The effect of cutting force model coefficient variability on process planning in milling

Firat Eren
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation

Eren, Firat, "The effect of cutting force model coefficient variability on process planning in milling" (2011). Master's Theses and Capstones. 629.
https://scholars.unh.edu/thesis/629

THE EFFECT OF CUTTING FORCE MODEL COEFFICIENT VARIABILITY

ON PROCESS PLANNING IN MILLING

by

Firat Eren
B.S., Sabanci University, 2008

THESIS

Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of

Master of Science in

Mechanical Engineering

May, 2011

UMI Number: 1498955

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI 1498955
Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

This thesis has been examined and approved.

Thesis Director, Dr. Barry K. Fussell
Professor of Mechanical Engineering

Thesis Co-Director, Dr. Robert B. Jerard
Professor of Mechanical Engineering

Dr. Phil Ramsey
Adjunct and Visiting Faculty of Mathematics \& Statistics

DEDICATIONS

To my grandfather, Arzuman Eren

ACKNOWLEDGEMENTS

I would like to thank Prof. Fussell and Prof. Jerard for their continual patience, support and guidance throughout this study. I feel very lucky to be a part of their research group at the Design and Manufacturing Lab. I believe that I learned a lot from them.

I would also like to thank to Prof. Ramsey for his time evaluating this thesis.
I feel the utmost gratitude for Prof. Celikkol. If it wasn't for him, I would not have the chance to study at the UNH. I also thank him for his support and friendship inside and outside of the university. I am also grateful for his wife Mira, for her hospitality.

Valuable help and support of my lab friends whom I worked with during three years are greatly appreciated. Thanks to Raed Hassan for teaching me how to use the FADAL CNC milling machine and to Chris Suprock for expanding my horizons with his brilliant innovative ideas. I also would like to thank Justin, Andrew, Saman, Minhyong and Yong for their friendship and making the lab a more enjoyable place.

I want to mention Basak Sahin whose support and existence is invaluable to me.
The financial support from NSF Grants DMI-0620996 and IIP-0810434 and the Department of Mechanical Engineering is greatly appreciated.

Finally, I would like to thank to my family. I felt their love and support at every instant during the three years.

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS iv
LIST OF TABLES vviii
LIST OF FIGURES xii
LIST OF SYMBOLS xiv
ABSTRACT xvi
CHAPTER PAGE

1. INTRODUCTION1
1.1 Introduction 1
1.2 Thesis Overview 2
2. BACKGROUND 5
2.1 Introduction 5
2.2 Force Model 5
2.3 Model Calibration 7
2.4 Process planning 9
2.5 Summary 11
3. EXPERIMENTS AND CALIBRATION RESULTS 13
3.1 Introduction 13
3.2 Experimental Design 13
3.3 Calibration Results 15
3.4 Summary 19
4. COEFFICIENT AND FORCE MODEL UNCERTAINTY 20
4.1 Introduction 20
4.2 Coefficient Uncertainty 20
4.3 Force Probability Density Functions from Monte Carlo Simulations 23
4.4 Effect of Variation in Cutting Tool Type 29
4.5 Summary 32
5. EXPERIMENTAL VALIDATION 35
5.1 Introduction 35
5.2 Methodology and Results 36
5.3 Case Study 41
5.3.1 Method 1:Known feedrate-calculated force 42
5.3.2 Method 2:Known force-calculated feedrate 44
5.4 Summary 47
6. RATIO ASSIGNMENT BETWEEN THE TANGENTIAL AND THE RADIAL COEFFICIENTS 49
6.1 Introduction 49
6.2 Coefficient Ratios 50
6.3 Summary 55
7. CONCLUSIONS AND FUTURE WORK 56
7.1 Introduction 56
7.2 Conclusions 56
7.3 Future Work 58
REFERENCES 61
APPENDIX A: EXPERIMENTS AND DATA ACQUSITION USER GUIDE 63
APPENDIX B: USER GUIDE FOR DATA PROCESSING AND PROGRAMS 67
APPENDIX C: THE FORCE MODEL COEFFICIENTS AND THE EXPERIMENTAL FORCES 90
APPENDIX D: G-CODES FOR THE CASE STUDY 117
APPENDIX E: NORMALITY OF THE CUTTING COEFFICIENTS 121

LIST OF TABLES

Table 3.1: Experimental Design for Model Calibration. 14
Table 3.2: Regression Matrices for Aluminum at $3819 \mathrm{rpm}, 1 / 4$ Immersion 15
Table 3.3: Calibration Results for Aluminum for 14 Identical Tests, $3819 \mathrm{rpm}, 1 / 4$ Immersion 16
Table 3.4: Calibration Results fot Steel1018 for 14 Identical Tests, $4000 \mathrm{rpm}, 3 / 4$ Immersion 17
Table 3.5: Calibration Results for Stainless Steel 304 for 14 Identical Tests, $2400 \mathrm{rpm}, 1 / 4$Immersion17
Table 3.6: Calibration Results fot Titanium for 14 Identical Tests, $1800 \mathrm{rpm}, 1 / 2$ Immersion 18
Table 4.1: Correlation Matrix Table of Model Coefficients for Aluminum, $3 / 4$ Immersion at 3819 rpm, 14 Cuts Using Identical Cutting Conditions 21
Table 4.2: Correlation Matrix Table of Model Coefficients for Steel 1018, $3 / 4$ Immersion at 3819 rpm, 14 Cuts Using Identical Cutting Conditions 21
Table 4.3: Correlation Matrix Table of Model Coefficients for Stainless Steel 304, $1 / 4$ Immersion at 3819 rpm, 14 Cuts Using Identical Cutting Conditions 21
Table 4.4: Correlation Matrix Table of Model Coefficients for Titanium Grade 2, 1/2 Immersion at 3819 rpm, 14 Cuts Using Identical Cutting Conditions 22
Table 4.5: Aluminum 6061 Peak Resultant Force PDF Table 25
Table 4.6: Steel 1018 Peak Resultant Force PDF Table 25
Table 4.7: Stainless Steel 304 Peak Resultant Force PDF Table 26
Table 4.8: Titanium Grade 2 Peak Resultant Force PDF Table 26
Table 4.9: Factor of Safety Table for Resultant Forces 28
Table 4.10: Orthogonal Array for each tool 30
Table 4.11: Levels for the variables in the experiments 30
Table 4.12: Insert and Conventional Tools Peak Resultant Force PDF Table 31
Table 4.13: Factor of Safety Table for Resultant Forces 32
Table 5.1: Aluminum Peak Resultant Force PDF Table for Different Conditions, Case 4 of Table 4.5 for all $h_{\text {avg }}$, Sample Size $=36$ 37
Table 5.2: Steel 1018 Peak Resultant Force PDF Table for Different Conditions, Case 4 of Table 4.5 for all havg , Sample Size $=36$ 38
Table 5.3: Stainless Steel 304 Peak Resultant Force PDF Table for Different Conditions, Case 4 of Table 4.5 for all $h_{\text {avg }}$, Sample Size $=36$. 39
Table 5.4: Titanium Peak Resultant Force PDF Table for Different Conditions, Case 4 of Table 4.5 for all $h_{\text {avg }}$, Sample Size $=36$ 40
Table 5.5: Feedrate table ($\mathrm{mm} / \mathrm{min}$) for Case Study, method 1: Fixed $\mathrm{h}_{\text {avg }}$ 43
Table 5.5: Feedrate table ($\mathrm{mm} / \mathrm{min}$) for Case Study, method 2: Fixed forces 45
Table 6.1: Mean and variance table of $\mathrm{K}_{\mathrm{RC}} / \mathrm{K}_{\mathrm{TC}}$ and $\mathrm{K}_{\mathrm{RE}} / \mathrm{K}_{\mathrm{TE}}$ for each material 50
Table 6.2: Factor of safety tables for Calibrated Coefficients method and the Ratio method for different cutting conditions, 69 conditions 51
Table 6.3: Standard Error Table comparing the calibrated coefficients method and the ratio method for all of the materials 52
Table C.1: Coefficients from Aluminum tests. 90
Table C.2: Aluminum Average Forces and the Geometry Matrices. 92
Table C.3: Coefficients from Steel1018 tests 94
Table C.4: Steel 1018 Average Forces and the Geometry Matrices 96
Table C.5: Coefficients from StSt304 tests. 97
Table C.6: Stainless Steel Average Forces and the Geometry Matrices. 99
Table C.7: Coefficients from Titanium tests. 101
Table C.8: Stainless Steel Average Forces and the Geometry Matrices. 103
Table C.9: Coefficients from Sandvik 08M-PM insert tests on Steel1018 105
Table C.10: Coefficients from Kennametal KC725M insert tests on Steel1018. 105
Table C.11: Coefficients from Kennametal KC935M insert tests on Steel1018. 106
Table C.12: Coefficients from Uncoated Solid Carbide Cutter of 30° helix angle tests on
Steel1018. 106
Table C.13: Coefficients from Coated Solid Carbide Cutter of 30° helix angle tests on Steel1018 107
Table C.14: Steel 1018 with Sandvik 08M-PM, KC725M, KC935M, uncoated solid carbide and coated solid carbide cutters Average Forces and the Geometry Matrices
.. 107
Table C.15: Experimental Forces for Case Study 1 109
Table C.16: Experimental Forces for Case Study 2 110
Table C.17: Experimental Peak Resultant Forces for the Cone Plots (144 samples). 110
Table C.18: Model Estimated Peak Resultant Forces (Calibrated Coefficients and the Ratio Method). 114
Table C.19: Covariance Table for the Sandvik 08M-PM tests on Steel 1018 coefficients115
Table C.20: Covariance Table for the Kennametal KC725M insert tests on Steel 1018 coefficients 115
Table C.21: Covariance Table for the Kennametal KC935M insert tests on Steel 1018 coefficients 115
Table C.22: Covariance Table for the Uncoated Solid Carbide Cutter of 30° helix angle tests on Steel 1018 coefficients 116
Table C.23: Covariance Table for the Coated Solid Carbide Cutter of 30° helix angle tests on Steel 1018 coefficients 116

LIST OF FIGURES

Figure 2.1: End Milling Cutting Geometry. 6
Figure 4.1: Force Histogram for Aluminum 6061 24
Figure 4.2: Force Histogram for Steel1018 24
Figure 4.3: Force Histogram for Stainless Steel 304 24
Figure 4.4: Force Histogram for Titanium Grade 2 24
Figure 4.5: Probability Density Function 28
Figure 5.1: Experimental Resultant Forces Compared to the Monte Carlo Simulation Intervals for Aluminum 38
Figure 5.2: Experimental Resultant Forces Compared to the Monte Carlo Simulation Intervals for Steel1018 39
Figure 5.3: Experimental Resultant Forces Compared to the Monte Carlo Simulation Intervals for Stainless Steel 304 40
Figure 5.4: Experimental Resultant Forces Compared to the Monte Carlo Simulation Intervals for Titanium Grade 2 41
Figure 5.5: Case Study Method 1 - Downmill results 43
Figure 5.6: Case Study Method 1 - Upmill results 44
Figure 5.7: Case Study Method 2 - Downmill results 46
Figure 5.8: Case Study Method 2 - Upmill results 46
Figure 6.1: Model Estimated vs. Measured Forces for Aluminum for Ratio Method 53
Figure 6.2: Model Estimated vs. Measured Forces for Steel 1018 for Ratio Method. 53
Figure 6.3: Model Estimated vs. Measured Forces for SS304 for Ratio Method. 54
Figure 6.4: Model Estimated vs. Measured Forces for Titanium 2 for Ratio Method. 54
Figure A.1: Overhead view of block setup as used for test cuts. 64
Figure A.2: Data acqusition Setup Dialog. 65
Figure E.1: K_{TC} Residual Histogram for Aluminum 121
Figure E.2: K_{TE} Residual Histogram for Aluminum. 121
Figure E.3: K_{RC} Residual Histogram for Aluminum 121
Figure E.4: K_{RE} Residual Histogram for Aluminum 121
Figure E.5: K_{TC} Residual Histogram for Steel 1018 122
Figure E.6: K_{TE} Residual Histogram for Steel 1018. 122
Figure E.7: K_{RC} Residual Histogram for Steel 1018 122
Figure E.8: K_{RE} Residual Histogram for Steel 1018 122
Figure E.9: K_{TE} Residual Histogram for Stainless Steel 304 123
Figure E.10: K_{TC} Residual Histogram for Stainless Steel 304. 123
Figure E.11: K_{RC} Residual Histogram for Stainless Steel 304. 123
Figure E.12: K_{RE} Residual Histogram for Stainless Steel 304. 123
Figure E.13: K_{TE} Residual Histogram for Stainless Steel 304 124
Figure E.14: K_{TC} Residual Histogram for Stainless Steel 304. 124
Figure E.15: K_{RC} Residual Histogram for Stainless Steel 304. 124
Figure E.16: $\mathrm{K}_{\text {RE }}$ Residual Histogram for Stainless Steel 304. 124

LIST OF SYMBOLS

$\phi=$ angular position of cutting tool, (deg)
$\phi_{s t}=$ angle at which tooth enters material, (deg)
$\phi_{e x}=$ angle at which tooth exits material, (deg)
$\omega=$ angular velocity of cutting tool, (rad/s)
$\mathrm{a}=$ axial depth of cut, (mm)
$\mathrm{f}=$ feedrate $(\mathrm{mm} / \mathrm{min})$
$\mathrm{f}_{\mathrm{t}}=$ feed per tooth, (mm)
$\mathrm{h}=$ chip thickness, (mm)
$\mathrm{K}_{\mathrm{RC}}=$ model coefficient for radial shearing force component, $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{K}_{\mathrm{RE}}=$ model coefficient for radial friction force component, $(\mathrm{N} / \mathrm{mm})$
$\mathrm{K}_{\mathrm{TC}}=$ model coefficient for tangential shearing force component, $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{K}_{\mathrm{TE}}=$ model coefficient for tangential friction force component, (N / mm)
$F_{r}=$ force on the tool in the radial direction, (N)
$F_{t}=$ force on the tool tangential to the perimeter, (N)
$F_{\text {res }}=$ resultant force on the tool, (N)
$F_{x}=$ force along the x -axis of the mill, (N)
$\overline{F_{x}}=$ average force in the x-direction, (N)
$F_{y}=$ force along the y -axis of the mill, (N)

```
F}=\mathrm{ average force in the y-direction, (N)
N
F= vector of average forces in }\textrm{x}\mathrm{ and y direction
G = geometry matrix related to the cut geometry
K = force model coefficient vector
A = elements of the G matrix
\delta = tool deflection, (mm)
L = tool length, (mm)
E elastic modulus, (N/mm}\mp@subsup{}{}{2}
I = second moment of inertia (mm}
D eff}= effective tool diameter, (mm
\sigma
D = tool diameter, (mm)
Sest = standard error of the estimate
```


ABSTRACT
 THE EFFECT OF CUTTING FORCE MODEL COEFFICIENT VARIABILITY ON

PROCESS PLANNING IN MILLING

by

Firat Eren

University of New Hampshire, May 2011

This thesis describes the effect of force model uncertainty on process planning. Specifically, the statistical variations in model predicted machining forces while cutting aluminum, carbon steel, stainless steel and titanium are determined. An accurate estimate of the variability is essential for use in process planning to determine appropriate factors of safety when setting cutting conditions that are both safe and efficient.

Force model coefficient calibration is described and the variability in the coefficients is determined through a least squares regression of a large number of experimental cuts. It is shown that the variability increases with changes in the calibration cutting conditions, e.g. radial depth of cut and spindle speed. Monte Carlo simulations of the cutting force are then used to determine the mean and standard deviation of the resultant peak force. A factor of safety is established for process
planning using the mean plus three standard deviations. Statistically, 99.86% of the actual peak cutting forces should fall below the predicted value. The maximum expected peak force can be determined for each tool move in a NC program and used to select safe cutting conditions.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Force model uncertainty is investigated in this research to quantify its effect on process planning. In process planning, selecting the best possible feedrates is subject to constraints like tool health, part quality and machine tool limitations [1]. Based on these constraints, feedrates are optimized to maintain predicted cutting forces for each tool move. In this study, a linear milling force model [2] is utilized to predict cutting forces. Assigning a Factor of Safety (FS) value for the predicted cutting forces is practical for a process planner to set feedrates that will give a certain level of confidence that the cut will be safe. In a cutting process there are many conditions that have the potential to add to the force model uncertainty, e.g. variation in spindle speed, radial immersion, helix angle, cutter type, coolant type etc. In this research, the effect of the variations in the spindle speed and radial immersion are investigated to set FS values that will result in safe cutting conditions.

Models of the metal removal process have been developed and experimentally verified by many researchers [2, 3, 4]. Commercial software from vendors such as Third Wave, CGTech and VeritasCNC can be used to estimate cutting forces, a prerequisite for setting good cutting conditions. Previous research has illustrated how a properly calibrated force model can be used to select the best possible cutting conditions [1, 5, 6].

Extensive experimental investigation including thousands of cutting tests with a variety of tools and materials showed that model accuracy is only as good as the model coefficients [7]. With careful calibration it is possible to achieve good levels of accuracy. But model coefficient variability implies variability in the accuracy of cutting force estimates thereby impeding the usefulness of the models in selecting cutting conditions for process planning.

Model uncertainty as applied to machining has not been extensively studied but some good examples exist. The study performed by Kurdi et al [8] utilizes the Latin Hypercube method to quantify the uncertainty in stability and surface location errors including the correlation between the cutting coefficients and the tool model parameters.

They conclude that taking the correlation into account reduces the output variation significantly. The work by Schmitz et al [9] on stability lobe generation in the presence of uncertainty shows how theoretical chatter limits are modified by uncertainty. Researchers at NIST [10] have also explored the effect of model uncertainty in turning operations with different chip breaker geometries utilizing a regression based model. The uncertainties in both data and the model were combined to obtain an expanded uncertainty which enables predictive modeling in a large range of conditions, i.e. machine tools and environments.

1.2 Thesis Overview

Chapter 1 is an introduction to force model uncertainty. Chapter 2 describes the cutting force model used in this research as well as the methods used for model coefficient calibration. Background information about the force model used in the
research as well as process planning is given. The four model coefficients, $K_{T C}, K_{T E}, K_{R C}$, and $K_{R E}$ and the calibration procedure for estimating these model coefficients are introduced. Chapter 3 describes the experiments performed for this research and the calibration results. Experimental design is shown, and calibration results for Aluminum 6061, Steel 1018, Stainless Steel 304 and Titanium Grade 2 are presented.

In Chapter 4, cutting model coefficient variability is discussed. Correlation matrices for the model coefficients are presented. The variation in the cutting coefficients generates variation in the force estimation for different cutting conditions. Monte Carlo simulations are run to obtain force probability distributions for different conditions. The simulation results are used to identify the effect of changing cutting conditions on the force predictions by observing the statistics, mean and standard deviation, of the force probability distribution results. Subsequently, they are used to set the Factor of Safety for the four different materials. The simulation results are experimentally validated in Chapter 5. Monte Carlo simulation results are used to form upper and lower confidence levels at 99.86% and 95%. Measured peak forces for different cutting conditions, different spindle speed, radial immersion and chip thickness for the material of interest for this research are compared to the simulation results. A Case study with two methods is performed to validate the Factor of Safety values generated by Monte Carlo simulation. In Chapter 6, the effect of assigning ratios between the tangential and radial coefficients on the force probability density functions and the factor of safety are discussed. Mean and variance of the ratios of the calibrated radial to tangential coefficients for different cutting conditions are utilized in a multivariate normal distribution to estimate the radial coefficients in a Monte Carlo simulation. The
change in factor of safety obtained with the ratio method is compared to the factor of safety obtained from the calibrated coefficients method. Chapter 7 summarizes the outcomes of the research, including a discussion of the potential practical applications as well as the limitations using the methods described in this research. This chapter also offers suggestions for further study.

CHAPTER 2

BACKGROUND

2.1 Introduction

In this chapter, the milling force model used in this research is introduced and the model calibration procedure is described. Background information about the process planning and feedrate selection process based on several constraints like tool bending stress and tool deflection is included.

2.2 Force Model

The mechanistic milling force model used in this research is described by Altintas [1]. Figure 2.1 defines the cutting geometry. The tangential force is split into a cutting or shearing component and a rubbing component [6],

$$
\begin{equation*}
F_{t}(\phi)=\left(K_{T C} \cdot h(\phi)+K_{T E}\right) a \tag{2.1}
\end{equation*}
$$

where K_{TC} and K_{TE} are the tangential coefficients, φ is the angle of tooth engagement, a is the length of tooth engaged in the cut and h is the instantaneous chip thickness which is defined as

$$
\begin{equation*}
h(\phi)=f_{t} \cdot \sin (\phi) \tag{2.2}
\end{equation*}
$$

where $\mathbf{f}_{\mathbf{t}}$ is the feed per tooth, ($\mathrm{mm} / \mathrm{rev}$-tooth).

Figure 2.1: End Milling Cutting Geometry.
In a similar way the radial $\left(\mathrm{F}_{\mathrm{r}}\right)$ force components are [1]:

$$
\begin{equation*}
F_{r}(\phi)=\left(K_{R C} \cdot h(\phi)+K_{R E}\right) a \tag{2.3}
\end{equation*}
$$

where $K_{R C}$ and $K_{R E}$ are the radial cutting coefficients.
Tangential, radial and resultant forces can be related using an x-y reference frame to describe the motion of the tool relative to the workpiece $[1,4]$:

$$
\begin{align*}
& F_{x}(\phi)=-F_{t} \cos (\phi)-F_{r} \sin (\phi) \tag{2.4}\\
& F_{y}(\phi)=F_{t} \sin (\phi)-F_{r} \cos (\phi) \tag{2.5}\\
& F_{r e s}=\sqrt{F_{x}^{2}+F_{y}^{2}} \tag{2.6}
\end{align*}
$$

Compared to other more complicated models [7], this linear model is simple to calibrate and extensive testing in our facility has demonstrated good accuracy and repeatability as long as the model is calibrated correctly.

2.3 Model Calibration

There are various methods to calibrate the model coefficients. Typically, a set of milling experiments are conducted at different feed rates with constant radial immersion and axial depth of cut. A single cutting tooth is used to eliminate the effect of run out. Average cutting forces in the x and y direction, obtained from the Kistler load cell, are plugged into equations (2.7) and (2.8) which are the integrated forms of the force equations given in (2.4), (2.5) and (2.6).

$$
\begin{align*}
& \bar{F}_{x}=\left\{\begin{array}{l}
\frac{N a f_{t}}{8 \pi}\left[K_{T C}\left(\cos 2 \phi_{e x}-\cos 2 \phi_{s t}\right)-K_{R C}\left(2 \phi_{e x}-2 \phi_{s t}-\left(\sin 2 \phi_{e x}-\sin 2 \phi_{s t}\right)\right)\right] \\
+\frac{N a}{2 \pi}\left[-K_{T E}\left(\sin \phi_{e x}-\sin \phi_{s t}\right)+K_{R E}\left(\cos \phi_{e x}-\cos \phi_{s t}\right)\right]
\end{array}\right\} \tag{2.7}\\
& \bar{F}_{y}=\left\{\begin{array}{l}
\frac{N a f_{t}}{8 \pi}\left[K_{T C}\left(2 \phi_{e x}-2 \phi_{s t}-\left(\sin 2 \phi_{e x}-\sin 2 \phi_{s t}\right)+K_{R C}\left(\cos 2 \phi_{e x}-\cos 2 \phi_{s t}\right)\right]\right. \\
-\frac{N a}{2 \pi}\left[K_{T E}\left(\cos \phi_{e x}-\cos \phi_{s t}\right)+K_{R E}\left(\sin \phi_{e x}-\sin \phi_{s t}\right)\right]
\end{array}\right\} \tag{2.8}
\end{align*}
$$

In the equations, N is the number of teeth, ϕ_{st} is the entry angle, ϕ_{ex} is the exit angle and f_{t} is the feed per tooth. Equations (2.7) and (2.8) can be combined into a matrix form as seen in (2.9) where K is the force model coefficient matrix and G depends on the cut geometry.

$$
\begin{equation*}
F=G K \tag{2.9}
\end{equation*}
$$

F is the vector of average Kistler forces in the x and y directions for the cut. The G matrix is the x and y cut geometry matrix, related to the cut geometry in the x and y direction. The geometry matrix is multiplied by the model coefficient matrix, K, to get the average forces in x and y . The subscript l in Equation 2.10 denotes the number of test conditions used to perform the calibration. Model calibration for this research is done using four different feedrate values. Thus, the size of the force vector F will be of $8 \times 1, G$ matrix 8 x 4 and K vector 4 x 1 .

The explicit form of the elements in the geometry matrix can be seen in the following equations. For the cut in the x direction the matrix elements are defined as,

$$
\begin{align*}
& \mathrm{A}_{1 \mathrm{x}}=\frac{N a f_{1}}{8 \pi} \cdot\left(\cos 2 \phi_{e x}-\cos 2 \phi_{s t}\right) \tag{2.11}\\
& \mathrm{A}_{2 \mathrm{x}}=-\frac{N a}{2 \pi} \cdot\left(\sin \phi_{e x}-\sin \phi_{s t}\right) \tag{2.12}\\
& \mathrm{A}_{3 \mathrm{x}}=-\frac{N a f_{t}}{8 \pi} \cdot\left[2 \phi_{e x}-2 \phi_{s t}-\left(\sin 2 \phi_{e x}-\sin 2 \phi_{s t}\right)\right] \tag{2.13}\\
& \mathrm{A}_{4 \mathrm{x}}=\frac{N a}{2 \pi} \cdot\left(\cos \phi_{e x}-\cos \phi_{s t}\right) \tag{2.14}
\end{align*}
$$

and for y direction, the matrix elements are the following;

$$
\begin{align*}
& \mathrm{A}_{1 \mathrm{y}}=\frac{N a f_{t}}{8 \pi} \cdot\left[2 \phi_{e x}-2 \phi_{s t}-\left(\sin 2 \phi_{e x}-\sin 2 \phi_{s t}\right)\right] \tag{2.15}\\
& \mathrm{A}_{2 \mathrm{y}}=-\frac{N a}{2 \pi} \cdot\left(\cos \phi_{e x}-\cos \phi_{s t}\right) \tag{2.16}\\
& \mathrm{A}_{3 \mathrm{y}}=\frac{N a f_{t}}{8 \pi} \cdot\left(\cos 2 \phi_{e x}-\cos 2 \phi_{s t}\right) \tag{2.17}\\
& \mathrm{A}_{4 \mathrm{y}}=-\frac{N a}{2 \pi} \cdot\left(\sin \phi_{e x}-\sin \phi_{s t}\right) \tag{2.18}
\end{align*}
$$

Least squares estimation can be applied to (2.9) to calculate the cutting coefficients $K_{T C}$, $K_{T E}, K_{R C}$ and $K_{R E}$, as follows,

$$
\left[\begin{array}{l}
K_{T C} \tag{2.19}\\
K_{T E} \\
K_{R C} \\
K_{R E}
\end{array}\right]=\left(G^{T} G\right)^{-1} G^{T} F
$$

2.4 Process Planning

Previous research has demonstrated how a properly calibrated force model can be used to select the best possible cutting conditions. There is a set of constraints that has to be maintained to select the fastest feedrates possible. These constraints can be grouped as follows: part quality, tool health and machine tool limitations. Machine tool limitations describe the limits of the machine such as power, torque, velocity and acceleration. The part quality is affected by tool deflection and surface finish. From the basic strength of
material beam analysis, the relationship between the cutting force and tool deflection is defined as:

$$
\begin{equation*}
\delta=\frac{F L^{3}}{3 E I} \tag{2.20}
\end{equation*}
$$

The cutting force F is assumed to be at the end of the tool length L, E is the elastic modulus and I is the moment of inertia which is estimated as

$$
\begin{equation*}
I=\frac{\pi D_{e f f}^{4}}{64} \tag{2.21}
\end{equation*}
$$

where $D_{\text {eff }}$ is the effective tool diameter which is equal to 0.8 of the tool diameter, [1].

Another constraint for feedrate optimization is the surface quality estimation. For feedrate values ranging between 0.1 and $1.5 \mathrm{~m} / \mathrm{min}$ [1], estimated roughness values with respect to the ideal conditions, where the tool runout and tool vibration is not taken into consideration, range between 0.0014 to $0.316 \mu \mathrm{~m}$. However, in practice, surface roughness values for milling range from 0.2 to $25 \mu \mathrm{~m}$. This leads to the conclusion that the estimated surface roughness values are negligible in comparison to the practical values. Feedrates are set based on an empirical relationship between the desired surface finish and the feedrate.

Tool health is determined by maximum chip thickness and bending stress. The maximum chip thickness is found by the use of equation (2.22) Excessive values of maximum chip thickness will cause tool breakage and accelerated tool wear.

$$
\begin{equation*}
h_{\max }=\frac{f}{N \omega} \tag{2.22}
\end{equation*}
$$

Allowable values for a particular tool - workpiece material combination can be looked up in tables and may also be recommended by cutting tool manufacturers. In addition, if the bending stress experienced by the tool shank is excessive, the tool may also break. The bending stress, from basic strength of materials is defined as:
$\sigma_{b}=\frac{F L\left(\frac{D}{2}\right)}{I}$

Acceptable values for σ_{b} depend on the yield strength of the cutting tool.

Feedrate selection is limited by these constraints. Since the tool deflection and bending stress are functions of the cutting force, quantifying the uncertainty in the force model is essential for use in process planning to determine appropriate factors of safety when setting cutting conditions that are both safe and efficient. Factor of safety values obtained from this research can be used to determine a target force value. An iterative algorithm can then be used to find the feedrate corresponding to the constraining force.

2.5 Summary

In Chapter 2, the mechanistic milling force model used in this research is described and the model calibration procedure is explained. The model is calibrated by using the average cutting forces in x and y direction at four different feedrates with constant radial immersion and axial depth. By applying least squares regression to the force and geometry matrices, the model coefficients are obtained.

Constraints for process planning are introduced to select the best possible cutting conditions using a properly calibrated force model. Quantifying the uncertainty of the force model, we can set a Factor of Safety that results in safe and efficient cutting conditions.

CHAPTER 3

EXPERIMENTS AND CALIBRATION RESULTS

3.1 Introduction

Chapter 3 describes the experimental design for this research using four different materials, Aluminum 6061, Steel 1018, Stainless Steel 304 and Titanium Grade 2. Calibration results from tests of identical cutting conditions at specific radial immersion and spindle speed are presented for all of the materials. The calibration results for all different cutting conditions can be seen in Appendix C.

3.2 Experimental Design

Experiments were performed on four different material blocks with three different milling geometries. Blocks of 203 mm long and 152 mm wide, are machined using coolant and a 12.7 mm diameter flat end mill tool with a single Sandvik Coromill 390 insert. Thicknesses of the blocks vary by material. Axial depth of cut for all of the experiments is 3.175 mm .

Data from a large number of experiments were collected for the four different materials: Aluminum 6061, Steel 1018, Stainless Steel 304 and Titanium Grade 2. Three different radial depths of cut, four different spindle speeds and four different feed rates were used in the experiments. A lookup table [11] was used to determine the chip thickness and spindle speed range for each material. For each material, radial depth and
spindle speed, model coefficients are obtained using measured average forces from the Kistler for the four different average chip thicknesses as shown in the Table 3.1.

Experiment	A	B	C	D
Radial immersion	1/4, 1/2, 3/4	1/4, 1/2, 3/4	1/4, 1/2, 3/4	1/4, 1/2, $3 / 4$
Workpiece material	Al 6061	St 1018	StSt 304	Titanium Grd 2
Helix angle (degrees)	12	12	12	12
Workpiece thickness (mm)	50.8	25.4	12.7	12.7
Axial depth (mm)	3.175	3.175	3.175	3.175
h average (mm)	$\begin{aligned} & 0.0254 \\ & 0.0508 \\ & 0.0762 \\ & 0.1016 \end{aligned}$	$\begin{aligned} & \hline 0.0254 \\ & 0.03175 \\ & 0.0381 \\ & 0.0508 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.01905 \\ & 0.0254 \\ & 0.03175 \\ & 0.0381 \end{aligned}$	$\begin{aligned} & \hline 0.0127 \\ & 0.01905 \\ & 0.0254 \\ & 0.0381 \end{aligned}$
Spindle speed (rpm)	$\begin{aligned} & 2600 \\ & 3819^{*} \\ & 5000 \\ & 6200 \end{aligned}$	$\begin{aligned} & \hline 2400 \\ & 4000^{*} \\ & 5600 \\ & 6400 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1600 \\ & 2400^{*} \\ & 3200 \\ & 4400 \\ & \hline \end{aligned}$	$\begin{aligned} & 1200 \\ & 1800^{*} \\ & 2400 \\ & 2700 \end{aligned}$
Sandvik Coromill 390 Insert * repeated 14 times	$\begin{aligned} & \text { R390-11 } \\ & \text { T3 08E- } \\ & \text { NL } \\ & \text { H13A } \end{aligned}$	$\begin{aligned} & \text { R390-11 } \\ & \text { T3 08M- } \\ & \text { PM } \\ & 1025 \end{aligned}$	$\begin{aligned} & \text { R390-11 } \\ & \text { T3 08E-ML } \\ & 2030 \end{aligned}$	R390-11 T3 08E-ML 2030

Table 3.1: Experimental Design for Model Calibration

Each calibration is performed for all combinations of radial immersions shown in row 1 and spindle speeds shown in row 7 of Table 3.1 using the specific Sandvik insert designated in the bottom row. For each experimental series A, B, C and D, one test for a specific spindle speed is repeated 14 times to quantify the baseline variability when all experimental conditions are identical. All other tests are repeated 3 times. For example, for Al 6061 at a spindle speed of 3819 rpm , the test is repeated 14 times while for 2600 ,

5000 and 6200 rpm the tests are repeated 3 times. So, for each material a total of 23 tests are performed with a total of 276 experiments (3 different rpm x 4 feed rates $\times 3$ radial depths $\times 3$ repetitions $=108$ and $1 \mathrm{rpm} \times 4$ feed rates $\times 3$ radial depths $\times 14$ repetitions $=$ $168,108+168=276)$.

3.3 Calibration Results

Force model coefficients for each test are sub-grouped into four categories for each material to look at the variation with respect to changing cutting conditions: 1) Identical cutting conditions (same spindle speed, same radial depth) 2) Only spindle speed changes with the same radial immersion. 3) Only radial immersion changes with same spindle speed. 4) Both spindle speed and radial immersion change. Table 3.2 shows the values of the regression matrices (as defined in Equation 2.10) used to calibrate the coefficients for one of the Aluminum tests at $3819 \mathrm{rpm}, 1 / 4 \mathrm{immersion}$. The calibration results from Table 3.2 are as follows: $\mathrm{K}_{\mathrm{TC}}=777.04 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~K}_{\mathrm{TE}}=20.18 \mathrm{~N} / \mathrm{mm}$, $\mathrm{K}_{\mathrm{RC}}=353.63 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{K}_{\mathrm{RE}}=24.62 \mathrm{~N} / \mathrm{mm}$.

	\mathbf{F} $\mathbf{(N)}$		\mathbf{G} $\left(\mathbf{m m}^{2}\right)$	$(\mathbf{m m})$	$\left(\mathbf{m m}^{\mathbf{2}}\right)$	$(\mathbf{m m})$
X 1	7.3		0.0101	0.4376	-0.0083	-0.2527
Y 1	25.62		0.0083	0.2527	0.0101	0.4376
X 2	12.67		0.0202	0.4376	-0.0165	-0.2527
Y 2	35.7		0.0165	0.2527	0.0202	0.4376
X 3	17.61		0.0303	0.4376	-0.0248	-0.2527
Y 3	46.91		0.0248	0.2527	0.0303	0.4376
X 4	22.05		0.0404	0.4376	-0.0331	-0.2527
Y 4	55.17		0.0331	0.2527	0.0404	0.4376

Table 3.2: Regression Matrices for Aluminum at $3819 \mathrm{rpm}, 1 / 4$ Immersion.

Tables 3.3, 3.4, 3.5 and 3.6 show the coefficients for Al6061, Steel1018, Stainless
Steel304 and Titanium Grade 2 calibrated from 14 identical tests. To form one row of the tables shown below, least squares regression must be applied to the regression matrices with corresponding average forces and geometry matrix, as shown in Table 3.2

	$\mathbf{K}_{\mathbf{T C}}$ $\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)$	$\mathbf{K}_{\mathbf{T E}}$ $(\mathbf{N} / \mathbf{m m})$	$\mathbf{K}_{\mathbf{R C}}$ $\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)$	$\mathbf{K}_{\mathbf{R E}}$ $(\mathbf{N} / \mathbf{m m})$
	777.04	20.18	353.63	24.62
	744.79	18.77	301.98	24.42
	698.58	18.72	275.31	22.40
	723.52	22.26	300.45	22.68
	756.10	21.68	352.17	20.62
	698.80	24.11	297.89	20.67
	762.76	20.78	345.67	17.79
	722.93	23.15	329.28	19.68
	794.69	20.07	320.94	18.40
	719.46	22.34	283.45	21.16
	730.23	19.89	311.40	22.89
	763.48	19.41	302.10	23.71
	751.56	18.74	317.22	23.94
	737.80	21.69	325.68	19.85
Mean	741.55	20.84	315.51	21.63
Stdev	28.17	1.73	24.17	2.22

Table 3.3: Calibration Results for Aluminum for 14 Identical Tests, $3819 \mathrm{rpm}, 1 / 4$ Immersion.

	$\mathbf{K}_{\mathbf{T C}}$ $\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)$	$\mathbf{K}_{\mathbf{T E}}$ $(\mathbf{N} / \mathbf{m m})$	$\mathbf{K}_{\mathbf{R C}}$ $\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)$	$\mathbf{K} \mathbf{R E}$ $(\mathbf{N} / \mathbf{m m})$
	1906.12	73.37	1061.20	89.85
	1932.10	43.83	992.01	80.23
	1904.16	50.14	1176.02	78.67
	1828.29	52.14	1012.38	82.65
	1809.12	53.62	1055.02	82.65
	1859.03	51.17	991.94	85.55
	1919.67	51.71	1114.39	82.65
	2057.34	47.08	1228.50	76.01
	1940.26	49.18	1070.91	81.33
	1894.17	51.45	1060.35	81.63
	1914.32	50.40	1050.92	80.90
	1776.77	54.69	1069.49	81.85
	1817.07	54.87	1032.56	83.77
	1884.35	50.69	1041.97	82.09
Mean	1890.32	54.07	1069.78	82.69
Stdev	70.14	8.67	65.67	3.78

Table 3.4: Calibration Results for Steel1018 for 14 Identical Tests, $4000 \mathrm{rpm}, 3 / 4$ Immersion

	$\mathbf{K}_{\mathbf{T C}}$ $\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)$	$\mathbf{K}_{\mathbf{T E}}$ $(\mathbf{N} / \mathbf{m m})$	$\mathbf{K}_{\mathbf{R C}}$ $\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)$	$\mathbf{K}_{\mathbf{R E}}$ $(\mathbf{N} / \mathbf{m m})$
	2251.54	42.84	1335.00	64.38
	2898.54	29.54	1926.95	50.22
	2442.88	35.84	1492.65	67.55
	2174.94	47.90	1397.82	72.80
	1942.99	51.80	1021.52	81.35
	2168.16	45.44	1153.37	77.14
	2610.58	38.97	1413.97	70.41
	2714.19	35.03	1836.98	63.96
	2476.94	38.55	1596.72	63.61
	1997.08	53.73	1078.67	93.66
	2109.62	47.96	1260.97	77.53
	2289.47	43.12	1309.22	80.05
	2096.49	52.17	1250.14	86.33
	2622.33	40.11	1466.38	82.36
	2342.55	43.07	1395.74	73.67
Mean	289.41	7.19	260.45	11.24
Stdev	2			

Table 3.5: Calibration Results for Stainless Steel 304 for 14 Identical Tests, $2400 \mathrm{rpm}, 1 / 4$ Immersion

	$\begin{gathered} \mathbf{K}_{\mathrm{TC}} \\ \left(\mathbf{N} / \mathbf{m m}^{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{K}_{\mathrm{TE}} \\ (\mathbf{N} / \mathbf{m m}) \end{gathered}$	$\begin{gathered} \mathbf{K}_{\mathrm{RC}} \\ \left(\mathbf{N} / \mathbf{m m}^{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{K}_{\mathbf{R E}} \\ (\mathbf{N} / \mathbf{m m}) \end{gathered}$
	1819.46	21.71	1038.00	37.47
	1888.45	22.19	1094.47	39.19
	1934.04	19.62	1098.15	34.48
	1859.52	20.21	1097.06	34.60
	1725.02	24.22	994.97	39.56
	1848.56	19.90	1088.03	34.12
	1662.33	24.05	921.95	40.02
	1930.66	21.12	1113.16	37.64
	1880.31	21.13	1124.60	35.83
	2001.84	18.70	1164.69	35.23
	1906.57	19.22	1108.87	36.26
	1862.40	19.34	1026.78	36.48
	1653.06	23.72	1011.60	37.60
	2005.11	17.74	1361.53	29.63
Mean	1855.52	20.92	1088.85	36.29
Stdev	109.78	2.05	100.63	2.70

Table 3.6: Calibration Results for Titanium for 14 Identical Tests, $1800 \mathrm{rpm}, 1 / 2$ Immersion.

It can be seen from the tables that the calibration coefficients for each material have variation when cutting with identical conditions (tests repeated with same spindle speed and same radial immersion). This is considered as random variation and therefore it forms the baseline of the coefficient variation with respect to the changing cutting conditions. It is expected that when spindle speed and/or radial immersion change, the variation of the cutting coefficients will increase. In Chapter 4, the contribution of each changing cutting condition to the force model uncertainty is presented in greater detail.

3.5 Summary

Experimental design for the force model calibrations are shown in this chapter. The experiments are performed on blocks of Aluminum 6061, Steel 1018, Stainless Steel 304 and Titanium Grade 2 with three different cutting geometries ($3 / 4,1 / 2$ and $1 / 4$ immersions) and four different spindle speeds, which vary by material, at four different feedrates. Tests with one spindle speed for all immersions, for each material are repeated 14 times.

Force model coefficients calibrated from the regression matrices are sub-grouped into four categories to look at the variations with respect to changing cutting conditions. The variation in the cutting coefficients is expected to be the smallest when the cutting conditions are identical and they are expected to increase with the changing cutting conditions. Calibration results for the identical cutting conditions for each material are presented.

CHAPTER 4

COEFFICIENT AND FORCE MODEL UNCERTAINTY

4.1 Introduction

In Chapter 4, correlation matrices tables for the four cutting coefficients ($K_{T C}$, $K_{T E}, K_{R C}$, and $K_{R E}$) for all of the materials are presented. Monte Carlo simulation results are presented to explain the effect of changing cutting conditions on the force estimations. For each material, a table of the Factor of Safety (FS) is provided. FS values are derived from the Monte Carlo simulations. In addition, for Steel 1018, tests with 5 new different types of inserts and tools with different material and geometries were conducted by varying radial depth, axial depth and tool radius to observe the change in FS when additional cutting parameters are varied.

4.2 Coefficient Uncertainty

One of the purposes of this study is to quantify the effect of the variability of the force model coefficients. There is always some variation in the cutting coefficients even if the cutting conditions are identical. Furthermore, the cutting coefficients are correlated with each other. Correlation matrices for these coefficients calibrated from identical cutting conditions for Titanium and Stainless steel can be seen in Tables 4.1-4.4.

$\operatorname{Corr}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)$	$\mathbf{K}_{\mathbf{T C}}$	$\mathbf{K}_{\mathbf{T E}}$	$\mathbf{K}_{\mathbf{R C}}$	$\mathbf{K}_{\mathbf{R E}}$
$\mathbf{K}_{\mathbf{T C}}$	1.00	-0.58	0.52	-0.44
$\mathbf{K}_{\mathbf{T E}}$	-0.58	1.00	-0.39	0.45
$\mathbf{K}_{\mathbf{R C}}$	0.52	-0.39	1.00	-0.63
$\mathbf{K}_{\mathbf{R E}}$	-0.44	0.45	-0.63	1.00

Table 4.1: Correlation Matrix Table of Model Coefficients for Aluminum, $3 / 4$ Immersion at $3819 \mathrm{rpm}, 14$ Cuts Using Identical Cutting Conditions.

$\operatorname{Corr}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{K}_{\mathbf{T C}}$	$\mathbf{K}_{\mathbf{T E}}$	$\mathbf{K}_{\mathbf{R C}}$	$\mathbf{K}_{\mathbf{R E}}$
$\mathbf{K}_{\mathbf{T C}}$	1.00	-0.27	0.59	-0.47
$\mathbf{K}_{\mathbf{T E}}$	-0.27	1.00	-0.10	0.82
$\mathbf{K}_{\mathbf{R C}}$	0.59	-0.10	1.00	-0.58
$\mathbf{K}_{\mathbf{R E}}$	-0.47	0.82	-0.58	1.00

Table 4.2: Correlation Matrix Table of Model Coefficients for Steel 1018, 3/4 Immersion at $4000 \mathrm{rpm}, 14$ Cuts Using Identical Cutting Conditions.

$\operatorname{Corr}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)$	$\mathbf{K}_{\mathbf{T C}}$	$\mathbf{K}_{\mathbf{T E}}$	$\mathbf{K}_{\mathbf{R C}}$	$\mathbf{K}_{\mathbf{R E}}$
$\mathbf{K}_{\mathbf{T C}}$	1.00	-0.94	0.92	-0.73
$\mathbf{K}_{\mathbf{T E}}$	-0.94	1.00	-0.90	0.85
$\mathbf{K}_{\mathbf{R C}}$	0.92	-0.90	1.00	-0.82
$\mathbf{K}_{\mathbf{R E}}$	-0.73	0.85	-0.82	1.00

Table 4.3: Correlation Matrix Table of Model Coefficients for Stainless Steel 304, $1 / 4$ Immersion at $2400 \mathrm{rpm}, 14$ Cuts Using Identical Cutting Conditions.

$\operatorname{Corr}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)$	$\mathbf{K}_{\mathbf{T C}}$	$\mathbf{K}_{\mathbf{T E}}$	$\mathbf{K}_{\mathbf{R C}}$	$\mathbf{K}_{\mathbf{R E}}$
$\mathbf{K}_{\mathbf{T C}}$	1.00	-0.87	0.82	-0.66
$\mathbf{K}_{\mathbf{T E}}$	-0.87	1.00	-0.76	0.83
$\mathbf{K}_{\mathbf{R C}}$	0.82	-0.76	1.00	-0.84
$\mathbf{K}_{\mathbf{R E}}$	-0.66	0.83	-0.84	1.00

Table 4.4: Correlation Matrix Table of Model Coefficients for Titanium Grade 2, $1 / 2$ Immersion at $1800 \mathrm{rpm}, 14$ Cuts using Identical Cutting Conditions.

The numbers in the tables show the strength of the correlation between the coefficients. A positive number indicates a positive correlation between two coefficients while a negative number indicates a negative correlation between the variables. For example, $\mathrm{K}_{\mathrm{TC}}-\mathrm{K}_{\mathrm{TE}}$ and $\mathrm{K}_{\mathrm{RC}}-\mathrm{K}_{\mathrm{RE}}$ in Table 4.1 are inversely correlated, implying that these coefficients exhibit a "see-saw" effect, when one increases the other one decreases. However, $\mathrm{K}_{\mathrm{TC}}-\mathrm{K}_{\mathrm{RC}}$ and $\mathrm{K}_{\mathrm{TE}}-\mathrm{K}_{\mathrm{RE}}$ are positively correlated. There is also correlation between $\mathrm{K}_{\mathrm{TC}}-\mathrm{K}_{\mathrm{RE}}$ and $\mathrm{K}_{\mathrm{TE}}-\mathrm{K}_{\mathrm{RC}}$. Correlation matrices are found from the covariance matrices which are evaluated in MATLAB [12], using the covariance function [13].

$$
\begin{equation*}
\operatorname{cov}\left(x_{1}, x_{2}\right)=E\left[\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)\right] \tag{4.1}
\end{equation*}
$$

where E is the mathematical expectation and $\mu_{\mathrm{i}}=\mathrm{E}\left(\mathrm{x}_{\mathrm{i}}\right)$ is the mean value. Equation 4.2 shows the correlation function which is evaluated from the covariance and standard deviations.

$$
\begin{equation*}
\operatorname{corr}\left(x_{1}, x_{2}\right)=\frac{\operatorname{cov}\left(x_{1}, x_{2}\right)}{\sigma_{x_{1}} \sigma_{x_{2}}} \tag{4.2}
\end{equation*}
$$

4.3 Force Probability Density Functions from Monte Carlo Simulations

The variation in the cutting coefficients generates a variation in force estimation. However, since there is correlation between the cutting coefficients, it is not possible to add the effect of the variation in them directly to the force estimation. In order to observe the estimated peak force distribution with respect to changing cutting conditions, i.e. radial depth and spindle speed, and/or identical conditions Monte Carlo simulation is run. A program was written in MATLAB using the mvnrnd function. By using this function, any number of cutting coefficients can be simulated based on a multivariate normal random distribution. Mean and covariance of the cutting coefficients for each case are utilized in multivariate random normal distributions to simulate any number of cutting coefficients.

In the Monte Carlo simulation, if the force distribution is to be simulated for a cut with identical cutting conditions, e.g. Aluminum 6061 is being cut at 3819 rpm with $1 / 4$ immersion, the mean and the covariance matrix of the sample, collected from 14 identical tests, determine the distribution of the cutting coefficients. The Monte Carlo simulation is based on the normal distribution. The force model is then used to calculate the maximum simulated force for the given cut geometry using the maximum chip thickness for the given cutting condition. The mean, standard deviations and covariance of the cutting coefficients of cutting conditions under interest are utilized in the force model. By running a Monte Carlo simulation, any number of cutting tests can be simulated at a particular cutting condition. In this study, 100,000 cutting tests are simulated. The Monte Carlo simulation results showing the force histogram for each of the four materials can be seen in Figures 4.1 to 4.4. The shape of all the histograms indicates a normal distribution
that we define as the force PDF. Since there are 48 different cutting conditions for each material, it is impractical to do a force probability distribution analysis for each of them. A total of 4 probability distributions, an example from each material, are demonstrated using the identical test cases where the tests are repeated 14 times.

Figure 4.1: Force Histogram for
Aluminum 6061

Figure 4.2: Force Histogram for Steel 1018.

Figure 4.3: Force Histogram for Stainless Steel 304

Figure 4.4: Force Histogram for Titanium Grade 2.

After running a Monte Carlo simulation for all four materials, it is possible to determine the peak force variation for different cases. A factor of safety for each case can then be determined by looking at the mean and standard deviation of the peak force probability density function tables. Table 4.5 shows the different cases considered. Row 1
of the table contains the statistics of the cuts with identical cutting conditions where each test is repeated 14 times. Row 2 shows the cases where spindle speeds are different but the radial depths are the same. Row 3 shows the cases where the radial depths are different but the spindle speed is the same. Finally, Row 4 has statistics of all of the cutting conditions, different radial depths and spindle speeds.

3819 rpm 1/2 immersion $\mathbf{h}_{\text {avg }}=\mathbf{0 . 0 5 0 8}$ mm	Mean Peak Resultant Force (N)	Standard Deviation (N)	Sample size
1-identical conditions	281.64	5.18	14
2-different spindle speed	279.22	11.52	23
3-different radial depth at 3819 rpm	289.61	8.30	42
4-different radial depth and spindle speed	286.85	16.02	69

Table 4.5. Aluminum 6061 Peak Resultant Force PDF Table

4000 rpm $1 / 2$ immersion havg $=\mathbf{0 . 0 2 5 4}$ mm	Mean Peak Resultant Force (N)	Standard Deviation (N)	Sample size
1-identical conditions	564.18	18.21	14
2-different spindle speed	577.76	32.87	23
3-different radial depth at 4000 rpm	563.76	19.44	42
4-different radial depth and spindle speed	577.95	33.57	69

Table 4.6. Steel 1018 Peak Resultant Force PDF Table.

2400 rpm $1 / 2$ immersion $\mathbf{h}_{\text {avg }}=\mathbf{0 . 0 2 5 4}$ mm	Mean Peak Resultant Force (N)	Standard Deviation (N)	Sample size
1-identical conditions	589.45	17.11	14
2-different spindle speed	588.95	34.06	23
3-different radial depth at 2400 rpm	593.84	19.33	42
4-different radial depth and spindle speed	595.20	36.39	69

Table 4.7: Stainless Steel 304 Peak Resultant Force PDF Table

1800 rpm $1 / 2$ immersion $\mathbf{h}_{\text {avg }}=\mathbf{0 . 0 1 2 7}$ mm	Mean Peak Resultant Force (N)	Standard Deviation (N)	Sample size
1-identical conditions	259.50	5.72	14
2-different spindle speed	263.43	8.93	23
3-different radial depth at 1800 rpm	256.68	11.41	42
4-different radial depth and spindle speed	261.49	12.21	69

Table 4.8: Titanium Grade 2 Peak Resultant Force PDF Table

In Tables 4.5, 4.6, 4.7 and 4.8 the second column shows the mean values of the maximum force based on simulation with 100,000 tests, the third column shows the standard deviation of these forces and fourth column indicates the sample size, i.e. the number of elements in the corresponding coefficients subset.

It can be seen from Tables 4.5, 4.6, 4.7 and 4.8 that the standard deviation is the smallest when the cutting conditions are identical and it is the biggest when cutting conditions (spindle speed and radial depth) are different. This is expected as the variation should be less when the cutting conditions are identical. For aluminum 6061, steel 1018
and stainless steel 304, a comparison of rows 2 and 3 leads to the conclusion that spindle speed causes more variability than radial depth. However, in titanium, radial depth is a more significant source of variation than spindle speed.

By using the mean and standard deviation values for any of the four materials in Tables 4.5 to 4.8 it is possible to determine a process planning factor of safety (FS) using equation 4.3.

$$
\begin{equation*}
F S=\frac{(m e a n+3 \cdot s t d)}{m e a n} \tag{4.3}
\end{equation*}
$$

In process planning, a factor of safety is necessary to ensure that the actual cutting forces will be less than the model estimated forces. This procedure is consistent with standard engineering practice when using any type of simulation model. In this study, we want to be 99.86% confident that the actual cutting forces while machining will be safe.

A Normal probability distribution plot defining the safe and unsafe regions can be seen in Figure 4.5

Figure 4.5: Probability Density Function
Table 4.9 is generated by using the mean and standard deviation values of Rows 1
and 4 of Tables 4.5 to 4.8 . The first column shows the factor of safety required when the cutting conditions are absolutely identical to the calibration conditions. The second column shows the factor of safety when the radial depth and spindle speed are not identical to the calibration conditions.

Factor of Safety (Resultant Forces)		
	Identical Conditions	Different RD and spindle speed
Aluminum $\mathbf{6 0 6 1}$	1.06	1.17
Steel $\mathbf{1 0 1 8}$	1.10	1.17
Stainless Steel 304	1.09	1.16
Titanium Grade 2	1.07	1.16

Table 4.9: Factor of Safety Table for Resultant Forces.

By looking at Table 4.9, it can be said that for aluminum, if the cutting conditions such as radial depth and spindle speed are not known, then a factor of safety of 1.17 can be set. For example, if the breaking strength of the tool was 500 N then the feedrates should be set to values such that the model estimated forces are calculated to be less than $427 \mathrm{~N}(500 / 1.17)$. This force level would ensure a 99.86% probability that the actual forces encountered would be less than 500 N . Table 4.9 also shows that when cutting conditions are the same, a lower factor of safety may be used.

4.4 Effect of Variation in Cutting Tool Type

When there is additional variation in the cutting parameters like tool geometry, tool material and axial depth, the FS is expected to change. To observe how much FS changes when additional machining parameters are added, new sets of experiments were conducted. These new sets of experiments were performed on Steel 1018 with the following 5 different inserts and tools of different geometry: Sandvik 08M-PL, Kennametal KC725M and Kennametal KC935M inserts as well as conventional coated and uncoated solid carbide tools of 30 degree helix angle. The geometry of Sandvik 08MPL and Kennametal inserts is similar but the tool material is different. The tests were performed at 2400 and 4000 rpm ; at $1 / 4$ and $3 / 4$ immersions; at tool radii of 12.7 mm and 25.4 mm and at axial depths of 3.175 mm and 1.905 mm . 16 tests were conducted for each cutter using the factorial experiment design table, Table 4.10, which can be seen below.

RD	RPM	Tool radius	Axial depth
1	1	1	1
2	1	1	1
1	2	1	1
1	1	2	1
1	1	1	2
1	1	2	2
1	2	2	1
2	2	1	1
2	1	1	2
2	1	2	1
1	2	1	2
1	2	2	2
2	2	2	1
2	2	1	2
2	1	2	2
2	2	2	2

Table 4.10: Orthogonal array for each tool
The levels for the variables of RPM, radial depth, tool radius and axial depth are described in the Table 4.11 below.

RPM	1	2400 rpm
	2	4000 rpm
$\mathbf{R D}$	1	$1 / 4$ immersion
	2	$3 / 4$ immersion
Tool radius	1	12.7 mm
	2	25.4 mm
Axial depth	1	3.175 mm
	2	1.905 mm

Table 4.11: Levels for the variables in the experiments
The tests described above are conducted to calibrate the model coefficients, K_{TC}, $\mathrm{K}_{\mathrm{TE}}, \mathrm{K}_{\mathrm{RC}}$ and K_{RE}. The values of the calibrated model coefficients can be seen in Appendix C. Monte Carlo simulation is then run in the same manner used to generate

Table 4.9. Table 4.12 shows the mean and the standard deviation values of the
distribution for the inserts as well as the conventional tools to obtain the Factor of Safety
Table shown in Table 4.13.

4000 rpm 1/2 immersion $\mathbf{h}_{\text {avg }}=\mathbf{0 . 0 2 5 4}$ mm	Mean Peak Resultant Force (N)	Standard Deviation (N)	Sample size
(Inserts) Sandvik 08M- PM + Sandvik 08M-PL + KC725M + KC935M	572.38	67.83	117
Inserts+ Coated Carbide + Uncoated Carbide	545.70	92.09	149

Table 4.12: Insert and Conventional Tools Peak Resultant Force PDF Table.

The FS value in the second column in Table 4.13 is identical to Table 4.9, corresponding to the baseline tests. However, the other columns represent the FS resulting from the variation in different cutter types as well as different tool geometry, tool radius and axial depth. The third column of Table 4.13 shows the FS value of the inserts combined together, i.e. the coefficients from the Sandvik 08M-PM insert are combined with the coefficients from the tests conducted with Sandvik 08M-PL, KC725M and KC935M and a Monte Carlo simulation is run. The simulation results for this case can be seen in the first row of Table 4.12. Fourth column in Table 4.13 shows the FS value resulting from the combination of the inserts and the conventional solid carbide cutters (coated and uncoated) of 30 degree helix angle. Mean and standard deviation for this case can be seen in the second row of Table 4.12.

Factor of Safety (Resultant Forces)			
	Sandvik 08M- PM	(Inserts) Sandvik 08M- PM + Sandvik 08M-PL + KC725M + KC935M	Inserts+ Coated Carbide + Uncoated Carbide
Steel 1018 Different RD and spindle speed	1.17	1.36	

Table 4.13: Factor of Safety Table for Resultant Forces.
It is observed from Table 4.12 that, when additional parameters are added, the FS increases. When the cutting coefficients from 4 types of inserts that exhibit slight change in tool geometry are combined with different axial depths and radiuses to estimate the peak resultant forces, the FS increases to 1.36. In addition, when the coefficients calibrated from the inserts and the conventional coated and uncoated solid carbide tools (exhibiting major change in tool geometry) are combined to estimate the peak resultant force distribution, the FS increases to 1.5 .

4.5 Summary

In this chapter, correlation matrices for each material are presented. These tables show how strongly the model coefficients are correlated. $\mathrm{K}_{\mathrm{TC}}-\mathrm{K}_{\mathrm{TE}}$ and $\mathrm{K}_{\mathrm{RC}}-\mathrm{K}_{\mathrm{RE}}$ are inversely correlated, exhibiting the "see-saw" effect. However, $K_{T C}-K_{R C}$ and $K_{T E}-K_{R E}$ are positively correlated. There are also correlations between $\mathrm{K}_{\mathrm{TC}}-\mathrm{K}_{\mathrm{RE}}$ and $\mathrm{K}_{\mathrm{TE}}-\mathrm{K}_{\mathrm{RC}}$. Since there is such a strong correlation between the coefficients, it is not possible to add the effect of variation in the coefficients to the force estimation. Thus Monte Carlo simulation is needed to observe the variations in the force estimations.

Monte Carlo simulation is run by creating 100,000 sets of force model coefficients with a statistical distribution that depends on the cutting conditions (identical conditions, only spindle speed changes etc) used when performing the model calibration. The mean, standard deviation and correlation matrix of the coefficients for the cutting test sub-groups described in Chapter 3 are utilized in a multivariate normal distribution. Then, the linear force model is run 100,000 times to yield a force probability distribution. This process is repeated for the four different cases (sub-groups) under consideration: 1) Identical conditions. 2) Different spindle speed with same radial depth. 3) Different radial depth with same spindle speed. 4) Different spindle speed and radial depth. The results from the simulations indicate that for Aluminum 6061, Steel 1.018 and Stainless Steel 304 spindle speed is a more significant source of model coefficient variation than radial depth. However, in Titanium Grade 2, radial depth causes more variation than spindle speed. In addition to that, as expected, when cutting conditions are identical, the variation in the resultant forces is the smallest. On the contrary, when the sample includes the coefficients from all types of test conditions, the variation becomes larger.

Results for Steel 1018 indicate that to ensure safe and efficient cutting, the cutting conditions should be set such that the model estimated forces are 17% less than the maximum allowable forces. This procedure will ensure that the actual cutting forces will be less than a force which could either break the tool or deflect too much with a probability of 99.86%.

What happens when a cutting tool is used that has not undergone a calibration procedure to determine accurate cutting coefficients? To answer this question tests were conducted with different geometry, coating, axial and radial depths. It is observed that the
required FS increases when these additional variations are introduced. Results from tests conducted with different types of inserts and conventional tools of different geometries at different tool radii, and axial depth show that when different types of inserts are used, the FS increases from 1.17 to 1.36 . In addition, if the tests also include conventional coated and uncoated solid carbide tools, whose tool geometries are significantly different than the inserts, the FS increases from 1.36 to 1.5 . These tests provide two valuable pieces of information: 1. Process planners must include a FS if they are using coefficients from a general table that doesn't include information about the cutting tool used in the calibration test. 2. Productivity can be significantly improved by getting calibration information from tests that are as close to the actual machining conditions as possible. This conclusion provides a good rationale for the value of on-line calibration performed while cutting a production part. In this way the calibration coefficients can be used with a FS between 1.1 and 1.2 as evidenced by Table 4.9

CHAPTER 5

EXPERIMENTAL VALIDATION

5.1 Introduction

This chapter compares experimentally measured forces to the probability distributions predicted by the Monte Carlo simulation method. Monte Carlo simulations are extended over a full range of chip thickness, in an attempt to generalize the factor of safety found for one chip thickness value. The changing cutting conditions case (changing radial depth and spindle speed) are used in the simulation for each material. Experimental resultant peak forces are compared with the results of the Monte Carlo simulated upper and lower force intervals.

A case study is performed using Steel 1018 with two different methods in order to experimentally validate the FS values generated by Monte Carlo simulations. In the first method, the cutting conditions are known and the force is simulated to get the mean peak target force. The target force is then multiplied by the Factor of Safety (FS) obtained from Monte Carlo simulations to determine the critical force level. Experimental forces, using the same cutting conditions, are obtained from the Kistler and compared with the simulated force. In the second method, the critical force is calculated based on the tool deflection constraints. This critical force is then divided by FS to get the target force. The feedrates are optimized to match the target force. Experimental cuts are performed at the optimized set feedrates and the measured forces are compared with the calculated force.

If the method is working correctly, the measured forces will be less than the target force with a 99.86% probability.

5.2 Methodology and Results

Experimental work is performed to verify the Monte Carlo simulation results in two ways. The first goal is to generalize the factor of safety values found for one chip thickness from the Monte Carlo simulation results in Chapter 4 over a full range of chip thicknesses. The second goal is to observe if the actual peak resultant forces during machining stay within the confidence levels set by the Monte Carlo simulations.

The calibration of the coefficients for all of the experimental tests is based on the average x and y force values. To compare simulation peak force results to experimental peak forces, the mean, standard deviation and the correlation of the coefficients are used to find force PDFs for the four different values of $h_{\text {avg }}$ shown in Table 3.1 for each material. At each average chip thickness, $\mathrm{h}_{\text {avg }}$, there are three sets of peak force values for three different radial immersions. The calibration tests are designed to have the same average chip thickness but peak forces are a function of peak chip thickness, $\mathrm{h}_{\text {max }}$. Therefore, different radial depths result in different maximum chip thicknesses. Thus, for each set of forces shown in Figures 5.1-5.4 at the same chip thickness, the leftmost group is at $3 / 4$ immersion, the middle group is at $1 / 2$ immersion and the rightmost group is at $1 / 4$ immersion (see Figure 5.1).

The number of test repetitions from Table 3.1 is limited to three at each spindle speed for each material instead of including all 14 repetitions at one spindle speed as it is desired to eliminate a possible bias towards that one spindle speed. In addition, all three types of radial immersions are included. Therefore, the total number of experimental
conditions for each material is $4 \times 4 \times 3 \times 3$ (spindle speed x chip thickness x radial immersion x repetition $)=144$. Monte Carlo simulations are run for all average chip thicknesses specified in Table 3.1 at a given radial immersion and spindle speed. Tables 5.1-5.4 show the mean, standard deviation and coefficient of variation, which is the ratio of standard deviation to the mean, obtained from the simulation. It should be noted that the coefficient of variation does not vary significantly with chip thickness. This observation is important and means that a single FS should work over the full range of chip thickness.

The mean and standard deviation values shown in Tables 5.1-5.4 can also be used to generate confidence limits which are graphically shown in Figures 5.1-5.4. Upper and lower confidence levels of 99.86% and 95% are formed by adding and subtracting 3σ and 2σ to the mean value. The experimentally measured resultant peak forces are shown on the graphs, indicating that the measured forces fall within the predicted confidence limits. The Kistler dynamometer used to measure forces has a natural frequency of around 950 Hz and the data is filtered with a low pass Butterworth filter at 500 Hz .

Al6061 3819 rpm $1 / 2$ immersion	Mean (N)	Std. (N)	Cv
$1) \mathrm{h}_{\text {avg }}=0.0254 \mathrm{~mm}$ different conditions	185.17	15.37	.083
$2 \mathrm{~h}_{\text {avg }}=0.0508 \mathrm{~mm}$ different conditions	283.56	22.80	.080
$3) \mathrm{h}_{\text {avg }}=0.0762 \mathrm{~mm}$ different conditions	383.96	30.70	.080
$4) \mathrm{h}_{\text {avg }}=0.1016 \mathrm{~mm}$ different conditions	482.79	39.05	.081

Table 5.1: Aluminum Peak Resultant Force PDF Table for Different Conditions, Case 4 of Table 4.5 for all $h_{\text {avg }}$, Sample Size $=36$, Monte Carlo Simulation

Figure 5.1: Experimental Resultant Forces Compared to the Monte Carlo Simulation Intervals for Aluminum.

Steel 1018 4000 rpm $1 / 2$ immersion	Mean $\mathbf{(N)}$	Std. $\mathbf{(N)}$	Cv
$1) h_{\text {avg }}=0.0254 \mathrm{~mm}$ different conditions	582.73	42.02	.072
2) $h_{\text {avg }}=0.03175 \mathrm{~mm}$ different conditions	647.03	43.59	.067
3) $h_{\text {avg }}=0.0381 \mathrm{~mm}$ different conditions	711.92	46.40	.065
4) $h_{\text {avg }}=0.0508 \mathrm{~mm}$ different conditions	841.92	54.89	.065

Table 5.2: Steel 1018 Peak Resultant Force PDF Table for Different Conditions, Case 4 of Table 4.6 for all $\mathrm{h}_{\text {avg, }}$, Sample Size $=36$, Monte Carlo Simulation

Resultant Forces for St1018

Figure 5.2: Experimental Resultant Forces Compared to the Monte Carlo Simulation Intervals for Steel 1018.

StSt 304 2400 rpm $1 / 2$ immersion	Mean (N)	Std. (N)	Cv
$1) h_{\text {avg }}=001905 \mathrm{~mm}$ different conditions	50066	38.29	.076
2) $h_{\text {avg }}=0.0254 \mathrm{~mm}$ different conditions	647.03	43.52	073
$3)$ different conditions	711.92	50.16	073
$4) h_{\text {avg }}=0.0381 \mathrm{~mm}$ different conditions	770.45	58.34	076

Table 5.3: Stainless Steel 304 Peak Resultant Force PDF Table for Different Conditions, Case 4 of Table 4.7 for all $h_{\text {avg, }}$, Sample Size $=36$, Monte Carlo Simulation

Figure 5.3: Experimental Resultant Forces Compared to the Monte Carlo Simulation Intervals for Stainless 304.

Titanium $\mathbf{1 8 0 0} \mathbf{~ r p m ~}$ $1 / 2$ immersion	Mean $\mathbf{(N)}$	Std. $\mathbf{(N)}$	Cv
$1)$ different conditions	25961	1521	058
2) $h_{\text {avg }}=001905 \mathrm{~mm}$ different conditions	32597	1615	050
$3) h_{\text {avg }}=00254 \mathrm{~mm}$ different conditions	39281	1854	047
$4) h_{\text {avg }}=00381 \mathrm{~mm}$ different conditions	52708	2623	050

Table 5.4: Titanium Peak Resultant Force PDF Table for Different Conditions, Case 4 of Table 4.8 for all $h_{\text {avg }}$, Sample Size $=36$, Monte Carlo Simulation

Figure 5.4: Experimental Resultant Forces Compared to the Monte Carlo Simulation Intervals for Titanium Grade 2.

Figures 5.1 to 5.4 show that the experimentally measured forces fall within the confidence intervals created by Monte Carlo simulation.

5.3 Case Study

A case study was performed to verify the FS values generated by Monte Carlo simulations for the cutting conditions that are different than the tests done to determine FS.

A Steel 1018 block underwent both up and down milling, using a three flute insert cutter with a 25.4 mm diameter, with four different radial immersions (slot, three quarters, half and quarter), four different spindle speeds ($3000 \mathrm{rpm}, 3500 \mathrm{rpm}, 4000 \mathrm{rpm}$ and 4500 rpm) and an axial depth of 2.54 mm . The cutting forces are simulated by two
different methods: 1) Spindle speed, immersion and $h_{\text {avg }}$ are known. A feedrate is calculated based on the spindle speed and $\mathrm{h}_{\text {avg }}$. Then, the force is simulated based on this information including the effects of runout. The simulated force is multiplied by the FS to determine the force level not to be exceeded. Then, experimental resultant peak forces are plotted against the simulated and critical force levels. 2) The tolerance specified in [1] is used to calculate the critical force level. A target force is obtained by dividing the critical force level by the FS. The simulation program is then utilized in an iterative manner to determine the experimental feedrates. The experimental resultant peak forces are plotted against the predetermined critical and target force levels.

5.3.1 Method1: Known feedrate-calculated force

For a given cutting condition, a critical force not to be exceeded is determined as follows: e.g. for a half immersion cut at 3000 rpm , and a specified average chip thickness $\left(\mathrm{h}_{\text {avg }}\right)$ of 0.03175 mm , the feedrate is calculated and the resultant peak force is determined from the simulation, including runout with a magnitude of 0.01016 mm and locating angle of 145 degrees. The runout magnitude is measured with the tool in the FADAL 3 axis CNC milling machine using a dial indicator. The locating angle for the tool is estimated to match the profile shape of the measured force. The simulated resultant peak force is multiplied with a FS value for steel 1018 obtained from the Monte Carlo simulations (Table 4.9). Experiments are then run at the calculated feedrates. Experimental feedrates for method 1 can be seen in Table 5.5.

	G E O M E T R Y (up and down mill)			
RPM	SLOT	3/4 immersion	$1 / 2$ immersion	$11 / 4$ immersion
3000	448.84	398.98	448.84	598.47
3500	523.67	465.48	523.67	698.22
4000	598.47	531.97	598.47	797.96
4500	673.27	598.47	673.27	897.71

Table 5.5 - Feedrate table ($\mathrm{mm} / \mathrm{min}$) for Case Study, method 1: Fixed $\mathrm{h}_{\text {avg }}$
The experiments are set such that the observed average chip thickness, $\mathrm{h}_{\text {avg }}$, is the same for all of the cuts. But since the peak resultant forces depend on the maximum chip thickness, $\mathrm{h}_{\text {max }}$, force levels vary with different radial immersions. Up milling and down milling case study results for a total of 32 tests can be seen in Figure 5.5 and Figure 5.6 respectively. The experimental peak resultant force magnitudes for down and up milling cases for case study one can be seen in Appendix C.

Figure 5.5: Case study Method 1 - Downmill results. Critical force level is the simulated peak resultant force multiplied by the factor of safety

Figure 5.6: Case study Method 1 - Upmill results. Critical force level is the simulated peak resultant force multiplied by the factor of safety

The results from Figure 5.5 and Figure 5.6 show that experimental forces lie below the critical force level which is determined by using a FS obtained from the Monte Carlo simulations (Table 4.9). It is shown that the forces experienced by the tool during cutting will be less than the predicted forces with a probability of 99.86%, under a variety of cutting conditions. It can also be noted that for downmilling, the variation in the experimental forces tend to be larger than in upmilling. Note that the model estimated forces are the same for both Up and Down milling since the model doesn't discriminate between the two cases.

532 Method 2 Known force-calculated feedrate

For this method, a critical force level not to be exceeded is determined by using the constraint equations for tool deflection and maximum bending stress (Eq 2.20 and Eq 2.22) [4]. The smallest force result out of the two constraint equations is used to get the
target force which is then used in the force simulation to determine the feedrates by iteration. In this case study, the tool deflection formula yields a smaller force value and therefore tool deflection becomes the constraint for the process planning.

Calculation of the constraint force from tool deflection is now described. First, various tool parameters are given: Modulus of elasticity for cemented tungsten carbide is $675.10^{3} \mathrm{MPa}$, Effective diameter of the tool is 20.32 mm , tool length is 38.1 mm and allowable tool deflection of 0.00152 mm . Using this information in Eq. 2.20, the target force from the allowable deflection is calculated as 468 N . The allowable force from bending stress is calculated from Eq. 2.22 to be 3580 N based on a stress of 207 MPa and a tool diameter of 25.4 mm . Since the force from deflection is smaller than the force from bending stress, it becomes the constraint for the process planning.

The calculated maximum allowable force from tool deflection is divided by a FS value of 1.17 for Steel 1018 (Table 4.9) to get the target force. Dividing 468 N by 1.17 gives 400 N as the target force by which to set the feedrates. The feedrates for the given cut geometries are determined by iterating the feedrate in the simulation program until the target peak force is obtained. The simulation includes tool runout of 0.01016 mm with a locating angle of 145 degrees. The experimental feedrates for method 2 can be seen in Table 5.6. Simulated and experimental forces for method 2 with up and down milling geometries can be seen in Figures 5.7 and 5.8 respectively.

	G E O M E T R Y (up and down mill)			
RPM	SLOT	3/4 immersion	$1 / 2$ immersion	$11 / 4$ immersion
3000	146.05	146.05	146.05	170.18
3500	170.18	170.18	170.18	198.12
4000	195.58	195.58	195.58	223.52
4500	218.44	218.44	218.44	254

Table 5.6: Feedrate table ($\mathrm{mm} / \mathrm{min}$) for Case Study, method 2: Fixed forces

The experiments for this method are designed such that the experimental resultant peak forces for all types of immersion yield the same peak force values. Since it requires a higher feedrate for $1 / 4$ immersion than the other 3 types of immersion to get the same target peak force, the feedrates are slightly higher for $1 / 4$ immersion than the other immersions for a specific cutting speed. The experimental peak resultant force magnitudes for down and up milling cases for this case study can be seen in Appendix C.

Figure 5.7: Case study Method 2 - Downmill results

Figure 5.8: Case study Method 2 - Upmill results

Figures 5.7 and 5.8 indicate that the experimental peak forces remain in the safe zone for all of the test cases, below the critical force level corresponding to a 99.86% confidence level. It is again notable that the variation of the experimental forces in downmilling is larger than the variation in upmilling.

5.4 Summary

In chapter 5, experimental validation of the Monte Carlo simulations are performed. For each of the four materials, Monte Carlo simulations are run for a full range of chip thicknesses at $1 / 2$ immersion. 95% and 99.86% confidence intervals are formed by adding 2σ and 3σ to the Monte Carlo simulation mean. The resultant peak forces from the tests include three repetitions with all types of immersions and spindle speeds, for a total number of 144 cases for each material. The tests fall within the confidence intervals created by Monte Carlo simulation.

A case study is also performed on a Steel 1018 block to verify the FS values generated by Monte Carlo simulations. In the first method, a peak force level is calculated from known cutting condition (known spindle speed, radial depth, chip thickness, feedrate and axial depth). That force level is then multiplied by the FS (1.17) to calculate the critical force level. We expect 99.86% of the measured forces to be below the critical force level. The results confirm that the measured peak forces do fall below the critical threshold.

In the second method, a constraint equation for tool deflection is used to get the maximum allowable force for a desired tolerance. The maximum allowable force is then divided by the FS for Steel 1018, 1.17 (as opposed to multiplying in method 1). Feedrates for the given cutting conditions are found iteratively in the simulation program. The
experimental peak resultant forces all fall within the maximum allowable force line. This verifies that the FS obtained from Monte Carlo simulations can be used to enable safe and efficient cutting with 99.86% confidence, which is vital in process planning.

CHAPTER 6

RATIO ASSIGNMENT BETWEEN THE TANGENTIAL AND THE RADIAL

COEFFICIENTS

6.1 Introduction

This chapter describes the effect of eliminating the need for the radial coefficient calibration by assigning a ratio of the radial coefficients to the tangential coefficients on the force probability density functions.

The Kistler dynamometer is a useful instrument for calibrating the tangential and the radial coefficients. However, due to its invasive nature and high cost, it is not practical to use the force dynamometer in industrial applications. In contrast, the power sensor made by Load Control Incorporated (LCI) [14] is an inexpensive and non-invasive instrument. Unfortunately, the power sensor is only capable of finding the tangential coefficients. It is worth investigating whether it is possible to calibrate the tangential coefficients with a power sensor and then use a ratio of radial to tangential coefficients to determine the radial coefficients. Maximum allowable force estimations for process planning could be performed based on these coefficients and a corresponding FS.

6.2 Coefficient Ratios

To assign a ratio between the tangential and radial coefficients, the calibration results from the calibration tests shown in shown in Appendix C, i.e. 69 coefficients for each material, have to be used. The mean and the variance of the two ratios $\left(\mathrm{K}_{\mathrm{RC}} / \mathrm{K}_{\mathrm{TC}}\right.$ and $\mathrm{K}_{\mathrm{RE}} / \mathrm{K}_{\mathrm{TE}}$) for 69 sets of coefficients can be seen in Table 6.1. To account for the ratio variation, the mean and the variance of these two ratios for each material are utilized in a multivariate normal random distribution to obtain 100,000 ratios in MATLAB. These randomly created ratios are multiplied with 100,000 tangential coefficients obtained from the multivariate normal distribution, to estimate the radial coefficients. Monte Carlo simulation is then run to see the effect of assigning ratios between the tangential and the radial coefficients on the force probability density functions, thus on the FS. The coefficients for all of the cutting conditions for each material can be seen in Appendix C.

	Mean $\mathbf{K}_{\mathrm{RC}} / \mathbf{K}_{\mathrm{TC}}$	Mean $\mathbf{K}_{\mathrm{RE}} / \mathbf{K}_{\mathrm{TE}}$	Var $\mathbf{K}_{\mathrm{RC}} / \mathbf{K}_{\mathrm{TC}}$	Var $\mathbf{K}_{\mathbf{R E}} / \mathbf{K}_{\mathrm{TE}}$
Al 6061	0.398	1.188	0.001	0.041
St1018	0.556	1.564	0.005	0.024
StSt 304	0.584	1.955	0.004	0.077
Titanium2	0.612	1.768	0.004	0.022

Table 6.1 - Mean and variance table of $\mathrm{K}_{\mathrm{RC}} / \mathrm{K}_{\mathrm{TC}}$ and $\mathrm{K}_{\mathrm{RE}} / \mathrm{K}_{\mathrm{TE}}$ for each material using calibration results from Appendix C

The values in Table 6.1 indicate that the variation in the cutting coefficients is less than the variation in the edge coefficients. In addition, the mean ratios of the cutting and edge constants are different for each material.

After running the Monte Carlo simulation using the calibrated tangential coefficients and the estimated radial coefficients, it is possible to obtain F.S values for each material. Table 6.2 shows the effect on the FS when using the ratio method instead of calibrating all four coefficients with the Kistler force data.

		CALIBRATED COEFFICIENTS METHOD	RATIO METHOD
ALUMINUM	Mean (N)	287.4	288.12
	Std (N)	17.05	17.41
	F.S	1.17	1.19
	Mean (N)	580.21	582.73
	Std (N)	33.66	47.91
	F.S	1.17	1.26
STST304	Mean (N)	593.41	596.1
	Std (N)	33.24	35.71
	F.S	1.16	1.21
TITANIUM 2	Mean (N)	260.3	260.4
	Std (N)	13.89	15.95
	F.S	1.16	1.19

Table 6.2 - Factor of safety tables for Calibrated Coefficients method and the Ratio method for different cutting conditions, 69 conditions

Results from Table 6.2 show that if the radial coefficients are assumed to be a fixed ratio of the tangential coefficients, the FS for Aluminum increases from 1.17 to 1.19. The required FS for ST1018, STST304 and Titanium 2 increase by $9 \%, 5 \%$ and 3% respectively.

These results indicate that estimating the radial coefficients from the calibrated tangential coefficients with a ratio uncertainty slightly skews the force distribution. However, these results may prove useful in process planning as it eliminates the need for an expensive and invasive force dynamometer at the expense of setting the cutting conditions (feedrate/spindle speed) slightly more conservative.

To have an idea about the accuracy of the force estimates obtained from both the calibrated coefficients method and the radial coefficients method, the standard error
between the model estimates and the experimental forces is found for each material. In Table 6.3 the standard error values for both ratio and calibrated coefficients method for each material can be seen.

	STANDARD ERROR TABLE	
	CALIBRATED COEFFICIENTS (N)	RATIO METHOD (N)
ALUMINUM	21.37	21.53
ST1018	49.09	46.50
STST304	42.26	46.05
TITANIUM 2	24.88	21.35

Table 6.3 Standard Error Table comparing the calibrated coefficients method and the ratio method to experimental forces for all of the materials

The values in Table 6.3 are obtained by utilizing a perfect linear fit (slope $=1$ and intercept $=0$) to the experimental peak resultant forces and model estimated resultant forces. Then, using equation 6.1, the standard error of the estimates can be obtained,

$$
\begin{equation*}
S_{e s t}=\sqrt{\frac{\sum\left(y-y^{\prime}\right)^{2}}{n-2}} \tag{6.1}
\end{equation*}
$$

where, y denotes the model predicted forces, y^{\prime} is the estimates from the regression line and n is the number of samples.

In Table 6.3, it can be seen that in terms of standard error, there is no significant difference between the two methods. Figures 6.1-6.4 show the experimental peak resultant forces vs. model predicted peak resultant forces for each material for the ratio method.

Figure 6.1 - Ratio Model Estimated vs. Measured Forces for Aluminum

Figure 6.2 - Ratio Model Estimated vs. Measured Forces for Stee1018

Figure 6.3 - Ratio Model Estimated vs. Measured Forces for SS304

Figure 6.4 - Ratio Model Estimated vs. Measured Forces for Titanium 2
It can be seen from Figures 6.1-6.4 that the variation in the experimental peak resultant forces is less in Aluminum and Titanium. The variation increases in Steel1018 and SS304. This observation verifies the standard error values shown in Table 6.3. The experimental and simulated forces can be seen in Appendix C.

6.3 Summary

In this chapter the effect of estimating the radial coefficients on the force probability density functions is investigated. The radial coefficients are estimated by first getting the ratio statistics of $\mathrm{K}_{\mathrm{RC}} / \mathrm{K}_{\mathrm{TC}}$ and $\mathrm{K}_{\mathrm{RE}} / \mathrm{K}_{\mathrm{TE}}$, i.e. the mean and the variance, of the calibrated tangential and radial coefficients. The mean and the variance of the coefficient ratios for each material are utilized in a multivariate normal random distribution and then multiplied with the tangential coefficients. Monte Carlo simulation is run with the calibrated tangential coefficients and the estimated radial coefficients to obtain a FS. For Aluminum the increase in FS is the minimal, from 1.17 to 1.19. For Steel 1018, the increase is the most significant, going from 1.17 to 1.26 . For Stainless Steel 304, the FS increases from 1.16 to 1.21 and finally for Titanium Grade 2, FS increases from 1.16 to 1.19. These results show that estimating the radial coefficients increases FS slightly, meaning that cutting conditions become slightly more conservative than the case where a force dynamometer is used to determine FS. This is an important observation in process planning as a power sensor may be sufficient to estimate the resultant forces to set reasonable but more conservative cutting conditions.

In addition, it has been observed that there is no significant difference between the two methods, the ratio method and the calibrated coefficients method, in terms of the model accuracy. When the estimated forces are compared to the experimental forces, it was found that the standard error values associated with two methods are close to each other.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Introduction

This chapter summarizes the thesis work and outlines the conclusions.
Suggestions for future studies are also included.

7.2 Conclusions

The milling force model used in this study is calibrated by using the average cutting forces in the x and y direction. Constraints for the process planning are introduced to select the best possible cutting conditions using a properly calibrated force model. Quantifying the uncertainty of the force model resulted in a Factor of Safety that can be used to set safe cutting conditions.

The experiments for this research are performed on blocks of Aluminum 6061, Steel 1018, Stainless Steel 304 and Titanium Grade 2 with three different cutting geometries ($3 / 4,1 / 2$ and $1 / 4$ immersions), four different spindle speeds, and four different feedrates. At one of the spindle speeds the tests are repeated 14 times for each radial immersion. Force model coefficients calibrated from the regression matrices are subgrouped into four categories to look at the variations with respect to changing cutting conditions: 1)Identical conditions 2) Spindle speed changes 3) Radial immersion changes 4) Spindle speed and radial immersion change

The calibrated model coefficients, $\mathrm{K}_{\mathrm{TC}}, \mathrm{K}_{\mathrm{TE}}, \mathrm{K}_{\mathrm{RC}}$ and K_{RE} correlation matrices are obtained. The cutting force coefficients, C terms, and edge constants, E terms, are negatively correlated, exhibiting see-saw effect. Since there is correlation between the coefficients, it is not possible to add the effect of variation in the coefficients to the force estimation. Thus, Monte Carlo simulation is used to observe the variations in the force estimations. The results from the simulations indicate that for Aluminum 6061, Steel 1018 and Stainless Steel 304 spindle speed is a more significant source of variation in the peak resultant forces than the radial depth. However, in Titanium Grade 2, radial depth causes more variation than spindle speed. When cutting conditions are identical, the variation in the resultant forces is the smallest. On the contrary, when the sample includes the coefficients from all types of test conditions, the variation becomes larger.

The Monte Carlo results for Steel 1018 indicate that for safe and efficient cutting, process conditions (feedrate, spindle speed) should be set using the peak force estimates 18% less than the critical peak resultant forces. To ensure 99.86% confidence that the actual forces during machining will be less than the maximum allowable force based on tool failure or part deflection, a factor of safety value is needed. Results from the tests conducted with different types of inserts and conventional tools of different geometries at different tool radii, and axial depth show that when different types of inserts are used, the FS increases from 1.17 to 1.36 . In addition, when the tests with conventional coated and uncoated solid carbide tools are combined with the inserts, FS increases from 1.36 to 1.5 . Feedrates during the process planning should use the particular FS that is based on the difference between the planned cutting conditions and the cutting conditions used for calibration.

Experimental validation for the Monte Carlo simulations shows that a single FS should work over a full range of chip thicknesses. In addition, the actual resultant peak forces stay within the confidence intervals generated by the Monte Carlo simulations. Two types of case studies performed also show that the FS generated by the Monte Carlo simulations is valid and the measured peak forces for both down and upmilling fall below the critical threshold. This verifies that the FS obtained from Monte Carlo simulations can be used to enable safe and efficient cutting with 99.86% confidence, which is vital in process planning.

The Monte Carlo simulation results show that assigning a ratio between the tangential and the radial coefficients increases the peak resultant force variation to a small extent, leading to a small increase in FS for each material. Thus, in process planning the cutting conditions (feedrate, spindle speed) will be set slightly more conservative than the case when full coefficient calibration is utilized to obtain a FS. Since use of the coefficient ratio has little effect on the FS, the non-invasive power sensor can be used directly in process planning by calibrating only the tangential coefficients and assigning a ratio to estimate the radial coefficients.

7.3 Future Work

A reliable library of cutting coefficients is essential for process planning using cutting force models. There are many more combinations of materials, tools and cutting conditions that need to be tested before such a library could be completed. This study may be expanded to consider the effects of coolant, tool diameter and different tool shapes like helix angle, rake angle, relief angle and most importantly - tool wear. Cutting
forces can increase by more than 100% due to tool wear [7]. As additional factors are introduced, the certainty is decreased and a greater factor of safety must be introduced. It might be preferable to use a system which continuously monitors coefficients $[6,7]$ as the part is being cut rather than relying on generic values for cutting coefficients.

In addition, it may be of interest to do the same analysis using the instantaneous tangential and radial forces in place of the average x and y forces. This requires a coordinate transformation of the dynamometer's instantaneous x and y forces. The reasons why the model coefficient calibrations from the Kistler dynamometer and LCI power sensor vary need further investigation.

This research demonstrates the need for "smart machining" sensors and systems. Sensors and models can only be combined effectively if models are calibrated continuously to ensure accurate model coefficients. A wireless "smart tool", such as [15] is currently being developed in the UNH research lab, would be of great value in the realization of such a system.

The underlying assumption in this study is that, the cutting coefficients are normally distributed. Observation of 36 sets of coefficients, from tests of 3 repetitions, shows that the coefficients are not normally distributed. However, 36 samples are not enough to draw a conclusion about the distribution of the coefficients. Thus, a larger sample, i.e. $n>100$, is needed to come to a conclusion about the distribution of the coefficients. The histogram plots showing the normality of the cutting coefficients can be seen in Appendix E. Also, the regression process creates a "see-saw" effect between the cutting coefficients. The data should be centered to eliminate this effect.

The radial immersion and the spindle speed create a systematic shift in the peak experimental forces which will not be observed in a normal distribution. The reasons for this should be investigated further. In addition, better models should be made and an outlier elimination procedure should be developed to extract the outliers from the data.

REFERENCES

[1] Jerard RB, Fussell BK, Xu M, Yalcin, C, (2006) "Process Simulation and Feedrate Selection for Three-axis Sculptured Surface Machining", International Journal of Manufacturing Research, 1(2), 136-156.
[2] Altintas, Y, 2000, Manufacturing Automation: metal cutting mechanics, machine tool vibrations, and CNC design, Cambridge University Press, ISBN 0-521-65973-6.
[3] Xu, M, Robert B Jerard, Barry K Fussell, (2007), "Energy Based Cutting Force Model Calibration for Milling", Computer-Aided Design, Vol. 4, Nos. 1-4, p 341-351.
[4] Yalcin, C, BK Fussell and RB Jerard (2007), "Comparison of Tangential Force Models for Feedrate Selection in Milling", Proceedings of the 2007 International Manufacturing Science And Engineering Conference, MSEC2007, October 15-17, Atlanta, Georgia, USA
[5] Budak E, Y Altintas and EJA Armarego (1996), "Prediction of Milling Force Coefficients from Orthogonal Cutting Data", Journal of Manufacturing Science and Engineering, May 1996, Volume 118, Issue 2, 216.
[6] Schuyler CK, M Xu, RB Jerard and BK Fussell, (2006) "Cutting power modelsensor integration for a smart machining system," Transactions of the North American Manufacturing Research Conference, Volume 34, NAMRC 34, Marquette University, May 23- 26.
[7] Yanjun Cui, BK Fussell, RB Jerard and DM Esterling (2009), "Tool Wear Monitoring For Milling By Tracking Cutting Force Model Coefficients", Proceedings of the North American Manufacturing Research Conference, May 19-22, 2009.
[8] Kurdi, M.H, Schmitz T. L, Haftka, R.T (2008), "Milling optimisation of removal rate and accuracy with uncertainty: part 2: parameter variation", International Journal of Materials and Product Technology 2009_Vol35, No:1/2 pp 26-46
[9] Zapata R, Traverso M, Abbas A, and Schmitz T, (2008), "Bayesian Updating of Stability Beliefs", Proceedings of American Society for Precision Engineering Annual Meeting, October 19-24, Portland, OR
[10] Ivester RW, L Deshayes and M McGlauflin, (2006) ,"Determination of Parametric Uncertainties for Regression- Based Modeling of Turning Operations", Transactions of the North American Manufacturing Research Conference, Volume 34, NAMRC 34, pp. 1-8, Marquette University, May23-26.
[11] Machining Data Handbook $3^{\text {rd }}$ Edition Vol. 1, Machinability Data Center, Institute of Advanced Manufacturing Sciences, Inc.
[12] The MathWorks, Inc , R2007b, Natick, MA. www.mathworks.com, April 12, 2011
[13] Johnson, R. A. (2005) Miller and Freund's Probability and Statistics for Engineers Upper Saddle River, NJ: Pearson Prentice Hall
[14] Load Controls Incorporated, Universal Power Cell, Sturbridge, MA, www.loadcontrols.com, April 12, 2011
[15] Suprock, C. A., Nichols, J. S. (2009), "A Low Cost Wireless High Bandwidth Transmitter for Sensor-Integrated Metal Cutting Tools and Process Monitoring", International Journal of Mechatronics and Manufacturing Systems 2009 - Vol. 2, No. 4 pp. 441-454

APPENDIX A

EXPERIMENTS AND DATA ACQUISITION USER GUIDE

Introduction

This appendix includes the user guide to perform the experiments and data acquisition in order to replicate the results obtained from the tests performed for this research.

Experiments and Data Acquisition

To calibrate the cutting coefficients of a force model, a series of experiments must be performed. The experiments in this study utilized four different types of materials: aluminum 6061, steel 1018, stainless steel 304 and titanium grade 2. Cutting geometries of quarter immersion, half immersion and three quarters immersion with four different chip thicknesses and an axial depth of 0.125 " were used in all of the four materials. Cutting blocks of these four different materials were mounted on the Kistler load cell. The surface of the cutting blocks must be flat. So, a clean cut with a small axial depth, about 0.01 ", must be done first. Then, a slot cut in y-offset direction must be created with an axial depth greater than the axial depth in the g-code. After that, tool and fixture offsets (x and y) must be set. To set the tool offset, the tool must be brought down to the top of the workpiece carefully with hand wheel knob. X fixture offset is set by bringing the tool to the left part of the workpiece and Y fixture offset is set by bringing the tool to the part where the slot cut was done. See Figure A.1.

Figure A.1- Overhead view of block setup as used for test cuts

After setting the workpiece properly, the G-code written for the test must be loaded to the OpenCNC program part. In this research, G-codes were written so that cutting specifics are; down milling, $1 / 4,1 / 2$ and $3 / 4$ immersions, a constant axial depth of $0.125^{\prime \prime}$ and with four different feedrates, depending on the material ,in order to apply a least squares fit to calibrate the force model. A typical cutting pass includes a single immersion at an axial depth of $0.125^{\prime \prime}$ and four different feedrates.

Predator (Vulcan Craft Performance) software is used for data acquisition. The experimenter can specify the sampling rate and number of sampling revolutions in the setup dialog box in the software, which can be seen in Figure A.2.

Figure A. 2 - Data acquisition Setup Dialog
After setting the sampling parameters in the software, the user should switch to the MDSI window to set EOBBlock (End of Block) on so that the g-codes line will be executed line by line. That is necessary as the Predator software requires sampling of tare power of the spindle motor before starting to collect data. So, the spindle should be allowed to rotate and the tare power should be sampled until a somewhat constant value is reached. After observing that the tare power has a constant reading, EOBBlock should be switched to off and then the program is ready to run. All of the cutting data, force and power data, obtained from the cutting test will be stored into the folder specified in the dialog box. A sample G code for the experiments performed can be seen below.

A Sample G Code for the cutting tests

```
N1 (CALIBRATIONG-CODESETFOR10REVOLUTIONS)
N2 (SAN_0.500)
N3 (FLUTE=1HELIX=0.0)
N4 (TOOLMATERIAL=CARBIDE)
N5 (WORKPIECEMATERIAL=ALUMINUM)
N6 G17G20G40G90
N7 T1M6
N8 H1M42E1
N9 M3S4990M8
N10 (1/4IMMERSIONDOWNMILLSIDECUT)
N20 G0X-1Y0.125Z2.0
N30 G1Z-0.125F50
N40 G1X0.5F5
N50 G1X1.5F10.472
N60 G1X2.5F20.944
N70 G1X4.0F31.416
N80 G1X5.0F41.888
N90 G1X7.0F12
N100 G1Z2.0F50
N110 (1/2IMMERSIONDOWNMILLSIDECUT)
N120 G0X-1.0Y-0.125Z2.0
N130 G1Z-0.125F50
N140 G1X0.5F5
N150 G1X1.5F7.854
N160 G1X2.5F15.708
N170 G1X4.0F23.562
N180 G1X5.0F31.416
N190 G1X7.0F12
N200 G1Z2.0F50
N210 (3/4IMMERSIONDOWNMILLSIDECUT)
N220 G0X-1.0Y-0.5Z2.0
N230 G1Z-0.125F50
N240 G1X0.5F5
N250 G1X1.5F6.981
N260 G1X2.5F13.963
N270 G1X4.0F20.944
N280 G1X5.0F27.925
N290 G1X7.0F12
N300 G1Z2.0F50
N317 M5M9H0E0
N322 M41
N327 G0Z0
N332 G0X0Y0
N337 M30
```


APPENDIX B

USER GUIDE FOR DATA PROCESSING AND PROGRAMS

Introduction

This appendix introduces the methods for data processing and lists the MATLAB programs written for the automation of the force model coefficient calibration process and Monte Carlo simulations

Data Processing and Matlab Programs

The force model introduced by Altintas in [1] suggests the use of average x and y forces in order to calibrate the four cutting coefficients, $\mathrm{K}_{\mathrm{TC}}, \mathrm{K}_{\mathrm{TE}}, \mathrm{K}_{\mathrm{RC}}$ and K_{RE}. In order to do that, average x and y forces should be processed and then calibrated by a least squares fit.

Several MATLAB m-files were written for data acquisition purposes. First program is main_Altintas_KrKt_feed.m. In this program the user has to enter the name of the .lst extension file, which is stored in the folder created after the cutting test is completed. This file contains the geometric information of the cut like axial, radial depths, contact area rate for each G- code line as well as the feedrates, RPM information. The file's format is like the following: "G-Code name-NewMoveInfo". That file must be added to the working directory in MATLAB. main_Altintas_KrKt_feed.m program runs the automate $2 . m$ program which gets the average x and y forces. The user should enter
the name of the file in which the cutting data is stored in ".xlsx" format in automate $2 . m$. Also, that file should be in the working directory.

Depending on the sampling rate and sampling revolutions, necessary changes should be made in the program (lines $12,16,20,21$), i.e. if the user sets the angular increment per sample to 2 and the number of sampling revolutions of all data acquisition to 10 , then $360 / 2 * 10=1800$ lines of data will be in the excel spreadsheet for each g code line, if the user sets the angular increment per sample to 3 and number of sampling revolutions of all data acquisition to 10 , then $360 / 3 * 10=1200$ lines of data will be in the excel spreadsheet for each g-code line.

After the average x and y forces are calculated, main_Altintas_KrKt_feed.m program applies least squares on the data to obtain the four cutting coefficients. These cutting coefficients are written in a different excel spreadsheet specified in the program in order to use them for the Monte Carlo simulation analysis.

Monte Carlo simulation is used to get a force probability distribution which will help to find the factor of safety. To get the force distribution, montecarlo.m file should be run. This program runs peaks_monte.m program, which uses the coefficients to determine the angle at which the maximum force occurs. The user should specify the RPM used in the cut and the average chip thickness. The maximum chip thickness giving the maximum force can be calculated and used in montecarlo.m program to find the distribution of the maximum forces utilizing a normal distribution. Thus; it is possible to determine a factor of safety for force by looking at the mean and standard deviation of the distribution.

List of programs

MATLAB m-file to calculate the average x and y forces

```
    Prugram t., automate the procedure to find average, and y forces
    collected out of Kis:ler dynamometer to dn ezcel spreadsheet.
    It pr,cesses 4 lunes, starting from the input line and ne.it three
lunes
    Important: excel wcrk tcck mus: te corverted frcm x!s--> xlsx
- Save lst file un the matlab worrspace directury tu get the feedrate
lufo from that file
, by Eirat Eren on Allgist 1, 200y
~ Design and Manufacturing zab. University of New Hameshjre
function [F] = automate2()
clc
clear
global x
[a b c]=xlsread('Al s81y-1.xlsx');
x=[50;150;250];
for r=1:3
    J=1;
    for }\textrm{y}=\textrm{x}(\textrm{r}):10:x(r)+3
            k=lnt2str (y);
            for 1=1:18
            t=b(2+1201*(ı-1),2); 5 1̌00 will charige acocording to the
sampling
            f=cell2mat(t); Program נs set to get lo rotations anc
sample ~ at every degrecs so there will be
`う/3 * 10
            z=fındstr(f,k); lınes for carh g-code llne
                If(slze(z)>0)
                        row = 2+1201*(ュ-1);
                        break
                    end
            end
        Fx_cell=c(row+1:row+1200,2); 1200 wlll change acoording to the
                Fy_cell=c(row+1:row+1200,3); s sampling rate
                Fxt=cell2mat(Fx_cell);
                Fyt=cell2mat(Fy_cell);
Fx_avg=mean(Fxt)*4.4482\overline{2162; % unit conversion from pourids to}
Fy_avg=mean(Fyt)*4.44822162; , newtons
            Fx(J,r)=Fx_avg;
            Fy(J,r)=Fy_avg;
            J=`+1;
        end
end
g=1;
for v=1:3
F(1:4,g:g+1)=[Fx(:,v) Fy(:,v)];
g=g+2;
end
```


MATLAB m-file to calibrate the cutting coefficients $K_{T C}, K_{T E}, K_{\text {RC }}$ and $K_{\text {RE }}$

```
    Pr,qr~m t, estamate hoth cutting coefflcifnt palrs Kts and Krs
- uslng f re Alvintas' equations cri fage 4G
    Furat Eren cri 12 INcv <OOg
    pod.teo on March 11 2010, gets 4 coeffirlort fcr all thinee radial
    mmmer zinns and wri+es them into an excel tile
    [f]=+ptisplndle speed, no of tee+h, feedl, feed/, feod3, feed4,
ump rrtant: save lst file un the mat lak workspace directory to get the
    fe\indratt info from that file
```

clear
$\mathrm{N}=1$; number ai + ccth
$a=1 n_{\text {_mm }}(0.125)$; o dxial depth t(r Yarijurı's stra \perp ut
$\mathrm{F}=$ automate2(); changed to antoma+e_stan, was an+omate()

feedınfo=[ınfo(2:5,14) ınfo(8:11,14) ınfo(14:17,14)];
rpm=3819;
exıt=180*pı/180 ;
k=1;
for $]=1: 3$
Calcilatıon of teet per tooth and entiy angles
lf $\mathrm{J}==1$
enter=120*pı/180 ;
$f=f p t(r p m, 1, f e e d ı n f o(1,1)$, feedınfo $(2,1)$, feedınfo $(3,1)$, feedınfo $(4$,
1));
elself J==2
enter=90*pı/180;
$\mathrm{f}=\mathrm{fpt}(\mathrm{rpm}, 1$, feedınfo $(1,2)$, feedınfo $(2,2)$, feedınfo $(3,2)$, feedınfo(4,
2));
elseıf J==3
enter=60*pı/180;
$\mathrm{f}=\mathrm{fpt}(\mathrm{rpm}, 1$, feedınfo $(1,3)$, feedınfo $(2,3)$, feedınfo $(3,3)$, feedınfo(4,
3));
end
$\mathrm{Fx}=\mathrm{F}(:, \mathrm{k})$;
$F y=F(:, k+1)$;
k=k+2;
A1x=zeros $(4,1)$;
A2 $x=z \operatorname{eros}(4,1)$;
A3x=zeros $(4,1)$;
A4x=zeros $(4,1)$;
A1y=zeros (4,1);
A2y=zeros $(4,1)$;
A3y=zeros $(4,1)$;
A4y=zeros (4,1);
Bx=zeros (4,1);
By=zeros $(4,1)$;

```
    for i=1:4
        A1x(i)= N*a*f(i)/(8*pi)*(cos(2*exit) - cos(2*enter));
        A2x(i)=(-(N*a)/(2*pi))*(sin(exit) - sin(enter)); ،
                A3x(i)=-N*a*f(i)/(8*pi)*(2*exit-2*enter-
    sin(2*exit)+sin(2*enter));
    A4x(i)=N*a/(2*pi)*(cos(exit)-cos(enter));
    Bx(i)= Fx(i);
            Aly(i)=N*a*f(i)/(8*pi)*(2*exit-2*enter-
        sin(2*exit)+sin(2*enter));
    A2y(i)=-N*a/(2*pi)*(cos(exit)-cos(enter));
    A3y(i)=N*a*f(i)/(8*pi)*(cos(2*exit)-cos(2*enter));
    A4y(i)=-N*a/(2*pi)*(sin(exit)-sin(enter));
    By(i)=Fy(i);
end
M=[A1x(1) A2x(1) A3x(1) A4x(1);A1y(1) A2y(1) A3y(1) A4y(1);
A1x(2) A2x(2) A3x(2) A4x(2);A1y(2) A2y(2) A3y(2) A4y(2);
A1x(3) A2x(3) A3x(3) A4x(3);A1y(3) A2y(3) A3y(3) A4y(3);
A1x(4) A2x(4) A3x(4) A4x(4);A1y(4) A2y(4) A3y(4) A4y(4)];
Bg=[Bx(1);By(1);Bx(2); By(2);Bx(3);By(3);Bx(4);By(4)];
K(1:4,1)=inv(M'*M)*M'*Bg ;
end
` KESN OF THE CODE IS FOR WFITING COEFFICIFNTS INTO AN FIXCFI,
SEREADSHEET
col={'g!arter lmm','half Imm','three quarters'};
sp={'';'';'';''};
Ks={'Ktc'; 'Kte'; 'Kre'; 'Kre'};
xlswrite('coefficlents of Alumınum.z\perpsz',col,'dz:i2');
data=xlsread('vuefficierts vf Alumınum.xlsx');
if size(data)==0
    data=zeros(3);
end
if max(size(data))==3
    for i=max(size(data))-2:max(size(data))+1
    a1{i,1}=sprintf(' c', 'D' + i-1 );
    b1{i,1}=num2str(i+2);
    cl{i,l}=sprintf('`c', 'E' + i-1 );
    d1{i,1}=sprintf('^C', 'F' + i-1 );
    w1{i,1}=int2str(max(size(data))-2);
    end
else
    for i=1:4
    al{i,1}=sprintf(':c', 'D' + i-1 );
    b1{i,1}=num2str(max(size(data))+i+3);
    cl{i,1}=sprintf(',c', 'E' + i-1 );
    d1{i,1}=sprintf('NC', 'K' + i-1 );
    w1{i,1}=int2str((max(size(data))+1)/5 +1);
    end
```

```
end
    t=sprintf('=c','E' -7);
    h(1)=strcat(a1(1),b1(1)) ;
    h(2)=strcat(a1(3),b1(4));
    g(1)=strcat(cl(1),b1(1));
    g(2)=strcat(c1(1),b1(4));
    r=int2str(rpm);
    p=char(strcat(dl(1),b1(1)));
    p1=char(strcat(p,t,p));
    k=char(strcat(h(1),t,h(2)));
    l=char(strcat(g(1),t,g(2)));
    e=sprintf('OC','A' -20);
    m=char(strcat(r,e));
    y{1}=char(strcat (m,w1(1)));
xlswrite('coefficients of Aluminum.xlsy',Ks,l);
xlswrite('coefficients of Aluminum.xlsx',y,pl);
xlswrite('coefficients of Aluminum.zlsz',K,k);
```


MATLAB m－file to find the chip thickness at which the maximum force occurs

```
& program to get the angle and chip thickness at which the force ls
maximum
: written by Jeff Nichols
; modifled by Firat Eren
clear;clc
close all
run outlier tarig = get the tangential ooefficients and extract outliers
run cutlier rad the radial coefficients and eitract nutliers
exy=Mt; : Mt is irom outlier tarıg !tarıgerıtial coefficierits)
```



```
orizinally
N = 1; % number of teeth
Fs=RPM* 3;
feed1=2.827;
RPS=RPM/60;
SPR=round(Fs/RPS); бSamples per revolutior.
alpha helix =12 * pi / 180; % helix arıgle in radiars 12
R = 6.35; , radius of cutter in mm ------F and a may be changed 9.525
originally
a = in mm(0.125); " azial depth in mm---2.b4 originally
radial=R/2; シradial immersion ----------------or slot cuttung it was
7*F
fpt=fpt1(RPM,N,feed1);
phi = linspace(0, 2*pi, SPR);
NXY=length(exy); % comment out unless you find nominal (find min mix)
Ktcl=exy(:,1);Ktel=exy(:,2);", comment out unless you find nominal (find
\because min max;
%% add radial components into play
Krc1=Mr(:, 1);Kre1=Mr(:, 2);
rho = 0.00; beta = 0;runout = rho * exp(i*beta);
phi_st = pi-acos((R-radial)/R);
phi_ex = pi;F_xn1=[];F_xxl=[];F_xen1=[];F_yn1=[];F_yx1=[];F_yen1=[];
F_hypotmn=[];\overline{F}_hypotmx\overline{1}=[];F_hypoten1=[]; 首last thiree added by firat
for ij=1:NXY; 立 comment out unless you find nominal (find min max)
    K1=[Ktcl(ij),Kte1(ij);Krcl(ij),Krel(ij)];" comment out unless you
find nominal (find min max)
            Kl=[Ktcl, Ktel ; Krcl, Krel] o comment in when yoli find nominal
    [F1,T1,X1] = getcoefficients(phi, N, 100, a, K1, alpha_helix, R,
runout, phi_st, phi_ex);
    [F_x,F_Y,F_hypot] = getforces2(F1,phi,fpt);
    F X }\times1=[F\times\overline{x}1;\operatorname{max}(F\textrm{F})]
    F_}\mp@subsup{_}{_}{-
    F_hypotmxl=[F_hypotmx1;max(F_hypot)];
        end
        F xmin=min(F xx1);
        Ktc xmin=Ktc\overline{1}}(\textrm{find}(\textrm{F}\timesx1==F xmin))
Kte_xmin=\overline{K}te1(find(F_xx1==\overline{F}_xmin));
F_xmax=max (F_xx1);
```

```
Ktc xmax=Ktc1(find(F xx1==F xmax));
Kte_xmax=Ktel(flnd(F_xxl== F_xmax));
F_ymin=mın(F_yxI);
Ktc_ymin=Ktc\overline{1}}(\textrm{find}(F_yx1==F_ymin))
Kte_ymin=Kte1(find(F_yx1== F_ymin));
F_ymax=max(F_yx1);
Ktc_ymax=Ktc1(find(F_yx1==F_ymax));
Kte_ymax=Kte1(find(F_yx1==F_ymax));
F_rmin=min(F_hypotmxl);
Ktc_hmin=Ktc\overline{1}(find(F_hypotmx1==F_rmın)) ;
Kte_hmin=Kte1(find(F_hypotmx1== F_rmin));
F_rmax=max(F_hypotmx1);
Ktc_hmax=Ktc\overline{1}}(\textrm{find}(F_hypotmx1==F_rmax))
Kte_hmax=Ktel(find(F_hypotmx1== F_rmax));
F_xmin=min(F_xx1);
Krc_xmin=Krc\overline{1}}(\textrm{find}(\textrm{F}x\textrm{xl}==\textrm{F}_xmin))
Kre_xmin=Kre1(find(F_xx1== F_xmin));
F_xmax=max(F_xx1);
Krc_xmax=Krc\overline{1}}(\textrm{find}(F_xxl==F_xmax))
Kre_xmax=Kre1(find(F_xx1==F_xmax));
F_ymin=min(F_yx1);
Krc_ymin=Krc1(find(F_yx1==F_ymin));
Kre_ymln=Kre1(find(F_yx1==F_ymin));
F_ymax=max(F_yx1);
Krc_ymax=Krc1(find(F_yx1==F_ymax));
Kre_ymax=Kre1(find(F_yx1==F_ymax));
F_rmin=min(F_hypotmx1);
Krc_hmin=Krc\overline{1}}(\textrm{find}(F_hypotmx1==F_rmin))
Kre_hmin=Kre1(find(F_hypotmx1==F_rmin)) ;
F_rmax=max(F_hypotmx1);
Krc hmax=Krc\overline{1}}(\textrm{find}(\textrm{F}\mathrm{ hypotmx1==F rmax));
Kre_hmax=Kre1(find(F_hypotmx1==F_rmax));
Ktc=[Ktc_xmin;Ktc_xmax;Ktc_ymin;Ktc_ymax;Ktc_hmin;Ktc_hmax];
Kte=[Kte_xmin;Kte_xmax;Kte_ymın;Kte_ymax;Kte_hmin;Kte_hmax];
Krc=[Krc_xmin;Krc_xmax;Krc_ymın;Krc_ymax;Krc_hmin;Krc_hmax];
Kre=[Kre_xmin;Kre_xmax;Kre_ymin;Kre_ymax;Kre_hmin;Kre_hmax];
figure(1);
hold un
```

```
color=['r','心','g','^','こ'];
```

color=['r','心','g','^','こ'];
for j=1:1 ,r `r ' flow-rerg ourbose" for j=1:1 ,r `r ' flow-rerg ourbose"
K = [Ktc_hmax,Kte_hmax;Krc_hmax,Kre_hmax];

```
K = [Ktc_hmax,Kte_hmax;Krc_hmax,Kre_hmax];
```



```
runout = rho * exp(i*beta); ru&`u:
```

runout = rho * exp(i*beta); ru\&`u: phi_st = pi-acos((R-radial)/R); cn:r; an.n?c :. racl:a`..j
phi_st = pi-acos((R-radial)/R); cn:r; an.n?c :. racl:a`..j
phi_ex = pi; cil angls ll radualus
phi_ex = pi; cil angls ll radualus
a =-3.175;nangor IT wess ...'A
a =-3.175;nangor IT wess ...'A
[F,T,X] = getcoefficients(phi, N, 100, a, K, alpha_helix, R, runout,
[F,T,X] = getcoefficients(phi, N, 100, a, K, alpha_helix, R, runout,
phi_st, phi_ex);
phi_st, phi_ex);
[F_\overline{x}2,F_y2,\overline{F}_hypot2] = getforces2(F,phi,fpt);
[F_\overline{x}2,F_y2,\overline{F}_hypot2] = getforces2(F,phi,fpt);
T_\overline{x}}=\mathrm{ gettorques2(T,phi,fpt);
T_\overline{x}}=\mathrm{ gettorques2(T,phi,fpt);
[\overline{X_haR, X_aR] = getX(X,fpt);}

```
[\overline{X_haR, X_aR] = getX(X,fpt);}
```

```
plotforces2(F_x2,F_y2,F_hypot2,phi,'N',1,color(j));
T x=repmat(T x./1000,20,1);
h\overline{a}R=repmat (X_haR,20,1);
aR=repmat(X_aR,20,1);
Wn=[10]/(Fs/2); " corner frequency of 10 Hz
[b,a] = butter(2,Wn,'high'); "2nd order butterworth
T_x = filter(b,a,T_x-mean(T_x));
end
minu=F rmin;
maxi=F_rmax;
avgc=(minu+maxi)/2;
in=find(F_hypot==max(F_hypot));
    an=phi(in)*180/pi;
    h=fpt*sind(an) ;
```


MATLAB m-file for Monte Carlo simulation

```
BMnte Carlo Simulation program. User has to define the number of
Eexperiments to run, in n variable.
s by Eirat Eren, 2010, Design ard Manufacturing Lab. UNH
close all
clear;clc
run peaks_monte 告 run this file to get the simulation irfo (argle)
g Evaluates the dependent multivariate random variables for Monte Carlo
in=find(F_hypot==max(F_hypot));
an=phi(in)*180/pi;
h=fpt*sind(an);
M=[Mt Mr];
Ktcl=M(:,1);
Kte1=M(:,2);
Krcl=M(:,3);
Kre1=M(:,4);
C=corr(M);
df=length(Ktcl)-1; o degree of freedom how. many points does the sample
have ?
n=100000; z number of points to be generated
mu = mean(M);
sigma = std(M);
t = bsxfun(@plus,mu,bsxfun(@times,sigma,mvtrnd(C,df,n)));
Ktc=t(:,1);
Kte=t(:,2);
Krc=t(:,3);
Kre=t(:,4);
Ft=zeros(length(Kte),1);Fr=zeros(length(Kte),1);Fres=zeros(length(Kte),
1);
a=inch_mm(0.125); % axial depth in mm
% Basic force estimation
for i=1:length(Kte)
    Ft(i)=Ktc(i)*a*h+Kte(i)*a;
    Fr(i)=Krc(i)*a*h+Kre(i)*a;
    Fres(i)=sqrt(Ft(i)^2+ Fr(i)^2);
end
figure
histfit(Fres,100);title('Peak force distribution for steel 1018
identical havg=0.001'','FontSize',17);xlabel('Force
(N)','EontSize',14);ylabel('Number of times','FontSize',14);
max(F_hypot)
deviation=std(Ft);
avg=mean(Ft);
upperlimit=avg+3*deviation;
kov=cov(M);
A=(Fres-avg)/deviation;
figure
```

histfit（A，100）；title（＇Norm．peak force distribution for steel 1018 identical havg＝0．001＂＇，＇FontSize＇，17）；xlabel（＇Force （N）＇，＇FontSize＇，14）；ylabel（＇Number of times＇，＇FontSize＇，14）；

Force Simulation Program including runout

clear all；部 Matlab command to clear out all variables from workspace
close all；Matlab command to close all open plots

```
% Aathor: D M Esterling Date; 10/06/2006
% Revised 06/30/2008 to clean up the input & output sections
% Comments from original 10/06/2006 program removed for clarity
% Modified by Firat Eren
* Sign error for Fx fixed on 07/08/2008
Input lengths are in inches
    ********************************************
    Start of input
    ********************************************
    All angles will be in radians !!
z Important: ALL angles start at zero along the +Y axis
:All input lengths are in inches. Time is in seconds.
n_cycles = 3; % number of spindle periods for the data
* Note that the simulation runs for one spindle period before any
# data is taken (this is time skip defined below)
* Simulation assumes up milling (s\ine phi_enter & phi_exit below)
Cutting_energy_tang = 1883.22 ; % tangential cutting energy N/mm^2
(al:min:mm)
Cutting_energy_edge_tang = 57.64; % tangential edge cutting energy
N/mm (aluminum)
```

Cutting_energy_rad=1105.78; : radial cutting energy
Cutting_energy_edge_rad=87.43; s radial edge cutting energy
$\mathrm{Kn}=1 / 3$; $\overline{\mathrm{K}} \mathrm{n}$ is the ratio of the normal to the tangential force
constant
Run_Out $=0.0004$; 关, runout in inches
Run_Out_Angle = 145; ylocator angle in degrees
专 Run Out $=0.0$; runout in inches
\% Run Out Angle $=0$; \&locator angle in degrees
num_teeth $=3$; number of teeth on tool (assumed FEM shape)
tool_diam $=1$; $\%$ tool diameter in inches
tool_length $=1.5$; tool (gauge) length in inches
only used for stress and displacement calculations
helix_angle = 12; $\%$ helix angle in degrees
Radial_Depth $=0.75 *$ tool_diam; $\%$ radial depth in inches

```
adoc = 0.1; : asial depth of cut in inches
num_adoc = 40; " number of slices in the axial direction
omega = 3500; ; spindle speed in RFM
feed_per_tosth = 0.002; f feed per tooth in inches;
feed=29.8;
feed per tooth=fpt1(omega,num teeth,feed);
* *\overline{x}***\overline{*}*************************
; end of input
i%*************++*****+*******+***
* Convert to mm & radian & rev per second units
tool_diam = tool_diam*25.4; s tocil diameter in mm
tool_radius = 0.\overline{5}*\mathrm{ tool_diam;}
tool_length = tool_leng
Run_\overline{Out = Run_Out*}*25.4;
Run_Out_Angle = Run_Out_Angle*pi/180.0;
Radial_Depth = Radial_Depth*25.4;
adoc = adoc*25.4;
helix_angle = helix_angle*(pi/180.0);
feed_per_tooth = feed_per_tooth*75.4;
omega = omega/60.0; = spindle rev per second
period = 1/omega;
feed = feed_per_tooth * num_teeth * omega;
feed_ipm = 'feed*}60/25.4; \overline{ feed rate in inches per minute
feed is in mm
:The following come into play if we wart to do dyriamics
Stiffness = 4.e06; s cutter stiffness in N/M. Not used
Mass = 0.88; "mass in Kg. Not used.
delta_theta = 2.0*(pi/180.0);
O}2\mathrm{ degree change in angle between each data segment in surface arc
time_cycle = 1./omega; : time for one spindle rotation (seconds)
time_start = 0;
time_skip = time_cycle; ; time to start storing data
time_skip = time_skip - (12/360)*period;
% This Iunky shift by -12 degrees in rotation angle is to get
% my plot in phase with the Altintas p.44 m file result.
* Not sure where the phase lag is coming from.
time_end = time_skip + n_cycles*time_cycle; % time to end simulation
theta_step = 0.75*delta_theta; % change in angle in each time step
time_step = (theta_step/(2.0*pi))/omega;
time step in simulation.
```

```
theta_step < delta_step guarantees at least one cut per
    delta theta rotation by the spindle
%
num_time_steps = floor( time_end/time_step) + 1;
RDOC_Phi = acos((tool_radius - Radial_Depth)/tool_radius); % acos( (R
- radial depth of cut) / R);
RDOC = (RDOC_Phi/pi)*100; % rdoc immersion in percent (!)
\thereforeNumber of linear segmerits in surface segment that maintains
% where the cut surface is located.
Num_seg = floor( 0.01*RDOC*pi/delta_theta ) + 1;
% upmill
phi_enter = 0.0; % entrance and exit angle for RDOC
phi_exit = phi_enter + Num_seg*delta_theta;
% downmill
% phi_exit=pi;
% phi_enter=phi_exit-Num_seg*delta_theta;
tooth_angle_step = (2.0*pi)/num_teeth; % angular spacing between teeth
helix_tan = tan(helix_angle);
helix_angle_step = helix_tan*2/tool_diam; % Altintas eqn 2.87
% mne tooth angle has changed by Zthelix_angle_step
% as you go up a distance Z along the tool avis,
helix_step = helix_angle_step*adoc*180/pi;
pitch_angle = tooth_angle_step;
% adoc_l is the AD where the total force on the tool should be zero
% (see Tlusty, p. 555) for rigid tool, no runout and
% aircular approzimation
adoc_1 = tool_diam*pitch_angle/(2.0*helix_tan);
% adoc = adoc \overline{1}
adoc_step = adoc/(num_adoc - 1); % Thickness of an axial slice
%C_Tlusty = Cutting_energy*adoc_step; % eqn 9.59 Tlusty, needs h
x_step = feed*time_step;
% distance the too\overline{l}}\mathrm{ center moves in one time step (no dynamics)
x_end = x_step*num_time_steps;
% initialize Lin_Seg array, which describes the cut surface.
# Initial location of tool center is X_init, Y_init
X_init = 0.0;
```

```
Y_init = 0.0;
Sēg_length = (pi*tool_radius)*(delta_theta/pi);
for i_adoc = 1: (num_adoc-1)
    for i_seg = 1:Num_seg
        phi = phi_enter + (i_seg - 1)*delta_theta;
        if (phi <= phi_exit)
            Last_seg(i__adoc) = i_seg; 产 Last_seg will be last segment
                % number that is above the RDOC line, for this ADOC slice
            # Set initial z, y, angle and time for starting cut surface
                X_seg(i_adoc, i_seg) = X_init + tool_radius*sin(phi);
                Y_seg(i_adoc, i-seg) = Y_init + tool_radius*cos(phi);
                Phi_seg(i_adoc, i_seg) = phi;
                Time_seg(i_adoc, i__seg) = time_start;
                    Tooth_seg(i_adoc, i_seg) = -1; % -1 means no tooth has
actually cut this segment
            end; % end of case where tooth angle is less than or equal to
phi_ezit
    end; ; end of loop over i_seg
    % Put the lowest adoc data points into an array for plotting
    ? Later we will follow how these points are moved as the surface is
cut
    #
    if (i_adoc == 1)
                for i = 1:Last_seg(1)
                    xx(i) = X_seg(1,i);
                    yy(i) = Y_seg(1,i);
                    end;
                    *plot(xx, yy, 'bo';;
        *hold orn;
    end;
end; a end of loop over i_adoc
% End of initializing the linear segment (data point) array
% Now initialize the y buffer data
% Note that we could extend the Y buffer x range to before the start
and after the
% end of the tool center positions. What you would see is a profile of
the tool
% outline (with some spiral effect due to the non-zero feed as the
tooth rotates)
% but these Y values would not contribute to the surface roughness
measure.
x_buffer_start = 0.0;
x_buffer_end = x_end;
x_buffer_number = 100;
x_buffer_step = (x_buffer_end - x_buffer_start)/x_buffer_number;
```

```
for i adoc = 1:(num adoc-1)
    for ix = 1:(x_buffer_number +1)
        x_buffer(i_adoc, ix) = x_buffer_start + (ix-1)*x_buffer_step;
        y_buffer(i_adoc, ix) = tool_radius - Radial_Depth; %
initialize end of Y buffer stalk to Y = 0
        end;
end;
- Set the min ard max angles to search for Y buffer lritersections,
- for the tocth arigle relative tc the current tool conter.
tooth_angle_min = -0.25*pi; - In fact, most cutting for upmilling
will start àt
    c zero angle, but due to cycloidal motinn and tool dynamars, some
cutting
    " Can happer befcre the "ncon" position. -pi/4 is a safe angle to
start
    c the intersection test
tooth_angle_max = RDOC_Phi + 0.1*pi; % Agair_ a safe distance past the
P.DOC line
if (tooth_angle_max > pi )
    tooth_angle_max = pi; " For slot cutting or near slot cutting,
truncate
        * intersecticn test to Y huffer lines in front of the tool.
end;
pi2 = 2.0*pi;
Toolsq = tool_radius^2;
time = time_start;
angle = 0.0; s angle will he the spindle rotation angle. It is also
- the angle the first tooth makes with the positive Y axis.
i_time_end = num_time_steps;
for i_time = 1: num_time_steps
        %Find the i time value for the starting time
    force_time(i_time) = 0.0;
    time_time(i_time) = time;
    if (time <= time_skip)
            i_time_skip = i_time; 万 update i_time_skip unitl time >
time_skip
    end;
    for i_adoc = 1: (num_adoc - 1)
        Fx(i_adoc, i_time) =0.0; = Total x component of the force at time
t
        Fy(i_adoc, i_time) = 0.0; इ Total y comporierit of the force at
tame t
        end;
        MyCnip is debug stuft to follow the chip thickness as
            a function of time. MyChip_h is circular approz to
```

```
        chip thickriess
    MyChip(i time) = 0.0;
    MyChip_h(i_time) = 0.0;
    % (Xold, Yold) is the current center of the tool at this time,
    where there is NO dynamic deflection of the tool.
    Xold = Run_Out*sin(angle + Run_Out_Angle) + (time -
time_start)*feed;
    Yold = Run_Out*cos(angle + Run_Out_Angle);
    for i_adoc = 1: (num_adoc -1)
        for i_tooth = 1: num_teeth
            tooth_angle_base = (i_tooth -1)*tooth_angle_step + angle;
                "This is the angle of the i th tooth at the base of the tool
            tooth_adoc = (i_adoc -1)*adoc_step;
            % tooth adoc is distance from base of tool to this tooth
            tooth_angle = tooth_angle_base + tooth_adoc*helix_angle_step;
            :This is the angle of i_tooth at this z value
            tooth_angle = mod(tooth_ängle, pi2);
                if( tooth_angle > pi)
            tooth_angle = tooth_angle - pi2; fold tootr_angle from -
pi to +pi
        end;
    % Ok, now have the tooth angle for the current tooth and adoc
    ` Next we do the y buffer calculation and, at the end of that,,
    we will do the linked segment chip thickness and force
            calculation
    `
            . Test if tooth angle is at least at the first segment
angle or
    % more than one time step beyond the last scgment angle.
    %The tocth angle is allowed to go just beyond the last
segment arigle
        * So the tests below can test the very last segment point.
        *
        angle_time(i_time) = tooth_angle;
        x_tooth = Xold + tool_radius*sin(tooth_angle);
        y_tooth = Yold + tool_radius*cos(tooth_angle);
        if(i_tooth == 1)
            x_t1(i_time) = x_tooth;
            y_t1(i_time) = y_tooth;
        end;
        if(i_tooth == 2)
            \overline{x_t2(i_time) = x_tooth;}
            y_t2(i_time) = y_tooth;
                end;
```

```
        if ( (tooth_angle > tooth_angle_min) & (tooth_angle <
tooth_angle_max) )
        # Trim Y buffer lines for this tooth
        O}\mathrm{ Search Y buffer lines near the tip of the tool or buffer
line at ix_center.
    ix center = round( (x tooth -
x_buffer_start)/\x_buffer_step + 1);
    * xx_step is how far the tooth tip moves in the x
direction in one time step.
    % ix.step is the change in the y buffer index over
that z distance
    % Add one more point in for safety... near Seg_angle =
O
    xx_step = abs( tool_radius* ( sin(tooth_angle +
theta_step) - sin(tooth_angle) ) );
    ix_step = round( ( xx_step/ x_buffer_step) + 1);
    ix_start = ix_center - ix_step;
    ix_end = ix_center + ix_step;
    do_loop = 1; % == 1 if the tool tip "ahadow" is over the y
buffer lines
    if (ix_end < 1)
    do_loop = 0;
    end;
    if (ix_start > (x_buffer_number + 1))
        do_loop = 0;
    end;
    if (do_loop == 1)
        if (ix_start < 1)
        ix_start = 1;
            end;
            if ( ix end > (x buffer number + 1) )
                        ix_end = x_buffēer_numbēr + 1;
            end;
        end;
        if (do_loop == 1 )
            for ix = ix_start: ix_end
                % Find the y coordinate the tooth was at when at
this x coordinate
                        x_test = x_buffer(i_adoc, ix);
                        if (abs( x_test - Xold) < tool_radius)
                        y_test = sqrt( tool_radius^\overline{2}}\mathrm{ - (x_test -
Xold)^2) + Yold;
                                if (y_buffer(i_adoc, ix) < y_test)
                            y_buffer(i_adoc, ix) = y_test;
                    end;
                        end; 言end of case that the intersection point
                        * on the y buffer line is less than the tool
radius
    % in distance from the current tool center
            end; % end of trimming y buffer near the tip of the
tool
    end; 并 end of do_loop test if y buffer lines near the tool
tip
```

end; \% end of case where tooth tip angle is such that intersection is possible

End of Y buffer calculation
\% Start of linked segment calculation
\&
s Test if tooth angle is at least at the first segment angle or
; more than one time step beyond the last segmert arigle.
\% The tooth angle is allowed to go just beyond the last segment angle
$\%$ so the tests below can test the very last segment point.
券
if ((tooth_angle < Phi_seg(i_adoc, 1)) | (tooth_angle > (P hi_seg(i_adoc, Last_seg(i_adoc)) + delta_theta))) i_seg $=-1$; indicate that this tooth is not cutting else \% search phi_segs until tooth_angle is at or just past
phi. $s \in g$
for j_seg = 1: Last_seg(i_adoc)
if (Phi_seg(i_adōc, j_seg) <= tooth_angle)
i_seg = j_seg;
end;
end;
end;
if (i_seg >= 1)
Test to see if the tooth is cutting this segment. Use
the
: coordinates of the first segment point on the surface
segment which includes
\% the current tooth angle
R1 $=\operatorname{sqrt}\left(\left(X _\operatorname{seg}\left(i_{_} a d o c, i_{_} s e g\right)-X o l d\right) \wedge 2+(\right.$
Y_seg(i_adoc, i_seg) - Yold)^$\overline{2})$;
Chip_thickness_1 = tool_radius - R1;
if (chip_thickness_1 > 0)
\% then tooth is cutting this segment. Re-set surface
position
\% of the FIRST point on the surface segment.
Seg_angle $=$ Phi_seg(i_adoc, i_seg); \% Use most
recent
\% value for the angle of the first segment point
X_seg(i_adoc, i_seg) = Xold +
tool_radius*sin(Seg_angle);
$Y_{-}^{-} \operatorname{seg}\left(i _a d o c, i_{-} s e g\right)=$ Yold +
tool_radius*cos(Seg_angle);
Phi_seg(i_adoc, i_seg) $=\operatorname{atan} 2\left(X _s e g\left(i _a d o c, i _s e g\right)-\right.$
Xold, Y_seg(i_adoc, i_seg) - Yold);

```
            Tooth_seg(i_adoc, i_seg) = i_tooth;
```



```
    end;
    if (i_seg < Last_seg(i_adoc) )
                            "-then use the SECOND point on the segment to
aetermine
    - the chip thickness, forces and so on. Bult this
SECOND
    - point's surface coordinate ls not changed, since
the
    = tooth has not reached it yet.
    R2 = sqrt( (X_seg(i_adoc, i_seg+1) - Xold)^2 + (
Y_seg(i_adoc, i_seg+1) - Yold)^2 );
    chip_thickness_2 = tool_radius - R2;
    if ((chip_thickness_2 > 0)& (time > time_skip) )
                            r record chip thickness for this tooth
and axial doc and at this time
                        chip(i_time, i_adoc, i_tooth) =
chip_thickness_2;
                                    Ftang_step =
Cutting_energy_tang*adoc_step*chip_thickness_2;
            Ftang_step = Ftang_step +
Cutting_energy_edge_tang*adoc_step; : add in edge effect
Frad_step=Cutting_energy_rad*adoc_step*chip_thickness_2;
                            Frad_step = Frad_step +
Cutting_energy_edge_rad*ado\overline{c_step; % a\overline{dd}}\mp@subsup{i}{~}{\prime}\mp@subsup{r}{1}{}\mathrm{ edge effect}
    Fiz on 07/08/2008
4. crinnged Fx so sign agrees with Altintas F. 42 M cove
: Fx(i_adoc, i_time) = Fx(i_adoc, i_time) +
Ftang_step*( -cos(tooth_angle) - Krı*sin(tooth_angle) );
    Fy(i_adoc, i_time) ` Fy(i_adoc, i_time) +
Ftang _.step*( sin(tooth_angle) = Kn* cos(tooth_argle));
                            2 LINES BELOW TAKE RADIAL COEFEICIENTS IN'O
ACCOTJN'1
                            Fx(i_adoc, i_time) = Fx(i_adoc, i_time) -
Ftang_step*cos(tooth_angle) = Frad_step*sin(tooth_angle) ;
                            Fy(i_adoc, i_time) = Fy(i_adoc, i_time) +
Ftang_step*sin(tooth_angle) = Frad_step*cos(tooth_angle) ;
            if ( (i_adoc == 1) & (i_tooth == 1) )
                        MyChip(i_time) = chip(i_time, i_adoc,
i_tooth);
    MyChip_h(i_time) =
feed_per_tooth*sin(tooth_angle);
                            end; 0 end of debug test of iadrc = 1, itooth =
1
                            end; % end of chip_thickness_2 > 0
else "i_seg = Last_seg
    If here, then àt the last surface segmerit. This
segment
                            " goes from the last point to the RDOC surface
(phi_exit)
```

```
considered to
surtace:.
vut \approxnd, if so,
force to
first
particular tooth
If the tooth
time later
lgnore this
the
trere yet.
aelt= trreta uf
the
the
    current spindle rotation.
    if ( (Tooth seg(i adoc, i seg) ~= i tooth) | (
(time - Time_seg(i__adoc, i_seg) ) > 0.75*time_cycle
        Seg_angle = Phi_seg(i_adoc, i_seg); 首 ISe most
recent
    % value for the arigle uf the last
segrnent point
        X_seg(i_adoc, i_seg) = Xold +
tool_radius*sin(Seg_angle);
        Y_seg(i_adoc, i_seg) = Yold +
tool radius*cos(Seg_angle);
        Phi_seg(i_adoc, i_seg) = atan2(X_seg(i_adoc,
i_seg) - Xold, Y_seg(i__adoc, i__seg) - Yold);
        Tooth seg(i adoc, i seg) = i tooth;
        Time_\overline{seg(i__adoc, i_seg) = time;}
        R1 = sqrt( (X_seg(i_adoc, i_seg) - Xold)^2 + (
Y_seg(i_adoc, i_seg) - Yold)^2 );
        chip_thickness_1 = tool_radius - R1;
        if (' (chip thi\overline{ckness 1 > 0) & (time >}
time_skip) )
    % record chip thickress for this tooth
and azial doc and at this time
                                    chip(i_time, i_adoc, i_tooth) =
chip_thickness_2;Ftang_step =
Cutting_energy*adoc_step*chip_thickness_2;
```

```
Ftang_step = Ftang_step + Cutting_energy_edge*adoc_step; % add in edje
effect
Frad_step=Cutting_energy_rad*adoc_step*chip_thickness_2;
    Frad_\overline{step = Frad_step +}
Cutting_energy_edge_rad*adoc_ste\overline{p};
    Fx(i_ador, i time) = Fz(i_adoc, i_tIme) -
Ftang_step*( cos(tooth_angle) + Kn*sin(tooth_arigle) );
: Ey(i_adcc, i_time) = Fy(i_adcc, i_time) + Ftang_step*(
sin(tooth_angle) - Kn``}\operatorname{cos(tooth_angle) !;
,2 LINES BELOW TAKE RADIAL COEFFICIENTS
    Fx(i_adoc, i_time) = Fx(i_adoc, i_time) -
Ftang_step*cos(tooth_angle) - Frad_step*sin(tooth_angle) ;
    Fy(i_adoc, i_time) = Fy(i_adoc, i_time) +
Ftang_step*sin(tooth_angle) = Frad_step*cos(tooth_angle) ;
    if ( (\overline{i}_adoc == 1) & (i_tooth == 1))
                                    MyChip(i_time) = chip(i_time,
i_adoc, i_tooth);
feed_per_tooth*sin(tooth_angle);
    end; }=\mathrm{ End of debur, iadoc = itooth = 1
case
    end; : End of chip thickness > 0 for last
segment point
                                    end; 万 end of first time this last segment point
nas been cut for this tooth, spindle rotation
    end; " end of if .. cisc... for i_seg < Last_seg or
is == L\st s\ing
    end; - End of test on i_seq >= 1
                            %
                            \therefore End of linked segment calculation for a particular
tootn
    , azial segment and time step
    \prime
        end; }9\mathrm{ end of loop over number of teeth
        end; a erid of loop over adoc slices
        Fx tot(i time) = 0.0;
        Fy_tot(i_time) = 0.0;
        for i_adoc = 1: (num_adoc -1)
            Fx_tot(i_time) = Fx_tot(i_time) + Fx(i_adoc, i_time);
            Fy_tot(i_time) = Fy_tot(i_time) + Fy(i__adoc, i_time);
        end;
                        Ftot(i_time) = sqrt( Fx_tot(i_time)^2
        +Fy_tot(i_time)^2 );
            MyTime(i_time) = time;
            O Change spindle angle and time for nezt time step
```

```
            angle = angle + theta_step;
        time = tıme + tıme_step;
```



```
    All ,f tre lata analysin and plotting at the end of the 10/0h/aule
    rorsiulf n-s l&&|ll ramovod.
    Now let's Innd the peak bending stress and tha peak d_splacoment.
    Only the alsrlacemerit rerrendicular to the tace is ccrisidered or in
    the y alrection.
    Lsin'f beam thezlf, B'Jl thr total force ls assumed concentrated
    at the tip, as used in cncx. A be*ttr solut&nn would ralrulate
    bendina -tıesa and licplacement uaing a distrikuted force medel.
    E&n\ fear Fuct and Feak Ey.
Ftot_peak = 0.0;
Fy_peak = 0.0;
for l_tlme = l_time_skip:I_tlme_end
    If (Ftot(1_tıme)}>\mathrm{ ( Ftō
        Ftot_pēak = Ftot(1_\overline{trme); , max tctal fcrce}
    end;
    If (abs(Fy_tot(l_tıme)) > Fy_peak)
        Fy_peak = abs(Fy_tot(1_tıme)); peak Y frr^e
        If(Fy_tot(I_tıme)}>0
            y_direction = +1; ~ la Y f~rce towaras or dway frnm
surface?
            else
                y_direction = -1;
        end;
    end;
end;
```

```
    Ko approx frr effectlve radzus cf fluted trcl
```

 Ko approx frr effectlve radzus cf fluted trcl
 R eff meters = 0.8*tool_radius/1000;
R eff meters = 0.8*tool_radius/1000;
Inertía = pl*R_eff_meteřs^4/4; Eqn 1`.c0 in C&J Inertía = pl*R_eff_meteřs^4/4; Eqn 1`.c0 in C\&J
Feak bending momment with forces taren at tip of tool
Feak bending momment with forces taren at tip of tool
Mxy = Ftot_peak*(tool_length/1000); lengths all mr meters
Mxy = Ftot_peak*(tool_length/1000); lengths all mr meters
E_modulus = 200*10^9; this ls E for ETEEL (the trrl) in Easmals
E_modulus = 200*10^9; this ls E for ETEEL (the trrl) in Easmals
L-}=\mathrm{ tool_length/1000; leng+h in meters
L-}=\mathrm{ tool_length/1000; leng+h in meters
********************t**t*******
********************t**t*******
Uatput SI UINITS 1||'||||
Uatput SI UINITS 1||'||||
Ftot_peak Nowtons

```
```

Fy_peak ، Newtons
y_direction; , +1 => force towards the cutting surface
Gajsplacement in microns
displacement = y_direction*(10^6)*(Fy_peak*L^3)/(3*E_modulus*Inertia)

* Pėk beriding stress in MPa
Max_stress = (10^(-6))* Mxy*(tool_radius/1000)/Inertia
- 'lhis is easy enough to convert to a more accurate berding stress
since we nare fx and Fy at each axial depth cf cut arid time:
Fy(1_ados, i_tıme), Fy(1_adoc, i_time)
tor l_tlme = i_tume_skip: i_time_end
i
Wrere ls the center of the i adoc slice?
Answtr: A distance of ddoc step from the tool tip
%
figure(1);
. Convert from time to rotation angle with zero argle at time skip
~
angle_time = ((time_time - time_skip)/period)*360;
plot(angle_time, Fy_tot); y force is in blue
hold un;
plot(angle_time, Fx_tot, 'r'); " x force is in red
: axis([0 180 - 300 300]);
figure;
Fres=hypot(Fx_tot,Fy_tot);
plot(angle_time,Ftot)

figure(2);

cplot(x_huffer(1,:), Y_buffer(1,:));
phi_exit*180/pi
phi_enter*180/pi

```

\section*{APPENDIX C}

\section*{THE FORCE MODEL COEFICIENTS AND THE EXPERIMENTAL FORCES}

\section*{Introduction}

This section includes the calibration results for the cutting force model coefficients, \(\mathrm{K}_{\mathrm{TC}}, \mathrm{K}_{\mathrm{TE}}, \mathrm{K}_{\mathrm{RC}}\) and \(\mathrm{K}_{\mathrm{RE}}\) as well as the average forces for all of the tests performed for this study. Experimental forces for two types of case study are also included.

\section*{Aluminum Results}
\begin{tabular}{|lcrrrr|}
\hline RPM - TEST NO & IMMERSION & \begin{tabular}{c}
\(\mathbf{K}_{\mathbf{T C}}\) \\
\(\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{K}_{\mathbf{T E}}\) \\
\((\mathbf{N} / \mathbf{m m})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{K}_{\mathbf{R C}}\) \\
\(\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{K}_{\mathbf{R E}}\) \\
\((\mathbf{N} / \mathbf{m m})\)
\end{tabular} \\
\hline \(2600-1\) & \(1 / 4\) & 850.96 & 23.62 & 353.80 & 26.26 \\
& \(1 / 2\) & 750.63 & 22.10 & 273.07 & 25.61 \\
& \(3 / 4\) & 798.92 & 20.97 & 330.70 & 25.18 \\
\hline \(2600-2\) & \(1 / 4\) & 870.28 & 21.50 & 406.49 & 22.58 \\
& \(1 / 2\) & 727.84 & 22.67 & 288.85 & 24.38 \\
& \(3 / 4\) & 830.37 & 19.62 & 339.96 & 23.14 \\
\hline \(2600-3\) & \(1 / 4\) & 797.90 & 21.75 & 375.17 & 21.82 \\
& \(1 / 2\) & 750.91 & 15.55 & 306.88 & 28.12 \\
& \(3 / 4\) & 830.74 & 20.16 & 350.12 & 22.87 \\
\hline \(3819-1\) & \(1 / 4\) & 777.04 & 20.18 & 353.63 & 24.62 \\
& \(1 / 2\) & 702.83 & 18.35 & 262.71 & 23.37 \\
& \(3 / 4\) & 782.51 & 16.21 & 313.25 & 21.88 \\
\hline \(3819-2\) & \(1 / 4\) & 744.79 & 18.77 & 301.98 & 24.42 \\
& \(1 / 2\) & 709.61 & 20.71 & 268.10 & 20.95 \\
& \(3 / 4\) & 758.29 & 18.43 & 306.96 & 20.47 \\
\hline \(3819-3\) & \(1 / 4\) & 698.58 & 18.72 & 275.31 & 22.40 \\
& \(1 / 2\) & 735.20 & 17.77 & 317.95 & 20.80 \\
& \(3 / 4\) & 768.78 & 17.30 & 316.74 & 22.02 \\
\hline \(3819-4\) & \(1 / 4\) & 723.52 & 22.26 & 300.45 & 22.68 \\
& \(1 / 2\) & 708.90 & 18.63 & 282.76 & 21.35 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 3/4 & 764.91 & 18.34 & 298.29 & 24.55 \\
\hline \multirow[t]{3}{*}{3819-5} & \(1 / 4\) & 756.10 & 21.68 & 352.17 & 20.62 \\
\hline & 1/2 & 685.62 & 22.83 & 292.75 & 21.48 \\
\hline & 3/4 & 768.27 & 17.31 & 311.09 & 22.61 \\
\hline \multirow[t]{3}{*}{3819-6} & 1/4 & 698.80 & 24.11 & 297.89 & 20.67 \\
\hline & 1/2 & 775.49 & 17.04 & 325.75 & 21.85 \\
\hline & 3/4 & 806.60 & 16.81 & 341.33 & 20.41 \\
\hline \multirow[t]{3}{*}{3819-7} & 1/4 & 762.76 & 20.78 & 345.67 & 17.79 \\
\hline & 1/2 & 737.92 & 18.59 & 288.91 & 22.23 \\
\hline & 3/4 & 785.97 & 17.92 & 278.94 & 23.68 \\
\hline \multirow[t]{3}{*}{3819-8} & 1/4 & 722.93 & 23.15 & 329.28 & 19.68 \\
\hline & 1/2 & 729.50 & 19.20 & 279.29 & 20.18 \\
\hline & 3/4 & 800.05 & 17.26 & 294.31 & 23.82 \\
\hline \multirow[t]{3}{*}{3819-9} & 1/4 & 794.69 & 20.07 & 320.94 & 18.40 \\
\hline & 1/2 & 751.97 & 16.63 & 287.30 & 19.12 \\
\hline & 3/4 & 764.10 & 18.79 & 312.40 & 20.40 \\
\hline \multirow[t]{3}{*}{3819-10} & 1/4 & 719.46 & 22.34 & 283.45 & 21.16 \\
\hline & 1/2 & 731.95 & 20.39 & 277.56 & 20.51 \\
\hline & 3/4 & 786.30 & 18.51 & 303.37 & 22.46 \\
\hline \multirow[t]{3}{*}{3819-11} & 1/4 & 730.23 & 19.89 & 311.40 & 22.89 \\
\hline & 1/2 & 735.50 & 18.63 & 275.45 & 24.44 \\
\hline & 3/4 & 818.24 & 16.24 & 320.28 & 19.19 \\
\hline \multirow[t]{3}{*}{3819-12} & 1/4 & 763.48 & 19.41 & 302.10 & 23.71 \\
\hline & 1/2 & 711.62 & 19.43 & 277.77 & 23.09 \\
\hline & 3/4 & 758.53 & 20.34 & 299.33 & 24.90 \\
\hline \multirow[t]{3}{*}{3819-13} & 1/4 & 751.56 & 18.74 & 317.22 & 23.94 \\
\hline & 1/2 & 751.46 & 16.69 & 293.04 & 24.15 \\
\hline & 3/4 & 820.31 & 17.45 & 353.63 & 20.93 \\
\hline \multirow[t]{3}{*}{3819-14} & 1/4 & 737.80 & 21.69 & 325.68 & 19.85 \\
\hline & 1/2 & 745.96 & 18.86 & 270.00 & 23.24 \\
\hline & 3/4 & 799.59 & 18.27 & 311.86 & 20.58 \\
\hline \multirow[t]{3}{*}{5000-1} & 1/4 & 731.23 & 20.57 & 300.44 & 22.72 \\
\hline & 1/2 & 703.37 & 16.56 & 268.03 & 19.23 \\
\hline & 3/4 & 747.58 & 15.22 & 283.00 & 19.49 \\
\hline \multirow[t]{3}{*}{5000-2} & 1/4 & 640.08 & 21.10 & 172.13 & 21.82 \\
\hline & 1/2 & 660.72 & 20.65 & 254.53 & 21.91 \\
\hline & 3/4 & 750.20 & 16.48 & 280.08 & 21.10 \\
\hline
\end{tabular}
\begin{tabular}{|llllll|}
\hline \(5000-3\) & \(1 / 4\) & 718.49 & 14.71 & 277.92 & 24.87 \\
& \(1 / 2\) & 728.95 & 15.92 & 283.12 & 19.45 \\
& \(3 / 4\) & 747.58 & 15.82 & 288.61 & 21.00 \\
\hline \(6200-1\) & \(1 / 4\) & 720.80 & 16.87 & 265.78 & 18.57 \\
& \(1 / 2\) & 732.16 & 12.02 & 241.56 & 22.41 \\
& \(3 / 4\) & 713.27 & 14.47 & 275.13 & 21.09 \\
\hline \(6200-2\) & \(1 / 4\) & 682.69 & 17.27 & 301.39 & 20.08 \\
& \(1 / 2\) & 660.06 & 16.49 & 235.89 & 23.08 \\
& \(3 / 4\) & 687.11 & 16.10 & 266.35 & 20.61 \\
\hline \(6200-3\) & \(1 / 4\) & 650.07 & 20.16 & 239.13 & 18.14 \\
& \(1 / 2\) & 802.37 & 16.29 & 289.50 & 14.50 \\
& \(3 / 4\) & 734.74 & 13.69 & 271.65 & 21.95 \\
\hline
\end{tabular}

Table C.1: Coefficients from Aluminum tests

\section*{Aluminum Average Forces and the Geometry Matrices}
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{4}{|c|}{\(1 / 4\)} \\
\hline mm 2 & mm & mm 2 & mm \\
\hline 0010 & 0438 & -0008 & -0253 \\
\hline 0008 & 0253 & 0010 & 0438 \\
\hline 0020 & 0438 & -0016 & -0253 \\
\hline 0016 & 0253 & 0020 & 0438 \\
\hline 0031 & 0438 & 0025 & -0253 \\
\hline 0025 & 0253 & 0031 & 0438 \\
\hline 0040 & 0438 & -0033 & 0253 \\
\hline 0033 & 0253 & 0040 & 0438 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{3}{|c|}{\(1 / 2\)} \\
mm 2 & mm & mm 2 & mm \\
\hline 0010 & 0505 & -0016 & -0505 \\
\hline 0016 & 0505 & 0010 & 0505 \\
\hline 0020 & 0505 & 0031 & -0505 \\
\hline 0031 & 0505 & 0020 & 0505 \\
\hline 0030 & 0505 & -0047 & -0505 \\
\hline 0047 & 0505 & 0030 & 0505 \\
\hline 0040 & 0505 & -0063 & -0505 \\
\hline 0063 & 0505 & 0040 & 0505 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{3}{|c|}{\(3 / 4\)} \\
\hline \(\mathrm{mm2}\) & mm & mm 2 & mm \\
\hline 0007 & 0438 & 0023 & -0758 \\
\hline 0023 & 0758 & 0007 & 0438 \\
\hline 0013 & 0438 & 0045 & -0758 \\
\hline 0045 & 0758 & 0013 & 0438 \\
\hline 0020 & 0438 & 0068 & 0758 \\
\hline 0068 & 0758 & 0020 & 0438 \\
\hline 0027 & 0438 & 0090 & 0758 \\
\hline 0090 & 0758 & 0027 & 0438 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \multicolumn{5}{|c}{} \\
\hline 2600-1 & Fx1 (N) & \(\mathbf{8} 99\) & \(1 / 4\) & \multicolumn{1}{r}{\(\mathbf{1 / 2}\)} \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline \multicolumn{5}{c}{} \\
\hline \multicolumn{5}{c}{\(\mathbf{1 / 4}\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 26003 & Fx1 (N) & 874 & -391 & -1082 \\
\hline & Fy1 & 2472 & 3619 & 4598 \\
\hline & Fx2 & 1393 & -065 & -1283 \\
\hline & Fy2 & 3572 & 5289 & 6743 \\
\hline & Fx3 & 1945 & 186 & -1630 \\
\hline & Fy3 & 4846 & 6701 & 8938 \\
\hline & Fx4 & 2336 & 424 & -1743 \\
\hline & Fy4 & 5495 & 8116 & 10881 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 38191 & Fx1 (N) & 730 & -003 & -1145 \\
\hline & Fy1 & 2562 & 3439 & 4187 \\
\hline & Fx2 & 1267 & 379 & -1331 \\
\hline & Fy2 & 3570 & 4973 & 6166 \\
\hline & Fx3 & 1761 & 660 & -1434 \\
\hline & Fy3 & 4691 & 6180 & 8068 \\
\hline & Fx4 & 2205 & 879 & -1724 \\
\hline & Fy4 & 5518 & 7635 & 10171 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(3819-2\) & \(F x 1(N)\) & 661 & 243 & -927 \\
\hline & \(F y 1\) & 2417 & 3401 & 4207 \\
\hline & \(F x 2\) & 1251 & 597 & -1115 \\
\hline & \(F y 2\) & 3468 & 5015 & 6175 \\
\hline & \(F x 3\) & 1762 & 916 & -1317 \\
\hline & \(F y 3\) & 4274 & 6356 & 8036 \\
\hline & Fx4 & 2164 & 1107 & -1479 \\
\hline & \(F y 4\) & 5215 & 7606 & 10007 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(3819-3\) & Fx1 (N) & 731 & 050 & -1095 \\
\hline & Fy1 & 2275 & 3410 & 4173 \\
\hline & Fx2 & 1174 & 364 & 1361 \\
\hline & Fy2 & 3194 & 4963 & 6241 \\
\hline & Fx3 & 1751 & 580 & -1475 \\
\hline & Fy3 & 4057 & 6405 & 8204 \\
\hline & Fx4 & 2131 & 772 & -1727 \\
\hline & Fy4 & 4837 & 7884 & 10040 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(3819-4\) & \(F \times 1(N)\) & 888 & 120 & -1256 \\
\hline & \(F y 1\) & 2371 & 3420 & 4388 \\
\hline & \(F x 2\) & 1333 & 397 & -1354 \\
\hline & \(F y 2\) & 3485 & 4829 & 6297 \\
\hline & \(F x 3\) & 1896 & 696 & 1490 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(3819-5\) & \(F x 1(N)\) & 874 & 273 & 1187 \\
\hline & \(F y 1\) & 2329 & 3488 & 4189 \\
\hline & \(F x 2\) & 1352 & 557 & -1225 \\
\hline & \(F y 2\) & 3500 & 5136 & 6301 \\
\hline & \(F x 3\) & 1959 & 753 & -1613 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
\hline & Fy3 & 4261 & 6297 & 8374 \\
\hline & Fx4 & 2305 & 911 & -1749 \\
\hline & Fy4 & 5115 & 7628 & 10147 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 38196 & \(F x 1(N)\) & 967 & 001 & 1068 \\
\hline & Fy1 & 2344 & 3472 & 4251 \\
\hline & \(F x 2\) & 1480 & 325 & -1260 \\
\hline & Fy2 & 3272 & 5162 & 6245 \\
\hline & Fx3 & 1926 & 551 & 1454 \\
\hline & Fy3 & 4287 & 6633 & 8337 \\
\hline & Fx4 & 2348 & 813 & -1774 \\
\hline & Fy4 & 4932 & 8176 & 10417 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 38198 & \(F \times 1(N)\) & 937 & 256 & 1176 \\
\hline & \(F y 1\) & 2290 & 3396 & 4444 \\
\hline & \(F \times 2\) & 1470 & 518 & -1301 \\
\hline & \(F y 2\) & 3421 & 4880 & 6316 \\
\hline & \(F \times 3\) & 1922 & 835 & 1461 \\
\hline & Fy3 & 4264 & 6376 & 8252 \\
\hline & Fx4 & 2310 & 1129 & -1552 \\
\hline & \(F y 4\) & 5107 & 7692 & 10507 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 381910 & \(F \times 1\) (N) & 917 & 300 & 961 \\
\hline & \(F y 1\) & 2299 & 3410 & 4234 \\
\hline & \(F x 2\) & 1424 & 559 & 1382 \\
\hline & Fy2 & 3359 & 4991 & 6422 \\
\hline & \(F \times 3\) & 1979 & 933 & -1293 \\
\hline & \(F y 3\) & 4135 & 6596 & 8630 \\
\hline & \(F x 4\) & 2371 & 1171 & 1521 \\
\hline & \(F y 4\) & 4975 & 7677 & 10122 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 381912 & \(F \times 1(N)\) & 761 & 063 & 1129 \\
\hline & \(F y 1\) & 2427 & 3454 & 4428 \\
\hline & \(F x 2\) & 1289 & 420 & 1384 \\
\hline & \(F y 2\) & 3428 & 5131 & 6684 \\
\hline & \(F x 3\) & 1852 & 640 & -1509 \\
\hline & \(F y 3\) & 4392 & 6354 & 8342 \\
\hline & \(F x 4\) & 2309 & 916 & -1649 \\
\hline & Fy4 & 5224 & 7741 & 10281 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(3819-14\) & \(F x 1(N)\) & 898 & 101 & 903 \\
\hline & Fy1 & 2318 & 3486 & 4219 \\
\hline & \(F x 2\) & 1432 & 441 & -1114 \\
\hline & Fy2 & 3335 & 5195 & 6363 \\
\hline & \(F \times 3\) & 1884 & 737 & 1319 \\
\hline & \(F y 3\) & 4260 & 6470 & 8549 \\
\hline & Fx4 & 2331 & 1085 & -1398 \\
\hline & Fy4 & 5137 & 7911 & 10234 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(5000-2\) & \(F x 1(N)\) & 880 & 135 & -972 \\
\hline & \(F y 1\) & 2180 & 3346 & 4022 \\
\hline & \(F x 2\) & 1349 & 561 & -1160 \\
\hline & \(F y 2\) & 2937 & 4918 & 5967 \\
\hline & \(F x 3\) & 1934 & 726 & -1336 \\
\hline & \(F y 3\) & 3547 & 6085 & 7943 \\
\hline & \(F x 4\) & 2366 & 959 & -1348 \\
\hline & \(F y 4\) & 4321 & 7309 & 9666 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(6200-1\) & Fx1 (N) & 720 & -151 & -1085 \\
\hline & Fy1 & 2034 & 3186 & 3760 \\
\hline & Fx2 & 1336 & 197 & -1290 \\
\hline & Fy2 & 3051 & 4596 & 5540 \\
\hline & Fx3 & 1870 & 476 & -1399 \\
\hline & Fy3 & 3884 & 5764 & 7816 \\
\hline & Fx4 & 2238 & 945 & -1529 \\
\hline & Fy4 & 4643 & 7489 & 9022 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
\hline & Fy3 & 4518 & 6524 & 8144 \\
\hline & Fx4 & 2245 & 967 & 1686 \\
\hline & Fy4 & 5257 & 7633 & 10080 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 38197 & \(F x 1(N)\) & 913 & 106 & 1069 \\
\hline & \(F y 1\) & 2284 & 3500 & 4304 \\
\hline & \(F x 2\) & 1480 & 384 & 1295 \\
\hline & \(F y 2\) & 3288 & 5022 & 6461 \\
\hline & \(F x 3\) & 1903 & 677 & 1302 \\
\hline & \(F y 3\) & 4189 & 6448 & 8224 \\
\hline & \(F x 4\) & 2385 & 964 & -1413 \\
\hline & \(F y 4\) & 5246 & 7897 & 10284 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(3819-9\) & \(F x 1(N)\) & 954 & 187 & -941 \\
\hline & \(F y 1\) & 2257 & 3243 & 4200 \\
\hline & \(F x 2\) & 1492 & 464 & 1074 \\
\hline & \(F y 2\) & 3320 & 4833 & 6268 \\
\hline & \(F x 3\) & 2003 & 792 & 1316 \\
\hline & \(F y 3\) & 4269 & 6266 & 8184 \\
\hline & \(F x 4\) & 2572 & 1090 & -1508 \\
\hline & \(F y 4\) & 5209 & 7706 & 10038 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline 381911 & Fx1 (N) & 766 & 043 & -899 \\
\hline & Fy1 & 2411 & 3496 & 4220 \\
\hline & Fx2 & 1261 & 284 & 1166 \\
\hline & Fy2 & 3291 & 5248 & 6119 \\
\hline & Fx3 & 1728 & 598 & 1188 \\
\hline & Fy3 & 4388 & 6517 & 8226 \\
\hline & Fx4 & 2208 & 957 & 1478 \\
\hline & Fy4 & 5104 & 7887 & 10422 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline 381913 & Fx1 (N) & 715 & 102 & -1142 \\
\hline & Fy1 & 2405 & 3562 & 4320 \\
\hline & Fx2 & 1204 & 226 & -1313 \\
\hline & Fy2 & 3492 & 4998 & 6439 \\
\hline & Fx3 & 1702 & 531 & -1379 \\
\hline & Fy3 & 4342 & 6569 & 8565 \\
\hline & Fx4 & 2203 & 776 & -1953 \\
\hline & Fy4 & 5258 & 7996 & 10606 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(5000-1\) & Fx1 (N) & 821 & 115 & -911 \\
\hline & Fy1 & 2415 & 3106 & 3902 \\
\hline & Fx2 & 1293 & 479 & -1128 \\
\hline & Fy2 & 3326 & 4683 & 5739 \\
\hline & Fx3 & 1806 & 738 & -1268 \\
\hline & Fy3 & 4269 & 6033 & 7720 \\
\hline & Fx4 & 2284 & 979 & -1326 \\
\hline & Fy4 & 5129 & 7279 & 9530 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(5000-3\) & Fx1 (N) & 504 & 142 & -1070 \\
\hline & Fy1 & 2304 & 3145 & 3924 \\
\hline & Fx2 & 984 & 346 & -1127 \\
\hline & Fy2 & 3172 & 4767 & 5997 \\
\hline & Fx3 & 1571 & 680 & 1447 \\
\hline & Fy3 & 4254 & 6181 & 7845 \\
\hline & Fx4 & 1961 & 988 & -1469 \\
\hline & Fy4 & 4861 & 7483 & 9610 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(6200-2\) & \(F x 1(N)\) & 680 & -014 & -938 \\
\hline & \(F y 1\) & 2141 & 3255 & 3754 \\
\hline & \(F x 2\) & 1155 & 224 & -1250 \\
\hline & \(F y 2\) & 3101 & 4707 & 5828 \\
\hline & \(F x 3\) & 1547 & 523 & -1253 \\
\hline & \(F y 3\) & 3966 & 5692 & 7225 \\
\hline & \(F x 4\) & 2020 & 863 & -1410 \\
\hline & \(F y 4\) & 4754 & 7218 & 9091 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 62003 & \(F x 1(N)\) & 887 & 511 & 1122 \\
\hline & \(F y 1\) & 2016 & 3060 & 3814 \\
\hline & \(F x 2\) & 1318 & 756 & 1328 \\
\hline & \(F y 2\) & 2921 & 4761 & 5639 \\
\hline & \(F x 3\) & 1839 & 1012 & 1585 \\
\hline & \(F y 3\) & 3731 & 6309 & 7798 \\
\hline & \(F x 4\) & 2245 & 1598 & 1442 \\
\hline & \(F y 4\) & 4347 & 7770 & 9269 \\
\hline
\end{tabular}

Table C2: Aluminum Average Forces and the Geometry Matrices
Steel 1018 Results
\begin{tabular}{|c|c|c|c|c|c|}
\hline RPM - TEST NO & IMMERSION & \[
\underset{\left(\mathbf{N} / \mathbf{m m}^{2)}\right.}{\mathbf{K}_{\mathrm{TC}}}
\] & \[
\begin{gathered}
\mathbf{K}_{\mathrm{TE}} \\
(\mathbf{N} / \mathbf{m m})
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{K}_{\mathrm{RC}} \\
\left(\mathrm{~N} / \mathrm{mm}^{2}\right)
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{K}_{\mathbf{R E}} \\
(\mathbf{N} / \mathbf{m m})
\end{gathered}
\] \\
\hline \multirow[t]{3}{*}{2400-1} & 1/4 & 1517.50 & 82.07 & 774.23 & 95.20 \\
\hline & 1/2 & 1745.86 & 73.05 & 968.91 & 100.42 \\
\hline & 3/4 & 1678.06 & 74.24 & 1050.44 & 103.23 \\
\hline \multirow[t]{3}{*}{2400-2} & 1/4 & 1824.42 & 73.86 & 960.10 & 96.22 \\
\hline & 1/2 & 1925.05 & 74.42 & 1329.98 & 93.59 \\
\hline & 3/4 & 2025.50 & 67.61 & 1283.35 & 100.34 \\
\hline \multirow[t]{3}{*}{2400-3} & 1/4 & 2368.95 & 58.83 & 1157.37 & 90.66 \\
\hline & 1/2 & 1748.56 & 75.94 & 888.02 & 103.48 \\
\hline & 3/4 & 1650.22 & 79.23 & 1016.99 & 105.15 \\
\hline \multirow[t]{3}{*}{4000-1} & 1/4 & 1935.23 & 61.06 & 1253.65 & 93.03 \\
\hline & 1/2 & 1861.64 & 59.25 & 1130.58 & 93.88 \\
\hline & 3/4 & 1906.12 & 73.37 & 1061.20 & 89.85 \\
\hline \multirow[t]{3}{*}{4000-2} & 1/4 & 1814.15 & 48.28 & 851.96 & 77.40 \\
\hline & 1/2 & 1864.06 & 42.75 & 1032.44 & 82.90 \\
\hline & 3/4 & 1932.10 & 43.83 & 992.01 & 80.23 \\
\hline \multirow[t]{3}{*}{4000-3} & 1/4 & 1837.79 & 52.97 & 929.16 & 77.22 \\
\hline & 1/2 & 1875.05 & 50.74 & 923.33 & 87.12 \\
\hline & 3/4 & 1904.16 & 50.14 & 1176.02 & 78.67 \\
\hline \multirow[t]{3}{*}{4000-4} & 1/4 & 2023.71 & 51.84 & 1081.58 & 76.45 \\
\hline & 1/2 & 1910.69 & 52.29 & 863.85 & 87.81 \\
\hline & 3/4 & 1828.29 & 52.14 & 1012.38 & 82.65 \\
\hline \multirow[t]{3}{*}{4000-5} & 1/4 & 1891.97 & 57.42 & 969.61 & 77.85 \\
\hline & 1/2 & 1830.27 & 52.02 & 873.05 & 88.28 \\
\hline & 3/4 & 1809.12 & 53.62 & 1055.02 & 82.65 \\
\hline \multirow[t]{3}{*}{4000-6} & 1/4 & 1994.57 & 56.23 & 1002.54 & 88.03 \\
\hline & 1/2 & 1806.18 & 59.31 & 949.04 & 89.08 \\
\hline & 3/4 & 1859.03 & 51.17 & 991.94 & 85.55 \\
\hline \multirow[t]{2}{*}{4000-7} & 1/4 & 1955.81 & 55.62 & 1027.17 & 84.10 \\
\hline & \(1 / 2\) & 1956.10 & 46.53 & 1117.40 & 83.97 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(3 / 4\) & 1919.67 & 51.71 & 1114.39 & 82.65 \\
\hline \multirow[t]{3}{*}{4000-8} & \(1 / 4\) & 1829.47 & 58.87 & 799.31 & 83.47 \\
\hline & \(1 / 2\) & 1855.99 & 51.85 & 933.81 & 86.02 \\
\hline & \(3 / 4\) & 2057.34 & 47.08 & 1228.50 & 76.01 \\
\hline \multirow[t]{3}{*}{4000-9} & \(1 / 4\) & 2007.13 & 53.76 & 940.74 & 87.99 \\
\hline & \(1 / 2\) & 1809.49 & 55.11 & 901.17 & 87.85 \\
\hline & \(3 / 4\) & 1940.26 & 49.18 & 1070.91 & 81.33 \\
\hline \multirow[t]{3}{*}{4000-10} & \(1 / 4\) & 2051.77 & 58.26 & 1346.78 & 86.90 \\
\hline & 1/2 & 2000.16 & 49.66 & 963.81 & 82.26 \\
\hline & \(3 / 4\) & 1884.35 & 50.69 & 1041.97 & 82.09 \\
\hline \multirow[t]{3}{*}{4000-11} & \(1 / 4\) & 1932.20 & 57.11 & 949.05 & 84.85 \\
\hline & 1/2 & 1745.25 & 59.82 & 789.94 & 93.94 \\
\hline & \(3 / 4\) & 1894.17 & 51.45 & 1060.35 & 81.63 \\
\hline \multirow[t]{3}{*}{4000-12} & \(1 / 4\) & 1949.44 & 55.55 & 906.84 & 82.04 \\
\hline & 1/2 & 1889.11 & 52.22 & 946.46 & 80.98 \\
\hline & 3/4 & 1914.32 & 50.40 & 1050.92 & 80.90 \\
\hline \multirow[t]{3}{*}{4000-13} & \(1 / 4\) & 1841.10 & 52.32 & 883.45 & 79.00 \\
\hline & 1/2 & 1755.82 & 52.54 & 912.75 & 91.23 \\
\hline & \(3 / 4\) & 1776.77 & 54.69 & 1069.49 & 81.85 \\
\hline \multirow[t]{3}{*}{4000-14} & \(1 / 4\) & 1961.61 & 53.34 & 982.76 & 84.05 \\
\hline & 1/2 & 2062.61 & 45.10 & 996.18 & 82.78 \\
\hline & \(3 / 4\) & 1817.07 & 54.87 & 1032.56 & 83.77 \\
\hline \multirow[t]{3}{*}{5600-1} & \(1 / 4\) & 2462.86 & 39.68 & 1515.22 & 72.74 \\
\hline & \(1 / 2\) & 1910.55 & 48.74 & 1128.74 & 83.10 \\
\hline & 3/4 & 1821.11 & 55.91 & 1265.03 & 81.20 \\
\hline \multirow[t]{3}{*}{5600-2} & \(1 / 4\) & 1961.57 & 56.06 & 1287.27 & 86.81 \\
\hline & \(1 / 2\) & 1850.71 & 52.32 & 1000.92 & 91.36 \\
\hline & \(3 / 4\) & 1708.34 & 57.52 & 1098.52 & 91.68 \\
\hline \multirow[t]{3}{*}{5600-3} & \(1 / 4\) & 1950.16 & 59.28 & 1188.43 & 100.00 \\
\hline & \(1 / 2\) & 1755.85 & 57.25 & 911.71 & 97.91 \\
\hline & 3/4 & 1904.65 & 50.49 & 1228.42 & 82.44 \\
\hline \multirow[t]{3}{*}{6400-1} & \(1 / 4\) & 1713.45 & 61.69 & 938.88 & 82.40 \\
\hline & 1/2 & 1855.62 & 50.25 & 1030.71 & 85.54 \\
\hline & \(3 / 4\) & 1912.36 & 41.84 & 1156.13 & 76.57 \\
\hline \multirow[t]{3}{*}{6400-2} & \(1 / 4\) & 1815.80 & 53.74 & 859.50 & 82.04 \\
\hline & 1/2 & 1952.94 & 48.35 & 1172.57 & 82.79 \\
\hline & 3/4 & 2099.89 & 44.01 & 1584.66 & 60.25 \\
\hline \multirow[t]{3}{*}{6400-3} & \(1 / 4\) & 1849.30 & 54.90 & 1093.15 & 82.88 \\
\hline & \(1 / 2\) & 1617.74 & 59.29 & 1086.62 & 90.80 \\
\hline & 3/4 & 2238.61 & 42.23 & 1482.12 & 68.49 \\
\hline
\end{tabular}

Table C.3: Coefficients from Steel1018 tests

\section*{Steel1018 Average Forces and the Geometry Matrices}
\begin{tabular}{|r|r|r|r|}
\multicolumn{4}{c}{} \\
\multicolumn{1}{c}{\(1 / 4\)} \\
mm 2 & mm & \multicolumn{1}{c}{mm 2} & \multicolumn{1}{r}{mm} \\
\hline 0010 & 0438 & -0008 & -0253 \\
\hline 0008 & 0253 & 0010 & 0438 \\
\hline 0013 & 0438 & -0010 & -0253 \\
\hline 0010 & 0253 & 0013 & 0438 \\
\hline 0015 & 0438 & -0012 & -0253 \\
\hline 0012 & 0253 & 0015 & 0438 \\
\hline 0020 & 0438 & -0017 & -0253 \\
\hline 0017 & 0253 & 0020 & 0438 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|r|r|}
\multicolumn{4}{c}{\begin{tabular}{c}
\(1 / 2\) \\
mm 2
\end{tabular} mm} \\
\hline 0010 & 0505 & -0016 & -0505 \\
\hline 0016 & 0505 & 0010 & 0505 \\
\hline 0013 & 0505 & -0020 & -0505 \\
\hline 0020 & 0505 & 0013 & 0505 \\
\hline 0015 & 0505 & -0024 & -0505 \\
\hline 0024 & 0505 & 0015 & 0505 \\
\hline 0020 & 0505 & 0032 & -0505 \\
\hline 0032 & 0505 & 0020 & 0505 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\multicolumn{4}{c}{\(3 / 4\)} \\
mm 2 & mm & mm 2 & mm \\
\hline 0007 & 0438 & -0023 & -0758 \\
\hline 0023 & 0758 & 0007 & 0438 \\
\hline 0008 & 0438 & -0028 & -0758 \\
\hline 0028 & 0758 & 0008 & 0438 \\
\hline 0010 & 0438 & -0034 & -0758 \\
\hline 0034 & 0758 & 0010 & 0438 \\
\hline 0013 & 0438 & -0045 & -0758 \\
\hline 0045 & 0758 & 0013 & 0438 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline 24001 & Fx1 (N) & 2105 & 1160 & -5763 \\
\hline & Fy1 & 8446 & 12357 & 14560 \\
\hline & Fx2 & 2249 & 1120 & 6229 \\
\hline & Fy2 & 8611 & 13564 & 15845 \\
\hline & Fx3 & 2562 & -1025 & -6456 \\
\hline & Fy3 & 9216 & 14510 & 16992 \\
\hline & Fx4 & 2965 & -940 & 6456 \\
\hline & Fy4 & 10388 & 16160 & 16992 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 24002 & Fx1 (N) & 1772 & 1156 & 6227 \\
\hline & Fy1 & 8459 & 13272 & 14479 \\
\hline & Fx2 & 2204 & -12 20 & 6772 \\
\hline & Fy 2 & 9253 & 13674 & 16776 \\
\hline & Fx3 & 2394 & -1109 & -6605 \\
\hline & Fy 3 & 9870 & 14742 & 17996 \\
\hline & Fx4 & 2864 & -1344 & -78 69 \\
\hline & Fy4 & 10968 & 17512 & 20148 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(2400-3\) & Fx1 (N) & 1702 & -1104 & 5680 \\
\hline & Fy1 & 8640 & 12292 & 15025 \\
\hline & Fx2 & 2096 & 854 & 6084 \\
\hline & Fy2 & 9361 & 14186 & 15723 \\
\hline & Fx3 & 2432 & 857 & -6196 \\
\hline & Fy3 & 10003 & 14633 & 17861 \\
\hline & Fx4 & 3144 & -701 & -6918 \\
\hline & Fy4 & 11762 & 16227 & 19238 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-1\) & \(F x 1(N)\) & 1199 & 1689 & -4801 \\
\hline & \(F y 1\) & 8493 & 11749 & 14551 \\
\hline & \(F x 2\) & 1457 & -1672 & -4955 \\
\hline & Fy2 & 9155 & 12908 & 15754 \\
\hline & Fx3 & 1787 & 1524 & 5198 \\
\hline & Fy3 & 9927 & 13928 & 17034 \\
\hline & Fx4 & 2109 & -1618 & 5898 \\
\hline & Fy4 & 11334 & 15873 & 19563 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-2\) & Fx1 (N) & 1257 & -1784 & -4959 \\
\hline & Fy1 & 6909 & 10215 & 11736 \\
\hline & Fx2 & 1580 & -1704 & -5567 \\
\hline & Fy2 & 7595 & 11435 & 13295 \\
\hline & Fx3 & 1874 & -1695 & -5561 \\
\hline & Fy3 & 8189 & 12444 & 14447 \\
\hline & Fx4 & 2389 & -1529 & -6017 \\
\hline & Fy4 & 9285 & 14260 & 16854 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-3\) & \(F x 1(N)\) & 1448 & -1408 & -5225 \\
\hline & \(F y 1\) & 7180 & 10725 & 12189 \\
\hline & Fx2 & 1730 & -1340 & -5441 \\
\hline & Fy2 & 7799 & 11961 & 13844 \\
\hline & Fx3 & 1996 & -1146 & -5788 \\
\hline & Fy3 & 8362 & 12915 & 14885 \\
\hline & Fx4 & 2536 & 998 & -6579 \\
\hline & Fy4 & 9639 & 14690 & 17399 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-4\) & Fx1 (N) & 1470 & -1199 & -5062 \\
\hline & Fy1 & 7413 & 10897 & 12347 \\
\hline & Fx2 & 1790 & -1152 & -5340 \\
\hline & Fy2 & 8129 & 12161 & 13540 \\
\hline & Fx3 & 2058 & -951 & 5511 \\
\hline & Fy3 & 8769 & 12761 & 14980 \\
\hline & Fx4 & 2626 & -668 & -6138 \\
\hline & Fy4 & 10184 & 14905 & 17136 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 40005 & \(F_{x 1}(\mathrm{~N})\) & 1649 & -1280 & -4986 \\
\hline & \(F_{y} 1\) & 7350 & 10605 & 12276 \\
\hline & \(F_{x} 2\) & 1935 & -1397 & -5491 \\
\hline & Fy2 & 8064 & 12195 & 13952 \\
\hline & Fx3 & 2206 & -1104 & -5732 \\
\hline & Fy3 & 8714 & 12703 & 14929 \\
\hline & Fx4 & 2758 & 888 & -6211 \\
\hline & Fy4 & 9903 & 14580 & 17210 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-6\) & \(F x 1(N)\) & 1400 & -1195 & -5240 \\
\hline & \(F y 1\) & 7891 & 11069 & 12460 \\
\hline & \(F x 2\) & 1726 & -1068 & -5395 \\
\hline & \(F y 2\) & 8574 & 12481 & 13763 \\
\hline & \(F x 3\) & 2035 & -1070 & -5894 \\
\hline & \(F y 3\) & 9370 & 13393 & 14955 \\
\hline & \(F x 4\) & 2587 & -857 & -6188 \\
\hline & Fy4 & 10536 & 14997 & 17356 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 40007 & Fx1 (N) & 1394 & -1743 & -5351 \\
\hline & Fy1 & 7679 & 10669 & 12707 \\
\hline & Fx2 & 1738 & -1616 & -5462 \\
\hline & Fy2 & 8451 & 11979 & 13866 \\
\hline & Fx3 & 2036 & -1516 & 5746 \\
\hline & Fy3 & 9096 & 13066 & 15103 \\
\hline & Fx4 & 2529 & 1529 & -6542 \\
\hline & Fy4 & 10353 & 14951 & 17779 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-8\) & Fx1 (N) & 1648 & -1329 & -5119 \\
\hline & Fy1 & 7423 & 10773 & 12319 \\
\hline & Fx2 & 1963 & -1261 & -5457 \\
\hline & Fy2 & 8053 & 11935 & 13785 \\
\hline & Fx3 & 2229 & -1114 & 5758 \\
\hline & Fy3 & 8657 & 12755 & 15203 \\
\hline & Fx4 & 2839 & 948 & -6520 \\
\hline & Fy4 & 9746 & 14718 & 17817 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-9\) & \(F \times 1(N)\) & 1348 & -1262 & -5090 \\
\hline & \(F y 1\) & 7799 & 11003 & 12329 \\
\hline & \(F \times 2\) & 1696 & -1178 & -5473 \\
\hline & \(F y 2\) & 8539 & 11983 & 13788 \\
\hline & \(F x 3\) & 2046 & -1020 & 5694 \\
\hline & \(F y 3\) & 9038 & 12806 & 14946 \\
\hline & \(F x 4\) & 2597 & -874 & -6240 \\
\hline & \(F y 4\) & 10439 & 14803 & 17493 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 400010 & Fx1 (N) & 1311 & -1126 & -5016 \\
\hline & Fy1 & 8327 & 10764 & 12206 \\
\hline & Fx2 & 1549 & -1074 & -5555 \\
\hline & Fy2 & 9088 & 11958 & 13838 \\
\hline & Fx3 & 1789 & -917 & -5534 \\
\hline & Fy3 & 9853 & 12774 & 14996 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-11\) & \(F \times 1(N)\) & 1496 & -1148 & -5047 \\
\hline & \(F y 1\) & 7646 & 11221 & 12415 \\
\hline & \(F x 2\) & 1833 & -1253 & -5368 \\
\hline & \(F y 2\) & 8435 & 12422 & 13844 \\
\hline & \(F \times 3\) & 2116 & -851 & -5632 \\
\hline & \(F y 3\) & 8976 & 13016 & 14922 \\
\hline
\end{tabular}

\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-12\) & \(F x 1(N)\) & 1549 & -1066 & -4984 \\
\hline & \(F y 1\) & 7457 & 10621 & 12300 \\
\hline & Fx2 & 1908 & 930 & 5361 \\
\hline & Fy2 & 8190 & 11751 & 13801 \\
\hline & Fx3 & 2192 & -834 & -5539 \\
\hline & Fy3 & 8837 & 12621 & 14928 \\
\hline & Fx4 & 2779 & -651 & -6110 \\
\hline & Fy4 & 9999 & 14617 & 17407 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-13\) & \(F x 1(N)\) & 1397 & 1570 & -5044 \\
\hline & \(F y 1\) & 7122 & 10984 & 12471 \\
\hline & \(F x 2\) & 1717 & -1635 & -5350 \\
\hline & \(F y 2\) & 7904 & 11914 & 13749 \\
\hline & \(F x 3\) & 2008 & -1459 & 5639 \\
\hline & \(F y 3\) & 8363 & 12738 & 14704 \\
\hline & \(F x 4\) & 2530 & 1288 & -6273 \\
\hline & \(F y 4\) & 9587 & 14702 & 17257 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4000-14\) & Fx1 (N) & 1358 & -1410 & -5115 \\
\hline & Fy1 & 7576 & 10658 & 12605 \\
\hline & Fx2 & 1669 & 1285 & -5304 \\
\hline & Fy2 & 8332 & 11891 & 13974 \\
\hline & Fx3 & 1998 & 1122 & -5590 \\
\hline & Fy3 & 8998 & 12876 & 14899 \\
\hline & Fx4 & 2523 & 912 & -6211 \\
\hline & Fy4 & 10205 & 14979 & 17479 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(5600-1\) & \(F x 1(N)\) & 1120 & -1648 & 5288 \\
\hline & \(F_{y} 1\) & 7801 & 10753 & 12485 \\
\hline & \(F_{x 2}\) & 1463 & -1539 & 5558 \\
\hline & \(F y 2\) & 8639 & 11943 & 14235 \\
\hline & \(F x 3\) & 1731 & -1464 & -6592 \\
\hline & \(F y 3\) & 9413 & 12941 & 15474 \\
\hline & \(F x 4\) & 2364 & -1497 & -6829 \\
\hline & \(F y 4\) & 11363 & 14950 & 17575 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 56002 & \(F x 1(N)\) & 1135 & 1759 & -5820 \\
\hline & \(F y 1\) & 8046 & 11173 & 12878 \\
\hline & \(F x 2\) & 1446 & -1566 & -5805 \\
\hline & \(F y 2\) & 8927 & 12155 & 14197 \\
\hline & \(F x 3\) & 1647 & 1502 & 6799 \\
\hline & \(F y 3\) & 9665 & 13274 & 15386 \\
\hline & \(F x 4\) & 2071 & 1450 & -7009 \\
\hline & \(F y 4\) & 10996 & 15094 & 17519 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 56003 & \(F \times 1(N)\) & 1025 & -1876 & -5488 \\
\hline & \(F y 1\) & 8989 & 11632 & 12348 \\
\hline & \(F x 2\) & 1301 & -1585 & -5908 \\
\hline & \(F y 2\) & 9112 & 12145 & 13752 \\
\hline & Fx3 & 1596 & -1363 & -6413 \\
\hline & \(F y 3\) & 9880 & 13689 & 15752 \\
\hline & Fx4 & 2011 & -1519 & -6986 \\
\hline & Fy4 & 11661 & 15168 & 17436 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(6400-1\) & \(F x 1(N)\) & 1518 & -1399 & -5269 \\
\hline & Fy1 & 7356 & 10677 & 11386 \\
\hline & Fx2 & 1894 & -1625 & -5849 \\
\hline & Fy2 & 8397 & 12202 & 12970 \\
\hline & Fx3 & 2020 & -1506 & -5731 \\
\hline & Fy3 & 8621 & 12598 & 14580 \\
\hline & Fx4 & 2514 & 1231 & -6706 \\
\hline & Fy4 & 9859 & 14840 & 16522 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 64002 & Fx1 (N) & 1334 & 1617 & -4913 \\
\hline & Fy1 & 7094 & 10631 & 11817 \\
\hline & Fx2 & 1723 & -1588 & 5385 \\
\hline & Fy2 & 8370 & 11860 & 13239 \\
\hline & Fx3 & 2027 & -1612 & 5686 \\
\hline & Fy3 & 8233 & 13742 & 14670 \\
\hline & Fx4 & 2477 & -1499 & 7100 \\
\hline & Fy4 & 9694 & 14853 & 17630 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 64003 & Fx1 (N) & 1147 & 1721 & -5213 \\
\hline & Fy1 & 7476 & 11132 & 12335 \\
\hline & Fx2 & 1661 & -1662 & -5705 \\
\hline & Fy2 & 8555 & 12395 & 13823 \\
\hline & Fx3 & 1773 & -1713 & -6018 \\
\hline & Fy3 & 8904 & 12931 & 15095 \\
\hline & Fx4 & 2184 & 1789 & -7087 \\
\hline & Fy4 & 10234 & 14910 & 18418 \\
\hline
\end{tabular}

Table C4: Steel 1018 Average Forces and the Geometry Matrices

Stainless Steel 304 Results
\begin{tabular}{|lccccc|}
\hline & & & \(\mathbf{K}_{\mathbf{T C}}\) & \(\mathbf{K}_{\mathbf{T E}}\) & \begin{tabular}{c}
\(\mathbf{K}_{\mathbf{R C}}\) \\
\(\left(\mathbf{N} / \mathbf{m m}^{2}\right)\)
\end{tabular} \\
\(\mathbf{R P M}\) - TEST NO & \begin{tabular}{c}
\(\mathbf{K}_{\mathbf{R E}}\) \\
\((\mathbf{N} / \mathbf{m m})\)
\end{tabular} \\
\hline \(1600-1\) & \(1 / 4\) & 2790.46 & 43.14 & 1979.97 & 77.94 \\
& \(1 / 2\) & 2957.31 & 36.26 & 1894.67 & 76.92 \\
& \(3 / 4\) & 2438.85 & 47.25 & 1644.86 & 91.07 \\
\hline \(1600-2\) & \(1 / 4\) & 2465.09 & 39.72 & 1453.78 & 72.87 \\
& \(1 / 2\) & 2464.72 & 38.51 & 1442.60 & 72.64 \\
& \(3 / 4\) & 2603.80 & 34.94 & 1679.29 & 69.54 \\
\hline \(1600-3\) & \(1 / 4\) & 2899.11 & 32.21 & 1958.41 & 61.36 \\
& \(1 / 2\) & 2516.74 & 37.59 & 1629.01 & 68.62 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 3/4 & 2535.69 & 36.63 & 1661.83 & 69.51 \\
\hline \multirow[t]{3}{*}{2400-1} & 1/4 & 2251.54 & 42.84 & 1335.00 & 64.38 \\
\hline & 1/2 & 2537.14 & 35.42 & 1524.81 & 66.39 \\
\hline & 3/4 & 2999.35 & 23.05 & 1688.73 & 62.22 \\
\hline \multirow[t]{3}{*}{2400-2} & \(1 / 4\) & 2898.54 & 29.54 & 1926.95 & 50.22 \\
\hline & 1/2 & 2186.93 & 45.73 & 1302.62 & 73.70 \\
\hline & 3/4 & 2031.84 & 46.18 & 1429.54 & 75.03 \\
\hline \multirow[t]{3}{*}{2400-3} & \(1 / 4\) & 2442.88 & 35.84 & 1492.65 & 67.55 \\
\hline & 1/2 & 2859.34 & 27.57 & 1890.98 & 50.25 \\
\hline & 3/4 & 2001.51 & 47.86 & 1166.47 & 80.57 \\
\hline \multirow[t]{3}{*}{2400-4} & \(1 / 4\) & 2174.94 & 47.90 & 1397.82 & 72.80 \\
\hline & 1/2 & 2221.13 & 40.88 & 1339.77 & 69.28 \\
\hline & 3/4 & 2116.83 & 42.25 & 1260.94 & 77.69 \\
\hline \multirow[t]{3}{*}{2400-5} & 1/4 & 1942.99 & 51.80 & 1021.52 & 81.35 \\
\hline & 1/2 & 2089.27 & 42.52 & 1172.78 & 74.73 \\
\hline & 3/4 & 2335.12 & 37.87 & 1270.89 & 78.31 \\
\hline \multirow[t]{3}{*}{2400-6} & 1/4 & 2168.16 & 45.44 & 1153.37 & 77.14 \\
\hline & 1/2 & 2455.02 & 36.25 & 1568.79 & 68.22 \\
\hline & 3/4 & 1745.99 & 52.95 & 964.95 & 93.95 \\
\hline \multirow[t]{3}{*}{2400-7} & 1/4 & 2610.58 & 38.97 & 1413.97 & 70.41 \\
\hline & 1/2 & 2346.71 & 42.22 & 1346.69 & 75.46 \\
\hline & 3/4 & 2531.08 & 36.52 & 1439.45 & 78.65 \\
\hline \multirow[t]{3}{*}{2400-8} & 1/4 & 2714.19 & 35.03 & 1836.98 & 63.96 \\
\hline & 1/2 & 2008.34 & 48.52 & 1165.97 & 83.48 \\
\hline & 3/4 & 2131.03 & 47.02 & 1430.18 & 82.85 \\
\hline \multirow[t]{3}{*}{2400-9} & 1/4 & 2476.94 & 38.55 & 1596.72 & 63.61 \\
\hline & 1/2 & 2347.33 & 39.06 & 1252.81 & 78.14 \\
\hline & 3/4 & 2263.18 & 38.49 & 1252.58 & 86.23 \\
\hline \multirow[t]{3}{*}{2400-10} & 1/4 & 1997.08 & 53.73 & 1078.67 & 93.66 \\
\hline & 1/2 & 2109.59 & 48.38 & 1068.12 & 90.87 \\
\hline & 3/4 & 2167.43 & 41.90 & 1318.77 & 84.87 \\
\hline \multirow[t]{3}{*}{2400-11} & \(1 / 4\) & 2109.62 & 47.96 & 1260.97 & 77.53 \\
\hline & 1/2 & 2529.39 & 35.50 & 1232.71 & 84.91 \\
\hline & 3/4 & 2453.37 & 40.45 & 1268.33 & 90.15 \\
\hline \multirow[t]{3}{*}{2400-12} & 1/4 & 2289.47 & 43.12 & 1309.22 & 80.05 \\
\hline & 1/2 & 2002.70 & 54.69 & 1162.80 & 88.79 \\
\hline & 3/4 & 2231.29 & 41.51 & 1152.39 & 93.66 \\
\hline \multirow[t]{3}{*}{2400-13} & 1/4 & 2096.49 & 52.17 & 1250.14 & 86.33 \\
\hline & 1/2 & 2220.27 & 45.81 & 1170.86 & 91.82 \\
\hline & 3/4 & 2080.57 & 45.64 & 915.98 & 107.37 \\
\hline 2400-14 & 1/4 & 2622.33 & 40.11 & 1466.38 & 82.36 \\
\hline
\end{tabular}
\begin{tabular}{|lrrrrr|}
\hline & \(1 / 2\) & 2330.23 & 41.02 & 1339.14 & 77.92 \\
& \(3 / 4\) & 2313.96 & 44.34 & 910.00 & 98.13 \\
\hline \(3200-1\) & \(1 / 4\) & 2653.40 & 25.42 & 1495.62 & 55.20 \\
& \(1 / 2\) & 2351.09 & 29.78 & 1423.61 & 55.36 \\
& \(3 / 4\) & 2378.24 & 29.99 & 1323.91 & 62.79 \\
\hline \(3200-2\) & \(1 / 4\) & 2448.00 & 38.35 & 1359.81 & 72.18 \\
& \(1 / 2\) & 2469.11 & 35.37 & 1515.75 & 73.07 \\
& \(3 / 4\) & 2377.86 & 37.99 & 1253.22 & 87.77 \\
\hline \(3200-3\) & \(1 / 4\) & 2525.29 & 38.64 & 1524.07 & 79.70 \\
& \(1 / 2\) & 2424.26 & 36.66 & 1411.54 & 78.62 \\
& \(3 / 4\) & 2513.86 & 34.48 & 1240.27 & 90.73 \\
\hline \(4400-1\) & \(1 / 4\) & 2371.03 & 28.56 & 1270.52 & 58.41 \\
& \(1 / 2\) & 2255.61 & 33.00 & 1170.54 & 65.67 \\
& \(3 / 4\) & 2279.72 & 30.72 & 1185.91 & 70.19 \\
\hline \(4400-2\) & \(1 / 4\) & 2424.17 & 32.97 & 1479.74 & 62.07 \\
& \(1 / 2\) & 2351.46 & 33.56 & 1367.92 & 65.97 \\
& \(3 / 4\) & 2646.61 & 27.58 & 1599.96 & 73.71 \\
\hline \(4400-3\) & \(1 / 4\) & 2476.53 & 29.22 & 1830.55 & 54.04 \\
& \(1 / 2\) & 2583.85 & 25.08 & 1539.42 & 52.95 \\
& \(3 / 4\) & 2582.54 & 24.84 & 1324.54 & 68.40 \\
\hline
\end{tabular}

Table C5: Coefficients from StSt304 tests

\section*{Stainless Steel 304 Average Forces and the Geometry Matrices}
\begin{tabular}{|c|r|r|r|}
\multicolumn{4}{c}{} \\
\multicolumn{1}{c}{\(1 / 4\)} \\
mm 2 & mm & mm 2 & mm \\
\hline 0008 & 0438 & -0006 & 0253 \\
\hline 0006 & 0253 & 0008 & 0438 \\
\hline 0010 & 0438 & -0008 & -0253 \\
\hline 0008 & 0253 & 0010 & 0438 \\
\hline 0013 & 0438 & -0010 & -0253 \\
\hline 0010 & 0253 & 0013 & 0438 \\
\hline 0015 & 0438 & -0012 & -0253 \\
\hline 0012 & 0253 & 0015 & 0438 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{mm2} & \multicolumn{3}{|c|}{1/2} \\
\hline & mm & mm 2 & mm \\
\hline 0008 & 0505 & -0012 & -0 505 \\
\hline 0012 & 0505 & 0008 & 0505 \\
\hline 0010 & 0505 & -0016 & -0 505 \\
\hline 0016 & 0505 & 0010 & 0505 \\
\hline 0013 & 0505 & -0 020 & -0 505 \\
\hline 0020 & 0505 & 0013 & 0505 \\
\hline 0015 & 0505 & -0024 & -0 505 \\
\hline 0024 & 0505 & 0015 & 0505 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|r|r|}
\multicolumn{4}{c}{\(3 / 4\)} \\
mm 2 & mm & \multicolumn{1}{c}{mm 2} & \multicolumn{1}{c}{mm} \\
\hline 0005 & 0438 & -0017 & -0758 \\
\hline 0017 & 0758 & 0005 & 0438 \\
\hline 0007 & 0438 & -0023 & -0758 \\
\hline 0023 & 0758 & 0007 & 0438 \\
\hline 0008 & 0438 & -0028 & -0758 \\
\hline 0028 & 0758 & 0008 & 0438 \\
\hline 0010 & 0438 & -0034 & -0758 \\
\hline 0034 & 0758 & 0010 & 0438 \\
\hline
\end{tabular}


\begin{tabular}{|l|l|r|r|r|}
\hline \(1600-3\) & Fx1 (N) & 867 & -1546 & -5075 \\
\hline & Fy1 & 6769 & 9319 & 10775 \\
\hline & Fx2 & 1142 & -1611 & -5871 \\
\hline & Fy2 & 7853 & 11244 & 12850 \\
\hline & Fx3 & 1449 & -1782 & -6354 \\
\hline & Fy3 & 8990 & 12656 & 14619 \\
\hline & Fx4 & 1856 & 1524 & -6627 \\
\hline & Fy4 & 10039 & 13551 & 15888 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(2400-1\) & \(F x 1(N)\) & 1172 & -1415 & -5295 \\
\hline & \(F y 1\) & 6331 & 8938 & 10666 \\
\hline & \(F x 2\) & 1290 & 1385 & -5134 \\
\hline & \(F y 2\) & 6886 & 11167 & 11853 \\
\hline & \(F x 3\) & 1815 & -1587 & -6034 \\
\hline & \(F y 3\) & 8260 & 12275 & 14689 \\
\hline & \(F x 4\) & 1970 & 1229 & -6506 \\
\hline & \(F y 4\) & 8543 & 13202 & 16345 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \(2400-2\) & Fx1 (N) & 1060 & 1288 & -4953 \\
\hline & Fy1 & 6070 & 9629 & 10993 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 24003 & \(F_{x 1}(N)\) & 785 & -1291 & -5139 \\
\hline & \(F y 1\) & 6460 & 8960 & 11351 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|} 
& \(F x 2\) & 1339 & -1268 & 5481 \\
\hline & Fy2 & 7584 & 10493 & 12115 \\
\hline & Fx3 & 1608 & -1298 & -6468 \\
\hline & Fy3 & 8137 & 12609 & 14067 \\
\hline & Fx4 & 2079 & -1160 & -6188 \\
\hline & Fy4 & 9496 & 12909 & 14990 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(2400-4\) & \(F_{x}(N)\) & 1075 & -1337 & -5150 \\
\hline & \(F_{y} 1\) & 7034 & 9165 & 10637 \\
\hline & \(F_{x} 2\) & 1265 & -1333 & 5442 \\
\hline & \(F y 2\) & 7355 & 10501 & 12568 \\
\hline & \(F_{x 3}\) & 1501 & 1286 & 5782 \\
\hline & \(F_{y 3}\) & 8194 & 11681 & 13577 \\
\hline & \(F_{x 4}\) & 1861 & -1254 & 6234 \\
\hline & \(F_{y} 4\) & 9423 & 12831 & 15015 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(2400-6\) & Fx1 (N) & 914 & -1694 & -5643 \\
\hline & Fy1 & 6387 & 9401 & 11758 \\
\hline & Fx2 & 1303 & -1627 & 5693 \\
\hline & Fy2 & 7766 & 10711 & 12463 \\
\hline & Fx3 & 1675 & 1410 & -6070 \\
\hline & Fy3 & 8693 & 12135 & 13851 \\
\hline & Fx4 & 1818 & -1773 & -6363 \\
\hline & Fy4 & 8538 & 13486 & 15142 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(2400-8\) & Fx1 (N) & 854 & -1622 & 5710 \\
\hline & Fy1 & 6841 & 9887 & 11564 \\
\hline & Fx2 & 1134 & -1579 & -5943 \\
\hline & Fy2 & 7820 & 11091 & 13011 \\
\hline & Fx3 & 1383 & 1594 & -6249 \\
\hline & Fy3 & 8454 & 12139 & 14236 \\
\hline & Fx4 & 1786 & -1469 & -7118 \\
\hline & Fy4 & 10038 & 13170 & 15991 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline 240010 & Fx1 (N) & 844 & -1804 & -5834 \\
\hline & Fy1 & 7668 & 10256 & 11189 \\
\hline & Fx2 & 1100 & -1849 & -6016 \\
\hline & Fy2 & 7948 & 11579 & 12759 \\
\hline & Fx3 & 1355 & -1381 & -6473 \\
\hline & Fy3 & 8888 & 12594 & 14110 \\
\hline & Fx4 & 1693 & -1596 & -6959 \\
\hline & Fy4 & 9634 & 13601 & 15580 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(2400-12\) & Fx1 (N) & 769 & -1574 & -6142 \\
\hline & Fy1 & 6971 & 10172 & 11522 \\
\hline & Fx2 & 1109 & -1582 & -6356 \\
\hline & Fy2 & 7836 & 12122 & 13188 \\
\hline & Fx3 & 1411 & -1476 & -6662 \\
\hline & Fy3 & 8626 & 12633 & 14561 \\
\hline & Fx4 & 1690 & -1462 & -6967 \\
\hline & Fy4 & 9381 & 13625 & 15934 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline 240014 & Fx1 (N) & 758 & -1684 & 6003 \\
\hline & Fy1 & 7706 & 9710 & 12369 \\
\hline & Fx2 & 1123 & -1567 & -5798 \\
\hline & Fy2 & 7942 & 11038 & 13155 \\
\hline & Fx3 & 1412 & -1745 & -6164 \\
\hline & Fy3 & 8743 & 12580 & 14680 \\
\hline & Fx4 & 1855 & -1434 & -6304 \\
\hline & Fy4 & 10473 & 13399 & 16751 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline \(3200-2\) & Fx1 (N) & 870 & -1817 & -5846 \\
\hline & Fy1 & 6629 & 9523 & 11324 \\
\hline & Fx2 & 1170 & -1821 & -6262 \\
\hline & Fy2 & 7553 & 10947 & 12963 \\
\hline & Fx3 & 1576 & -1847 & -6701 \\
\hline & Fy3 & 8432 & 12326 & 14682 \\
\hline & Fx4 & 1855 & -1734 & 6733 \\
\hline & Fy4 & 9160 & 13593 & 15940 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4400-1\) & Fx1 (N) & 813 & -1291 & -4646 \\
\hline & Fy1 & 5659 & 8518 & 9686 \\
\hline & Fx2 & 1073 & -1268 & 5424 \\
\hline & Fy2 & 6586 & 9779 & 11652 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|} 
& Fx2 & 1088 & -1183 & -5045 \\
\hline & Fy2 & 7398 & 10277 & 12265 \\
\hline & Fx3 & 1405 & 1256 & 5697 \\
\hline & Fy3 & 8366 & 11556 & 13565 \\
\hline & Fx4 & 1704 & -1359 & 6005 \\
\hline & Fy4 & 9070 & 13897 & 15360 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(2400-5\) & Fx1 (N) & 1074 & -1435 & -5289 \\
\hline & Fy1 & 6908 & 9278 & 10795 \\
\hline & Fx2 & 1303 & -1382 & 5460 \\
\hline & Fy2 & 7613 & 10407 & 12271 \\
\hline & Fx3 & 1574 & 1326 & -6077 \\
\hline & Fy3 & 7754 & 11605 & 14622 \\
\hline & Fx4 & 1913 & -1246 & -6177 \\
\hline & Fy4 & 9053 & 12624 & 15144 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(2400-7\) & Fx1 (N) & 1005 & -1502 & -5479 \\
\hline & Fy1 & 6520 & 9708 & 11214 \\
\hline & Fx2 & 1471 & -1455 & -5827 \\
\hline & Fy2 & 8165 & 11097 & 12910 \\
\hline & Fx3 & 1657 & 1381 & -6659 \\
\hline & Fy3 & 8200 & 12274 & 14624 \\
\hline & Fx4 & 2162 & -1332 & 6504 \\
\hline & Fy4 & 9489 & 13546 & 16240 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 24009 & Fx1 (N) & 931 & -1668 & 5730 \\
\hline & Fy1 & 6421 & 9561 & 11022 \\
\hline & Fx2 & 1271 & -1652 & 6354 \\
\hline & Fy2 & 7363 & 10892 & 12856 \\
\hline & Fx3 & 1630 & -1437 & 6445 \\
\hline & Fy3 & 8660 & 12461 & 14169 \\
\hline & Fx4 & 1793 & -1421 & -6798 \\
\hline & Fy4 & 9033 & 13192 & 15570 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline \(2400-11\) & \(F x 1(N)\) & 982 & -2094 & -5790 \\
\hline & \(F y 1\) & 6901 & 10075 & 11675 \\
\hline & \(F x 2\) & 1209 & -1778 & -6635 \\
\hline & \(F y 2\) & 7586 & 10991 & 13620 \\
\hline & \(F x 3\) & 1448 & 1856 & -6465 \\
\hline & \(F y 3\) & 8325 & 13167 & 15032 \\
\hline & \(F x 4\) & 1807 & 1569 & 6869 \\
\hline & Fy4 & 9164 & 13727 & 16559 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline 240013 & \(F x 1(N)\) & 936 & -1990 & 6854 \\
\hline & \(F y 1\) & 7338 & 10197 & 12165 \\
\hline & \(F x 2\) & 1145 & 2038 & -6515 \\
\hline & Fy2 & 7976 & 12154 & 13441 \\
\hline & Fx3 & 1462 & -1792 & 6973 \\
\hline & Fy3 & 9061 & 12665 & 14856 \\
\hline & Fx4 & 1731 & -1751 & -7266 \\
\hline & Fy4 & 9469 & 13942 & 16144 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(3200-1\) & \(F x 1\) (N) & 832 & -1205 & -4430 \\
\hline & Fy1 & 5779 & 8147 & 9603 \\
\hline & \(F x 2\) & 1127 & -1146 & -4889 \\
\hline & \(F y 2\) & 6827 & 9416 & 11406 \\
\hline & \(F x 3\) & 1481 & -1210 & 5317 \\
\hline & \(F y 3\) & 7701 & 10911 & 13032 \\
\hline & Fx4 & 1913 & -1088 & -5453 \\
\hline & \(F y 4\) & 8566 & 11945 & 14290 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(3200-3\) & Fx1 (N) & 660 & -1964 & -6128 \\
\hline & Fy1 & 7098 & 9706 & 11436 \\
\hline & Fx2 & 921 & -1911 & -6584 \\
\hline & Fy2 & 8175 & 11118 & 13150 \\
\hline & Fx3 & 1327 & -1858 & 6813 \\
\hline & Fy3 & 9061 & 12539 & 14799 \\
\hline & Fx4 & 1597 & -1808 & -6985 \\
\hline & Fy4 & 9817 & 13616 & 16325 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(4400-2\) & Fx1 (N) & 779 & 1388 & 5757 \\
\hline & Fy1 & 6067 & 8605 & 10792 \\
\hline & Fx2 & 1119 & 1584 & -6282 \\
\hline & Fy2 & 7168 & 10527 & 12225 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|} 
& Fx3 & 1436 & -1183 & -5414 \\
\hline & Fy3 & 7329 & 10926 & 12816 \\
\hline & Fx4 & 1810 & -969 & -5612 \\
\hline & Fy4 & 8108 & 12100 & 14269 \\
\hline 44003 & Fx1 (N) & 636 & -1253 & -4969 \\
\hline & Fy1 & 5959 & 8075 & 9648 \\
\hline & Fx2 & 912 & -1255 & -5473 \\
\hline & Fy2 & 7055 & 9629 & 11881 \\
\hline & Fx3 & 1169 & -1262 & -5683 \\
\hline & Fy3 & 8028 & 11201 & 13615 \\
\hline & Fx4 & 1371 & -1111 & 5954 \\
\hline & Fy4 & 8874 & 12259 & 14691 \\
\hline
\end{tabular}

Table C6: Stainless Steel 304 Average Forces and the Geometry Matrices

Titanium Grade 2 Results
\begin{tabular}{|lcrrrr|}
\hline \begin{tabular}{c} 
RPM - TEST \\
NO
\end{tabular} & IMMERSION & \begin{tabular}{c}
\(\mathbf{K}_{\mathbf{T C}}\) \\
\(\left(\mathbf{N} / \mathbf{m m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{K}_{\mathbf{T E}}\) \\
\((\mathbf{N} / \mathbf{m m})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{K}_{\mathbf{R C}}\) \\
\(\left(\mathbf{N} / \mathbf{m m}^{2}\right)\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{K}_{\mathbf{R E}}\) \\
\((\mathbf{N} / \mathbf{m m})\)
\end{tabular} \\
\hline \(1200-1\) & \(1 / 4\) & 1649.97 & 21.59 & 964.95 & 35.07 \\
& \(1 / 2\) & 1913.29 & 23.93 & 1255.78 & 37.98 \\
& \(3 / 4\) & 1994.47 & 22.34 & 1349.27 & 37.48 \\
\hline \(1200-2\) & \(1 / 4\) & 1958.42 & 22.81 & 1300.46 & 35.11 \\
& \(1 / 2\) & 1952.62 & 23.05 & 1286.28 & 37.69 \\
& \(1 / 4\) & 2008.08 & 22.30 & 1332.02 & 38.48 \\
\hline \(1200-3\) & \(1 / 4\) & 1602.49 & 25.27 & 876.49 & 38.48 \\
& \(1 / 2\) & 1848.21 & 25.40 & 1204.52 & 39.41 \\
& \(1 / 4\) & 1993.88 & 22.74 & 1324.33 & 38.97 \\
\hline \(1800-1\) & \(1 / 4\) & 2048.70 & 14.21 & 1476.19 & 21.96 \\
& \(1 / 2\) & 1958.18 & 21.34 & 1104.09 & 37.48 \\
& \(3 / 4\) & 2020.64 & 11.48 & 1337.41 & 17.77 \\
\hline \(1800-2\) & \(1 / 4\) & 1913.57 & 19.42 & 1120.00 & 34.34 \\
& \(1 / 2\) & 2088.46 & 12.54 & 1569.63 & 18.47 \\
& \(3 / 4\) & 1671.57 & 19.08 & 879.54 & 30.44 \\
\hline \(1800-3\) & \(1 / 4\) & 1582.11 & 18.51 & 867.21 & 34.49 \\
& \(1 / 2\) & 1976.31 & 20.59 & 1153.43 & 39.74 \\
& \(1 / 4\) & 2217.54 & 15.13 & 1326.11 & 29.87 \\
\hline \(1800-4\) & \(1 / 4\) & 1855.79 & 19.99 & 1064.51 & 33.48 \\
& \(1 / 2\) & 2069.61 & 15.82 & 1346.71 & 29.33 \\
& \(3 / 4\) & 1801.57 & 20.01 & 1002.16 & 32.15 \\
\hline \(1800-5\) & \(1 / 4\) & 1149.64 & 26.07 & 443.38 & 47.10 \\
& \(1 / 2\) & 1827.75 & 18.56 & 1232.80 & 32.84 \\
& \(1 / 4\) & 1819.46 & 21.71 & 1038.00 & 37.47 \\
\hline \(1800-6\) & \(1 / 4\) & 1888.45 & 22.19 & 1094.47 & 39.19 \\
& 1934.04 & 19.62 & 1098.15 & 34.48 \\
& 1859.52 & 20.21 & 1097.06 & 34.60 \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{1800-7} & \(1 / 4\) & 1725.02 & 24.22 & 994.97 & 39.56 \\
\hline & 1/2 & 1848.56 & 19.90 & 1088.03 & 34.12 \\
\hline & 3/4 & 1662.33 & 24.05 & 921.95 & 40.02 \\
\hline \multirow[t]{3}{*}{1800-8} & \(1 / 4\) & 1930.66 & 21.12 & 1113.16 & 37.64 \\
\hline & 1/2 & 1880.31 & 21.13 & 1124.60 & 35.83 \\
\hline & 3/4 & 2001.84 & 18.70 & 1164.69 & 35.23 \\
\hline \multirow[t]{3}{*}{1800-9} & 1/4 & 1906.57 & 19.22 & 1108.87 & 36.26 \\
\hline & 1/2 & 1862.40 & 19.34 & 1026.78 & 36.48 \\
\hline & 3/4 & 1653.06 & 23.72 & 1011.60 & 37.60 \\
\hline \multirow[t]{3}{*}{1800-10} & 1/4 & 2005.11 & 17.74 & 1361.53 & 29.63 \\
\hline & 1/2 & 1745.72 & 24.69 & 978.71 & 41.50 \\
\hline & 3/4 & 1806.45 & 23.98 & 1098.87 & 39.66 \\
\hline \multirow[t]{3}{*}{1800-11} & 1/4 & 1781.99 & 20.70 & 1074.67 & 35.93 \\
\hline & 1/2 & 1965.10 & 18.11 & 1075.88 & 35.52 \\
\hline & 3/4 & 1765.88 & 20.86 & 1031.91 & 37.56 \\
\hline \multirow[t]{3}{*}{1800-12} & 1/4 & 1701.18 & 21.77 & 950.98 & 38.78 \\
\hline & 1/2 & 1714.69 & 23.11 & 883.37 & 43.33 \\
\hline & 3/4 & 1893.96 & 19.71 & 1228.80 & 36.40 \\
\hline \multirow[t]{3}{*}{1800-13} & 1/4 & 1804.84 & 20.41 & 1016.89 & 40.13 \\
\hline & 1/2 & 1989.42 & 19.03 & 933.97 & 41.09 \\
\hline & 3/4 & 1812.80 & 20.62 & 988.53 & 39.56 \\
\hline \multirow[t]{3}{*}{1800-14} & 1/4 & 1788.69 & 20.58 & 1021.31 & 39.08 \\
\hline & 1/2 & 1815.23 & 20.25 & 1161.50 & 35.75 \\
\hline & 3/4 & 1889.04 & 17.87 & 1120.82 & 36.30 \\
\hline \multirow[t]{3}{*}{2400-1} & 1/4 & 1692.51 & 20.86 & 1161.73 & 35.17 \\
\hline & 1/2 & 1759.96 & 22.05 & 1064.45 & 37.68 \\
\hline & 3/4 & 1972.09 & 18.76 & 1211.01 & 37.82 \\
\hline \multirow[t]{3}{*}{2400-2} & 1/4 & 2179.84 & 15.18 & 1500.01 & 28.14 \\
\hline & 1/2 & 1788.54 & 20.82 & 1149.90 & 37.37 \\
\hline & 3/4 & 1814.96 & 19.90 & 1180.75 & 37.56 \\
\hline \multirow[t]{3}{*}{2400-3} & 1/4 & 1884.94 & 16.72 & 1440.23 & 26.21 \\
\hline & 1/2 & 1915.46 & 20.41 & 1352.29 & 33.05 \\
\hline & 3/4 & 1914.23 & 17.83 & 1190.46 & 36.32 \\
\hline \multirow[t]{3}{*}{2700-1} & 1/4 & 1883.46 & 19.36 & 1163.81 & 37.95 \\
\hline & 1/2 & 1858.25 & 18.66 & 1169.61 & 35.94 \\
\hline & \(3 / 4\) & 1849.00 & 20.10 & 1237.11 & 36.08 \\
\hline \multirow[t]{3}{*}{2700-2} & 1/4 & 1951.09 & 15.97 & 1491.38 & 29.06 \\
\hline & 1/2 & 1863.01 & 20.91 & 1155.63 & 39.35 \\
\hline & 3/4 & 1865.96 & 20.89 & 1211.69 & 39.83 \\
\hline \multirow[t]{2}{*}{2700-3} & 1/4 & 1850.32 & 24.31 & 1162.49 & 43.58 \\
\hline & 1/2 & 1859.48 & 20.09 & 1173.41 & 39.32 \\
\hline
\end{tabular}
\[
\begin{array}{lllll|}
\hline 3 / 4 & 1853.08 & 23.09 & 1232.01 & 36.24 \\
\hline
\end{array}
\]

Table C.7: Coefficients from Titanium 2 tests

\section*{Titanium 2 Average Forces and the Geometry Matrices}
\begin{tabular}{|r|r|r|r|}
\multicolumn{4}{c}{\(1 / 4\)} \\
mm 2 & mm & \multicolumn{1}{c}{mm 2} & \multicolumn{1}{r}{mm} \\
\hline 0005 & 0438 & -0004 & -0253 \\
\hline 0004 & 0253 & 0005 & 0438 \\
\hline 0008 & 0438 & -0006 & -0253 \\
\hline 0006 & 0253 & 0008 & 0438 \\
\hline 0010 & 0438 & -0008 & -0253 \\
\hline 0008 & 0253 & 0010 & 0438 \\
\hline 0015 & 0438 & -0012 & -0253 \\
\hline 0012 & 0253 & 0015 & 0438 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\multicolumn{4}{c}{} \\
\multicolumn{1}{c}{mm 2 m} & mm & \multicolumn{1}{c}{mm 2} & \multicolumn{1}{r|}{mm} \\
\hline 0005 & 0505 & -0008 & 0505 \\
\hline 0008 & 0505 & 0005 & 0505 \\
\hline 0008 & 0505 & -0012 & 0505 \\
\hline 0012 & 0505 & 0008 & 0505 \\
\hline 0010 & 0505 & -0016 & 0505 \\
\hline 0016 & 0505 & 0010 & 0505 \\
\hline 0015 & 0505 & -0024 & 0505 \\
\hline 0024 & 0505 & 0015 & 0505 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\multicolumn{4}{c}{\(3 / 4\)} \\
mm 2 & mm & mm 2 & \multicolumn{1}{c}{mm} \\
\hline 0003 & 0438 & -0011 & -0758 \\
\hline 0011 & 0758 & 0003 & 0438 \\
\hline 0005 & 0438 & -0017 & -0758 \\
\hline 0017 & 0758 & 0005 & 0438 \\
\hline 0007 & 0438 & -0023 & -0758 \\
\hline 0023 & 0758 & 0007 & 0438 \\
\hline 0010 & 0438 & -0034 & -0758 \\
\hline 0034 & 0758 & 0010 & 0438 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{2}{r|}{\(\mathbf{1 / 4}\)} & \multicolumn{1}{r|}{\(\mathbf{1 / 2}\)} & \multicolumn{1}{c|}{\(\mathbf{3 / 4}\)} \\
\hline 12001 & \begin{tabular}{r} 
Fx1 \\
(N)
\end{tabular} & 530 & 735 & 2701 \\
\hline & Fy1 & 3050 & 5210 & 5978 \\
\hline & Fx2 & 685 & 739 & -3158 \\
\hline & Fy2 & 4060 & 6375 & 7491 \\
\hline & Fx3 & 883 & -803 & 3619 \\
\hline & Fy3 & 4462 & 7483 & 8803 \\
\hline & Fx4 & 1385 & -787 & -4413 \\
\hline & Fy4 & 5500 & 9534 & 11423 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{12002} & \multirow[b]{2}{*}{Fx1 (N)} & 1/4 & 1/2 & 3/4 \\
\hline & & 564 & 782 & 2772 \\
\hline & Fy1 & 3541 & 5240 & 6061 \\
\hline & Fx2 & 769 & 795 & 3223 \\
\hline & Fy2 & 4334 & 6407 & 7540 \\
\hline & Fx3 & 1030 & 785 & -3578 \\
\hline & Fy3 & 5069 & 7401 & 8805 \\
\hline & Fx4 & 1456 & -853 & -4448 \\
\hline & Fy4 & 6481 & 9667 & 11522 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
\hline \(1200-3\) & \begin{tabular}{l} 
Fx1 \\
\((N)\)
\end{tabular} & 584 & 716 & -2772 \\
\hline & Fy1 & 3311 & 5204 & 6082 \\
\hline & Fx2 & 804 & -743 & -3242 \\
\hline & Fy2 & 4067 & 6448 & 7538 \\
\hline & Fx3 & 1013 & 778 & -3603 \\
\hline & Fy3 & 4619 & 7563 & 8898 \\
\hline & Fx4 & 1476 & -762 & -4444 \\
\hline & Fy4 & 5563 & 9394 & 11491 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline 18001 & Fx1 (N) & 530 & -762 & -2434 \\
\hline & Fy1 & 2966 & 4902 & 5776 \\
\hline & Fx2 & 662 & 656 & 3099 \\
\hline & Fy2 & 3678 & 5964 & 7412 \\
\hline & Fx3 & 893 & -480 & 3033 \\
\hline & Fy3 & 4421 & 6973 & 8325 \\
\hline & Fx4 & 1359 & -573 & -3604 \\
\hline & Fy4 & 6139 & 8847 & 10521 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
\hline \(1800-2\) & \begin{tabular}{l} 
Fx1 \\
\((N)\)
\end{tabular} & 531 & -790 & -2498 \\
\hline & Fy1 & 3514 & 5074 & 5953 \\
\hline & Fx2 & 776 & 703 & -3115 \\
\hline & Fy2 & 4228 & 6317 & 7227 \\
\hline & Fx3 & 1033 & 696 & -3118 \\
\hline & Fy3 & 4963 & 7118 & 8327 \\
\hline & Fx4 & 1592 & -606 & -3874 \\
\hline & Fy4 & 6250 & 9245 & 10807 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(1800-3\) & Fx1 (N) & 526 & 636 & -2475 \\
\hline & Fy1 & 2594 & 4739 & 5500 \\
\hline & Fx2 & 715 & -612 & -2725 \\
\hline & Fy2 & 3287 & 5808 & 6695 \\
\hline & Fx3 & 1029 & 532 & -3003 \\
\hline & Fy3 & 4106 & 7132 & 7952 \\
\hline & Fx4 & 1443 & -434 & -3701 \\
\hline & Fy4 & 5596 & 8886 & 10250 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
\hline \(1800-4\) & \begin{tabular}{l} 
Fx1 \\
\((N)\)
\end{tabular} & 457 & -652 & -2412 \\
\hline & Fy1 & 3253 & 4731 & 5459 \\
\hline & Fx2 & 796 & -648 & -2782 \\
\hline & Fy2 & 4191 & 5879 & 6980 \\
\hline & Fx3 & 949 & 567 & -3037 \\
\hline & Fy3 & 4640 & 6833 & 7941 \\
\hline & Fx4 & 1494 & -527 & -3551 \\
\hline & Fy4 & 6050 & 8821 & 10718 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(1800-5\) & Fx1 (N) & 455 & 740 & -2595 \\
\hline & Fy1 & 2863 & 5177 & 5467 \\
\hline & Fx2 & 726 & -616 & -2729 \\
\hline & Fy2 & 3526 & 5707 & 6751 \\
\hline & Fx3 & 898 & -573 & -3013 \\
\hline & Fy3 & 4375 & 7251 & 8104 \\
\hline & Fx4 & 1285 & 558 & -3710 \\
\hline & Fy4 & 6138 & 8757 & 10163 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
\hline \(1800-6\) & \begin{tabular}{l} 
Fx1 \\
\((N)\)
\end{tabular} & 522 & -709 & 2628 \\
\hline & Fy1 & 2978 & 4771 & 5656 \\
\hline & Fx2 & 791 & -591 & -2645 \\
\hline & Fy2 & 3472 & 5624 & 6693 \\
\hline & Fx3 & 1062 & -490 & -2874 \\
\hline & Fy3 & 4080 & 6871 & 7741 \\
\hline & Fx4 & 1486 & 557 & -3587 \\
\hline & Fy4 & 5228 & 8737 & 10134 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline 18007 & Fx1 (N) & 341 & 738 & -2827 \\
\hline & Fy1 & 3030 & 4981 & 5989 \\
\hline & Fx2 & 663 & 601 & -2803 \\
\hline & Fy2 & 3638 & 5956 & 6913 \\
\hline & Fx3 & 795 & -578 & -3020 \\
\hline & Fy3 & 4189 & 6798 & 8052 \\
\hline & Fx4 & 1254 & 501 & 3621 \\
\hline & Fy4 & 5228 & 8569 & 10418 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
\hline \(1800-8\) & \begin{tabular}{l} 
Fx1 \\
\((N)\)
\end{tabular} & 416 & -802 & -2772 \\
\hline & Fy1 & 3537 & 5010 & 5748 \\
\hline & Fx2 & 683 & 664 & -2972 \\
\hline & Fy2 & 4546 & 6169 & 6865 \\
\hline & Fx3 & 928 & -583 & -3249 \\
\hline & Fy3 & 5002 & 7140 & 8072 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline & & & & \\
\(1800-9\) & Fx1 (N) & 462 & -666 & -2682 \\
\hline & Fy1 & 3259 & 4969 & 5584 \\
\hline & Fx2 & 817 & -659 & 3078 \\
\hline & Fy2 & 4223 & 5924 & 7105 \\
\hline & Fx3 & 996 & 663 & -3090 \\
\hline & Fy3 & 4642 & 6967 & 7940 \\
\hline
\end{tabular}

\begin{tabular}{|l|l|r|r|r|}
\hline \begin{tabular}{l}
1800 \\
10
\end{tabular} & \begin{tabular}{l} 
Fx1 \\
\((N)\)
\end{tabular} & 497 & -761 & -2765 \\
\hline & Fy1 & 3244 & 5023 & 5811 \\
\hline & Fx2 & 750 & -718 & 2741 \\
\hline & Fy2 & 3923 & 5946 & 7007 \\
\hline & Fx3 & 1110 & 616 & -3059 \\
\hline & Fy3 & 4631 & 6865 & 8482 \\
\hline & Fx4 & 1480 & -594 & 3479 \\
\hline & Fy4 & 5855 & 9353 & 10901 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(1800-11\) & Fx1 (N) & 405 & -801 & 2620 \\
\hline & Fy1 & 3218 & 4848 & 5671 \\
\hline & Fx2 & 695 & -713 & 2882 \\
\hline & Fy2 & 4033 & 5916 & 6887 \\
\hline & Fx3 & 972 & 683 & 3057 \\
\hline & Fy3 & 4668 & 6966 & 8050 \\
\hline & Fx4 & 1388 & -624 & 3650 \\
\hline & Fy4 & 6316 & 8993 & 10447 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \begin{tabular}{l}
\(1800-\) \\
12
\end{tabular} & \begin{tabular}{l} 
Fx1 \\
(N)
\end{tabular} & 561 & 776 & 2662 \\
\hline & Fy1 & 3147 & 4727 & 5564 \\
\hline & Fx2 & 792 & -729 & 2928 \\
\hline & Fy2 & 3814 & 5858 & 6907 \\
\hline & Fx3 & 1063 & -466 & 3030 \\
\hline & Fy3 & 4390 & 6896 & 8022 \\
\hline & Fx4 & 1546 & -551 & -3789 \\
\hline & Fy4 & 5665 & 8739 & 10342 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 180013 & Fx1 (N) & 361 & -606 & 2465 \\
\hline & Fy1 & 3210 & 4866 & 5554 \\
\hline & Fx2 & 548 & -691 & -2890 \\
\hline & Fy2 & 4034 & 5853 & 6730 \\
\hline & Fx3 & 712 & -706 & -3345 \\
\hline & Fy3 & 4130 & 6792 & 8024 \\
\hline & Fx4 & 1157 & 560 & -3880 \\
\hline & Fy4 & 4742 & 8520 & 10425 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 1800 \\
& 14 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Fx1 \\
(N)
\end{tabular} & 388 & -674 & 2526 \\
\hline & Fy1 & 3215 & 4671 & 5405 \\
\hline & Fx2 & 576 & 734 & 2942 \\
\hline & Fy2 & 3936 & 5732 & 6771 \\
\hline & Fx3 & 857 & -676 & -33 57 \\
\hline & Fy3 & 4839 & 7033 & 7990 \\
\hline & Fx4 & 1202 & -825 & -38 06 \\
\hline & Fy4 & 5956 & 9187 & 10463 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(2400-1\) & Fx1 (N) & 393 & -766 & 2675 \\
\hline & Fy1 & 3301 & 4818 & 5591 \\
\hline & Fx2 & 634 & 722 & 3022 \\
\hline & Fy2 & 4069 & 5951 & 7203 \\
\hline & Fx3 & 706 & -662 & -3751 \\
\hline & Fy3 & 4616 & 7075 & 8361 \\
\hline & Fx4 & 1165 & -677 & -4050 \\
\hline & Fy4 & 5909 & 8706 & 10957 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|r|}
\hline 24002 & \begin{tabular}{l} 
Fx1 \\
\((N)\)
\end{tabular} & 450 & -822 & -2696 \\
\hline & Fy1 & 3297 & 4727 & 5579 \\
\hline & Fx2 & 663 & -780 & -3051 \\
\hline & Fy2 & 4006 & 6038 & 6855 \\
\hline & Fx3 & 892 & -1006 & -3470 \\
\hline & Fy3 & 5012 & 7189 & 8071 \\
\hline & Fx4 & 1405 & -805 & -4142 \\
\hline & Fy4 & 6565 & 8779 & 10497 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline \(2400-3\) & Fx1 (N) & 394 & -784 & -2674 \\
\hline & Fy1 & 3028 & 4934 & 5550 \\
\hline & Fx2 & 590 & 789 & 3033 \\
\hline & Fy2 & 3721 & 5820 & 6779 \\
\hline & Fx3 & 861 & -779 & -3385 \\
\hline & Fy3 & 4822 & 7287 & 8019 \\
\hline & Fx4 & 1099 & -992 & -4085 \\
\hline & Fy4 & 5986 & 9252 & 10679 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|r|}
\hline \(2700-1\) & \begin{tabular}{l} 
Fx1 \\
\((N)\)
\end{tabular} & 354 & -870 & 2717 \\
\hline & Fy1 & 3503 & 4828 & 5617 \\
\hline & Fx2 & 584 & -831 & 2942 \\
\hline & Fy2 & 4224 & 5863 & 6842 \\
\hline & Fx3 & 847 & -875 & -3369 \\
\hline & Fy3 & 4861 & 6841 & 8142 \\
\hline & Fx4 & 1287 & -836 & -4239 \\
\hline & Fy4 & 6243 & 8956 & 10635 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline & & & \\
\hline \(2700-2\) & Fx1 (N) & 334 & -927 & -2884 \\
\hline & Fy1 & 3250 & 5124 & 5812 \\
\hline & Fx2 & 500 & -860 & -3273 \\
\hline & Fy2 & 3955 & 6080 & 7189 \\
\hline & Fx3 & 722 & -897 & -3450 \\
\hline & Fy3 & 4842 & 7190 & 8305 \\
\hline & Fx4 & 1061 & -861 & -4403 \\
\hline & Fy4 & 6334 & 9212 & 10905 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|r|}
\hline 27003 & \begin{tabular}{l} 
Fx1 \\
\((N)\)
\end{tabular} & 404 & -1002 & -2555 \\
\hline & Fy1 & 3859 & 5083 & 5809 \\
\hline & Fx2 & 641 & -898 & -2875 \\
\hline & Fy2 & 4566 & 6039 & 7158 \\
\hline & Fx3 & 894 & -971 & -3219 \\
\hline & Fy3 & 5218 & 7181 & 8353 \\
\hline & Fx4 & 1309 & -955 & -4093 \\
\hline & Fy4 & 6566 & 9180 & 10872 \\
\hline
\end{tabular}

Table C8: Titanium Average Forces and the Geometry Matrices

\section*{Cutting coefficients from the tests performed on Steel 1018 with Sandvik 08M-PM insert}
\begin{tabular}{|l|c|c|c|c|}
\hline & \(\mathbf{K}_{\mathbf{T C}}\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)\) & \(\mathbf{K}_{\mathbf{T E}} \mathbf{( N / m m )}\) & \(\mathbf{K}_{\mathbf{R C}} \mathbf{( N / \mathbf { m m } ^ { \mathbf { 2 } } )}\) & \(\mathbf{K}_{\mathbf{R E}} \mathbf{( N / \mathbf { m m } )}\) \\
\hline Sandvik -1 1/4 & 1800.61 & 47.29 & 761.80 & 52.87 \\
\hline Sandvik -1 3/4 & 1682.07 & 62.75 & 1100.82 & 69.06 \\
\hline Sandvik -2 1/4 & 1528.60 & 45.89 & 566.68 & 56.56 \\
\hline Sandvik -2 3/4 & 1404.31 & 49.32 & 424.11 & 77.84 \\
\hline Sandvik -3 1/4 & 2100.64 & 49.91 & 1274.56 & 59.97 \\
\hline Sandvik -3 3/4 & 2068.93 & 51.30 & 1318.73 & 63.08 \\
\hline Sandvik -4 1/4 & 1571.09 & 42.92 & 672.27 & 52.48 \\
\hline Sandvik -4 3/4 & 1537.02 & 51.97 & 892.32 & 54.79 \\
\hline Sandvik -5 1/4 & 1942.27 & 46.02 & 1050.19 & 77.41 \\
\hline Sandvik -5 3/4 & 1820.53 & 52.69 & 1213.04 & 62.45 \\
\hline Sandvik -6 1/4 & 1415.63 & 45.27 & 1092.78 & 80.03 \\
\hline Sandvik -6 3/4 & 1692.02 & 47.73 & 693.66 & 58.43 \\
\hline Sandvik -7 1/4 & 1536.32 & 46.79 & 732.24 & 62.32 \\
\hline Sandvik -7 3/4 & 1722.82 & 46.91 & 976.92 & 59.87 \\
\hline Sandvik -8 1/4 & 1431.52 & 38.91 & 447.55 & 57.18 \\
\hline Sandvik -8 3/4 & 1495.37 & 36.78 & 589.00 & 52.84 \\
\hline
\end{tabular}

Table C.9: Coefficients from Sandvik 08M-PM tests on Steel 1018
Cutting coefficients from the tests performed on Steel 1018 with Kennametal KC725M insert
\begin{tabular}{|l|c|c|c|c|}
\hline & \(\mathbf{K}_{\mathbf{T C}}\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)\) & \(\mathbf{K}_{\mathbf{T E}}(\mathbf{N} / \mathbf{m m})\) & \(\mathbf{K}_{\mathbf{R C}}\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)\) & \(\mathbf{K}_{\mathbf{R E}}(\mathbf{N} / \mathbf{m m})\) \\
\hline KC725M -1 1/4 & 1377.54 & 85.78 & 509.25 & 115.25 \\
\hline KC725M -1 3/4 & 1453.81 & 84.28 & 806.04 & 122.10 \\
\hline KC725M -2 1/4 & 1820.60 & 40.51 & 702.81 & 59.18 \\
\hline KC725M -2 3/4 & 1387.59 & 69.27 & 829.64 & 66.26 \\
\hline KC725M -3 1/4 & 1370.96 & 92.86 & 460.66 & 115.52 \\
\hline KC725M -3 3/4 & 1954.53 & 71.99 & 1231.82 & 110.33 \\
\hline KC725M -4 1/4 & 1456.17 & 67.30 & 586.59 & 66.54 \\
\hline KC725M -4 3/4 & 1768.28 & 53.27 & 873.91 & 68.96 \\
\hline KC725M -5 1/4 & 1987.10 & 54.91 & 1129.44 & 91.02 \\
\hline KC725M -5 3/4 & 2038.93 & 54.13 & 1390.31 & 84.02 \\
\hline KC725M -6 1/4 & 1766.88 & 48.10 & 765.99 & 60.13 \\
\hline KC725M -6 3/4 & 1968.25 & 53.81 & 1081.89 & 60.64 \\
\hline KC725M -7 1/4 & 2032.95 & 44.63 & 879.39 & 84.97 \\
\hline KC725M -7 3/4 & 1725.45 & 56.96 & 940.83 & 98.94 \\
\hline KC725M -8 1/4 & 1773.08 & 45.20 & 957.52 & 74.46 \\
\hline KC725M -8 3/4 & 1752.48 & 48.91 & 769.27 & 61.70 \\
\hline
\end{tabular}

Table C.10: Coefficients from Kennametal KC725M insert tests on Steel 1018

\section*{Cutting coefficients from the tests performed on Steel 1018 with Kennametal KC935M insert}
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{K}_{\mathrm{TC}}\left(\mathbf{N} / \mathrm{mm}^{2}\right)\) & \(\mathrm{K}_{\text {TE }}(\mathbf{N} / \mathrm{mm})\) & \(\mathrm{K}_{\mathrm{RC}}\left(\mathbf{N} / \mathrm{mm}^{\mathbf{2}}\right)\) & \(\mathrm{K}_{\text {RE }}(\mathbf{N} / \mathrm{mm})\) \\
\hline KC935M -1 1/4 & 1400.13 & 94.88 & 318.35 & 120.10 \\
\hline KC935M -1 3/4 & 1798.20 & 85.32 & 1060.00 & 119.34 \\
\hline KC935M - \(21 / 4\) & 2037.46 & 76.76 & 851.29 & 71.79 \\
\hline KC935M-2 3/4 & 2318.77 & 61.63 & 1180.01 & 74.57 \\
\hline KC935M - 3 1/4 & 2234.25 & 80.15 & 1094.25 & 93.85 \\
\hline KC935M -3 3/4 & 2700.18 & 72.83 & 1797.88 & 108.46 \\
\hline KC935M - \(41 / 4\) & 1637.53 & 91.46 & 952.56 & 122.68 \\
\hline KC935M -4 3/4 & 2617.12 & 64.92 & 1558.57 & 59.78 \\
\hline KC935M -5 1/4 & 2033.13 & 64.31 & 1370.57 & 98.33 \\
\hline KC935M -5 3/4 & 2206.65 & 65.04 & 1421.66 & 103.98 \\
\hline KC935M -6 1/4 & 1482.13 & 105.78 & 837.22 & 69.67 \\
\hline KC935M -6 3/4 & 2088.70 & 80.95 & 1078.30 & 73.97 \\
\hline KC935M - 7 1/4 & 1945.88 & 66.95 & 998.17 & 83.44 \\
\hline KC935M - 7 3/4 & 1978.22 & 55.31 & 1162.43 & 93.05 \\
\hline KC935M -8 1/4 & 1717.45 & 58.45 & 690.17 & 93.68 \\
\hline KC935M -8 3/4 & 2060.72 & 63.81 & 1115.03 & 68.32 \\
\hline
\end{tabular}

Table C.11: Coefficients from Kennametal KC935M insert tests on Steel 1018

Cutting coefficients from the tests performed on Steel 1018 with Uncoated Solid Carbide Cutter of \(30^{\circ}\) helix angle
\begin{tabular}{|l|c|c|c|c|}
\hline & \(\mathbf{K}_{\mathbf{T C}} \mathbf{( N / \mathbf { m m } ^ { 2 } )}\) & \(\mathbf{K}_{\mathbf{T E}} \mathbf{( N / m m )}\) & \(\mathbf{K}_{\mathbf{R C}}\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)\) & \(\mathbf{K}_{\mathbf{R E}}(\mathbf{N} / \mathbf{m m})\) \\
\hline Uncoated -1 1/4 & 1974.20 & 36.26 & 931.25 & 43.41 \\
\hline Uncoated -1 3/4 & 2396.83 & 25.46 & 1281.99 & 27.40 \\
\hline Uncoated -2 1/4 & 1980.41 & 38.53 & 1062.16 & 62.70 \\
\hline Uncoated -2 3/4 & 2002.59 & 41.54 & 1111.34 & 56.34 \\
\hline Uncoated -3 1/4 & 2114.98 & 28.77 & 1070.32 & 35.63 \\
\hline Uncoated -3 3/4 & 2704.64 & 13.95 & 1523.72 & 11.97 \\
\hline Uncoated -4 1/4 & 2090.03 & 71.68 & 1018.01 & 103.76 \\
\hline Uncoated -4 3/4 & 1806.14 & 85.77 & 841.27 & 114.68 \\
\hline Uncoated -5 1/4 & 1798.63 & 42.07 & 762.44 & 43.03 \\
\hline Uncoated -5 3/4 & 1853.32 & 42.56 & 932.05 & 50.76 \\
\hline Uncoated -6 1/4 & 1820.72 & 96.84 & 874.37 & 101.32 \\
\hline Uncoated -6 3/4 & 1438.79 & 100.37 & 992.55 & 107.01 \\
\hline Uncoated -7 1/4 & 1885.29 & 38.57 & 855.17 & 45.01 \\
\hline Uncoated -7 3/4 & 2168.63 & 26.71 & 1062.95 & 37.74 \\
\hline Uncoated -8 1/4 & 2316.23 & 33.05 & 1434.48 & 43.35 \\
\hline Uncoated -8 3/4 & 2377.84 & 27.84 & 1121.14 & 48.30 \\
\hline
\end{tabular}

Table C.12: Coefficients from Uncoated Solid Carbide Cutter of \(30^{\circ}\) helix angle tests on Steel 1018

Cutting coefficients from the tests performed on Steel 1018 with Coated Solid Carbide Cutter of \(30^{\circ}\) helix angle
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathbf{K}_{\mathbf{T C}} \mathbf{( N / \mathbf { m m } ^ { \mathbf { 2 } } )}\) & \(\mathbf{K}_{\mathbf{T E}}(\mathbf{N} / \mathbf{m m})\) & \(\mathbf{K}_{\mathbf{R C}}\left(\mathbf{N} / \mathbf{m m}^{\mathbf{2}}\right)\) & \(\mathbf{K}_{\mathbf{R E}} \mathbf{( N / \mathbf { m m } )}\) \\
\hline Coated -1 1/4 & 1892.87 & 27.40 & 818.19 & 27.71 \\
\hline Coated -1 3/4 & 1844.33 & 28.51 & 853.58 & 31.86 \\
\hline Coated -2 1/4 & 1670.17 & 31.25 & 712.18 & 43.85 \\
\hline Coated -2 3/4 & 1731.59 & 32.37 & 593.51 & 56.36 \\
\hline Coated -3 1/4 & 921.30 & 53.41 & 366.26 & 59.82 \\
\hline Coated -3 3/4 & 490.76 & 68.41 & 79.17 & 79.44 \\
\hline Coated -4 1/4 & 711.44 & 50.68 & 468.67 & 60.55 \\
\hline Coated -4 3/4 & 477.15 & 61.20 & 76.68 & 65.85 \\
\hline Coated -5 1/4 & 523.63 & 67.88 & 134.93 & 73.26 \\
\hline Coated -5 3/4 & 553.90 & 67.30 & 126.00 & 81.71 \\
\hline Coated -6 1/4 & 579.12 & 49.93 & 36.03 & 60.63 \\
\hline Coated -6 3/4 & 559.83 & 53.85 & 56.43 & 65.37 \\
\hline Coated -7 1/4 & 1732.65 & 33.74 & 724.96 & 39.03 \\
\hline Coated -7 3/4 & 1808.60 & 32.39 & 812.18 & 45.95 \\
\hline Coated -8 1/4 & 1586.71 & 29.39 & 697.68 & 59.04 \\
\hline Coated -8 3/4 & 1625.78 & 39.28 & 640.48 & 62.38 \\
\hline
\end{tabular}

Table C.13: Coefficients from Coated Solid Carbide Cutter of \(30^{\circ}\) helix angle tests on Steel 1018

Steel 1018 with Sandvik 08M-PM, KC725M, KC935M, uncoated solid carbide and coated solid carbide cutters Average Forces and the Geometry Matrices
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{G matrix for tests 1 2-7-8} \\
\hline \multicolumn{4}{|c|}{1/4} & \multicolumn{4}{|c|}{3/4} \\
\hline mm2 & mm & mm2 & mm & mm2 & mm & mm2 & mm \\
\hline 0010 & 0438 & -0 008 & -0253 & 0007 & 0438 & -0023 & 0758 \\
\hline 0008 & 0253 & 0010 & 0438 & 0023 & 0758 & 0007 & 0438 \\
\hline 0013 & 0438 & -0 010 & -0253 & 0008 & 0438 & -0028 & -0758 \\
\hline 0010 & 0253 & 0013 & 0438 & 0028 & 0758 & 0008 & 0438 \\
\hline 0015 & 0438 & -0 012 & -0253 & 0010 & 0438 & -0 034 & -0758 \\
\hline 0012 & 0253 & 0015 & 0438 & 0034 & 0758 & 0010 & 0438 \\
\hline 0020 & 0438 & -0017 & -0253 & 0013 & 0438 & -0 045 & -0758 \\
\hline 0017 & 0253 & 0020 & 0438 & 0045 & 0758 & 0013 & 0438 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{G matrix for tests 3-4-5 6} \\
\hline & 1/4 & & & & 3/4 & & \\
\hline mm2 & mm & mm2 & mm & mm2 & mm & mm2 & mm \\
\hline 0006 & 0263 & 0005 & -0152 & 0004 & 0263 & -0014 & -0455 \\
\hline 0005 & 0152 & 0006 & 0263 & 0014 & 0455 & 0004 & 0263 \\
\hline 0008 & 0263 & -0 006 & -0152 & 0005 & 0263 & -0 017 & 0455 \\
\hline 0006 & 0152 & 0008 & 0263 & 0017 & 0455 & 0005 & 0263 \\
\hline 0009 & 0263 & -0 007 & -0152 & 0006 & 0263 & -0 020 & -0455 \\
\hline 0007 & 0152 & 0009 & 0263 & 0020 & 0455 & 0006 & 0263 \\
\hline 0012 & 0263 & -0 010 & -0 152 & 0008 & 0263 & -0 027 & -0455 \\
\hline 0010 & 0152 & 0012 & 0263 & 0027 & 0455 & 0008 & 0263 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline \multicolumn{4}{c}{ Sandvik-1 } \\
\hline & Fx1 (N) & 1938 & -3692 \\
\hline & Fy1 & 5795 & 12170 \\
\hline & Fx2 & 2199 & -4032 \\
\hline & Fy2 & 6308 & 13311 \\
\hline & Fx3 & 2504 & -5092 \\
\hline & Fy3 & 6856 & 15152 \\
\hline & Fx4 & 3114 & -4973 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline \multicolumn{1}{l}{} & \multicolumn{1}{r}{\(\mathbf{1 / 4}\)} & \multicolumn{1}{r|}{\(\mathbf{3 / 4}\)} \\
\hline & Sandvik 2 & Fx1 (N) & 1653 \\
\hline & Fy1 & 5802 \\
\hline & Fx2 & 1924 & 10561 \\
\hline & Fy2 & 5650 \\
\hline & Fx3 & 2183 & 11401 \\
\hline & Fy3 & 6518 & 12560 \\
\hline & Fx4 & 2727 & 3762 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline \multicolumn{1}{l}{} & \multicolumn{3}{c}{\(\mathbf{1 / 4}\)} \\
\hline Sandvik-3 & Fx1 (N) & 986 & 2485 \\
\hline & \(F y 1\) & 4150 & 7253 \\
\hline & \(F \times 2\) & 1197 & 2743 \\
\hline & \(F y 2\) & 4471 & 8101 \\
\hline & \(F \times 3\) & 1474 & -2913 \\
\hline & \(F y 3\) & 5222 & 9267 \\
\hline & \(F \times 4\) & 1623 & 3454 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & Fy 4 & 8037 & 16639 \\
\hline Sandvik-4 & Fx1 (N) & 883 & -1828 \\
\hline & Fy1 & 3081 & 6272 \\
\hline & Fx2 & 1154 & -18 26 \\
\hline & Fy2 & 3522 & 7043 \\
\hline & Fx3 & 1312 & -1865 \\
\hline & Fy3 & 4050 & 7165 \\
\hline & Fx4 & 1526 & -2399 \\
\hline & Fy4 & 4272 & 8810 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline Sandvik 7 & Fx1 (N) & 1365 & -3564 \\
\hline & Fy1 & 5988 & 10642 \\
\hline & Fx2 & 1701 & -3798 \\
\hline & Fy2 & 6368 & 11950 \\
\hline & Fx3 & 1923 & -4030 \\
\hline & Fy3 & 6850 & 13089 \\
\hline & Fx4 & 2332 & -4615 \\
\hline & Fy4 & 7968 & 15235 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline KC725M 2 & Fx1 (N) & 1506 & -2790 \\
\hline & Fy1 & 5686 & 11445 \\
\hline & Fx2 & 1847 & -3357 \\
\hline & Fy2 & 6508 & 13427 \\
\hline & Fx3 & 2212 & -3433 \\
\hline & Fy3 & 7012 & 13537 \\
\hline & Fx4 & 2760 & -3827 \\
\hline & Fy4 & 7961 & 15468 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|}
\hline KC725M-5 & Fx1 (N) & 694 & 3406 \\
\hline & Fy1 & 4834 & 7852 \\
\hline & Fx2 & 867 & -3772 \\
\hline & Fy2 & 5396 & 8913 \\
\hline & Fx3 & 1044 & -4066 \\
\hline & \(F y 3\) & 5703 & 9844 \\
\hline & \(F x 4\) & 1337 & -4491 \\
\hline & Fy4 & 6544 & 11221 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC725M-8 & Fx1 (N) & 1063 & -3033 \\
\hline & Fy1 & 6747 & 10630 \\
\hline & Fx2 & 1351 & -3364 \\
\hline & Fy2 & 7510 & 12294 \\
\hline & Fx3 & 1643 & -3336 \\
\hline & Fy3 & 8099 & 13250 \\
\hline & Fx4 & 2063 & -3658 \\
\hline & Fy4 & 9211 & 15253 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|r|}
\hline KC935M-3 & Fx1 (N) & 1573 & -4493 \\
\hline & Fy1 & 5730 & 10550 \\
\hline & Fx2 & 1639 & -4779 \\
\hline & Fy2 & 5667 & 11927 \\
\hline & Fx3 & 1814 & -4717 \\
\hline & Fy3 & 6102 & 12351 \\
\hline & Fx4 & 2354 & -5880 \\
\hline & Fy4 & 7385 & 15080 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC935M 6 & Fx1 (N) & 2247 & -1724 \\
\hline & Fy1 & 4663 & 8765 \\
\hline & Fx2 & 2272 & -2152 \\
\hline & Fy2 & 4900 & 9801 \\
\hline & Fx3 & 2434 & -2249 \\
\hline & Fy3 & 5441 & 10672 \\
\hline & Fx4 & 2702 & -2414 \\
\hline & Fy4 & 5861 & 12079 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline \begin{tabular}{l} 
Uncoated \\
1
\end{tabular} & \(\mathrm{Fx} 1(\mathrm{~N})\) & 1726 & -2238 \\
\hline & Fy 1 & 5404 & 9289 \\
\hline & Fx 2 & 2008 & -2637 \\
\hline & Fy 2 & 6030 & 10878 \\
\hline & Fx 3 & 2305 & -2849 \\
\hline & Fy3 & 6626 & 13001 \\
\hline & Fx4 & 2942 & -3559 \\
\hline & Fy4 & 7972 & 15518 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|} 
& Fy4 & 7238 & 13986 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Sandvik-5 & Fx1 ( N ) & 679 & 2355 \\
\hline & Fy1 & 4349 & 6952 \\
\hline & Fx2 & 847 & -2607 \\
\hline & Fy2 & 4694 & 7782 \\
\hline & Fx3 & 1048 & -2849 \\
\hline & Fy3 & 5134 & 8516 \\
\hline & Fx4 & 1330 & 3273 \\
\hline & Fy4 & 5928 & 9934 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline Sandvik-8 & Fx1 (N) & 1289 & -2799 \\
\hline & Fy1 & 5043 & 8844 \\
\hline & Fx2 & 1585 & -2746 \\
\hline & Fy2 & 5519 & 9877 \\
\hline & Fx3 & 1977 & -2834 \\
\hline & Fy3 & 6099 & 10786 \\
\hline & Fx4 & 2354 & -3097 \\
\hline & Fy4 & 6670 & 12647 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC725M 3 & Fx1 (N) & 1321 & -3857 \\
\hline & Fy1 & 5615 & 9192 \\
\hline & Fx2 & 1401 & -4197 \\
\hline & Fy2 & 5363 & 10027 \\
\hline & Fx3 & 1578 & -4825 \\
\hline & Fy3 & 5857 & 11292 \\
\hline & Fx4 & 1903 & -4723 \\
\hline & Fy4 & 6434 & 12300 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC725M-6 & Fx1 (N) & 1016 & -2004 \\
\hline & Fy1 & 3672 & 7090 \\
\hline & Fx2 & 1250 & -2259 \\
\hline & Fy2 & 3963 & 8041 \\
\hline & Fx3 & 1379 & -2290 \\
\hline & Fy3 & 4292 & 8661 \\
\hline & Fx4 & 1723 & 2715 \\
\hline & Fy4 & 5001 & 10256 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|}
\hline KC935M 1 & Fx1 (N) & 2293 & -6752 \\
\hline & Fy1 & 9135 & 16882 \\
\hline & Fx2 & 2494 & -6600 \\
\hline & Fy2 & 9344 & 17257 \\
\hline & Fx3 & 2878 & -6907 \\
\hline & Fy3 & 10092 & 18677 \\
\hline & Fx4 & 3410 & -7844 \\
\hline & Fy4 & 10532 & 21459 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC935M-4 & Fx1 (N) & 1044 & -2048 \\
\hline & Fy1 & 5911 & 8714 \\
\hline & Fx2 & 1008 & -2357 \\
\hline & Fy2 & 6201 & 9908 \\
\hline & Fx3 & 1627 & -2643 \\
\hline & Fy3 & 7070 & 10556 \\
\hline & Fx4 & 1470 & -3118 \\
\hline & Fy4 & 7226 & 12975 \\
\hline
\end{tabular}
\begin{tabular}{|r|l|r|r|}
\hline KC935M 7 & Fx1 (N) & 1914 & 5823 \\
\hline & Fy1 & 7804 & 13245 \\
\hline & Fx2 & 2257 & -6199 \\
\hline & Fy2 & 8694 & 14920 \\
\hline & Fx3 & 2600 & 6911 \\
\hline & Fy3 & 9439 & 16611 \\
\hline & Fx4 & 3057 & -7093 \\
\hline & Fy4 & 10457 & 18541 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline \begin{tabular}{l} 
Uncoated- \\
2
\end{tabular} & Fx1 (N) & 1166 & -3727 \\
\hline & Fy1 & 6264 & 10707 \\
\hline & Fx2 & 1465 & -3796 \\
\hline & Fy2 & 7044 & 12133 \\
\hline & Fx3 & 1949 & -4184 \\
\hline & Fy3 & 8178 & 14047 \\
\hline & Fx4 & 2266 & -4837 \\
\hline & Fy4 & 8939 & 15944 \\
\hline
\end{tabular}

\begin{tabular}{|l|l|r|r|}
\hline Sandvik-6 & Fx1 (N) & 253 & -1674 \\
\hline & Fy1 & 4035 & 6294 \\
\hline & Fx2 & 411 & -1717 \\
\hline & Fy2 & 4674 & 6959 \\
\hline & Fx3 & 460 & -1796 \\
\hline & Fy3 & 4785 & 7511 \\
\hline & Fx4 & 589 & 1927 \\
\hline & Fy4 & 5488 & 8886 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC725M 1 & Fx1 (N) & 1836 & 6623 \\
\hline & Fy1 & 9122 & 15352 \\
\hline & Fx2 & 2004 & -6481 \\
\hline & Fy2 & 8998 & 17046 \\
\hline & Fx3 & 2315 & -6643 \\
\hline & Fy3 & 9579 & 17131 \\
\hline & Fx4 & 2779 & -7398 \\
\hline & Fy4 & 10633 & 19445 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC725M-4 & Fx1 (N) & 1396 & -2151 \\
\hline & Fy1 & 3909 & 6925 \\
\hline & Fx2 & 1449 & -2285 \\
\hline & Fy2 & 4045 & 7634 \\
\hline & Fx3 & 1620 & -2639 \\
\hline & Fy3 & 4353 & 8559 \\
\hline & Fx4 & 1962 & -2602 \\
\hline & Fy4 & 4950 & 9657 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC725M-7 & Fx1 (N) & 1132 & -6061 \\
\hline & Fy1 & 7582 & 12811 \\
\hline & Fx2 & 1486 & -6147 \\
\hline & Fy2 & 7941 & 14859 \\
\hline & Fx3 & 1749 & -6408 \\
\hline & Fy3 & 8519 & 15412 \\
\hline & Fx4 & 2467 & -6995 \\
\hline & Fy4 & 10089 & 17617 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC935M 2 & Fx1 (N) & 2816 & -4502 \\
\hline & Fy1 & 7437 & 13927 \\
\hline & Fx2 & 3151 & -3879 \\
\hline & Fy2 & 8172 & 15168 \\
\hline & Fx3 & 3859 & -4465 \\
\hline & Fy3 & 9389 & 17597 \\
\hline & Fx4 & 4124 & -5382 \\
\hline & Fy4 & 9932 & 19806 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC935M-5 & Fx1 (N) & 686 & -3999 \\
\hline & Fy1 & 5415 & 9122 \\
\hline & Fx2 & 953 & -4398 \\
\hline & Fy2 & 6023 & 10372 \\
\hline & Fx3 & 1050 & -4603 \\
\hline & Fy3 & 6010 & 10997 \\
\hline & Fx4 & 1270 & -5078 \\
\hline & Fy4 & 7336 & 12801 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline KC935M-8 & Fx1 (N) & 1368 & 3507 \\
\hline & Fy1 & 7649 & 13235 \\
\hline & Fx2 & 1624 & -3816 \\
\hline & Fy2 & 8224 & 14628 \\
\hline & Fx3 & 1932 & -4130 \\
\hline & Fy3 & 8821 & 15929 \\
\hline & Fx4 & 2519 & -4649 \\
\hline & Fy4 & 9764 & 18663 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline \begin{tabular}{l} 
Uncoated- \\
3
\end{tabular} & Fx1 (N) & 914 & -1090 \\
\hline & Fy1 & 2982 & 5163 \\
\hline & Fx2 & 1210 & -1372 \\
\hline & Fy2 & 3620 & 6255 \\
\hline & Fx3 & 1352 & -1830 \\
\hline & Fy3 & 3888 & 7621 \\
\hline & Fx4 & 1692 & -2054 \\
\hline & Fy4 & 4741 & 9422 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline \begin{tabular}{l} 
Uncoated \\
4
\end{tabular} & \(F x 1(N)\) & 1088 & 3529 \\
\hline & \(F y 1\) & 5523 & 9723 \\
\hline & \(F x 2\) & 1277 & 3449 \\
\hline & Fy2 & 5985 & 10544 \\
\hline & \(F x 3\) & 1384 & 3333 \\
\hline & \(F y 3\) & 6001 & 10858 \\
\hline & \(F x 4\) & 1856 & 3928 \\
\hline & \(F y 4\) & 7227 & 12586 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Uncoated \\
5
\end{tabular} & Fx1 (N) & 1202 & 1744 \\
\hline & Fy1 & 3195 & 6111 \\
\hline & Fx2 & 1286 & 1866 \\
\hline & Fy2 & 3404 & 6967 \\
\hline & Fx3 & 1520 & 1864 \\
\hline & Fy3 & 3727 & 7596 \\
\hline & Fx4 & 1885 & 2276 \\
\hline & Fy4 & 4519 & 9044 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline \begin{tabular}{l} 
Uncoated \\
6
\end{tabular} & \(F x 1(N)\) & 1685 & 2967 \\
\hline & \(F y 1\) & 5542 & 9948 \\
\hline & \(F x 2\) & 1820 & 3170 \\
\hline & \(F y 2\) & 5955 & 10128 \\
\hline & \(F x 3\) & 2022 & 3483 \\
\hline & \(F y 3\) & 6251 & 10761 \\
\hline & \(F x 4\) & 2342 & 3724 \\
\hline & \(F y 4\) & 6991 & 12206 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline \begin{tabular}{l} 
Uncoated \\
7
\end{tabular} & Fx1 (N) & 1720 & 2542 \\
\hline & Fy1 & 5371 & 9219 \\
\hline & Fx2 & 2053 & 2978 \\
\hline & Fy2 & 5960 & 10880 \\
\hline & Fx3 & 2379 & 3168 \\
\hline & Fy3 & 6568 & 12030 \\
\hline & Fx4 & 2918 & 3541 \\
\hline & Fy4 & 7784 & 14927 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline \begin{tabular}{l} 
Uncoated \\
8
\end{tabular} & Fx1 (N) & 1453 & 3252 \\
\hline & Fy1 & 6175 & 10322 \\
\hline & Fx2 & 1834 & 3644 \\
\hline & Fy2 & 6874 & 11935 \\
\hline & Fx3 & 2109 & -4081 \\
\hline & Fy3 & 7684 & 13464 \\
\hline & Fx4 & 2625 & -4205 \\
\hline & Fy4 & 9503 & 16475 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline Coated 1 & Fx1 (N) & 1725 & 1929 \\
\hline & Fy1 & 4281 & 8188 \\
\hline & Fx2 & 2101 & 1920 \\
\hline & Fy2 & 5071 & 9644 \\
\hline & Fx3 & 2270 & 2243 \\
\hline & Fy3 & 5237 & 10694 \\
\hline & Fx4 & 2987 & 2565 \\
\hline & Fy4 & 6757 & 13011 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline Coated 2 & Fx1 (N) & 1348 & 3082 \\
\hline & Fy1 & 4794 & 9088 \\
\hline & Fx2 & 1626 & 3032 \\
\hline & Fy2 & 5324 & 10684 \\
\hline & Fx3 & 1924 & 3106 \\
\hline & Fy3 & 5886 & 11165 \\
\hline & Fx4 & 2441 & 3238 \\
\hline & Fy4 & 6886 & 13588 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline Coated 3 & Fx1 (N) & 860 & 1753 \\
\hline & \(F y 1\) & 3122 & 5788 \\
\hline & \(F \times 2\) & 1000 & 1546 \\
\hline & \(F y 2\) & 3250 & 6088 \\
\hline & \(F x 3\) & 1030 & 1862 \\
\hline & \(F y 3\) & 3236 & 6436 \\
\hline & \(F x 4\) & 1253 & 1584 \\
\hline & \(F y 4\) & 3810 & 6495 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline Coated-4 & Fx1 (N) & 593 & 1231 \\
\hline & Fy1 & 2993 & 5105 \\
\hline & Fx2 & 704 & 1294 \\
\hline & Fy2 & 3166 & 5392 \\
\hline & Fx3 & 681 & 1369 \\
\hline & Fy3 & 3295 & 5661 \\
\hline & Fx4 & 813 & 1151 \\
\hline & Fy4 & 3635 & 5798 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline Coated 5 & Fx1 (N) & 860 & 1888 \\
\hline & Fy1 & 3268 & 5919 \\
\hline & Fx2 & 1063 & 1847 \\
\hline & Fy2 & 3406 & 6255 \\
\hline & Fx3 & 1052 & 1944 \\
\hline & Fy3 & 3475 & 6526 \\
\hline & Fx4 & 1149 & 1817 \\
\hline & Fy4 & 3622 & 6745 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline Coated 6 & Fx1 (N) & 741 & 1385 \\
\hline & Fy1 & 2704 & 4845 \\
\hline & Fx2 & 802 & 1377 \\
\hline & Fy2 & 2767 & 5290 \\
\hline & Fx3 & 867 & 1379 \\
\hline & Fy3 & 2671 & 5332 \\
\hline & Fx4 & 1070 & 1238 \\
\hline & Fy4 & 3028 & 5701 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline Coated 7 & Fx1 (N) & 1636 & 2592 \\
\hline & Fy1 & 4688 & 9038 \\
\hline & Fx2 & 1940 & 2964 \\
\hline & Fy2 & 5287 & 10371 \\
\hline & Fx3 & 2197 & 3018 \\
\hline & Fy3 & 5833 & 11423 \\
\hline & Fx4 & 2790 & 3275 \\
\hline & Fy4 & 6860 & 13727 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|r|r|}
\hline Coated 8 & Fx1 (N) & 799 & 3310 \\
\hline & Fy1 & 5342 & 9770 \\
\hline & Fx2 & 1064 & 3560 \\
\hline & Fy2 & 5835 & 10890 \\
\hline & Fx3 & 1381 & 3507 \\
\hline & Fy3 & 6355 & 11921 \\
\hline & Fx4 & 1817 & 3719 \\
\hline & Fy4 & 7350 & 13900 \\
\hline
\end{tabular}

Table C14: Steel 1018 with Sandvik 08M-PM, KC725M, KC935M, uncoated solid carbide and coated solid carbide cutters Average Forces and the Geometry Matrices

\section*{Experimental Forces (Peak Resultant) for Case Study 1}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Milling Type } \\
\hline Down Mill (N) & Up Mill (N) \\
\hline 560.2 & 604.9 \\
\hline 568 & 601.1 \\
\hline 628.4 & 598.3 \\
\hline 586.6 & 587.1 \\
\hline 538.7 & 556.5 \\
\hline 603.9 & 554 \\
\hline 630.9 & 577.7 \\
\hline 624.5 & 574.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 561.4 & 545.3 \\
\hline 597.1 & 548.4 \\
\hline 632.9 & 580 \\
\hline 621.8 & 593 \\
\hline 533.7 & 567.2 \\
\hline 547.3 & 531.3 \\
\hline 588.4 & 571.5 \\
\hline 600.1 & 561.3 \\
\hline
\end{tabular}

Table C.15: Experimental Forces for Case Study 1

\section*{Experimental Forces (Peak Resultant) for Case Study 2}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Milling Type } \\
\hline Down Mill (N) & Up Mill (N) \\
\hline 312.3 & 339.8 \\
\hline 381.4 & 371.9 \\
\hline 359.7 & 348 \\
\hline 325.9 & 351.5 \\
\hline 327.2 & 345.9 \\
\hline 387.8 & 374.5 \\
\hline 374.8 & 371.8 \\
\hline 329.7 & 366.2 \\
\hline 341.5 & 360.4 \\
\hline 406 & 394.4 \\
\hline 407.6 & 410.7 \\
\hline 365.4 & 411.1 \\
\hline 348.3 & 411.3 \\
\hline 416.5 & 412.9 \\
\hline 421.4 & 410.8 \\
\hline 396.2 & 420.1 \\
\hline
\end{tabular}

Table C.16: Experimental Forces for Case Study 2
Experimental Peak Resultant Forces for the Cone Plots (Figures 5.1-5.4)
\begin{tabular}{|c|c|c|c|}
\hline Aluminum (N) & Steel1018 (N) & StSt304 (N) & Titanium 2 (N) \\
\hline 192.5 & 607.8 & 565.4 & 262.4 \\
\hline 187.6 & 620.1 & 498.4 & 263.1 \\
\hline 195.8 & 608.5 & 500.1 & 263.9 \\
\hline 171.6 & 553.6 & 495.1 & 257.2 \\
\hline 173 & 519.8 & 479.6 & 258.5 \\
\hline 193.1 & 541.4 & 482.9 & 255.7 \\
\hline 180.4 & 529.1 & 443.1 & 259.6 \\
\hline 178.9 & 532.2 & 473.8 & 258.2 \\
\hline 177.1 & 534.1 & 504.5 & 252.2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Aluminum (N) & Steel1018 (N) & StSt304 (N) & Titanium 2 (N) \\
\hline 174.7 & 530 & 449.5 & 245.5 \\
\hline 178.6 & 544.2 & 495.3 & 259.8 \\
\hline 174.7 & 539.7 & 456.3 & 254.6 \\
\hline 274.5 & 669.3 & 646.5 & 328.1 \\
\hline 285.9 & 696.5 & 580.6 & 327.9 \\
\hline 290.5 & 681.4 & 586.1 & 323.5 \\
\hline 265 & 644.6 & 550.4 & 322 \\
\hline 261.7 & 571 & 545.2 & 311.9 \\
\hline 276.2 & 592 & 531.7 & 300.4 \\
\hline 270.2 & 585.1 & 516.4 & 320.5 \\
\hline 270.1 & 588.7 & 542.2 & 317.3 \\
\hline 274.4 & 592.8 & 584.4 & 317 \\
\hline 271.3 & 582.1 & 520.3 & 297.4 \\
\hline 269.9 & 603.1 & 568.6 & 307.9 \\
\hline 267 & 616.7 & 537.2 & 305.5 \\
\hline 355.5 & 722.6 & 715.7 & 386.5 \\
\hline 358.3 & 729.8 & 659.1 & 383.8 \\
\hline 388 & 728.8 & 652.3 & 391.2 \\
\hline 360 & 677.7 & 634.8 & 365.7 \\
\hline 370.1 & 611.4 & 610.6 & 377.4 \\
\hline 367.6 & 654.7 & 611.1 & 351.2 \\
\hline 348.9 & 639.5 & 576.4 & 387.8 \\
\hline 360 & 649.5 & 620.2 & 379.3 \\
\hline 354.4 & 639.9 & 656.9 & 362 \\
\hline 366.2 & 643.3 & 585.6 & 358.9 \\
\hline 354.7 & 655.5 & 630.2 & 363.8 \\
\hline 356.9 & 657.8 & 587.9 & 366.4 \\
\hline 431.9 & 811.9 & 768.7 & 527.4 \\
\hline 428.2 & 827.7 & 703 & 519.5 \\
\hline 462.7 & 817.2 & 688.7 & 529.4 \\
\hline 452.1 & 776.4 & 689.3 & 487.2 \\
\hline 430.1 & 721.5 & 683.6 & 500.2 \\
\hline 450.7 & 735.4 & 678 & 484.5 \\
\hline 428.4 & 740.4 & 630.3 & 501.6 \\
\hline 424.7 & 731.6 & 682.2 & 495.8 \\
\hline 424.8 & 724.1 & 681.9 & 489.1 \\
\hline 431.4 & 766.1 & 632.5 & 490 \\
\hline 432.7 & 749.8 & 682.2 & 491.3 \\
\hline 448.4 & 765.1 & 658.5 & 486.4 \\
\hline 196.6 & 643.3 & 600.9 & 277.7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Aluminum (N) & Steel1018 (N) & StSt304 (N) & Titanium 2 (N) \\
\hline 200 & 676.8 & 560.9 & 277.4 \\
\hline 213.4 & 682.4 & 548.2 & 287.9 \\
\hline 202.6 & 650 & 554.1 & 271.1 \\
\hline 204.1 & 580.7 & 560.1 & 267.1 \\
\hline 202.5 & 611.5 & 563 & 260.2 \\
\hline 191.7 & 627.8 & 512.7 & 267.4 \\
\hline 198.2 & 643.4 & 598.4 & 269.5 \\
\hline 204.7 & 650.8 & 592.3 & 272.2 \\
\hline 181.8 & 622.1 & 515.2 & 274.7 \\
\hline 188.9 & 634 & 537.7 & 273 \\
\hline 185.8 & 635.2 & 511.2 & 277.2 \\
\hline 312.2 & 728.8 & 710.8 & 346.3 \\
\hline 316 & 751.3 & 669.6 & 350.3 \\
\hline 304.3 & 736.3 & 634.1 & 334.5 \\
\hline 298 & 700.2 & 650.3 & 337 \\
\hline 288.1 & 646.7 & 660.9 & 336.4 \\
\hline 311.4 & 672.8 & 653.1 & 330.9 \\
\hline 283.9 & 696.7 & 604.1 & 343.3 \\
\hline 301.8 & 742.6 & 659.9 & 341.3 \\
\hline 300.2 & 743.8 & 685.8 & 338 \\
\hline 281.7 & 683.7 & 611.9 & 322.1 \\
\hline 294.2 & 693.9 & 631.9 & 335 \\
\hline 292.2 & 699.4 & 628.1 & 330 \\
\hline 401.5 & 782.4 & 786.6 & 425 \\
\hline 395.7 & 798.1 & 758.5 & 422.4 \\
\hline 368.5 & 806.2 & 744.3 & 410.4 \\
\hline 377 & 769.5 & 727.7 & 385.5 \\
\hline 387.2 & 705.8 & 715.8 & 398.2 \\
\hline 410.8 & 731.8 & 731.6 & 391.6 \\
\hline 375 & 765.3 & 690.3 & 388 \\
\hline 384 & 773.1 & 745.9 & 408.6 \\
\hline 394.5 & 808.8 & 756.4 & 399.7 \\
\hline 374.1 & 759.4 & 686.2 & 384.2 \\
\hline 379.5 & 795.5 & 713.3 & 404.6 \\
\hline 381.4 & 778.8 & 716.4 & 408 \\
\hline 504.8 & 863.3 & 883.9 & 551 \\
\hline 502.5 & 883.9 & 825.7 & 556.9 \\
\hline 518.4 & 879.6 & 833.3 & 543.5 \\
\hline 493.2 & 863.3 & 802.1 & 509.3 \\
\hline 479.9 & 853.1 & 777 & 538.9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Aluminum (N) & Steel1018 (N) & StSt304 (N) & Titanium 2 (N) \\
\hline 515.3 & 832.4 & 792.8 & 540.2 \\
\hline 466.1 & 862 & 741.8 & 527.1 \\
\hline 477.4 & 901.3 & 818.2 & 530.6 \\
\hline 479.3 & 895.8 & 853.8 & 531.9 \\
\hline 463.3 & 861.2 & 756 & 527.6 \\
\hline 469.9 & 899 & 776.3 & 540 \\
\hline 462.6 & 892.8 & 779.1 & 541 \\
\hline 221.4 & 607.3 & 558 & 295.9 \\
\hline 226 & 648.3 & 598.8 & 282.8 \\
\hline 222.5 & 661 & 560.7 & 270.1 \\
\hline 212.9 & 638.5 & 571.1 & 251.1 \\
\hline 212 & 556 & 573.4 & 283.2 \\
\hline 207.6 & 598.8 & 563.4 & 249.5 \\
\hline 209.1 & 596.6 & 508.2 & 274.8 \\
\hline 204.5 & 656.7 & 574.9 & 270.4 \\
\hline 197.4 & 657.3 & 581.8 & 264.5 \\
\hline 200 & 629.4 & 501.9 & 264.1 \\
\hline 202.9 & 628 & 539.3 & 275.5 \\
\hline 198.5 & 629.2 & 513.6 & 273.4 \\
\hline 329.6 & 694.8 & 675.4 & 350.7 \\
\hline 349.2 & 714.3 & 702.7 & 348.1 \\
\hline 324.6 & 721 & 693.7 & 337.8 \\
\hline 337.4 & 674.3 & 681.1 & 313.3 \\
\hline 331.7 & 634.5 & 659.5 & 350.51 \\
\hline 318.4 & 642.1 & 629.4 & 316.3 \\
\hline 317.7 & 695.5 & 612.5 & 338.6 \\
\hline 270.8 & 715.7 & 671.1 & 335.5 \\
\hline 309 & 716.6 & 635.7 & 333.6 \\
\hline 310.8 & 681.7 & 605.9 & 324.8 \\
\hline 293.8 & 675.8 & 633.8 & 336.8 \\
\hline 290.7 & 706.7 & 605 & 326 \\
\hline 436.2 & 743.1 & 801 & 433.7 \\
\hline 443.9 & 776.6 & 798.5 & 411.3 \\
\hline 451.6 & 779.3 & 743 & 405.8 \\
\hline 426.7 & 755.4 & 751.3 & 366.8 \\
\hline 419.6 & 690.2 & 765.3 & 406.7 \\
\hline 409 & 720.4 & 779.2 & 372.4 \\
\hline 406.1 & 774.9 & 702.2 & 385 \\
\hline 357.7 & 798.6 & 778.7 & 393.9 \\
\hline 390.4 & 788.5 & 732.9 & 399.1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Aluminum (N) & Steel1018 (N) & StSt304 (N) & Titanium 2 (N) \\
\hline 393.7 & 772 & 676 & 406.4 \\
\hline 379.4 & 774.4 & 722.9 & 401.6 \\
\hline 371 & 780.4 & 690.2 & 412.4 \\
\hline 525.2 & 850 & 894.1 & 544.4 \\
\hline 529.2 & 866.3 & 871 & 516.4 \\
\hline 537.7 & 862.2 & 830.8 & 525.9 \\
\hline 519.2 & 857.7 & 829.4 & 498.2 \\
\hline 516.4 & 767.2 & 834.1 & 548.6 \\
\hline 493.5 & 829.2 & 840.8 & 523.3 \\
\hline 485.2 & 872.3 & 778.2 & 519 \\
\hline 444.2 & 930 & 861.6 & 538.7 \\
\hline 477.8 & 915 & 839 & 537.1 \\
\hline 475.7 & 889.9 & 769.5 & 518.6 \\
\hline 462.6 & 888.5 & 790 & 515.6 \\
\hline 449.2 & 903.9 & 763.4 & 522 \\
\hline
\end{tabular}

Table C.17: Experimental Peak Resultant Forces for the Cone Plots (144 samples)

\section*{Model Estimated Forces with Two Methods (The Calibrated Coefficients and the Ratio Method)}
\begin{tabular}{|c|c|l|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{ Aluminum } & \multicolumn{2}{l|}{ Steel1018 } & \multicolumn{2}{l|}{ StSt304 } & \multicolumn{2}{l|}{ Titanium } \\
\hline \begin{tabular}{l} 
Ratio \\
\((\mathrm{N})\)
\end{tabular} & \begin{tabular}{l} 
Calibrated \\
Coefs (N)
\end{tabular} & \begin{tabular}{l} 
Ratio \\
\((\mathrm{N})\)
\end{tabular} & \begin{tabular}{l} 
Calibrated \\
Coefs (N)
\end{tabular} & \begin{tabular}{l} 
Ratio \\
\((\mathrm{N})\)
\end{tabular} & \begin{tabular}{l} 
Calibrated \\
Coefs (N)
\end{tabular} & \begin{tabular}{l} 
Ratio \\
\((\mathrm{N})\)
\end{tabular} & \begin{tabular}{l} 
Calibrated \\
Coefs (N)
\end{tabular} \\
\hline 177.34 & 174.75 & 553.79 & 563.61 & 484.36 & 472.5 & 245.6 & 249.97 \\
\hline 266.08 & 262.58 & 612.39 & 623.25 & 558.58 & 552.12 & 305.25 & 311.26 \\
\hline 355.72 & 351.22 & 671.19 & 683.33 & 633.84 & 632.06 & 365.47 & 372.97 \\
\hline 446.2 & 440.39 & 790.07 & 803.58 & 709.51 & 712.69 & 486.51 & 497.46 \\
\hline 188.1 & 185.17 & 582.63 & 582.73 & 511.35 & 500.66 & 260.28 & 259.61 \\
\hline 288.15 & 283.56 & 648.34 & 647.03 & 595.2 & 647.03 & 327.33 & 325.97 \\
\hline 388.9 & 383.96 & 714.8 & 711.92 & 680.04 & 711.92 & 394.94 & 392.81 \\
\hline 489.94 & 482.79 & 848.75 & 841.92 & 765.12 & 770.45 & 531.07 & 527.08 \\
\hline 198.14 & 195.1 & 608.5 & 619.52 & 536.5 & 528.37 & 273.43 & 278.69 \\
\hline 308.1 & 304.16 & 681.54 & 693.42 & 629.27 & 627.48 & 347.57 & 354.72 \\
\hline 419.2 & 413.84 & 754.31 & 767.73 & 722.44 & 726.43 & 422.21 & 431.44 \\
\hline 530.23 & 524.45 & 902.13 & 917.27 & 816.4 & 826.87 & 572.27 & 585.38 \\
\hline
\end{tabular}

Table C.18: Model Estimated Peak Resultant Forces (Calibrated Coefficients and the Ratio Method)

\section*{Covariance Table for the Sandvik 08M-PM tests on Steel 1018 coefficients}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{C o v}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)\) & \(\mathbf{K}_{\mathbf{T C}}\) & \(\mathbf{K}_{\mathbf{T E}}\) & \(\mathbf{K}_{\mathbf{R C}}\) & \(\mathbf{K}_{\mathbf{R E}}\) \\
\hline \(\mathbf{K}_{\mathbf{T C}}\) & 49986.52 & 482.62 & 48937.6 & -60.27 \\
\hline \(\mathbf{K}_{\mathbf{T E}}\) & 482.62 & 34.857 & 971.16 & 15.74 \\
\hline \(\mathbf{K}_{\mathbf{R C}}\) & 48937.6 & 971.16 & 85222.59 & 702.86 \\
\hline \(\mathbf{K}_{\mathbf{R E}}\) & -60.27 & 15.74 & 702.8653 & 83.13 \\
\hline
\end{tabular}

Table C.19: Covariance Table for the Sandvik 08M-PM tests on Steel 1018 coefficients

\section*{Covariance Table for the Kennametal KC725M tests on Steel 1018 coefficients}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{C o v}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)\) & \(\mathbf{K}_{\mathbf{T C}}\) & \(\mathbf{K}_{\mathbf{T E}}\) & \(\mathbf{K}_{\mathbf{R C}}\) & \(\mathbf{K}_{\mathbf{R E}}\) \\
\hline \(\mathbf{K}_{\mathbf{T C}}\) & 59695.12 & -2841.74 & 48503.70 & -1616.25 \\
\hline \(\mathbf{K}_{\mathbf{T E}}\) & -2841.74 & 257.40 & -1610.64 & 273.28 \\
\hline \(\mathbf{K}_{\mathbf{R C}}\) & 48503.70 & -1610.64 & 63951.96 & -365.91 \\
\hline \(\mathbf{K}_{\mathbf{R E}}\) & -1616.25 & 273.28 & -365.91 & 503.53 \\
\hline
\end{tabular}

Table C.20: Covariance Table for the Kennametal KC725M tests on Steel 1018 coefficients

\section*{Covariance Table for the Kennametal KC935M tests on Steel 1018 coefficients}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{C o v}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)\) & \(\mathbf{K}_{\mathbf{T C}}\) & \(\mathbf{K}_{\mathbf{T E}}\) & \(\mathbf{K}_{\mathbf{R C}}\) & \(\mathbf{K}_{\mathbf{R E}}\) \\
\hline \(\mathbf{K}_{\mathbf{T C}}\) & 130906.83 & -2898.91 & 109943.75 & -2418.82 \\
\hline \(\mathbf{K}_{\mathbf{T E}}\) & -2898.91 & 208.47 & -2282.84 & 75.57 \\
\hline \(\mathbf{K}_{\mathbf{R C}}\) & 109943.75 & -2282.84 & 121851.65 & -1043.38 \\
\hline \(\mathbf{K}_{\mathbf{R E}}\) & -2418.82 & 75.57 & -1043.38 & 408.69 \\
\hline
\end{tabular}

Table C.21: Covariance Table for the Kennametal KC935M tests on Steel 1018 coefficients

Covariance Table for the Uncoated Solid Carbide Cutter of \(\mathbf{3 0}^{\mathbf{o}}\) helix angle on Steel 1018 coefficients
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{C o v}\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right)\) & \(\mathbf{K}_{\mathbf{T C}}\) & \(\mathbf{K}_{\mathbf{T E}}\) & \(\mathbf{K}_{\mathbf{R C}}\) & \(\mathbf{K}_{\mathbf{R E}}\) \\
\hline \(\mathbf{K}_{\mathbf{T C}}\) & 91615.82 & -6003.54 & 51818.10 & -6357.19 \\
\hline \(\mathbf{K}_{\mathbf{T E}}\) & -6003.54 & 709.22 & -2952.26 & 788.87 \\
\hline \(\mathbf{K}_{\mathbf{R C}}\) & 51818.10 & -2952.26 & 44176.97 & -3353.71 \\
\hline \(\mathbf{K}_{\mathbf{R E}}\) & -6357.19 & 788.87 & -3353.71 & 969.45 \\
\hline
\end{tabular}

Table C.22: Covariance Table for the Uncoated Solid Carbide Cutter of \(30^{\circ}\) helix angle on Steel 1018 coefficients

\section*{Covariance Table for the Coated Solid Carbide Cutter of \(\mathbf{3 0 ^ { \circ }}\) helix angle on Steel 1018 coefficients}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathbf{C o v}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)\) & \(\mathbf{K}_{\mathbf{T C}}\) & \(\mathbf{K}_{\mathbf{T E}}\) & \(\mathbf{K}_{\mathbf{R C}}\) & \(\mathbf{K}_{\mathbf{R E}}\) \\
\hline \(\mathbf{K}_{\mathbf{T C}}\) & 358728.90 & -8664.70 & 182457.98 & -7707.72 \\
\hline \(\mathbf{K}_{\mathbf{T E}}\) & -8664.70 & 235.08 & -4430.36 & 208.35 \\
\hline \(\mathbf{K}_{\mathbf{R C}}\) & 182457.98 & -4430.36 & 100462.41 & -4106.92 \\
\hline \(\mathbf{K}_{\mathbf{R E}}\) & -7707.72 & 208.35 & -4106.92 & 246.80 \\
\hline
\end{tabular}

Table C.23: Covariance Table for the Coated Solid Carbide Cutter of \(30^{\circ}\) helix angle on Steel 1018 coefficients

\section*{APPENDIX D}

\section*{G CODES FOR CASE STUDY}

\section*{Introduction}

This chapter includes the g-codes used for the case study performed on Steel 1018 to verify the Monte Carlo simulation results. Method 1 is the case where cutting conditions, spindle speed, feedrate and average chip thickness \(h_{\text {avg }}\) is known and force is calculated in the simulation program. Method 2 is the case where allowable force is found by either using deflection or tool bending stress as a constraint. Feedrates are found by iteration to match the target force which is constrained by one of the formulas.

\section*{G-Code for Method 1}

Tool rotation speed is 3000 rpm , \(\mathrm{h}_{\text {avg }}\) is 0.03175 mm .3 teeth insert tool in upmilling configuration.

N1 (CALIBRATIONG-CODESETFOR10REVOLUTIONS,2DEGREESPERSAMPLE)
N2 (SAN_0.500)
N 3 (FLUTE=1HELIX=0.0)
N 4 (TOOLMATERIAL=CARBIDE)
N5 (WORKPIECEMATERIAL=STEEL1018)
N6 G17G20G40G90
N7 T1M6
N8 H1M42E1
N9 M3S3000M8
N10 (SLOTCUT)
N20 G0X1.0Y-0.5Z2.0
N30 G1Z-0.1F50
N40 G1X-0.5F17.671
N50 G1X-3F17.671
N60 G1X-5F17.671
N70 G1X-7F17.671
N100 G1Z2.0F50
N110 (3/4IMMERSIONDOWNMILLSIDECUT)
N120 G0X1.0Y-1.25Z2.0
N130 G1Z-0.1F50
N140 G1X-0.5F15.708
N150 G1X-3F15.708
N160 G1X-5F15.708
N170 G1X-7F15.708
N200 G1Z2.0F50
N210 (1/2IMMERSIONDOWNMILLSIDECUT)
N220 G0X1.0Y-1.75Z2.0
N230 G1Z-0.1F50
N240 G1X-0.5F17.671
N250 G1X-3F17.671
N260 G1X-5F17.671
N270 G1X-7F17.671
N300 G1Z2.0F50
N310 (1/4IMMERSIONDOWNMILLSIDECUT)
N320 G0X1.0Y-2.0Z2.0
N330 G1Z-0.1F50
N340 G1X-0.5F23.562
N350 G1X-3F23.562
N360 G1X-5F23.562

N400 G1Z2.0F50
N410 M5M9H0E0
N420 M41
N430 G0Z0
N440 G0X0Y0

N450 M30

\section*{G-Code for Method2}

Feedrates are optimized for a target force of 400 N in the simulation program for each radial depth including runout. Tool rotation speed is 4000 rpm , with downmill configuration.

N1 (CALIBRATIONG-CODESETFOR10REVOLUTIONS,2DEGREESPERSAMPLE)
N2 (SAN_0.500)
N3 (FLUTE=1HELIX=0.0)
N4 (TOOLMATERIAL=CARBIDE)
N5 (WORKPIECEMATERIAL=STEEL1018)
N6 G17G20G40G90
N7 T1M6
N8 H1M42E1
N9 M3S4000M8
N10 (SLOTCUT)
N20 G0X-1.0Y-0.5Z2.0
N30 G1Z-0.1F50
N40 G1X0.5F7.7
N50 G1X3F7.7
N60 G1X5F7.7
N70 G1X7F7.7
N100 G1Z2.0F50
N110 (3/4IMMERSIONDOWNMILLSIDECUT)
N120 G0X-1.0Y-1.25Z2.0
N130 G1Z-0.1F50
N140 G1X0.5F7.7
N150 G1X3F7.7
N160 G1X5F7.7
N170 G1X7F7.7
N200 G1Z2.0F50
N210 (1/2IMMERSIONDOWNMILLSIDECUT)
N220 G0X-1.0Y-1.75Z2.0
N230 G1Z-0.1F50
N240 G1X0.5F7.7
N250 G1X3F7.7
N260 G1X5F7.7
N270 G1X7F7.7
N300 G1Z2.0F50
N310 (1/4IMMERSIONDOWNMILLSIDECUT)
N320 G0X-1.0Y-2.0Z2.0
N330 G1Z-0.1F50
N340 G1X0.5F8.8
N350 G1X3F8.8
N360 G1X5F8.8
N370 G1X7F8.8
N400 G1Z2.0F50
N410 M5M9H0E0
N420 M41
N430 G0Z0
N440 G0X0Y0
N450 M30

\section*{APPENDIX E}

\section*{NORMALITY OF THE CUTTING COEFFICIENTS}

\section*{Introduction}

This section includes the residual plots of the cutting coefficients for Aluminum,
Steel 1018, Stainless Steel and Titanium Grade 2.

\section*{Aluminum}


Figure E.1: \(\mathrm{K}_{\mathrm{TC}}\) Residual Histogram for Aluminum


Figure E.2: \(\mathrm{K}_{\mathrm{TE}}\) Residual Histogram for Aluminum


Figure E.3: \(\mathrm{K}_{\mathrm{RC}}\) Residual Histogram for Aluminum


Figure E.4: \(\mathrm{K}_{\mathrm{RE}}\) Residual Histogram for Aluminum

\section*{Steel 1018}


Figure E.5: \(\mathrm{K}_{\mathrm{TC}}\) Residual Histogram for Steel 1018


Figure E.6: \(\mathrm{K}_{\mathrm{TE}}\) Residual Histogram for Steel 1018


Figure E.7: \(\mathrm{K}_{\mathrm{RC}}\) Residual Histogram for Steel 1018


Figure E.8: \(\mathrm{K}_{\mathrm{RE}}\) Residual Histogram for Steel 1018

\section*{Stainless Steel 304}


Figure E.9: \(\mathrm{K}_{\mathrm{TC}}\) Residual Histogram for Stainless Steel 304


Figure E.10: \(\mathrm{K}_{\mathrm{TE}}\) Residual Histogram for Stainless Steel 304


Figure E.11: \(\mathrm{K}_{\mathrm{RC}}\) Residual Histogram for Stainless Steel 304


Figure E.12: \(\mathrm{K}_{\mathrm{RE}}\) Residual Histogram for Stainless Steel 304

\section*{Titanium Grade 2}


Figure E.13: \(\mathrm{K}_{\mathrm{TC}}\) Residual Histogram for Titanium Grade 2


Figure E.14: \(\mathrm{K}_{\mathrm{TE}}\) Residual Histogram for Titanium Grade 2


Figure E.15: \(\mathrm{K}_{\mathrm{RC}}\) Residual Histogram for Titanium Grade 2


Figure E.16: \(\mathrm{K}_{\mathrm{RE}}\) Residual Histogram for Titanium Grade 2```

