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ABSTRACT 

ASSESSING RELATIONSHIPS OF MOOSE POPULATIONS, WINTER TICKS, AND 
FOREST REGENERATION IN NORTHERN NEW HAMPSHIRE 

By 

Daniel H. Bergeron 

University of New Hampshire, May 2011 

This study examined relationships among winter ticks, weather, and the 

nutritional and reproductive status of moose, and the impact of moose on regeneration of 

commercial forests in northern New Hampshire. Three methods were evaluated to assess 

their usefulness as indices of relative winter tick abundance, and predictors of tick 

epizootics: tick counts on harvested moose and roadside, spring hair-loss surveys were 

considered time and cost effective to index winter tick abundance. Physical 

characteristics of harvested moose (1988-2009) indicated ovulation rates (-20%), and 

mean body weight (<200 kg) of yearlings declined since 1988; because adult body weight 

and ovulation rates remained stable, habitat quality was unlikely related. Winter tick 

epizootics are likely influenced by abnormal large scale weather events, as evident in the 

widespread die-off in 2002 associated with warm snowless conditions into mid-

December 2001 that extended tick transmission to moose. Spring and fall weather should 

be monitored for unusual conditions causing high tick abundance and tick loads, 

particularly warm and snowless conditions in April and December. Mean stocking rate 

of all age classes of commercial tree species was above the threshold in all regions (49-

87%); forest regeneration was not considered a regional problem at any moose density. 
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INTRODUCTION 

Winter ticks (Dermacentor albipictus) have been associated with large moose 

{Alces alces) die-offs (Delgiudice et al. 1997, Samuel 2004) and are suspected to 

influence population dynamics of moose in northern New Hampshire (Musante et al. 

2010). Most recently, measurable calf mortality was associated with high winter tick 

infestation in 2002 (Scarpitti et al. 2005, Musante et al. 2010). Winter ticks are 

capable of having a dramatic impact on moose populations largely because they are a 

one-host parasite. They attach to moose as larvae in fall, develop all life stages 

throughout winter-early spring, and adult females drop to lay eggs in spring (Samuel 

and Barker 1979). The infestation of ticks on moose can be moderate-severe; the 

average number of ticks on a single moose in Alberta was -32,000, with a maximum 

of >149,000 (Samuel and Welch 1991). Severe tick loads can lead to anemia (blood 

loss), restlessness, increased time spent grooming, less time spent feeding, hair-loss, 

and hypothermia (Samuel and Welch 1991, Addison et al. 1998b, Samuel 2004). 

It is believed that the distribution of winter ticks is related to spring habitat use 

by moose because engorged adult female ticks and eggs are practically immobile 

(Samuel 2004). Moose in New Hampshire preferentially use cut/regeneration habitat 

in spring and early winter (Scarpitti et al. 2005), and such habitat use should directly 

influence the distribution and abundance of winter ticks across the landscape. 

Further, there is a direct relationship between quality and abundance of optimal 

moose habitat and commercial forest management (Scarpitti et al. 2005), and winter 

tick abundance is believed related to moose population density (Samuel 2004). 

However, high density moose populations can negatively impact hardwood and 
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softwood regeneration; for example, Bergerud and Manuel (1968) found that repeated 

browsing of buds and branches can kill or suppress growth of hardwood saplings, and 

Brandner et al. (1990) found that damage to balsam fir {Abies balsamea) was greatest 

at high moose density. Therefore, potential relationships exist among moose 

productivity, habitat use, forest regeneration, silviculture, and abundance of winter 

ticks. Because moose can negatively impact forest regeneration, and both moose and 

forest management companies are important economic and social resources in 

northern New Hampshire, a challenging management situation often results relative 

to their balance. 
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STUDY AREA 

The study area was located in northern New Hampshire in Coos, Grafton, and 

Carroll Counties and included New Hampshire Fish and Game Department (NHFG) 

Wildlife Management Units (WMU) Al, A2, B, CI, C2, Dl, D2, El, E2, E3, and F 

(Fig. 1). The study area was separated into 3 regions relative to difference in moose 

population density. The 3 regions from highest to lowest density were CT Lakes, 

North, and White Mountain; these regions were established based on the estimated 

indices of population density in the 2007 NHFG Annual Wildlife Harvest Summary. 

The CT Lakes region included WMU Al and A2, the North Region WMU B, CI, C2, 

and Dl, and the White Mountain region WMU D2, El, E2, E3, and F. All study 

regions are ecologically, commercially, and recreationally significant to the state of 

New Hampshire. Possible predators of moose within the study area were black bear 

{Ursus americana), coyote {Canis latrans), and bobcat {Lynx rufus), and white-tailed 

deer {Odocoileus virginianus) are sympatric with moose throughout. 

The CT Lakes and North regions were dominated by hardwood species 

including sugar {Acer saccharum) and red maple {Acer rubrum), yellow birch {Betula 

alleghaniensis), and American beech {Fagus grandifolia). Red spruce {Picea 

rubens)-balsam fir tends to be the dominant forest type at higher elevations (>760 m) 

and in wet lowland sites (Degraaf et al. 1992). These regions are predominately 

forested and the majority of the land is privately owned and commercially harvested 

(Degraaf et al. 1992); they contain numerous wetlands, ponds, and lakes and are 

interspersed with trails and logging roads. The CT Lakes region is hilly with few 
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Figure 1. Location of the 3 study regions with different moose density in northern 
New Hampshire. The estimated moose density in 2009 was 0.83 moose/km2 in the 
CT Lakes, 0.61 moose/km2 in the North, and 0.26 moose/km2 in the White Mountain 
(Rines, moose project leader NHFG, pers. comm.). 
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high mountains, while the North is characterized by high mountainous terrain; 

elevation in the study was -120-1900 m (400-6000 ft). Average moose density 

between 1995 and 2009 was 1.3 moose/km2 (range = 0.83-1.59) in the CT Lakes 

region and 0.72 (range = 0.55-0.85) in the North region (Rines, moose project leader 

NHFG, pers. comm.). 

The White Mountain region had the highest elevations and contained the 

White Mountain National Forest covering 304,050 ha that is -97% forest (Costello 

1995). It is dominated by beech, sugar maple, and yellow birch. Other common 

species include white ash {Fraxinus americana), red maple, red spruce, and eastern 

hemlock {Tsuga canadensis). Timber management practices are on a smaller scale 

than the other regions, with maximum clear-cut size of 10-12 ha (Costello 1995). The 

average moose density between 1995 and 2009 was 0.35 moose/km2 (range = 0.15-

0.28) (Rines, moose project leader NHFG, pers. comm.). 



CHAPTER 1 

INDEXING WINTER TICK ABUNDANCE 

Introduction 

The winter tick is a unique blood-feeding ectoparasite that is the only such 

species that has a dramatic impact on moose populations (Welch et al. 1991, 

Lankester and Samuel 1997). It is found in most of moose range in the United States 

and Canada south of 60° N latitude (Brown and Kohls 1950, Samuel and Barker 

1979, Lankester and Samuel 1997), but not in Newfoundland or Alaska although 

could presumably survive if translocated (Zarnke et al. 1990, Lankester and Samuel 

1997, Samuel 2004). In New Hampshire winter ticks have been collected as far south 

as Durham, Nottingham, Wilton, and Roxbury, but are more common in the northern 

part of the state (Eaton 2001), presumably due to the higher density of moose. 

Winter ticks have 3 different parasitic life stages: larva, nymph, and adult 

(Samuel 2004). Each requires a blood meal to subsequently develop to the next stage, 

and meals are taken from the host throughout the course of one winter (Lankester and 

Samuel 1997, Samuel 2004). The life cycle of the winter tick is predictable with little 

annual variation (Addison and McLaughlin 1988, Addison et al. 1998a, Samuel 2004) 

because its reproductive cycle is dictated by fairly constant environmental cues such 

as temperature and photoperiod (Drew and Samuel 1986). Annual synchrony of the 

reproductive cycle is partly due to nymphal and adult diapause (Drew and Samuel 

1986, Addison and McLaughlin 1988). Nymphal diapause allows larvae that attach 
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to hosts at different times to be fully developed at the same time (Addison and 

McLaughlin 1988); adult diapause allows for synchrony of oviposition (Drew and 

Samuel 1986). This strict cycle is probably due to the northern climate that allows 

only a narrow window of reproductive success (Samuel 2004). 

Eggs hatch into larvae in August-September after which they enter diapause 

(Wright 1969, Samuel 2004); the exact mechanism that activates ticks is unknown, 

but may be initial frost, photoperiod, or change in soil temperature (Samuel 2004). 

Larvae ascend vegetation to quest (wait to attach to a host) in September-October, 

and continue to quest until they find a host or until low temperature, wind, or snow 

causes them to become inactive and eventually die (Drew and Samuel 1985, Samuel 

2004). Larvae feed from their host in October-November and begin to molt into 

nymphs. Nymphs stay on the host October-March, then feed and molt into adults in 

January-March. Adult ticks remain on their host from February-May, feeding and 

mating until they begin to drop off in March-April. The adult female then lays eggs 

in the leaf litter and dies (Samuel 2004, Samuel 2007); each is capable of laying 

thousands of eggs. The length of the parasitic phase may vary by location and host 

but is most influenced by latitude (Addison and McLaughlin 1988), suggesting that 

winter tick cycles are adapted to climatic differences in moose range. Weather 

appears to be the most influential factor of winter tick abundance (DelGuidice et al. 

1997, Samuel 2004). 

Moose density seems to influence the distribution and abundance of winter 

ticks as several studies indicated that tick load increases with moose density (Blyth 

1995, Pybus 1999, Samuel 2004, 2007). It is believed that a higher density of moose 

7 



allows for higher larval attachment in autumn yielding more adult females that 

produce more eggs (Samuel 2004); evidence for this relationship is mostly 

correlative. 

Most larvae climb vegetation in the immediate area of the hatching site and 

87% of engorged adult females are found within 60 cm of moose carcasses (Drew and 

Samuel 1985, 1986), indicating that the drop site of adult female ticks is essentially 

the site of oviposition. Therefore, distribution of winter ticks is related directly to 

where adult female ticks drop from moose during early spring (Drew and Samuel 

1986, Samuel 2004). Moose in northern New Hampshire preferentially use 

cut/regeneration habitat in late winter-spring (Scarpitti et al. 2005), indicating the 

strong relationship between forest harvesting and the distribution and abundance of 

both moose and winter ticks. 

Moose are the most severely affected host of winter ticks (Welch et al. 1991, 

Lankester and Samuel 1997, Samuel 2004) because they are poorly adapted to 

counteract infestations behaviorally (Anderson and Lankester 1974, Welch et al. 

1991, Samuel 2004). Samuel (2004) estimated that the average tick load on moose is 

28, 32, and 184 times higher than on elk, deer, and bison, respectively. Moose seem 

to be less effective groomers than other hosts due to inherent difference in grooming 

strategy (Welch et al. 1991, Mooring and Samuel 1998, Samuel et al. 2000). Elk, 

bison, and deer are programmed groomers (Mooring and Samuel 1998), or they 

groom in anticipation of, or before ticks have a chance to engorge and molt. Moose 

are stimulus groomers, that groom in response to the itch associated with feeding 

ticks (Mooring and Samuel 1998, 1999, Samuel 2004). Irritation from feeding ticks 
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occurs when tick saliva causes a host cell to release histamine (Willadsen 1980, 

Mooring and Samuel 1998); therefore, grooming peaks in concert with engorgement 

by adult females (Mooring and Samuel 1998). Importantly, moose begin to groom 

after contracting their maximum tick load. 

Moose may not be as effective in grooming against winter ticks because of a 

relatively short evolutionary relationship (Mooring and Samuel 1998, 1999, Samuel 

et al. 2000, Samuel 2004). Moose are relatively new arrivals to North America 

(Bubenik 1997, Mooring and Samuel 1999), and deer were probably the common 

host of winter ticks beforehand (Anderson and Lankester 1974, Holmes 1996, Samuel 

et al. 2000). Parasites are more likely to be pathogenic when exposed to "clean" 

hosts without adaptive mechanisms (Holmes 1996), thereby explaining why winter 

ticks minimally affect deer (Lankester and Samuel 1997) and have larger impact on 

moose (Mooring and Samuel 1998, 1999, Samuel et al. 2000, Samuel 2004). 

Winter ticks are well adapted to be an effective parasite of moose. When 

larvae become active and quest they form clumps at the tips of vegetation ranging 

from a few to -1,000 ticks (Drew and Samuel 1985, McPherson et al. 2000, Samuel 

et al. 2000), and are at the average chest height (-1 m) of moose, deer, and elk (Drew 

and Samuel 1985, McPherson et al. 2000). Peak larval activity coincides with the 

moose breeding season when moose are most active and the probability of attachment 

increases (Samuel et al. 2000, Samuel 2004). Bull moose are more active during the 

rut than females (Bubenik 1997), which may explain why bulls average twice as 

many ticks as females (Drew and Samuel 1985). Although bulls travel more during 

the rut (Bubenik 1997) and have a higher absolute number of ticks, calves are 
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impacted more because they have proportionally more ticks per body size, are in 

poorer body condition than adults, and tend to be in severe negative energy balance in 

spring when impacts are greatest (Samuel 2004, Musante et al. 2007). 

The average number of winter ticks on a single moose is -30,000 and may 

exceed 100,000 (Samuel and Welch 1991, Samuel 2004). High tick loads can lead to 

several problems including damage and loss of the winter coat, less feeding due to 

increased grooming, reduced visceral fat stores, anemia, restlessness, reduced growth 

in young moose, and death (Samuel and Welch 1991, Samuel et al. 2000, Samuel 

2004). Tick induced hair-loss or alopecia is one of the most common and visual 

impacts of winter ticks, and rapid hair-loss occurs in March-May, coinciding with 

increased engorging by adult ticks (McLaughlin and Addison 1986, Mooring and 

Samuel 1999). Increased hair-loss in March-May corresponds with increased 

grooming (Samuel 1991), and grooming and the amount of hair loss are positively 

correlated, with a lag in hair-loss of approximately one month (Mooring and Samuel 

1999). 

There are several negative impacts that are related to damage and loss of the 

winter coat including increased thermoregulatory costs and possibly hypothermia 

(McLaughlin and Addison 1986, Glines and Samuel 1989, Samuel 1991). Mooring 

and Samuel (1999) suggested that escalated heat loss due to loss of winter hair could 

lead to reduced visceral fat stores. Berg (1975) observed high calf mortality in 

northwestern Minnesota when calves died after 2 days of-30° C temperatures and 

winds of 130 km/h; all dead calves had severe tick infestations and hair-loss. 

However, hypothermia is likely not a mortal issue for wild moose because severe 
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hair-loss rarely occurs before March, and prolonged severe cold is rare afterward 

(Welch et al. 1990). However, because moose are in a protein and energy deficit at 

the end of winter (Schwartz et al. 1988), increased energy and metabolic demands 

due to loss of hair may contribute to mortality associated with predation, disease 

(McLaughlin and Addison 1986), or hypothermia (Samuel 1991), especially in severe 

cold. 

Experimentally infested moose with extensive hair-loss had lower average 

weight gain and fat stores than moose not infested with winter ticks (McLaughlin and 

Addison 1986, Glines and Samuel 1989, Addison et al. 1994). Weight may be 

affected by the negative correlation between time grooming and time spent feeding 

(DelGuidice et al. 1997, Mooring and Samuel 1999). Reduced feeding due to excess 

grooming is probably more important energetically than thermoregulatory costs for 

pregnant cows and undernourished moose in late winter (Samuel and Welch 1991). 

Reduced forage intake may also be due to an anorectic effect winter ticks have on 

their hosts (Mooring and Samuel 1999); however, there is no evidence that this occurs 

between moose and winter ticks as in cattle infested with B. microplus (cattle-tick) 

(O'Kelly et al. 1971, Seebeck et al. 1971). Moose stay bedded to conserve energy 

during periods of extreme cold (Renecker et al. 1978, Schwartz and Renecker 1997), 

however, moose can become restless from the discomfort associated with thousands 

of biting ticks (Samuel 1991, 2004), and this change in behavior may limit the 

energetic advantage associated with bedding and inactivity in late winter. 

Anemia is likely the most severe problem caused by a high winter tick load. 

Glines and Samuel (1989) found that moose infested experimentally with winter ticks 
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exhibited lower albumen and phosphate levels and anemia. Although Addison et al. 

(1998b) found few effects on the blood characteristics of captive moose, they 

cautioned that wild moose generally have higher tick loads and limited access to 

lower quality forage. Samuel (2004) calculated conservative estimates of the volume 

of blood loss to winter ticks (engorging adult females only) and estimated that bulls 

could lose a minimum of 5.4 L and need to replace 17% of their blood volume in 

March and April when adult females are engorging; cow moose would lose 3.2 L and 

need to replace 11% of their blood volume. Calves were impacted the most, losing 

about 8.1 L of blood and replacing 58% of their blood volume; these estimates 

indicate why winter tick-related die-offs are associated with calf mortality (Samuel 

2004). 

Musante et al. (2007) modeled the impact of different levels of tick 

infestations and concluded that blood loss associated with moderate-severe 

infestations of winter ticks would have measurable and substantial impact on energy 

and protein balance, and cause anemia and mortality of moose calves. They predicted 

that calves with moderate infestations could lose 1-2 times their blood volume during 

the peak engorgement period; >40% loss of blood volume over a short period of time 

can cause death (McGuill and Rowan 1989). Severely infested calves cannot sustain 

the energetic demands of blood regeneration primarily due to protein imbalance 

exacerbated by poor body condition and forage nutrition of low quality at the end of 

winter; calves are in a negative energy balance at the end of winter, will spend 

increased time grooming, and the peak engorgement period occurs prior to spring 

green-up. Conversely, winter ticks have less impact on larger adult moose in better 
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relative nutritional state. However, blood loss and/or anemia might affect condition 

of pregnant cows and post-rut bulls, and although most adult moose probably survive 

tick infestation, productivity might decline. 

The first recognition of the impact of winter ticks on moose populations was 

in 1869 (Samuel 2004), and multiple, large-scale moose die-offs have been attributed 

to winter ticks (Samuel 2004, Samuel 2007); the most recent in New Hampshire 

occurred in 2002 when most mortality of radio-marked moose was related to a winter 

tick epizootic (Samuel 2004, Scarpitti et al. 2005, Musante et al. 2010). In New 

Hampshire winter ticks probably have more influence on the moose population than 

predation, habitat, or human-related mortality factors, and predicting the frequency of 

tick epizootics is an important management consideration. 

Flagging is a common technique used to estimate the yearly abundance of 

winter ticks and involves collecting ticks by dragging a sheet over vegetation during 

the questing period (Piesman et al. 1986, Ginsberg and Ewing 1989, Aalangdong 

1994). It was used in Elk Island National Park to measure the relative abundance of 

winter ticks in different habitat types to assess whether moose distribution and density 

in spring dictate distribution and abundance of winter tick larvae (Aalangdong 1994). 

Digesting half hides of dead moose produces accurate measurement of tick load 

(Welch and Samuel 1989), but is impractical due to time and cost (Samuel 2007). 

Sine et al. (2009) developed a line transect method to count winter ticks on hide 

sections of harvested moose in Maine in an effort to estimate abundance and predict 

die-offs. This method appears to be more practical than hide digestion for field 
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application, although it will likely require multiple years of measurements to develop 

a useful index. 

The most common method of indexing winter tick abundance and impact on 

moose is by conducting hair-loss surveys in late winter (Welch et al. 1990, Samuel 

and Welch 1991, Wilton and Garner 1993). Hair-loss on moose is highly correlated 

with the rate of grooming against winter ticks (Mooring and Samuel 1999), and 

Samuel (2004) found that annual hair-loss correlated with the annual tick load of 

moose. Further, years with severe hair-loss coincide with large moose die-offs 

(Garner and Wilton 1993, Wilton and Garner 1993). Therefore, categorizing the 

annual level of hair-loss on moose should relate to the relative abundance of ticks on 

moose and presumably prediction of tick epizootics. Hair-loss surveys conducted 

since 1984 in Algonquin Provincial Park, Ontario have identified a range of hair-loss 

severity index values (HLI) that seem to coincide with moose die-offs (Steinberg 

2008). 

This study was designed to evaluate the accuracy and potential use of 3 

approaches or methods to index winter tick abundance and epizootics: 1) flagging for 

larval winter ticks, 2) line-transect counts on harvested moose, and 3) hair-loss 

surveys. 

Methods 

Sampling for Larval Winter Ticks 

In each region the relative abundance of larval winter ticks was measured 

during fall in 10-15 clear-cuts >4.05 ha (10 acres) and 2-5 years old. Each clear-cut 

was sampled every 7-14 days (5-7 times) from 21 September-12 December 2008 and 
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12 September-3 December 2009. Larval winter ticks were collected by dragging 

(flagging) a i m 2 white flannel sheet along parallel transects in each cut (Aalongdong 

1994). The flannel sheet was attached to a dowel with 2 hose clamps, held to the 

side, and dragged over the top of vegetation. New transects were established each 

visit and separated by 10 m buffers to avoid repeat sampling. Transects were paced 

to measure length (m) for calculating tick density. 

The date, time, sample site, and weather were recorded at the beginning of 

each sampling visit (Appendix A). Each flannel was inspected for tick larvae at the 

completion of a transect, and if positive with ticks, was stored in a clear plastic bag, 

labeled with the date, transect number, and clear-cut ID, frozen within 2 days, and 

counted at a later date (Aalongdong 1994). Sampling ended in each region when 

prolonged cold and/or permanent snow pack occurred; such conditions cause winter 

tick larvae to become inactive or die. 

Ticks were counted by laying a flannel on a white background and recording 

with a tally counter (Aalongdong 1994). Each tick was removed from the sheet with 

masking tape to avoid double counts; this process was repeated on the opposite side 

of the sheet. The relative abundance of ticks per region (ticks/m2) was calculated by 

tallying the total number of ticks in each region and dividing it by the total transect 

length sampled. Analysis of variance (ANOVA) was used to detect differences in 

relative abundance between regions and between sample years. Pairwise 

comparisons were made with Tukey's test; significance level was set a priori at 0.05 

for all tests. 
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Winter Ticks on Harvested Moose 

Winter ticks were counted on harvested moose brought to moose check 

stations run by NHFG. Counts were done for the first 5 days of the moose hunt 

(Saturday-Wednesday) in 2008-2010 at the primary check station in each of the 

sample regions: Pittsburg in the CT Lakes, Berlin Fish Hatchery in the North, and 

Twin Mountain Fish Hatchery in the White Mountain. 

Winter ticks were counted in four 10 x 10 cm sampling plots on a moose 

carcass: 1) the neck at the base of the skull, 2) the upper edge of the shoulder blade, 

3) the rump midway between the hipbone and the base of the tail, and 4) the edge of 

the rib cage (Fig. 1-1). Ticks were counted on four, 10 cm transects roughly 2 cm 

apart in each plot by combing back the fur and counting all ticks visible along each 

transect down to the exposed hide (Sine et al. 2009). Only moose that had been 

harvested within 5 h were sampled because ticks begin leaving a carcass a few hours 

after death. Time of death, moose seal number, and relative amount of ticks leaving 

the carcass were recorded at the beginning of each count (Appendix B). Moose 

biological data and sample region were later identified from the seal number. 

A 10 x 10 cm hide sample was cut from each of the 4 transect locations, given 

hunter permission. Larger hide samples were removed and cut to size, then ticks 

were counted on the 4 transects on each sample as described above. Each hide 

sample was labeled with the date, seal number, location of the hide, and check station 

and then frozen in a sealed plastic bag. Total tick counts were conducted in a lab by 

digesting the hide samples; each was placed in a 1000 mL beaker with 800 mL of 5% 
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Figure 1-1. Location of 10 x 10 cm plots where ticks were counted and hide 
samples were removed from harvested moose in New Hampshire. The 4 locations 
were: 1) the neck at the base of the skull, 2) the upper edge of the shoulder blade, 3) 
the rump midway between the hipbone and the base of the tail, and 4) the edge of 
the rib cage (Sine et al. 2009). 



potassium hydroxide solution heated to 90° C until it was fully digested (-2 h), 

leaving only the tick exoskeletons intact. The contents were filtered through a 180 

|im sieve to separate undigested ticks that were counted under a lighted magnifier 

(Welch and Samuel 1989, Sine et al. 2009). 

Linear regression analysis was used to examine whether the transect counts 

and hide digestion counts were correlated. This was done to assess the accuracy of 

performing only transect counts in the field. ANOVA was used to detect differences 

in transect counts between sample regions, year, and between bulls, cows, and calves. 

Pairwise comparisons were made with Tukey's test; significance level was set a 

priori at 0.05 for all tests. 

Hair-Loss Surveys 

Weekly hair-loss surveys were conducted from vehicles on predetermined 

routes in each of the 3 study regions to measure hair-loss on moose, 1 April-1 June 

2009 and 19 April-25 May 2010. Routes were chosen to survey traditional roadside 

salt licks that moose were known to frequent in spring and early summer. Surveys 

coincided with when nymph and adult winter ticks take blood meals and hair-loss is 

highest (Samuel 2004). These surveys should be conducted as late as possible 

because grooming against ticks continues through April (Samuel 2007). The survey 

dates were adjusted in 2010 because few moose were observed at salt licks prior to 15 

April in 2009. Two single-day surveys were also conducted in 2010 to compare with 

the larger survey. 

Moose were assigned to 1 of 5 categories of hair-loss: no damage to hair, 

slight damage (-5-20% hair damaged/lost), moderate (-20-40%), severe (-40-80%), 
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A regional calf:cow ratio was calculated from moose observed in each hair-

loss survey. These were compared to ratios calculated the previous fall from moose 

hunter and deer hunter surveys conducted by NHFG. This exercise was done to 

investigate whether the proportion of calves declined from fall to spring; measureable 

calf loss associated with a winter tick epizootic would presumably be identified by a 

substantially lower calf:cow ratio in spring. 

Results 

Sampling for Larval Winter Ticks 

In total, 17,036 ticks were collected on 11.7 ha of sample transect in 2008, and 

11,759 ticks on 17.7 ha in 2009. The range of ticks per flagging sheet was 0-2,212. 

Although there was no difference among regions in the number of ticks either year or 

within regions between years, fewer ticks (-40-75%) were collected in each region in 

2009. The average density in 2008 and 2009 was 0.19 and 0.11 ticks/m2 in the CT 

Lakes (max =1.30, 0.63), 0.16 and 0.07 in the North (max = 0.62, 0.40), and 0.08 and 

0.02 in the White Mountain (max = 0.41, 0.10) (Fig. 1-2). There was a positive 

correlation between moose density and tick density both years (r2 = 0.93 and 0.99). 

Although no statistical differences were found among regions or between 

years, absolute differences were large. Mean number of ticks declined 42-75% within 

regions between years, and the mean number of ticks was 58 and 82% lower in White 

Mountain than CT Lakes in 2008 and 2009, respectively (Fig. 1-2). The mean 

number of winter ticks collected in individual clear-cuts was below the regional mean 

in the majority of cuts each year (50-92%), with the exception of White Mountain in 

2008 (25%) (Fig. 1-3). 
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and worst case (>80%) (Appendix C). Moose were categorized by age and sex, and 

GPS locations, distinguishing characteristics, and pictures (not all moose) were used 

to help distinguish individual moose. 

Repeat sightings were removed from the analysis by comparing obvious 

physical characteristics (e.g., antler growth) and pictures when available. Other 

potential repeat sightings were removed by analyzing GPS locations in ArcGIS 9.3 

(Environmental Systems Research Institute, Redlands, CA). Buffers of 6.7 km2 were 

placed around each moose location because this area represents the average spring 

home range of moose in New Hampshire (Scarpitti et al. 2005). If the buffers of 2 

locations overlapped and the moose was categorized as the same age, sex, and hair-

loss category, it was considered a repeat sighting and removed from the analysis. 

An annual hair-loss severity index (HLI) was calculated for each of the 3 

sample regions by assigning a number to each hair-loss category (1-5), multiplying 

the number of moose (M) in each category by that number, then dividing the sum of 

these numbers by the total (T) number of moose observed (Wilton and Garner 1993, 

Steinberg 2008): 

HLI = (M x 1) + (M x 2) + (M x 3) + (M x 4) + (M x 5) (1) 

T 

These values were compared to trends in flagging and check station data each year, 

and HLIs measured in Algonquin Provincial Park, Ontario. A HLI was calculated for 

bulls, cows, and calves with combined regional data both years to identify differences 

in HLI by sex/age. 

19 



0.30 -I 

0.25 -

0.20 -

E 
w 

| 0.15 

c 
(0 

n m -

0.05 -

0.00 -

0 

^H^H k 

CT Lakes 

^^H 4 

North 

Sample Region 

• 2008 

D2009 

© 2008 Max 

A 2009 Max 

I ^ ^ ^ ^ H ZA 

1 AC\ 
' 1,4U 

- 1.20 

- 1.00 

- 0.80 

- 0.60 

- 0.40 

- 0.20 

- 0.00 
White Mountain 

E 
w 
o 

8 
s 

Figure 1-2. Mean (± SE) and maximum number of larval winter ticks collected while flagging clear-cuts 
in 3 sample regions of northern New Hampshire, 2008 and 2009. 
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Figure 1-3. Mean number of larval winter ticks collected in individual clear-cuts in 
the CT Lakes (a), North (b), and White Mountain (c) regions, 2008 and 2009. The 
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Winter Ticks on Harvested Moose 

The mean number of ticks (all 4 areas and transects) counted on moose in the 

CT Lakes was 26, 25, and 51 in 2008, 2009, and 2010, respectively (Fig. 1-4). The 

mean number of ticks in the North was 73, 42, and 101 (Fig. 1-4). The mean number 

of ticks in the White Mountain was 14, 16, and 34 (Fig. 1-4). The mean number of 

ticks for combined regional data was 53, 31, and 79 (Fig. 1-4). Tick loads in the CT 

Lakes in 2010 were ~2X higher than in 2008 (p = 0.034) and 2009 (p = 0.014); tick 

loads in the North were -1.8X higher in 2008 (p = 0.034) and -2.4X in 2010 (p = 

0.000) than 2009 (Fig. 1-4). The tick load in the White Mountain was not different 

from other regions or between years. Tick loads in the North were ~3X higher in 

2008 (p = 0.006) and ~2X higher in 2010 (p = 0.038) than in the CT Lakes (Fig. 1-4). 

For all regions combined in 2010, tick loads were -1.5X higher than 2008 (p = 0.032) 

and -2.5X higher than 2009 (p = 0.000), and -1.7X higher in 2008 than 2009 (p = 

0.024, Fig. 1-4). 

Because regional calf data were minimal, statistical analysis of bull:cow:calf 

relationships was for combined regional data. Calves had more ticks than adult 

moose each year and bulls had more than cows (Fig. 1-5). In 2008 tick load on calves 

was ~2X higher than bulls (p = 0.014) and ~6X higher than cows (p = 0.000) (Fig. 1-

5). In 2009 tick load on calves was -4.5X higher (p = 0.004) than on cows. In 2010 

tick load on calves and bulls was similar and >2X that on cows (p = 0.013, Fig. 1-5). 

A total of 148 hide samples were collected from 66 moose (26 bulls, 36 cows, 

4 calves) in 2008 and 2009; 29, 45, 36, and 38 hide samples were collected from the 

neck, rib, rump, and shoulder, respectively. The number of ticks counted on transects 
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Figure 1-4. Mean (± SE) number of winter ticks counted on harvested moose in the CT Lakes, North, 
and White Mountain sample regions, and combined regional data, in northern New Hampshire, 2008-
2010. Means are for all 4 areas of the hide and all transects combined. Numbers in columns represent 
sample sizes. Bars with unlike letters indicate significant differences within sample regions. 



Figure 1-5. Mean (± SE) number of winter ticks counted on harvested bull, cow, and calf moose in 
northern New Hampshire; data are for all sample regions combined, 2008-2010. Means are for all 4 areas 
of the hide and all transects combined. Numbers in columns represent sample sizes. Bars with unlike 
letters indicate significant differences within sample year. 



was positively correlated with the number of ticks after digestion for all areas of the 

hide; r2 values ranged from 0.33-0.99. Counts on the rib had the weakest relationship 

(r2 = 0.33-0.76), however, sample size was low (n = 3-9); combining regional and 

yearly rib samples yielded r2 = 0.70. Combined regional and yearly data (Fig. 1-6) 

yielded similar r2 values for each area of the hide and all areas combined (r2 - 0.80). 

Hair-Loss Surveys 

A total of 256 and 222 moose were surveyed in the 3 sample regions during 

spring 2009 and 2010, respectively: 86 and 72 in CT Lakes, 96 and 77 in the North, 

and_74 and 73 in the White Mountain (Table 1-1). Moose in each category of hair-

loss were observed each year. In 2009 the CT Lakes had the highest HLI (3.23), the 

North was 11% lower (2.91), and the White Mountain region was 2.35 or 24%_lower 

(Fig. 1-7). In 2010, HLI values were lower in every region (Fig. 1-7); the North 

region had the highest HLI (2.79), the CT Lakes was 14% lower (2.44), and the 

White Mountain region was 2.25 or 8% lower (Fig. 1-7). 

Two single-day surveys were conducted on 12 and 24 May, 2010; however, 

only the North region produced enough sightings to make a single-day survey 

plausible. The most productive route ran from the Pontook Reservoir in Dummer, 

north along Route 16 to Errol (-17 miles). A total of 51 and 23 moose with 

corresponding HLIs of 2.67 and 2.17 were observed on 12 and 24 May (Table 1-1), 

values 4% and 29% lower than the regional survey. Only 8 and 3 moose were 

observed in the CT Lakes; the HLI was 2.00 both days (Table 1-1) and 22% lower 

than the regional survey. Only 9 and 8 moose were observed in the White Mountain 

region; the HLIs were 2.22 and 2.38 (Table 1-1), values similar to the regional 
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Table 1-1. Hair-loss severity index (HLI) values for 3 sample regions and bull, cow, and calf moose in northern, 
New Hampshire, 2009 and 2010. Single-day survey results for each region are included in parentheses (5/12/10 
and 5/24/10). Bull, cow, and calf data were regionally combined by sample year. 

Region/Moose 2009 n 2010 n 

0 0 

CT Lakes 

North 

White Mountain 

Combined 

Bull 

Cow 

Calf 

3.23 

2.91 

2.35 

2.86 

3.07 

2.70 

2.75 

86 

96 

74 

256 

90 

111 

36 

2.44 (2.00, 2.00) 

2.79(2.67,2.17) 

2.25 (2.22, 2.38) 

2.50 

2.65 

2.45 

2.29 

72 (8, 3) 

73 (9, 8) 

222 

83 

103 

35 
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survey. The HLI of bulls, cows, and calves ranged from 2.70-3.07 in 2009 and 2.29-

2.65 in 2010, and varied little between sex/age of moose (2-16%); HLI of bulls was 

always highest (Table 1-1). 

Calfrcow ratios calculated during spring hair-loss surveys were mid-range of 

the fall moose hunter and deer hunter surveys, except in the White Mountain region 

in 2010 when it was lower than both surveys (Table 1-2). There was little variation in 

calf:cow ratios among regions and between years; ratios ranged from 0.21-0.34 from 

moose hunter surveys, 0.33-0.41 from deer hunter surveys, and 0.30-0.43 from hair-

loss surveys (Table 1-2). Variation was higher in calf:cow ratios from single-day 

surveys, which were lower than both moose and deer hunter surveys in the CT Lakes 

(0.14, 0.00) and White Mountain (0.20 both days) regions; however, the North region 

(0.38 both days) was mid-range of both moose and deer hunter surveys (Table 1-2). 

No evidence of a winter tick epizootic or major calf mortality existed either year. 

Discussion 

Sampling For Larval Winter Ticks 

Larval tick abundance was correlated with regional moose density both years, 

which was consistent with trends identified in previous studies. In Elk Island 

National Park the average number of ticks on moose increased as moose numbers 

increased, with a 1-year lag (Samuel 2004, 2007); also, many documented large die-

offs of moose in the park occurred at peak moose density. A die-off occurred in the 

Park in 1992, a year after tick density was 1.36 ticks/m2 based on similar flagging 

measurements as employed in this study (conversions from Aalangdong 1994). This 

density is similar to the maximum values measured in New Hampshire clear-cuts, but 
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Table 1-2. Calf:Cow ratios calculated from moose harvest, moose hunter surveys, deer hunter surveys, and the 
corresponding spring hair-loss surveys in 3 sample regions of northern New Hampshire. Values for the 2010 single-
day surveys (5/12/10, 5/24/10) in each region are shown in parentheses. 

Year/Region 

2008/2009 

CT Lakes 

North 

Whites 

2009/2010 

CT Lakes 

North 

Whites 

Harvest 

0.14 

0.22 

0.21 

0.14 

0.14 

0.18 

Moose Hunter 
Survey 

0.26 

0.21 

0.32 

0.25 

0.34 

0.34 

0.34 

HLI 

0.30 

0.34 

0.33 

^(0.14, NA) 

0.36 (0.38, 0.38) 

0.31 (0.20, 0.20) 

Deer Hunter 
Survey 

0.33 

0.38 

0.36 

0.39 

0.44 

0.41 



much higher than the regional averages (Fig. 1-2, 3). Moose density in the Park was 

-2-4X higher than in New Hampshire suggesting a positive correlation between tick 

and moose density. Although it is intriguing to relate the high tick density in the Park 

with the epizootic, a similar density was measured in 1992 without a following die-

off (although moose density was lower). Clearly relationships between abundance of 

winter ticks and die-offs are not exact, and direct comparison of estimates between 

disparate geographic regions is unwarranted. 

The high variability in tick abundance in clear-cuts likely influenced the lack 

of statistical differences among regions and between years (Fig. 1-3). Regional 

means were highly influenced by a few cuts with high abundance of ticks, and the 

high variability among clear-cuts suggests that winter ticks are not evenly distributed 

within this preferred habitat type. Certain clear-cuts in each region had abundance 2-

7X higher than the regional mean both years (Fig. 1-3); this distribution pattern may 

explain why individual hair-loss varies annually, and certain moose have severe hair-

loss in years of overall light infestation. Local sites of high tick density may also 

relate to why epizootics occur across wide geographic ranges that encompass variable 

moose population densities. 

A benefit of this sampling method is that it can extend through the entire 

questing period, which usually occurs from September until colder temperatures and 

snow kill remaining unattached larvae (usually November-December) (Drew and 

Samuel 1985, Samuel 2004); questing usually stops at <0° C (Samuel and Welch 

1991). Because our sampling occurred from early-mid September through the first 

substantial snowfall, it should be representative of the relative abundance of ticks. 
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However, because temperature and snow condition varied considerably among the 

adjacent study regions, tick abundance alone would not necessarily reflect regional 

tick loads. However, it may be possible to detect annual regional trends in tick 

abundance because tick numbers declined in each region from 2008 to 2009 (Fig. 1-

2). The data were also suggestive that moose density influences tick abundance 

because tick density was correlated with regional moose density both years. 

The flagging technique is probably not practical to index tick abundance or 

tick loads because it is extremely labor intensive and costly. Sampling occurred for 

-3 months and across a wide geographic range. Two people sampled a clear-cut in 

~2 h and each needed to be visited multiple times; workdays averaged 8-10 h, with 

extensive driving along logging roads. Larvae also had to be counted at a later date 

and each flannel required 10 min->l h depending on the number of ticks. The 

relative length of the questing period is probably most easily estimated by tracking 

ambient temperature and snow cover, and assuming that an extended warm fall will 

lengthen the questing period and tick load. 

Winter Ticks on Harvested Moose 

Tick loads were higher in the North region than the CT Lakes and White 

Mountain regions each year (Fig. 1-4); the White Mountain had low sample size each 

year. This differed from the flagging study (larval sampling) in which tick numbers 

were correlated with regional moose density. Fewer ticks were counted in 2008 than 

2009, whereas numbers were higher in 2010 (Fig. 1-4). Interestingly, some adult 

winter ticks (some engorged) were observed on moose in 2010, which is unusual 

because the majority of ticks at this time of year are nymphs (Drew and Samuel 1989, 

33 



Samuel 2004). This may indicate early questing that allowed ticks time to take blood 

meals and molt into subsequent life stages. These trends were in agreement with 

larval sampling results as both indicated a reduction in tick abundance from 2008 to 

2009. 

More ticks were counted on calves than bulls and cows each year (Fig. 1-5) 

which was consistent with previous studies (Welch and Samuel 1989, Sine et al. 

2009). Bulls tend to have the highest absolute numbers of ticks due to their size and 

increased activity during the rut (Samuel 2004); however, calves have proportionally 

more ticks (per area) due to their smaller body size (Samuel and Barker 1979, Samuel 

2004). In Maine, Sine et al. (2009) found twice as many ticks on calves than adults. 

There was a strong relationship between transect counts and total counts from 

hide digestions. R2 values were high (>0.60) for all areas of the hide with the 

exception of the rib in the North region both years; however, sample sizes were 

relatively low (n = 3-9). The strongest relationships occurred when data from all 

areas of the hide were combined (r2 = 0.80, Fig. 1-6). Sine et al. (2009) found similar 

results (r2 = 0.88) when combining hide samples and concluded that the total number 

of ticks counted on all transects was the best predictor of tick density on moose. 

Due to the strong positive correlation between transect and total counts in both 

studies, hide samples were not collected in 2010; transect counts (easy and efficient) 

should suffice for use as an index of relative tick abundance on harvested moose. 

Average time to count the 4 areas of hide was -5 min with a separate counter and 

recorder, and about twice as long if done alone (same as Sine et al. 2009). Further, 

some hunters were unwilling to donate hide samples and laboratory work was tedious 
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and labor intensive; hide samples took -2 h to digest and counting tick exoskeletons 

varied greatly from <1 h-2 days. 

The transect method identified differences between regions and years, but did 

not indicate a positive correlation with moose density like the flagging method. 

Because the moose harvest in New Hampshire occurs in mid-October, this method 

may not translate directly to tick load and/or related moose mortality if moose 

disproportionately acquire ticks in late fall. Aggregations of winter tick larvae can 

survive into November (Samuel and Welch 1991), and tick larvae were collected into 

December during flagging. Tick numbers on harvested moose in October might also 

reflect an active early questing period as suggested by the presence of adult ticks in 

2010. However, if the timing of the hunting season remains constant, a useful index 

of relative tick abundance could be developed with additional years (5-10) of data. 

Hair-Loss Surveys 

HLI values in 2008 were correlated positively with moose density, with the 

highest value in the CT Lakes region followed by the North and White Mountain 

regions (Fig. 1-7), similar to results from larval sampling. In 2009 values dropped in 

every region, and the North region had the highest HLI followed by CT Lakes and the 

White Mountain regions (Fig. 1-7), a trend similar to that found on harvested moose. 

All methods indicated a reduction in tick numbers from 2008 to 2009 with combined 

data from all regions (Figs. 1-2, 1-4, and 1-7). This suggests that singly, none of the 

methods is sensitive enough to detect potential differences in tick abundance among 

regions, but all are probably capable of detecting large annual shifts in relative tick 

abundance. 
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Hair-loss surveys conducted in Algonquin Provincial Park, Ontario since 1984 

(Steinberg 2008) had HLI values ranging from 1.18-3.48; HLFs >2.50 were 

associated with mortality events. HLI values in this study were 2.20-3.23 with the 

majority >2.5 (Table 1-1), but no major mortality event was evident. However, 

documentation of moose mortalities is limited in New Hampshire making it difficult 

to identify die-offs in the state. The HLI values in New Hampshire should not be 

compared directly with those in Algonquin Park because helicopter surveys are 

usually conducted in March due to snow cover. Surveys in New Hampshire took 

place in April-May when more hair-loss should be evident because grooming 

continues through April (Samuel 2007). 

Bulls had the highest HLI both years (Table 1-1) which was in agreement with 

studies suggesting that bulls carry the highest number of ticks due to their activity 

patterns during the fall questing season (Drew and Samuel 1985, Samuel 2004). 

However, there was little variation (2-16%) in the HLI of bulls, cows, and calves 

indicating that sex/age of moose should have little influence on survey results (Table 

1-1). Hair-loss surveys were labor intensive and costly when conducted -8 h daily 

for 2-3 days weekly in April-May. Further, the issue of identifying individual moose 

to avoid repeat sightings is somewhat problematic; use of distinguishing photographs 

was effective but difficult to acquire for all moose. Repeat sightings are not an issue 

during single-day surveys because the observer can distinguish individual moose and 

movement would be negligible. A minimum of 50 moose is considered an adequate 

sample in Algonquin Provincial Park (Steinberg 2008); however, only on 12 May in 

the North region (n = 51) was this level reached in a single day survey (Table 1-1). 
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The HLI (2.67) was similar (4% lower) to that of the weekly survey (2.79), 

suggesting that a single-day survey might suffice if an adequate sample size (~50) is 

realized. Single-day HLIs in the White Mountain region were also similar to weekly 

results (within 1-6%), but sample size was <10. 

Surveys in New Hampshire should be conducted as multiple, morning surveys 

preferably condensed within a 5 day period (1 May-15 May) that are focused on the 

most commonly used roadside saltlicks in a region; a survey would be complete with 

>50 individual moose. Routes within a region should be separated to ensure that the 

same moose is not observed at different licks by multiple observers (or use a single 

observer). This would reduce the length of the surveys, distance traveled, and time 

spent removing repeat sightings. Surveys should also be conducted on cool mornings 

with little precipitation to enhance sightings. Removing the White Mountain region 

from sampling seems logical because it consistently yielded the lowest abundance of 

ticks regardless of method, and has the lowest density of moose. 

Because calves are most highly impacted by winter ticks and are the cohort 

most susceptible to mortality, estimates of fall and spring calf:cow ratios should 

indicate substantial mortality events that reduce the proportion of calves in the 

population. Calf:cow ratios calculated from fall hunter surveys and spring hair-loss 

surveys were reasonably similar (Table 1-2), and calf:cow ratios during the single-day 

survey in the North region (n = 51) were similar to those in the weekly survey (Table 

1-2). Low sample size may be problematic for calculating such ratios in spring, and 

the reliability and sensitivity to detect such change is unknown because no evident 
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die-off occurred. However, HLI calf:cow ratios should be useful if an adequate 

sample size (n >50) is reached. 

Although moose density and tick abundance were generally related in New 

Hampshire, weather plays a strong role in the abundance and distribution of winter 

ticks (Samuel 2004). Regional weather differences that impact ticks at different life 

stages likely influenced regional tick abundance regardless of moose density. 

Because major tick related die-offs are usually concurrent and widespread 

geographically (Samuel 2004), tracking regional differences in New Hampshire may 

not be as important as obtaining adequate tick load samples from harvested moose 

and at least one regional sample of 50 moose. 

The combination of fall tick counts on harvested moose and spring hair-loss 

surveys should prove useful to index winter tick abundance in northern New 

Hampshire. They are both time and cost effective and capable of indicating annual 

change in relative tick abundance. Check station counts provide an indication of 
r-

transmission during the questing period; however, if weather conditions were to 

extend the questing period into December check station counts may not be 

representative of actual tick loads. Hair-loss surveys should help identify high tick 

abundance in late winter-spring caused by an extended questing period. Calf:cow 

ratios obtained during hair-loss surveys could prove useful in detecting years of high 

calf mortality. Combined use and comparison of these methods will allow for more 

confidence in their index value, and of particular importance is identification of 

threshold values associated with major die-offs. Indices of tick abundance could be 

linked to die-offs if moose mortalities were more thoroughly documented in the state. 



CHAPTER 2 

TEMPORAL ASSESSMENT OF PHYSICAL CHARACTERISTCS AND 

REPRODUCTIVE STATUS OF MOOSE IN NEW HAMPSHIRE 

Introduction 

Physical characteristics are commonly used to estimate population health in 

different species. For example, age-specific body weight of male and female moose 

is directly related to health and production (Schwartz and Hundertmark 1993), and in 

yearlings onset of ovulation (Saether and Heim 1993). Antler measurements are used 

to estimate the health of deer populations because of the correlation between antler 

size and nutritional status (McCullough 1982); antler size in moose is influenced by 

many factors including nutritional status and health (Bubenik 1997a). Adams and 

Pekins (1995) concluded that yearling moose in New Hampshire were useful for 

estimating herd health due to the substantial weight gain, change in antler 

characteristics, and onset of ovulation in this age class; they found measurable 

differences in body weight and number of corpora lutea in yearling cows relative to 

other age classes. 

Winter ticks appear to have greatest impact on moose population dynamics 

through direct mortality or lower nutritional condition of calves. Reduced growth in 

young moose surviving infestations seems probable, although few studies are 

conclusive. Glines and Samuel (1989) observed significant weight loss in an 
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experimentally infested calf, and McLaughlin and Addison (1986) noted that 9 

captive moose calves infested experimentally with ticks had lower average weight 

gains than uninfested moose. Berg (1975) suggested that high calf mortality could 

lead to a reduction in cohort size in succeeding years, and Musante et al. (2010) 

predicted that lower calf survival would reduce recruitment and lower fitness in 

yearlings would reduce growth and reproductive rates. Negative influences include 

lower twinning rates and productivity, declining corpora lutea counts and ovulation 

rates, and reduced body weight of yearling cows (Musante et al. 2010). 

Age, antler spread, beam diameter, number of points, corpora lutea count, and 

body weight have been measured on hunter-harvested moose since 1988 in New 

Hampshire. Given the relationships between certain physical characteristics and 

nutritional status of a moose population, periodic analysis of these data should reveal 

trends and change in the relative condition of the moose population in New 

Hampshire. In this study I assessed temporal trends in physical characteristics and 

relative nutritional and reproductive status of moose in New Hampshire from 1988-

2009. 

Methods 

Biological data collected from harvested moose at New Hampshire check 

stations in 1988-2009 were analyzed to assess whether temporal change has occurred 

in the physical condition of the moose population. Data were broken into 3 time 

periods (1988-1998, 1999-2004, and 2005-2009) and analyzed by sample region. 

Measurements included age and field-dressed body weight for both sexes, number of 



corpora lutea for female moose, and beam diameter, spread, and number of points for 

antlered moose. 

Antler beam diameter was measured with a micrometer on one antler at 2 

perpendicular sites 2.54 cm above the pedicle; the average diameter was recorded. 

Antler spread was the maximum distance measured between any 2 points, and an 

antler point was >2.54 cm long. Ovaries were collected and stored in denatured 

ethyl-alcohol then later sectioned to visually count the number of corpora lutea 

(Cheatum 1949). Age was determined by cementum annuli counts from a lower 

incisor (Sergeant and Pimlott 1959). 

A subset of similar data was obtained from Maine and Vermont to compare with New 

Hampshire data. Maine data included only field-dressed body weight of cows and 

Vermont data were from 1993-2009 only. 

New Hampshire data were analyzed initially by time period and sample 

region, and combined statewide for comparison with Maine and Vermont data. 

Analysis of variance (ANOVA) was used to test for age-specific differences in 

physical parameters; age classes were 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, and >6.5 years. 

Pairwise comparisons were made with Tukey's test and significance level was set a 

priori to 0.05 for all tests. 

Results 

Females 

The only differences within an age class between time periods in any region 

were in the yearling age class. Yearling body weight declined -25 kg from 1988-

1998 to 2005-2009 in the North (10%, p = 0.000) and White Mountain (15%, p = 
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0.003) regions, and from 1999-2004 to 2005-2009 in the CT Lakes region (5%, p = 

0.033) (Fig. 2-1, Appendix E). Corpora lutea in yearlings declined from 1988-1998 

to 2005-2009 in the North (68%, p = 0.000) and White Mountain (76%, p = 0.003) 

regions, and from 1988-1998 to 1999-2004 in the CT Lakes region (43%, p = 0.009) 

(Fig. 2-2, Appendix F); corpora lutea counts were <0.21 across all regions in 2005-

2009. Ovulation rates of yearling cows declined 39, 49, and 56% in the CT Lakes, 

North, and White Mountain regions, respectively, from 1999-2004 to 2005-2009 

(Appendix F). Mean body weight of cows with 0 corpora lutea was 199 kg in New 

Hampshire and 198 kg in Vermont. 

Yearling body weight declined 6% in Vermont (11 kg, p = 0.001) from 1999-

2004 to 2005-2009 (Fig. 2-1), but corpora lutea counts, although lower, were not 

different. Corpora lutea were lower in Vermont than New Hampshire in 1988-1998 

(45%, p = 0.030) and 1999-2004 (38%, p = 0.030) (Fig. 2-2); there was no difference 

in 2005-2009, albeit all counts were historical lows. Yearling body weight in New 

Hampshire and Vermont was not different. Body weight of Maine yearlings 

increased 3% from 1988-1998 to 1999-2004 (p = 0.012) (Fig. 2-1). Body weight was 

6% lower in Maine than New Hampshire in 1988-1998 (p = 0.000), but 7% higher in 

2005-2009 (p = 0.000) (Appendix E). Body weight of Maine yearlings increased 9% 

from 1988-1998 to 2005-2009. The proportion of yearlings >200 kg in New 

Hampshire, Vermont, and Maine was 44, 32, and 62%, respectively, in 2005-2009. 

Males 

The only differences found between time periods in any sample region were in 

the yearling age class. All measurements except antler beam diameter declined in 
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Figure 2-1. Mean (±SE) field-dressed body weight (kg) of harvested yearling cow moose in 3 
sample regions of New Hampshire and statewide in Vermont and Maine, 1988-2009; Vermont 
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New Hampshire and statewide in Vermont and Maine, 1988-2009; Vermont data are from 1993-2009. 
Bars with unlike letters are significantly different within sample region and between time periods. 



yearlings in the North region. Yearling body weight declined 23, 11, and 28 kg from 

1988-1998 to 1999-2004 in the CT Lakes (10%, p = 0.000), North (5%, p = 0.011), 

and White Mountain (15%, p = 0.000) regions, respectively (Appendix G). Yearling 

antler points declined from 1988-1998 to 1999-2004 in the North (15%, p = 0.022) 

and White Mountain (33%, p = 0.016) regions, and from 1988-1998 to 2005-2009 in 

the CT Lakes region (33%, p = 0.021) (Appendix H). Yearling antler spread declined 

12, 8, and 17% from 1988-1998 to 1999-2004 in the CT Lakes (p = 0.034), North (p 

= 0.026), and White Mountain (p = 0.001) regions, respectively (Appendix I). 

Yearling antler beam diameter declined 11% from 1988-1998 to 1999-2004 in the CT 

Lakes (p = 0.023) and White Mountain (p = 0.014) regions (Appendix J). 

As in New Hampshire, Vermont yearlings declined in every physical 

characteristic except antler beam diameter; body weight declined 6% from 1988-1998 

to 1999-2004 (p = 0.003) (Appendix G), antler points declined 20% from 1999-2004 

to 2005-2009 (p = 0.037) (Appendix H), and antler spread declined 7% from 1999-

2004 to 2005-2009 (p = 0.049) (Appendix I). There was no difference between body 

weight or antler points in New Hampshire and Vermont yearlings; antler spread was 

greater in New Hampshire than Vermont in 1988-1998 (9%, p = 0.031) and 2005-

2009 (5%, p = 0.028), and antler beam diameter was 6% greater in Vermont than 

New Hampshire in 1999-2004 (p = 0.033). 

Discussion 

Prior research suggested that New Hampshire's moose population was 

stabilizing based upon an estimated growth rate that was negligible (0.95-1.07), due 

in large part to average body weight <200 kg and a corresponding 25% reduction in 
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ovulation rate of yearling cows from 1988-1998 to 1999-2004 (Musante et al. 2010). 

A continued decline in body weight and corpora lutea count of yearling cows 

occurred in 2005-2009. Yearling ovulation rates in North America average 49% 

(range = 0-100%, Schwartz 1997), and the New Hampshire rate was less than half 

this in 2005-2009 (19-21%, Appendix F). Conversely, adult rates have remained 

normal (60-97%, Appendix F) (Schladweiler and Stevens 1973, Schwartz 1997); rates 

and trends in Vermont were similar (Appendix F). 

Cows <200 kg are considered non-reproductive (Adams and Pekins 1995), 

and not coincidently, mean body weight of cows with 0 corpora lutea was 199 kg in 

New Hampshire (1988-2009) and 198 kg in Vermont (1993-2009) (Fig. 2-1, 2). 

Maine does not collect corpora lutea data, however, the peak mean yearling body 

weight was 205 kg (Fig. 2-1), only marginally above the reproductive level. 

Productivity from the yearling age class in New Hampshire and Vermont is 

expectedly low based on ovulation rates <20% that are considerably lower (1/3-1/2) 

than those prior to 2000. Mean corpora lutea count in New Hampshire (0.22) and 

Vermont (0.16) was equal to half the proportion of yearlings >200 kg (0.44 and 0.32, 

respectively). Assuming this relationship, the mean corpora lutea in Maine is 

probably -0.30, as 62% of yearlings are >200 kg. 

Several factors including habitat quality, weather, and disease/parasites, 

contribute to declining trends in physical parameters of a moose population. 

However, Musante et al. (2010) believed that moose in New Hampshire were mostly 

influenced by the annual impact and particularly epizootics of winter ticks. Mortality 

of their radio-collared moose was mostly due to winter kill/parasites (41%) associated 
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with winter tick infestations; mortality due to hunting, road-kill, poaching, predation, 

and weather was not considered major during the 3 year study (Musante et al. 2010). 

Further, habitat was considered adequate because field-dressed weights, reproductive 

data, and survival of adults were not low or declining, or representative of a habitat-

limited population. Similarly, this analysis identified no declining trends in adult 

physical characteristics or ovulation rates. 

Calves are most severely impacted by winter tick infestations (Samuel 2004, 

2007) and some mortality is likely an annual event (Musante et al. 2010); however, 

even surviving calves presumably experience lower body weight and reduced 

fecundity as yearlings (Samuel 2004, Musante et al. 2010). The declining trend in 

yearling condition in New Hampshire and Vermont from 1988-2009 seemingly 

indicates that average tick loads probably impact moose populations through annual 

calf mortality and reduced fecundity of yearlings. Although the field-dressed body 

weight of yearling cows in Maine has been stable at 205 kg since 1999, it is less than 

the peak weight realized in New Hampshire (217 kg, 1988-1998, Fig. 2-1). As a 

region, it is evident that productivity of yearling cows is low with corpora lutea 

counts probably <40% even in Maine based on comparative data from New 

Hampshire and Vermont (Fig. 2-1,2). 

New Hampshire's moose population was still expanding in 1988-1998, and 

physical characteristics may have peaked during this period of high resource 

availability and extensive forest harvesting in the 1980s (see Bontaites and Gustafson 

1994). Subsequent decline in physical characteristics may reflect stabilization in the 

population after saturation of available habitat, and reduced forest harvest and forest 
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regrowth. However, decline in yearling body weight and ovulation rate below the 

North American average suggests that other contributing factors exist, particularly 

given the stability of measurements in adult moose. In fact, calves have higher 

relative tick loads than adults, and severe hair-loss is evident on individuals even in 

low/average tick years. 

The lack of a documented epizootic since 2002, yet continuing decline in 

yearling physical characteristics, suggests that annual winter tick infestation of calves 

have measurable influence on yearling growth and fecundity. Environmental 

conditions that enhance reproduction and questing of winter ticks will presumably 

maintain this relationship. The continued decline in yearling fecundity lends strong 

support for models that indicate population stability (or at least minimal growth) of 

the moose population in northern New Hampshire. Continued monitoring of winter 

tick loads, hair-loss, and physical parameters of harvested moose is warranted to best 

document and manage this moose population. 
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CHAPTER 3 

RELATIONSHIP BETWEEN WEATHER AND WINTER TICKS 

Introduction 

Several factors influence the distribution and abundance of winter ticks, but 

weather appears to be the most influential factor on abundance (DelGiudice et al. 

1997, Samuel 2004). Specifically, low temperature and snow cover in late winter-

early spring negatively impact survival of adult winter ticks (Drew and Samuel 1985, 

1986, Timmerman and Whitlaw 1992), temperature and precipitation influence 

survival of eggs in June-August (Aalangdong 1994, Samuel 2004), and survival of 

larvae is influenced by snow, temperature, and wind in October-November (Samuel 

1989, Welch 1991). Drew and Samuel (1986) placed engorged adult female ticks in 

either leaf litter or snow and found only 11% survival on snow; mortality was 

presumed due to prolonged exposure at temperatures below the threshold for survival 

(-17° C). Cold dry summers result in lower egg production and survival (Samuel 

2004); lower and upper critical temperatures for reproduction are 15 and 30° C 

(Glines 1983). Strong fall winds often blow larvae from vegetation while prolonged 

exposure to snow and cold kill larvae (Samuel 2004). Questing of larvae stops at <0° 

C or when larvae become covered by snow; inactivity at low temperatures in fall ends 

questing and the transmission period to moose (Samuel and Welch 1991). 

The majority of moose die-offs associated with winter ticks have occurred 

when engorged adult females drop on leaf litter versus snow the previous spring 



(Samuel 2007). Further, the severity of spring hair-loss and moose die-offs are 

directly related to the mean April temperature the prior year (Wilton and Garner 

1993). Hair-loss and mortality of moose increased at spring temperatures >3-4° C 

suggesting that higher survival of engorged adult females results in more larvae and 

higher transmission in fall. It is believed that low spring and fall temperatures 

coupled with early winter snow limit the geographic spread of winter ticks to Alaska 

(Zarnkeetal. 1990). 

Temperature and snow cover in spring and fall have most influence on 

survival of winter ticks and their infestation of moose. Therefore, monitoring weather 

during these seasons when adult ticks drop from moose and larvae quest for hosts 

may help predict winter tick infestations associated with major moose die-offs. This 

study examined weather conditions in 2008-2010 when winter tick abundance, fall 

tick-load on moose, and spring hair-loss surveys of moose were monitored 

simultaneously. Weather conditions in 2001 were also examined for comparison 

because a winter tick epizootic and moose die-off that occurred in New Hampshire 

and surrounding states in spring 2002. 

Methods 

Regional weather measurements were obtained from the National Climatic 

Data Center: the First Connecticut Lake weather station (#27-999-01) in the CT 

Lakes, the Berlin weather station (#27-0690-01) in the North, and the North Conway 

weather station (#27-5995-02) in the White Mountain. Monthly and daily mean 

ambient temperature, precipitation, and snow fall were calculated in each region for 
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2001, 2008, 2009, and 2010; snow cover was not available for fall 2010. Mean 

regional temperature and precipitation were obtained for 1971-2000. 

These data were compared to indices of tick abundance developed from fall 

larval sampling, check station counts, and spring hair-loss surveys to investigate 

relationships between seasonal weather and tick abundance. Data were compared 

between sample regions and years. Weather data were also compared to the 

corresponding data in 2001, the year preceding the 2002 moose die-off in New 

Hampshire, in an attempt to identify weather conditions that may predict/cause die-

offs. 

Results 

CT Lakes 

Mean April temperature was <4° C in 2001, 2008, and 2009, but nearly 6° C 

in 2010 (Fig. 3-1). Mean April snow depth was minimal in 2009 and 2010, but >35 

cm in 2001 and 2008 (Fig. 3-2). Mean monthly temperature was between 15-30° C in 

summer (June-August) except June 2009 (Table 3-1), and precipitation was within the 

normal range for the region each year. Mean monthly temperature was >0° C during 

questing months (September-November) except November 2008 (Fig. 3-3); mean 

December temperature was <0° C each year and warmest in 2001 (-3.4° C, Fig. 3-3). 

The onset of permanent snow cover (>25 cm) came earliest in December 2009, 2001, 

and 2008, respectively; there was no snow cover until 15 December in 2001 (Fig. 3-4) 

North 

Mean April temperature was >6° C in all years except 2001 (4.0° C, Fig. 3-1). 

Mean snow depth in April was minimal in 2008-2010, with bare ground in 2009 (Fig. 

51 



9.00 

8.00 

7.00 

6.00 

5 00 

0) 
a 
E 
c 
(0 

2 

4 00 

3.00 

2.00 

100 

0.00 iii 1 • CT Lakes 

• North 

D White Mt 

2008 2009 2010 

Year 

2001 

Figure 3-1. Mean April temperature in 3 regions of northern New Hampshire in 2001 and 2008-2010. 
The dashed line represents the temperature (4° C) at which winter tick survival begins to decline this 
time of year (Wilton and Garner 1993). 
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Table 3-1. Average temperature (° C) during summer (June-August) in 
3 regions of northern New Hampshire, 2001 and 2008-2010. The 
upper and lower thresholds for reproduction of winter ticks are 15 and 
30° C (Glines 1983). 

Region/Year 

CT Lakes 

June 

July 

August 

North 

June 

July 

August 

White Mountain 

June 

July 

August 

2001 

15 

15 

17 

18 

18 

20 

20 

20 

22 

2008 

15 

18 

16 

17 

20 

17 

18 

20 

18 

2009 

14 

16 

17 

15 

17 

19 

16 

18 

20 

2010 

15 

19 

17 

16 

21 

18 

17 

22 

19 
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Figure 3-3. Mean monthly temperature (° C) during the questing period (September-
December) of winter ticks in the CT Lakes (a), North (b), and White Mountain (c) 
regions, 2001 and 2008-2010. The dashed line represents the temperature (0° C) 
where questing declines/stops (Samuel and Welch 1991). 
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3-2); mean snow depth was >20 cm in 2001 (Fig. 3-2). Mean monthly temperature 

was 15-30° C in summer (June-August) (Table 3-1) and precipitation was within the 

normal range for the region each year. Mean monthly temperature was >0° C during 

the fall questing period (September-November) (Fig. 3-3); mean December 

temperature was <0° C and warmest in 2001 (Fig. 3-3). Permanent snow cover was 

earliest in 2009 (10 December), 2008, and 2001, respectively; there was no snow 

cover until 15 December in 2001 (Fig. 3-4). 

White Mountain 

Mean April temperature was >5° C each year, and was coldest in 2001 (5.7° 

C, Fig. 3-1). Mean snow depth in April was minimal in 2009 and 2010, but >25 cm 

in 2008 and 2001 (Fig. 3-2). Mean monthly temperature was 15-30° C during 

summer (June-August) (Table 3-1) and precipitation was within the normal range for 

the region each year. Mean monthly temperature was >0° C during the fall questing 

period each year (Fig. 3-3); December was <0° C and warmest in 2001 (0.1° C, Fig. 

3-3). The onset of permanent snow cover was delayed until 17 December in 2001 

(Fig. 3-4). 

Discussion 

April weather influences survival of adult female winter ticks (Samuel 2004), 

summer weather influences reproduction and egg survival, and weather in fall-early 

winter (September-December) influences the length of the questing period and 

transmission rates to moose (Samuel 1989, Welch 1991). April weather was 

conducive to survival of adult female ticks in each region both years except in CT 

Lakes in 2008 (<4° C, snow >35 cm) (Fig 3-1, 2). Summer weather was conducive to 

57 



reproduction and egg survival each year that records were examined. Fall weather 

(September-November) was conducive to continual questing by larvae both years 

(Fig. 3-3). However, no major moose die-off was evident either year of the study 

suggesting that these weather conditions, although generally favorable for 

reproduction and host transmission of winter ticks, did not produce high infestation 

levels. The only obvious difference between 2001 (year preceding moose die-off) 

and 2008-2010 occurred in December; temperature was higher (Fig. 3-3) and snow 

cover was minimal until 15 December (Fig. 3-4). Surprisingly, April conditions in 

2001 were not conducive to abnormally high survival of winter ticks. 

This analysis indicates that questing probably occurs through most of 

November and curtails by December when daily temperature is <0° C. Fluctuations 

in temperature in November-December would either curtail or extend the questing 

period. In fact the transmission period in 2001, based on temperature and snow 

cover, was longer than any year of the current study. Musante et al. (2010) noted that 

weather conditions in September-November 2001 were conducive to tick survival, 

and that temperature in December was >5° C above normal and snow cover was 

absent through mid-December. He attributed the epizootic to prolonged questing in 

December associated with warm temperatures and lack of snow. April temperature 

was lower and snow depth higher in both the CT Lakes and North in 2001 than any 

year of this study (Fig. 3-1,2), indicating that survival of adult female ticks, hence 

egg production, should not have been high. Because spring conditions in 2001 were 

not conducive to adult tick survival, the length of the 2001 fall questing period 



appears to be the critical element that caused the tick infestation and moose die-off in 

spring 2002. 

Tick related die-offs do not occur on an annual basis and are usually 

concurrent and widespread geographically (Timmerman and Whitlaw 1992, Samuel 

2004) indicating that epizootics are influenced by large scale weather events outside 

normal conditions. This was likely true of the 2002 die-off which occurred in New 

Hampshire, Vermont, Maine, Alberta, Saskatchewan, Manitoba, and Minnesota 

(Samuel 2004). Warm, snowless conditions in December 2001 were abnormal for 

northern New Hampshire (Fig. 3-3,4) and occurred throughout the Northeast and 

Minnesota (Table 3-2, Fig. 3-5). 

Although weather appears to play an important role in the survival of winter 

ticks, it should not be considered solely. Wilton and Garner (1993) suggested that 

tick abundance was related to the previous year's mean April temperature and 

survival declined when ambient temperature was <3-4° C. April temperatures were 

near or below this level in 2008 and 2009 in the CT Lakes region and well above it in 

the White Mountain region (Fig. 3-1), and all weather data suggest that the White 

Mountain region is more conducive to tick survival than the CT Lakes region. 

However, because index values were always higher in CT Lakes, other factors such 

as moose density likely influence tick abundance because moose density in the CT 

Lakes is >2X that in the White Mountain. 

Although several studies indicate that April snow cover and temperature are 

related directly to occurrence of epizootics (Drew and Samuel 1986, Wilton and 

Garner 1993, Samuel 2007), December conditions that extended questing and 



Table 3-2. Average temperature and rankings for Northeastern states, 
December 2001. Rankings are for 107 years between 1895 and 2001(1 = 
coolest; 107 = warmest) (Northeast Regional Climate Center). 

State Temp (° C) Rank 

New Hampshire 0 107 

Maine -2 106 

Vermont -1 107 

Massachusetts 2 105 

New York 1 107 
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transmission were arguably more influential in the 2002 regional epizootic. April 

weather may be more important in northern latitudes where questing rarely extends 

into December. Further, openings such as clear-cuts and slope and aspect create 

microclimatic differences that influence survival and activity of winter ticks, and may 

be dissimilar to regional weather conditions. At the southern range of moose, as in 

New Hampshire, temperature and snow cover are presumably more variable in spring 

and fall and either/both influence relative tick abundance; therefore, monitoring of 

conditions in both seasons is warranted. 

The current (2010) year's data indicate that tick loads in New Hampshire 

could be high in spring 2011. In all regions, April temperature was higher (Fig. 3-1) 

and snow depth lower than in any year studied (Fig. 3-2), and September-November 

temperatures were conducive for normal questing activity (Fig. 3-3). Further, ticks 

counted on harvested moose in 2010 were at their highest level in 3 years (Fig. 1-2). 

Assuming that the length of the questing period is most influential, the temperature 

and snow cover in December may dictate the severity of infestation in spring 2011. It 

will be important to conduct hair-loss surveys in the CT Lakes and North regions to 

assess and possibly provide a reference HLI level for an epizootic, and/or indicate the 

influence of temperature and snow cover in December on tick loads. 

This study and others (Drew and Samuel 1986, Timmerman and Whitlaw 

1992, Wilton and Garner 1993, Samuel 2004) indicate that weather is an important 

factor in tick abundance and distribution; therefore, climate change will probably 

affect occurrence and frequency of future tick epizootics. Mild late winter and early 

spring temperatures with low precipitation are beneficial to survival of winter ticks 
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(Samuel 2007), and one predicted consequence of climate change is an increase in 

average monthly temperature and shorter winters and earlier springs in New 

Hampshire (Intergovernmental Panel On Climate Change 2007). In New Hampshire 

annual temperature and precipitation have increased (4.6° C and 2.5%) since 1895, 

and snowfall has declined by nearly 15% since 1953 (NERAG 2001). The New 

England Regional Assessment uses 2 different models to predict more localized 

effects of climate change; both models predict an average increase in annual 

maximum temperature of 1.5° C by 2030 and 2-5° C by 2100. These temperature 

shifts will likely extend the activity periods of winter ticks, and ultimately increase 

tick survival, tick loads, and frequency of epizootics. 

Increased occurrence of epizootics could cause relatively abrupt and perhaps 

permanent decline in regional moose populations. Therefore, it is important to 

monitor relationships among winter ticks, weather, and moose in New Hampshire to 

best develop adaptive management responses. Spring and fall weather should be 

monitored with focus on unusual conditions that may lead to high tick loads and 

epizootics, particularly April conditions with mean temperature >4° C and absence of 

snow cover, coupled with warm Decembers with late/no snow cover. Weather data 

should be compared to indices of tick abundance developed from tick loads of 

harvested moose and spring hair-loss surveys to further identify weather conditions 

that are related to epizootics. 
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CHAPTER 4 

INFLUENCE OF MOOSE POPULATION DENSITY ON 
FOREST REGENERATION 

Introduction 

Moose are economically and ecologically important in northern New Hampshire 

with moose viewing a popular attraction and 521 hunting permits issued statewide in 

2009 (2009 New Hampshire Wildlife Harvest Summary). Wildlife-associated 

recreation contributed ~$560 million to New Hampshire's economy in 2006 (USFWS 

2006), and moose related activities represent a substantial portion of this figure. 

However, the forest industry is arguably the primary contributor to northern New 

Hampshire's economy. According to the Governor's New Hampshire Forest 

Products Industry Task Force Report (2008), the state generates over $2.3 billion 

annually from forest-based manufacturing and forest-related recreation and tourism. 

In 2003 International Paper Company sold 171,326 acres of commercial forestland to 

the Trust for Public Lands, permanently protecting this land for recreation and timber 

management (Staats and Kelly 2006). The majority of this land is managed by the 

Connecticut Lakes Timber Company (CLTC) through a working forest conservation 

easement with the New Hampshire Fish and Game Department (NHFG). 

Adult moose require substantial browse to maintain such large body size 

(Bubenik 1997), and thus have the ability to considerably impact plant communities 

(Bowyer et al. 1998); high-density populations can have deleterious effects on 

preferred plant species (Peek 1997). Commercially managed forests create preferred 



habitat and forage for moose (Westworth et al. 1989, Scarpitti et al. 2005), and impact 

on forest regeneration has been documented across moose range. For example, 

browsing in Isle Royale National Park, Michigan prevented preferred species such as 

aspen {Populus spp.), birch {Betula spp.) and balsam fir from reaching the overstory 

and allowed spruce {Picea spp.) biomass to increase (Mclnnes et al. 1992). Sites with 

traditionally low moose densities and older sites with unreachable foliage and twigs 

escaped damage. In Russia high moose densities retarded growth of preferred forage 

species such as aspen causing rapid over-growth of spruce (Abaturov and Smirnov 

2002), and in Finland browsing reduced preferred species and released conifers from 

competition; however, study sites were in wintering areas where moose concentrate in 

above average density (Heikkila et al. 2003). High winter densities of moose retarded 

growth of birch and killed some regeneration in Newfoundland (Bergerud and 

Manuel 1968), and reduced winter browse availability in winter deer yards in 

northern New Hampshire (Pruss and Pekins 1992). Little attention has been paid to 

the impact of moose browsing on forest regeneration in northern New Hampshire 

despite the year-round importance of early-successional browse to moose, and the 

importance of sustaining commercial forests (Scarpitti et al. 2005). 

In the late 2000s the CLTC raised concern about the negative impact of moose 

browsing on regeneration of commercial tree species and its associated impacts on the 

economic viability of timber resources on the property. Due to the importance of 

both moose and the timber industry in northern New Hampshire, and the ability of 

moose to negatively impact forest regeneration, concern exists about providing 

optimal recreational opportunities and maintaining economically viable timber 
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operations. This research was designed to evaluate the impact of moose browsing on 

regeneration of commercial tree species in 3 regions of different moose density in 

northern New Hampshire. 

Methods 

Regeneration surveys (Leak 2007) were performed in clear-cuts >2.83 ha (7 

acres) in June-August 2009. Cuts were separated into 4 age classes in each region (0-

5, 6-10, 11-15, and 16-20 years old) in order to gauge temporal changes across 20 

years of growth. This time frame encompassed both the period of typical browsing 

and at least 10 years post-browsing. Seven to 10 cuts of each age class were located 

from timber harvest maps and spread throughout each of the 3 sample regions. 

Small-plot surveys using milacre plots (~ 2.3 m diameter circle) were used to 

collect data. To avoid repeat measurements, plots were evenly spaced on equidistant 

transects throughout each clear-cut (Fig. 4-1). Approximately 75-250 small-plot 

surveys were conducted in each clear-cut providing approximately 700-1,000 

plots/age class per region. 

In each plot the dominant stem (tallest tree) was recorded as a commercial or non­

commercial species. If the dominant stem was non-commercial, the plot was searched 

for the presence of a commercial species (Appendix D); commercial species included 

oak {Quercus spp.), sugar and red maple, yellow and white birch {B. papyrifera), 

American beech, aspen, balsam fir, red spruce, hemlock, and white pine {Pinus 

strobus). Stem damage was assessed qualitatively as fork, broom, or crook (Fig. 4-2). 

Height of damage above or below breast height, number of forks and crooks, and 

severity of crook (based on angle) were also recorded. 
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Figure 4-1. Selected clear-cut (>2.83 ha) with equidistant transects upon which 75-
250, 2.3 m radius plots were established to measure the presence of dominant 
commercial stems, stem quality, and relative height. 
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Figure 4-2. The 3 qualitative browse categories recorded for dominant commercial 
stems in each milacre sample plot. Height of damage above or below breast height, 
number of forks and crooks and the severity of the crook were recorded. 
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Browse defects that lead to classification as a severely damaged tree included 

broomed stems and multiple forks above breast height (-1.4 m).Damage not severe 

enough to affect tree quality included single forks and crooks; trees with such damage 

usually recover during subsequent growth (Switzenberg et al. 1955, Carvell 1967, 

Trimble 1968, Jacobs 1969). A minimum of 40-60%> of sample plots should contain a 

commercial tree without severe damage to achieve a fully stocked stand at 80 years 

(Leaketal. 1987, Fig. 4-3). 

The relative height of the dominant stem was estimated in the 3 older age classes 

to fixrther assess browsing impact. The proportion of plots containing a dominant 

commercial stem >3.05 m (10 ft) without severe damage was used to compare 

relative height between age classes. Vegetation >3.05 m was presumed to be above 

the height of typical moose browsing (Bergstrom and Danell 1986). 

Analysis of variance (ANOVA) was used to examine for differences in mean 

stocking rate of commercial trees, browse damage, and height of vegetation. Pairwise 

comparisons were made with Tukey's test. Significance for all tests was assigned a 

priori at a = 0.05. 

Results 

Stocking rate of commercial trees was high (49-85%) in all age classes in each 

region, and increased with age class (Table 4-1). Stocking rate was 71-77% in each 

region by the 6-10 year age class, and >85% by the 16-20 year age class. The 

proportion of commercial trees with severe damage was low (<10%) in all regions 

and age classes except in the 11-15 year age class in the CT Lakes region (16%, 

Table 4-1). Severe damage in this age class was higher in the CT Lakes than the 

69 



Figure 4-3. Stocking guides for main crown canopy of even-aged hardwood and 
mixed-wood stands. Shows basal area, number of trees per acre, and quadratic mean 
stand diameter. The A-line is fully stocked, the B-line is suggested residual stocking 
(-60%), and the C-line is minimum stocking (-40%) (Leak et al. 1987). The 
proportion (%) of commercial trees without severe damage are plotted by age class. 



Table 4-1. Summary values of moose browsing indicating the stocking of commercial tree species, stocking of 
commercial trees with and without severe damage, and the proportion of commercial trees >3.05 m in height without 
severe damage (trees above this height were assumed to be released from browse) in clear-cuts in 3 regions of 
different moose density in northern, NH. Rows with unlike letters are statistically different (P<0.05). 

Age Class 

Stocking Rate Of Stocking Rate Of Stocking Rate Of Proportion of Dominant 
Dominant Dominant Commercial Dominant Commercial Commercial Trees w/o 

Commercial Trees w/o Severe Trees w/ Severe Severe Damage and 
Trees (%) Damage (%) Damage (%) >3.05 m Tall (%) 

CT Lakes 
0-5 
6-10 
11-15 
16-20 

North 
0-5 
6-10 
11-15 
16-20 

White Mountain 
0-5 
6-10 
11-15 
16-20 

49 
77 
78 
87 

67 
71 
86 
87 

53 
73 
79 
85 

47 
69 
61 
78 

64 
67 
85 
85 

52 
67 
75 
84 

2 
8 
16(a) 
9 

3 
4 
1(b) 
2 

1 
7 
4(b) 
0 

N/A 
22(a) 
43 
63 

N/A 
39 (ab) 
69 
70 

N/A 
48(b) 
67 
80 

- J NA = not applicable 



North and White Mountain regions (P = 0.00016 and 0.00581, respectively). The 

proportion of plots containing a commercial tree without severe damage was above 

the threshold stocking level of 40-60% in all age classes and regions, and generally 

increased with age class (Table 4-1, Fig. 4-3). The proportion of undamaged trees 

>3.05 m increased with age class in each region; for the most part, this proportion 

was inversely related to regional moose density (Table 4-1). Height in the 11-15 year 

age class was lower in the CT Lakes region than in the North (P = 0.005) and White 

Mountain regions (P = 0.016), and in the 6-10 year age class (P = 0.008) in the White 

Mountain region. Severe damage and population density were correlated (P = 

0.0089), although damage was considered low overall in each region. Only 3 of the 

116 clear-cuts (2.6%) were considered severely damaged. Two of these were in the 

11-15 year age class in the CT Lakes region and 1 was in the 6-10 year age class in 

the White Mountain region. Stocking of commercial trees in these clear-

cuts was <75% and >50% of these stems were severely damaged; damage to 

hardwoods was nearly 100% whereas damage to softwoods was minimal (Table 4-2). 

Discussion 

Moose browsing does not appear to be negatively impacting regeneration of 

commercial tree species in northern New Hampshire. Stocking rate of commercial 

tree species without severe damage was above the minimum threshold of 40-60% in 

all regions and age classes, and severe damage from browse was low in all regions 

and age classes (Table 4-1). Stocking rates in the 0-5 year age classes were lowest 

(49-67%) and was due to high stocking of non-commercial early successional species 

such as blackberry {Rubus allegheniensis), raspberry {Rubus idaeus), and pin cherry 

72 



Table 4-2. Summary values for 3 severely damaged clear-cuts in 2 sample regions in northern, NH indicating the stocking 
of commercial tree species, the proportion of commercial trees with severe damage, the proportion of commercial trees 
>3.05 m in height without severe damage (trees above this height were assumed to be released from browse), and the 
regional averages for these same values. Stocking of commercial hardwood and softwood species, and the proportion (%) 
of severe damage to hardwood and softwood species are also represented. 

Stocking Rate Of Proportion of 
Sample Region Dominant Commercial 
and Age-Class Commercial Trees w/ Severe 

Trees (%) Damage (%) 

Proportion of Dominant 
Commercial Trees w/o Hardwood Stocking Softwood Stocking 
Severe Damage and (% Severe Damage) (% Severe Damage) 

>3.05 m Tall (%) 

CT Lakes 
11-15 

11-15 

Average 

White Mountain 

6-10 

Average 

69 

75 

78 

69 

73 

63 

52 

22 

52 

10 

16 

22 

43 

16 

48 

72 (98) 

75(100) 

NA 

99 (97) 

NA 

28(2) 

25(0) 

NA 

1(3) 

NA 

NA = not applicable 



{Prunus pennsylvanica) and not heavy browsing. Severe browse damage in these age 

classes was only 1-3%, and stocking rate jumped to >70% by the 6-10 year age class 

(Table 4-1). 

Relative height of trees increased with age class and was negatively correlated 

with moose density. Bergerud and Manuel (1968) noted that if browsing pressure is 

removed, "hedged" stems may escape and recover for harvest by a normal rotation 

time. One leader becomes apically dominant in forked stems (Jacobs 1969), and 

crooked stems straighten with added radial growth (Switzenberg et al. 1955, Trimble 

1968). The increased height in regions with lower moose density is suggestive of a 

relationship between damage and moose density. However, because stocking rate 

was above the threshold level in all regions, and severe damage levels >10% occurred 

in only 1 age class in the CT Lakes, this relationship has negligible impact on 

regional forest productivity. 

Browse damage was greatest in the 11-15 year age class in the CT Lakes region 

and higher than in the North and White Mountain regions (Fig. 4-4); however, the 

overall stocking level was above the threshold value. Two clear-cuts, one adjacent to 

a known moose wintering area, accounted for this difference. Moose often use 

traditional wintering areas to reduce movement and often concentrate in above 

average numbers (Renecker and Schwartz 1997). Heavy damage has been noted in 

areas with high winter densities in Finland (Heikkila et al. 2003) and Newfoundland 

(Bergerud and Manuel 1968), and measurable damage can occur in local areas. One 

additional clear-cut was severely damaged in the 6-10 year age class in the White 

Mountain region. No statistical difference in damage between region or age class 
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Figure 4-4. Proportion (%) of plots with severe damage in 4 age classes in 3 regions of northern, NH. The solid white 
bars represent proportions after 3 severely damaged cuts were removed from the data set (2 in CT Lakes and 1 in White 
Mountain region). 



(Fig. 4-4) occurred after removal of these 3 cuts, indicating the importance of 

measuring and identifying local versus regional 

impacts. 

Several studies have examined the impacts of moose density on tree species. In 

central Newfoundland winter densities of >4.6 moose/km2 caused severe damage to 

balsam fir and white birch (Bergerud and Manuel 1968); a density of 2.32 moose/km2 

prevented serious damage of birch and fir (Bergerud et al. 1968). Angelstam et al. 

(2000) examined the effects of moose density across 3 geographic regions (Sweden, 

Finland, and Russian Karelia) with densities ranging from 0.2-1.7 moose/km2, and 

found the proportion of severely damaged and dead stems increased 36-fold in the 

highest density region; regions with densities of <0.3-0.4 moose/km2 had significantly 

lower damage. In Sweden, simulated browsing indicated that densities of 0.8-1.5 

moose/km2 should not have significant negative impacts on available winter browse, 

whereas densities of >2.0 moose/km2 may (Persson et al. 2005). Faison et al. (2010) 

measured browse damage in southern New England at densities of 0.5-1.1 moose/km2 

and found only 3% of study sites were browsed intensively. Moose density in the 

study area in the previous 20 years was nearly double (-1.5-2.0 moose/km2) that of 

current moose density (<1.0 moose/km2 in all regions, K. Rines, NHFG, personal 

communication). 

Although damage was low in all regions and age classes, severe browsing may 

shift local species composition. The 2 severely damaged cuts in CT Lakes were 

stocked predominately with deciduous species that had much higher damage relative 

to coniferous species (Table 4-2), suggesting that coniferous species may eventually 
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dominate these stands. Intense browsing of preferred deciduous species allowed 

spruce biomass to increase in Isle Royale, Michigan (Mclnnes et al. 1992), and high 

browsing of preferred forage allowed rapid over-growth of spruce in Russia 

(Abaturov and Smirnov 2002). Severe browsing by moose does not appear to be 

shifting regional species composition. At least 3 commercial hardwood species 

and/or balsam fir account for >50% of the species composition in each age class in 

the CT Lakes and North regions (Appendix K, L), and the majority are classified as 

light-no damage. As softwoods are less common in the White Mountain region, one 

concern could be a shift toward beech dominance due to severe browsing of more 

preferred species; however, other commercial species accounted for 36-66% of the 

species composition and increased with age class (Appendix M). Further, the 

proportion of non-commercial species declined in each older age class in all regions. 

Our results indicate that stocking rates of commercial tree species were above the 

threshold stocking level in all 3 regions. Moose density and browse damage appeared 

to be correlated; however, damage was low in each region at all moose densities. 

Severe browsing was site-specific and likely influenced by proximity to winter 

habitat; however, forest composition may shift to coniferous species in such 

situations. Severe browse damage does not appear to be shifting regional species 

composition. Measurements taken in the 0-5 year age class are most likely poor 

indicators of regeneration potential as the forest tends to compensate with additional 

growth. Presumably, evident heavy browsing in this young age class created the 

perception that regeneration and stocking would be impacted long term. This study 

indicates that measuring regeneration and stocking in older age classes provides a 
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more accurate assessment of moose impact on forest productivity and accounting for 

moose population density and local impacts. 
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CONCLUSIONS 

1. Based on measurements in 3-5 year old clear-cuts, tick abundance and 

regional moose density were correlated both years (2008 and 2009). Tick 

abundance was highly variable in clear-cuts in all regions and likely caused 

lack of statistical difference among regions and between years. The few cuts 

with high abundance (2-7X higher than regional mean) and the high 

variability suggests that winter ticks are not evenly distributed within this 

preferred habitat type, regardless of moose density. Therefore, the flagging 

technique is probably not practical to index tick abundance or tick loads, and 

it is also very labor intensive and costly. 

2. Fewer ticks were counted on harvested moose in 2009 than 2008, whereas 

numbers were higher in 2010. These data were similar to field measurements 

that indicated reduction in tick abundance from 2008 to 2009. Calves had 

more ticks than adult moose (-2-6X) each year and bulls had more than cows 

(-1.5-4X). The abundance of ticks measured at 4 areas on the carcass at 

check stations was statistically related to tick abundance measured from 

digested hide samples taken from the same areas. Combining data from the 4 

areas produced the strongest relationship (r2 = 0.80). Transect counts on 

harvested moose at check stations is easy and efficient, and should continue to 

provide an index of relative tick abundance and tick load on moose. 

However, index values could be lower that actual tick loads if weather 

conditions extend the questing period into December. Collection of multiple 

years of data will be necessary to develop an effective index. 
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3. Spring hair-loss surveys conducted on road-side moose in April-May 

indicated a reduction in hair-loss from 2009 (HLI = 2.86) to 2010 (HLI = 

2.50) based on combined regional data. Bulls had the highest HLI both years; 

however, there was little variation (2-16%) in the HLI of bulls, cows, and 

calves indicating that sex/age of moose has little influence on survey results. 

The HLI values were not associated with a documented tick epizootic or 

moose die-off during the study; therefore, continuing annual surveys is 

suggested to develop an effective index. The ability to document moose die-

offs in New Hampshire is limited because little data is collected on moose 

mortalities. More detailed documentation of moose mortality in the state 

would help associate index values with related moose die-offs. 

4. In the North region a single-day survey in May (n = 51) produced similar 

results (-4% lower) as the larger survey, suggesting that a single-day survey 

might suffice if an adequate sample size (~50) is realized. A regional survey 

should be conducted by the same person within a 5-day period (1 May-15 

May) that is focused on the most commonly used roadside saltlicks in a region 

until >50 individual moose are observed. Surveys should be restricted to the 

CT Lakes and North regions only. Spring calf:cow ratios should be compared 

to those calculated from fall hunter surveys to gauge possible decline in calves 

associated with a winter tick related die-off. 

5. The combination of fall tick counts on harvested moose and spring hair-loss 

surveys should prove useful and adequate to index winter tick abundance and 

tick loads in northern New Hampshire. They are both time and cost effective 
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and capable of indicating annual change in tick abundance. Check station 

counts provide an indication of transmission during the questing period, while 

hair-loss surveys should help confirm major mortality events in late winter-

spring. Calfcow ratios obtained during hair-loss surveys could prove useful 

in detecting years of high calf mortality. Because major tick related die-offs 

are usually concurrent and widespread geographically, tracking regional 

differences in New Hampshire may not be as important as obtaining adequate 

tick load samples from harvested moose and at least one regional hair-loss 

survey of >50 moose. 

6. A continued decline in body weight and corpora lutea count of yearling cows 

has occurred from 1988-1998 to 2005-2009 in New Hampshire. Yearling 

ovulation rates dropped from 56 to 21% and the mean dressed body weight of 

cows is currently <200 kg; reproduction of cows <200 kg is minimal. 

Conversely, adult rates have remained normal (60-97%); rates and trends in 

Vermont were similar. This downward trend in yearling size and 

productivity, yet stable condition of adult moose, indicates that non-habitat 

related factors are probably impacting the productivity of regional 

populations. The lack of a documented winter tick epizootic and associated 

moose die-off since 2002 suggests that annual winter tick infestation of calves 

have measurable influence on calf survival and yearling growth and fecundity. 

Continued monitoring of physical parameters and productivity of harvested 

moose, particularly the yearling cohort, is warranted to assess the influence of 

winter ticks and habitat quality on regional moose populations. 
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7. Weather conditions, although generally favorable for reproduction and host 

transmission of winter ticks, did not appear to produce high infestation levels 

resulting in an epizootic. The only obvious weather difference between 2001 

(year preceding documented moose die-off) and 2008-2010 occurred in 

December 2001 that had abnormally high temperature and lack of snow cover 

until 15 December. Because spring conditions in 2001 were not conducive to 

adult tick survival, the length of the 2001 fall questing period appears to be 

the critical element that caused the tick infestation and moose die-off in spring 

2002. Fall and spring weather should be monitored with focus on unusual 

conditions that may cause high tick loads and epizootics, namely a warm 

December with late/no snow cover followed/preceded by a warm April (>4° 

C) without snow cover. Weather data should be compared to indices of tick 

abundance developed from tick loads of harvested moose and spring hair-loss 

surveys to further identify weather conditions that are related to epizootics. 

Temperature shifts related to climate change will likely extend the activity 

periods of winter ticks, and ultimately increase transmission and tick loads, 

survival of reproductive females, and frequency of epizootics. 

8. Stocking rate of commercial tree species in clear-cuts aged 2-20 years old was 

well above stocking threshold values in all regions. Although moose density 

and browse damage were correlated, damage was low in each region at all 

moose densities. Severe browsing was site-specific (only 2.6% of clear-cuts), 

was likely influenced by proximity to traditional moose wintering areas, and 

may shift local species composition in favor of softwood. Severe browsing 
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does not appear to be shifting regional species composition. The 0-5 year old 

age class is not a reliable indicator of browsing impacts because compensatory 

growth occurs after a clear-cut ages and grows beyond use of moose, and 

commercial species do not necessarily dominate this age class. Measuring 

regeneration and stocking rate in older age classes provides a better 

assessment of impacts on forest productivity. The current stocking rate of 

commercial tree species indicates that browsing levels associated with the 

moose population density in the past 20 years has not measurably impacted 

forest productivity in northern New Hampshire. 
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Winter Tick Flagging Data Sheet 
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Moose Hair-Loss Severity Survey 
(Spring survey of winter tick induced hair-loss on moose) 

Observer Name: 

Hair-Loss - N = none, L= light, M = moderate, S = severe. W = worst case 
Sex - C = cow, B = bull, U = unknown 
Age--A = adult, Y= yearling, C = calve, U = unkown age 
WMU" (Al, A2), (B, CI, C2, Dl), (El, E2, E3, D2, F) 
Moose ID # — Keep a running tally of all observed and recorded moose. 
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Helpful Hints 
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APPENDIX E. MEAN (±SD) FIELD-DRESSED BODY WEIGHT (kg) OF COW MOOSE IN 3 SAMPLE REGIONS 
AND STATEWIDE IN NEW HAMPSHIRE AND STATEWIDE IN VERMONT, AND MAINE, 1988-2009. 
VERMONT DATA ARE FROM 1993-2009. 

0.5 yr 1.5 yr 2.5 yr 3.5 yr 4.5 yr 5.5 yr >6.5yr 
Parameter n Mean n Mean n Mean n Mean n Mean n Mean n Mean 

1988-1998 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

Maine 

22 

14 

22 

74 

10 

44 

11U25.6 

104±18.6 

117±29.2 

110±25.0 

103±19.30 

111±19.2 

58 

56 

38 

175 

45 

186 

214±31.5 

217±25.2 

212±33.7 

211 ±30.9 

203±30.30 

198±30.6 

64 

37 

37 

167 

35 

207 

257±38.1 

254±30.4 

243±29.3 

258±314.3 

253±23.62 

249±34.4 

44 

23 

18 

102 

22 

150 

264±33.1 

261 ±33.5 

251 ±37.8 

255±34.8 

256±33.07 

259±32.5 

17 

20 

7 

55 

10 

110 

271 ±39.3 

277±33.3 

268±28.8 

268±34.0 

259±20.10 

270±30.2 

21 

6 

9 

46 

9 

71 

259±31.1 

297±26.1 

263±32.0 

261 ±32.1 

248±40.58 

271 ±27.6 

40 

26 

22 

106 

24 

187 

264±39.1 

263±26.5 

254±43.0 

258±35.6 

259±33.22 

267±36.5 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

Maine 

17 

8 

9 

51 

37 

78 

110±20.1 

104±21.1 

105±17.9 

105±20.1 

99±21.59 

115±30.2 

96 

41 

20 

206 

131 

330 

203±27.8 

207±25.4 

198±27.7 

203±27.0 

196±25.21 

205±27.3 

47 

37 

12 

132 

116 

353 

252±25.3 

255±30.8 

254±17.3 

250±28.7 

245±26.60 

262±30.5 

30 

25 

10 

85 

75 

235 

248±30.0 

254±30.5 

239±25.3 

246±29.1 

256±30.76 

273±30.5 

20 

15 

10 

68 

54 

152 

267±26.9 

279±23.6 

272±46.3 

263±34.7 

263±31.26 

273±28.2 

12 

10 

12 

48 

41 

102 

252±42.9 

272±28.1 

262±25.5 

260±31.5 

267±31.73 

270±30.6 

34 

46 

16 

133 

150 

409 

258±25.6 

274±31.8 

258±32.2 

263±31.4 

265±33.77 

275±34.0 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

Maine 

14 

18 

5 

45 

104 

43 

108±25.5 

109H8.1 

101±13.7 

107±22.0 

100±19.20 

122±19.2 

66 

51 

17 

165 

219 

238 

192±28.4 

196±29.0 

181 ±30.6 

190±29.3 

185±26.91 

205±29.4 

39 

35 

17 

117 

162 

224 

239±37.4 

246±26.6 

240±27.4 

238±31.0 

236±33.96 

257±27.5 

30 

28 

11 

87 

155 

176 

265±23.2 

265±33.1 

240±33.0 

258±31.0 

248±31.66 

268±31.6 

21 

20 

5 

60 

105 

122 

234±46.7 

263±35.4 

230±63.4 

24743 

251 ±31.58 

269±27.5 

10 

8 

8 

40 

74 

93 

250±35.7 

246±38.2 

241 ±26.9 

246±28.6 

245±31.48 

268±33.7 

34 

49 

12 

131 

255 

356 

257±42.5 

262±33.2 

243±34.0 

257±36.4 

255±37.41 

273±35.3 



APPENDIX F. MEAN (±SD) CORPORA LUTEA (CL) AND OVULATION RATE (%) OF COW MOOSE IN 3 SAMPLE 
REGIONS AND STATEWIDE IN NEW HAMPSHIRE AND STATEWIDE IN VERMONT, AND MAINE, 1988-2009. 
VERMONT DATA ARE FROM 1993-2009. 

1.5 yr 2.5 yr 3.5 yr 4.5 yr 5.5 yr £6 5 yr 

Parameter n MeanCL Ovulated n MeanCL Ovulated n MeanCL Ovulated n MeanCL Ovulated n MeanCL Ovulated n MeanCL Ovulated 

1988-1998 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

59 0.61±0.64 

60 0.65±0.63 

44 0.80±0.70 

187 0.65±0.65 

25 0.36±0.49 

53 

58 

64 

56 

36 

68 

37 

38 

174 

18 

1.37±0.57 

1.24±0.89 

1.26±0.50 

1.26±0.66 

1.06±0.42 

96 

86 

97 

91 

94 

45 

24 

18 

102 

10 

1.33±0.56 

1.33±0.56 

1.22±0.81 

1.29±0.62 

1.20±0.42 

98 

96 

83 

93 

100 

19 

22 

10 

62 

6 

1.63±0.68 

1.45±0.67 

1.60±0.70 

1.53±0.65 

1.33±0.52 

95 

95 

100 

97 

100 

20 

9 

9 

46 

4 

1.30±0.57 

1.56±0.73 

1.56±0.53 

1.37±0.61 

1.25±0.96 

95 

89 

100 

93 

75 

37 

29 

21 

108 

13 

1.49±0.73 

1.72±0.59 

1.10±0.77 

1.46±0.73 

1.46±0.52 

89 

100 

81 

90 

100 

C T Lakes 

North 

Whites 

Statewide 

Vermont 

95 0.35±0.52 

41 0.44±0.55 

23 0.43±0.51 

200 0.42±0.52 

65 0.26±0.44 

33 

41 

43 

41 

26 

56 

37 

16 

142 

72 

1.09±0.55 

1.08±0.55 

1.13±0.34 

1.09±0.53 

1.07±0.56 

91 

89 

100 

91 

88 

31 

29 

11 

90 

40 

1.23±0.67 

1.17±0.66 

1.09±0.54 

1.17±0.60 

1.03±0.48 

87 

86 

91 

89 

90 

21 

16 

13 

72 

36 

1.19±0.60 

1.38±0.50 

1.23±0.60 

1.26±0.56 

1.08±0.50 

90 

100 

92 

94 

92 

14 

10 

14 

54 

23 

1.36±0.84 

1.10±0.74 

1.36±0.50 

1.30±0.63 

1.41 ±0.59 

79 

80 

100 

91 

96 

41 

49 

21 

151 

80 

1.22±0.57 

1.31 ±0.62 

1.38±0.67 

1.31±0.60 

1.30±0.60 

93 

92 

90 

93 

95 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

66 0.21±0.45 

58 0.21±0.41 

16 0.19±0.40 

169 0.21±0.42 

99 0.16±0.37 

20 

21 

19 

21 

16 

42 1.05±0.49 

37 0.92±0.43 

21 0.95±0.50 

127 0.98±0.48 

67 0.99±0.59 

90 

86 

86 

87 

82 

32 

30 

12 

91 

81 

0.94±0.56 

1.23±0.50 

1.08±0.51 

1.08±0.54 

0.98±0.59 

81 

97 

92 

89 

81 

23 

21 

5 

62 

45 

0.83±0.58 

1.05±0.67 

0.60±0.55 

0.98±0.61 

1.02±0.40 

74 

81 

60 

81 

93 

11 

13 

9 

48 

40 

1.36±0.81 

0.92±0.64 

1.00±0.50 

1.13±0.67 

0.95±0.50 

91 

77 

89 

88 

85 

37 1.03±0.64 

53 1.19±0.65 

15 1.07±0.59 

142 1.13±0.66 

123 0.96±0.56 

81 

91 

87 

86 

82 



APPENDIX G. MEAN (±SD) FIELD-DRESSED BODY WEIGHT (kg) OF BULL MOOSE IN 3 SAMPLE REGIONS AND 
STATEWIDE IN NEW HAMPSHIRE (1988-2009) AND STATEWIDE IN VERMONT (1993-2009). 

Parameter 

1988-1998 

C T Lakes 

North 

Whites 

Statewide 

Vermont 

1999-2004 

C T Lakes 

North 

Whites 

Statewide 

Vermont 

2005-2009 

C T Lakes 

North 

Whites 

Statewide 

Vermont 

n 

19 

15 

17 

67 

21 

17 

10 

6 

42 

38 

14 

11 

12 

46 

87 

0.5 yr 

Mean Weight 

130±23.0 

118±25.6 

115±17.9 

119±22.8 

118±22.5 

114124.9 

111±24.2 

111±33.7 

114±25.6 

114±22.7 

121121.5 

125123.2 

103±26.5 

115125.0 

114116.4 

n 

80 

119 

102 

377 

58 

44 

80 

38 

235 

127 

43 

61 

36 

184 

247 

1.5yr 

Mean Weight 

232142.8 

223129.7 

222144.1 

222138.8 

216127.3 

209125.7 

212122.7 

194122.3 

206124.5 

202127.6 

204133.6 

207127.5 

192123.5 

201129.1 

196127.1 

n 

78 

112 

91 

361 

52 

41 

71 

43 

246 

119 

33 

74 

28 

219 

222 

2.5 vr 
Mean Weight 

278146.4 

273139.0 

271140.3 

271141.5 

273127.0 

272130.8 

267124.0 

261132.0 

262128.3 

261130.8 

258128.0 

367126.5 

242132.0 

253129.6 

253+33.7 

n 

43 

70 

69 

229 

23 

43 

76 

38 

251 

126 

39 

80 

29 

214 

189 

3.5 yr 

Mean Weight 

322137.9 

314130.3 

314139.0 

311135.6 

314139.8 

301133.6 

298128.0 

290128.3 

294129.8 

294134.3 

294134.4 

290131.8 

278132.0 

284132.8 

280133.4 

n 

42 

54 

69 

174 

23 

37 

50 

19 

172 

90 

29 

45 

22 

150 

145 

4.5 yr 

Mean Weight 

347141.0 

338136.9 

332141.7 

335139.8 

346142.2 

335133.2 

322128.3 

310135.1 

317132.4 

318131.1 

316136.6 

321128.7 

302137.8 

312133.9 

312136.5 

n 

28 

37 

21 

108 

11 

11 

30 

17 

96 

79 

13 

27 

12 

93 

107 

5.5 yr 

Mean Weight 

367132.9 

352138.0 

351137.9 

350136.7 

356136.1 

347135.4 

348130.4 

321123.2 

331131.6 

340137.5 

335129.3 

330145.6 

325124.2 

319137.4 

329140.0 

n 

43 

47 

44 

180 

36 

43 

78 

33 

243 

162 

49 

67 

24 

218 

278 

>6 5yr 

Mean Weight 

361139.2 

349136.3 

361135.2 

352137.1 

363141.1 

352136.1 

356129.5 

346130.2 

344131.6 

346140.2 

338140.3 

346133.9 

341134.1 

335136.2 

333137.0 



APPENDIX H. MEAN (±SD) ANJLER POINTS OF BULL MOOSE IN 3 SAMPLE REGIONS AND STATEWIDE IN NEW 
HAMPSHIRE (1988-2009) AND STATEWIDE IN VERMONT (1993-2009). 

Parameter 

1988-1998 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

1999-2004 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

2005-2009 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

n 

84 

133 

115 

411 

61 

47 

96 

42 

259 

126 

46 

66 

39 

197 

264 

1.5 yr 
Mean Points 

612.8 

512.6 

613.4 

512.9 

512.7 

513.1 

511.9 

411.4 

512.2 

512.2 

411.7 

411.6 

411.8 

411.7 

411.2 

n 

84 

122 

106 

395 

52 

45 

77 

53 

276 

128 

37 

79 

34 

249 

230 

2.5 vr 
Mean Points 

1014.2 

1013.6 

914.7 

914.2 

1012.7 

1013.3 

1012.7 

913.3 

913.1 

912.9 

812.8 

913.9 

813.2 

813.0 

813.3 

n 

47 

79 

79 

258 

23 

52 

91 

49 

294 

131 

41 

86 

40 

243 

203 

3.5 vr 
Mean Points 

1314.2 

1314.4 

1313.8 

1214.41 

1212.8 

1212.8 

1213.5 

1113.9 

1113.5 

1113.6 

1113.4 

1113.7 

1013.1 

1113.5 

1013.5 

n 

45 

58 

47 

190 

25 

45 

57 

24 

195 

93 

31 

50 

22 

163 

151 

4.5 yr 
Mean Points 

1514.0 

1414.2 

1414.3 

1414.2 

1514.1 

1514.8 

1413.6 

1313.9 

1314.2 

1413.7 

1314.8 

1313.4 

1314.3 

1313.9 

1314.1 

n 

31 

38 

28 

122 

12 

11 

34 

25 

114 

79 

16 

29 

18 

106 

109 

5.5 yr 
Mean Points 

1714.7 

1714.8 

1514.4 

1614.7 

1613.8 

1513.5 

1714.1 

1713.8 

1513.9 

1514.5 

1614.7 

1514.3 

1413.9 

1414.2 

1514.7 

n 

47 

53 

56 

215 

36 

47 

81 

44 

268 

169 

55 

70 

29 

238 

290 

£6.5 yr 
Mean Points 

1714.7 

1615.0 

1714.2 

1614.6 

1813.9 

1814.9 

1814.2 

1514.3 

1614.5 

1614.4 

1614.1 

1614.6 

1514.2 

1514.4 

1514.1 



APPENDIX I. MEAN (±SD) ANTLER SPREAD (cm) OF BULL MOOSE IN 3 SAMPLE REGIONS AND STATEWIDE IN NEW 
HAMPSHIRE (1988-2009) AND STATEWIDE IN VERMONT (1993-2009). 

1.5 yr 2.5 yr 3.5 yr 4.5 yr 5.5 yr £6.5 yr 
Parameter n Mean Spread n Mean Spread n Mean Spread n Mean Spread n Mean Spread n Mean Spread 

1988-1998 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

76 

123 

99 

372 

54 

68120.6 

64115.7 

69121.1 

66111.2 

60H1.4 

79 

105 

97 

363 

50 

95120.1 

89116.5 

89119.6 

90110.7 

90110.9 

45 

73 

11 

246 

23 

110117.5 

109116.0 

109117.3 

107115.2 

105114.2 

44 

56 

43 

183 

25 

126118.0 

121117.3 

119117.0 

120116.5 

123118.7 

29 

35 

25 

114 

12 

134116.5 

131115.2 

125117.5 

126116.5 

127115.1 

42 

45 

53 

197 

34 

137114.2 

134113.0 

136114.2 

133114.7 

13715 

1999-2004 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

44 

96 

40 

247 

118 

60H4.0 

59112.2 

57110.7 

60112.4 

60111.8 

45 

76 

53 

275 

126 

89112.7 

8719.9 

83112.4 

85111.7 

82111.6 

52 

87 

49 

289 

128 

100117.3 

100112.7 

98114.2 

98114.5 

97114.6 

45 

54 

25 

191 

94 

118120.6 

116112.4 

110113.7 

112116.3 

107115.0 

12 

34 

25 

112 

79 

126111.2 

128111.9 

124113.5 

121112.4 

119120.4 

47 

82 

45 

269 

165 

136118.5 

137114.0 

130114.7 

131115.7 

129118.1 

2005-2009 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

44 

63 

39 

191 

247 

59110.2 

57110.7 

59113.2 

59111.2 

56112.4 

39 

77 

34 

247 

224 

82112.7 

84110.2 

8119.4 

81110.7 

79114.7 

40 

87 

40 

242 

199 

101115.2 

99115.5 

96114.7 

96115.2 

92115.3 

30 

47 

21 

157 

148 

113119.6 

110113.7 

104116.5 

109116.5 

104118.6 

16 

29 

18 

106 

107 

132120.6 

123114.2 

122115.2 

118116.5 

114117.9 

53 

70 

28 

232 

282 

131115.0 

132114.5 

127114.7 

128114.7 

122118.0 



APPENDIX J. MEAN (±SD) ANTLER BEAM DIAMETER (mm) OF BULL MOOSE IN 3 SAMPLE REGIONS AND 
STATEWIDE IN NEW HAMPSHIRE (1988-2009) AND STATEWIDE IN VERMONT (1993-2009). 

1.5yr 2.5 yr 3.5 yr 4.5 yr 5.5 yr >6 5 yr 
Parameter n Mean ABD n Mean ABD n Mean ABD n Mean ABD n Mean ABD n Mean ABD 

1988-1998 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

85 

134 

113 

415 

59 

3819.8 

3517.5 

3719.0 

3618.7 

3416.0 

86 

119 

104 

391 

52 

4617.2 

4416.7 

4517.6 

4517.2 

4515.0 

47 

78 

80 

258 

23 

5217.1 

4915.2 

49±6.5 

4916.3 

5014.6 

45 

57 

49 

191 

25 

5617.7 

5415.9 

5417.8 

5417.2 

5515.4 

31 

39 

28 

124 

12 

6018.4 

5617.0 

5717.9 

5617.8 

6014.5 

46 

53 

56 

214 

36 

6215.9 

6116.5 

6016.5 

6016.3 

6114.7 

1999-2004 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

47 

99 

44 

262 

128 

3416.2 

3416.6 

3317.1 

3416.6 

3616.3 

44 

77 

53 

275 

129 

4515.9 

4313.5 

4415.2 

4414.7 

4415.1 

52 

90 

48 

291 

133 

4915.7 

4714.9 

4715.1 

4715.2 

4715.0 

45 

57 

25 

195 

94 

5416.2 

5214.8 

5014.4 

5115.5 

5214.9 

12 

34 

25 

114 

79 

5817.1 

5615.7 

5515.5 

5415.9 

5615.7 

47 

83 

44 

271 

169 

6317.7 

6016.6 

6016.1 

5916.9 

6016.4 

2005-2009 

CT Lakes 

North 

Whites 

Statewide 

Vermont 

47 

65 

40 

199 

258 

3415.7 

3415.5 

3416.5 

3415.8 

3416.7 

39 

79 

34 

251 

230 

4315.0 

4314.7 

4214.9 

4214.8 

4316.1 

40 

86 

40 

243 

197 

4815.0 

4614.0 

4714.9 

4614.5 

4716.4 

31 

49 

23 

162 

150 

5217.5 

5014.2 

4915.7 

5015.7 

5016 0 

16 

29 

18 

106 

106 

5915.0 

5514.9 

5613.4 

5414.7 

5416.3 

55 

70 

29 

236 

291 

6015.3 

5816.2 

5815.4 

5815.7 

5616.4 



APPENDIX K. SPECIES COMPOSITION (%) AND BROWSE DAMAGE 
CATEGORY OF DOMINANT STEMS IN 6-10, 11-15, AND 16-20 YEAR OLD 
CLEAR-CUTS IN THE CT LAKES REGION. 

Age Class 

6-10 

11-15 

16-20 

Species 

American 
beech 

Aspen spp. 

Balsam fir 

Red maple 

Red spruce 

Sugar maple 

White birch 

Yellow Birch 

Non 
commercial 

American 
beech 

Aspen spp. 

Balsam fir 

Red maple 

Red spruce 

Sugar maple 

White birch 

Yellow Birch 

Non 
commercial 

American 
beech 

Aspen spp. 

Balsam fir 

Red maple 

Red spruce 

Sugar maple 

White birch 

Yellow Birch 

Non 

Severe 
Damage 

0 

1 

0 

1 

0 

2 

3 

1 

NA 

0 

0 

0 

5 

0 

0 

8 

4 

NA 

0 

0 

1 

1 

0 

1 

4 

2 

NA 

Moderate Light No 
Damage Damage Damage 

0 

1 

1 

2 

0 

3 

1 

1 

NA 

0 

0 

0 

5 

0 

2 

1 

2 

NA 

0 

0 

1 

2 

0 

2 

2 

1 

NA 

0 

3 

4 

3 

0 

8 

4 

5 

NA 

1 

0 

2 

5 

0 

2 

5 

5 

NA 

0 

1 

1 

7 

0 

4 

6 

4 

NA 

0 

1 

16 

1 

4 

2 

2 

4 

NA 

1 

0 

15 

2 

4 

1 

4 

3 

NA 

1 

0 

23 

3 

11 

2 

3 

1 

NA 

Total 

1 

5 

22 

6 

5 

15 

9 

11 

27 

2 

1 

17 

17 

4 

6 

18 

14 

21 

1 

1 

26 

12 

12 

10 

15 

8 

14 
commercial 



APPENDIX L. SPECIES COMPOSITION (%) AND BROWSE DAMAGE 
CATEGORY OF DOMINANT STEMS IN 6-10, 11-15, AND 16-20 YEAR OLD 
CLEAR-CUTS IN THE NORTH REGION. 

Age Class 

6-10 

11-15 

16-20 

Species 

American 
beech 

Aspen spp. 

Ash spp. 

Balsam fir 

Red maple 

Red spruce 

Sugar maple 

White birch 

Yellow birch 

Non 
commercial 

American 
beech 

Aspen spp. 

Ash spp. 

Balsam fir 

Red maple 

Red spruce 

Sugar maple 

White birch 

White pine 

Yellow birch 

Non 
commercial 

American 
beech 

Aspen spp. 

Ash spp. 

Balsam fir 

Red maple 

Red spruce 

Sugar maple 

White birch 

Yellow birch 

Non 
commercial 

Severe 
Damage 

0 

0 

0 

0 

2 

0 

1 

0 

0 

NA 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

NA 

0 

0 

0 

0 

1 

0 

0 

0 

0 

NA 

Moderate Light No 
Damage Damage Damage 

1 

1 

1 

0 

3 

0 

2 

0 

2 

NA 

0 

0 

0 

0 

2 

0 

1 

1 

0 

0 

NA 

1 

0 

0 

1 

2 

0 

1 

1 

1 

NA 

4 

8 

2 

1 

6 

0 

7 

2 

7 

NA 

0 

5 

0 

2 

7 

0 

3 

7 

0 

4 

NA 

2 

4 

0 

3 

9 

1 

4 

5 

2 

NA 

3 

1 

3 

4 

2 

0 

1 

1 

4 

NA 

0 

4 

0 

34 

2 

5 

0 

3 

0 

3 

NA 

2 

2 

0 

33 

1 

9 

1 

1 

1 

NA 

Total 

7 

10 

5 

5 

13 

1 

11 

4 

14 

30 

0 

9 

1 

36 

11 

5 

4 

11 

0 

8 

14 

4 

6 

0 

36 

13 

10 

7 

8 

4 

12 



APPENDIX M. SPECIES COMPOSITION (%) AND BROWSE DAMAGE 
CATEGORY OF DOMINANT STEMS IN 6-10, 11-15, AND 16-20 YEAR OLD 
CLEAR-CUTS IN THE WHITE MOUNTAIN REGION. 

Age Class Species 

6-10 

American 
beech 

Aspen spp. 

Ash spp. 

Balsam fir 

Oak spp. 

Red maple 

Red spruce 

Sugar maple 

White birch 

White pine 

Yellow birch 

Non 
commercial 

11-15 

American 
beech 

Aspen spp. 

Ash spp. 

Balsam fir 

Red maple 

Red spruce 

Sugar maple 

White birch 

Yellow birch 

Non 
commercial 

16-20 

American 
beech 

Aspen spp. 

Ash spp. 

Balsam fir 

Oak spp. 

Red maple 

Red spruce 

Sugar maple 

White birch 

White pine 

Yellow birch 

Non 
commercial 

Severe Moderate Light No 
Damage Damage Damage Damage 

3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

NA 

1 

0 

1 

0 

1 

0 

0 

0 

1 

NA 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

NA 

6 

0 

1 

0 

0 

1 

0 

0 

2 

0 

1 

NA 

4 

0 

1 

0 

1 

0 

0 

0 

1 

NA 

2 

0 

0 

0 

0 

1 

0 

0 

1 

0 

1 

NA 

20 

2 

4 

0 

0 

4 

0 

1 

7 

0 

4 

NA 

18 

2 

6 

1 

7 

0 

2 

7 

5 

NA 

12 

7 

3 

0 

1 

8 

0 

2 

13 

0 

9 

NA 

7 

1 

3 

0 

0 

1 

1 

0 

3 

1 

2 

NA 

5 

1 

2 

2 

1 

2 

0 

3 

2 

NA 

4 

3 

1 

1 

0 

1 

1 

0 

7 

0 

5 

NA 

Total 

37 

3 

8 

0 

1 

5 

1 

1 

12 

1 

8 

23 

29 

3 

9 

3 

11 

2 

3 

10 

10 

19 

18 

10 

4 

1 

1 

10 

1 

3 

20 

0 

16 

15 
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