals that the root is made 

up of concentric layers of differentiated cells. The organization of these layers is 

established during embryogenesis (Scheres et al., 1994). The outermost layer of the root 

is the epidermis (containing trichoblasts and atrichoblasts), which overlays the ground 

tissue (one or more layers of cortical cells and one layer of endodermis) with the central 

cylinder in the middle. The central cylinder or stele is composed of the pericycle, xylem, 

and phloem. The root meristem is protected by the root cap made of columella cells 

that covers the most distal portion of the root and by lateral root cap cells that extend 

back towards the differentiation zone (Figure 23). Even in the mature embryo there are 

two layers of columella cells and one layer of lateral root cap cells. Additional columella 

layers are formed after germination. 

C4::C4:GUS transgenic lines were examined for the expression of the C4 gene in 

roots during the first two weeks of growth. These plants were grown in plates for ease of 

observation. Roots older than 14 days were not observed because those plants were 

grown in soil. An attempt to view older roots by growing plants in perlite was 

unsuccessful due to the inability to remove all of the perlite without severely damaging 

the delicate root system. 

The first time when C4 gene expression in roots was examined was during seed 
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germination. Cold stratification, imbibing dormant seeds in the dark at 4°C, was used to 

synchronize germination of the Columbia ecotype of Arabidopsis thaliana used in this 

study. Seedlings go through three stages of germination (Finch-Savage and Leubner-

Metzger, 2006). In the first stage, the seed imbibes water which restarts metabolism in 

the dormant seed. The second stage involves further imbibition and it is at this stage that 

cold stratification can synchronize germination. These two stages occur during the cold 

stratification period. Once seeds are fully imbibed, they are removed from the cold and 

the third and final stage of germination occurs when the testa (seed coat) and endosperm 

rupture and the radicle emerges followed by the hypocotyl and cotyledons. Even with 

cold stratification, not all seeds germinate at the same rate and after 24 hours it is possible 

to observe seeds that are at different phases of emergence from the seed coat. Expression 

of the C4 gene was observed in the radicle during the third stage of seed germination 

(Figure 24A-D). Soon after the seed coat ruptured, allowing for entry of GUS substrate), 

C4 gene expression was detectable in the radicle (Figure 24A-B). The highest expression 

was always observed in the root meristematic zone. To determine if other regions of the 

radicle expressed the C4 gene and to determine the relative levels of expression, samples 

were incubated in GUS substrate for 1, 3, 12 or 24 hours. At 1 and 3 hours, C4 gene 

expression was not detected in the columella and lateral root cap cells (Figure 25A-B) but 

these cells did show expression after incubation with the GUS substrate for 12 and 24 

hours (Figure 25C-D); thus there is weaker expression in the root columella and lateral 

root cap compared to the meristematic zone. 

Once the radicle is fully emerged, it is referred to as the primary root. Primary 

root tips of plants from 2 to 14 days old were observed. At all ages, C4 gene expression 
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Figure 24. Expression pattern of C4 gene during germination. 
A) Seed coat ruptured; B) radicle emerged; C) partially emerged seedling; D) fully 
emerged seedling. A) and C-D) are AC4::C4:GUS-2 and B) is CC4::C4:GUS-1. 
Samples were incubated in the GUS substrate for A) 3 hours; B) 24 hours; C) 12 hours; 
D) 24 hours. 

53 



Figure 25. One-day-old seedlings assayed for different lengths of time. 
All plants are AC4::C4:GUS-2 and were assayed for A) 1 hour, B) 3 hours, C) 16 hours, 
or D) 24 hours. 
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was seen in the meristematic, elongation and differentiation zones. Representative 4 and 

10 day old seedlings are shown in Figure 26. C4 gene expression was observed in the 

cells in the meristematic zone and, to a lesser extent, in the cells of the elongation zone 

when the sample was incubated with GUS substrate for 1 hour; however expression was 

not seen in the root cap in this short assay time (Figure 26A-E). After 3 hours of 

incubation, faint accumulation of diX-indigo was seen in the root cap and, as expected, 

the meristematic and elongation zones showed more diX-indigo accumulation than was 

present at 1 hour (Figure 26B-F). Since the cells in the meristem are not highly 

vacuolated and have not yet begun to elongate, the apparent reduction in expression in 

cells in the elongation zone could be a result of increased cell volume rather than a true 

decrease in expression. Longer incubation periods of 12 and 24 hours showed high 

accumulation of diX-indigo throughout the root tip including the root cap (Figure 26C-D, 

G-H). This indicates that there is more C4 gene expression in the root meristematic and 

elongation zones than in the columella cells and lateral root cap. 

As described earlier, the differentiation zone is typically marked by the presence 

of root hairs. Figure 27 shows the meristematic, elongation and differentiation zones of a 

primary root incubated for 1 hour in the GUS substrate. Expression in the meristematic 

and elongation zones in this root is very similar to that shown in Figure 26. This image 

also shows the differentiation zone where expression was apparent in the developing root 

hairs. In the transition from elongation to differentiation zone, the cells of the central 

cylinder begin to assume their final cell identities as pericyle, xylem and phloem cells. 

The central cylinder region shows higher expression than the surrounding endodermal, 

cortical and epidermal cells although the precise identity of the cells which show C4 
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Figure 26. C4 gene expression in primary root tip of 4- and 10-day-old Arabidopsis 
thaliana seedlings. 
All 4-day-old plants were AC4::C4:GUS-2 and 10-day-old plants were E) and F) 
AC4::C4:GUS-5, G) BC4::C4:GUS-2, and H) AC4::C4:GUS-8. Plants were incubated 
in the GUS substrate for times indicated. 
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Figure 27. C4 gene expression in primary root tips. 
A 10-day-old AC4::C4:GUS-2 root was assayed for 1 hour. The locations of the 
meristematic, elongation and differentiation root zones are indicated. 
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gene expression are unknown because root cross-sections were not done. The observed 

expression pattern is consistent with C4 gene expression in multiple cell types of the 

central cylinder and is not consistent with expression in only one cell type which would 

result in a different pattern. 

The mature zone of the primary root of 4-, 7-, 10-, and 14-day-old plants was 

examined next. Representative images from 4- and 14-day-old plants are shown in 

Figure 28. When roots were assayed for 1 hour, little expression was apparent in any of 

the cells in the mature zone. When assayed for 3 hours, the highest expression was 

associated with the central cylinder region, continuing the pattern observed in the 

differentiation zone. Expression in the central cylinder varied in intensity along the 

length of the root, decreasing with increasing distance from the root tip. In general, after 

24 hours of incubation with the GUS substrate, all cells in the root appeared to express 

the C4 gene with the greatest expression still in the central cylinder region. In summary, 

the levels of C4 gene expression in the mature zone of the root were higher in the central 

cylinder and lower in the epidermis and cortex. 

II.B.2.b. C4 gene expression in lateral roots 

Arabidopsis has an indeterminate root structure in which the apical meristem 

remains active for the life of the plant. The primary root also develops new meristems to 

form lateral roots, also referred to as secondary roots; the secondary roots develop lateral 

roots called tertiary roots, and so on. Root branching increases the area of the root 

system resulting in a larger root surface available for uptake of nutrients and water. 

Because root growth and branching is an ongoing process, it is common to find lateral 
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Figure 28. C4 gene expression in 4- and 14-day-old seedlings. 
All plant lines are from AC4::C4:GUS-2. 
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roots at different developmental stages on the same plant. From personal observations, 

the sites where the first lateral roots are initiating can be detected at about 4 days after 

germination using a compound microscope but these roots do not emerge from the 

primary root until about 7 days after germination. In dicots, lateral roots are formed from 

pericycle cells. Pericycle cells are suspended in different phases of the cell cycle; the 

cells nearest the phloem are suspended in Gl phase while those adjacent to the xylem are 

in G2 phase (Beeckman et al., 2001). Xylem-adjacent pericycle cells can re-enter the cell 

cycle to form lateral root primordia (Casimiro et al., 2003) in response to transient auxin 

maxima in the pericycle (Peret et al., 2009). Auxin maxima occur at -15 hour intervals 

and as a result, lateral roots form at semi-regular intervals along the length of each root. 

Following an auxin maximum, Stage I of lateral root formation occurs when the two 

pericycle founder cells undergo anticlinal divisions to form a single layer of 8-10 small 

cells (Malamy and Benfey, 1997). Stage II is characterized by the formation of two 

layers, outer and inner, by periclinal divisions. Stage III involves periclinal division of 

the outer layer while the inner layer divides periclinally in Stage IV thus forming four 

layers. In Stages V and VI, cell divisions in the primordium continue that result in the 

formation of a dome of cells that extends into the cortical and epidermal layers of the 

root. In Stage VII, cell files similar to those in primary roots (described earlier) become 

apparent. By Stage VIII, the lateral root has fully emerged through the root epidermis. 

The emerged lateral root then forms meristematic, elongation, differentiation, and mature 

root zones, in a similar manner to primary roots as described earlier. 

Lateral root primordia and emerged lateral roots were analyzed for C4 gene 

expression at different developmental stages. Uniform expression was detected in all 
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cells of the lateral root primordium during Stages I-VIII after 1-3 hour incubation in the 

GUS substrate (Figure 29A-G and 30). After 12 and 24 hours of incubation, the lateral 

root primordia and central cylinder appear to have higher expression than the cells of 

epidermis, cortex, and endodermis (Figure 30). Although, the high expression observed 

in the rot primordia and central cylinder may be an artifact of the non-vacuolated nature 

of the primordium cells which is analogous to that described previously for the 

meristematic cells in the primary root. In addition, the knowledge that lateral roots 

initiate from the pericycle layer was used to determine that the expression of the C4 gene 

in the central cylinder region included the pericycle layer and did not include the 

endodermis (Figure 29). After lateral root emergence, the expression pattern was similar 

to that in the primary root where the highest levels of C4 gene expression were seen in 

the meristematic and elongation zones (Figure 29H-K). During the first 14 days when 

expression of the C4 gene in roots was monitored, tertiary roots were sometimes 

observed forming on the secondary roots. Overall, the expression in the tertiary roots 

recapitulated that observed in the secondary roots (Figure 29L), indicating that expression 

of the C4 gene likely occurred in a similar fashion in all lateral roots. 

II.B.3. C4 gene expression at the root-shoot junction 

At the root-shoot junction, there are a few layers of root cells which formed in the 

embryo; this region is known as the collet (Compton, 1912; Scheres et al., 2009). In 1-

day-old seedlings, C4 gene expression was detected after three hours of incubation at the 

collet as a distinct line bisecting the root (Figure 31A-D). By 4 days of age, the line had 

disappeared (Figure 31E-H). Therefore, C4 gene expression is detected in the collet in a 
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Figure 29. Expression pattern of C4 gene during lateral root development. 
Lateral root developmental stages are A) Stage-I primordia; B) Stage-II primordia; C) 
Stage-Ill primordia; D) Stage-IV primordia; E) Stage-V primordia; F) Stage=VI 
primordia; G) Stage-VIII primordia; H) emerged lateral root; I) lateral root; J) lateral 
root; K) lateral root tip; L) primary (1°), secondary (2°), and tertiary (3°) roots 
(AC4::C4:GUS-2; 14 days-old). A), E), F), G), I), K), and L) are AC4::C4:GUS-2 
plants. B), C), D), H), and J) are BC4::C4:GUS-2 plants. All samples were incubated in 
the GUS substrate for 1 hour except for G), K) and L) which were incubated for 3 hours. 
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Figure 30. Stages of lateral root development assayed for C4 gene expression at 
different periods of time. 
The top row represents Stage-I primordia, middle row is Stage IV-V primordia, and 
bottom row is Stage-VIII primordia. Columns are labeled with incubation times in the 
GUS substrate. All roots assayed for 1, 3 and 12 hours were AC4::C4:GUS-2 plants and 
all 24 hour assayed roots were AC4::C4:GUS-8 plants. 
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Figure 31. C4 gene expression in the collet. 
All plants are AC4:C4:GUS-2 except for B) which is BC4::C4:GUS-2 and assayed for 
times indicated. 
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limited time frame. 

II.B.4. C4 gene expression in stem 

Simply put, most terrestrial vascular plants are composed of two parts: below-

ground roots and above-ground shoots. In Arabidopsis, the shoot tissue between the root 

and the cotyledons is the hypocotyl. The cell number and tissue patterning of the 

hypocotyl is established in the embryo. After germination, the hypocotyl cells grow 

primarily by expansion and there are rarely any mitotic events (Gendreau et al., 1997). 

Cellular organization of the hypocotyl is similar to that of the root with a central cylinder, 

one layer of endodermis, two layers of cortex and one layer of epidermis. 

In 1-day-old seedlings, the hypocotyl is often obscured by the seed coat, which 

may also prevent access of the GUS substrate to the tissues. Accurate observations of 

hypocotyl expression were thus restricted to those seedlings in which the seed coat had 

ruptured sufficiently. Little expression was seen in hypocotyls after 1 or 3 hours of 

incubation in the GUS substrate (Figure 32A and B). If expression was detected after 3 

hours of incubation, it was confined to the central cylinder of the hypocotyl (Figure 32B). 

After 12 and 24 hours of incubation, there was expression throughout the hypocotyl with 

the highest expression in the central cylinder (Figure 32C and D). 

Four day old seedlings exhibited no expression in the hypocotyl after 1 and 3 

hours of incubation (Figure 33 A and E). After 12 and 24 hours of incubation, C4 gene 

expression was limited to the apex (near the cotyledon) of the hypocotyl and not detected 

in the base (near the crown; Figure 331 and M). 

Likewise, at 7 days of age, no expression was observed after 1 and 3 hours of 
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Figure 32. C4 gene expression in the hypocotyl of 1-day-old seedlings. 
A), B), and C) BC4::C4:GUS-2 and D) AC4::C4:GUS-2. Samples were incubated in 
GUS substrate for the times indicated. 
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Figure 33. C4 gene expression in the hypocotyl of older seedlings. 
All samples are from the AC4::C4:GUS-2 line with the exception of AC4::C4:GUS-8 in 
N). Samples were incubated in the GUS substrate for the times indicated. 
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incubation (Figure 33B and F). However after 12 hours, expression was detected in the 

upper part of the hypocotyl as well as throughout the vascular bundle (Figure 33J). 

Hypocotyls incubated for 24 hours were not photographed. 

Ten-day-old seedlings, similar to 4- and 7-day-old plants, did not show expression 

after 1 and 3 hours of incubation (Figure 33C and G). After 12 hours, there was 

expression along the entire length of the hypocotyl vascular bundle but the level of 

expression varied, giving a blotchy appearance (Figure 33K). In addition, the regions of 

highest expression differed between plants and did not follow a consistent pattern. After 

24 hours of incubation, the entire hypocotyl showed C4 gene expression except for the 

hypocotyl base where less expression was observed in the outer layers of the hypocotyl 

(Figure 33N). 

In 14-day-old plants, no expression was observed in the hypocotyl after 1 hour of 

incubation (Figure 33D), however weak expression was observed in the vascular bundle 

at the base of the hypocotyl after 3 hours of incubation (Figure 33H). After 12 hours of 

incubation, the expression was limited to the vascular bundle at the base of the hypocotyl 

(Figure 33L) and even at 24 hours only the vascular bundle and tissues surrounding the 

vascular bundle at the base were showing C4 gene expression (Figure 330). Therefore, 

the C4 gene expression pattern in the hypocotyl changes depending upon the 

developmental stage. In the transition zone, located at the top of the hypocotyl near the 

cotyledons, the vascular patterning changes from one central vascular bundle to 5-8 

vascular bundles separated by interfascicular fibers surrounding a pith (Zhong et al., 

1999). Each of the vascular bundles are bilayered with the xylem located on the inside 

and the phloem on the outside. This vascular pattern continues throughout the highly 
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compact stem that bears the rosette leaves and into the inflorescence stem. 

The inflorescence stems from flowering soil-grown plants (-6 weeks old) were 

analyzed for C4 gene expression. Because of their length, stems were dissected into 

smaller sections prior to undergoing the GUS assay. No C4 gene expression was 

detected in the stem after incubating the sample in the GUS substrate for 3 hours (Figure 

34A and D). However, after 12 or 24 hours of incubation, C4 gene expression was 

routinely seen at the cut end of the inflorescence stem or in parts of the stem that had 

been bent or damaged, especially in the vascular bundles (Figure 34B, C, E and F). 

These results indicate that either the C4 gene is induced by wounding or that the GUS 

substrate was not able to easily penetrate the cuticular wax covering the stem tissue 

unless the stem was damaged in some way (Samuels et al., 2008). C4 gene expression 

was also detected in the tissues surrounding the stem vascular bundles after 24 hours of 

incubation. Similar to the mature zone of roots, C4 expression in inflorescence stems is 

highest in the vasculature. 

II.B.5. C4 gene expression in cotyledons and leaves 

For most terrestrial vascular plants, leaves function as the major photosynthetic 

organ and transpiration site. Arabidopsis undergoes a well-defined progression of shoot 

developmental stages (Boyes et al., 2001). After the hypocotyl, the cotyledons are the 

second shoot structures to appear during germination. During embryogenesis, two 

cotyledons, also called seed leaves, are formed. After germination, the cotyledon's 

vascular system differentiates as the cotyledon expands in size due to increases in cell 

number and cell volume (Mansfield and Briarty, 1996). Mature cotyledons are petiolate, 
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Figure 34. C4 gene expression in the stem. 
A portion of the stem including the cut site is shown in A-C). D-F) Higher magnification 
of cut ends of samples show C4 gene expression in the vascular bundles. All sample are 
CC4::C4:GUS-4 except A) AC4::C4:GUS-4 and C) CC4::C4:GUS-L Samples were 
incubated in the GUS substrate for the time indicated. 
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simple, entire and rounded. 

In Arabidopsis, the dome-shaped shoot apical meristem is located between the 

cotyledons and differentiates to form leaves and eventually inflorescence structures 

during the course of plant development. Leaf morphogenesis stages are leaf primordia 

initiation, leaf adaxial and abaxial determination, tissue type differentiation, and leaf 

expansion (Cho et al., 2007). The basal leaves form a tight rosette due to the minimal 

spacing between the leaf internodes. In Arabidopsis ecotype Columbia, there are 

typically 10-15 rosette leaves formed when plants are grown under the long-day 

conditions used in these experiments (Boyes et al., 2001; Massonnet et al., 2010). 

Arabidopsis leaves undergo heteroblastic development in which subtle age-dependent 

changes in morphology are detectable between juvenile and adult leaves (Robbelen, 

1957; Medford et al., 1992). In general, rosette leaves are petiolate, simple, and entire 

(Al-Shehbaz and O'Kane, 2009) but the juvenile leaves have a smooth margin and are 

more round compared to the adult leaves which have partially serrulate to dentate 

margins and are more elliptic in shape (Medford et al., 1992). The transition from 

juvenile to adult leaves also includes changes in leaf phyllotaxy from opposite to spiral. 

Leaf hair or trichome distribution also changes in a heterochronic manner with juvenile 

leaves lacking trichomes on the abaxial side and adult leaves possessing trichomes on 

both the adaxial and abaxial sides (Telfer et al., 1997). After leaves are initiated from the 

shoot apical meristem, leaves expand from the tip to the base which results in a 

maturation gradient in expanding leaves with the most mature cells at the leaf apex 

(Donnelly et al., 1999). 

Following the transition to flowering, cauline leaves subtend the lateral floral 
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buds on the inflorescence stem. Cauline leaves have a different morphology than the 

rosette leaves because they are apetiolate, more lanceolate to linear in shape, and rarely 

form dentate margins (Al-Shehbaz and O'Kane, 2009). In addition, cauline leaf 

morphology changes depending upon when in the plant's life cycle the cauline leaf was 

initiated (Meyerowitz and Somerville, 1994). The first cauline leaves are larger and 

broader than cauline leaves formed near the end of the plant's life cycle. Trichomes are 

present on both the abaxial and adaxial surfaces of cauline leaves, but trichome 

abundance on the adaxial surface decreases on cauline leaves formed further away from 

the rosette (Telfer et al., 1997). 

Cross sections of cotyledonary and foliar tissues reveal various cell layers 

including the upper and lower epidermis, mesophyll (multi-layered spongy and single-

layered palisade), and vascular bundles located within the spongy mesophyll (Pyke et al., 

1991). The air space between the spongy mesophyll cells represents approximately 26% 

of the leaf volume. Each vascular bundle, with the xylem located on the adaxial side and 

the phloem on the abaxial side, is surrounded by a parenchyma layer called the bundle 

sheath (Kinsman and Pyke, 1998). Leaves and cotyledons have a reticulated vascular 

system that develops from the large primary vein or midvein. The cotyledon venation 

pattern consists of four areoles resulting from secondary veins splitting off the single 

primary vein (Sieburth, 1999). Leaves have a more complicated venation pattern in 

which the primary vein branches to form secondary branches, the secondary vein has 

tertiary branches, and tertiary veins branch to form quaternary veins (Hickey, 1973). 

Each successive branch is smaller in diameter than the previous branch. 
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II.B.5.a. C4 gene expression in cotyledons 

C4 gene expression in cotyledons was observed over a time course from 1 day to 

4 weeks (Figure 35). In 1-day-old plants, vascular differentiation is underway and 

expression in the differentiating vascular cells could be observed when the seed coat was 

not present (Figure 35A). In general, expression in the 1-day-old cotyledon was in a 

diffuse pattern. In mature cotyledons, from 4-days to 4-weeks of age, expression was 

readily apparent in the vascular system and in the hydathode region (Figure 35B-F). 

Hydathodes, located at leaf margins, are modified pores which allow for release of excess 

water in a process called guttation (Evert and Esau, 2006). Low levels of expression 

were visible in other cell types like the mesophyll and epidermis upon longer incubation 

with the GUS substrate (Figure 35D and 36D and H). The petioles of cotyledons also 

exhibited expression in the vascular structures and to a lesser extent, in the mesophyll 

cells (Figure 37D). Similar to the stem and mature root, the highest levels of C4 

expression in the cotyledons were in the vascular system which was visible after 3 hours 

of incubation in the GUS substrate (Figure 36). In conclusion, C4 gene expression was 

detected throughout the cotyledon with the strongest expression in the veins. 

II.B.S.b. C4 gene expression in rosette and cauline leaves 

Compared to root tissues, relatively weaker C4 gene expression was detected in 

leaves. C4 gene expression in leaves at any developmental stage was not detectable or 

was extremely weak after 1 and 3 hours of incubation with the GUS substrate (Figure 

38A-B; 39A and D). Only after 12 and 24 hours was expression easily observable in the 

leaves (Figure 38C and D; 39B-C, E-F), indicating that the C4 gene is expressed at a 
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Figure 35. C4 gene expression in cotyledons during development. 
A) 1-day-old (AC4::C4:GUS-2); B) 4-day-old (AC4::C4:GUS-2); C) 7-day-old 
(CC4::C4:GUS-1); D) 10-day-old (BC4::C4:GUS-2); E)14-day-old (CC4::C4:GUS-1); 
F) 4-week-old (AC4::C4:GUS-7). Samples were incubated in the GUS substrate for A) 
24 hours; B) 12 hours; C) 14 hours; D) 12 hours; E) 24 hours; F) 12 hours. 
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Figure 36. C4 gene expression in cotyledons assayed for different periods of time. 
A) 14-day-old; B) 10-day-old; C) 10-day-old; D) 4-day-old; E) 10-day-old; F) 14-day-
old; G) 14-day-old; H) 10-day-old. Samples were incubated in the GUS substrate as 
indicated above. All samples were from AC4::C4:GUS-2 plants except B) 
CC4::C4:GUS-2. 
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Figure 37. Expression pattern of C4 gene in cotyledons 
A) entire cotyledon of CC4::C4:GUS-1, 7-day-old; B) apical terminus and hydathode of 
cotyledon of BC4::C4:GUS-2, 10-day-old; C) margin near the petiole of AC4::C4:GUS-
2, 10-day-old; D) petiole of BC4::C4:GUS-2, 10-day-old. Samples were incubated in the 
GUS substrate for A) 14 hours; B-D) 12 hours. 
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Figure 38. First true leaves assayed for different periods of time. 
A) BC4::C4:GUS-2, 10-day-old; B) CC4::C4:GUS-1, 14-day-old; C) BC4::C4:GUS-2, 
10-day-old; D) AC4::C4::GUS-8, 10-day-old. Samples were incubated in the GUS 
substrate for the times indicated. 
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Figure 39. C4 gene expression in leaves of 4-week-old plants. 
A), B), and C) are AC4::C4:GUS-5. D), E), and F) are AC4::C4 
incubated in the GUS substrate for the times indicated. 
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lower level in leaves than roots. 

C4 gene expression was detected in developing, differentiating, and mature 

leaves. An example of C4 gene expression in a developmental series following the 

development of the first and second leaves is shown in Figure 40 A-D. The expression 

pattern observed in the first and second leaf can be extrapolated to other leaves because 

all rosette leaves develop similarly. Developing leaves, exemplified by leaf 1 and 2 of 4-

day-old seedlings, showed constant expression throughout the leaf no matter the tissue 

type (Figure 40A). As the leaf develops, expression was seen throughout the 

differentiating and mature leaves with the highest expression seen in the veins and 

hydathode regions (Figure 40B-F). An overview of C4 gene expression in rosette leaves 

can be seen in the 4-week-old plants which show most of the leaves that have already 

expanded or are almost expanded (Figure 40E-F). Some leaves assayed for 12 and 24 

hours showed no expression which was likely due to incomplete infiltration of the GUS 

substrate into those tissues (Figure 39 and 40). Similar to the cotyledons, the C4 gene 

expression pattern in leaves was most evident in the vascular bundle and hydathodes but 

still present at lower levels throughout the leaf. 

Cauline leaves also showed expression in the reticulate vascular system and 

hydathode, and to a much lesser extent, in the interveinal regions (Figure 41). In general 

C4 gene expression was less strong in the cauline leaves; expression was not detected at 3 

hours of incubation with the GUS substrate and was weak after 12 hours but was easily 

detected after 24 hours (Figure 42). Therefore, the sites of expression in cotyledons and 

rosette and cauline leaves were alike. 
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Figure 40. C4 gene expression during leaf development. 
A) Developing first and second leaf with developing trichome at leaf tip from 4-day-old 
plants. B) Primary vein and hydathode regions are detectable in 7-day-old plants. C) and 
D) Further development of the leaf and veins in 10= and 14=day=old plants. E) and F) top 
and bottom view of the same 4-week-old plant with partially and fully expanded leaves. 
Asterisk indicates first and second leaf of 4-week-old plants. A), B), C), and D) are 
AC4::C4:GUS-2. E) and F) are AC4::C4:GUS-7. Samples were incubated in the GUS 
substrate for A) 12 hours; B) 14 hours; C) 12 hours; D) 24 hours; E) and F) 24 hours. 
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Figure 41. Expression pattern of the C4 gene in cauline leaves. 
A) Infloresence stem and entire cauline leaves including a secondary bolt 
(CC4::C4:GUS-1); B) entire cauline leaf (AC4::C4:GUS-4); C) leaf margin showing the 
veins, hydathode and trichomes (CC4::C4:GUS-1). All samples were incubated in the 
GUS substrate for 24 hours. 
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Figure 42. C4 gene expression in cauline leaves. 
A) CC4::C4:GUS-5; B) AC4::C4:GUS-7; C) AC4::C4:GUS-8. Samples were incubated 
in the GUS substrate for the times indicated. 
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II.B.5.C C4 gene expression in trichomes 

Arabidopsis trichomes, or leaf hairs, are located on leaves (both rosette and 

cauline), inflorescence stems, and sepals (Bowman, 1994; Marks, 1997). Trichome 

morphology depends upon location; stems and sepals have predominantly unbranched 

trichomes while stellate trichomes are present on leaves. Trichomes are initiated from 

pluripotent epidermal cells (Morohashi and Grotewold, 2009) as a small outgrowth 

followed by further outward expansion (Marks, 1997). Stellate trichomes branch before 

reaching their final, fully expanded size. Once expanded, the cell walls thicken and form 

papillae on their surface. Mature trichomes are approximately 200-300 |im in length and 

have supporting epidermal cells surrounding the base of the trichome. 

Developing leaf trichomes exhibited strong C4 expression (Figure 43 A-B), while 

fully-expanded trichomes had little expression (Figure 43C-D). Weak expression was 

also seen in mature inflorescence stem trichomes (Figure 43E). Sepal trichomes were 

not examined in this study. In conclusion, C4 gene expression was seen in developing 

trichomes but not observed in fully expanded trichomes. 

II.B.5.d. C4 gene expression in guard cells 

Gas exchange is a critical function of plants and is facilitated through pores in the 

epidermis called stomata (Nilson and Assmann, 2007). Stomata are found on all shoot 

epidermal surfaces except for petals and stamens (Geisler et al., 1998). The abundance of 

stomata varies between organs and even within an organ as there are typically more 

stomata on the abaxial than adaxial side of flat organs such as cotyledons, leaves and 

sepals. A stomate is opened and closed by two kidney bean-shaped guard cells. Guard 
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Figure 43. C4 gene expression in trichomes. 
A) and B) Developing leaf trichomes (AC4::C4:GUS-2); C) fully expanded leaf 
trichomes arrow indicates region of accumulating diX-indigo (AC4::C4:GUS-2); D) one 
branch of a trichome with accumulating diX-indigo indicated by the arrow; E) trichomes 
on inflorescence stem (AC4::C4:GUS-4). Samples were incubated in the GUS substrate 
for A) 24 hours; B-D) 12 hours; E) 24 hours. 
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cell development begins with an asymmetric division of a meristemoid mother cell to 

produce a triangular meristemoid as one of the daughter cells (Geisler et al., 1998; 

Nadeau and Sack, 2009). In the simplest scenario, the meristemoid cell can develop into 

an oval guard mother cell which divides symmetrically to form two immature guard cells. 

Another guard cell developmental pathway is when the meristemoid divides multiple 

times before differentiating into immature guard cells. Immature guard cells eventually 

differentiate into mature guard cells by thickening of their cell walls. 

Leaf guard cells exhibited no detectable C4 expression after 1 hour of incubation 

in X-gluc (Figure 44A), but by 3 hours weak accumulation of diX-indigo was detected 

(Figure 44B). By 12 and 24 hours, expression in guard cells was easily detected but was 

sometimes obscured by strong C4 gene expression in the epidermis or the underlying 

mesophyll (Figure 44C-D). C4 gene expression was frequently detected in the 

meristemoids, guard mother cells, and immature guard cells (Figure 45). Not all mature 

guard cells expressed the C4 gene at the same level perhaps because different guard cells 

on the same leaf are at different developmental points. Similar to trichomes, C4 gene 

expression was detected at higher levels during the development of guard cells from their 

precursor cells and appeared to be lower in mature guard cells on expanded leaves. 

II.B.5.e. C4 gene expression in stipules 

Stipules are formed in the axil of true and cauline leaves but not in the axils of 

cotyledons (Chandler, 2008). C4 gene expression was observed in stipules of rosette 

leaves of 7-, 10-, and 14-day-old plants (Figure 46A-C). In flowering plants, stipules at 

the base of cauline leaves also expressed the C4 gene (Figure 46D). Therefore, the C4 
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1 hr 3hrs 

12hrs 24hrs 

Figure 44. C4 gene expression in guard cells. 
A) AC4::C4:GUS-2, 10-day-old; B) CC4::C4:GUS-2, 14-day-old; C) AC4::C4:GUS-2, 
10-day-old; D) AC4::C4:GUS-8, 10-day-old. Samples were incubated in the GUS 
substrate for times indicated. 
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Figure 45. C4 gene expression during guard cell development. 
a) Meristemoids; b) guard mother cells; c) young immature guard cells; d) older 
immature guard cell; and e) mature guard cell. Sample was taken from a 10-day-old 
AC4::C4:GUS-2 plant that was assayed for 12 hours. 
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Figure 46. C4 expression in stipules. 
A) CC4::C4:GUS-2, 7-day-old; B) AC4::C4:GUS-2, 10-day-old; C) AC4::C4:GUS-2, 
14-day-old; D) CC4::C4:GUS-5, flower stalk of mature plants. Samples were incubated 
in the GUS substrate for A) 3 hours; B) 12 hours; C) 3 hours; D) 24 hours. 
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gene was expressed in stipules no matter the developmental age of the plant or where the 

stipules were located. 

II.B.6. C4 gene expression in floral organs 

After vegetative growth, the shoot apical meristem transitions into reproductive 

growth. The floral structure produced by Arabidopsis is a raceme that matures from the 

base to the apex; thus it is possible to observe flowers and siliques at different 

developmental stages on the same plant or even on the same inflorescence stem. The 

primary inflorescence stem usually branches to form secondary and tertiary offshoots. 

Arabidopsis, as is typical of most Brassicaceae, produces four-whorled flowers each 

supported on a separate pedicel. Flowers consist of a calyx made of four sepals, a corolla 

of four petals, six stamens which are tetradynamous (two short and four long), and a 

syncarpous gynoecium with two carpels. Each carpel consists of a central locule 

containing the ovules surrounded by an outer valve wall and separated from the other 

carpel by a septum. The septum spans the distance between the two replums located on 

opposite sides of the carpel (Al-Shehbaz and O'Kane, 2009; Roeder and Yanofsky, 2009). 

Both the valve and the replums contain vascular bundles. In sepals, the vascular system 

is different than the leaves because there is no midvein (Turner and Sieburth, 2009). 

Petals do have a midvein with secondary veins forming two areoles. The Arabidopsis 

fruit or silique can contain approximately 60-70 seeds depending upon the growth 

conditions of the plant (Meyerowitz and Somerville, 1994). Flower and silique stages 

were classified as stages 1-20 based on organ development (Table 5; Smyth et al., 1990; 

Roeder and Yanofsky, 2009). 

89 



Table 5. Floral and silique developmental stages.* 

Stage Description 
1 Flower primordium (floral buttress) arises from flank of inflorescence 

meristem. 
2 Flower primordium forms. 
3 Sepal primordia arise and partially cover floral meristem. 
4 Sepals overtie flower meristem. Flower meristem expands to form platform 

on which the gynoecium will develop. 
5 Petal and stamen promordia arise. 
6 Sepals enclose bud. Gynoecium begins to form. 
7 Long stamen promordia stalked at base. Gynoecium forms a hollow tube. 
8 Locules appear in long stamens. 
9 Petal primordia stalked at base. 
10 Petals level with four short stamens. 
11 Stigmatic papillae appear. 
12 Petals level with two long stamens. Gynoecium tissues become distinct. 
13 Bud opens. Petals visible. Anthesis. 
14 Long anthers extend above stigma. Fertilization occurs. 
15 Stigma extends above long anthers. 
16 Sepals, petals and stamens wither and fall. 
17a Fruit elongates in length and width until mature size. 
17b Fruit elongated completely. 
18 Siliques turn yellow from apex to base. 
19 Silique turns brown. Valves separate in dry siliques. 
20 Seeds fall and leave dried replum and septum behind. 

modified from Smyth et al., 1990 and Roeder and Yanofsky 1996 
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All flowers, whether located on the primary inflorescence stem or on the 

offshoots, were found to have similar expression patterns when observed at the same 

developmental stage. Accurate identification of the different organs in flower bud stages 

earlier than stage 12 was not possible without dissection. The only structure that could be 

identified with confidence in these early flower buds was the carpel, which did show C4 

gene expression throughout (Figure 47A-C). The expression of C4 gene in the carpel 

changed during development into a mature silique. In stage 12, expression was clearly 

seen in the entire carpel including the papillae. Stage 13 carpels exhibited expression 

near the apex and in the papillae while expression close to the pedicel was absent (Figure 

47D). C4 gene expression was only observed in the carpel region close to the pedicel but 

was absent or very weak in the papillae in stage 14 flowers (Figure 47C-D). In stage 15, 

C4 gene expression was observed in both the apex and base of the carpel, but not in the 

papillae (Figure 48D). From stage 15 until full development of the silique (before stage 

17b), expression was observed in the nectaries and surrounding tissue at the base of the 

carpel and the apex of the pedicel as well as the apical region of the silique (Figure 47A-

C). Closer examination of siliques in stage 17a showed expression in the vascular system 

in the valve wall, the replum, and the funiculi which connect the ovule to the replum 

(Figure 48D-F). C4 gene expression was also observed in structures which were either 

unfertilized ovules or embryos that arrested their development and viable embryos 

(Figure 48G). 

C4 gene expression in the stamens changed during its development observed in 

stage 12 to 15. At stage 12, no expression was observed in the anther or filament of the 

stamen (Figure 47D). Filaments, but not anthers, of stage 13 stamens began to show 
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Figure 47. Expression pattern of the C4 gene in flowers at different developmental 
stages. 
A) Apical floral terminus of CC4::C4:GUS-4\ B) floral apex of CC4::C4:GUS-4\ C) 
CC4::C4:GUS-4 and D) AC4::C4:GUS-5\ E) dehiscent pollen of AC4::C4:GUS-2. All 
samples were incubated for 24 hours in the GUS substrate. Floral stages from Table 5 
are indicated in C) and D). 
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Figure 48. C4 gene expression pattern in siliques at different developmental stages. 
A) Stage 16 silique (AC4.:C4:GUS-5); B) stage 17a silique (CC4::C4:GUS-4); C) stage 
17b silique (CC4.:C4:GUS-4); D) apical region of stage 17b silique (CC4::C4.GUS-1); 
E) basal region of stage 17b silique (CC4::C4:GUS-1); F) dissected veins and funiculus 
of stage 17b silique (AC4::C4:GUS-7); G) close up of stage 17a (CC4::C4:GUS-2). All 
samples were incubated for 24 hours in the GUS substrate. 
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expression in the vascular and surrounding tissues (Figure 47D). Both vascular and 

nonvascular tissue of the filament and the pollen showed C4 expression in stage 14 

(Figure 47E). By stage 15, weak C4 gene expression was observed in the filament and by 

stage 16, the stamens has withered and abscised. Petals did not show C4 gene expression 

at any stage of floral development. Sepals of stage 12 through 14 flowers showed C4 

gene expression but only in the vascular system of the sepals. However, by stage 15 the 

expression level in the vascular tissue of the sepal had decreased (Figure 47D). 

Flowers in Figure 47-48 were assayed for 24 hours. To determine which flower 

tissue had the highest expression, samples were incubated in the GUS substrate for 3, 12, 

or 24 hours. One hour was not included because expression was not typically detected in 

other shoot tissues after 1 or 3 hours of incubation. After three hours of incubation in the 

GUS substrate, weak expression was observed in the pollen and filaments in stage 14 

flowers (Figure 49A). Faint expression was observed after 3 hour assay in the nectary 

region starting at stage 15 and through stage 17b (Figure 49A and 50A-E). Aftert 12 and 

24 hours GUS assay, C4 gene expression was observed in the carpel, stamen, and sepal, 

as described in the previous paragraph (Figure 49B-C; 50F-O). As expected, the 

expression patterns were much easier to detect after a 24 hour assay. In conclusion, the 

tissue with the highest level of expression in the flowers and siliques was the nectary 

region and stage 14 pollen and filaments. C4 gene expression was also detected in 

various stages of flower and silique development, but no detectable C4 gene expression 

was ever observed in the petals. 
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12hrs 

24hrs 

Figure 49. C4 gene expression in floral apex assayed for different periods of time. 
A) AC4::C4:GUS-2; B) AC4::C4:GUS-7; C) AC4::C4:GUS-4. Samples were incubated 
in the GUS substrate for times indicated. Floral stages from Table 5 are indicated. 
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Figure 50. Siliques assayed for C4 gene expression for different periods of time. 
Stage 16 siliques: A) CC4::C4:GUS-4; F) AC4::C4:GUS-7; K) C4::C4:GUS-5. Stage 
17a siliques: B), G), and H) CC4::C4:GUS-4. Stage 17b siliques: C), H), and M) 
CC4::C4:GUS-4. Apical region of silique: D) and I) CC4::C4:GUS-5; I) CC4::C4:GUS-
5; N) CC4::C4:GUS-1. Basal region of silique: E) and J) CC4::C4:GUS-5; O) 
CC4::C4:GUS-1\. Samples were incubated in the GUS substrate for times indicated. 
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II.B.7. C4 gene expression in the ovule and embryo 

After the pollen has germinated, traveled down the transmitting tract of the 

carpel's septum and double fertilization has occurred, the zygote divides to form an apical 

and basal cell (Bowman, 1994). The apical cell will eventually form the embryo and the 

basal cell will form the hypophysis (suspensor) and the root. After multiple rounds of 

cell divisions, a single apical cell will become a 16-cell embryo or globular stage embryo 

(Capron et al., 2009). As the embryo develops, two lobes (the cotyledon primordia) form 

on the apical side of the embryo indicative of the heart stage. At the late heart stage, the 

root and shoot meristems are evident and the basic tissue patterning of Arabidopsis has 

been formed. The hypocotyl and the cotyledons expand, forming the torpedo stage and 

then, after further cell division, the embryo will bend into the walking stick (bent 

cotyledon) stage. After the final cell divisions, the mature embryo fills the developing 

seed coat. 

An attempt was made to view embryos at different developmental stages. Due to 

the difficulties of working with microscopic embryos encased in a carpel, a limited 

number of embryos showing C4 gene expression were observed. All embryos were 

assayed for GUS activity overnight. One-cell stage thru globular stage embryos were 

difficult to observe through the seed coat but expression was seen in the funiculus, 

chalazal endosperm, and outer and inner integument (Figure 51A and B). Because of the 

difficulty of observing the embryo through the developing seed coat, embryos from heart 

stage and older were excised from the seed and assayed directly in the GUS substrate 

overnight. C4::C4:GUS expression was observed throughout the embryo and the 

suspensor during heart stage (Figure 51C-H). In the older embryos, slightly higher C4 
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Figure 51. C4 gene expression in embryos. 
Developing embryos and endosperm in seed coat: A) AC4::C4:GUS-7, B) 
CC4::C4:GUS-5. Heart stage embryo with hypophysis: C-E) CC4::C4:GUS-5. Bent 
cotyledon stage: F-G) AC4::C4:GUS-7, H) CC4::C4:GUS-5. All samples were assayed 
overnight. Embryo structures indicated in Figure A) are funiculus (f), chalazal endosperm 
(c), embryo (e), and outer and inner integument (i). 
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gene expression was observed in the vascular system compared to the surrounding tissues 

(Figure 51H). 

II.B.8. Sites of the greatest C4 gene expression 

One of the goals of this research was to determine which cells and tissues or 

organs had the most C4 gene expression. Composite images of each of the four assay 

times (1, 3, 12, and 24 hours) was made to determine the site of highest expression. 

Following a 1 hour GUS assay, plants consistently showed expression only in the primary 

and secondary root meristems and elongation zones (Figure 52). A 3 hour GUS assay 

revealed only one additional site of expression: in the nectary region at the base of the 

silique (Figure 53). At 12 hours, all previously documented of the sites of C4 gene 

expression in the roots and shoots are readily apparent (Figure 54); no floral expression 

was detectable after a 12 hour assay. A 24 hour GUS assay was required to detect 

expression in the floral structures. At 24 hours, regions of the plant that had expression at 

shorter assay times accumulated high amounts of diX-indigo. As expected, the highest 

expression was in the regions which showed expression after 1 hour (Figure 55). These 

composite images show that the highest C4 gene expression is in the root meristem and 

elongation zone but that the C4 gene is expressed throughout the plant at all 

developmental periods at differing levels. 

II.C. Analysis of "empty" vector lines 

Plants were transformed with the negative control construct, the anti-sense C4 

coding region described in Section I.B. These plants were assayed for GUS enzyme 
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Figure 52. C4 gene expression in different Arabidopsis tissues after a 1 hour GUS 
assay. 
A)AC4::C4:GUS-2, 14-day-old; B) AC4::C4:GUS-5, 10-day-old; C-G) AC4::C4:GUS-
2,10-day-old. 
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Figure 53. C4 gene expression in different Arabidopsis tissues after a 3 hour GUS 
assay. 
A), C), and D) AC4::C4:GUS-2, 14-day-old; B) AC4::C4:GUS-5, 10-day-old; E) 
AC4::C4:GUS-2, 14-day-old; F) AC4::C4:GUS-5, 10-day-old; G) AC4::C4:GUS-7, 4-
week-old; H) CC4::C4:GUS-2, 14-day-old; I) AC4::C4:GUS-2; J) CC4::C4:GUS-4; K) 
CC4::C4:GUS-4; L) CC4::C4:GUS-5. 
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Figure 54. C4 gene expression in different Arabidopsis tissues after a 12 hour GUS 
assay. 
A) AC4::C4:GUS-2, 10-day-old; B) BC4::C4:GUS-2, 10-day-old; C) AC4::C4:GUS-2, 
10-day-old; D) AC4::C4:GUS-2, 10-day-old; E) AC4::C4:GUS-2, 10-day-old; F) 
AC4::C4:GUS-5, 10-day-old; G)AC4::C4:GUS-7, 4-week-old; H) AC4::C4:GUS-7, 10-
day-old; I) AC4::C4:GUS-7; J) AC4::C4:GUS-7; K) CC4::C4:GUS-4; L) 
CC4::C4:GUS-5. 
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Figure 55. C4 gene expression in different Arabidopsis tissues after a 24 hour GUS 
assay. 
A) AC4:C4 GUS-2, 14-day-old; B) AC4 .C4GUS-5, 10-day-old; C) AC4::C4.GUS-8, 
10-day-old; D) AC4: C4 GUS-8, 10-day-old; E) AC4-C4 GUS-2, 10-day-old; F) 
AC4:C4 GUS-8, 10-day-old; G) AC4..C4:GUS-8, 4-week-old; H) AC4:C4. GUS-8, 10-
day-old; I) AC4::C4:GUS-4; J) CC4::C4:GUS-5; K) CC4::C4:GUS-4; L) 
CC4::C4:GUS-1. 
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activity after 1, 7, and 14 days and 4-6 weeks. At least 5 lines were examined at each 

time point. These lines were always incubated in the GUS substrate for the maximum 

assay time of 24 hours. A positive control line (BC5::C5:GUS-5) was also assayed at the 

same time to determine that the assay solution was made correctly. 

Analysis of the plants after 24 hours of incubation time showed no detectable 

diX-indigo accumulation at any age (Figure 56). None of the lines observed contained 

any detectable diX-indigo accumulation in the root tissues. Some lines showed some 

very faint expression in the leaf petiole, vascular system and hydathode of the basal and 

cauline leaves. Even though some faint expression was observed in a few of the "empty" 

vector lines, the diX-indigo accumulation in the positive control line was much greater 

than that of the "empty" vector control. 

II.D. Classification of C7, C2, C3, C4 and C5 subunit genes of protein phosphatase 

2A 

The Arabidopsis genome encodes five different PP2A C subunits; CI, C2, C3, C4 

and C5. The subunits are divided into two classes based on similarities in amino acid 

sequence and genomic structure which indicates that C subunits likely had a common 

ancestor which eventually diverged into two classes (Blanc et al., 2000; Figures 57-60). 

The CI, C2 and C5 subunits belong to class I (Figure 58) while class II contains C3 and 

C4 subunits (Figure 59; DeLong, 2006). Genome-wide duplications have occurred in the 

Arabidopsis genome, therefore it is not uncommon to find gene families with multiple 

members (Bouche and Bouchez, 2001). As further support for the classification, I 

observed that genes in each class has similar coding sequence and intron- exon structure 
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Figure 56. Expression of the negative control vector throughout Arabidopsis 
developmental. 
A) 1-day-old (Rev-2); B) 7-day-old cotyledon (Rev-3); C) 7-day-old primary root tip 
(Rev-1); D) 7-day-old lateral root (Rev-3); E) 7-day-old hypocotyl (Rev-5); F) 4-week-
old rosette leaf; G) cauline leaf (Rev-5); H) floral apex (Rev-5); I) silique (Rev-1). All 
samples were incubated for 24 hours in the GUS substrate. 
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Majority MPA ATGDLDRQIEQLMECKPLSEXXVRALCEXAKXILVEEYNVQPVKCPVTVCGDIHGQFYDLIELFRIGGNXPDTNYLFMGDYVDRGYYSVETVSLLVALKVR 

10 20 30 40 50 60 70 80 90 100 110 

CI . .L N- G.AD.KI. .DQ. .A A 103 

C2 . .S N- AD. .T. .DQ.RA A 103 
C5 . .P . . . .1 A. . .TE.KM. . .H. .T SS 104 
C3 .G.NSIPTD. .I...E..S...Q QQ K..E..MD.S S...I H..A MC T M. 110 
C4 .G.NSLPTD. .L...E..S...Q QQ K..E..MD.S S...I H..A KC T...G 110 

Majority YRDRLTILRGNHESRQITQVYGFYDECLRKYGNANVWKXFTDLFDYLPLTALIESQVFCLHGGLSPSLDTLDNIRSLDRIQEVPHEGPMCDLLWSDPDDRCGWGISPRGA 

120 130 140 150 160 170 180 190 200 210 220 

CI Y 213 

C2 Y 213 
C5 H 214 
C3 .PQ.I I F V. .EI IE NF. .V 220 
C4 .PQ.I I F V. .EI IE NF. .V 220 

Majority GYTFGQDIAXQFNHTNGLSLISRAHQLVMEGFNWCQEKNVVTVFSAPNYCYRCGNMAAILEIGEXMXQNFLQFDPAPRQVEPDTTRKTPDYFL 

230 240 250 260 270 280 290 300 310 

CI T N Y K.E 307 

C2 A....N D N.E 306 
C5 T N.D E 308 
C3 SE N.K. .A D.Y. .AH.QK. . .1 S. . .VDDCRNHT.I. .E....RG...V..R 314 
C4 SE N.K. .A D AH.QK. . .1 S. . .VDDCRNHT.I. .E RG. . .V. .R 314 

Figure 57. Alignment of Arabidopsis thaliana Protein Phosphatase 2A C subunit amino acid sequences. 
Amino acid alignment was performed with DNASTAR MegAlign aligned using Clustal W. 



Majority ATGCCGTCG AACGGAGATCTCGACCGTCAGATCGAGCAGCTXATGGAGTGTAAACCGTTATCTGAAGCGGAXGTGAAGATGCTTTGCGATCAAGCXAAAGCGATTCT 

10 20 30 40 50 60 70 80 90 100 110 

CI TA A A G GG A..C C T 107 

C2 G G G..G T G..C G.G C. . 107 

C5 C. .GCG.C A T T G A G T.G..T..G..C..A..GA 110 

Majority TGTXGAGGAATATAATGTTCAACCGGTTAAGTGTCCGGTTACCGTXTGCGGCGATATCCACGGCCAGTTTTATGACCTAATTGAGCTXTTTCGTATCGGTGGTAATGCTC 

120 130 140 150 160 170 180 190 200 210 220 

CI ...T G..A T A T 217 

C2 ...C G G T T T T C C..C... 217 

C5 ...G..A..G A C T A C..T C T TC.T... 220 

Majority CTGATACTAATTACCTCTTCATGGGAGATTATGTAGATCGTGGCTACTATTCTGTAGAGACAGTCTCTCTATTGGTGGCACTAAAAGTGCGTTACAGGGATAGACTTACX 

230 240 250 260 270 280 290 300 310 320 330 

CI A T. . . .G C G 327 

C2 C C A T A A 327 

C5 T..T T T A..G..T G A..T A G T A T 330 

Majority ATCCTACGAGGGAATCATGAGAGCCGTCAGATTACTCAAGTCTATGGTTTTTATGACGAATGCTTGAGGAAATACGGAAATGCTAATGTXTGGAAGTATTTTACXGACCT 

340 350 360 370 380 390 400 410 420 430 440 

CI G A A G G 437 

C2 ...T C T..G G C..C A 437 

C5 A A A G G T T T A C.C..C..T..T.. 440 

Majority TTTCGATTATCTTCCTCTTACAGCXCTCATAGAGAGTCAGGTTTTCTGTTTGCATGGAGGXCTTTCACCTTCTCTGGATACTCTTGACAATATCCGAAGCTTGGATCGAA 

450 460 470 480 490 500 510 520 530 540 550 

CI C A C 547 

C2 C. .C G T G. 547 

C5 ...T A T..T..T A A T.A A C TCT . .A 550 

Majority TACAAGAGGTTCCACACGAAGGACCAATGTGTGATCTATTATGGTCTGATCCXGATGATCGATGTGGATGGGGAATATCTCCTCGTGGTGCTGGTTACACXTTTGGACAG 

560 570 580 590 600 610 620 630 640 650 660 

CI C C.C C. .C T G 657 

C2 . . . .G T T T A. .A T..A 657 
C5 .T T C A C C..T A..C T..C A 660 

(continued on the next page) 



Majority GATATCGCTACTCAGTTTAATCACAACAATGGACTXAGTCTGATXTCAAGAGCGCATCAACTTGTCATGGAAGGTTTTAATTGGTGTCAGGAAAAGAACGTXGTGACTGT 

670 680 690 700 710 720 730 740 750 760 770 

CI ..C..T T G C A C A A A.. 767 
C2 AG A A C..A C T T..G 7 67 

C5 C. . . .C CTC T A C..A T 770 

Majority GTTTAGTGCACCAAACTATTGCTACCGXTGTGGAAACATGGCTGCXATTCTAGAGATXGGAGAGAACATGGAXCAGAACTTCCTTCAGTTCGATCCAGCTCCTCGACAAG 

780 790 800 810 820 830 840 850 860 870 880 

CI G C..T...A.A C..A T T A..G A A A. ..A 877 
C2 G C A G..A C 877 

C5 A C T C G C..T C T T A. .T. . . . 880 

Majority TCGAACCCGATACCACTCGCAAGACCCCTGATTATTTTTTGTGA 

890 900 910 920 

CI G 921 

C2 .T T T G 921 
C5 A T..A A. 924 

Figure 58. Alignment of Arabidopsis thaliana Class I PP2A coding sequences. 
Nucleotide alignment was performed with DNASTAR MegAlign aligned using Clustal W. 



Majority ATGGGCGCGAATTCXXTTCCXACGGAXGCAACCXTXGATCTXGATGAGCAGATCTCGCAGCTCATGCAGTGCAAGCCTCTCTCXGAGCAACAGGTXAGAGCATTATGXGA 

10 20 30 40 50 60 70 80 90 100 110 

C3 TA G C A.T T G T C . 110 
C4 GC....A T C.C A C C . .T. . 110 

Majority GAAAGCXAAGGAGATCTTAATGGATGAAAGCAAXGTTCAGCCTGTXAAAAGCCCTGTGACAATCTGCGGTGATATTCATGGACAGTTCCATGATCTTGCAGAGCTTTTCC 
+ + + + + + + + + + + 
120 130 140 150 160 170 180 190 200 210 220 

C3 C T G 220 

C4 T C T 220 

Majority GTATXGGGGGAAXGTGXCCTGATACCAAXTAXCTGTTTATGGGAGACTATGTXGACCGTGGXTATTATTCTGTXGAAACTGTTACGCTGTTXGTXGXCTTXAAXXTXCGX 

230 240 250 260 270 280 290 300 310 320 330 

C3 ....A T...C T..C G T T A..C.C...A..GA.G..A 330 

C4 . . . .T A...T C..T C A G G..T.G...G..AG.A..G 330 

Majority TATCCXCAGCGAATCACTATTCTTAGAGGAAACCATGAAAGTCGTCAGATTACTCAGGTTTATGGATTTTATGATGAATGTCTXCGAAAGTAXGGCAAXGCAAATGTTTG 

340 350 360 370 380 390 400 410 420 430 440 

C3 T A C C 440 

C4 A G T T 440 

Majority GAAXATXTTTACAGACCTCTTXGACTATTTXCCXCTGACAGCCTTGGTXGAGTCXGAAATATTXTGCCTTCAXGGTGGATTATCXCCATCXATCGAGACCCTTGACAACA 

450 460 470 480 490 500 510 520 530 540 550 

C3 ...A..C C T..T T A T T T T 550 

C4 ...G..A T C..A G G C C A C 550 

Majority TXAGGAAXTTTGATCGXGTTCAAGAAGTXCCXCATGAAGGGCCXATGTGTGACTTATTATGGTCTGAXCCXGATGACXGATGTGGXTGGGGXATCTCTCCTCGXGGTGCX 

560 570 580 590 600 610 620 630 640 650 660 

C3 .A T A G..C G C.C C T C G C 660 
C4 .T C G T..A T T..T A C A T T 660 

VO 
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Majority GGATATACATTTGGTCAGGATATXTCXGAACAATTCAATCACACXAACAACTTAAAGCTGATCGCCCGAGCXCAXCAGXTXGTTATGGATGGATXCAAXTGGGCXCACGA 

670 680 690 700 710 720 730 740 750 760 770 

C3 A..T A T..C..T.G A...C T 770 

C4 T..G T G..T...CC T...T A 770 

Majority GCAAAAAGTGGTTACTATXTTCAGTGCACCAAACTATTGXTAXCGXTGTGGXAACATGGCCTCXATTCTTGAGGTCGAXGACTGCAGGAACCACACXTTCATXCAGTTTG 

780 790 800 810 820 830 840 850 860 870 880 

C3 T T..C.T G G C C C 880 

C4 A C.T..C A A T G T 880 

Majority AACCAGCACCGAGGAGAGGAGAXCCAGAXGTXACCCGAAGGACXCCXGACTATTTCCTXTGA 

890 900 910 920 930 940 

C3 A C.C T..A G... 942 

C4 G T..A A..T T... 942 

Figure 59. Alignment of Arabidopsis thaliana Class II PP2A coding sequences. 
Nucleotide alignment was performed with DNASTAR MegAlign aligned using Clustal W. 
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Figure 60. Intron and exon structure of PP2A C subunits 
The C subunits amino acid sequences are diagramed as boxes. Introns are represented as 
triangles and the number indicates the phase of the intron: 0 = intron inserted between 
intact codons; 1 = intron inserted after first nucleotide of a codon; 2 = intron inserted 
after second nucleotide of a codon. Dotted lines connect introns at identical positions in 
the C subunits. 
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with additional evidence for intron gain or loss within each class (Figure 60). One goal 

of these experiments was to determine whether expression patterns of genes in each class 

are similar to each other or whether each C subunit gene has a unique expression pattern. 

The upstream sequence was analyzed to determine if there were any cis regulatory 

elements in common between the C subunits which could potentially lead to similar 

expression patterns. Since the upstream boundary of each C subunit promoter region is 

not known, 2.1 kb upstream of the transcription start site of each gene was analyzed using 

the Athena website (http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl; 

O'Connor et al., 2005). Little similarity was observed in the order or spacing of promoter 

elements (Figure 61); therefore, I expected that the expression patterns of the CI, C2, C3, 

C4, and C5 subunits may differ each other. 

Various developmental stages and GUS assay times were used to analyze the 

expression of the CI, C2, C3 and C5 subunit genes. The developmental time points for 

observation were 1-, 2-, 3-4-, 6-7-, 10-, and 14-day-old, as well as 4-week-old. In 

addition to roots and shoots, parts of the flower stalk, including cauline leaves, buds, 

flowers and siliques, were examined. To determine relative promoter strength, tissues 

were incubated in the GUS substrate for 1, 3, 12 or 24 hours. For each C subunit, the 

complete expression pattern and the relative promoter strength were documented at each 

time point to allow for comparisons between the five C subunit genes during plant 

development. 

II.D.l. Expression patterns of two different C3 promoters 

During preparation of the plant constructs for these studies, the C3 gene was 
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Figure 61. Cis regulatory motifs found 2100 bp upstream of transcription start of 
PP2A C subunit genes. 
Regulatory motifs were found using the Athena website (O'Connor et al., 2005). Light 
blue boxes are CpG islands. Position of different motifs within the genomic region are 
marked with different colors. P corresponds to the number of promoters with this motif; 
N is the total number of times the motif is present in these five promoters. 
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found to be very close to a predicted upstream gene, At2g42510, which is located 

approximately 250 bp from the C3 gene transcription start site. At2g42510 may be a 

pseudogene because no full length transcript has been reported. As 250 bp is quite short 

for a typical Arabidopsis promoter, two different GUS fusion constructs were made. The 

first construct, sC3 (labeled C3 or C3::C3:GUS on tubes and lab notebooks), contained 

153 bp of the upstream region. The second construct, LC3 (labeled LC3 or 

LC3::C3:GUS on tubes and lab notebooks), included the 153 bp region as well as 2160 

bp further upstream. Both constructs included the same C3 genomic region, including 

the 5' UTR and unspliced coding region, fused in-frame to the GUS gene. The rationale 

for creating two constructs was to determine if the short upstream region produced the 

same expression pattern as the longer construct. If so, this could indicate that C3 

regulatory information was contained in the smaller upstream region. This approach 

represents a simple promoter deletion analysis, commonly used to compare expression 

from various sized promoter segments to determine location of cis regulatory elements 

(Donald and Cashmore, 1990). 

To determine C3 gene expression throughout the Arabidopsis life cycle, plants 

were assayed in the GUS substrate at major developmental points ( 1 - , 2-, 3-4-, 6-7-, 10-, 

14-day-old, and 4-week-old) and cauline leaves, buds, flowers and siliques were assayed 

from older plants. Relative expression levels were determined by incubating the plant 

sample in the GUS substrate for 1, 3, 12 or 24 hours. A total of 11 independent 

transformed lines from three independent PCRs were analyzed for sC3 expression and 

seven independent transformed lines from two independent PCRs were analyzed for LC3 

expression (Table 4). 
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II.D. 1.a. sC3 and LC3 expression pattern in roots 

Arabidopsis root anatomy and development was described previously in Section 

II.A.l. In 1-day-old germinating seeds, the radicle, including the root cap, showed sC3 

expression as soon as it emerged from the seed coat (Figure 62A, C, E). The LC3 

expression pattern was indistinguishable from that of sC3 (Figure 62B, D, F). 

Additional root expression was analyzed from 2-14 days after germination. 

Representative examples of sC3 and LC3 expression in root tips are shown in Figure 63. 

After 1 hour of incubation with the GUS substrate, C3 gene expression was readily 

detected in the meristematic, elongation, and differentiation zones. In the meristematic 

region, expression was detected in all cell types while in the elongation and 

differentiation zone, strongest expression was in the central cylinder. By 3 hours, 

expression was also detected in the root cap (both columella and lateral root cap) and in 

the epidermis and cortex of the elongation and differentiation zones. After 12 or 24 hours 

of incubation, the root tips perpetuated the expression pattern detected at 3 hours but, as 

expected, accumulated more diX-indigo. Expression was also seen throughout the tissues 

in the differentiated and mature roots (data not shown). 

In developing lateral root meristems of either sC3 or LC3 seedlings, very weak 

expression was detected in stages I-VIII after 1 hour of incubation (Figure 64). 

Interestingly, expression in stage I or in stage IV-V meristems was more easily detected 

than in stage VIII, indicating a drop in expression at the later stages (Figure 64). With 

longer incubation times (3, 12 or 24 hours), strong C3 gene expression was easily 

detected throughout the developing meristem in stages I-VIII. Once the lateral root had 

established meristematic and elongation zones, the expression of the C3 gene during 
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sC3::C3:GUS LC3::C3:GUS 

Figure 62. Expression of sC3 and LC3 in 1-day-old seedlings. 
A) AsC3::C3:GUS-l; B) DLC3::C3:GUS-11; C) AsC3::C3:GUS-l; D) DLC3::C3:GUS-
11; E) CsC3::C3:GUS-9; F) DLC3::C3:GUS-11. All samples were incubated for 24 
hours in the GUS substrate. 
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sC3::C3:GUS LC3::C3:GUS 

Figure 63. Expression of sC3 and LC3 in root tips. 
sC3::C3:GUS lines were: AsC3::C3:GUS-l (1, 3, and 12 hours) and AsC3::C3:GUS-6 
(24 hours). LC3::C3:GUS lines were incubated for 1 hour (DLC3::C3:GUS-11); 3 hours 
(DLC3::C3:GUS-4); 12 hours (DLC3::C3:GUS-3); and 24 hours (DLC3::C3:GUS-30). 
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Figure 64. Expression of sC3 and LC3 in lateral root meristems. 
sC3::C3:GUS stage I lines were: CsC3::C3:GUS-9 (1 hour), AsC3::C3:GUS-6 (3, 12, 
and 24 hours). sC3::C3:GUS stage V and VIII lines were all AsC3::C3:GUS-6. 
LC3::C3:GUS stage I lines were: BLC3::C3:GUS-2 (1, 3, and 24 hours) 
DLC3::C3:GUS-7 (12 hours). LC3::C3:GUS stage V lines were: DLC3::C3:GUS-4 (1 
hour), BLC3::C3:GUS-2 (3 and 24 hours), DLC3::C3:GUS-7 (12 hours). LC3::C3:GUS 
stage VIII lines were: DLC3::C3:GUS-4 (1 hour), BLC3::C3:GUS-2 (3 and 24 hours), 
and DLC3::C3:GUS-7 (12 hours). 
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subsequent lateral root growth reiterated the overall expression pattern found in the 

primary root (data not shown). 

In roots, the sites of sC3 and LC3 expression patterns were indistinguishable 

indicating that the cis regulatory elements could be contained in the short sC3 promoter 

region. The C3 gene was most highly expressed in actively dividing tissues such as 

primary and lateral root meristems although expression was also detected at lower levels 

throughout the differentiated root. 

II.D. Lb. sC3 and LC3 expression pattern in shoots 

II.D.l.b.i. sC3 and LC3 expression pattern in hypocotyl 

A description of the anatomy and development of hypocotyls was provided in 

Section II.A.3. Observation of C3 gene expression in hypocotyls included plants from 1-

to 14-day-old. In all ages examined, the relative level and pattern of hypocotyl 

expression were equivalent for both sC3 and LC3 seedlings. 

In 1-day-old germinating seeds, some samples showed very strong C3 gene 

expression throughout the vascular system, cortex and epidermis while in other samples, 

expression was confined to the vascular system (Figure 62). The latter expression pattern 

correlated with seeds where the seed coat was barely ruptured by the emerging radicle 

while strong expression correlated with a more disrupted seed coat. Thus, the ability of 

the GUS substrate to access the tissues may contribute to the amount of expression 

observed. 

In 7-day-old plants, little to no C3 gene expression was detected in the hypocotyls 

after a 1 hour GUS assay (Figure 65). Weak C3 gene expression was associated with the 
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sC3::C3:GUS LC3::C3:GUS 

7-day-old 14-day-old 7-day-old 14-day-old 

Figure 65. Expression of sC3 and LC3 in hypocotyls. 
sC3::C3:GUS 7-day-old plants incubated for 1 hour (CsC3::C3:GUS-9), 3 hours 
(CsC3::C3:GUS-9), 12 hours (AsC3::C3:GUS-6), and 24 hours (CsC3::C3:GUS-9). 
sC3::C3:GUS 14-day-old plants incubated for 1 hour (AsC3::C3:GUS-6), 3 hours 
(AsC3::C3:GUS-6), 12 hours (AsC3::C3:GUS-6), and 24 hours (AsC3::C3:GUS-l). 
LC3::C3:GUS 7-day-old plants incubated for 1 hour (DLC3::C3:GUS-4), 3 hours 
(BLC3::C3.GUS-2), 12 hours (DLC3::C3:GUS-6), and 24 hours (DLC3::C3:GUS-7). 
LC3::C3:GUS 14-day-old plants incubated for 1 hour (BLC3::C3:GUS-3), 3 hours 
(BLC3::C3:GUS-3), 12 hours (BLC3::C3:GUS-3), and 24 hours (DLC3::C3:GUS-11). 
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longer incubation times (3, 12 or 24 hours), strong C3 gene expression was easily 

detected throughout the developing meristem in stages I-VIII. Once the lateral root had 

established meristematic and elongation zones, the expression of the C3 gene during 

vascular system near the base of the hypocotyl after 3 hours of incubation in both sC3 

and LC3 seedlings. By 12 hours, conspicuous C3 gene expression appeared throughout 

most of the hypocotyl but was reduced near the base of the hypocotyl in the epidermis, 

cortex and possibly the endodermis. After a 24-hour assay, C3 gene expression was seen 

throughout the hypocotyl. 

Expression of the C3 gene was not detected in hypocotyls of 14-day-old plants 

after 1 or 3 hours of incubation. By 12 hours, limited C3 gene expression occurred in the 

central cylinder near the base of the hypocotyl and occasionally near the apex of the 

hypocotyl. Expression was observed throughout the vascular system after 24 hours of 

incubation but not in the surrounding cortical or epidermal tissue. 

Similar to the roots, expression of the sC3 and LC3 constructs in hypocotyls was 

indistinguishable, indicating that all of the regulatory regions need to drive expression in 

hypocotyls under normal growth conditions exists in the sC3 construct. Additionally, 

analogous to the roots, the vascular system had stronger expression than the surrounding 

hypocotyl tissues. Relative C3 gene expression strength decreased over time as 

exemplified by the reduced expression in hypocotyls of 14-day-old seedlings compared 

to 7-day-old seedlings. 

II.D.l.b.ii. sC3 and LC3 expression pattern in cotyledonary and foliar organs 

Arabidopsis anatomy and development of cotyledons and leaves were described 
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in Section II.A.4. Cotyledons and leaves were examined for C3 gene expression 

throughout the development periods and assay times outlined in Section III.A. The LC3 

expression pattern was similar to sC3 expression pattern in all developmental periods 

examined. 

In 1-day-old germinating seeds, C3 gene expression was observed in the 

cotyledons (Figure 62) in both sC3 and LC3 lines, but the exact pattern could not be 

elucidated due to obstruction by the seed coat. After germination, cotyledon expression 

was similar throughout the plant's life cycle. A representative example from 7-day-old 

cotyledons is shown in Figure 66. C3 gene expression was not detectable after 1 hour of 

incubation in the GUS substrate; however, by 3 hours, extremely weak C3 gene 

expression was occasionally seen in the vascular system. After 12 hours of incubation, 

distinct expression was seen throughout all cell types in the cotyledon with stronger 

expression in the vascular system and the hydathodal region. The same C3 gene 

expression pattern, although stronger as expected, was observed after incubating for 24 

hours. 

C3 gene expression was observed in rosette leaves in both sC3 and LC3 lines. 

The first and second true leaves on 7-day-old seedlings, which were still expanding, were 

comparable to the fully-expanded counterparts on 14-day-old plants. C3 gene expression 

was never detected after a 1 hour GUS assay (Figure 67) while weak expression in the 

veins was sometimes observed after 3 hours of incubation but in 14-day-old leaves only. 

After 12 or 24 hours of incubation, expression was observed throughout the leaf (Figure 

67), although expression was usually higher in the distal versus the proximal region of 

the leaf at 7 days of age and was higher in proximal region on 14-day-old leaves. In 
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Figure 66. Expression of sC3 and LC5 in cotyledons. 
sC3::C3:GUS 7-day-old plants incubated for 1 hour (AsC3::C3:GUS-6), 3 hours 
(AsC3::C3:GUS-6), 12 hours (AsC3::C3:GUS-6), and 24 hours (AsC3::C3:GUS-6). 
LC3::C3:GUS 7-day-old plants incubated for 1 hour (DLC3::C3:GUS-6), 3 hours 
(DLC3::C3:GUS-6), 12 hours (DLC3::C3:GUS-3), and 24 hours (BLC3::C3:GUS-2). 
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sC3::C3:GUS LC3::C3:GUS 

7-day-old 14-day-old 7-day-old 14-day-old 
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Figure 67. Expression of sC3 and LC3 in leaves. 
sC3::C3:GUS 7-day-old plants GUS assayed for 1 hour (CsC3::C3:GUS-ll), 3 hours 
(AsC3::C3:GUS-l), 12 hours (CsC3::C3:GUS-9), or 24 hours (CsC3::C3:GUS-9). 
sC3::C3:GUS 14-day-old plants GUS assayed for 1 hour {AsC3::C3:GUS-6), 3 hours 
(AsC3::C3:GUS-l), 12 hours (AsC3::C3:GUS-6), or 24 hours (AsC3::C3:GUS-l). 
LC3::C3:GUS 7-day-old plants GUS assayed for 1 hour (DLC3::C3:GUS-6), 3 hours 
(BLC3::C3:GUS-3), 12 hours (BLC3::C3:GUS-3), or 24 hours (BLC3::C3:GUS-2). 
LC3::C3:GUS 14-day-old plants GUS assayed for 1 hour (BLC3::C3:GUS-3), 3 hours 
(BLC3::C3:GUS-3), 12 hours (BLC3::C3. GUS-3), or 24 hours (DLC3.. C3. GUS-11). 
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addition, leaf expression was strongest in the vascular system and the hydathode region at 

both 7 and 14 days. Four-week-old samples include all of the rosette leaves because 

these plants have transitioned to the reproductive stage. Most of the leaves are 

completely expanded and the newest leaves are completing expansion. Regardless of 

when the leaf developed, all leaves showed the same C3 gene expression pattern and 

relative promoter strength as described above for 7- and 14-day-old seedlings (Figure 

68). The "blotchy" expression observed in some of the tissues is likely due to difficulty 

infiltrating the GUS substrate into the sample. The exact reason for the lack of 

infiltration is not known but may be due to more waxy cuticle present on older plants, 

difficulty keeping large plant samples immersed in the substrate solution during vacuum 

infiltration or smaller air spaces available for substrate uptake in young leaves. Cauline 

leaves were also observed and detectable C3 gene expression was limited to the leaf veins 

and hydathode regions after 24 hours of incubation with GUS substrate; there was little 

expression in epidermal or mesophyll cells (data not shown). 

Expression in specialized leaf epidermal cells was also examined. Extremely 

weak expression in developing guard cells of 7-, 10-, and 14-day-old seedlings was first 

detected after 3 hours of incubation in the GUS substrate (data not shown). After 12 or 

24 hours of incubation, expression was clearly seen in the meristemoids, guard mother 

cells, and immature guard cells (data not shown). Another specialized cell type is the 

trichome. Trichomes undergo massive cell expansion and branching to form prominent 

features of the leaf surface visible to the naked eye. C3 expression was seen in 

expanding trichomes on all ages of leaves after 12 or 24 hours of incubation in the GUS 

substrate (Figure 69). No C3 expression was observed in mature trichomes after 

125 



sC3::C3:GUS LC3::C3:GUS 

3hrs 

12hrs 

! . / 

24hrs 

Figure 68. Expression of sC3 and LC3 in 4-week-old plants. 
3 hour sC3::C3:GUS line was AC3::C3:GUS-6 and LC3::C3:GUS line was 
DLC3::C3:GUS-6. 12 hour sC3::C3.GUS line was CC3::C3:GUS-1 and LC3::C3:GUS 
line was DLC3::C3:GUS-7. 24 hour sC3::C3:GUS line was AC3::C3:GUS-3 and 
LC3::C3:GUS line was DLC3::C3:GUS-6. 
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Figure 69. Expression of sC3 and LC3 in trichomes. 
sC3::C3:GUS lines were all 7-days-old and incubated for 1 hour (CsC3::C3:GUS-ll), 3 
hours (CsC3::C3:GUS-9), 12 hours (CsC3::C3:GUS-9), and 24 hours (CsC5.:C5:Gt/S-
9). LC3::C3:GUS lines were 7-days-old and incubated for 1 hour (BLC3::C3:GUS-2), 3 
hours (BLC3::C3:GUS-2), 12 hours (BLC3::C3:GUS-3), and 24 hours (BLC3::C3:GUS-
2). 
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expansion was complete. In conclusion, both sC3 and LC3 constructs have the very 

similar expression patterns in cotyledons and leaves indicating that the regulatory 

elements required to drive expression in the cotyledons and leaves were located within 

the short C3 promoter construct. The additional sequence in the longer construct did not 

provide any additional regulation of expression that could be detected with this method. 

C3 gene expression in cotyledons, leaves, roots, and hypocotyls was typically higher in 

the vascular system than in the surrounding tissues. The highest C3 expression in the 

vegetative parts of the plant occurred in the meristematic zone of roots, followed by 

vascular system of roots and shoots. 

II.D.l.b.iii. sC3 and LC3 expression pattern in reproductive organs 

Arabidopsis raceme anatomy and development were described in Section II.A.4. 

The inflorescence stems from 6-week-old plants were dissected and then assayed in the 

GUS substrate for C3 gene expression. The results showed that, overall, there was fairly 

consistent expression between the sC3 and LC3 lines. 

In all floral stages, expression was rarely observed in petals or sepals for either 

the sC3 or LC3 lines (Figure 70). When expression was observed, it occurred in the 

vascular tissues of these organs. The reason for this variability is not known but could be 

due to line-to-line variation caused by T-DNA position effects or to C3 gene expression 

only occurring for a brief time during development which did not always coincide with 

the assay period. In contrast, the stamens revealed consistent expression in all lines 

assayed. The filament showed expression from stages 14 to 15, although filament 

expression in stage 15 was limited to the region nearest the anther (Figure 70). 
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Figure 70. Expression of sC3 and LC5 in the floral apex. 
Both sC3 and LC3 lines were incubated for 24 hours. The sC3 line was sC3::C3:GUS-6 
and the LC3 line was LC3::C3:GUS-4. Floral stages from Table 5 are indicated. 
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Expression was also seen in the dehisced pollen in stage 14 (not shown). 

Expression was observed in the carpels from both sC3 and LC3 lines. Although 

the exact stage could not be determined without dissection, expression was seen 

throughout the carpels in buds of unknown easily floral stages (Figure 70). At stages 12-

15, sC3 and LC3 expression in carpels was seen primarily at the apex, and included the 

stigma at stage 12 only. Also, at stage 15, strong expression was seen in the nectary. 

In general, stage 16 siliques showed C3 gene expression in the apex and base and 

there was less consistent expression in the vasculature (Figure 71). In stage 17a, siliques 

showed expression in most of the silique, which was easier to detect in sC3 than LC3 

lines. Stage 17b C3 expression was limited primarily to the basal region of the silique. 

Stage 18, 19 and 20 siliques had no detectable expression. 

In conclusion, C3 gene expression was observed in flowers, especially in carpels 

and stamens. Expression in both sC3 and LC3 lines were generally similar in all floral 

tissues. Therefore, similar to the vegetative tissue, the regulatory region needed to drive 

expression in floral structures was located within the sC3 construct. 

II.D.I.e. Summary of C3 subunit gene expression pattern 

Although images for all of the available transgenic lines were not included in this 

thesis, all of the sC3 and LC3 lines examined had similar expression patterns and similar 

relative expression levels all in vegetative tissues, indicating that the short promoter 

construct contained all of the necessary regulatory information. Both constructs included 

all of the introns and exons, and important regulatory information could be located in this 

region. Since multiple independent transgenic lines were examined for each construct, 
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Figure 71. Expression of sC3 and LC3 in siliques. 
sC5 lines were AsC3 :C3.GUS-6 incubated for 24 hours. LC3 lines were DLC3..C3: 
GUS-4 incubated for 24 hours. 
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these results also demonstrate that there was little or no effect from T-DNA insertion site 

and that any PCR errors that may have occurred in the constructs had no detectable effect 

on expression. A summary of the expression patterns of sC3 and LC3 is in Figure 72. 

II.D.2. Class II C subunit (C3 and C4) gene expression patterns 

The Protein Phosphatase 2A class II subunits, C3 and C4, are 98% identical with 

only 6 amino acid differences out of 313 total amino acids (Figure 57). Even at the 

nucleotide sequence level, the coding sequences are 91.4% identical (Figure 59). From 

these observations, one might guess that these two subunits would be functionally 

redundant because of the high degree of similarity. However, despite being highly 

conserved in amino acid and nucleotide sequence, we discovered a sodium-induced root 

growth phenotype for the c4 mutant plants. This led to the hypothesis that the C3 gene 

may not be expressed in roots and therefore would be unable to compensate for the 

missing C4 subunit. The fact that the promoter sequences and regulatory elements of 

these two genes are very different (Figure 61) also led me to expect that the C3 and C4 

genes might have different expression patterns but this is not what I found. 

A detailed description of C4 and C3 gene expression is available in Sections II.B 

and II.D.l, respectively. A comparative overview of C3 and C4 gene expression patterns 

is shown in Figure 73 and key points will be summarized here. Root tip expression 

patterns of the C3 and C4 genes are extremely similar, especially in the elongation zone. 

The site of highest expression in both C3 and C4 lines is the roots, especially the primary 

root tip region and lateral root meristem (See Section II.B and III.D.l for further details). 

All other shoot and reproductive tissues also revealed a high degree of similarity between 

132 



sC3::C3:GUS LC3::C3:GUS 

Figure 72. Comparison of the expression pattern of sC3 and LC3 promoter 
constructs in different tissues of Arabidopsis thaliana. 
Organs shown for sC3, from top to bottom, were root tip (7-day-old, 1 hour assay), 
hypocotyl (7-day-old, 12 hour assay), lateral root (10-day-old, 3 hour assay), cotyledon 
(7-day-old, 12 hour assay), 4 week old plants (12 hour assay), floral apex (24 hour assay), 
siliques (24 hour assay) and cauline leaf (24 hour assay). Most samples were 
AsC3::C3:GUS-6 except for the 4-week-old plant which was CsC3::C3:GUS-L 
Organs shown for LC3, from top to bottom, were root tip (DLC3::C3:GUS-3, 7-day-old, 
1 hour assay), hypocotyl (DLC3.:C3::GUS-7, 7-day-old, 12 hour assay), lateral root 
(DLC3::C3:GUS-119 10-day-old, 3 hour assay), cotyledon (DLC3::C3:GUS-3, 7-day-old, 
12 hour assay), 4-week-old plant (DLC3::C3:GUS-7, 12 hour assay), floral apex 
(DLC3::C3:GUS-4, 24 hour assay), siliques (both DLC3::C3:GUS-7, 24 hour assay) and 
cauline leaf (DLC3::C3:GUS-4, 24 hour assay). 

133 



Figure 73. Comparison of Class II PP2A C subunit gene expression in Arabidopsis. 
C4 gene: Representative examples of C4 gene expression in the primary root tip 
(AC4::C4:GUS-2 7-day-old, 1 hour assay), 1-day-old seedling (AC4::C4:GUS-2, 16 hour 
assay), floral apex (AC4::C4:GUS-4, 24 hour assay), silique (CC4::C4:GUS-4, 24 hour 
assay), lateral root (AC4::C4: GUS-2, 10-day-old, 1 hour assay), cotyledon 
(AC4::C4:GUS-2, 10-day-old, 1 hour assay), and 4-week-old plant (AC4::C4:GUS-7, 24 
hour assay). 
C3 gene: Representative examples of C3 gene expression in the primary root tip 
(BLC3::C3:GUS-2, 7-day-old, 1 hour assay), 1-day-old seedling (AC3::C3:GUS-3, 12 
hour assay), floral apex (DLC3::C3:GUS-7, 24 hour assay), silique (DLC3::C3:GUS-7, 
24 hour assay), lateral root (AC3::C3:GUS-3, 14-day-old, 1 hour assay), cotyledon 
(AC3::C3:GUS-3, 8-day-old, 12 hour assay), and 4-week-old plant (CC4::C4:GUS-8, 24 
hour assay). 
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the C3 and C4 gene expression patterns. Relative expression strength in the cells of each 

organ was also similar. Therefore, I conclude that the C3 and C4 gene expression 

patterns and relative expression levels are almost identical. As a result, the initial 

hypothesis that the C3 and C4 genes would have disparate expression patterns was not 

supported. 

II.D.3. Class I C subunit (C7, C2, and C5) genes expression patterns 

Class I of the Arabidopsis PP2A C subunits has three members: CI, C2, and C5. 

C5 is 93.2% identical to both the CI and C2 subunits at the amino acid level (Figure 57) 

while CI and C2 are 97.1% similar to each other, meaning that C5 is the most divergent 

Class II subunit. CI, C2, and C5 gene expression was determined during multiple 

developmental timepoints and for several incubation times in the GUS substrate as 

described previously in Section II.B. When equivalent developmental times and 

incubation times were compared, I observed similar expression patterns and expression 

intensities between all of the Class I C subunits. 

Expression was detected throughout the roots, with the highest gene expression in 

the primary root tips and the lateral root meristems (Figure 74). Expression was also 

observed throughout the cotyledons and rosette leaves with the highest expression in the 

vascular system. Cauline leaf expression was restricted primarily to the veins. Floral 

expression was universally observed in the filaments, dehisced pollen, carpels, and 

siliques while expression in the petal veins was only detected in the C2 lines. In 

conclusion, the CI, C2, and C5 subunit genes have highly overlapping expression 

patterns and similar relative expression levels. 
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II.D.4. Highly overlapping and similar protein phosphatase 2A C subunit gene 

expression patterns 

CI, C2, C3, C4 and C5 gene expression was compared at all developmental stages 

previously defined (Section II.B). The root expression pattern for all five subunits was 

very similar (Figure 75 and data not shown). All subunits are expressed throughout the 

root and the root tips are the site of the highest relative gene expression for all subunits. 

In general, the cotyledon, rosette leaf and cauline leaf expression was similar for 

all five subunits with the highest relative expression in the vascular tissue compared to 

the other leaf tissues (Figure 75). Additionally, gene expression of each C subunit was 

observed in expanding trichomes and developing guard cells (not shown). Despite these 

similar expression patterns in the vegetative tissues, there was some difference in the 

expression pattern in the reproductive structures particularly in the sepals and petals. 

Stamen, carpel and silique expression was similar for all subunits but expression in the 

petal veins was often visible in the C2 lines, occasionally observed in C3 lines, and not 

seen for the other C subunits. Sepal expression in the veins was sometimes observed for 

CI, C2, and C4 but was inconsistently observed for the C3 lines. C5 gene expression 

was not observed in either petals or sepals. 

These results indicate that the highly homologous C subunits have very similar 

expression patterns. Intriguingly, similar expression was observed from constructs 

containing the sequence upstream and gene sequence from the different C subunits 

indicating that the elements that are present are able to drive similar expression of all the 

C subunits. 
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Figure 74. Class I PP2A C subunit gene expression in Arabidopsis thaliana. 
Representative examples of CI gene expression in the primary root tip (ACl::Cl:GUS-2 
10-day-old, 1 hour assay), lateral root (ACl::Cl:GUS-2 10-day-old, 1 hour assay), floral 
apex (BC1::C1:GUS-1, 24 hour assay), silique (ACl::Cl:GUS-4, 24 hour assay), 1-day-
old seedling (BCl::Cl:GUS-6, 16 hour assay), and 4-week-old plant (ACl::Cl:GUS-2, 
24 hour assay). 
Representative examples of C2 gene expression in the primary root tip (AC2::C2:GUS-
8, 14-day-old, 3 hours assay), lateral root (AC2::C2:GUS-8, 14-day-old, 1 hour assay), 
floral apex {AC2::C2:GUS-8, 24 hour assay), silique (AC4::C4:GUS-8, 24 hour assay), 
1-day-old seedling (AC2::C2:GUS-5, 16 hour assay), and 4-week-old plant 
(EC2::C2:GUS-3, 24 hour assay). 
Representative examples of C5 gene expression in the primary root tip {BC5::C5:GUS-4 
4-day-old, 1 hour assay), lateral root (BC5::C5:GUS-4 4-day-old, 1 hour assay), floral 
apex (BC5::C5:GUS-11, 24 hour assay), silique (BC5::C5:GUS-11, 24 hour assay), 1-
day-old seedling (BC5::C5:GUS-1, 24 hour assay), and 4-week-old plant 
(AC5::C5:GUS-2, 24 hour assay). 
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Figure 75. Gene expression of all five Protein Phosphatase 2A C subunit genes in Arabidopsis thaliana. 
Root tip expression pattern from CI (ACl::Cl:GUS-2, 10-day-old, 1 hour assay), C2 (AC2::C2:GUS-8, 14-day-old, 3 hour 
assay), C3 (BLC3::C3:GUS-2, 7-day-old, 1 hour assay), C4 (AC4::C4:GUS-2, 7-day-old, 1 hour assay), and C5 
(BC5::C5:GUS-4,4-day-old, 1 hour assay). 
Expression pattern at 4-5-weeks from CI assayed for 24 hours (ACl::C1 .GUS-2), C2 (EC2::C2:GUS-3), C3 (CC4::C4:GUS-
8), C4 (AC4::C4:GUS-7), and C5 (AC5::C5:GUS-2). 
Flower apex expression pattern from CI assayed for 24 hours (BC1::C1:GUS-1), C2 (AC2::C2:GUS-8), C3 (DLC3::C3:GUS-
7), C4 (AC4::C4:GUS-4), and C5 (BC5::C5:GUS-11). 



II.E. C3 and C4 gene expression pattern under different growth conditions 

Plants with mutated C4 gene have an altered root growth response to Na+ (Wang, 

2008). The expression pattern of the C4 gene was examined on medium supplemented 

with NaCl to determine if a change in expression could be associated with the root 

skewing phenotype. To determine when to observe C4 gene expression, the angle of root 

skewing was measured daily to establish when the most skewing occurred during the 

seven days post-transfer to NaCl supplemented medium. C3 gene expression was also 

observed to see if there was a change in expression of this highly homologous C subunit. 

II.E.l. Daily measurement of NaCl-induced root skewing 

As described previously, c4 mutant plants display a NaCl-induced root skewing 

phenotype. This phenotype is observed as an alteration in root growth direction. After 

transfer to medium containing additional NaCl, c4 mutant plants undergo a permanent 

change in root growth direction and do not align to the gravity vector. To determine the 

time course of root skewing, wildtype and c4-2 seedlings (Table 2) were grown for three 

days on vertically-oriented 0.5X MS plates, then transferred to fresh plates. The time of 

transfer is considered time 0 (Figure 81 A). Plates were oriented vertically in a growth 

room. The experiment consisted of 10 plates of basal media and 10 plates with additional 

NaCl; each plate received 5 wildtype seedlings and 5 c4-2 mutant seedlings. The 

experimental design was a 2X2 ANOVA and significance was determined by Tukey's 

test. Wildtype and c4-2 seedlings grown on 0.5X MS medium exhibited slight positive 

(rightward) skew and were statistically indistinguishable at all time points (Figure 76A). 

Slight rightward root skewing of wildtype seedling roots is normal and has been reported 
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previously (Rutherford and Masson, 1996; Oliva and Dunand, 2007). Wildtype seedlings 

grown on 0.5X MS+75 mM NaCl had a slight leftward skew which was significantly 

different from wildtype seedlings grown on 0.5X MS at days 1 through 7. An effect of 

NaCl on the direction of root growth of wildtype seedlings has also been described 

previously (Sun et al., 2008; Wang, 2008). Roots of c4-2 seedlings grown on 0.5X 

MS+75 mM NaCl displayed a pronounced negative (leftward) skewing that was 

significantly different from wildtype seedlings grown on the same medium. Wildtype 

and c4-2 root angles were significantly different from day 1 through day 7. These results 

indicate that there are significant differences in the angle of root skewing for the c4-2 

mutant grown on 0.5X MS+75 mM NaCl compared to the other condition and genotype 

and that this effect is apparent within 24 hours after transfer of seedlings to the NaCl-

supplemented medium. The greatest changes in direction of root growth seemed to occur 

soon after transfer to NaCl-supplemented medium. To determine when the greatest 

amount of change in growth direction occurred, the absolute day-to-day change in the 

skewing angle was calculated (Figure 76B). The most dramatic change in skewing angle 

occurred on the first and second days after c4-2 seedlings were transferred to 0.5X 

MS+75 mM NaCl medium. After the first two days, little daily change in the angle of 

root growth was observed. 

H.E.2. C4 and C3 gene expression pattern when exposed to NaCl 

A dramatic change in the angle of root growth occurred for c4 mutant roots, but 

not wildtype roots, when exposed to increased concentrations of NaCl (Figure 76). One 
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Figure 76. Angle of root growth of wild type (wt) and c4-2 mutant on 0.5X MS or 
0.5X MS+75 mM NaCl. 
A) Average root angle measurements of wild type and c4-2 on different media over seven 
days of growth. Approximately ten plates per experimental condition (-10 0.5X MS and 
-10 0.5X MS + 75 mM NaCl) were measured, The experiment was repeated once. Error 
bars represent standard deviation of the population of the entire experiment. The p value 
resulting from an ANOVA was 0.000 and significance between the genotypes and media 
per day was determined by a Tukey's test. For each day, values differing significantly 
from each other are represented by no letter, a or b. B) Change in root growth angle from 
day to day. 
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hypothesis to explain this phenotype is that changes in C4 gene expression are needed to 

help roots adapt to high levels of NaCl. Changes in C4 gene expression might indicate a 

role for the C4 subunit in response to NaCl stress. To determine if there was a change in 

C4 gene expression after transfer of seedlings to medium containing elevated NaCl 

concentrations, C4 gene expression in roots was examined using a wildtype plant line 

containing the AC4::C4:GUS-2 reporter construct at 1, 2 and 7 days after transfer to 0.5X 

MS+NaCl. One representative line was used for all experiments. Seedlings were 

incubated with the GUS substrate for 1 hour or 3 hours. Based on the promoter strength 

determined in section II.B, these assay times would easily show expression on basal 

media. There was no observable difference in expression between seedlings grown on the 

two media or assayed for 1 or 3 hours (Figure 77). However, the data does not rule out 

the possibility that changes in NaCl concentration may have other effects on the C4 

subunit of PP2A, such as altering subcellular localization or affecting protein-protein 

interactions. 

Expression patterns of the C3 and C4 subunit genes in plants undergoing NaCl 

stress were compared because these two subunits are highly homologous. The C3 and C4 

proteins are 98% identical, differing in only 6 of 313 amino acids, although the motifs in 

the C3 and C4 subunit gene promoter regions are dissimilar (Figure 61 and data not 

shown). From analysis of the c4 mutant, we have detected a NaCl-induced root skewing 

phenotype indicating that either the C4 protein has a unique function or that a correct C 

subunit dosage is needed. As described previously, the expression patterns of the C4 

andCJ genes on basal medium (0.5X MS) are very similar. Therefore representative C3 

(AC3::C3:GUS-3) and C4 (AC4::C4:GUS-2) lines were chosen and compared at 1 and 
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Figure 77. C4::C4:GUS-2 expression in root tips of transgenic seedlings transferred 
to 0.5X MS or 0.5X MS+75 mM NaCl. 
3 day-old seedlings were transferred from 0.5 X MS plates to either 0.5X MS or 0.5X 
MS+75 mM NaCl media and assayed 1,2, or 7 days later. 
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7 days after transfer to medium supplemented with NaCl. The expression patterns of 

C3::C3:GUS in seedling root tips at 1 and 7 days post-transfer were similar (Figure 78). 

In addition, no obvious differences in C3 gene expression were apparent whether 

seedlings were transferred to unsupplemented or NaCl-supplemented medium. A 

comparison of the expression pattern of C4::C4:GUS and C3::C3:GUS roots grown on 

the two media showed strong similarity between the two C subunits (Figure 79). From 

this result, it does not appear that the C3 and C4 genes are regulated by the presence of 

NaCl. 

II.E.3. C4 gene expression on NaCl or equivalent osmoticum 

Real-time PCR was used as a more sensitive method than using qualitiative GUS 

assay experiments to determine if C4 gene expression in roots changed after transfer to 

medium supplemented with NaCl. In addition, medium supplemented with mannitol at 

an equivalent osmolarity was used. Mannitol, a non-metabolizable sugar alcohol, was 

chosen to mimic the increase in osmotic strength caused by the addition of NaCl. When 

compared to the leftward skewing induced by NaCl, the addition of mannitol to the media 

causes a slight leftward root skewing (data not shown). Experimental design was the 

same as described in Section II.E.2 except that: 1) only wildtype was used, 2) 25°C and a 

photoperiod of 12 hours were used for the growth room conditions, 3) the seeds were 

sown in rows with almost no space between the seeds so plants would grow together in 

small clumps to enable faster transfer to the experimental media, and 4) three rows of 

seedlings were placed on the plates with experimental media. The roots were harvested 

24 hours post-transfer to the experimental media. The three experimental media were 
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Figure 78. C3::C3:GUS-3 expression in root tips of transgenic seedlings transferred 
to 0.5X MS or 0.5X MS+75 mM NaCl. 
Three-day-old seedlings were transferred from 0.5 X MS plates to either 0.5X MS or 
0.5X MS+75 mM NaCl media and assayed for GUS activity 1 or 7 days later. Two 
different GUS assay times were used. 

145 



C4::C4:GUS C3::C3:GUS 

1 hour GUS assay 

O.5XMS ,mt 

0.5X MS + 
75 mM NaCl 

3 hour GUS assay 

o.5XMs' ^ H H H P ! -^WPP^ 

0.5XMS + 
75 mM NaCl 

Figure 79. Comparison of C4::C4:GUS and C3::C3:GUS expression in root tips. 
Seedlings were transferred from 0.5 X MS plates to either 0.5X MS or 0.5X MS+75 mM 
NaCl media and assayed 1 day later. Two different GUS assay times were used. 
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basal medium (0.5X MS), basal medium supplemented with 75 mM NaCl, and basal 

medium supplemented with 150 mM mannitol. Two biological replicates were prepared 

for the basal and NaCl medium and only one replicate for mannitol. RNA was extracted, 

reverse transcribed into cDNA, and expression was determined using relative quantitative 

real-time PCR (Figure 80). Results indicated that neither NaCl nor mannitol caused a 

significant change in the level of C4 gene expression. 
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Figure 80. C4 gene expression in roots measured by Real-Time PCR. 
Data are represented as the ratio between the normalized critical thresholds (Ct) of the 
control condition versus the experimental condition and significance was determined by a 
Tukey's test. A indicates no significance. 
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CHAPTER III 

DISCUSSION 

The heterotrimeric protein phosphatase 2A is a biologically important enzyme 

that regulates many signaling pathways (Janssens and Goris, 2001). Previous work in the 

Hrabak lab demonstrated a Na+-induced root skewing phenotype for the fourth isoform of 

the PP2A catalytic subunit in Arabidopsis thaliana (Wang, 2008). The first goal of this 

thesis was to document the expression of the C4 gene during the life cycle of Arabidopsis 

and correlate the observed expression with the root skewing phenotype. The second goal 

was to document the expression patterns of the four other C subunit genes (CI, C2, C3, 

and C5) and compare the expression patterns of all five C subunit genes. 

To elucidate the expression of the C subunits, constructs were made containing an 

upstream genomic region defined as the 'promoter' and the unspliced coding region 

upstream of the stop codon fused to the reporter uidA gene. The resulting protein would 

encode the entire C subunit with (3-glucuronidase (GUS) fused to the C terminus. Similar 

constructs were made for each of the five C subunit genes and transformed into plants. 

Transgenic plants were selected using the antibiotic hygromycin and resistant plants were 

propagated. Plants were routinely assayed for P-glucuronidase for 1, 3, 12, and 24 hours. 

Assays were performed on plants that were 1, 2, 3-4, 6-7, 10, and 14 days-old, as well as 

on 4-week-old plants and on reproductive structures (buds, flowers and siliques) of 

mature plants. After clearing the chlorophyll with ethanol, the samples were 

photographed. 

The results from this research showed that the C4 gene was expressed in most cell 
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types throughout the plant at all stages of development. The highest expression was in 

the root tips and lateral root meristems which correlates with the expected location of the 

cells that would differentially elongate during Na+-induced root skewing. The CI, C2, 

C3, and C5 genes had very similar and overlapping expression patterns to the C4 gene. 

Therefore, all PP2A C subunits are expressed throughout Arabidopsis development. 

III.A. Rationale for constructs 

A common molecular biology technique to determine expression of a gene-of-

interest at the cellular level is to use a reporter gene. There are many reporter genes 

available and each has advantages and disadvantages and is dependent on the application. 

The reporter gene used for this study was p-glucuronidase (GUS), which is often utilized 

in plant molecular biology. The main advantage of GUS as a reporter is that low levels of 

expression in a single cell can be detected. The uidA gene encodes the very stable GUS 

enzyme which can be used to generate either quantitative or qualitative data. Qualitative 

data uses the colorless X-Gluc substrate which is cleaved by GUS resulting in an easily 

detectable blue diX-indigo precipitate. The product from this reaction accumulates over 

time as long as the substrate and enzyme are available. Therefore, weak expression can 

be detected by increasing the assay time. By using various assay times, it is possible to 

determine relative expression levels in different cells within a sample. Another 

advantage is that, for this application, the GUS assay is easier to use than other reporters 

such as green fluorescent protein (GFP). GFP is excited by a specific wavelength of light 

and the emission of the fluorophore is detected by fluorescence microscopy. A limitation 

of GFP is detecting weak expression if not enough GFP molecules have accumulated and 
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the amount of fluorescence is below the detection limit (Mantis and Tague, 2000). Also, 

GFP can undergo photobleaching upon prolonged exposure to the excitation wavelength, 

thus further reducing the GFP signal. Unlike GFP which requires a microscope capable 

of exciting the fluorophore, viewing and documenting the GUS assay samples does not 

require a special light source nor do the samples undergo bleaching. Therefore, there are 

many benefits to using the GUS reporter to determine C subunit gene expression. 

Even though GUS is commonly used as a reporter gene in plant molecular 

biology, there are some drawbacks to this technique. One disadvantage is that 

endogenous GUS exists in plants and is active in acidic conditions and inactive at neutral 

to slightly alkaline pH (Martin et al., 1992). Neutral pH was used in all experiments to 

ensure that the observed diX-indigo precipitate occurred because of the GUS expressed 

from the transgene and not the endogenous GUS. Accumulation of diX-indigo in the 

reproductive tissue has been reported to occur in non-transformed plants at neutral pH 

(Martin et al., 1992); however, blue percipitate in reproductive tissues was not observed 

under the assay conditions used for this study (Figure 56). A second disadvantage is that 

detection of GUS is a destructive assay. If an entire plant is assayed, then clearly it is not 

possible to obtain progeny from this individual. A third disadvantage is that, to perform 

the assay, the sample must be immersed in the GUS substrate, vacuum infiltrated to 

remove as much air in the tissue as possible, and incubated for the desired assay period. 

These manipulations could alter the expression pattern if the promoter is induced by 

anoxic stress. Another issue observed in my study was that no expression was seen in 

parts of the leaf while other leaves at the same developmental level showed expression 

patterns in these areas. This non-reproducible pattern of expression was probably due to 
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the substrate did not fully penetrate the tissue (Guivarc'h et al., 1996). This problem was 

overcome by either viewing multiple samples to generate a clear picture of the expression 

patterns or by analyzing regions where the GUS substrate could easily penetrate the 

tissue. A fourth potential drawback is the stability of the GUS enzyme. In protoplasts, 

the intact GUS enzyme is estimated to be stable for approximately 50 hours (Jefferson et 

al., 1987). Because of the stability of the GUS enzyme, it can be difficult to determine 

when promoter function ceases. My constructs were made to fuse the protein of interest 

(C subunit) to the N-terminus of the GUS enzyme. Since protein half-life is typically 

controlled by the N-terminal amino acid (Varshavsky, 1997), the half-life of the fusion 

protein should be the same as the native protein. Another drawback is the cost of the 

GUS substrate, which may be cost prohibitive for some researchers. Despite these 

limitations, GUS was chosen because its many advantages. 

A qualitative approach was used in this study to determine the cell specificity and 

the relative strength of PP2A C subunit gene expression. A region that should contain the 

entire promoter as well as the entire coding sequence (introns and exons) was fused 

upstream of and in-frame with the uidA gene. In plants transformed with such a 

construct, when the C subunit promoter region is activated, the protein product will be the 

C subunit with the GUS enzyme fused to its carboxy terminus. Due to technical 

limitations, potential regulatory information in the native 3' UTR and terminator were not 

included in this study although it is known that, in some genes, these downstream 

sequences may affect the level of expression (Larkin et al., 1993; Wickens et al., 2002; 

He and Hannon, 2004). In addition, mRNA half-life may be regulated by the 3' UTR. 

However, many reporter gene studies where the constructs did not include the native 3' 
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UTR or terminator have generated results consistent with microarray expression data or 

with in situ hybridization expression data (Becnel et al., 2006), indicating that these 

domains are not essential in many cases. The vector in this study, pMDC163, used the 

NOS terminator from the Agrobacterium tumefaciens nopaline synthase gene downstream 

of the uidA gene. 

A plasmid control was constructed to determine if the flanking sequences in the 

T-DNA were able to induce expression of the uidA gene. No accumulation of the GUS 

product was observed in multiple control sample lines. This control also indicates that 

there was no endogenous GUS activity detected in the assay conditions used. 

III.B. Comparison of results to previously-published C subunit expression patterns 

Microarray data available online at the Genevestigator website 

(www.genevestigator.com) was examined to determine the native transcript expression of 

PP2A C subunit genes in whole tissues. Unfortunately, the C3 and C4 transcripts cannot 

be distinguished because of the probe used on the chip but expression data for the other C 

subunits was analyzed. In agreement with the results presented here, the microarray data 

shows that the CI, C2, and C5 subunit genes are expressed at high levels throughout the 

plant and throughout Arabidopsis development. In contrast to the GUS expression data 

presented in this thesis, the microarray database does not reveal cell-specific expression 

and does not distinguish between the C3 and C4 subunits. 

Like microarrays, northern blots have been use to detect the expression of C 

subunits in whole tissues. Expression data from various reports indicates that the CI, C2, 

C3 and C4 genes are expressed at different strengths throughout the plant (Arino et al., 
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1993; Perez-Callejon et al., 1993; Casamayor et al., 1994). No northern blot data has 

been reported for the C5 gene. These reports indicated that the highest expression for the 

C subunits was consistently in flowers and roots while the weakest expression was in the 

leaves of adult plants (Perez-Callejon et al., 1993; Casamayor et al., 1994). The high 

expression in flowers observed for the four C subunits is not consistent with the data 

presented in this thesis where flower expression was much weaker than the expression in 

other tissues. Both the expression data presented in this thesis and microarray data 

indicate that there is C3 or C4 expression in the leaves while Perez-Callejon et al. (1993) 

report no C3 subunit expression in leaves using a northern technique. These blots were 

probed with 25S cytoplasmic ribosomal RNA to determine if the same amount of RNA 

was loaded in each lane, but this loading control was not published. Therefore, a 

potential reason for this discrepancy is that the transcript level was too low for detection 

using the northern technique. In all three studies, the strength of expression of the CI, 

C2, C3 and C4 subunits was not similar which is different from the relatively consistent 

levels of expression reported here. Similar to the microarray, northern analysis does not 

reveal expression patterns at the level of single cells. It is also unclear from the work of 

Perez-Callejon et al. (1993) and Casamayor et al. (1994) whether the probes used for 

northern analysis were specific to each C subunit. In summary, differences between the 

data presented here and previously published data are most likely due to the technical 

limitations of the different approaches used to determine C subunit expression. 

Immunodetection of individual C subunits is complicated by their extremely high 

degree of amino acid conservation. Therefore, information generated by western blotting 

can only determine the presence of one or more C subunits in a tissue but cannot 
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differentiate between individual C subunits. C subunit(s) were detected in the root, 

hypocotyl, cotyledons and leaves of dark and light grown plants using monoclonial 

antibodies raised against the conserved amino acids near the carboxyl terminus of the 

human PP2A C subunits (Zhou et al., 2004). In mature plants, C subunit(s) protein was 

reported in roots, flowers, stem and whole rosettes of both Columbia and Wassilewskija 

plants and these data are congruent with the GUS expression data presented in this thesis. 

Zhou et al. (2004) also showed little to no C subunit expression in siliques of either 

ecotype using immunoblotting while in young siliques all three A subunits were detected. 

The GUS expression data presented in this thesis showed that all C subunits were 

expressed in siliques, albeit at a low level. The descrepancy may be explained if the 

expression of the C subunits in siliques is too low to detect with antibodies but can be 

detected with the GUS enzymatic assay. 

The novel data presented in this thesis is the first documentation of the CI, C3, 

C4 and C5 subunit expression patterns determined by GUS. There are two previous 

reports documenting C2 gene expression. In one study, nucleotides -561 to +23, 

counting from the transcription start site of the C2 gene, were fused to the GUS reporter 

gene and the resulting expression pattern at various stages of development was 

documented (Thakore et al., 1999). The promoter region used by Thakore et al. (1999) 

included the region up to the preceeding gene encoding tRNA-proline. In my study the 

tRNA-proline gene and the sequence upstream to the next protein encoding gene was 

included as the C2 "promoter" region. Their GUS assay procedure also included an 

initial fixation step of 20 minutes in cold 90% acetone before vacuum infiltration and 

incubation in the GUS substrate overnight. However, acetone fixation can reduce the 

155 



amount of diX-indigo accumulation (personal observations). Thakore et al. (1999) 

observed C2 gene expression in the shoots, crown and root tip of 3- and 8-day-old 

seedlings. The vascular system of the leaves of older plants showed C2 gene expression, 

while only a few lines showed expression in the root vascular system. In mature plants, 

expression was detected in leaves, stem, anthers, pollen, and some carpels. The 

expression profile described above is similar to the one presented in this thesis. One 

difference is that every line observed had expression throughout the root including, but 

not limited to, the root tip. This difference could be explained by the longer time of my 

assays. 

The second report on C2 expression used a promoter trap method (Pernas et al., 

2007). After screening through a random population of T-DNA insert lines, a line was 

found which had GUS inserted in frame with the C2 coding sequence. Therefore, this 

line should contain all of the upstream regulatory information, but any potential 3' UTR 

regulatory information would be likely be non-functional due to the NOS terminator at 

the end of the GUS gene. After 6 hours of incubation with the GUS substrate, Pernas et 

al. (2007) reported C2 gene expression in and near the root tips, lateral root meristems, 

vascular tissues and guard cells in leaves, as well as in anthers. The data I collected are 

consistent with their results. However, unlike my data, they did not detect expression in 

the siliques, in petals or any other flower part, or in trichomes. In my assay conditions, 

detectable C2 gene expression in the siliques, flower organs, and trichomes only occurred 

after 12 or 24 hours of incubation, therefore their allotted 6 hour assay period may not 

have been long enough to observe expression. 

The histochemical GUS assay used in this thesis provides a detailed description of 
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C subunit expression at the cellular level throughout Arabidopsis development. The GUS 

data provides a cellular analysis of gene expression for each of the PP2A C subunit 

genes, unlike microarrays and northerns which provide expression data at the tissue and 

organ level only. In comparison to immunodetection, which cannot distinguish the 

different C subunits, the PP2A-GUS fusion constructs detected with the GUS assay can 

analyze each C subunit independently. By varying the assay length, it is possible to 

determine which tissues had the highest and lowest levels of expression. At the longest 

assay time, weak expression was observed in floral organs which had not been previously 

reported. Therefore, this approach in general correlates well with published data and 

provides even more detailed information about C subunit gene expression. 

III.C. Root expression of the C4 subunit gene 

Mutants in the Protein Phosphatase 2A C4 subunit have a root skewing phenotype 

which is induced in the presence of elevated levels of Na+ (Wang, 2008). The data 

presented in this thesis showed that the skewing response occurs within the first two days 

after transfer to medium supplemented with Na+. The new growth direction is then 

maintained for the remainder of the assay. Changes in C4 gene expression were assayed 

in roots to determine if there was a correlation between C4 expression and the Na+-

specific root phenotype. Two approaches, in situ GUS assays of plant reporter lines and 

real-time PCR, were used to determine if C4 expression changed in the first two days 

after transfer to medium with elevated NaCl. The GUS assays showed no observable 

change in expression pattern either 1 or 2 days post-transfer to NaCl-supplemented 

medium. GUS expression was also observed for plant lines containing the C3 subunit 
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reporter gene fusion and no expression differences were observed between basal and 

NaCl-supplemented media. Data from real-time PCR also showed that there was no 

change in expression 1 day post-transfer to medium supplementated with NaCl or with 

the osmotic equivalent concentration of mannitol. Together, these data indicated that C4 

gene expression was not changed by NaCl or osmotic stress. Thus the role of the C4 

subunit is maintaining normal root growth under high Na+ conditions is not regulated at 

the level of transcription. 

A common genetic approach to understand which genes are involved with 

various pathways is to determine whether gene expression changes under a particular 

stress. Based on microarray data, CI, C2, C3IC4, and C5 subunits show little to no 

change in expression upon exposure to various stresses. The stress-induced expression 

data presented in this thesis also is consistent with the microarray data (Czechowski et al., 

2005). Arabidopsis C2 gene expression has been reported to be induced upon treatment 

with abscisic acid (Pernas et al., 2007). Thus, even though PP2A has been implicated in 

many cellular pathways, regulation of the C subunit does not occur at the level of 

transcription. 

Microarray data indicate that the A subunit shows only very slight changes in 

expression when exposed to various stresses. The A subunits are also expressed 

ubiquitously throughout Arabidopsis during all stages of development (Zhou et al., 2004). 

It is likely that all of the A and C subunits are expressed in most cells regardless of plant 

age or growth conditions; expression of many B subunits is altered when exposed to 

various stresses. Therefore, regulation of the PP2A holoenzyme is probably dependent 

upon various B subunits that are induced by different stresses. 
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III.D Partial dissection of the C3 promoter 

Promoter deletions are a common approach to study promoter structure. 

Successively shorter promoters are analyzed to determine the location of promoter 

elements by detecting an effect on gene expression. A modified promoter deletion 

approach was used to determine the location of the promoter of the C3 gene. One 

construct, sC3, contained 153 bp upstream of the transcription start site while LC3 

included 2313 bp upstream. Both constructs included the 5' UTR, introns, and exons of 

the C3 gene. The sC3 construct ended near the transcription start site of the adjacent 

predicted gene At2g42510 (Figure 4), but since the function of At2g42510 is unknown 

and it could be a pseudogene, a second construct was made which included 2160 bp of 

additional upstream sequence. Comparison of the expression pattern and relative 

promoter strength of transgenic plants carrying either sC3 or LC3 demonstrated that both 

"promoter" regions produced similar expression patterns at all developmental stages and 

in all tissues. This result indicates that the regulatory information needed to drive C3 

gene expression is encompassed in the sC3 construct containing 153 bp upstream of the 

transcription start site and the exons and introns of the gene itself. 

The promoter regions of the C3 subunit gene were mapped previously using a 

promoter deletion approach (Perez-Callejon et al., 1998). The C3 subunit constructs 

included 89, 212, 322, 569, or 914 bp upstream of the transcription start site fused to the 

entire 5' UTR and first four codons. The C3 gene fragments were then fused to GUS, 

transformed into protoplasts, and assayed to determine promoter strength. For the C3 

subunit, GUS activity from the 914 and 569 bp promoter regions was similar. GUS 

activity from the 322 and 212 bp constructs decreased approximately 80% when 
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compared to the two longer constructs, while approximately 10% activity was observed 

from the 89 bp promoter. These results indicate that at least one major positive 

transcription factor binding site occurs between -569 and -322 bp of the C3 promoter. 

While the data presented in this thesis indicated no difference between expression of a 

153 and 2313 bp C3 promoter, the promoter deletion study showed a dramatic decrease 

in expression in promoter regions shorter than 322 bp. However, my experiment differs 

from that of Perez-Callejon et al. (1998) in several ways. First, my constructs contain all 

of the introns and the coding regions of the C3 gene, while Perez-Callejon et al. (1998) 

used only 158 bp of the first exon. Important regulatory information key to driving the 

C3 expression may be present in the introns and this information is lacking in the Perez-

Callejon et al. (1998) constructs. Second, the C3 promoter may drive expression 

differently in intact plants than in protoplasts. 

Interestingly, the 5' UTR of the C3 gene contains a simple sequence repeat (SSR) 

of the dinucleotide GA repeated 22 times. The exact regulatory nature of the GA SSR is 

unknown, but this type of SSR is enriched in the 5' UTRs of both Arabidopsis and 

Brassica genomes and has been hypothesized to be involved in gene regulation (Zhang et 

al., 2006). 

III.E. Comparison of C subunit expression patterns 

Similar to other gene families with multiple members, the nucleotide sequences of 

the promoters of the five C subunit are highly variable (unpublished observation; Thakore 

et al., 1999). Variability in promoter sequence is reflected in the different predicted 

arrangements of transcription factor binding sites which could lead to differential 
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regulation (Figure 61). Despite the different upstream regions, expression patterns of the 

five C subunit genes were almost indistinguishable. The upstream regions of the A 

subunits are also highly variable and also display very similar expression patterns (Zhou 

et al., 2004). It is difficult, if not impossible, to predict the expression patterns from 

sequences gazing and there are certainly cases where expression patterns from members 

of a gene family are very different. For example, 1-aminocyclopropane-l-carboxylate 

synthase (ACS) gene family members have overlapping but unique expression patterns 

(Tsuchisaka and Theologis, 2004). The same is true for the xyloglucan 

endotransglucosylases/hydrolase (XTHs) family whose 33 members have unique but 

overlapping expression patterns (Becnel et al., 2006). 

The almost identical expression patterns of the five PP2A C subunit genes 

indicate that all five C subunits are probably available in most cells for formation of 

holoenzymes. As a result, it is unlikely that the C subunits are the limiting subunit for 

heterotrimer formation. In fact, in Saccharomyces cervisiae, there are three C subunits 

for every A subunit and eight B subunits (Gentry and Hallberg, 2002), indicating that the 

A subunit is limiting in that organism. 

Despite highly similar amino acid sequences between the C3 and C4 subunit, a 

sodium-induced root skewing phenotype was found in c4 mutant plants. There are a 

number of alternative explanations that might explain how two genes with very similar 

expression patterns and sequences might not be functionally redundant. First, a knockout 

of any C subunit gene might produce a root phenotype if it is the levels of total C protein 

that are important rather than which specific subunits are present. Second, the 6 amino 

acids that differ between the C3 and C4 proteins may alter the catalytic site of the enzyme 
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and result in different substrate specificities for C3- versus C4-containing heterotrimers. 

Third, the amino acid differences might affect the stability of the heterotrimers or subunit 

binding affinity resulting in holoenzymes with different half-lives. Further experiments 

are required to elucidate the specific roles of these two subunits in Arabidopsis. 

III.F. Expression patterns of PP2A gene family members in other organisms 

To date, all sequenced eukaryote genomes encode A, B, and C subunits of PP2A 

(Kerk et al , 2002; Janssens et al., 2008; Moorhead et al., 2009). All known C subunits 

contain the same six amino acids (TPDYFL) at their carboxy terminus, an internal 

phosphoesterase signature motif (DXH-(-25)-GDXXD-(-25)-GNH), and an okadaic acid 

binding sequence (YRCG) (Mayer-Jaekel and Hemmings, 1994; Zhuo et al., 1994; 

Janssens et al., 2008). The most amino acid divergence occurs near the amino terminus 

of the C subunit. 

Many plants contain multiple copies of the C subunit genes which are classified 

into two subfamilies - class I and II. In Arabidopsis, the CI, C2 and C5 subunits are 

grouped into Class I while C3 and C4 belong to Class II. A new C subunit nomenclature, 

using an abbreviated form of the organism's scientific name followed by the subunit 

name and number, will be used from this point on to distinguish between the C subunits 

of different species. 

III.F.l. PP2A in Oryza sativa 

In the monocot Oryza sativa (Asian Rice), there are five C subunit isoforms. 

Class I contains OsPP2ACl and OsPP2AC3, while Class II contains OsPP2AC2, 
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OsPP2AC4, and OsPP2AC5 (Yu et al., 2005; Yang et al., 2010). Microarray analysis 

indicates that all C subunits are ubiquitously and highly expressed at different stages of 

rice development (Yang et al., 2010). A more nuanced picture of C subunit expression 

was obtained from notherns. 

OsPP2ACl and OsPP2AC3 are expressed in the leaf, stem and root of rice from 

2-14 weeks of age and in all stages of panicle (flower) development (Yu et al., 2003). 

OsPP2ACl is highly expressed in the stems, roots and flowers, but weakly expressed in 

the leaves. OsPP2AC3 is expressed similarly, except there is also weak expression in the 

roots. No changes in expression for OsPP2ACl or OsPP2AC3 are observed in the stem 

when exposed to stresses such as drought, heat shock, or salinity, but both OsPP2ACl 

and OsPP2AC3 are up-regulated in the leaves when exposed to drought or high salinity. 

OsPP2AC3 expression in roots is down-regulated when exposed to drought. In situ 

hybridization shows highly similar expression patterns for both OsPP2ACl and 

OsPP2AC3 in the root apex and elongation zone, stem, and inner and outer flower sheath. 

OsPP2ACl and OsPP2AC3 are expressed in the meristematic and elongation zones of the 

root. The only difference is observed in the leaf where OsPP2AC3, but not OsPP2ACl, 

expression is detected in the leaf epidermis. 

By northerns, OsPP2AC2, OsPP2AC4, and OsPP2AC5 vary in expression levels 

throughout development (Yu et al., 2005). In the leaf, OsPP2AC2 and OsPP2AC4 are 

weakly expressed while OsPP2AC5 expression is much stronger. All three are expressed 

strongly in the stem but levels decrease with plant age. In the root, consistent expression 

is observed from OsPP2AC2 and OsPP2AC4 at different ages of the plant, while 

OsPP2AC5 expression decreases with age. Addition of 300 mM NaCl causes no 
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expression change of OsPP2AC2 in the leaf, stem or root. Expressions of both 

OsPP2AC4 and OsPP2AC5 is induced by 300 mM NaCl in the leaf, but expression was 

not altered in the stem or root. The application of heat and drought stress cause down-

regulation of OsPP2AC2, OsPP2AC4 and OsPP2AC5 subunit genes in the leaf and stem, 

but no change in the root. 

III.F.2. PP2A in Medicago sativa 

There are three known C subuntis in Medicago sativa (alfalfa): MsPP2A 

Ca/pp2aMs, MsPP2A Cp, and MsPP2A Cy (Pirck et al , 1993; Toth et al., 2000). 

MsPP2A Ca/pp2aMs expression, determined by northern analysis, is detected in somatic 

embryos, roots, stems, nodes, young and old leaves, flower buds and mature flowers 

(Pirck et al., 1993). The highest expression is found in stems while the weakest 

expression is found in mature flowers. The expression of the two other C subunits is 

currently unknown. 

III.F.3. PP2A in Nicotiana tabacum 

There have been two reports on PP2A C subunits in Nicotiana tabacum 

(cultivated tobacco). Two C subunit genes, NPP4 and NPP5, were isolated from a 

cDNA library made from floral bud mRNA (NPP1, NPP2, and NPP3 encode PP1 

catalytic subunits. Suh et al., 1998). Northern blots indicate that NPP4 is expressed in 

roots, stems, leaves and flowers, while NPP5 is predominatly expressed in leaves and all 

stages of flower development. NPP4 is grouped in Class I and NPP5 is in Class II (Yu et 

al., 2005). 
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III.F.4. PP2A in Solatium tuberosum 

The Solanum tuberosum (potato) genome encodes six C subunit isoforms. The 

three C subunits in Class I are StPP2ACl, StPP2AC2a and StPP2AC2b whereas 

StPP2AC3, StPP2AC4, and StPP2AC5 are in Class II (Pais et al., 2009a). Western blots 

using an antibody that recognizes all C subunits reveal that PP2A C subunit(s) are present 

in all potato tissues, but the lowest amount is present in the flower bud and root compared 

to the open flower, shoot apex, leaf and stem (Pais et al., 2010). RT-PCR product was 

not generated in the roots for StPP2ACl and StPP2AC2b indicating that these two 

subunits are not expressed in roots, while the other four C subunits are expressed at 

various levels in the root. In developing potato tubers the expression of PP2A C subunit 

genes varies depending on the subunit. StPP2AC3 and StPP2AC4 expression is observed 

throughout tuber development, while StPP2ACl, StPP2AC2a, StPP2AC2b, and 

StPP2AC5 expression is primarily limited to the developmentally older tuber stages. An 

increase in overall C subunit expression in older tubers was also observed as higher 

accumulation of C subunit protein (Pais et al., 2010). 

Isoform-specific northern probes were used on detached leaflets to determine the 

expression of the six C subunits and westerns were used to determine the total C subunit 

protein accumulation when exposed to various stresses (Pais et al., 2009a). When the 

plant was exposed to cold, no change in expression or protein levels was observed for any 

of the isoforms. Salt exposure induced expression in all C subunits and increased C 

subunit protein accumulation. Mechanical wounding caused an isoform specific 

induction only in StPP2AC2b which also resulted in an increase in total C subunit 

protein. Chitosan and PGA (polygalacturonic acid) caused StPP2ACl, StPP2AC2a and 
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StPP2AC2b gene expression to be upregulated which also resulted in an increase in total 

C subunit protein. 

III.F.5. PP2A in Solanum lycopersicum 

Solanum lycopersicum (garden tomato) has five C subunit isoforms, the same as 

Arabidopsis. Isoforms LePP2ACl and LePP2AC2 belong to subfamily class I and class 

II contains LePP2AC3, LePP2AC4, and LePP2AC5 (Pais et al., 2009a). Only a partial 

transcript for LePP2AC5 has been found and expression has not been observed by 

northern blot in any of the tissues or stress conditions. The same stress experiments 

performed on Solanum tuberosum and described above were used on detached leaflets of 

Solanum lycopersicum. Cold stress down-regulated LePP2ACl, LePP2AC2 and 

LePP2AC3 expression while no change in LePP2AC4 gene expression was observed. 

The decrease in expression correlated with the decrease in C subunit protein. Salt stress 

caused no change in expression or protein accumulation in any C subunit genes. 

LePP2ACl and LePP2AC2 and the total PP2A protein level was up-regulated in response 

to mechanical wounding while the rest of the C subunits expression was not changed. 

PGA and chitosan stress response was similar to what was observed for mechanical 

wounding. 

III.F.6. PP2A in humans 

In human, the C subunits are not divided into subfamilies because there are only 

two subunits - Ca and Cp. The C subunits are expressed ubiquitously, albeit Ca is 
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typically more abundant than CP (Khew-Goodall and Hemmings, 1988; Zhou et al., 

2003). 

III.F.7. Comparison of C subunit expression in different organisms to Arabidopsis 

A common pattern observed for many organisms where C subunit expression has 

been investigated is that C subunits are expressed ubiquitously. This is consistent with 

the notion that PP2A is a essential enzyme (Michniewicz et al., 2007; Janssens et al., 

2008). Interestingly, in some organisms, C subunits have undergone specialization and 

are expressed at different levels either under basal conditions or when exposed to stress. 

Potentially, these C subunits may regulate pathways involved with a particular stress. 

According to the Arabidopsis microarray data and the data presented in this thesis, 

Arabidopsis PP2A C3 and C4 subunit expression is not significantly altered by NaCl or 

other stresses (Czechowski et al., 2005). This is different from many other plant species 

and indicates either that Arabidopsis PP2A C subunits have diverged recently and 

specialization has not yet occurred or that all five C subunits have unique functions that 

are required in each cell. 

In the monocot Oryza sativa, OsPP2ACl and OsPP2AC3 are both expressed in 

the root meristematic and elongation zone. This expression pattern is similar to the dicot 

Arabidopsis C subunit expression pattern. It would be interesting to determine if C 

subunits are commonly expressed in these root regions in other monocots or dicots. If so, 

this could indicate that PP2A is required for root organization and development in all 

vascular plants (Michniewicz et al., 2007; Blakeslee et al., 2008). 
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III.G. Conclusions 

The data presented in this thesis provide a detailed analysis of the expression 

patterns of Protein Phosphatase 2A C subunit gene expression throughout Arabidopsis 

development. Gene expression from all C subunit genes were very similar and were 

observed throughout most organs during the life cycle of the plant. The primary and 

secondary root tips were the regions of the plant with the highest gene expression for all 

C subunits. Consistent with the sodium-induced root skewing phenotype of the c4 

mutants, the C4 gene was highly expressed in both the root tips and the root elongation 

zone. C4 gene expression was not altered by the addition of NaCl to the medium. These 

data are useful because the expression patterns can be correlated with any new C subunit 

phenotypes and can be used to develop questions regarding PP2A holoenzyme regulation 

in Arabidopsis. 
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CHAPTER IV 

METHODS 

IV.A. Primer design, PCR amplification, and TOPO cloning 

Primers (Table 6) were designed by using Oligo Primer Analysis Software 

(Molecular Biology Insights, Inc. Cascade, CO) and synthesized by Integrated DNA 

Technologies (Coralville, IA). 

PCR was performed using either a PTC-100 or PTC-200 thermal cycler 

(MJResearch, Watertown, MA). Large genomic fragments were amplified using ExTaq 

DNA polymerase (Takara, Moutain View, CA). A 50 \i\ reaction contained 1.25 units 

DNA polymerase, 200 \\M dNTP mix (Takara), lx buffer (Takara), 0.2 |iM of each 

primer, and 100 ng Arabidopsis thaliana ecotype Columbia genomic DNA. The PCR 

temperature profile was 94°C for 1 minute, followed by 30 cycles of 94°C for 30 

seconds, the primer specific annealing temperature for 1 minute, and 72°C for 45 sec/Kb, 

and ending with 2 minutes at 72°C. All products were visualized by electrophoresis 

through a 1% GenePure LE agarose gel (BioExpress, Kaysville, UT) in IX TAE (40 mM 

Tris-acetate (pH 8.0), 1 mM EDTA). Gels were stained with ethidium bromide and 

visualized under 312 nm UV light with a transilluminator (Fotodyne, Inc., Hartland, WI). 

PCR products were separated by using 1% SeaPlaque agarose (Lonza Rockland, 

Inc., Rockland, ME) and DNA fragments were purified from agarose slices using a 

Wizard PCR Prep DNA Purification System following manufacturer's instructions 

(Promega Corp., Madison, WI). To generate the 3' adenine overhang needed for TOPO 

cloning, the PCR product was incubated with 0.7-1 unit of Tag DNA polymerase, 0.16 
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Table 6. Primers used in this study. 

Gene Primer Primer Sequence (5'-3f) 
Amplified Name 

Purpose of Primer 

CI CI GWC 5' ATT TTC ACT ATG AAC TCT ATT 
(Atlg59830) GAG 

C1 /C2 GWC 3' C A A AAA ATA ATC AGG GGT 

CI 5' TCA ACT TGT AAT GGA AAG 

C2 C2 GWC 5' TAC TCA AAC GGT GAA GAG AGC 

(Atlgl0430) 

C2 5' ACA ACA ATG GAC TAA GTC 

C3 C3 GWC 5'A GTA GAA GTT AGT ATT AAA CCG 

(At2g42500) 
C3 GWC 5'B TCA AGT AGT TAA GTC ATC 

C3 GWC 3' CAG GAA ATA GTC TGG AGT 

C4 
(At3g58500) 

C3 5' ACT ATT GTT ACC GTT GTG 

C4 GWC 5'A GCA AAT ACC AAA TAG GTC 

C4 GWC 3'A AAG GAA ATA GTC AGG TGT 

C4 5' CCA AAC TAT TGC TAT CG 

AtPP2AC4F2 TTG TGT TCC AGG TTG CTT CTC TT 

AtPP2AC4R2 TTC ATG AGA GGT TTT AAA GTT 
CAT TGA C 

C5 C5 GWC 5' TTA GTT AGG TCT AAG TTC AAG 
(Atlg69960) 

C5 GWC 3' CAA AAA ATA ATC TGG AGT 

C5 5' GTG CCA AGA AAA GAA C 

AtTIP41 exF CG A GGT TTA CGC ATC CAT G A Other 

AtTIP41 exR TCG ACA GCG AGA GAA GTG AGA A 

GUS Rev CGA CCA AAG CCA GTA AAG 

Paired with C1/C2 GWC 3' 
to amplify genomic region; 
product size 2621 bp 

See CI GWC 5' 

Sequencing gene/GUS 
junction 

Paired with C1/C2 GWC 3' 
to amplify genomic region; 
product size 3365 bp 

Sequencing gene/GUS 
junction 

Paired with C3 GWC 3' to 
amplify genomic region; 
product size 3469 bp 

Paired with C3 GWC 3' to 
amplify genomic region; 
product size 5623 bp 

See C3 GWC 5'A and C3 
GWC 5'B 

Sequencing gene/GUS 
junction 

Paired with C4 GWC 3'A to 
amplify genomic region; 
product size 4974 bp 

See C4 GWC 5'A 

Sequencing gene/GUS 
junction 

Amplifying 3' UTR for 
Real-time PCR. 

Amplifying 3' UTR for 
Real-time PCR. 

Paired with C5 GWC 3' to 
amplify genomic region; 
product size 4930 bp 

See C5 GWC 5' 

Sequencing gene/GUS 
junction 

Amplifying housekeeping 
gene for real-time PCR 

Amplifying housekeeping 
gene for real-time PCR 

Amplification of junction 
between C and GUS gene 
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mM dATP, and lx Promega PCR buffer (50 mM KC1, 10 mM Tris/HCl (pH 9.0), 1.5 

mM MgCl2, 0.1% Triton X) for 10-15 minutes at 72°C. 

One |il of fresh PCR product was added to 1 |il dilute salt solution (1:4), 3.5 (il 

deionized, autoclaved water, and 0.5 jal pCR®8/GW/TOPO® (Invitrogen, Cat. No. 

K250020SC). The reaction was mixed by gentle flicking, centrifuged briefly, and 

incubated at room temperature for a minimum of 15 minutes. 

IV.B. Gateway cloning and DNA sequencing 

TE (10 mM Tris-Cl, 1 mM EDTA, pH 8.0) was added to 50-150 ng of Gateway 

entry clone (PCR product cloned into pCR®8/GW/TOPO® vector) and 150 ng destination 

vector (pMDC163) to a final volume of 8 \i\. One jil of thawed and briefly vortexed LR 

Clonase (Invitrogen, Cat. No. 11791-020) was added, mixed gently and incubated for 1 

hour at room temperature. Two |il of Proteinase K was added, mixed, and incubated for 

30 minutes at37°C. 

The attB2 junction region from Gateway expression plasmids was sequenced 

using BigDye Terminator c3.1 cycle sequencing reagents (Applied Biosystems, Foster 

City, CA) per manufacturer's instructions. Sequencing reactions contained 1 (il 

sequencing mix, 3 jil sequencing buffer, 150 ng plasmid and 5 pmol primer in a 10 jLtl 

reaction. The cycling profile was 95°C for 1 minute, followed by 25 cycles of 95°C for 

10 seconds, 50°C for 5 seconds, 60°C for 4 minutes. After sequencing, the DNA was 

mixed with 1 pi 125 mM EDTA (pH 8), 1 |il 3 M sodium acetate (pH 5.2) and 25 |il 

100% ethanol. The samples were vortexed and centrifuged for 30 minutes at 3,000 x g. 

The pellet was washed with 70% ethanol and centrifuged for 15 minutes at 1,700 x g. 
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The 70% ethanol wash was repeated and the pellet was completely dried and resuspended 

in 10 (il deionized formamide. Samples were analyzed at the University of New 

Hampshire Hubbard Center for Genome Studies. 

IV.C. Preparation of electrocompetent Escherichia coli and Agrobacterium 

tumefaciens 

A starter culture was used to inoculate 400 ml of LB medium to an OD600 of less 

than 0.05. Cultures were grown at the appropriate temperature with vigorous agitation. 

Once the OD of the culture reached 0.550, the culture was cooled on ice and kept cold 

throughout the rest of the procedure. The OD was checked again to confirm that it was 

below 0.700. The culture was pelleted at 4,000 x g at 4°C for 10 minutes in sterile 

centrifuge bottles. The pellet was resuspended in sterile, ice-cold, deionized water and 

pelleted again. This step was repeated with another deionized water wash and finally 

with 10 ml of 10% glycerol. The pellet was resuspended in 2 ml of 10%) glycerol, 

aliquoted in 40 (il volumes and stored at -80°C. 

IV.D. Bacterial transformation 

An aliquot of a cloning reaction or purified plasmid was added directly to 

electrocompetent cells on ice. The bacteria-DNA mixture was immediately transferred 

into a 1-mm gap electroporation cuvette (Bio-Rad) and cells were transformed by 

electroporation. Following a 1-hour incubation in SOC (0.5% yeast extract, 2% tryptone, 

10 mM NaCl, 2.5 mM KC1, 10 mM MgCl2, 10 mM MgS04, 20 mM glucose), cells were 

plated on LB plates (1% tryptone, 0.5% yeast extract, 1% NaCl, 1.3% bacto-agar) 
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containing the appropriate antibiotic and grown at the appropriate temperature until 

colonies were visible. 

IV.E. Plasmid isolation by alkaline lysis 

An overnight bacterial culture grown in LB containing appropriate antibiotic was 

pelleted by centrifugation at 10,000 x g. The pellet was resuspended by vortexing in 100 

111 GET buffer (50 mM glucose, 25 mM Tris-HCl, pH 8.0, 10 mM EDTA). A 200 pi 

aliquot of freshly prepared 0.2N NaOH and 1% SDS was added and mixed by inverting 

followed by the addition of 150 \i\ of potassium acetate (pH 5.2) and mixing by 

inversion. Samples were centrifuged at 10,000 x g and the supernatant was extracted 

with an equal volume of phenol:chloroform (25:24). After centrifugation, the aqueous 

phase was mixed with two volumes of 100% ethanol and centrifuged for a minimum of 

10 minutes. The pellet was washed with 600 |il and centrifuged for 2 minutes. The pellet 

was completely dried and resuspended in 20 (ig/ml DNase-free RNase A. 

IV.F. DNA quantitation and restriction digestion 

DNA was quantitated with a DyNA Quant 200 fluorometer (Hoefer Inc., 

Holliston, MA) and digested with restriction enzymes per manufacturer's instructions. 

IV.G. Plant materials and growth conditions 

Arabidopsis thaliana ecotype Columbia (Col-0) was used for most experiments. 

Most plants were grown at 21°C with an 18-hour photoperiod of 100 |umol m-2 s-1 

fluorescent light. For real-time PCR, plants were grown at 25°C with a 12-hour 
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photoperiod at 100 pmol m-2 s-1 fluorescent light. The defined medium for plant growth 

was 0.5X MS (0.22% [w/v]) Murashige and Skoog w/ Gamborg's vitamins (Caisson 

Laboratories, North Logan, UT, Cat No. MSP0506) and 0.8% Phytoblend (Caisson 

Laboratories, Cat No. PTC001). Seeds on plates were stratified at 4°C for 3 days. Seeds 

were germinated in liquid medium (0.5-X MS containing 1% sucrose) to generate tissue 

for genomic DNA extraction. Soilless plant medium was a 1:1 ratio of perlite 

(Whittemore Company, Inc, Lawrence, MA) and Metromix 360 (SUN GRO Horticulture, 

Bellevue, WA). 

IV.H. Seed sterilization 

One drop of 10% Triton X-100 (-15 \il) and 1.5 ml 70% ethanol was added to 

approximately 50 seeds in a 1.5 mL tube. The tubes were agitated at least once per 

minute for five minutes and the ethanol was decanted. Next, 1.5 ml of 100% ethanol and 

one drop of 10% Triton X-100 was added and the tube was agitated for 5 minutes. 

Finally 100%) ethanol was used for the'final 5-minute sterilization step. Seeds were 

completely dried in a laminar flow hood before use. The seed sterilization procedure was 

proportionately scaled to accommodate the larger number of seeds in 15 ml polystyrene 

Falcon tubes. 

IV!. Root skewing assay 

Sterilized seeds were plated on starter 0.5X MS medium plates and stratified as 

described previously. Seeds were germinated at 21°C with a 18-hour photoperiod on 

vertically-oriented plates. Three-day-old plants were transferred to either 0.5X MS or 
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0.5X MS supplemented with 75mM NaCl and grown for an additional 7 days on vertical 

plates. For time course experiments, plates were photographed daily after transfer. Root 

skewing angles were calculated using ImageJ (Abramoff et al., 2004) and significance 

determined by a Tukey's test. Root skewing angle was defined by three points: the actual 

position of the root tip at time of measurement, the location of the root tip at Time 0, and 

the theoretical position of the root tip if root growth had proceeded parallel to the gravity 

vector (Figure 8IB). Angles were defined as positive if the root skewed to the right of 

vertical and negative if skewing was to the left of vertical when seedlings were viewed 

from the back of the plate. 

IV.J. Plant transformation and selection of transformants 

Arabidopsis transformation was performed by the floral dip method (Clough and 

Bent, 1998). A stationary-phase liquid culture of Agrobacterium tumefaciens strain 

GV3101 in LB was used to inoculate 200 ml of LB. After overnight incubation, the 

culture was pelleted at 5,000 x g for 10 minutes. The pellet was resuspended in 5% non-

molecular grade sucrose containing 0.05% Vac-In-Stuff (Silwet L-77, Lehle Seeds, 

Round Rock, TX, Cat. No. VIS-02) to an OD60o of 0.800±0.200 as determined with a 

GENESYS 20 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA). 

Flowering T0 Arabidopsis plants (10 per pot) were inverted in the Agrobacterium 

suspension for 10 seconds. The pots containing the inoculated plants were placed on 

their sides in a flat and covered with plastic wrap or a clear plastic dome. The next day, 

the plants were gently washed with cool tap water and the pots were placed upright in the 

growth chamber. In some cases, the plants were re-transformed with Agrobacterium 1 
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B) 
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Figure 81. Experimental design and measurement of NaCl-induced root skewing 
phenotype. 
A) Starter plates of 0.5 X MS were sprinkled with seeds, stratified for 3 days and the 
plants were grown for three days. Seedlings of desired genotype were transferred to 
plates containing 0.5 X MS or 0.5 X MS+75 mM NaCl. B) Root angles were measured 
from the tip (1) to the origional root tip position at Time 0 (2) to the vertical gravity 
vector (3). 
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week later. 

Ti seeds were harvested and dried for at least one week before use. Seeds (40 

mg) were surface-sterilized and scattered evenly on 0.5X MS plates containing the 

appropriate antibiotic. For hygromycin selection, the appropriate amount of hygromycin 

(Roche Molecular Biochemicals, Indianapolis, IN, Cat No. 14937400) was determined 

experimentally by plating hygromycin resistant and sensitive seeds on MS medium 

containing various concentrations of hygromycin. For the lot of hygromycin used for 

these experiments, a final concentration of 65 |ig/ml was used for selection. After no 

more then 14 days of growth on plates, plants were transplanted to soil. Once transferred 

to soil, flats were covered and kept under low light conditions at room temperature 

overnight. The cover was kept on the flats for 2 days after returning to the growth room. 

Rosette or cauline leaves from hygromycin-resistant Ti plants were removed for a 

GUS assay to detect the presence of the GUS enzyme expressed from the T-DNA. Plants 

which tested positive for expression of GUS were grown to maturity and T2 seeds were 

collected. To quickly identify homozygous lines, 25-100 non-sterilized seeds from 

individual T3 lines were plated on sterile water agar (tap water and 0.8% Phytoblend) in 

sterile 24-well plates. At 4-days-post-germination, -500 |il of GUS assay solution (100 

mM sodium phosphate buffer, pH 7.0, 1 mM potassium ferrocyanide, 1 mM potassium 

ferricyanide, 5 mM EDTA, 0.1% Triton X-100, and 1 mM X-GLUC [5-bromo-4-chloro-

3indolyl-p-D-glucuronide; Rose Scientific] dissolved in dimethylformamide) was added 

to each well. The plates were incubated overnight at 37°C. The seedlings were observed 

directly with a dissecting microscope and the ratio of seedlings containing the blue 

product of the GUS enzyme reaction was used to determine whether the seed stock was 
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homozygous for the transgene. 

IV.K. Arabidopsis thaliana genomic DNA isolation 

Genomic DNA isolation was performed using the CTAB method. Tissue from 

plants grown in liquid culture for less than 2 weeks was blotted dry, separated into 100 

mg samples and frozen at -80°C. For DNA isolation, 100 mg of tissue frozen with liquid 

nitrogen was ground into a fine powder with a cold mortar and pestle. Following 

addition of 1 ml of grinding buffer (100 mM Tris-HCl, pH 8.0, 1.4 M NaCl, 20 mM 

EDTA, 2% CTAB, 0.004%) P-mercaptoethanol), the mixture was ground until a slurry 

formed. The slurry was transferred to a microfuge tube and incubated at 60°C for 30 

minutes. Samples were cooled to room temperature. To each sample, 650 \xl of 

chloroform:octanol (24:1) was added, followed by vortexing for 10 seconds. The debris 

was pelleted by centrifugation for 5 min at 14,000 x g. The aqueous layer was transferred 

to a clean tube, slowly overlaid with ice cold 100%) ethanol, and incubated at -20°C for 1 

hour. After 1 hour, white precipitate had usually formed at the phase interface. The tube 

was inverted 5 times and incubated overnight at -20°C. DNA was pelleted at 14,000 x g 

for 5 minutes, then 1 ml 70% ethanol was added and the sample was incubated at -20°C 

overnight. Ethanol was decanted and the pellet was dried completely. The pellet was 

incubated at 4°C in 50 |il of TE overnight. After incubation, 50 |il of 10 ug/ml RNase 

was added and the sample was incubated for 37°C for 1 hour. Long term storage of 

genomic DNA was at -20°C. 
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IV.L. Isolation of Arabidopsis thaliana cDNA 

Arabidopsis tissue was collected and stored at -80°C until RNA isolation. RNA 

was isolated from 50-100 mg of tissue using the RNeasy Plant Mini Kit (Qiagen, 

Valencia, CA) with the following modifications to the manufacturer's instructions: the 

second RPE wash was not done, the optional spin step to dry the membrane was 

included, and the RNA was eluted with 40 \i\ RNase free water. Total RNA was 

quantitated with a spectrophotometer (NanoDrop ND-1000; Thermo Fisher Scientific 

Inc., Wilmington, DE). DNA was removed from the RNA by using the routine DNase 

treatment procedure in the TURBO DNA-free kit (Applied Biosystems/Ambion, Austin, 

TX). PCR was performed to confirm that all of the DNA was degraded. Superscript III 

reverse transcriptase (Invitrogen, Carlsbad, CA) was used per manufacturer's directions 

to produce cDNA and modified by doubling the volume of all of the reagents to a 40 \il 

reaction. 

IV.M. Real-time PCR 

Each 10 \i\ reaction contained 0.15 |iM of each primer, lx ABI Power SYBR 

Green Master Mix (Applied Biosystems, Carlsbad, CA; PN: 4367659), and 2 |il of cDNA 

template. Reactions were placed in a MicroAmp™ Fast Optical 96-Well Reaction Plate 

(Applied Biosystems, Carlsbad, CA; PN: 4346907). Real-time PCR was performed using 

a 7500 Fast Real-Time PCR System using the Standard Curve (Absolute Quantitation) 

assay and Standard 7500 run mode. The thermal profile was 50°C for 2 minutes, 95°C for 

10 minutes for Taq activation, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 

minute for amplification. 
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Critical threshold (Ct) values were calculated by the SDS software component of 

the 7500 Fast Real-Time PCR System. The percent efficiency was calculated for all 

primers using E = I0("1/slope). The Pfaffl method (Pfaffl, 2001) was used to calculate the 

fold-change in expression of a gene under control and experimental conditions. Statistical 

significance was determined using a Tukey's test. 

IV.N. GUS assay and documentation of expression pattern 

To determine the expression pattern, plants were chosen at major developmental 

stages or specific tissues such as flowers, siliques and cauline leaves were collected. 

Plants were submerged in GUS assay solution and vacuum infiltrated. The time of 

vacuum infiltration was dependent upon the age of the sample; seedlings 7-day-old or 

younger were infiltrated for 5 minutes, 10-day-old plants for 10 minutes, and 14-day-old 

plants and dissected inflorescences for 15 minutes. Four-week-old plants were infiltrated 

for 15 minutes, the vacuum was released and samples were re-infiltrated for an additional 

5 minutes. Samples were incubated in GUS assay solution for 1, 3, 12-18 or 24 hours 

and the assay was stopped by removing the assay solution and adding 70%) ethanol. The 

70% ethanol was changed daily until the plants were completely decolorized. For plants 

between 1-14 days old that were to be mounted on microscope slides, the 70% ethanol 

was replaced with deionized water for a minimum of 1 hour, then samples were 

transferred to 50%) glycerol for a minimum of 1 hour, and finally to 100%) glycerol before 

mounting on microscope slides. Flowers, siliques and cauline leaves were processed 

similarly but mounted in 50% glycerol. 

Images of intact young seedlings and high magnification images for all sample 
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types were collected with an Axioplan 2 Imager compound microscope (Carl Zeiss, Jena, 

Germany) using either 10X, 20X or 40X objectives and differential interference contrast 

(DIC) optics. Compound microscope digital images were captured with an AxioCam 

MRC camera (Zeiss). Young intact plants and dissected older tissues were photographed 

with a SZX9 dissecting microscope (Olympus) equipped with a Q-color 3 digital camera 

(Olympus). Intact older plants and flowering plants were arranged on a waterproof white 

surface and photographed with a Pentax K100 digital camera using manual settings 

(aperture 8.0 and F stop 20-60). 
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