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ABSTRACT 
THE FREQUENCY AND CAUSE OF SHALLOW 

WINTER MIXED LAYERS IN THE GULF OF MAINE 

by 

Michael Christensen 

University of New Hampshire, May, 2011 

Advisor: Dr. James Pringle 

In the Gulf of Maine, regional differences in wintertime stratification have impor­

tant biological and physical implications. Phytoplankton blooms linked with shallow 

stratification events during the winter are important because they can provide an ad­

ditional food source for zooplankton and larval fish populations. Regional differences 

in stratification and mixed layer depth may also affect rates of air-sea gas exchange. 

On an annual basis, variability in wintertime air-sea CO2 exchange is significant since 

it can affect the entire region's role as a sink or source of atmospheric carbon. Before 

examining how patterns in stratification affect biological and physical systems in the 

Gulf of Maine, it is necessary to understand the spatial and temporal variability in 

wintertime mixed layer depths. 

The cause and frequency of shallow winter mixed layers in the Gulf of Maine is in­

vestigated using salinity, temperature, and wind data. Salinity and temperature data 

comes from hydrographic profiles and moored, autonomous data collection buoys. 

Hydrographic profile data are available from the Bedford Institute of Oceanography 

(BIO) and Coastal Ocean Observing and Analysis (COOA) databanks. Time-series 

salinity and temperature data are taken from Gulf of Maine Ocean Observing System 

(GOMOOS) moorings. Wind data are available from the National Center for Envi-
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ronmental Prediction (NCEP) Reanalysis II model. The roles of salinity, temperature, 

and wind stress are quantified to identify the cause of temporal and spatial patterns in 

stratification. To examine spatial variability, the Gulf of Maine is divided into 5 zones; 

Coastal, Western, Eastern, Northern, and Georges Bank. Inter-zonal comparison of 

mixed layer depth reveals distinct regional differences. Cast data shows considerable 

changes in mixedlayer depth can occur over short distances. GOMOOS mooring data 

show that shallow mixed layers often occur and persist through the entire winter in 

the coastal and eastern Gulf of Maine. In these areas upper water-column (0-20m) 

stratification is governed by salinity. Cast data indicate deeper mixing over Wilkinson 

Basin. In this area, stratification in the upper 20m is weak and often governed by 

temperature decrease with depth. However, in all regions salinity increase with depth 

is responsible for the majority of shallow winter mixed layers. Comparison of wind 

stress and stratification at the GOMOOS moorings shows that winter wind events do 

not break down salinity driven stratification. 
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CHAPTER 1 

INTRODUCTION 

1.1 Stabilization and Phytoplankton Blooms 

The stabilization of the water column and the initiation of a phytoplankton bloom 

are often linked (Ji et al., 2008). Stabilization occurs under conditions of reduced tur­

bulence, for example, during periods of low wind stress or water-column stratification 

(van Oostveen et al., 1999). Stratification and the subsequent suppression of vertical 

mixing occurs when less-dense water overlies deeper, more-dense water. Typically in 

the Gulf of Maine (GOM), stratification is at a minimum during the winter and at a 

maximum in the late summer (Mountain and Manning, 1994) (Fig. 1-1). The density 

of seawater is directly influenced by its salinity and temperature. Cold, salty water 

is more dense than warm, fresh water. In the GOM, wind, salinity and temperature 

control the depth of the upper, nearly homogeneous mixed layer. The mixed layer is 

defined by its uniform to near uniform density, active vertical mixing and homoge­

neous salinity and temperature (Thomson and Fine, 2003). Cold temperatures and 

high surface salinities promote vertical mixing and deepening of the mixed layer. On 

the other hand, warm surface temperatures and low surface salinity facilitate the 

shoaling of the mixed layer. The relative contributions of salinity and temperature 

to the density of the upper water column, and subsequently their effect on the mixed 

layer depth, is variable both temporally and spatially in the GOM. 

Since total phytoplankton biomass ultimately impacts the biology at higher trophic 

levels, it is crucial to identify the frequency, duration, location, and cause of shallow 

mixed layer events. In this study, shallow mixed layer events during the winter are 

1 



of particular interest because they may be very important for increasing phytoplank­

ton stocks (Durbin et al., 2003). In turn, the presence of additional phytoplankton 

biomass may affect higher trophic levels by increasing survival rates of food limited 

larval fish populations (Piatt et al., 2003). 

Using GOM moored buoy data gathered during the last decade, Deese-Riordan 

(2009) identified "re-stabilization" events in the western GOM during the winter with 

stability values in the upper 20m capable of supporting phytoplankton blooms. The 

stability values capable of supporting a bloom, however, are not well-constrained, 

and are likely variable for different phytoplankton species. For instance, different 

species will dominate depending on the time of year (Smetacek and Passow, 1990). 

According to Riley (1957), in the GOM a density difference of 0.1-0.2Acrt in the top 

30m is required for the initiation of the spring bloom. Using a study from Pingree 

et al. (1976), however, Townsend et al. (1992) argued that even small degrees of 

stratification can "provide sufficient stabilization of the water column" to allow a 

bloom to commence. 

Although the discovery that wintertime "re-stabilization" events occur in the west­

ern coastal GOM is significant biologically, it is necessary to look at patterns in sta­

bility and mixed layer depth beyond the relatively small coastal region. The coastal 

zone comprises only a fraction of the entire GOM, and the physical processes that 

govern stability and mixed layer depth outside the coastal zone need to be investi­

gated to help in our understanding of wintertime phytoplankton blooms. In this this 

study I expand on the work of Deese-Riordan (2009) by analyzing a comprehensive 

set of salinity and temperature data from hydrographic profiles to investigate spatial 

trends and causes of winter stratification throughout the GOM. Hydrographic profile 

data, further referred to as cast data, are obtained from conductivity, temperature, 

and depth (CTD) measurements at different locations. I also go beyond the work of 

Deese-Riordan (2009) by using Gulf of Maine Ocean Observing System (GOMOOS) 
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mooring data to consider all times when a shallow mixed layer is present. It is im­

perative to consider all times when a shallow mixed layer is present because even 

small stability values within the upper water-column may have important biological 

and physical implications. Stratification may slow down or shut off vertical nutrient 

exchange between deep and surface waters. Deep, nutrient-rich waters are critical for 

fueling the spring bloom (Ji et al., 2008). Changes in stratification could also affect 

air-sea gas flux on seasonal or longer time scales (Takahashi et al., 2002). Over longer 

time scales, and over broad areas of the ocean, changes in air-sea gas exchange may 

affect global climate. 

1.2 The Critical Depth Model 

The relationship between the depth of the mixed layer and the development of 

phytoplankton blooms is a focal point of much past and ongoing research. The depth 

of vertical mixing, nutrient availability, phytoplankton biomass loss, and sunlight 

are all factors which impact the timing of a phytoplankton bloom (Smetacek and 

Passow, 1990; Piatt et al., 1991). Phytoplankton biomass losses are connected to 

respiration, grazing, and sedimentation (Smetacek and Passow, 1990; Piatt et al., 

1991). In Sverdrup's model, he predicted that a bloom would occur when the mixed 

layer was less than some critical depth. The critical depth is the depth at which depth 

integrated photosynthesis equals respiration. Sverdrup (1953) based his critical depth 

on a variety of factors including the amount of incoming radiation, the transparency 

of the water, and solar energy at the compensation depth. According to Sverdrup 

the compensation depth is the depth at which the rate of production/photosynthesis 

is equal to the rate of destruction/respiration. Gran and Braarud (1935) concluded 

that the critical depth is 5 to 10 times the compensation depth. In modern literature, 

the critical depth is defined as the point where vertically integrated mean irradiance 
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value is equal to 20.9W/m2 (Riley, 1957; Hitchcock and Smayda, 1977; Townsend 

and Spinrad, 1986; Townsend et al , 1992; Pingree et al., 1976). 

Sverdrup's critical depth and mixed layer model for the phytoplankton spring 

bloom was a major stepping stone for research of this kind. Townsend and Spinrad 

(1986) suggested that slope water inflows may play a role in the timing and intensity of 

the spring bloom in Jordan Basin. Slope water flows into the eastern GOM through 

the Northeast Channel (Fig. 1-2). The source of the highly saline slope waters is 

believed to alternate between Labrador Current and Gulf Stream origins (Gatien, 

1976). Slope water with Labrador Current origins is designated as Labrador Slope 

Water (LSW), where as slope water with Gulf Stream origins is designated as Warm 

Slope Water (WSW). WSW is warmer, more saline, and more nutrient rich than the 

LSW (Townsend and Spinrad, 1986). Townsend and Spinrad (1986) speculated that 

the spring phytoplankton bloom in the GOM occurs earlier and is more pronounced 

when WSW is the dominant deep inflow. This slope water hypothesis was used 

to explain a bloom that occurred in the Jordan Basin in February of 1984, as well 

an early bloom in 1999 (Thomas et al., 2003). The idea is that increased inflow 

of salty and dense WSW causes a "doming" (shallowing) of the pycnocline above 

some critical depth, thereby providing the physical conditions suitable for a bloom 

(Sverdrup, 1953). Smetacek and Passow (1990) did not agree with some parts of 

Sverdrup's critical depth model, but they agreed that the temporary stabilization of 

a shallow mixed layer is often accompanied by a build-up of biomass. Piatt et al. 

(1991) concluded that Sverdrup's critical depth criterion was a "necessary but not 

sufficient condition for the initiation of phytoplankton blooms". A sufficient condition 

he believed was that phytoplankton growth be large enough when compared to the 

"loss terms" to build up biomass in the surface layer (Piatt et al., 1991). 

Ji et al. (2007) demonstrated with a dataset spanning from 1998-2006 that the 

inundation of fresh Scotian Shelf Water (SSW) from the West Greenland/Labrador 
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Current may trigger the onset of the spring phytoplankton bloom. Ji et al. (2007) -x, 

noticed a general western progression of the spring phytoplankton bloom from the 

Nova Scotian Shelf to the western GOM consistent with the counter-clockwise circu­

lation pattern in the GOM (Miller et al., 1998). The onset of the bloom on the Nova-

Scotian Shelf was correlated closely with negative sea surface salinity anomalies. The 

main idea was that lower salinity surface waters created a more stable water column 

which allowed a phytoplankton bloom to develop. Durbin et al. (2003) also con­

cluded that a 1999 winter bloom in the central GOM was caused by the advection of 

less-dense, fresh SSW. The presence of SSW in turn led to stabilization of the upper 

water-column. Importantly, increased phytoplankton stocks in 1999 coincided with 

a 10 fold increase in zooplankton abundance when compared to 2000 (Durbin et al., 

2003). According to Townsend and Spinrad (1986), it is likely that the influence of 

ocean freshening will not be as significant in the western GOM as in the eastern GOM 

since mixing of surface and deep saline waters breaks down vertical stratification over 

time. Vertical stratification, however, can be maintained in coastal areas by fresh­

water "input from rivers draining into the GOM. For example, Deese-Riordan (2009) 

found that high river discharge in the fall of 2005 led to greater stratification during 

2006 than other years. 

Many have argued that phytoplankton blooms occur in the absence of vertical wa­

ter column stratification (Heimdal, 1974; Schei, 1974; Townsend et al., 1992; Ellertsen, 

1993; Backhaus et al., 2003; Dale et a l , 1999; Kortzinger et al., 2008). Townsend et al. 

(1994) argued that a spring phytoplankton bloom can occur following the typical win­

ter deep convective mixing in an un-stratified water column if wind speeds are below 

a certain value. Similarly, van Oostveen et al. (1999) argued that a bloom can oc­

cur if turbulent mixing rates are less than some critical turbulence value. In either 

case, phytoplankton growth rates can "overcome the vertical mixing rates imposed 

by turbulent diffusion" (van Oostveen et al., 1999). 
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Behrenfeld's recently proposed explanation for phytoplankton blooms using satel­

lite data dismisses Sverdrup's critical depth model entirely. In fact, Behrenfeld 

(2010) argued that blooms are not initiated by stratification of the water-column, but 

rather by the annual cycle of mixed layer deepening. Under Behrenfeld's "Dilution-

Recoupling Hypothesis," stratification of the water-column actually "accelerates the 

spring increase in grazing pressure within the mixed layer by concentrating mobile 

heterotrophs" (Evans and Parslow, 1985). 

The purpose of this research is not to focus on the onset of the spring bloom 

or on the complicated biological aspects of the system. Instead, this study focuses 

on the physical conditions which should normally lead to wintertime phytoplankton 

blooms. That said, relatively little is known about winter phytoplankton blooms and 

their impact on the ecosystem as a whole. Investigations to this point have shown 

that on one hand, winter blooms can lead to increased stocks of zooplankton, which 

are the food source of many fish (Durbin et al., 2003), while alternatively winter 

phytoplankton blooms may have a negative impact on the ecosystem by depleting 

surface waters of nutrients. In the latter case, phytoplankton blooms may actually 

be responsible for "reducing the overall primary productivity throughout the region" 

(Ji et al., 2008). In order to determine which scenario is more likely, it is necessary to 

first investigate the physical conditions typically present during the winter in different 

regions of the GOM. Doing this will provide a foundation for future work studying 

the relationship between stratification and wintertime phytoplankton blooms. In this 

study, it is assumed that the fundamental oceanic processes that occur during the 

spring bloom are the same during ephemeral winter phytoplankton blooms. In other 

words, given sufficient light, it is assumed that the stabilization of the water column 

typically provides the right conditions for biomass to build up in the surface layer. 
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1.3 Study Objectives 

My research utilizes historical data from the Gulf of Maine Ocean Observing 

System (GOMOOS), the Bedford Institute of Oceanography (BIO) hydrographic 

database, the National Center for Environmental Prediction (NCEP Reanalysis II), 

and data from the Coastal Ocean Observing and Analysis (COOA) dataset compiled 

at the University of New Hampshire. The combined BIO and COOA cast data provide 

good spatial coverage of the GOM with 1420 wintertime data points spanning from 

1970-2009 (Fig. 1-3). The GOMOOS data complements the BIO and COOA data by 

providing hourly or better time-series data from roughly 2001-2010 for moored buoys 

in the GOM. The NCEP Reanalysis II data provides daily averaged wind stress values 

for a large portion of the GOM. The purpose of this study is: 1.) To compare regional 

patterns in temperature, salinity, and stability in the upper water-column (0-20m); 

2.) To describe the frequency, duration, and spatial patterns in shallow winter mixed 

layers; 3.) To determine quantitatively the regionally averaged relative contributions 

of salinity and temperature to the density gradient in the upper water-column. Re­

gionally averaged wind stress values will serve as auxiliary material, and will aid 

in determining whether shallow mixed layer events are linked with decreased wind 

stress, salinity driven density stratification, increased surface layer temperatures, or 

some combination of these three. 

I define shallow mixed layers as mixed layers less than 20m. Shallow mixed layers 

are defined in this way since the highest phytoplankton growth rates occur in the 

upper 20m (Smetacek and Passow, 1990). Furthermore, since data are only available 

at 1, 20, and 50m for many coastal GOMOOS buoys, it is not possible to determine 

a more precise mixed layer depth. 
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1.4 Background 

1.4.1 Gulf of Maine Definition 

The Gulf of Maine is the continental shelf sea on the east coast of North America, 

situated between Cape Cod, MA and Nova Scotia, Canada (Townsend et al., 1994). 

The ocean perimeter of the GOM is defined by the Nantucket Shoals and Georges 

Bank to the south, and Brown's Bank to the east. The GOM is important biologically 

as it serves as a source for seed populations of zooplankton which are advected onto 

Georges Bank (Durbin et al., 2003). Georges Bank is one of the richest fisheries in 

the North Atlantic and is characterized by high levels of primary production and fish 

production (Fogarty and Murawski, 1998). Some native fish to the GOM include cod, 

haddock, flounder, mackerel, menhaden, herring and squid. 

1.4.2 Circulation 

The GOM has a counter-clockwise circulation with deep inflow of nutrient-rich, 

warm, saline slope water through the Northeast Channel (Hopkins and III, 1979) 

as well as surface inflow of fresh, cold SSW near Cape Sable, Nova Scotia (Smith, 

1983). Outflow from the GOM occurs through the Northeast Channel, the Great 

South Channel or north of Georges Bank. In the last case, near surface waters 

from the western GOM flow over the northern flank of Georges Bank before turning 

clockwise and flowing westward past the Nantucket Shoals into the Mid-Atlantic 

Bight (Brown and Beardsley, 1978) (Fig. 1-4). As mentioned earlier, the source 

of the highly saline slope water is believed to alternate between Labrador Current 

and Gulf Stream origins (Gatien, 1976). Townsend (1991) hypothesized that slope 

water likely enters through the Northeast Channel in "pulse-like events that may be 

correlated with winter winds." The main source of SSW, on the other hand, is the 
i 

West Greenland/Labrador Current system with smaller inputs from the St. Lawrence 
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River (Smith et al., 2001). SSW provides the majority of fresh water to the GOM 

(Brown and Irish, 1993). Rivers, however, are important in that they are another 

source of fresh, nutrient-rich water to the GOM contributing on average 3x l0 3 m3 

s_ 1 (Meade and Emery, 1971). The major rivers moving counter-clockwise around 

the GOM from north to south are: St. John, St. Croix, Penobscot, Kennebec, 

Androscoggin, Saco, and Merrimack Rivers (Fig. 1-4). 

1.4.3 Historical Observations: Seasonal Pat terns in Salinity, 

Temperature, and Stability 

Water-column salinity, temperature, and stability vary spatially, temporally, and 

vertically with depth across the GOM. Large inter annual variability in salinity, tem­

perature, and stability is common since seasonal cycles in water temperature and 

salinity are strongly influenced by patterns of insolation, river discharge, evapora­

tion, winds, and currents (Benway et al., 1993). External forcing factors such as the 

variability in SSW or slope water inflow also affect patterns in salinity and tempera­

ture throughout the GOM. Localized coastal freshening from high river discharge also 

impacts salinity and temperature patterns (Deese-Riordan, 2009). Fong et al. (1997) 

found that localized freshwater plumes can affect salinity and temperature patterns 

across a wide area. These fresh plumes are capable of thinning and spreading up to 

50km offshore during upwelling favorable winds (Fong et al., 1997). 

Using hydrographic data from about 52 stations collected in the GOM from the 

Marine Resources Monitoring Assessment and Prediction (MARMAP) program from 

the period 1977-1987, Mountain and Manning (1994) found distinct spatial and tem­

poral patterns in salinity, temperature, and stability. According to the MARMAP 

data the annual mean temperature and the range of the mean annual cycle of temper­

ature in the upper 50m varies very little across the GOM. For surface waters (<5m), 

however, Mountain and Manning (1994) found that the range of the annual cycle of 
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temperature is greater in the western area of the GOM due to higher summer-time 

temperatures from the nearby heating of the land. Annual cycles in temperature 

minimum and maximum are in sync throughout the GOM. Minimum surface tem­

peratures occur in late winter (year days 70-80), and maximum surface temperatures 

occur in the summer (year days 250-260). Salinity does not follow the same pattern 

as temperature. The annual range in salinity values is greater in coastal regions than 

in the interior GOM. The large seasonal salinity range in the coastal area is the re­

sult of fresh river input during the spring snow melt. Advection of cold, fresh SSW 

also influences regional patterns in surface salinity, both coastally and in the inte­

rior GOM. The impacts of fresh SSW are seen from east to west consistent with the 

GOM's circulation. Freshening from SSW will be seen first in northern coastal areas 

before eventually affecting western coastal areas by spring and summer (Mountain 

and Manning, 1994; Deese-Riordan, 2009). 

Mountain and Manning (1994) also found that the "contribution that temperature 

and salinity make to the annual cycle of surface layer density is additive in the western 

Gulf, but nearly canceling in the eastern Gulf." In other words, in the eastern GOM 

cold winter air temperatures decrease water temperatures and increase their density, 

while at the same time, advection of fresh SSW decrease their density. By contrast, 

in the western GOM the minimum salinity values during the summer months coincide 

with the maximum surface water temperatures. In this case, both warm and fresh 

conditions contribute to low surface densities. Overall, Mountain and Manning (1994) 

found that during the winter the eastern GOM remains fairly stratified because of 

the inflow of low salinity SSW, while the western GOM is less stratified because of 

high surface salinities in combination with cold air temperatures. 
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1.4.4 Recent Observations 

Observations in the GOM at buoys A, B, E, I, M, and N during the last decade 

agree closely with the findings of (Mountain and Manning, 1994) (Fig. 1-5 and Fig. 

1-3). Details on hydrographic data and data processing can be found in Chapter 

2. Yearly averaged salinity and temperature data given here are based on a 20 day 

rolling averages to smooth short-term variability. 

Maximum and minimum salinity values occur at different times depending on 

location. For example, the maximum salinity occurs close to the first day of the 

year at Buoy M in Jordan Basin, while at Buoy B on the Western Maine Shelf, 

salinity continues to increase until roughly day 70. At Buoy B, salinity at lm shows 

considerably more intra-annual variability than at other buoys north and east. The 

cause of intra-annual variability in surface salinity, and differences between buoys will 

be discussed later. Buoy I in the northern coastal GOM follows a seasonal salinity 

cycle similar to Buoy M in Jordan's Basin, with peak salinities at the start of the 

calendar year and a gradual decrease in salinity at all depths until about day 150. 

Compared with Buoy I, however, Buoy M shows a slightly larger salinity gradient 

between 1 and 50m beginning in the later spring and continuing into the summer. 

Both Buoys I and M show smaller intra-annual variability than buoys in the western 

coastal and eastern GOM. Salinity differences between 1, 20, and 50m at Buoy N 

are very pronounced throughout the year with the largest difference occurring in 

the summer, near day 200. The large salinity difference between 1 and 50m may 

be attributed to the maximum annual mean inflow of deep slope water through the 

Northeast Channel during late summer (Ramp et al., 1985). 

Temperature observations gathered during the last decade also closely reflect his­

torical measurements (Fig. 1-6). At all GOMOOS buoys temperature is at a minimum 

in late winter and at a maximum during the summer. Within year temperature vari­

ability is greatest at lm since this water is in direct contact with the atmosphere. In 
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agreement with Mountain and Manning (1994), temperature variation at lm is great­

est in coastal areas. However, significant (>10°C) swings from winter to summer are 

also seen at buoys M and N, in Jordan Basin and over the Northeast Channel, respec­

tively. Comparatively smaller intra-annual variability in salinity and temperature at 

Buoy I, on the Eastern Maine Shelf, is noticeable from Figures 1-5 and 1-6. Patterns 

in salinity and temperature will be discussed in more detail in the following chap­

ters. During the winter, an average temperature inversion is present at all GOMOOS 

buoys. A temperature inversion occurs when temperatures increase with depth. In 

the spring, temperature inversions break down at the GOMOOS moorings as surface 

waters are heated by the sun. The cause of wintertime temperature inversions and 

their magnitude will be discussed later. 

1.5 Mixed Layer Depth Definition 

1.5.1 A Numerical Approximation for Mixed Layer Depth 

The mixed layer is defined by its uniform to near uniform density, active vertical 

mixing and homogeneous salinity and temperature (Thomson and Fine, 2003). Tur­

bulence in the surface waters of the ocean created by wind, cooling, breaking waves, 

and current shear are the main factors which deepen the mixed layer. Heat flux into 

the surface, as well as freshwater runoff from the seasonal melting of continental ice 

and rain can also create stratification and shallow the mixed layer. Temperature and 

turbulence can also affect the mixed layer depth on short time scales. For example, 

field observations have shown that on days when the wind is calm and solar irradiance 

is high, warming of the surface layer can occur down to a few meters setting up a 

shallow, stable mixed layer (Smetacek and Passow, 1990). 

The method used to define the mixed layer is not consistent between authors. One 

method of determining the mixed layer depth is to use the gradient method (Bathen, 
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1972; Lukas and Lindstrom, 1991; Richards et a l , 1995). This method defines the 

mixed layer depth as the depth at which the change in density with depth, or the 

change in temperature with depth, exceeds a certain value. The gradient method is 

problematic because it assumes that there is a definite interface between the mixed 

layer and underlying water mass. I do not use this method since it can only be used 

with high resolution salinity and temperature profiles. 

In this study the mixed layer depth is defined using the threshold method. This 

method uses a finite difference criterion. In other words, the mixed layer is the depth 

at which water density exceeds a pre-determined value. This value is discussed in 

the following paragraph. Older datasets often relied simply on temperature profiles 

if salinity data were not available to calculate density. Some common sea surface 

temperature (SST) based examples are as follows: Thompson (1976) defined a SST-

0.2°C as his isothermal layer depth (equivalent to mixed layer depth in absence of 

other data), whereas Price et al. (1986) defined his mixed layer depth as SST- 0.5°C. 

Many similar values are used when dealing with temperature based criterion (Kara 

et a l , 2000). 

Here, since both temperature and salinity data are available, potential densities 

are calculated and used to determine the mixed layer depth. It is preferable to use 

potential density rather than temperature profiles because the structure of the water-

column is dependant on both temperature and salinity. Potential density accounts 

for changes in salinity, temperature, and pressure with depth and is given by (Je = 

(p(S,T)-1000) kg/m3, where S is salinity, T is temperature and p(S,T) is the density 

of sea-water in meter-kilogram-second units (mks). The potential density difference 

of .01kg/m3 from the surface to some depth is used in this study, and is the "de 

facto standard" for finding the mixed layer depth (Thomson and Fine, 2003). Some 

scientists who have used this criterion to define the mixed layer depth include Peters 

et al. (1988), Schneider and Muller (1990), Wijffels et al. (1994), Skyllingstad et al. 
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(1999) and others. 

1.5.2 Drawbacks of the Threshold Method 

Using a potential density difference to define a mixed layer depth is widely used 

and relatively simple. However, this technique does have some drawbacks. One such 

limitation is that it ignores underlying water of nearly the same potential density; so 

the value is arbitrary in that sense. 

Another drawback to using the threshold method with o$ is that it ignores the 

fact that "the retreat of turbulent mixing to shallower depths proceeds faster than 

the erosion of the stratification at the base" (Kara et al., 2000). In other words, the 

mixed layer may be different from the layer that is still actively mixing (mixing layer) 

even though they may have nearly identical densities. Brainerd and Gregg (1995) 

define the mixed layer as "the envelope of maximum depths reached by the mixing 

layer on time scales of a day or more and is the zone that has been mixed in the 

recent past." The "retreat" of the mixing layer to a shallower depth could result if 

the mixing mechanism decreased in intensity. For example, this could mean that the 

winds slackened or wave breaking subsided. Brainerd and Gregg (1995) found that 

during a daily cycle, the mixed layer can alternate between well-mixed during the 

night and weakly stratified during the day. This stratification they found was due 

to a lack of convection of water during the day below the diurnal thermocline. The 

diurnal thermocline is different than the seasonal thermocline in that it breaks down 

quickly on a daily basis. Typically, the conditions are such that the mixing layer and 

mixed layer are the same. For this study, the depth of the mixed layer is adequate, 

since in terms of a phytoplankton bloom, if the mixed layer is shallow enough, it will 

not matter biologically whether it is actively mixing or not (Fig. 1-7). 
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Figure 1-1: Potential density profiles from the Eastern Zone indicating mixed layer 
depth (marked with a red dot). Top: Typical deep winter mixed layer. Bottom: 
Shallow spring mixed layer. 
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Figure 1-2: Figure from Brown and Beardsley (1978) (Fig. 4) showing sources of 
volume influx into the GOM. TH is the volume influx of SSW through the Halifax 
section; T s is volume influx of slope water (WSW or LSW) through the Northeast 
Channel; TR represents river runoff; and TP^E indicates net precipitation minus 
evaporation. TV shows volume outflux through the Great South Channel which lies 
between the Nantucket Shoals and Georges Bank. aTN indicates outflux of water 
through the seaward boundary. 
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Figure 1-3: A map of the Gulf of Maine including the locations of all casts and 
GOMOOS buoys used in this study as well as the delineation of different "zones" 
outlined by black lines. Casts are indicated by red points and GOMOOS moorings 
are shown by green squares with black edges. 
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Figure 1-4: (Miller et al , 1998) representation of the surface (<75m) and deep 
circulation (>75m) in the GOM after thermal stratification has taken place in the 
spring. The GOM has a counter-clockwise circulation with a deep inflow of slope water 
(WSW or LSW) through the Northeast Channel as well a surface inflow of fresh, cold 
SSW near Cape Sable, Nova Scotia. Outflow from the GOM occurs through the 
Northeast Channel, the Great South Channel or with near-surface waters from the 
western GOM moving clockwise around Georges Bank and flowing westward past the 
Nantucket Shoals into the middle Atlantic Bight. 
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Figure 1-5: Yearly averaged salinities based on a 20 day rolling average for GO-
MOOS buoys B, I, M, and N. Filled region shows ±1 standard error calculated for 
each day based on the interannual variability in salinity values at lm, 20m, and 50m 
for years with available data. 
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Figure 1-6: Yearly averaged temperatures based on a 20 day rolling average for 
GOMOOS buoys B, I, M, and N. Filled region shows ± 1 standard error calculated 
for each day based on the interannual variability in temperature values at lm, 20m, 
and 50m for years with available data. 
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Figure 1-7: Mixed layer depth indicated by red dot. This density profile shows a 
shallow mixed layer during the winter in the eastern GOM present on top of a deeper 
fossil mixed layer that extends to about 100m depth. The stability of the upper water-
column shown in this figure may provide conditions suitable for a phytoplankton 
bloom. 

21 



CHAPTER 2 

REGIONAL PATTERNS IN 

WINTERTIME SALINITY, 

TEMPERATURE, AND STABILITY 

2.1 Hydrographic/Atmospheric Data 

2.1.1 Gulf of Maine Ocean Observing System Buoy Data 

Historical time-series data from the Gulf of Maine Moored Buoy Program for buoys 

A, B, E, I, M, and N used in this study are available at h t t p : / / g y r e . umeoce .maine. 

edu/buoyhome.php. Buoys A, B, E, I, M, and N are representative of Cape Cod Bay, 

the Western Maine Shelf, the Central Maine Shelf, the Eastern Maine Shelf, Jordan 

Basin, and the Northeast Channel respectively (Fig 2-1). Hourly or finer resolution 

data are provided for most buoys for the years 2001-2010 at some standard depths 

depending on the buoy location and maximum water depth. Buoys A, B, E, I, M, and 

N have maximum depths of 65m, 62m, 100m, 100m, 285m, and 225m respectively. 

Only hourly data with measurements at lm, 20m, and 50m is considered for this 

study. Missing data for certain periods of time and at particular depths is common 

for all moorings, and was accounted for in data processing and analysis. I filtered 

GOMOOS data to remove all unrealistic salinity and temperatures measurements. 

All hourly data outside of the winter months (January, February, and March) were 

also eliminated and the remaining hourly data were averaged and binned by day. 
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In order to focus on longer-term patterns, which may result in a more significant 

biological response, a 20 day rolling average was applied. 

2.1.2 Cast Data 

Cast data pertinent to this research comes from Coastal Ocean Observation and 

Analysis dataset (COOA) and from the Bedford Institute of Oceanography (BIO) 

hydrographic database. The BIO data spans 1970-2003 while the COOA data are 

more recent, 2005-2009. The BIO and COOA cast data are used in the spatial analysis 

of regional water-column stability, salinity/temperature patterns, and in determining 

the relative importance of salinity and temperature in affecting the density in the 

upper water-column (l-20m). 

The COOA and BIO data were combined and organized using Matlab®. All 

casts not taken during the winter (January, February, and March), or those outside 

the GOM were removed. Casts missing all salinity or temperature measurements 

were also discarded because both data types are necessary to calculate potential 

density. As with the GOMOOS mooring data, casts were also rejected if salinity or 

temperature values fell outside realistic ranges. Another requirement was that casts 

must have a complete salinity and temperature profile. For example, casts were not 

used if the first measured depth was not within 5m of the surface, or if there was only 

one recorded depth. Furthermore, since the change in density in the upper 20m is a 

main focus of this study, casts were eliminated if the difference between the first and 

second depth was greater than 3m. A consequence of keeping casts with poor data 

resolution would be less confidence in the estimate of a mixed layer depth. Also, since 

the upper water-column is defined as the top 20m, casts are not used for analysis if 

a depth of 20m is not reached. 

For the remaining casts, salinity, temperature, pressure, and depth data are lin­

early interpolated using .125m resolution to make calculations of mixed layer depth 
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as well as to find salinity, temperature, or potential density values at specific depths. 

The potential density at each depth is found by inputting interpolated data into the 

Matlab® function "sw_pden" developed by Phil Morgan in 1992, and part of the 

seawater toolbox for Matlab®. Calculations of potential density are based on the 

equation of state for seawater given by Gill (1982). A reference pressure of 0 db is 

used in all potential density calculations. After finding the potential density for each 

depth for a particular cast, the next step is to define a mixed layer depth. For sim­

plicity and consistency with the work of other researchers, the mixed layer is defined 

using a finite difference criterion of .01 kg/m3 (Thomson and Fine, 2003). In order 

to use this method, however, it is necessary to choose a surface depth. Because not 

all casts have data collected within a meter of the surface, the reference surface for 

mixed layer depth calculations is defined as the minimum depth data are available 

shallower than 5m. 

In cases when maximum depths are less than 20m, physical factors such as bot­

tom stress caused by the interaction of waves and tides with the seafloor will cause 

turbulent mixing and may overshadow the roles of temperature, salinity, and wind 

stress in governing stratification/destratification. Removing casts that do not reach 

20m also deals with cases of "artificially" shallow mixed layer depths found from in­

complete depth profiles. In this case, the algorithm designed to find the mixed layer 

depth chooses the deepest value available for a particular cast to be the mixed layer 

depth if the .01 kg/m3 threshold is not met. Removing casts where the mixed layer 

depth coincides with the deepest recorded depth makes little difference in regional 

mixed layer depth averages in the Coastal, Western, and Eastern Zones. However, for 

areas with greater mixing such as Georges Bank and the Northern Zone, removing 

these casts does bias the average mixed layer depth toward shallower depths. Due 

to limitations in the cast data, regionally averaged mixed layer depths presented in 

this study should be considered as under-estimates. That is to say that mixed layer 
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depths may be greater in some cases, but the true mixed layer depth is not resolvable 

with the available cast data. Algorithm derived differences in mixed layer depth are 

presented in the following chapter. 

2.1.3 NCEP-DOE Reanalysis II 

Daily averaged wind data from 2001-2010 were obtained from the National Center 

for Environmental Predictions Reanalysis II model put forth by the Earth Systems 

Research Laboratory at NOAA (National Oceanographic and Atmospheric Associa­

tion). This gridded dataset is a model which incorporates observations and is updated 

continually in an effort to represent the state of the Earth's atmosphere. The NCEP-

DOE Reanalysis II is an updated version of the previous NCEP/NCAR Reanalysis I 

model that fixed errors and updated parameterizations of physical processes (Kana-

mitsu et al., 2002). Wind-speed magnitudes squared (pseudo-stress) and direction 

in degrees from North are calculated for all daily data. The grid coverage of NCEP 

wind data is 42.856°N to 44.76°N and 65.6250°W to 69.375°W. Daily wind averages 

represent the spatial average over the gridded area. The area covered by the NCEP 

grid defined above provides good spatial coverage of the GOM. Similar to the GO-

MOOS data, a 20 day rolling average is applied to daily and directional data in order 

to focus on longer term patterns that affect stratification in the upper 20m. 

2.2 Methods ) 

2.2.1 Defining Zones within the Gulf of Maine 

For the purpose of this study, the Gulf of Maine is divided into five distinct regions 

(Fig. 1-3). These regions include the Coastal, Western, Northern, and Eastern Zones 

as well as Georges Bank. Regions were chosen based on spatial patterns in aver­

aged wintertime salinities and temperatures at 2 and 25m. Salinity and temperature 
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values come from the Bedford Institute of Oceanography and represent all available 

hydrographic data collected between 1970-2003. Sources of data include the National 

Marine Fisheries Surveys, Canadian and U.S Government surveys, and U.S. and 

Canadian academic sources (Pringle, 2006). Monthly climatologies compiled by Dr. 

James Pringle are available at http:/ /oxbow.sr.unh.edu/nogoogle/hydro_clim/. 

The Coastal Zone extends from just east of Cape Cod to Penobscot Bay and is 

defined as the area from the coastline to the 150m depth contour. The Northern Zone 

similarly follows the 150m depth contour and extends from Penobscot Bay into the 

Bay of Fundy. The Western Zone is adjacent to the Coastal Zone. It is bounded to 

the south by Georges Bank and includes the Wilkinson Basin. The Eastern Zone is 

adjacent to the Northern Zone and includes both Georges and Jordan Basin. The 

Eastern Zone also includes much of the area southwest of Nova Scotia and extends 

eastward to 65.5°W. Again this region is bounded to the south by Georges Bank. 

Georges Bank is unique in that it is relatively shallow (~70m) and is heavily influenced 

by tidal mixing. The number of casts used from the Coastal, Northern, Western, 

Georges Bank, and Eastern zones is 460, 58, 223, 385, and 257 respectively. 

2.2.2 Winter Decorrelation Time-Scales at GOMOOS Buoys 

At the GOMOOS moorings, decorrelation times for salinity, temperature, and 

potential density are found by determining the amount of time that needs to pass in 

order for one sample to be independent of another (Table 2.1). In order to remove 

natural trends within a time-series, all decorrelation times are calculated considering 

only the anomaly from the climatological values. In this case, climatologies are calcu­

lated for each day during the winter (calender days 1-90) using all available years. All 

decorrelation times are calculated by finding the time lag required for zero correlation 

between two samples. Decorrelation times are calculated for several applications of 

salinity, temperature, and potential density in order to find the standard error of cal-
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culated averages. Given the decorrelation time for a particular data type, the number 

of independent samples is defined as the the total number of winter days divided by 

the decorrelation time. The standard error is found by taking the standard deviation 

of a dataset and dividing it by the square root of the number of independent samples. 

The decorrelation times of salinity and temperature at different depths and at 

different GOMOOS buoys are calculated using 20 day rolling averages. Only winter 

days are considered in this calculation. Decorrelation times are also calculated for 

the difference in potential density between 1 and 20m as well as for the difference 

in salinity and temperature between 1 and 20m. Furthermore, decorrelation times 

are found for salinity, temperature, and relative contributions. These contributions 

will be discussed in the following chapter. To find the sensitivity of the decorrelation 

time to the 20 day rolling average, a 4 day rolling average is applied instead, and 

decorrelation times are re-calculated. Given that the averaging in both cases is on 

much shorter time-scales than the monthly to seasonal decorrelation time-scales for 

the data types considered, it is expected and found that the 20 and 4 day rolling 

averages have nearly the same decorrelation times. 

2.2.3 Calculating Average Salinity and Temperature 

Calculating Average Salinity/Temperature at GOMOOS Buoys 

The average winter salinity and temperature at lm for the GOMOOS buoys is 

calculated using 20 day rolling averages for each winter day (1-90) and for all years 

with data. It is acceptable to use 20 day rolling averages since the decorrelation 

time for salinity and temperature at lm is typically on seasonal or longer time-scales 

(Table 2.1). Daily averages are binned by year and then averaged to find yearly winter 

averages at a specific buoy. Standard error is calculated by taking the standard 

deviation of the yearly averages and dividing by the square root of the number of 

independent samples. The number of independent samples is found by taking the 
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total number of winter days at a particular mooring and dividing by the decorrelation 

time for the variable in question. 

The salinity and temperature difference between lm and 20m, or lm and 50m, 

is found by subtracting the 20 day rolling averages of salinity/temperature at lm 

from the 20 day rolling averages of salinity/temperature at 20m/50m. In doing this 

subtraction the salinity/temperature values at the shallower depth are subtracted 

from the corresponding values at the deeper depth. Corresponding values refer to 

measurements taken on the same day and year. Since there is often less data at 

20m and 50m than at lm, the data from 20 and 50m dictates the number of years 

available for calculating the salinity or temperature difference between two depths. 

Daily differences in salinity or temperature between two depths are averaged for the 

entire winter. Standard error is calculated using the yearly averages and applicable 

decorrelation times. 

J 

Calculating Average Regional Salinity/Temperature using Cast Data 

Using the BIO and COOA datasets, the mean surface salinity and temperature of a 

region are found by averaging the shallowest measurement of salinity and temperature 

from each cast. The shallowest recorded measurement between (0-5m) is used because 

of inconsistencies in starting depths between casts. Although averaging all years with 

data from 1970 to 2009 allows a good approximation of winter surface salinity and 

temperature within a particular zone, it ignores year to year variability. Due to 

limited data and small sample sizes for any particular year, however, it is difficult 

in many cases to say with any statistical confidence that one year is different from 

another. Where cast data are insufficient, however, the high resolution temporal data 

from the GOMOOS buoys helps to fill in the gaps. The standard error of the average 

is computed by finding the standard deviation of salinity/temperature data for all 

casts within a particular region divided by the square root of the number of years 
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where data are available. It is appropriate to calculate the standard error in this way 

given that the decorrelation time of salinity and temperature is on seasonal time-

scales in the Coastal Zone (Table 2.1), and at least this long in the deep basins of 

the GOM (Pringle, 2006). In other words, it is a decent assumption that the salinity 

or temperature value in a given winter, in a particular zone, is representative of the 

entire winter. 

The salinity and temperature difference between different depths is found by look­

ing at differences within particular casts, and then averaging all casts by zone. The 

difference in salinity/temperature is calculated between the surface depth and 20m. 

Linearly interpolating salinity and temperature with .125m resolution is helpful in 

ensuring that a salinity/temperature value is available at or very close to 20m even 

for casts which may have coarse depth resolution. The standard error of the average 

difference in salinity/temperature for all casts within a zone is found by dividing the 

standard deviation of the average differences by the square root of number of years 

with available data. 

2.2.4 Calculating Average Stability 
> 

Calculating Average Stability at GOMOOS Buoys 

For GOMOOS buoys, 20 day rolling average stability values are calculated as the 

rate of change of density with depth between 1 and 20m. The larger the gradient in 

potential densities between the surface and 20m, the greater the stability. Following 

the routine of Mountain and Manning (1994) as closely as possible, the stability is 

calculated by using the difference in potential density at the surface and 20m depth 

divided by the difference in depth. The stability equation used in this study is based 

on the equation for stability (E=(-l/p)(dp/dz)) given by Stewart (2007), but considers 

(d00/dz) not (dp/dz). 
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Calculating Average Stability for Cast Data 

The average stability for the cast data is calculated in the same way as for the 

GOMOOS data. For each cast the stability is defined as the rate of change of density 

in the upper 20m. The potential density difference between the surface and 20m is 

found by subtracting the lm density from the 20m density and then dividing by the 

depth difference. The depth difference between the minimum surface depth (0-5m) 

and 20m is variable between casts. Any bias in stability values between casts resulting 

from using different surface depths is likely to be negligible, however, since the surface 

depth is restricted to a narrow depth range. The average stability of an entire region 

is found by averaging all stability values for casts in a particular region. As with the 

salinity and temperature cast data, the standard error for the stability data is found 

by dividing the standard deviation of the regional stability values by the square root 

of number of years with available data. 

2.2.5 Comparison of Averages 

Comparing GOMOOS Statistics 

In order to determine whether a particular statistic is different between two GO­

MOOS buoys, it is necessary to consider only the times when data are present at 

both sites. For example the salinity value at lm at Buoy B on January Ist, 2007 

cannot be compared with a similar value at Buoy M on January 1st, 2008. Salinity, 

temperature, potential density, and changes in these variables with depth are not 

the same from one winter to the next. Inter annual variability in these variables will 

be discussed in the following chapter. In comparing a particular statistic, the buoy 

which covers the smallest range of years is used to define what days of what years can 

be compared. The comparison of two buoys for a particular day and year is simply 

done by subtracting the value at one buoy from the corresponding value at the other 
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buoy. Recall that each daily value is based on a 20 day rolling average. All values 

at one buoy are compared to corresponding values at another buoy to generate a list 

of differences that are binned and averaged by year. All yearly-averaged difference 

values for a particular buoy are averaged to provide an overall difference. The total 

standard error is calculated by first considering each mooring individually, taking 

the standard deviation of the yearly averaged difference values divided by the square 

root of the number of independent samples. The number of independent samples is 

dependant on the decorrelation time. Total error is then found using the formula 

A/-L + -\ where Si and S2 are standard deviations and ni and n2 are the number 
W Tl\ Tin 

of independent samples at each mooring. P-values are calculated using a 2 sample 

t-test (assuming unequal variance) with the yearly averaged difference values at both 

buoys being compared. The Welch-Satterthwaite Equation is used to determine the 

effective degrees of freedom. 

Comparing Cast Statistics 

Comparing cast statistics between different zones in the GOM is limited by the 

amount of available data. Since there are very few times when data were collected on 

the same day and year in different regions, it is generally not statistically robust, and 

often not possible, to make inter-region comparisons based on these casts. To deal 

with the sample size issue, it is better to simply compare the averages of cast data in 

each zone. A shortcoming of this is that the average in one region may be based on 

different years than in another zone. Although this limitation is not ideal, a general 

comparison can still be made since averaging reduces the effect of interannual variabil­

ity. The average difference for a statistic between 2 zones is found by subtracting the 

total average in one zone from the average in the other. The total standard error is 

found in a similar way as for the GOMOOS data using the formula A/-L + -% where Si 
y 77-1 7T.2 

and S2 are standard deviations and ni and n2 are the number of independent samples 
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for each zone. The number of independent samples is given by the number of years 

with data present in a particular zone. Seasonal decorrelation times are assumed for 

cast data throughout the GOM' since the temporal variation in the density field are 

on longer time-scales than found in the coastal area (Pringle, 2006). Using seasonal 

decorrelation times provides an upper-estimate on error whereas using decorrelation 

times on shorter time-scales may inaccurately decrease error. P-values are calculated 

using a 2 sample t-test (assuming unequal variance) with the averages for each zone 

being compared. Again, the Welch-Satterthwaite Equation is used to determine the 

effective degrees of freedom. 

2.3 Results 

2.3.1 Surface Salinity and Temperature 

The cast and GOMOOS mooring data show that the salinity at lm is lowest in the 

Coastal and Eastern Zones of the GOM (Fig. 1-3, Table 2.2, and Table 2.3). When 

comparing GOMOOS buoys, the average salinity at lm tends to decrease moving 

counter-clockwise from Buoy I, located along the Eastern Maine Shelf, to Buoy A east 

of Cape Anne (Table 2.4). Low salinities at Buoy A and B, in the southern Coastal 

Zone, are the result accumulated fresh river inflow from northern sources (Deese-

Riordan, 2009). These sources included the Merrimack, Saco, Kennebec, Penobscot, 

St. Croix, and St. John Rivers. Buoy A is fresher than coastal GOMOOS buoys to 

the north since fresh river discharge becomes trapped against the coast and circulates 

from north to south (Fong et al., 1997). The comparison of Buoy A in the Coastal 

Zone, with Buoys B, E, and I located further north, and Buoy M further east, shows 

that the salinity at lm is significantly different at the 10% level. In the Eastern 

GOM, fresh SSW inflow, with Labrador Current and St. Lawrence River origins, is 

responsible for low surface salinities at Buoy N. The difference between Buoys A and 
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N is not statistically significant at the 5% level with P= . l l and 13 degrees of freedom. 

The difference in salinity, however, is highly significant (P<.01) when comparing Buoy 

N, in the eastern GOM, with moorings on the Maine Shelf (B, E, and I) and Buoy M 

in Jordan Basin. Lowest average* winter surface salinities at Buoy A in the Coastal 

Zone, and at Buoy N in the Eastern Zone, illustrate the respective roles of river 

discharge and SSW inflow in affecting patterns in regional surface salinity. 

Spatial patterns in surface salinity found from casts show the same pattern as 

those depicted by the GOMOOS data. The cast data goes beyond the GOMOOS 

mooring data, however, by providing information on average winter surface salinity in 

the Western Zone and over Georges Bank. Results from cast data indicate that long-

term averaged salinity at lm is lowest in the Coastal, Northern, and Eastern zones, 

while higher values are found at Georges Banks and the Western Zone (Table 2.3). 

Higher average winter salinities in the Western Zone are the result of deepening mixing 

with more saline waters (Pringle, 2006). On Georges Bank, full water-column mixing 

in combination with the delayed arrival of fresh Scotian Shelf and river water until 

late summer results in relatively high winter surface salinities (Smith et al., 2001). 

The difference in surface salinity is highly significant (P<.01) when comparing either 

the Western Zone or Georges Bank to any other region (Table 2.5). The difference in 

surface salinity between the Coastal, Northern, and Eastern Zones, however, is not 

statistically significant (P>\05). 

According to cast and GOMOOS mooring data the coolest water temperatures at 

lm are found in the Eastern, Northern, and Coastal Zones (Table 2.2 and 2.3). The 

differences in surface temperatures between buoys A, B, and E in the Coastal Zone 

are not statistically significant (P>.05) (Table 2.6). For the GOMOOS data, the 

only temperature comparison significantly different from zero at the 5% level is found 

between Buoy M in Jordan Basin, and Buoy N over the Northeast Channel. Cast 

data shows that the warmest sea surface temperatures are found in the Western Zone 

33 



and over Georges Bank. The difference in surface temperature is highly significant 

(P<.01) when comparing either the Western Zone or Georges Bank to any other 

region (Table 2.7). Greater mixing in the Western Zone and over Georges Bank 

may be partly responsible for the higher average surface temperatures. Although the 

relation between mixed layer depth and heat loss will be discussed in more detail in 

the following chapter, for now it should be mentioned that cooling occurs more readily 

when mixed layer depths are shallow and stratification in the upper water-column is 

strong (Deese-Riordan, 2009). It is also likely that high surface temperatures in the 

Western Zone and over Georges Bank are correlated with warmer air temperatures 

offshore that result from air mass modification by the ocean (Bunker, 1956). 

Overall, analysis of surface temperature and salinity using cast and GOMOOS 

mooring data indicate distinct regional differences. The Coastal, Northern, and East­

ern Zones are characterized by fresher and cooler conditions, while warmer, saltier 

conditions prevail in the Western Zone and over Georges Bank. Spatial variability 

in surface salinity and temperature is driven by the GOM's circulation, mixing, and 

inflow of both fresh \SSW and river water (Mountain and Manning, 1994). 

2.3.2 Average Salinity/Temperature Difference with Depth 

Throughout the GOM, salinity increases with depth in the upper 20m (Table 2.2 

and Table 2.3). In the Western Zone and over Georges Bank, however, the increase in 

salinity in the upper water-column is less significant (P>.10) due to greater mixing. 

Mixing acts to homogenize the water-column. Both cast and GOMOOS mooring 

data agree that wintertime differences in salinity between 1 and 20m are,greatest in 

the Coastal and Eastern Zones (Table 2.8). Conversely, smaller changes in salinity 

with depth are found over Georges Bank and in the Northern and Western Zones. 

Inter-regional comparisons of salinity increase in the top 20m are generally significant 

at at least the 20% level when comparing the Coastal and Eastern Zones with other 
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regions. The difference between the Coastal and Eastern Zones, however, is not 

statistically significant (P=.71) with 37 degrees of freedom. Buoys A, B, and E in the 

Coastal Zone, and Buoy N in the Eastern Zone, agree with the cast data by displaying 

the greatest average increase in salinity in the upper 20m (Table 2.9). Buoys I and 

M on the Eastern Maine Shelf and in Jordan Basin respectively, show the smallest 

increases in salinity with depth. In fact, the difference in salinity with depth at these 

moorings is not statistically different from zero at the 10% level. The difference in 

salinity between 1 and 20m tends to decrease when moving clockwise in the Coastal 

Zone from Buoy A to I. The comparison of Buoys A, B, and E with Buoy I on the 

Eastern Maine Shelf, shows that the differences in salinity increase in the upper 20m 

are significant at the 5% level (Table 2.9). 

Cast and GOMOOS mooring data show that during the winter a temperature 

inversion is present in the Eastern Zone of the GOM (Table 2.2 and Table 2.3). The 

inflow of fresh, cold, and buoyant SSW over warm, salty slope water explains the 

pronounced temperature inversion at Buoy N over the Northeast Channel (Ramp 

et al., 1985)). SSW does not impact the temperature gradient in the upper water-

column as strongly in other regions because it is mixed and modified by saline deep 

water as it circulates cyclonically around the GOM (Ji et al., 2008). For the other 

zones, averages from cast data indicate that temperature change in the upper 20m 

is not significantly different from zero at the 10% level. Conversely, at GOMOOS 

Buoys B and E, on the Western and Central Maine Shelf respectively, a temperature 

inversion is present and significant at the 10% level. In addition, at all GOMOOS 

buoys temperature increase with depth between 1 and 50m is significant at the 5% 

level. Although a complete temperature record is not available at 50m for Buoy A, it 

is expected that a temperature inversion will also be found here since it is seen nearby, 

at Buoy B, on the Western Maine Shelf. Furthermore, since the physical processes 

affecting the water-column are similar throughout the Coastal Zone, it is expected 
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that similar patterns in salinity and temperature will be found at all moorings in this 

region (Townsend, 1991). 

Inter-regional comparison of average temperature change in the upper water-

column (0-20m) shows that the difference between the Eastern Zone and all other 

regions is statistically significant at the 20% level (Table 2.10). Although this re­

sult is not "significant" according to the usual definition (P<.05), it is noteable since 

P-values are close to 1 for all other inter-regional comparisons . Similarly, for the GO­

MOOS data, the difference between Buoy N in the Eastern Zone, and other GOMOOS 

buoys is significant at the 20% level (Table 2.11). The exception is the comparison 

of Buoys N and B where (P=.29) with 4 degrees of freedom. 

2.3.3 Average Stability 

Significant intcr-regional differences in water-column stability are found during 

the winter in the GOM. GOMOOS time-series data shows that during the winter 

salinity and temperature often work against each other. Increasing the salinity or 

decreasing the temperature increases water density, while decreasing salinity or in­

creasing temperature decreases density. In the Coastal Zone at Buoys A, B, and E, 

both temperature and salinity increase with depth. However, because the tempera­

ture gradient is typically small (Table 2.2 and Table 2.3), it is the salinity difference 

in the top 20m that governs the degree of stability. Cast and GOMOOS mooring 

data agree that stability is greatest in the Coastal and Eastern Zones of the GOM 

(Table 2.12 and Table 2.13). Cast data shows that stability is the lowest over Georges 

Bank and in the Northern and Western Zones (Table 2.14). In fact, in the Western 

Zone and over Georges Bank the stability of the upper-water column (0-20m) is not 

significantly different from zero (P>.05). Greater water-column turnover in these re­

gions breaks down stratification and reduces stability (Townsend, 1991). Comparison 

of stability at the GOMOOS buoys shows that Buoys I and M in the Northern Zone 
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and Jordan Basin have the lowest stabilities (Table 2.15). The difference in stability 

values for Buoys I and M compared with all other GOMOOS moorings is significant 

at the 10% level. GOMOOS moorings show that the areas with the greatest stability 

(i.e. the Coastal and Eastern Zones) are also the areas with the greatest average 

winter temperature inversions. Cooling of the surface layer is facilitated under con­

ditions of high stability/stratification since mixing with deeper water is suppresed. 

Reduced vertical mixing causes continued cooling of the the upper-water column until 

an equilibrium is reached with the atmosphere (Deese-Riordan, 2009). 
i 

Since freshwater from rivers accumulates and circulates from north to south, from 

Buoy I to Buoy A, it is not surprising that stability values often increase southward 

in the Coastal Zone. From (Fig. 2-2), it is clear that Buoys A and N experience 

the greatest variability in stability. It is curious that Buoys A and N seem to be in 

sync with each other even though they are on separate sides of the GOM. During the 

winter Buoy N is mainly affected by fresh SSW, while Buoy A is affected by river 

runoff. The presence of SSW is not expected at Buoy A since it takes 2-3 months 

for this water mass to circulate from the eastern GOM to the southern Coastal Zone 

(Deese-Riordan, 2009). Since SSW does not reach the southern Coastal Zone until 

the end of winter, high winter stabilities cannot be attributed to the presence of this 

water mass. Instead, surface freshening and subsequent stratification at Buoy A is 

largely the result of discharge from the Merrimack River in combination with fresh 

input from rivers further to the north (Geyer et al., 2004). Freshening should occur 

earlier along the Eastern Maine Shelf than at Buoy A, east of Cape Anne. At Buoys 

E or I, on the Central and Eastern Maine Shelf respectively, both SSW and river 

discharge can affect the water-column stabilities during the winter (Deese-Riordan, 

2009). Since SSW flows cyclonically around the GOM from the Scotian Shelf, to Buoy 

A in the Coastal Zone, it is expected that years of greater stability at Buoy N would 

also be seen at Buoy M in Jordan Basin. However from (Fig. 2-2), it appears greater 

37 



stratification at Buoy N does not necessarily translate to Buoy M in Jordan Basin. 

For example, during the winter of 2006 high stabilities at Buoy N are not reflected 

by increased stratification at Buoy M. 

The 2006 case just described hints to complexities in winter circulation. For 

example, Jordan Basin is sometimes affected by cold, fresh plumes of water with 

SSW origin that form when the Eastern Maine Coastal Current (EMCC) separates 

from the coast near Penobscot Bay (Pettigrew et al., 1998). The EMCC flows from 

the southwestern Scotian Shelf, across the mouth of the Bay of Fundy, to the outlet 

of Penobscot Bay (Bisagni et al., 1996). Upon reaching the outlet of Penobscot Bay, 

part of the EMCC continues down the Maine coast to Cape Cod as the Western 

Maine Coastal Current (WMCC), while the remainder of the EMCC diverges from 

the coast and circulates cyclonically around Jordan Basin (Brooks, 1985) (Fig. 1-4). 

The exact divergence point of the EMCC and the volume of freshwater transported 

offshore is variable (Pettigrew et al., 1998). Although a detailed investigation of the 

circulation around Jordan Basin is beyond the scope of this study, it is clear that 

patterns in stratification in one area are not necessarily true of another. A variety of 

factors including interannual variability of SSW inflow, river discharge, patterns in 

local circulation, tidal mixing, air temperatures, and wind-induced mixing all affect 

the stability of the water-column (Townsend, 1991). Spatial and temporal patterns in 

stratification as well as the roles of salinity, temperature, and wind stress in affecting 

the density structure of the upper water-column will be explored in the following 

chapter. 
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Decorrelation Time Scales in days during the Winter 

(* salinity ( lm) 
(20 day rolling) 
*salinity(20m) 
(20 day rolling) 
*temperature(lm) 
(20 day rolling) 
*temperature(20m) 
(20 day rolling) 
*density(20m)-density(lm) 
(20 day rolling) 
*salt(20m)-salt(lm) 
(20 day rolling) 
*temp(20m)-temp(lm) 
(20 day rolling) 
* Salinity Contribution 
(20 day rolling) 
*Temperature Contribution 
(20 day rolling) 
*Relative Contribution 
(20 day rolling) 

A B E I M N 

98 90 117 74 75 63 

64 67 66 66 69 63 

90 85 86 89 115 51 

107 92 84 97 108 65 

55 24 38 59 130 55 

55 23 36 56 162 56 

94 34 26 31 45 65 

64 23 35 53 168 57 

86 39 32 88 83 65 

67 24 34 50 165 152 

Table 2.1: Wintertime decorrelation times are calculated in days. Fields marked by 
an asterisk indicate that the decorrelation time is based on an anomaly from average 
difference. The anomaly from average difference is used to de-trend the time-series 
by removing the climatological average. Calculations of decorrelation times using a 4 
day rolling average are nearly the same as those found using a 20 day rolling average. 
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Wintertime Salinity and Temperature Change with Depth 
at GOMOOS Buoys 

salinity ( lm) 

sal(20m)-sal(lm) 

sal(50m)-sal(lm) 

temperature(lm) 

temp(20m)-temp(lm) 

temp(50m)-temp(lm) 

Coast 
A 

32.11 
±.18 

0.3009* 
±.066 

4.139 
±.30 
.1045 

±.0758 

B 
32.50 
±.16 

0.1693** 
±.010 

.3606** 
±.030 
4.125 
±.28 

.0938* 
±.026 

.5541** 
±.081 

E 
32.56 
±.13 

0.1210** 
±.013 

.2314** 
±.026 
4.176 
±.27 

.1094** 
±.015 

.3850** 
±.041 

North 
I 

32.53 
±.094 

0.0456** 
±.0046 
.0945** 
±.0091 
4.199 
±.25 
.0186 
±.006 
.0983* 
±.025 

East 
M 

32.57 
±.16 

.0609** 
±.024 

.1887** 
±.034 
4.600 
±.28 
.0586 
±.033 

.3395** 
±.064 

N 
31.72 
±.051 
.3501* 
±.094 

.7214** 
±.048 
3.533 
±.19 

.6163* 
±.250 

1.328** 
±.21 

Table 2.2: The salinity and temperature difference between lm and 20m, or lm 
and 50m, is found by subtracting the 20 day rolling averages of salinity/temperature 
at lm from the 20 day rolling averages of salinity/temperature at 20m/50m. All 
differences are averaged by year. Yearly averages of differences are then averaged and 
± 1 standard error is found from the yearly averages and appropriate decorrelation 
time. Salinity and temperature units are given in PSU and °C, respectively. "*" 
indicates significance at 10% level and "**" indicates significance at the 5% level. 

6 
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Salinity, Temperature, and Potential Density Change for Casts 
during the Winter 

salinity ( lm) 

salinity (20m)-salinity(lm) 

temperature ( lm) 

temp(20m)-temp(lm) 

<7e(20m) — o"0 ( lm) 

Coast 
32.29 
±.13 

.1273** 
±.071 
4.094 

±.0.22 
-.0100 
±.062 

.1025** 
±.057 

West 
32.80 
±.102 
.0186 
±.016 
5.640 

±0.243 
-.0035 
±.027 
.0152* 
±.012 

East 
32.15 
±.138 

.0972** 
±.042 
4.092 
±.321 
.1532* 
±.096 

.0615** 
±.025 

North 
32.12 
±.112 

.0289** 
±.012 
3.486 
±.368 
.0125 
±.031 

.0218** 
±.008 

G. Bank 
32.76 
±.089 
.0058 
±.006 
5.466 
±.253 
.0025 

±.0066 
.0044 
±.009 

Table 2.3: The salinity, temperature, and potential density difference between dif­
ferent depths is found by looking at differences within particular casts. Differences 
are averaged by zone. Salinity and temperature units are given in PSU and °C, re­
spectively. Standard error (±1) is found by averaging all casts within a particular 
zone and dividing by the number of years with data. Seasonal decorrelation times are 
assumed and provide an upper-estimate on error. "*" indicates significance at 10% 
level and "**" indicates significance at the 5% level. 
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Comparison of W i n t e r t i m e Salinity at l m between G O M O O S Buoys 

A 

B 

E 

I 

M 

B 
(B-A)= 

0.273 ± .042 
p=.15 
df=15 

E 
(E-A)= 

0.450 ± .069 
p=.06 
df=16 

(E-B)= 
0.126 ± . 0 3 

p=.57 
df=14 

I 
(I-A)= 

0.418 ± .11 
p=.06 
df=16 
(I-B)= 

0.081 ± .089 
p=.55 
df=15 
(E-I)= 

0.0357 ±.063 
p=.83 
df=16 

M 
(M-A)= 

0.613 ± .12 
p=.09 
df=14 

(M-B)= 
0.290 ± . 1 3 

p=.41 
df=13 

(M-E)= 
0.120 ± .10 

p=.99 
df=14 
(M-I)= 

0.071 ±.081 
p=.83 
df=14 

N 
(A-N)= 

0.1211 ± . 2 3 
p = . l l 
df=13 

(B-N) = 
0.549 ± .25 

p=.004 
df=l l 

(E-N)= 
0.641 ± .19 

p<.001 
df=13 
(I-N)= 

0.708 ± .17 
p=<.001 

df=13 
(M-N)= 

0.810 ± .24 
p<.001 
df=l l 

Table 2.4: The method used to compare average wintertime salinity values at lm 
between GOMOOS buoys is described in section 2.2.5. Results are considered signif­
icant for p<.05. 
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Comparison of Wintertime Salinity at l m between Zones 

Coast 

West 

East 

North 

West 
(W-C)= 

.5088 ±.165 
p=0.004 
df=37.98 

East 
(C-E)= 

0.1353 ±.189 
p=.48 

df=42.28 
(W-E)= 

0.6441 ± .171 
p<.001 

df=34.24 

North 
(C-N)= 

0.1706 ±.171 
p=.33 

df=37.81 
(W-N)= 

.6794 ±.152 
p<.001 

df=29.72 
(E-N)= 

0.0353 ±.178 
p=.85 

df=34.89 

G. Bank 
(GB-C)= 

.4733 ±.158 
p=.005 

df=35.81 
(W-GB)= 

.0356 ±.136 
p=.80 

df=27.92 
(GB-E)= 

0.6085 ±.164 
p<.001 

df=31.81 
(GB-N)= 

.6438 ± .144 
p<.001 

df=27.40 

Table 2.5: The method used to compare average wintertime salinity values at lm 
between zones in the GOM is described in section 2.2.5. Results are considered 
significant for p<.05. 
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Comparison of W i n t e r t i m e T e m p e r a t u r e at l m between G O M O O S Buoys 

A 

B 

E 

I 

M 

B 
(B-A)= 

0.0975 ± .085 
p=.88 
df=15 

-

E 
(E-A)= 

0.0950 ± .11 
p=.77 
df=16 

(E-B)= 
0.0296 ± .10 

p=.94 
df=14 

I 
(I-A)= 

0.0260 ± .078 
p=.91 
df=16 

(B-I)= 
0.0846 ± .11 

p=.75 
df=15 
(E-I)= 

0.0644 ± .15 
p=.84 
df=16 

M 
(M-A)= 

0.643 ± .15 
p=.20 
df=14 

(M-B)= 
0.624 ± .15 

p=.30 
df=13 

(M-E)= 
0.623 ± .17 

p=.30 
df=14 
(M-I)= 

0.546 ± .19 
p=.19 
df=14 

N 
(A-N)= 

0.561 ± .29 
p=.18 
df=13 

(B-N)= 
0.658 ± .41 

p=.12 
df=l l 

(E-N)= 
0.498 ± . 3 3 

p=.10 
df=13 
(I-N)= 

0.630 ± .21 
p = . l l 
df=13 

(M-N)= 
1.20 ± .34 

p=.01 
df=l l 

Table 2.6: The method used to compare average wintertime temperature values at 
lm between zones in the GOM is described in section 2.2.5. Results are considered 
significant for p<.05. 
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Comparison of W i n t e r t i m e Tempera tu re a t l m between Zones 

Coast 

West 

East 

N o r t h 

West 
(W-C)= 

1.546 ±.325 
p<.001 

df=34.21 

c 

East 
(C-E)= 

0.0025 ± .387 
p=.99 

df=35.87 
(W-E)= 

1.548 ± .403 
p<.001 

df=34.42 

N o r t h 
(C-N)= 

0.6089 ± .427 
p=.17 

df=25.20 
(W-N)= 

2.155 ±.441 
p<.001 

df=25.98 
(E-N)= 

0.6065 ± .488 
p=.22 

df=32.42 

G. Bank 
(GB-C)= 

1.371 ±.333 
p<.001 

df=29.90 
(W-GB)= 

0.1745 ±.351 
p=.62 

df=27.64 
(GB-E)= 

1.374 ±.409 
p=.002 

df=32.99 
(GB-N)= 

1.980 ±.447 
p<.001 

df=25.88 

Table 2.7: The method used to compare average wintertime temperature values at 
lm between zones in the GOM is described in section 2.2.5. Results are considered 
significant for p<.05. 



Comparison of Wintertime Salinity Difference (20m-lm) 
betwen Zones 

Coast 

West 

East 

North 

West 
(C-W)= 

0.1088 ±.072 
p=0.1458 

df=25.2264 

East 
(C-E)= 

0.0301 ± .082 
p=.7171 

df=36.9936 
(E-W)= 

0.0787 ± .045 
p=0941 

df-25.2291 

North 
(C-N)= 

0.0984 ± .072 
P-.1823 

df=24.2360 
(N-W)= 

0.0104 ±.019 
p=.6020 

df=27.6735 
(E-N)= 

0.0683 ± .0439 
p=0.1342 

df=22.9591 

G. Bank 
(C-GB)= 

.1215 ±.072 
p=.1026 

df=24.1707 
(W-GB)= 

0.0128 ±.0194 
p= .5139 

df=26.4438 
(E-GB)= 

0.0914 ± .0438 
p=.0489 

df=22.7903 
(N-GB)= 

0.0231 ± .0162 
p= 0.1662 
df=27.9415 

Table 2.8: The method used to compare average wintertime salinity difference be­
tween 1 and 20m between zones in the GOM is described in section 2.2.5. Results 
are considered significant for p<.05. 
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Comparison of Wintertime Salinity Difference (20m-lm) 
between GOMOOS Buoys 

A 

B 

E 

I 

M 

B 
(A-B) = 

0.1275 ± .068 
p=0.27 
df=5.40 

E 
(A-E)= 

0.2065 ± .067 
p= 0.07 
df=6.64 
(B-E)= 

0.0458 ±.015 
p=0.19 
df=9.65 

I 
(A-I)= 

0.2821 ± .066 
p=0.02 
df=6.05 
(B-I)= 

0.1234 ±.011 
p=0.001 
df=6.09 
(E-I)= 

0.0754 ±.014 
p=0.011 
df= 6.90 

M 
(A-M)= 

0.2666 ± .068 
p=0.03 
df=6.79 
(B-M)= 

0.1034 ±.021 
p=0.014 
df=9.29 
(E-M)= 

0.0602 ±.023 
p=0.083 
df=11.86 
(M-I)= 

0.0159 ±.019 
p=0.55 
df=6.72 

N 
(N-A)= 

0.0613 ± .14 
p=0.88 
df=9.82 
(N-B) = 

0.1560 ± .12 
p=0.33 
df=4.16 
(N-E)= 

0.2356 ± .12 
p=0.114 
df=5.32 
(N-I)= 

0.3107 ±.094 
p=0.051 
df=5.03 
(N-M) = 

0.3094 ± .12 
p=0.0598 
df=5.39 

Table 2.9: The method used to compare average wintertime salinity difference be­
tween 1 and 20m between zones in the GOM is described in section 2.2.5. Results 
are considered significant for p<.05. 
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Comparison of Wintertime Temperature Difference (20m-lm) 
between Zones 

Coast 

West 

East 

North 

West 
(W-C)= 

0.0065 ± .067 
p=.92 

df=30.99 

-

East 
(E-C)= 

0.1632 ±.114 
p=.16 

df=34.88 
(E-W)= 

0.1567 ±.099 
p=.13 

df=23.16 

North 
(N-C)= 

0.0225 ± .069 
p=.75 ' 

df=32.68 
(N-W)= 

0.0160 ±.041 
p=.70 

df=29.58 
(E-N)= 

0.1407 ±.100 
p=.17 

df=23.98 

G. Bank 
(GB-C)= 

.0124 ±.062 
p=.84 

df=23.52 
(GB-W)= 

0.0059 ± .028 
p=.83 

df=16.75 
(E-GB)= 

0.1507 ±.096 
p=.13 

df=20.19 
(N-GB)= 

0.0100 ±.0313 
p=.75 

df=16.38 

Table 2.10: The method used to compare average wintertime temperature difference 
between 1 and 20m between zones in the GOM is described in section 2.2.5. Results 
are considered significant for p<.05. 



A 

B 

E 

I 

M 

Comparison < 

B 
(A-B)= 

0.0777 ±.086 
p=0.43 
df=7.33 

i 

of Win te r t ime Tempera tu re Difference (20m- lm) 
between G O M O O S Buoys 

E 
(A-E)= 

0.0162 ±.078 
p=0.86 
df=7.24 
(E-B)= 

0.0218 ±.031 
p=0.68 
df=9.30 

I 

(A-I)= 
0.1066 ±.076 

p=0.25 
df=6.17 
(B-I)= 

0.0717 ±.026 
p=0.15 
df=5.75 
(E-I)= 

0.0906 ±.016 
p=0.01 
df=7.66 

M 
(A-M)= 

0.0670 ±.081 
p=0.50 
df=9.38 
(B-M)= 

0.0296 ± .037 
p=0.68 
df=9.31 
(E-M)= 

0.0508 ±.031 
p=0.37 
df=9.65 
(M-I)= 

0.0415 ±.028 
p= 0.43 
df=6.57 

N 
(N-A)= 

0.4182 ± .22 
p=0.16 
df=5.84 
(N-B)= 

0.3505 ± .21 
p=0.29 
df=4.16 
(N-E)= 

0.4946 ± .21 
p=0.14 
df=5.09 
(N-I)= 

0.5919 ± .21 
p=0.09 
df=5.01 
(N-M)= 

0.5939 ± .21 
p=0.11 
df=5.26 

Table 2.11: The method used to compare average wintertime temperature difference 
between 1 and 20m between GOMOOS buoys is described in section 2.2.5. Results 
are considered significant for p<.05. 
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Density Change with Depth at GOMOOS Buoys during the Winter 

00 (5Om)-0-e(lm) 

<Je(20m)-ao(lm) 

da0/dz (kg/m 4 ) 

Coast 
A 

0.229** 
±.063 

0.0121** 
±.0026 

B 
0.2283** 

±.035 
0.1250** 

±.014 
0.0066** 
±4.0e~4 

E 
0.1449** 

±.026 
0.0853** 

±.015 
0.0045** 
±5.0e"4 

North 
I 

0.0646** 
±.0069 

0.0342** 
±.0045 

0.0018** 
±2.0e"4 

East 
M 

0.1151** 
±.018 

0.0431** 
±.016 

0.0023** 
±8.0e"4 

N 
0.4342** 

±.023 
0.2095** 

±.070 
0.0110** 
±3.0e"3 

Table 2.12: The potential density difference between lm and 20m/50m, is found 
by subtracting the 20 day rolling averages of potential density at lm from the 20 
day rolling averages of potential density at 20m/50m. All differences are averaged by 
year. Yearly averages of differences are then averaged and ± 1 standard error is found 
using yearly averages in combination with calculated decorrelation times for the the 
anomaly from average density difference between 1 and 20m (Table 2.1. Stability is 
represented by dcr^/dz, and is calculated between 1 and 20m. At Buoy A not enough 
data are available to calculate the average difference of density (l-50m). "*" indicates 
significance at 10% level and "**" indicates significance at the 5% level. 

\ 
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Regional Wintertime Stabilities 

stability (dag/dz) 

Coast 
.0056** 
±.003 

West 
8.0e~4* 
±6.0e~4 

East 
.0035** 
±.0014 

North 
.0012** 
±5.0e"4 

G. Bank 
2.0e-4 

±5.0e-4 

Table 2.13: Stability is calculated as the potential density difference between the 
surface and 20m divided by the change in depth. Stability is given in kg/m4. Winter­
time stability values are averaged by zone over all years. Standard error (±1) is found 
by taking the standard deviation of all casts within a particular zone and dividing by 
the square root number of years with data. Seasonal decorrelation times are assumed 
and provide an upper-estimate on error. "*" indicates significance at 10% level and 
"**" indicates significance at the 5% level. 
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Comparison of Wintertime Stability Values between Zones 

Coast 

West 

East 

North 

West 
(C-W)= 

.0047 ± .003 
p=.13 

df=24.86 

East 
(C-E)= 

0.0021 ± .003 
p=.53 

df=32.83 
(E-W)= 

0.0026 ± .0016 
p=.10 

df=26.63 

North 
(C-N)= 

0.0044 ± .003 
p=.16 

df=24.06 
(N-W)= 

3.0e"4 ± 8.0e~4 

p=.60 
df=27.87 
(E-N)= 

0.0023 ± .0015 
p=.14 

df=23.92 

G. Bank 
(C-GB)= 

.0054 ± .003 
p=.09 

df=24.19 
(W-GB)= 

6.0e"4 ± 8.0e~4 

p=.44 
df=27.38 
(E-GB)= 

0.0032 ± .0015 
p=.04 

df=24.32 
(N-GB)= 

9.0e~4 ± 7.0e"4 

p=.14 
df=27.53 

Table 2.14: The method used to compare average wintertime stability values be­
tween zones in the GOM is described in section 2.2.5. Results are considered signifi­
cant for p<.05. 
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Compar ison of W i n t e r t i m e Stability Values 
between G O M O O S Buoys 

A 

B 

E 

I 

M 

B 
(A-B)= 

.0050 ± .0026 
p=0.26 
df=5.34 

E 
(A-E)= 

.0086 ± .0026 
p=0.06 
df=6.56 
(B-E)= 

.0020 ± 5.0e"4 

p=0.12 
df=9.45 

I 

(A-I)= 
.0113 ±.0026 

p=0.02 
df=6.05 
(B-I)= 

.0048 ± 4.0e"4 

p<.001 
df=6.46 
(E-I)= 

.0027±5.0e~4 

p=0.01 
df=7.08 

^ 

M 
(A-M)= 

.0108 ±.0027 
p=0.02 
df=6.62 
(B-M)= 

.0041 ± 8.0e~4 

p=0.007 
df=9.34 
(E-M)= 

.0022 ± 8.0e"4 

p=0.07 
df=11.97 
(M-I)= 

5.0e"4 ± 7.0e~4 

p=0.60 
df=6.98 

N 
(A-N)= 

0 ± .0045 
p=0.70 

df=10.89 
(N-B) = 

.0047±3.7e"4 

p=0.34 
df=4.21 
(N-E)= 

.0069 ± 3.7e"3 

p=0.14 
df=5.46 
(N-I)= 

.0095±3.7e"3 

p=0.05 
df=5.04 
(N-M) = 

.0095 ± 3.7e"3 

p=0.06 
df= 5.51 

Table 2.15: The method used to compare average wintertime stability values be­
tween GOMOOS buoys is described in section 2.2.5. Results are considered significant 
for p<.05. 
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Figure 2-1: A map of the Gulf of Maine with GOMOOS mooring locations shown by 
green boxes. Labels show the representative area covered by each mooring. Bathymet-
ric features including Georges Bank, the Scotian Shelf and major basins are labeled. 
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Average Wintertime Stability at GOMOOS Buoys 

Figure 2-2: Yearly averaged winter stability values for GOMOOS buoys plotted 
from 2004-2009. Stability is calculated by taking the difference in potential densities 
between 1 and 20m and dividing by 19. Yearly averaged stability values are calcuated 
by averaging all 20 day rolling average stabilty values within a given year for each 
buoy. Standard error (±1) is calculated using decorrelation times of density difference 
between 1 and 20m given in (Table 2.1). 
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CHAPTER 3 

PATTERNS IN WINTERTIME 

STRATIFICATION 

3.1 Methods 

3.1.1 Calculating the Relative Contributions of Salinity and 

Temperature 

Since both salinity and temperature affect the density of water, it is important 

to identify the individual contributions each has in affecting the density gradient 

in the upper water-column. The density gradient in the upper 20m is of primary 

concern because it is the zone of highest phytoplankton growth rate (Smetacek and 

Passow, 1990). According to Smetacek and Passow (1990), under nutrient replete 

conditions "phytoplankton growth rates are a function of irradiance, which decreases 

exponentially with depth." Smetacek and Passow (1990) argue that in the GOM 

during the spring bloom, irradiance levels only permit "maximal division rates" in 

the upper 20m. During the winter it is assumed that the depths of maximal division 

rates will be shallower as solar incidence is at a lower angle. Durbin et al. (2003) found 

values of critical depth in the GOM during the winters of 1999 and 2000 less than 25m. 

Recall that according to Sverdrup's critical depth hypothesis that a phytoplankton 

bloom can occur when the mixed layer depth shoals above the critical depth. Durbin 

et al. (2003) defined the critical depth as the "depth at which the depth-averaged 

vertically integrated irradiance is equal to 20.9 W m"2." In this study, stratification 
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is only considered in the upper 20m since it is assumed that most winter primary 

production will take place in this region. 

To find the contribution of salinity to the density gradient in the upper water-

column, it is necessary to find the difference in potential densities between 20m and 

the surface while holding temperature constant between these two depths. Here, 

the potential density {<TQ) at 20m is a function of salinity at 20m (Sd), the potential 

temperature of water moved adiabatically from the surface to 20m (T#), the pressure 

at 20m (Pd), and the reference pressure (Rp). (T#) is used since temperature increases 

adiabatically with depth. In order to hold temperature constant, it is necessary to 

calculate what the temperature of a parcel of water would be if it were at 20m. 

The potential density at the surface is a function of surface salinity (Ss), surface 

temperature (Ts), surface pressure (Ps), and Rp. In all cases, Rp is defined as Odb. 

The salinity contribution is found from (Equation 3.1), where (crg)im is subtracted 

from (&e)20m- I*1 order to find the temperature contribution to the density gradient 

in the upper water-column, salinity is held constant between the surface and 20m. In 

this case the potential density at 20m is a function of Ss, temperature at 20m (Td), 

Pd, and Rp. The temperature contribution is found from (Equation 3.2), where (cg)lm 

is subtracted from the (c^om calculated assuming constant salinity with depth. 

Salinity Contribution = <7e(20m)(Sd,Te,Pd,Rp) - ^e(im)(Ss,TS,PS,Rp) (3.1) 

Temperature Contribution = cre^0m)(Ss, Td, Pd, Rp) - ae^m)(Ss,Ts, Ps,Rp) (3.2) 

(Equation 3.1 and Equation 3.2) are used to determine what factor, salinity or 

temperature, has a bigger effect in increasing the density gradient in the upper 20m. A 

negative value for either the salinity or temperature contribution indicates that they 

are responsible for decreasing density with depth. Decreasing density with depth 

destabilizes the water-column and promotes vertical mixing. Alternatively, a positive 

value indicates that either salinity or temperature is increasing the density with depth. 

The greater the density increase with depth, the more resistant the water-column is to 
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overturning. The relative contribution equation (Equation 3.3) compares the salinity 

and temperature contributions by subtracting them. If the relative contribution is 

positive then salinity is the dominant player in increasing stability. Conversely, nega­

tive values for the relative contribution indicate that temperature is more important 

in driving increased stability in the upper water-column. The greater the absolute 

value of the relative contribution, the larger the impact of salinity or temperature in 

influencing the density in the upper 20m. Although the equation of state for seawater 

given by Gill (1982) is non-linear, the assumption of linearity when subtracting the 

temperature contribution from the salinity contribution is adequate since the resulting 

error is small. Maximum error is found using typical wintertime salinity and temper­

atures in combination with the largest average salinity and temperature differences 

between 1 and 20m found in (Table 2.2 and Table 2.3). Using (Equation 3.4), which 

compares the true potential density difference between 1 and 20m with the difference 

calculated considering the individual contributions of salinity and temperature, it is 

found that the maximum difference between values is <C 1%. 

Relative Contribution = Salinity Contribution - Temperature Contribution (3.3) 

a9(20m) ~ a9(lm) ~ a9(20m)(Td, Ss, Pd, Rp) + a9(20m)(T9, Sd, Pd, Rp) - [2 X cr0(lm)] (3.4) 

In computing the relative contributions of salinity and temperature to density 

change in the upper water-column, the affect of pressure on the density of the water 

is negligible since its contribution is small and nearly the same in all calculations. 

Pressure is assumed to be uniform at 20m throughout the GOM at 20m, varying 

at most .005db due to differences in latitude for the casts and GOMOOS moorings. 

Holding the temperature and salinity constant between 1 and 20m and only con­

sidering the affect of pressure on the change in potential density yields a difference 

of approximately l.Oe-6 kg/m3. This value was calculated using typical wintertime 

salinities and temperatures in the GOM. There was little variability over the range of 
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common winter salinity and temperature values. For casts which have a first recorded 

depth deeper than lm, the difference in potential density due to pressure will be even 

smaller. In all cases, the change in potential density due to pressure can be neglected 

since it is much smaller than the changes observed between 1 and 20m (Table 2.3 and 

Table 2.12). 

For the BIO and COOA data, the relative contributions of salinity and temper­

ature for each cast are found and averaged regionally. For the GOMOOS mooring 

data, 20 day rolling averages of salinity and temperature contributions are gener­

ated. For a particular buoy, the contributions are averaged by year and ± 1 standard 

error found using yearly averages and decorrelation times found in (Table 2.1). Rela­

tive contributions are founding using 20 day rolling average salinity and temperature 

contributions. In this case, temperature contributions are subtracted from corre­

sponding salinity contribution values. Total average and standard error calculation 

for relative contributions are performed in the same way as for salinity/temperature 

contributions. Between-buoy and inter-regional comparison of salinity, temperature, 

and relative contribution values are done in the same way as described in section 

2.2.5. 

In this study, relative contribution values for casts are also used in the binary 

analysis of salinity versus temperature contributions. This binary approach considers 

only which factor is more important in increasing the density of the upper water-

column. Regional results are reported in the form of a percent. Summing the percent 

of casts which have salinity contributions larger than temperature contributions and 

vice-versa yields 100%. 
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3.1.2 Calculating Duration and Frequency of Shallow Mixed 

Layer Events 

Duration and frequency of shallow mixed layer events (<20m) are calculated using 

GOMOOS time-series data. In order to find the percent of time a shallow mixed layer 

is present at a mooring during the winter, all available hourly potential density data 

at 1 and 20m is considered. If the difference in potential densities between 1 and 

20m is greater than .01 kg/m3, then the mixed layer is less than 20m according to 

definition established in section 2.1.2. The percentage of time that the mixed layer 

is shallow is found by dividing the number of hours in which a shallow mixed layer 

exists at a particular mooring by the total number of hours with usable data. Usable 

data in this case refers to times when potential density values are available at both 1 

and 20m. 

In calculating the duration of shallow mixed layer events, 20 day rolling averages 

of potential density at 1 and 20m are used. Although this method does not capture 

short-term variability in stratification, it is average stratification over a period of days, 

not hours, that will be most biologically significant (Salisbury personal communica­

tion) . The duration of a shallow mixed event is simply found by counting consecutive 

days where the density at 20m is at least .01 kg/m3 greater than the density at lm. 

The frequency of shallow mixed layer events can be observed by plotting the density 

difference between 20m and lm over time. The total number of days in a winter with 

a shallow mixed layer is the sum of all days where 0020m ~~ aeim ^ .01kg/m3. The 

maximum number of days is restricted to the length of the study season, 90 days. 

For any GOMOOS buoy, using 4 day, rather than 20 day rolling averages of potential 

density at 1 and 20m, made little difference in the number of days a winter with a 

shallow mixed layer present. 
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3.1.3 Quantifying the Relationship Between Wind Stress and 

Stratification 

For the purpose of this study pseudo wind stress (m2/sec2) is calculated as the 

square of the wind-speed. Pseudo-stress is considered since wind-speed squared is 

the biggest contributor to the actual wind stress. Daily averaged wintertime wind-

speeds at 10m taken from the NCEP Reanalysis II dataset are used in calculations 

of pseudo-stress. Recall the the NCEP Reanalysis wind data used in this research 

comes from averaged daily winds in a rectangular grid covering 42.856°N to 44.76°N 

and 65.6250°W to 69.375°W. North and easterly components of winds are used in 

calculating average daily wind-directions. Upwelling favorable southwesterly winds 

are important in the Coastal Zone, which is angled approximately 25° from north. 

Decorrelation time-scales of wind stress are approximately 2 days (Pringle, 2006). 

In order to understand how wind stress affects stratification, the density difference 

between 1 and 20m is compared before and after wind events each winter. At each 

GOMOOS mooring, the number of times when stratification decreases after a wind 

event is recorded and compared to the number of times when stratification increases 

after an event. The percentage of time that wind events coincide with destratification 

is then calculated. To determine the significance of this value, an alternate percentage 

based on random chance is needed for comparison. The alternative percentage is 

generated using a bootstrapping technique. Using this method, start and end dates 

from a particular wind event are used to determine if stratification values on the 

same calender days in a random year between 2004 and 2010 follow the same pattern. 

One thousand randomly chosen (stratification before-stratification after) values are 

generated for each wind event at a particular GOMOOS buoy. The number of wind 

events at a given buoy determines the sample size for the alternative percentage. 

Comparison of the actual percent of time when stratification decreased after a wind 

event to the alternative percentage based on random chance, is performed using a 
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two sample Z-test for proportions. 

For the purpose of this study, wind events are chosen based the average wind stress 

magnitude in the GOM during the winter (70 m2/sec?). This value is based on NCEP 

Reanalysis II wind data from 2004-2010. To compare the percents calculated using the 

average winter wind stress magnitude with other wind stress thresholds, stratification 

before and after events is investigated using pseudo wind stress magnitudes on either 

side of the wintertime mean. The wind stress threshold values chosen range from 

60-80 m21'sec2 (17-20mph). Choosing wind stress magnitudes outside of this range 

greatly limits the number of events that can be studied. 

3.2 Spatial and Temporal Pat terns in Mixed Layer 

Depth 

All mixed layer depths presented in this section are based on an algorithm which 

removes artificially shallow mixed layers. Recall, artificially shallow mixed layers 

are sometimes found as a product of casts with a maximum depth less than 20m 

where the +.01 kg/m3 criterion is not reached. For casts deeper than 20m, if the 

density criterion is not met, then the mixed layer is recorded as the deepest recorded 

depth. Mixed layer depths found using this routine are close to those found when 

removing casts for which the density criterion is not met (Table 3.1). In the latter 

case, casts are removed since a true mixed layer depth cannot be found given the 

available data. Removing these casts tends to bias average mixed layer depths to 

shallower depths. This bias is most evident in the Northern Zone and over Georges 

Bank where the greatest top-to-bottom mixing generally occurs. In these areas, mixed 

layer depths frequently represent the depth of the entire water-column. To minimize 

under-estimations of average regional mixed layer depth, it is best to keep casts that 

have data deeper than 20m and also have a mixed layer depth "assigned" to the 
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deepest depth. Given the similarities in regionally averaged mixed layer depths given 

by the two mentioned algorithms, it is assumed that calculated average mixed layer 

depths given in this study are a good approximation of actual mixed layer depths. 

Spatially, shallow winter mixed layers are most prevalent in the Coastal and East­

ern Zones of the GOM. In these zones, average winter mixed layer depth values with 

±1 standard error are 22.06m ± 1.2m and 29.60m ± 1.8m respectively (Fig. 3-1 

and Table 3.1). In the Coastal and Eastern Zones, mixed layer depths less than 20m 

account for 66% and 50% respectively of all mixed layer depths (Fig. 3-2). On the 

other hand, in the Western Zone only 25% of all casts have a mixed layer less than 

20m. In the Western Zone the average mixed layer depth is 57.37m ± 2.8m, and 

mixed layer depths greater than 40m account for 59% of casts. With the exception of 

the Northern Zone, the difference in average mixed layer depth between the Western 

Zone and all zones is significant at better than the 10% level (Table 3.2). 

The greater percentage of deep mixed layers in the Western Zone compared to 

other areas can be attributed to the mixing and modification of fresh SSW as it 

circulates counter-clockwise around the GOM (Brown and Beardsley, 1978; Pringle, 

2006). Mixing acts to freshen deeper saline waters and thus reduces top-to-bottom 

stratification of the water-column. Weak stratification allows mixing to penetrate to 

greater depths. Mixing is initiated by events such as the passage of winter storms or 

atmosphere-induced cooling of surface waters (Brown and Beardsley, 1978). Although 

temperature-induced cooling of surface waters is expected to be more significant closer 

to the coast as the air-mass has undergone less warming due to modification by warmer 

sea surface temperatures, Hopkins and Garfield (1977) found that for one particular 

winter event in the Western GOM the "maximum surface heat transfer occurred 

about 50km offshore". This finding shows that ocean-to-atmosphere heat flux and 

the resulting cooling of the surface ocean in the Western Zone may be enough to 

initiate deep mixing. Using the BIO cast data, Pringle (2006) found that the density 
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in Wilkinson Basin, in the Western Zone, is positively correlated with winter cooling 

from 30-170m. Deeper mixing in the Western Zone is possible since the water-column 

is on average less stratified than other regions in the GOM (Pringle, 2006). Deep 

mixing, however, does not always occur in the Western Zone. For example, Taylor 

and Mountain (2009) found that years with fresher than average fall surface salinities 

in Wilkinson Basin were significantly correlated with the presence of shallower winter 

mixed layers. Taylor and Mountain (2009) concluded that during these years salinity-

induced stratification reduced deep convective overturn. 

Cast data shows that the majority of mixed layer depths over Georges Banks lie 

between 20 and 75m in agreement with strong, top-to-bottom tidal mixing. In the 

Northern Zone the pattern of mixed layer depths is less clear than in the other zones. 

On one hand, mixed layers shallower than 20m account for 50% of casts, while on 

the other hand, mixed layer depths greater than 40m represent 29% of casts in this 

region. This variability might be the product of insufficient data (58 casts), or it 

might reflect a situation where mixed layer depth in this region is affected by year to 

year variability in the EMCC or changes in the volume of river discharge (Pettigrew 

et al., 1998). 

Time-series data gathered from the GOMOOS buoys is in accord with cast data 

findings, showing that shallow mixed layers are common in the Coastal and Eastern 

Zones of the GOM. At buoys A, B, E, I, M, and N the percentage of time a shallow 

mixed layer was present (<20m) during the winter was 86, 92, 89, 85, 56, and 89% 

respectively. To test the validity of this result, the percent of time with a shallow 

mixed layer was re-calculated for each GOMOOS buoy using double and triple the 

mixed layer threshold (+.01 kg/m3 from the surface). The comparison of different 

thresholds shows that the results are not highly sensitive to even a tripling of the 

.01 kg/m3 threshold (Table 3.3). The lower percentage of time with a shallow mixed 

layer at Buoy M, in Jordan Basin, agrees with cast data taken in this area (Fig. 3-1). 
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For example, Fig. 3-1 shows a number of casts with deep mixed layers in the Western 

Zone and western portion of the Eastern Zone. 

Analysis of wintertime shallow mixed layer events at the GOMOOS buoys reveals 

a pattern of persistent stratification at most buoys and in all years. The strength 

of stratification, however, is variable both spatially and temporally. This variability 

will be explored in section 3.4. At the GOMOOS buoys considered in this study, 

stratification is often present for the entire winter (90 days) (Table 3.4). Buoy M 

in Jordan Basin is the exception, and typically has fewer days during the winter 

with a shallow mixed layer. No information on the duration of wintertime shallow 

mixed layer events is available for the Western Zone or over Georges Bank since no 

GOMOOS moorings are located in these areas. Based on spatial patterns in mixed 

layer depth given by the cast data, however, it appears that the Western Zone and 

Georges Bank are characterized by deeper mixing and will likely have fewer days a 

year with a shallow mixed layer than the Coastal or Eastern Zones (Fig. 3-1). 

3.3 Spatial Pat terns in Salinity and Temperature 

Contribution 

Each zone has casts which owe their upper-water column density increase to salin­

ity, temperature, or both. On year-to-year timescales, interannual variability of forc­

ing factors such as changes in air temperature, GOM circulation, and volume of river 

inflow will affect the observed spatial patterns in salinity and temperature contribu­

tions. Over longer time-scales, however, stratification/lack of stratification in different 

zones within the GOM is driven by different mechanisms. Namely, on average the 

upper water-column density increase in the Coastal, Northern, and Eastern regions 

of the GOM is attributable to salinity increase with depth, while in the Western Zone 

and over Georges Bank temperature decrease with depth is more important (Fig. 3-3 
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and Fig. 3-4). 

In contrast to the binary approach, which only gives the percent of salinity versus 

temperature dominated casts in a particular region, averaging the salinity and tem­

perature contributions, respectively, gives insight on how each impacts the density of 

the upper water-column (0-20m) (Table 3.1). Recall that an average positive salin­

ity or temperature contribution indicates that density is increasing with depth while 

a negative contribution reflects the opposite. Using the cast data, it is found that 

in all regions of the GOM the average temperature contribution is not significantly 

different from zero at the 10% level. Furthermore, all inter-region comparisons of 

average temperature contribution values are insignificant with P-values often close to 

1 (Table 3.5). Conversely, the contribution of salinity to increasing the density in the 

upper 20m is significant at the 5% level in the Coastal, Eastern, and Northern Zones. 

Average salinity contribution is not significant at the 10% level in the Western Zone 

and over Georges Bank. Inter-regional comparison of salinity contributions shows 

that the Coastal and Eastern Zones are significantly different from the Western Zone 

and Georges Bank at atleast the 15% level (Table 3.6). This is notable since P-values 

are much higher when comparing the Coastal and Eastern Zones or the Western Zone 

and Georges Bank (P=.72 and P=.52, respectively). 

The average relative contribution (salinity contribution - temperature contribu­

tion) values in the Western Zone and over Georges Bank are not significantly different 

from zero (P>.10). As discussed, these areas are less stratified and experience cooling 

or tidally-induced deep mixing (Pringle, 2006). Interannual variability in the density 

structure and circulation in the GOM's interior related to year-to-year differences in 

inflow volumes of SSW and saline slope water provides one possible explanation for 

the temporal and spatial variability in salinity versus temperature dominated casts 

in the Western Zone (Pringle, 2006; Taylor and Mountain, 2009) (Fig. 3-3). An 

alternative explanation is that warm-core Gulf Stream rings or fresh, off-shoots of 
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the EMCC/WMCC can also occasionally affect the density structure of the upper 

water-column in the Western Zone (Brooks, 1985). Relative contribution values of 

salinity and temperature are not significantly different over Georges Bank because 

heavy tidal mixing homogenizes the water-column (Townsend, 1991). 

The dominance of salinity in increasing the density in the top 20m in the Coastal 

and Eastern zones is in agreement with the relative contribution averages from the 

GOMOOS buoys (Table 3.7). At all GOMOOS buoys, salinity contributions are 

positive and greater than temperature contributions. In fact, except for Buoy E, 

temperature contributions are not significantly different from zero (P>.10). On the 

other hand, all salinity contributions are positive and significant (P<.05). The fact 

that the temperature change in the upper 20m is either statistically insignificant, 

(P>.10 at Buoys A, I, and M) or increases with depth (P< .10 at Buoys B, E, and 

N) shows that salinity is the lone factor contributing to the persistent wintertime 

stratification present (0-20m) at all GOMOOS buoys (Table 2.2). This finding is in 

agreement with Deese-Riordan (2009) who found that "the temperature inversions 

do not exert a substantial destabilizing influence on the density structure because 

the haline contraction coefficient is 10-15 times larger than the thermal expansion 

coefficient during winter." In other words, given typical wintertime salinity and tem­

perature values in the GOM, a small change in salinity with depth has a far greater 

impact on density than a small change in temperature (Knauss, 1996). 

Average salinity contributions are the greatest at Buoys A and N, in the Coastal 

and Eastern Zones respectively (Table 3.8). As mentioned, strong salinity gradients 

caused by a surface lens of river discharge at Buoy A, and by inflow of fresh SSW at 

Buoy N, result in pronounced salinity differences between the surface and 20m. At 

Buoy N, over the Northeast Channel, the increase in density with depth in the up­

per water-column, and persistent winter-stratification is remarkable given that this 

area has the greatest average negative temperature contribution (Table 3.9). This 
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observation is not unexpected, however, as under conditions of strong salinity strat­

ification temperature inversions may be further augmented by continued heat loss 

to the overlying atmosphere until the system reaches an equilibrium (Deese-Riordan, 

2009). 

3.4 Winter Stratification and its Causes 

3.4.1 Trends in Stratification and Interannual Variability in 

Salinity and Temperature 

Time-series plots of salinity and temperature at GOMOOS buoys reveal significant 

year-to-year variability (Fig. 3-5 to Fig. 3-10). Data from 2004-2010 shows that this 

interannual variability in salinity and temperature manifests itself at all depths con­

sidered (1, 20, and 50m). Furthermore, the observed approximately 3 year variability 

is consistent between GOMOOS moorings. Generally, depth averaged salinities and 

temperatures fell from 2004-2005, increased from 2005-2007, and then fell again from 

2007-2009 (Table 3.10). Changes in salinity and temperature may be a function of lo­

cal ocean-atmosphere interactions, year-to-year changes in the inflow volumes of SSW 

and WSW, or large-scale changes in the westward transport of Labrador Slope waters 

(Petrie and Drinkwater, 1993). Recall that cold, relatively fresh Labrador Current 

waters sometimes contribute to the deep water that enters the GOM through the 

Northeast Channel (Gatien, 1976). Cold, fresh deep waters can impact patterns in 

salinity and temperature throughout the GOM by mixing with overlying water masses 

(Brown and Beardsley, 1978). Based on results from the GOMOOS data, there does 

not appear to a clear relationship between the observed variability in salinity and 

temperature variability and stratification in the upper water-column (0-20m). For 

example at Buoy B, on the Western Maine Shelf, stratification is strong during the 

winter of 2006 and weak in 2007, even though both years have higher salinities and 
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temperatures than other years (Fig. 3-6). This finding is expected because stratifica­

tion in the Coastal Zone will instead be driven by local factors including wind/tidal 

mixing, ocean-atmosphere heat exchange, and river discharge. A detailed investiga­

tion of the cause of interannual variability in salinity and temperature observed at 

the GOMOOS moorings is beyond the scope of this study. 

3.4.2 The Impacts of Salinity, Temperature, and Wind Stress 

on Stratification 

The primary focus of this study is not on interannual variability in salinity, tem­

perature, and wind stress, but rather on how the effects of salinity, temperature, and 

wind stress are reflected in the degree of stratification during a particular year. Strat­

ification can be interpreted from (Fig. 3-5 to Fig. 3-10) as (ae(20m)-o"e(lm)). The 

greater the density difference between 1 and 20m, the greater the stratification. All 

days with differences greater than .01 kg/m? represent times with a shallow mixed 

layer. Stratification and shallow mixed layer events can be found at all GOMOOS 

buoys. Stratification events appear to be frequent and pronounced in the Coastal 

Zone (Buoys A, B, and E), and over the Northeast Channel (Buoy N). At Buoy M, 

in Jordan Basin, stratification is generally weaker, but still persists throughout much 

of the winter. Times of increased stratification at the coastal GOMOOS moorings 

translate from one buoy to the next. For example, pronounced stratification events 

are visible during 2006 and 2008 at Buoys A, B, and E (Fig. 3-5 to Fig. 3-7). These 

stratification events are not as pronounced at Buoys I and M as at Buoys A, B, and E 

further south. In fact, the water-column remains relatively unstratified for the major­

ity of the winter in 2008 at Buoy M (Fig. 3-9 and Table 3.4). Deese-Riordan (2009) 

found that the strong stratification events during the winters of 2006 and 2008 in the 

Coastal Zone were the result of high river discharge (Fig. 3-11). High river discharge 

can result in "coastally trapped fresh plumes" (Shcherbina and Gawarkiewicz, 2008). 
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Buoy A appears to be affected most strongly by these coastal plumes, as it experiences 

greater stratification between 1 and 20m than either Buoys B or E further north (Fig. 

3-5). This is expected since fresh water from rivers to the north accumulates near the 

coast and flows southward consistent with the GOM's circulation (Fong et al., 1997). 

The proximity and location of Buoy A relative to the mouth of the Merrimack River 

also contributes to the comparatively high degrees of stratification seen in this area 

following river discharge events (Geyer et al., 2004). 

The Eastern Zone of the GOM generally remains stratified throughout the winter 

(Fig. 3-10). Strong salinity and temperature gradients in the upper 20m are set up 

by the surface inflow of fresh, cool SSW (Mountain and Manning, 1994). An influx of 

SSW appears to have caused a strong stratification event during the winter of 2006. 

During this event, salinity and temperature at 1, 20, and 50m fell. Salinity increased 

between 1 and 50m. The difference between 1 and 20m, however, was much bigger 

than the difference between 20m and 50m. Similarly, for temperature, the difference 

between 1 and 20m was much greater than between 20m and 50m. The presence of a 

distinct temperature and salinity gradient in the upper 20m is consistent with inflow 

of SSW. Salinity and temperature gradients are established because SSW is fresh and 

cool in comparison to the warm, salty water it overrides. Similar events in which 

SSW water likely impacted Buoy N, occurred in 2008 and 2009. 

A comparison of upper water-column stratification before and after wind stress 

events shows that increased winds do not necessarily result in decreased stratification 

at a particular location (Table 3.11). In fact, in many cases, stratification at the 

GOMOOS buoys was greater following above-average wind stress events, than it was 

prior to the event. This trend is also reflected using wind event thresholds above 

and below the GOM wintertime average. Analysis of stratification before and after a 

wind event using 4 day rolling averages of wind stress and density difference between 

1 and 20m made little difference. 
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GOMOOS buoys show that strong stratification events occur during both times of 

high and low wind stress (Fig. 3-5 to Fig. 3-10). For example, in January of 2006, the 

upper water-column at Buoys A, B, and E was very stratified even though wind stress 

values were also high. As Deese-Riordan (2009) postulated, the lack of correlation 

may be the product of wind stress values that are relatively high and fairly constant 

(using 20 day rolling averages) throughout the winter compared to other times of the 

year. It is also possible that at certain locations, such as in the Coastal or Eastern 

Zones, that salinity-driven stratification is great enough that the water-column will 

resist total overturn even under periods of increased wind stress. 
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Relative Contributions by Zone during the Winter 

Salinity Contribution 

Temperature Contribution 

Relative Contribution 

Mixed Layer Depth (m) 

*Mixed Layer Depth* (m) 

Coast 
.1006** 
±.057 
-.0010 
±.0056 
.0996** 
±.057 
22.06 
±1.2 
17.00 
±.99 

West 
.0135 
±.012 
5.0e~4 

±.0030 
.0130 
±.014 
57.34 
±2.8 
50.40 
±2.60 

East 
.0765** 
±.034 
-.0156 
±.012 

.0922** 
±.043 
29.60 
±1.8 
25.82 
±1.72 

North 
.0223** 
±.009 
-.0012 
±.0031 
.0236** 
±.011 
43.92 
±4.9 
26.59 
±4.19 

G. Bank 
.0034 

±.0090 
-2.0e~4 

±7.0e"4 

.0036 
±.0090 
35.75 
±.60 
18.50 
±1.97 

Table 3.1: Wintertime salinity and temperature contribution values are averaged 
by zone over all years. All averages are bounded by ± 1 standard error calculated as 
the standard deviation of all values within a particular zone divided by the square 
root of the number of years with available data. Relative contributions are calculated 
by subtracting the temperature contribution from the salinity contribution for each 
cast. Mixed layer depth is defined as the depth at which the potential density is 
+.01 kg/m3 greater than the surface depth. All mixed layer depths within a zone are 
averaged and ±1 standard error found by dividing the standard deviation of mixed 
layer depths by the square root of the number of casts. "*Mixed Layer Depth*" 
shows regionally averaged mixed layer depths when casts are discarded because the 
density criterion is not met and the mixed layer depth is equivalent to the maximum 
recorded depth. This removes deeper mixed layers and results in a shallowing bias 
to all averages. The difference between "Mixed Layer Depth" and ::*Mixed Layer 
Depth*" is especially large in areas where total water-column mixing is greater, such 
as in the Northern Zone and over Georges Bank. "*" indicates significance at 10% 
level and "**" indicates significance at the 5% level. 
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Comparison of Average Wintertime Mixed Layer Depth 
between Zones 

Coast 

West 

East 

North 

West 
(W-C)= ' 

35.31 ±11.8 
p=.007 
df=21 

East 
(E-C)= 

7.53 ±8 .0 
p=.35 
df=40 

(W-E) = 
27.78 ±12.3 

p=.03 
df=24 

North 
(N-C)= 

21.86 ±10.7 
p=.05 
df=23 

(W-N)= 
13.45 ± 14.2 

p=.35 
df=29 

(N-E)= 
14.32 ± 11.2 

p=.21 
df=27 

G. Bank 
(GB-C)= 

13.69 ±6 .0 
p=.03 
df=34 

(W-GB)= 
21.62 ±11.1 

p=.07 
df=17 

(GB-E)= 
6.15 ±6 .9 

p=.38 
df=28 

(N-GB)= 
8.17 ±9 .9 

p=.41 
df=18 

Table 3.2: The method used to compare average wintertime mixed layer depth 
between zones is described in section 2.2.5. Differences and ±1 standard error are 
given in meters. Results are considered significant for p<.05. 
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Sensitivity with Respect to Defined Threshold (.01kg/m3) 
% of time with a Shallow Mixed Layer (<20m) 

1 x theshold 
2 x threshold 
3 x threshold 

Coast 
A 

86.01% 
82.44% 
76.05% 

B 
92.15% 
88.31% 
83.89% 

E 
89.21% 
73.20% 
64.72% 

North 
I 

85.45% 
59.22% 
40.47% 

East 
M 

56.27% 
49.10% 
43.35% 

N 
89.43% 
87.38% 

86% 

Table 3.3: The percent of time with a shallow mixed layer (< 20m) is calculated 
by finding all hours when the density at 20m is atleast .01kg/m3 greater than the 
density at lm. The number of hours with a shallow mixed layer is then divided by 
the total number of hours of available data for a particular site. 
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Number of Winter Days with a Shallow Mixed Layer 
During the Winter 

2004 
2005 
2006 
2007 
2008 
2009 
2010 

Coast 
A 
90 
90 
90 
38 
90 
90 
90 

B 
90 
90 
90 
90 
90 
*74 

E 
90 
90 
87 
90 
90 
90 
90 

North 
I 

87 
58 
90 
90 
90 
90 
90 

East 
M 
90 
90 
87 
90 
22 
8 

41 

N 

90 
90 
90 
90 
90 

Table 3.4: The number of days with a shallow mixed layer (< 20m) at each buoy 
was found using the potential density difference between 20m and lm based on 20 
day rolling averages. The asterick indicates that the value within the box is the max 
number of days with good data. 
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Comparison of Wintertime Temperature Contribution between Zones 

Coast 

West 

East 

North 

West 
(C-W)= 

5.0e~4 ± .0064 
p=.94 

df=33.80 

East 
(C-E)= 

0.0167 ±.0128 
p=.21 

df=29.30 
(W-E)= 

0.0161 ±.012 
p=.19 

df=22.70 

North 
(C-N)= 

0.0023 ± .0064 
P-.73 

df=34.25 
(W-N)= 

0.0018 ±.004 
p=.70 

df=29.97 
(N-E)= 

0.0144 ±.012 
p=24 

df=22.87 

G. Bank 
(C-GB)= 

.0012 ± .0057 
p=.83 

df=23.77 
(W-GB)= 

7.0e"4 ± .003 
p=.82 

df=16.76 
(GB-E)= 

0.0155 ±.012 
p=20 

df=20.16 
(J3B-N)= 

0.0011 ± .003 
p=.76 

df=16.66 

Table 3.5: The method used to compare average wintertime temperature contri­
bution values between zones is described in section 2.2.5. Results are considered 
significant for p<.05. 
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Comparison of Win t e r t ime Salinity Cont r ibut ion between Zones 

Coast 

West 

East 

N o r t h 

West 
(C-W)= 

0.0871 ± .058 
p=.14 

df=25.20 

East 
(C-E)= 

0.0241± .066 
p=.72 

df=36.91 
(E-W)= 

0.0630 ± .036 
p=.09 

df=25.21 
( 

Nor th 
(C-N)= 

0.0783 ± .057 
p=.18 

df=24.23 
(N-W)= 

0.0088 ±.016 
p=.58 

df=27.75 
(E-N)= 

0.0542 ± .035 
p=.14 

df=22.98 

G. Bank 
(C-GB)= 

.0972 ± .057 
p=.10 

df=24.15 
(W-GB)= 

.0101 ±.015 
p=.52 

df=26.42 
(E-GB)= 

0.0731 ± .035 
p=.05 

df=22.76 
(N-GB)= 

0.0189 ±.0129 
p=.15 

df=27.96 

Table 3.6: The method used to compare average wintertime salinity contribution 
between zones is described in section 2.2.5. Results are considered significant for 
p<.05. 
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Wintertime Contributions of Salinity and Temperature 
at GOMOOS Buoys 

salinity contribution 

temp, contribution 

relative contribution 

Coast 
A 

.2402** 
±.053 
-.0091 
±.007 
.2492* 
±.058 

B 
.1361** 
±.0077 
-.0083 
±.003 

.1443** 
±.0009 

E 
.0980** 
±.0098 

-.0094** 
±.002 

.1073** 
±.011 

North 
I 

.0375** 
±.0033 

-7.963e"4 

±.001 
.0383** 
±.004 

East 
M 

.0494** 
±.018 
-.0043 
±.003 
.0537* 
±.021 

N 
.2814** 
±.070 
-.0617 
±.025 

.3431** 
±.114 

Table 3.7: The contribution of salinity and temperature to the density gradient 
in the upper water column (l-20m) is calculated using the salinity and temperature 
contribution equations respectively. Contributions are based on 20 day rolling aver­
ages. All 20 day rolling averages are binned by year and the years are averaged The 
relative contribution is found for each day of each winter by subtracting all 20 day 
rolling average temperature contributions from all 20 day rolling average salinity con­
tributions. An average positive relative contribution indicates that salinity is more 
important in increasing the density gradient in the upper 20m. Error (± 1 standard 
error) is based on the standard deviation of yearly averages divided by the number of 
independent observations. The number of independent observations is determined by 
the decorrelation times found in (Table 2.1). "*" indicates significance at 10% level 
and "**" indicates significance at the 5% level. 
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Comparison of W i n t e r t i m e Salinity Cont r ibu t ion 
between G O M O O S Buoys 

A 

B 

E 

I 

M 

B 
(A-B)= 

.1012 ±.055 
p=0.27 
df=5.40 

E 
(A-E)= 

.1635 ±.054 
p=0.07 

df= 6.63 
(B-E)= 

.0362 ±.011 
p=0.19 

df= 9.68 

I 

(A-I)= 
.2241± .053 

p=0.02 
df= 6.05 
(B-I)= 

.0983 ± .0081 
p= 0.001 
df= 6.06 
(E-I)= 

.0605 ± .010 
p= 0.01 
df=6.88 

M 
(A-M)= 

.2121 ±.055 
p=0.03 

df= 6.81 
(B-M)= 

.0828 ± .016 
p=0.01 

df= 9.23 
(E-M)= 

.0486 ±.017 
p=0.08 

df=11.81 
(M-I)= 

.0124 ±.014 
p=0.56 

df= 6.69 

N 
(N-A)= 

.051 ± .103 
p=0.87 
df=9.79 
(N-B)= 

.1260 ±.089 
p=0.32 

df= 4.16 
(N-E)= 

.1886± .090 
p= 0.11 
df=5.31 
(N-I)= 

.2488 ± .089 
p=0.05 
df=5.02 
(N-M)= 

.2482± .09 
p=.06 

df=5.40 

Table 3.8: The method used to compare average wintertime salinity contribution 
values between GOMOOS buoys is described in section 2.2.5. Results are considered 
significant for p<.05. 

79 



Comparison of Wintertime Temperature Contribution 
between GOMOOS Buoys 

A 

B 

E 

I 

M 

B 
(B-A)= 

.0074 ± .0078 
p=0.443 
df=7.51 

E 
(E-A)= 

.0017 ±.0070 
p=0.84 
df=7.57 
(B-E)= 

.0018 ± .0032 
p= 0.75 
df= 9.63 

I 
(I-A)= 

.0103 ± .007 
p=0.26 
df=6.19 

(I-B)= 
.0071± .0026 

p=0.16 
df=5.74 
(I-E)= 

.0086 ± .0018 
p=0.03 
df=7.41 

M 
(M-A)= 

.0069 ± .008 
p=0.47 
df=8.49 
(M-B)= 

.0035 ± .0044 
p=0.58 
df=9.96 
(M-E)= 

.0051± .0039 
p=0.31 

df=11.34 
(I-M)= 

.0036 ± .0037 
p= 0.41 
df= 6.87 

N 
(A-N)= 

.0433 ± .029 
p=0.18 
df=5.65 
(B-N)= 

.0317 ±.0287 
p=0.34 
df=4.16 
(E-N)= 

.0509 ± .0286 
p=0.16 
df=5.09 
(I-N)= 

.0603 ± .0286 
. p=0.12 

df=5.01 
(M-N)= 

.0600 ± .029 
p = 1 3 

df=5.14 

Table 3.9: The method used to compare average wintertime temperature contri­
bution values between GOMOOS buoys is described in section 2.2.5. Results are 
considered significant for p<.05. 

80 



Depth-Averaged Wintertime Salinity and Temperature 
at GOMOOS Buoys 

salinity (A) 

temperature (A) 

salinity (B) 

temperature (B) 

salinity (E) 

temperature (E) 

salinity (I) 

temperature (I) 

salinity (M) 

temperature (M) 

salinity (N) 

temperature (N) 

2004 
32.69 
±0.18 
3.14 

±0.82 
33.05 

± 0.18 
3.60 

±1.12 
33.04 
±0.17 
3.68 

±1.40 
32.91 
±0.20 
3.34 

±1.41 
32.95 
±0.36 
4.19 

±1.26 

2005 
31.76 
±0.12 
3.44 

±1.03 
31.97 
±0.13 
3.57 

±1.22 
32.03 
±0.09 
3.24 

±1.28 
32.06 
±0.10 
3.37 

±0.97 
31.96 
±0.14 
3.76 

±1.21 
32.16 
±0.35 
3.75 

±0.73 

2006 
31.95 
±0.21 
4.72 

±0.65 
32.37 

± 0.12 
5.03 

±0.79 
32.44 
±0.07 
4.76 

±0.90 
32.44 
±0.13 
4.82 

±0.99 
32.62 
±0.33 
5.15 

±0.97 
32.46 
±0.14 
5.57 

±0.98 

2007 
32.60 
±0.30 
5.08 

±1.28 
33.03 
±0.09 
5.43 

±1.65 
33.03 
±0.11 
5.31 

±1.81 
32.91 
±0.07 
4.73 

±1.54 
33.11 
±0.17 
5.87 

±1.24 
31.75 
±0.12 
3.57 

±1.80 

2008 
32.05 
±0.31 
3.78 

±0.71 
32.40 
±0.19 
3.88 

± 0.72 
32.55 
±0.12 
3.78 

±0.59 
32.55 
±0.22 
3.96 

±0.81 
32.87 
±0.22 
4.69 

±0.76 
32.10 
±0.13 
3.77 

±0.85 

2009 
32.18 
±0.14 
3.61 

±0.65 
32.50 

± 0.04 
3.83 

±0.82 
32.63 
±0.06 
3.75 

±1.18 
32.64 
±0.12 
3.70 

±0.80 
32.89 
±0.18 
4.85 

±0.86 
31.92 
±0.22 
3.50 

±1.20 

2010 
31.58' 
±0.77 
4.38 

±0.61 

32.31 
±0.19 
4.46 

±0.74 
32.28 
±0.27 
4.68 

±0.83 
32.19 
±0.27 
4.62 

±0.99 

Table 3.10: Depth-averaged wintertime values of salinity and temperature are calcu­
lated for 2004-2010 using 20 day rolling average values from 1, 20, and 50m. Salinity 
is given in PSU and temperature in °C. Standard error (±1) is found by taking the 
standard deviation of depth-averaged values for a particular year and dividing by the 
decorrelation time. Seasonal decorrelation times are assumed. 
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Percent of the Time after a Wind Event that 
Stratification Decreased 

A 
B 
E 
I 

M 
N 

r = 60m2 /sec2 

42 
33* 
26** 
26** 
37 

26** 

*r = 70m2 /sec2 

45 
50 
45 

35** 
30** 
25** 

T = 80m2 /sec2 

40** 
44* 
45 

41** 
18** 
23** 

Table 3.11: Values of stratification are compared for the upper water-column (0-
20m) before and after wind events of various magnitudes. The percent of time that 
stratification decreased after a wind event is calculated for each GOMOOS buoy using 
different wind stress thresholds. The wind stress thresholds chosen represent both 
sides of the average wintertime wind stress magnitude ( * T ) . The average is based on 
wind stress magnitudes during the winter for 2004-2010.'*" indicates significance at 
10% level and "**" indicates significance at the 5% level. 
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Figure 3-1: Map of wintertime mixed layer depths generated from BIO and COO A 
cast data. Mixed layer depths are generally shallowest in the Coastal and Eastern 
Zones. 
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Figure 3-2: Percentage of wintertime mixed layers within given depth ranges. Per­
centages come from BIO and COOA cast data. 
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Figure 3-3: A map of the GOM, showing for each winter cast between 1974-2009 
the dominating factor (salinity or temperature) in controlling the density increase in 
the upper 20m of the water-column. 
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Figure 3-4: Percentage of casts within each zone which owe density increase in the 
upper 20m to salinity or temperature. 
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Figure 3-5: 20 day rolling averages of salinity, temperature, potential density, and 
pseudo wind stress are plotted at 1 and 20m for 2004-2010. Data from 50m is not 
available for many years, and is thus not included. The plot of {&$(2Ora)-cr0(lm)— .01) 
(solid black line) above the horizontal red line at zero shows times when a shallow 
mixed layer was present. 

87 



34 

„ 33 
to , 0 

0. 3Z 

Buoy B 20 day Rolling Averages 

31 

30 

p*tu%%*> 

Jan2004 Jan2005 Jan2006 Jan2007 Jan2008 Jan2009 

10 

U c ° - 5 

Jan2004 Jan2005 Jan2006 Jan2007 Jan2008 Jan2009 

Jan2004 Jan2005 Jan2006 Jan2007 Jan2008 Jan2009 

1.5r 

'I 1' 
e" 0.5 [• 

-0.5 
Jan2004 

^L JkL rU\ 

Jan2005 Jan2006 Jan2007 Jan2008 Jan2009 

Jan2004 

Figure 3-6: 20 day rolling averages of salinity, temperature, potential density, and 
pseudo wind stress are plotted at 1, 20, and 50m for 2004-2009. Bad data at the end 
of 2009 prematurely terminates the salinity, temperature, and density record at lm. 
The plot of (ao(20m)-ao(lra) — .01) (solid black line) above the horizontal red line at 
zero shows times when a shallow mixed layer was present. 
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Figure 3-7: 20 day rolling averages of salinity, temperature, potential density, and 
pseudo wind stress are plotted at 1, 20, and 50m for 2004-2010. The plot of (crg(20m)-
(Teilm) — .01) (solid black line) above the horizontal red line at zero shows times when 
a shallow mixed layer was present. 
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Figure 3-8: 20 day rolling averages of salinity, temperature, potential density, and 
pseudo wind stress are plotted at 1, 20, and 50m for 2004-2010. The plot of (ere (20m)-
cr${lm) — .01) (solid black line) above the horizontal red line at zero shows times when 
a shallow mixed layer was present. 
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Figure 3-9: 20 day rolling averages of salinity, temperature, potential density, and 
pseudo wind stress are plotted at 1, 20, and 50m for 2004-2010. The plot of (00(20m)-
&e(lm) — .01) (solid black line) above the horizontal red line at zero shows times when 
a shallow mixed layer was present. 
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Figure 3-10: 20 day rolling averages of salinity, temperature, potential density, and 
pseudo wind stress are plotted at 1, 20, and 50m for 2005-2009. The plot of (cre(20m)-
ae(lm) — .01) (solid black line) above the horizontal red line at zero shows times when 
a shallow mixed layer was present. \ 

92 



%ofannualftno 

Total annual inflow 

Jsn03 Jan04 

10 8 12 S 

JanQS JmOS janQ? JanOS 

25 7 18 8 14 9 216 
X 101 1 mf» 

Figure 3-11: Gulf of Maine river discharge from (Deese-Riordan, 2009). Top panel: 
Flow rates from USGS gauges are averaged over seven years (2001-2008) for each day. 
Daily dishcarge values are smoothed with a 10 day rolling average. Dishcarge values 
from the St. John and St. Croix Rivers and the Kennebec and Androscoggin Rivers 
are combined. Average discharge is the greatest in the spring. Middle Panel: Total 
discharge of all rivers combined. Bottom Panel: total river inflow smoothed using a 
10 day rolling average (lplOday) compared to 6 year average daily values (black line). 
Total inflow for each year in 10um3/yr is shown below the bottom panel. 
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CHAPTER 4 

DISCUSSION AND CONCLUSIONS 

4.1 Major Findings 

4.1.1 Regional Differences in Stratification 

Shallow mixed layers are frequently found in the Coastal and Eastern Zones of 

the GOM during the winter. Time-series records from the GOMOOS moorings show 

that shallow mixed layers persist throughout the winter at many coastal locations 

and in the far-eastern GOM. In contrast, cast data from 1970-2009 show that deeper 

mixing occurs in the interior GOM. Tidally-forced, full water-column mixing occurs in 

the Northern Zone and over Georges Bank. Quantifying the contributions of salinity 

and temperature to density increase in the upper water-column shows that salinity 

increase with depth is more important in the Coastal, Northern, and Eastern Zones, 

while temperature decrease with depth is more important in the Western Zone and 

over Georges Bank. 

4.1.2 Pat terns in the Coastal and Eastern Zones 

Stratification during the winter is most pronounced in the Coastal and Eastern 

Zones of the GOM. These areas have the highest average stabilities and shallowest 

mixed layer depths (Table 2.13 and Fig. 3-1). A variety of factors impact stratification 

in the upper water-column (0-20m) in the Coastal Zone. These include fresh river 

discharge, circulated SSW, tidal/wind mixing, and ocean-air heat flux (Townsend, 
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1991). Tidal/wind mixing reduces stratification by physically stirring the water-

column. Cooling the surface waters initiates vertical mixing by creating dense water 

that sinks. Conversely, river discharge and SSW increase stratification by creating a 

salinity gradient in the upper-water column. In this situation, the water-column will 

resist overturning since less-dense, fresher water is above more-dense, saltier water. 

In the Coastal Zone, both the cast data and GOMOOS mooring data agree that 

salinity increase with depth is the primary cause of winter stratification. In fact, 81% 

of casts with a shallow mixed layer (<20m) owe their density increase to salinity (Fig. 

4-1). At Buoys A, B, and E, in the Coastal Zone, average salinity contributions are 

positive and signficant (P<.05), while temperature contributions are not statistically 

different from zero (P>.10). Average wintertime salinity contribution and stability 

values at Buoys A and B, in the southern Coastal Zone, are typically higher than 

other coastal GOMOOS moorings because fresh river discharge accumulates in the 

Northern and Coastal Zones and flows southward in the WMCC (Fong et al., 1997). 

Since it takes a few months for SSW to impact Buoys A and B, freshening will mainly 

be caused by river discharge or runoff in these areas (Deese-Riordan, 2009). Further 

north along the Maine Shelf, at Buoys E and I, however, it is expected that both river 

discharge and SSW will influence the density structure of the water-column (Bisagni 

et al., 1996). The degree to which SSW influences areas along the Northern Maine 

Shelf will depend on the total inflow volume during the winter as well as the extent 

of mixing with deeper, more saline waters (Brown and Beardsley, 1978; Smith et al., 

2001). 

The Eastern Zone is strongly impacted by the inflow of cool, fresh SSW at the 

surface, and by deep, saline slope water that enters the GOM through the Northeast 

Channel (Ramp et a l , 1985). Maximum inflow of SSW occurs during the winter 

(Smith, 1983). Fresh SSW overrides dense, more saline water and creates a pro­

nounced salinity gradient. This salinity gradient is responsible for the relatively 
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stratified water-column seen throughout the winter in the Eastern Zone (Mountain 

and Manning, 1994). The presence of SSW in this region is clear from the spatial 

distribution of shallow mixed layers (<20m) seen in the Eastern Zone (Fig. 3-1). In 

the Eastern Zone, 92% of casts with a shallow mixed layer owe their density increase 

to increased salinity with depth. This finding is supported by the positive average 

salinity contribution value seen over the Northeast Channnel (Buoy N) during the 

winter. According to averaged cast data, temperature does not contribute to the 

stratification seen in this area since the average temperature change with depth is 

small and statistically insignificant (P>.10). 

Salinity driven stratification events in the Coastal and Eastern Zones are accom­

panied by temperature inversions in the upper water-column. During these events, 

salinity increase in the upper 20m is great enough to counter temperature inversions. 

Temperature inversions during stratification events may be the result of increased 

cooling of the surface layer, or the advection of a cold, fresh water past the mooring 

(Deese-Riordan, 2009). Stratification intensifies temperature change of the surface 

ocean since only a relatively thin layer is interacting with the cold, winter atmo­

sphere. Deep mixing, on the other hand, homogenizes a greater volume of water and 

makes changes from atmospheric forcing more gradual. 

4.1.3 Pat terns in the Western Zone 

The Western Zone is characterized by greater mixing and low average stability in 

the upper 20m. In contrast to the Coastal and Eastern Zones, where temperature 

contributions are larger than salinity contributions in only 25% of casts, in the West­

ern Zone, temperature contributions are greater than salinity contributions in 56% 

of casts. In other words, in more than half of the casts taken during the winter in 

the Western Zone, temperature had a greater impact on upper water-column density 

increase than salinity. In this region, surface water cooled by the atmosphere is able 
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to penetrate to deeper depths because typically the water-column is weakly-stratified 

(Pringle, 2006). Fresh river discharge in the Coastal Zone does not have a significant 

impact on the density structure of the upper water-colum (0-20m) in Western Zone 

because it is confined by the WMCC. Furthermore, even under conditions of upwelling 

favorable, southwest winds, fresh plumes thin and mix with increasing distance off­

shore (Fong et al., 1997). It is interesting that 73% of casts with a shallow mixed 

layer in the Western Zone have a salinity contribution greater than temperature con­

tribution. This indicates that although deep mixing is the norm in the Western Zone, 

when shallow mixed layers do occur, fresh surface water is often responsible. This 

fresh surface water may result from advection of SSW or offshore extension of the 

EMCC (Brooks, 1985). For the shallow mixed layers whose density increase is pri­

marily from temperature decrease, however, warming of surface waters on relatively 

warm, sunny winter days may be important. 

4.1.4 Pat terns in the Northern Zone and over Georges Bank 

The Northern Zone and Georges Bank are heavily influenced by tidal mixing 

(Townsend, 1991). On average, stratification in these areas is very low due to the 

physical mixing of the water column. The Northern Zone is influenced by fresh 

river discharge from the St. John and St. Croix rivers. SSW also contributes to the 

freshening of this region (Bisagni et al., 1996). In the Northern Zone, 71% of casts have 

salinity contributions greater than temperature contributions. More importantly, 

salinity increase with depth is responsible for 96% casts with a shallow mixed layer 

in this region. Data from Buoy I, on the Eastern Maine Shelf, supports this finding, 

showing that on average the salinity contribution is positive and significant (P<.05), 

while temperature contribution not significantly different from zero (P>.10). 

On average, salinity and temperature change in the upper 20m are not significantly 

different from zero over Georges Bank (P>.10). However, comparing salinity and 
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temperature contributions for each cast, reveals that the majority of casts (63%) 

over Georges Bank owe density increase in the upper water-column to temperature 

decrease. Like the other regions, however, it is salinity increase in the upper 20m 

that sets up the majority (87%) of shallow mixed layers in this region. The likely 

cause of the observed salinity driven stratification during these events is the presence 

of SSW (Smith et al., 2001). Shallow mixed layers caused by temperature decrease 

with depth may be caused by atmospheric heating of the surface layer or the presence 

of warm-core Gulf Stream rings (Brooks, 1985). 

4.1.5 Interannual Variability of Salinity and Temperature in 

the Upper 50m 

As discussed in section 3.4.1, the ~3 year variability of salinity and temper­

ature change is apparent at all GOMOOS buoys. Salinity and temperature in­

crease/decrease are in sync at all moorings and depths considered (1, 20, and 50m). 

Salinities and temperatures fell from 2004-2005, increased from 2005-2007, and then 

fell again from 2007-2009. Although it is accepted that the origin of salinity and 

temperature differences in the greater GOM can be traced back to the hydrographic 

properties of SSW and slope water (Smith et al., 2001; Petrie and Drinkwater, 1993), 

more research is necessary to explain the short-term variability seen at the GOMOOS 

moorings. To date, sub-decadal to decadal variations in salinity and temperature have 

been observed in the GOM and attributed to fluctuations in the western transport of 

Labrador Slope Water (Petrie and Drinkwater, 1993). Smith et al. (2001) postulated 

that variability in salinity and temperature anomalies noticed by Petrie and Drinkwa­

ter (1993) may be linked with the North Atlantic Oscillation (NAO). The NAO index 

describes the pressure difference at sea-level between the Azores/Bermuda "High" 

and the Icelandic "Low". When the NAO index is high and positive, "the Icelandic 

Low deepens and intensifies, producing excessively strong, cold winter winds off the 
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North American continent and over the Labrador Sea/Baffin Bay" (Smith et al., 

2001). These periods of intense cold weather, in combination with freshwater from 

Arctic origins, may be the source of cold, fresh water that is eventually advected to 

the Scotian Shelf and GOM (Smith et al., 2001). According to Petrie (2007), however, 

changes in the western transport of Labrador Slope Water, linked with changes in the 

NAO, have a bigger impact on salinity and temperature in the GOM. Petrie (2007) 

found that warmer, saltier conditions prevail in the GOM during sustained periods 

(at least 2 years) with positive NAO index. During these periods, cold, relatively 

fresher Labrador Slope Water is not transported as far westward and "allows posi­

tive bottom temperature anomalies to develop more readily on the western Scotian 

Shelf and in the Gulf of Maine". These differences are seen in the deep waters of 

the GOM, and are subsequently reflected in surface waters by deep mixing of the 

water-column. Improved understanding of the conditions that create the surface and 

deep waters which move into the GOM, and the factors that control the volume of 

their respective inflow, will help in forecasting the density structure of the GOM. 

The ways in which the density structure of the water-column impact biological and 

physical systems will be explored in section 4.3. 

4.1.6 Wind Stress and Stratification 

The relationship between wind stress and stratification is often difficult to measure 

accurately. Intuitively one would expect stratification to decrease following periods 

of high wind stress. For example, in the GOM region, it is well-accepted that de-

stratification during the fall coincides with cooling and sinking of surface waters in 

conjunction with increasing frequency of strong wind events (Lentz et al., 2003). 

Based on findings in this study, however, increased wind stress during the winter 

does not necessarily mean decreased stratification. A visual inspection of trends of 

stratification compared with a time-series of pseudo-stress illustrates this nicely. In 
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some cases, as at Buoy B in 2006, maximum wind stress values in combination with 

downwelling-favorable (northerly) winds, coincided with the period of highest strati­

fication in the upper 20m (Fig. 4-2). 

Differences in the pattern of pre- and post-wind event stratifications in the fall and 

winter, might be explained by seasonal differences in hydrographic and meteorological 

conditions in the GOM. For example, mixing linked with a wind event during the 

late summer or early fall may result in temporary destratification followed by the re­

development of stratification from thermal heating of the surface layer. In the winter, 

however, re-stratification may not occur following the conclusion of a major wind 

event since temperatures are much colder and average wind stress values are higher. 

In this situation, it is not useful to compare before and after wind event stratification 

values since the water may be unstratified to begin with. Instead, regional changes 

in stratification during the winter are better accounted for by changes in the volume 

inflows of river and SSW. 

A potential issue in attempting to correlate stratification and wind stress at a 

fixed point, like a mooring, is that water-mass advection is ignored. In this case, 

although increased wind stress magnitude is expected to cause increased mixing and 

the breakdown of stratification, it may instead be responsible for the advection of a 

different water mass which shows a high degree of stratification. Further complications 

also arise when considering non-linearities associated with wind-speed and surface 

cooling (Pringle, 2006). Increased wind speeds act to both mechanically mix the 

water-column, and cool the surface through increased evaporative heat flux. It is 

difficult to separate the mixing due to vertical sinking of surface cooled waters from 

that linked with physical stirring of the water-column by the wind. 
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4.2 Contributions of Cast Data to Understanding 

Region-Wide Pat terns in Stratification 

A shortcoming of the GOMOOS data are their limited spatial coverage. With the 

exception of Buoy M, in Jordan Basin, the GOMOOS buoys don't provide information 

on the interior GOM. It is important to investigate if stratification found in coastal 

areas is representative of other regions in the GOM. This study goes beyond the work 

of Deese-Riordan (2009) by providing insight on the geographic extent of stratification 

events and the relative roles of salinity and temperature in affecting the density of 

the upper water-column. 

Maps of mixed layer depth for the BIO and COOA cast data show that patterns 

in stratification are not the same throughout the GOM (Fig. 3-1). For example, in 

the Western Zone casts indicate greater winter mixing than in the Coastal or Eastern 

Zones. Greater mixing in the Western Zone is accompanied by near-zero average 

upper water-column stabilities. A comparison of stability values in the upper 20m 

between the Coastal/Eastern and Western Zone shows that the difference is significant 

at the 15% level. Based on regionally averaged mixed layer depths, it is clear that the 

persistent winter stratification recorded by the GOMOOS moorings in the Coastal 

Zone are not necessarily representative of mixed layer depth trends in the interior 

GOM. Buoy M, in Jordan Basin, hints at this difference as it shows typically low 

stratification values, and winters that only have a few days with a shallow mixed 

layer. Differences in mixed layer depth are driven by the physical processes affecting 

the various regions. Depending on the location, coastal areas may be influenced by 

both SSW and fresh river water. Local mixing due to tides may also be important. 

In the interior GOM, river discharge does not have the same impact as it does near 

the coast because thinning and mixing occur with increasing distance offshore. The 

fact that the coastal and interior GOM are affected by different physical processes 
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is reflected by regional differences in the contributions of salinity and temperature 

to density increase in the upper water-column. In the Coastal Zone, both cast and 

GOMOOS mooring data indicate that salinity increase with depth during the winter 

is almost always responsible for density increase in the upper 20m. In the Western 

Zone, however, temperature decrease with depth is responsible for density increase in 

the upper water-column for the majority of casts. 

Inter-zonal differences in stratification for specific years are investigated using 

cast data from the winters of 1991, 1998, and 2006.. The winters of 1991 and 1998 

are useful because more casts, over a wider-area, are available these years. The 

winter of 2006 is chosen to take a close look at the spatial extent of the "coastally 

trapped fresh plume" that impacted stratification in the Coastal Zone (Shcherbina 

and Gawarkiewicz, 2008). 

In 1991 and 1998, mixed layer depths were typically shallowest in the Coastal and 

Eastern Zones, and greatest in the Western Zone (Fig. 4-3 and Fig. 4-4). In the 

Coastal Zone, during the winter of 1991, a mix of salinity and temperature domi­

nated casts were found. In other words, at certain times a positive salinity gradient 

in the upper 20m was responsible for density increase, while at other times temper­

ature decrease with depth had a larger impact on density change. This result is not 

surprising since in this region, upper water-column density is governed by both fresh 

river discharge and temperature. Salinity change with depth was responsible for 83% 

of shallow mixed layers seen in the Coastal Zone this winter. This finding is con­

sistent with GOMOOS mooring data of the same area, which shows that periods of 

stratification are caused by positive salinity gradients in the upper water-column. In 

1991, only 33% of casts in the Western Zone were salinity dominated. Weak stratifi­

cation in this region is shown by the deep mixed layers (>75m) in Fig. 4-3. In 1998, 

again, the deepest mixed layers were seen in the Western Zone (Fig. 4-4). Similar to 

1991, in the Western Zone, the presence of shallow mixed layers (<20m) was almost 
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exclusively the result of postive salinity gradients in the upper water-column. In fact, 

salinity contribution to density increase was greater than temperature contribution in 

72% of casts with a shallow mixed layer. In the Western Zone, the presence of shallow 

mixed layers with salinity-driven stratification, may reflect the offshore advection of 

relatively fresh coastal waters. 

Stratification in January of 2006 resulted from higher-than-average autumn river 

discharge (Deese-Riordan, 2009). High discharge resulted in a "coastally trapped fresh 

plume" (Shcherbina and Gawarkiewicz, 2008) (Fig. 3-11). Eleven casts are available 

during the winter of 2006, ten in the Coastal Zone, and one in the Western Zone. The 

cast data provide decent temporal coverage of the 2006 winter, but unfortunately no 

data are available during January at the peak of the first stratification event observed 

at Buoys A, B, and E, in the Coastal Zone. Data are available, however, for early 

February at the end of the January stratification event, as well as in March for a 

separate event. Time-series of salinity and temperature at Buoy B, on the Western 

Maine Shelf, indicate that the March stratification event was caused by increased 

river discharge (likely from snowmelt), as well as from solar heating of the surface 

layer. At the end of the first stratification event, a (~74m) mixed layer was recorded 

in the Western Zone on February 9th, 2006 (Fig. 4-5). On the same date a cast in 

the Coastal Zone, 36km shoreward, recorded a mixed layer depth of (~27m) (Table 

4.1). This observation shows that at the end of the January stratification event, 

the fresh plume of river water was restricted to a narrow area near the coast. Not 

enough cast data are available to look at the maximum seaward extent of stratification 

since no data were collected in mid-January when GOMOOS buoys in the Coastal 

Zone show peak stratification. A look at the salinity and temperature profiles for 

the two casts taken on February 9th, 2006 indicate different mechanisms controlled 

the density structure of the upper water-column. In the Coastal Zone salinity and 

temperature both increased with depth, while on the same date in the Western Zone, 
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salinity remained constant in the upper 20m and temperature decreased. From these 

observations, it is clear that either the surface plume of river water did not extend far 

from the coast, hence "coastally trapped", or it thinned and eventually mixed away 

before impacting the density structure at offshore locations. Given the 20 day rolling 

average wind-direction values from the NCEP Reanalysis II, it is possible to rule out 

the spreading and thinning of the river plume as southwesterly (upwelling favorable) 

winds were not persistent during this time (Fig 4-2) (Fong et al., 1997). 

Casts from 1991, 1998, and 2006 show that stratification trends in the Coastal 

Zone do not necessarily translate to the Western Zone. That is not to say that shallow 

mixed layers were not seen in the Western Zone of the GOM, but rather that both 

shallow and deep mixed layers were found depending on when the cast was taken. 

The variability in mixed layer depths seen in the Western Zone during 1991 and 1998 

indicate that shallow stratification occurs in this region, but does not persist through 

the winter as found at the coastal GOMOOS buoys or at Buoy N, over the Northeast 

Channel. 

Based on patterns in mixed layer depth, it appears that significant physical 

changes occur over short distances when moving offshore. As was seen on Febru­

ary 9th, there was a significant difference over 36km in the mixed layer depth between 

the Coastal and Western Zone. Similarly, on March 7th, 2006 a notable difference in 

mixed layer depth was observed between two casts separated by only 12km in the 

Coastal Zone. This case also shows that the factor causing density increase (salinity 

or temperature) in the upper water-column (0-20m) is variable over short-distances 

(Fig 4-6). The two casts taken on March 7th, 2006 illustrate this point nicely. The 

cast further offshore had a mixed layer depth of 44m, and density increase in the up­

per 20m was attributable to temperature decrease with depth, while the shoreward 

cast had a shallow mixed layer (18m) caused by a positive salinity gradient. 

104 



4.3 Biological and Physical Implications 

Although winter phytoplankton blooms are far less documented than the annual 

spring phytoplankton bloom, their impact on the marine ecosystem may be signifi­

cant. One such bloom occurred in late February of 1999, when cool, fresh SSW spread 

into the eastern GOM and established stratified conditions conducive to rapid phy­

toplankton growth. Importantly, increased phytoplankton stocks in 1999 coincided 

with a 10 fold increase in zooplankton abundance compared to 2000 (Durbin et al., 

2003). In addition, Townsend et al. (1994) argued that heterotrophic activity may 

be slowed by colder water temperatures present during wintertime phytoplankton 

blooms. Colder temperatures act to "decouple" the interaction between phytoplank­

ton and zooplankton, allowing phytoplankton stocks to grow. Greater phytoplank­

ton stocks contribute to better year-classes of many fish populations (Durbin et a l , 

2003). Using remotely sensed data, Piatt et al. (2003) found that two especially 

good year-classes of Haddock in 1981 and 1999 were correlated with an early spring 

phytoplankton bloom. Piatt et al. (2003) hypothesized that survival success rates of 

fish with longer spawning periods are higher during earlier blooms since larvae are 

not limited by food resources. In opposition, Ji et al. (2008) argue that early spring 

phytoplankton blooms, or intermittent winter blooms, can deplete surface waters of 

essential nutrients, thus limiting the magnitude of the spring bloom. Using a dataset 

spanning from 1998-2006, Ji et al. (2008) found that negative sea-surface salinities 

in the eastern GOM, attributable to increased inflow of SSW, were correlated with 

earlier spring blooms. Therefore, understanding the physical forcing factors, such 

as the variability in total volume and timing of SSW, is critical in predicting future 

changes in the onset and magnitude of phytoplankton blooms. 

From the arguments of Piatt et al. (2003) and Ji et al. (2008), it is clear that 

both the timing, duration, and strength of stratification events are important factors 

when considering phytoplankton blooms and food web dynamics. On one hand, 

105 



stratification can induce a bloom and increase larval fish survival rates, while on the 

other hand, persistent stratification may allow phytoplankton to deplete nutrients 

before the onset of the primary spring bloom. Nutrient deplete conditions place 

tremendous strain on fish populations which rely on phytoplankton and zooplankton 

as their food source. It is unclear at this point how the duration and strength of 

stratification events during the winter affect the magnitude of the spring bloom. 

However, it is understood that nutrients need to be replenished in the euphotic zone 

if biological productivity is to be sustained. Currently, there is no consensus on the 

exact stability required for a phytoplankton bloom to develop. Future research in this 

area will be helpful in studying how the persistent upper water-column stratification 

observed in the Coastal and Eastern Zones of the GOM during the winter, or future 

changes in patterns of stratification, could impact biological systems. Specifically, the 

marine food web may be negatively affected if upwelling of nutrient-rich, deep waters 

is prevented by stratification. 

Winter-time stratification may also have important physical implications for av­

erage annual carbon export and air-sea C0 2 flux. For example, in early March of 

2005, shallow stratification in the Coastal Zone established by high river discharge, 

led to significant biological uptake of dissolved inorganic carbon (DIC) (Salisbury 

et al., 2009). Colder than average air temperatures in combination with uptake of 

DIC in the surface layer was likely responsible for the increased atmosphere-to-ocean 

CO2 gradient observed by Vandemark et al. (2010). This air-sea gradient caused a 

positive flux of C0 2 into the waters of the western coastal GOM this winter. This 

case illustrates that when physical conditions are suitable for a winter phytoplankton 

bloom (i.e. a shallow mixed layer is present), increased productivity by autotrophs 

may lead to greater export of carbon to the benthos (Townsend et al., 1994). Con­

version of inorganic carbon to organic carbon, and its export to the sediment via the 

sinking of particulate organic carbon (POC), draws down atmospheric C0 2 . If export 
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of carbon to the seabed is greater than remineralization in the water-column by het-

erotrophs, then carbon will accumulate and be buried. Winter phytoplankton blooms 

linked to shallow stratification events often seen in the Coastal and Eastern Zones 

of the GOM, could be an important sink for atmospheric CO2. Further research is 

required to determine the magnitude and frequency of winter phytoplankton blooms 

in the GOM, as well as the mass of biogenic carbon transported to the seafloor. A 

better understanding of wintertime carbon drawdown and export will also help in 

resolving the ongoing debate of whether the GOM is a source or sink of atmospheric 

C0 2 (Vandemark et a l , 2010). 

In the GOM, seasonal cycles in air-sea gas flux are governed by temperature, 

water-column mixing, biological activity, and wind speed (Vandemark et al., 2010). 

Temperature is one factor driving the partial pressure of CO2 (PCO2) at the surface. 

PCO2 follows the seasonal sea surface temperature cycle, with highest and lowest 

values in the summer and winter, respectively. During the winter, however, periods of 

deeper winter mixing introduce CO2 rich waters to the surface, increasing their pC02-

When surface water becomes supersaturated in CO2, with respect to the atmosphere, 

an ocean-to-atmosphere efflux of gas occurs. Wind speed also affects gas flux, with 

higher wind speeds resulting in greater gas transfer velocities (Wanninkhof, 1992). A 

study from 2004-2008 in the western coastal GOM, using shipborne and high-temporal 

resolution mooring data, found that the largest seasonal anomalies in air-sea CO2 flux 

occur during the winter (Vandemark et al., 2010). For example, using a CO2 recording 

mooring roughly 10km east of the Piscataqua River, Vandemark et al. (2010) found 

an average negative (air-to-ocean) CO2 flux in 2005, and a positive (ocean-to-air) flux 

in 2007. 

Winter-to-winter variability in C0 2 gas flux may be attributable to stratification 

or biological forcing. A study on the Scotian Shelf, adjacent to the GOM, showed that 

gas transfer velocity is significantly correlated with mixed layer depth (r2=.79, N=12, 

107 



p<0.001) (Shadwick et al., 2010). According to Shadwick et al. (2010), as mixed layer 

depth decreases so does the gas transfer velocity. Physically, this may be in part 

due to reduced vertical mixing during conditions of shallow stratification which allow 

near-surface waters to equilibrate more quickly with the atmosphere (Takahashi et al., 

2002). Since patterns in winter stratification and mixed layer depth are variable across 

the GOM, it is not appropriate to assume uniform gas transfer velocities across the 

region. Although recent work by Vandemark et al. (2010) provides some information 

on wintertime air-sea CO2 flux in the Coastal Zone, more data, over a longer period 

of time, is needed to accurately describe air-sea gas exchange over the entire GOM. 

Furthermore, since biological uptake of CO2 also affects air-sea flux, the average 

atmospheric drawdown from phytoplankton blooms must be considered to close the 

GOM's carbon budget. 

4.4 Final Thoughts and Future Research Needs 

GOMOOS and cast data reveal that salinity-driven, shallow stratification is com­

mon during the winter in the Coastal and Eastern Zones of the GOM. Conversely, 

casts taken in the Western Zone often show little stratification and greater vertical 

mixing. An area for future study is investigating the relationship between stratifica­

tion and winter phytoplankton blooms. It is assumed that shallow stratification is a 

necessary physical requirement for a bloom, but it is not known how often shallow 

mixed layers are actually accompanied by increased biological productivity. Winter 

blooms are an important area of focus because increased phytoplankton stocks often 

lead to better-year classes of fish populations in the GOM (Piatt et a l , 2003). How­

ever, it is not understood how the strength and duration of winter phytoplankton 

blooms affect the magnitude of the spring bloom. For example, do winter phyto­

plankton blooms leave the upper-water column deplete of nutrients? If stratification 

108 



persists throughout the winter, can nutrients be upwelled and recharge the euphotic 

zone? More research is required to answer these questions, and more broadly, to de­

scribe how winter blooms affect carbon cycle dynamics in the GOM. At this point, it 

is undecided whether the the GOM is a source or sink of CO2. In fact, CO2 gas flux is 

variable from year-to-year depending on physical and biological forcings (Vandemark 

et al., 2010; Salisbury et al., 2009). In order to answer this question and improve 

ocean-atmosphere circulation models, long-term time-series from autonomous moor­

ings covering both the coastal and interior GOM, need to be acquired. 

Lastly, future work should focus on improving air-sea gas flux estimates to account 

for regional differences in stratification observed in the GOM. As seen by Salisbury 

et al. (2009), shallow stratification accompanied by a phytoplankton bloom creates a 

C0 2 gradient that drives air-to-sea C0 2 exchange. Shallow stratification unaccompa­

nied by biological productivity, however, may slow down air-sea flux since the PCO2 

in surface layer quickly equilibrates with the overlying atmosphere (Takahashi et al., 

2002). Currently, it is unclear which situation typically dominates in the GOM. In the 

Western Zone, deep winter mixing of C02-rich waters appears to be more common, 

and thus this area may act as a source of C0 2 to the atmosphere. To definitively 

answer this question, however, time-series data from moorings are necessary to char­

acterize seasonal and annual patterns in CO2 flux. 
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2006 Winter Stratification 
Case Study 

Date 

2006-2-9 
2006-2-9 

2006-2-21 
2006-2-21 
2006-2-22 
2006-3-7 
2006-3-7 
2006-3-22 
2006-3-22 
2006-3-23 
2006-3-23 

Mixed Layer 
Depth (m) 

27.25 
74.38 
21.63 
25.0 
7.38 
18.0 

44.25 
28.25 
31.89 
15.38 
.13 

Zone 

Coast 
West 
Coast 
Coast 
Coast 
Coast 
Coast 
Coast 
Coast 
Coast 
Coast 

Salinity 
(20m-lm) 

.€034 
0 

.0166 

.0136 

.2568 

.0224 
-.0020 
.0020 
-.0016 
.0203 
.3846 

Temperature 
(20m-lm)°C 

.0346 
-.0156 
.0842 
.0281 
.1714 
.0584 
-.0533 
-10180 
-.0569 
-.0024 
-.1380 

Relative 
Contribution 

.0051 
-.0034 
.0206 
.0126 
.2196 
.0226 
-.0081 
-.0011 
-.0081 
.0149 
.2922 

Table 4.1: Dates, zone, mixed layer depth, salinity/temperature difference between 
(l-20m), and relative contribution of salinity or temperature to the density increase 
in the upper 20m for 11 casts are shown for the 2006 stratification event along the 
Western Maine Shelf. 
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48°N 

47°N 

46°N 

Relative Contributions for Casts with a Shallow Mixed Layer 

45°N 
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Longitude 

68UW 66°W 

Figure 4-1: A map of the Gulf of Maine showing relative contributions for casts with 
a mixed layer less than or equal to 20m. Relative contributions are calculated between 
the surface depth and the mixed layer depth using the same form as (Equation 3.3). 
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Wind Stress and Stratification at Buoy B 
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Figure 4-2: Wind stress and direction (0-360°), during the 2006 stratification event 
on the Western Maine Shelf. Black points in the last graph represent 20 day rolling 
averages of wind direction while red stars indicate upwelling-favorable winds (200°-
250°). 
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Figure 4-3: Maps of all casts taken during the winter of 1991. Top: Mixed layer 

depths. Bottom: Relative contributions of salinity and temperature to density in­

crease in the upper 20m. 
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Mixed Layer Depth (1998) 
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Figure 4-4: Maps of all casts taken during the winter of 1998. Top: Mixed layer 
depths. Bottom: Relative contributions of salinity and temperature to density in­
crease in the upper 20m. 
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Mixed Layer Depth (2006) 
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Figure 4-5: Top: A map of mixed layer depths for casts taken during the winter of 
2006. Bottom: A map showing the relative contribution of salinity and temperature 
in increasing the density in the upper 20m. 
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Figure 4-6: A comparison of mixed layer depth and relative contribution of salin­
ity and temperature for two casts on March 7th 2006. This comparison shows that 
significant changes in mixed layer depth and the factors driving the density gradient 
in the upper water column can occur over short-distances (12km in this case) when 
moving away from the coast. 
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