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ABSTRACT

ERROR-DRIVEN ADAPTIVE RESOLUTIONS FOR LARGE

SCIENTIFIC DATA SETS

by

Samuel H. Vohr
University of New Hampshire, September, 2010

The process of making observations and drawing conclusions from large data sets is an
essential part of modern scientific research. However, the size of these data sets can easily
exceed the available resources of a typical workstation, making visualization and analysis
a formidable challenge. Many solutions, including multiresolution and adaptive resolution
representations, have been proposed and implemented to address these problems.

This thesis describes an error model for calculating and representing localized error from
data reduction and a process for constructing error-driven adaptive resolutions from this
data, allowing fully-renderable error-driven adaptive resolutions to be constructed from a

single, high-resolution data set. We evaluated the performance of these adaptive resolu-
tions generated with various parameters compared to the original data set. We found that
adaptive resolutions generated with reasonable subdomain sizes and error tolerances show

improved performance during visualization.
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CHAPTER 1

INTRODUCTION

Modern scientific research often involves visualizing data sets whose size greatly exceeds
the resources available on a typical, commodity workstation. As a direct result, making
observations and drawing conclusions from large scientific data sets remains challenging
for researchers. Interactively displaying an entire multi-gigabyte or terabyte data set is
impractical due to several bottlenecks, the most limiting of these being the cost of I/O
operations. Fortunately, interesting behavior can be recognized through wide-range, low
resolution views and narrower-range, higher resolution views.

A multiresolution data model is a popular method for addressing these considerations.
Several lower resolution data sets are generated by applying a data decomposition algorithm
to the original data set. With each successive lower resolution, the data sets become smaller
and, consequently, more easily manipulated in interactive time. However, with each lower
resolution, more and more detail is lost from the original data set. To reduce the impact
of the lost data, the loss can be calculated and presented to the user or application for
consideration along with the low resolution data set. In this work, we present an error
model for generating and representing the uncertainty associated with low resolution data.

Using this model, researchers are afforded several key capabilities. The low resolution
data provides the scientist with context, the errors highlight regions of interest, and the high
resolution subsets give the scientist focus on regions of interesting subsets of data, without
losing the quality of the data. Combining these three functions can result in interactive

renderings of dynamic time series data sets that cannot fit into main memory.
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Error information can also be used by other applications to account for uncertainty in
their computations. One such application is the generation of error- driven adaptive reso-
lution representations. Using adaptive resolution, subvolumes are independently assigned
resolutions to capture detail for regions of interest, while presenting coarse overviews for
less important areas of the domain. In error-driven adaptive resolution, subvolumes are
assigned resolutions based on their error values and an error tolerance specified by the user.
Regions with low error values can be safely reduced in resolution while regions with high
amounts of change are preserved at higher resolutions. The user is presented with a repre-
sentation of the domain that meets an acceptable error tolerance, while reducing the overall
I/O required for the representation.

When used in combination, these tools allow the user to go from a large, high resolution
data set to a multiresolution data set with error data to a fully-renderable, error-driven
adaptive resolution representation. This provides scientists a range of options for finding
the best representation for exploring their data.

1.1 Thesis Goals

The goals of this thesis are:

• Define an error model for representing localized error (by point or by subdomain)
from data reduction.

• Develop a tool based on the model for generating multiple low resolutions with error
information from a single data set.

• Develop a tool to construct complete, error-driven adaptive resolutions from the mul-
tiresolution data sets.

• Evaluate the performance of these representations based on both I/O and computa-
tional criteria.

2



1.2 Outline

• Chapter 2 of this thesis presents some of the prior work on which this thesis is based

as well as some similar research done by others.

• Chapter 3 presents a flexible error model for representing localized error caused by
data reduction from which error-driven adaptive resolutions can be generated.

• Chapter 4 describes the process for constructing adaptive resolutions from a multires-
olution data set with localized error.

• Chapter 5 describes the tests and data sets used in evaluating our error-driven adaptive
resolution representations in comparison to the original, high-resolution data sets. The
results from these tests are also presented.

• Chapter 6 of this thesis discusses the conclusions we have drawn from the test results

and suggests some directions for future work.
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CHAPTER 2

BACKGROUND AND RELATED

WORK

2.1 Multiresolution and Adaptive Resolution Data

This work is, in part, an extension of the model for multiresolution and adaptive resolution
data developed by Rhodes et al. [21, 20, 22, 19]. This model forms the basis for the GRAN-
ITE Scientific Database System. In the model, the geometry and topology of the data
set are conceptually separated, allowing for many different types of data sets to be accessed

through the database system. This thesis focuses on constructing adaptive resolution rep-
resentations from non- adaptive multiresolution hierarchies using localized error caused by
data reduction.

Both multiresolution and adaptive resolution have been used before in many applica-
tions. Freitag and Loy combine adaptive and multiresolution representations with parallel
rendering algorithms[12]. The result is a system that allows large data sets to be explored
in interactive time while still retaining high resolution in areas of interest. They hint at
error-driven adaptive resolution but do not describe it in detail. The adaptive resolution
representations generated by our tool could be incorporated into their distributed octree

infrastructure and rendered in parallel.

Adaptive mesh refinement has been used in many applications for quite some time
[25, H]. However, these methods are used at the time of simulation or data collection,
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while the model of adaptive resolution described in this proposal can be applied later in the
process.

2.2 Quality Assessment

Low resolution representations sacrifice some level of quality for a greatly reduced space
requirement. This loss can be mitigated by storing 'some representation of how the new
data set differs from the original. Wang and Ma have developed a statistical approach for
quality assessment in volume data [24]. Their method analyzes the features of a data set
(either reduced in resolution or otherwise distorted) to calculate a distance measurement
from the original data. However, the method they propose yields a single, cumulative value
to represent the data set's overall quality. Our visualization model requires a localized
approach, that yields many values associated with points or regions in the original domain.

2.3 Geometry and Topology

Many variations of computational grids have been used to generate and store scientific
data[23, 6, 17]. These range from simple, uniform grids to complex, unstructured grids.
Computational grids can be classified by the complexity of the mapping of index space
coordinates to geometry space coordinates. Regular grids (such as the one in Figure 2-lc) are
characterized by the condition that any point (i, j, k) in index space is mapped to (i * dx,j *
dy, k * dz) where dx, dy and dz are constants. Regular and uniform grids are the simplest
to implement, but do not allow for much adaptability. In a rectilinear grid (Figure 2-ld),
the distances between points in each row, column or slice are arbitrary, but the cells remain
rectangular prisms. Point (i,j,k) in index space is located at (x[¿],y[?],z[A;]) in geometry
space where x[i], y[j] and z[k] are table look-ups or some other functions of i, j or k. If
these functions take all of the point coordinates into account ( {x[i,j, k],y[i,j, k], z[i,j, k])),
we have a structured grid or a curvilinear grid. Figure 2-le is a structured grid where table
look-ups provide the positions of each point, allowing for points to be placed arbitrarily
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(a) (b) (e) (d) (e) (f)
Figure 2-1: Some rectilinear topologies. Prom left to right: one-dimensional grid, two-
dimensional grid, three-dimensional grid, two-dimensional perimeter lattice, non-uniform
two-dimensional grid, curvilinear grid.

within the rectilinear topology. Figure 2- If shows a curvilinear grid where each point's
position is located in a non-linear fashion.

All of these grids use a rectilinear topology, but unstructured grids can also be used.
Unstructured grids allow for the most freedom in geometry and topology, but this comes at
the cost of explicitly representing this information for each point.

Although Granite supports many different types of dimensional data, this work deals
specifically with data sets with rectilinear topologies, such as those shown in Figure 2-1.
This class of data can be stored in an array in such a way that the neighbors for each point
can be found easily through the point's index and dimension information. As a result, the
topology information is stored implicitly, avoiding the need to store additional, potentially
complex, topology data.

6



CHAPTER 3

ERROR MODEL

3.1 Introduction

Large data sets can easily be reduced in size through data decomposition methods. However,
these reductions come with the cost of lost accuracy in the low resolution version. To offset
this, error values can be calculated and stored along with the new data set. These error data
sets can be examined by researchers along with the low resolution data through visualization
tools, or can be used by other programs to account for error in their computations.

The process for generating data and error sets is straightforward. First a low resolution
data set is generated from the original. This can be done by any one of several methods.
Next, error values are calculated by comparing values derived from the original and low
resolution data sets. Values at points not stored at either resolution are calculated using an
approximation function (typically some form of interpolation). The result is a set of values
that represent the error (or estimated error) for a set of points within the data space. These
points can be grouped and summarized by subdomain or region to produce localized error
values for each region in the domain.

The index space coordinate system for the original data set can be used to describe the

placement of both error and data points in all lower resolutions. However, it is convenient
to introduce a new coordinate system, the base resolution, that shares its origin with the
original and has twice the resolution. As a result, data at point (n,m) in the original
resolution is represented at point (2rc, 2m) in the base resolution. Intermediate points in the
original resolution, such as the locations of wavelet summary values in the low resolutions,
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can be easily represented with integer values.

For simplicity, the following examples are presented in two dimensions, but can easily
be extended to more.

3.1.1 Formal Definitions

The formal definitions of data representations, data models, and multiresolution hierarchies
upon which the Granite Scientific Database System is built [19] can be extended to
meet the needs of this error model. A brief overview of the definitions used for the error

model follows.

Formally, a data representation consists of a continuous domain (D), a value space (V),
a discrete set of sample points (?, such that ? C D), and a function that maps sample
points to values (/¿\) or:

R=(D,V,A,fA)

A data representation can be paired with an approximation function (/¿) resulting in a
data model:,

M=(RJa)

The original data model definition includes components that represent the uncertainty as-
sociated with the original sample points (?), introduced through the initial measurement
or simulation. Alone, these are not sufficient to represent the error associated with low

resolution versions of the data set, since error for points not contained in ? should also be

considered. Although important, these items are not within the scope of an error model for
representing error as a result of data reductions.

A reducing operator (R) can be used to produce a new resolution with a reduced number

of sample points (| ? |). This results in a lower resolution representation of the same domain,
and a localized reduction error.

R :M^(M',Er)
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The localized reduction error component is not defined in detail in the original model. Our
error model proposes two possible error representations that could be used for Er.

A multiresolution hierarchy is defined as a pair consisting of a sequence of levels (A)
and a sequence of reducing functions (p).

M = <A,p>

Each level A¿ represents the result of applying a reducing operator p¿ to level A^1. This
yields a pair containing a data model (M1) and a localized reduction error (Ei).

Ai = (M\Eí)

A0 holds the original data model and its error, which is assumed to be zero.

3.1.2 Localized Error Goals

There are several desirable characteristics for an error model to fill the role of the localized

reduction error. 1) The error model must be able to produce an error value for any point in
the domain. If an error value for a point is not stored directly, an approximation can be used

in its place. 2) In most cases, it is preferable for this approximation to overestimate the error,
rather than underestimate. 3) We also want to limit the size of the error representation to
be no larger than the size of the low resolution data set it accompanies.

3.2 Data Reduction

Many different techniques exist for generating low resolution data sets. Our error model

focuses on techniques that globally reduce the resolution of a data set. That is, the data set
is reduced substantially with one iteration of the algorithm. Algorithms that incrementally
reduce the resolution of a given data set are not considered (mesh decimation, for example [5,
7]). Our preliminary implementation supports two specific techniques, uniform decimation
and wavelet decomposition. However, other techniques that produce a global data set
reduction could also be used.

9



Methods used to generate low resolution versions of data sets are formally modeled as a
reducing operator (R). This operator performs a transformation on a data model, reducing
the number of sample points while preserving the domain D of the original data set.

3.2.1 Uniform Decimation

In uniform decimation, a lower resolution data set is generated by selecting points from
the original at regular intervals [13]. The interval can be any integer but, by default, each
interval in a single decimation step is a power of 2. For convenience, the resolutions to be

generated are referred to by their exponent. A lower resolution generated by retaining every
other data point (an interval of 2) is referred to as the first resolution. One generated with
an interval of 4 (22) is referred to as the second resolution. The second resolution can also
be thought of as the first resolution generated from the first resolution of the original data
set. To generalize, any resolution r can be generated by retaining every 2rth data point in
the original resolution or by retaining every other data point in resolution r — 1.

The data points that make up any lower resolution retain their positions from the original
resolution.

3.2.2 Wavelet Decomposition

Wavelet decomposition algorithms can also be used to generate multiple resolutions. These
include Haar and Daubechies wavelets [8, 14, 3, 4, 10, 15]. To build a low resolution
representation for a one-dimensional data set, an orthogonal wavelet is applied to a discrete
data set of size n, resulting in n/2 summary values and n/2 detail values. In order to reduce
the required storage space, the detail information can be discarded or further reduced

in resolution, independently from the data resolution. In a multi-dimensional data set,
the transform is applied along each dimension. For a two-dimensional data set, a one-
dimensional transform is applied along each row, then again along each column of the result.

The final result is a summary data set 1/4 the size of the original data. The resulting data
set is called the first resolution. Repeating the process on the first resolution data produces

10
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Figure 3-1: (a) Original data set. (b) First resolution generated by uniform decimation.
Sample points are shown as red circles, (c) First resolution generated using wavelet summary
values. Summary points are shown as yellow circles.

the second resolution.

Since the data points that make up a lower resolution are summarized from multiple
points in the original data set, the position of the new data point should not be the same
as a point in the original resolution. Instead the new datum is placed, by default, at the
center of all points used to calculate it. In geometry space, this can be done by averaging
the points, or applying the same wavelet function to each dimensional component. In index
space, the intermediate points in the base resolution can be used. In the two-dimensional

example, a value calculated from points (0,0), (0,2), (2,0), and (2,2) in the base resolution
would be located at (1,1) as shown in Figure 3- Ic.

3.3 Approximating Functions

Local error values are calculated by comparing values in the original data set with values
in the new, low resolution version. An approximating function fA can be used to calcu-
late intermediate values not contained in the current data representation. Normally, this
approximating function produces the same result for each sample point as the sampling
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function or:

VdeAjA(d) = fA(d)

Bilinear (2D) or trilinear (3D) interpolation is used by default to estimate intermediate
values. In addition to being the most general method, it is also the most appropriate for
data sets intended to be visualized, as the graphics hardware will also use bilinear or trilinear
interpolation when rendering the low resolution data set. However, alternative methods can
also be used in its place. In fact, the process of finding a better approximation function can
be likened to the formation of a new scientific hypothesis. *

3.4 Error

3.4.1 Point Error

Error is generally defined as the difference between an estimated value with its known,
correct value [16]. Applied to this model, the error at any given point (including points not
contained in the original data set) would be the difference between the value at that point
derived from the low resolution set and the value derived from the original data. We can
describe the error at any point ? 6 D as

Er(p) = Mr.fA(p)-M°.fA(p)

Where r is the resolution level.

Since an error value can be calculated for any point in the data space, the error for the
data set can be considered a continuous distribution over the same space as the original
data. Point error sets are constructed by sampling from this distribution, producing a data
representation for the error data.

Er = (D,VE,AE,fAE)

This can be paired with an approximating function to estimate unsampled locations. Most

12



error representations are based on this fundamental comparison of data points from the
original set with points from the low resolution.

As with any form of sampling, there are limitations on the quality of any error infor-
mation reconstructed from the set of sampled points (including especially the Nyquist limit
[9])·

3.4.2 Region Error

Calculating error associated with individual points can produce reliable representations of
the data set's error. However, insights can also be gained by calculating localized error for
regions within the original domain. Values can be calculated for each region to represent
the maximum error, mean error with standard deviation, median error, signal-to-noise ratio
or some other aspect of the error. The user can pick the error function (s) that best fit the
application, as well as the desired error resolution.

To calculate these values, the domain is first partitioned into error regions. The size
of the new error set depends on the number of regions used. More (smaller) regions result
in higher resolution error sets, while fewer (larger) regions produce coarser resolutions.
Generally, each dimension of an error region is 2T (2r + 1 when edges are shared) in size,
where r is the desired error resolution level. The region is then sampled to build a list of
point error values. By default these sample points are located at the original data points,
but they need not be limited to only those. Finally a summary function is applied to the
list of error values, producing a single value for the region.

Formally, a region TZ is a nonempty subset (Dn) of the domain D and a set of points
(An), sampled from the subdomain Dn:

K=(Dn,V,AnJAll)

where Dn C D and An c Dn. The error for an entire region can be calculated by
calculating the point error for every point in ?^ and applying a summary function fs
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(maximum-absolute value, average, signal-tonoise, etc).

Zt{K) = fs{Er(p): Vp G An)

A region error data set is based on a set of regions (d) that cover the entire domain D
from the original data set. Because regions are allowed to share edges or overlap, it is not
a requirement that the intersection of any two regions in d be empty. A region error data
set can be represented as a data representation:

et = (?,??,d,/d)

In this representation, the set of sample points (?) is replaced with a set of regions (d) and
/d is replaced with a function that maps regions to error values (/$).

Using region error allows the user to consider all original sample points when calculating
error values. Depending on the chosen summary function, this can reduce or increase the

influence of an errant spike in the data set. If the user is interested in spikes, a function such
as maximum absolute error can be employed, otherwise an average of error values could
be used. Region error data sets can be rendered like point error data, by defining a point
location for each error value (usually the region's center). Region error is particularly useful
in large data sets in which significant variation in error can occur in different regions of the
data. One suitable application is the construction of error-driven adaptive resolutions from
multiresolution data sets. This is discussed in Chapter 4.

3.4.3 Other Error Metrics

There are potential error metrics that are not based on the comparison of values derived
from different resolutions. For example, wavelet detail values could be used to represent
the error for the points in the data set. This model supports the use of such metrics.

3.4.4 Error Notation

Since there is the potential within a multiresolution hierarchy to have multiple low resolu-
tions each with multiple error sets associated with it, a convenient error notation is required.

14



Eij is used to reference the error set at resolution j associated the data set at resolution i

(Di). A data set can have several error sets associated with it (Eitj, Eitk, etc.).

15



CHAPTER 4

ERROR-DRIVEN ADAPTIVE

RESOLUTION

Using the original data set, multiple low resolution data sets can be generated, each with
multiple sets of error information. Prom these data sets and an error tolerance specification,
an error-driven adaptive resolution representation of the full data set can be built. Through
adaptive resolution, regions of the data set that demonstrate high amounts of unpredictable1
change are placed at higher resolutions while regions with less or predictable change, can
be represented at lower resolutions. To determine the resolution to be assigned to the
region, the region's error values are compared against an error tolerance. In this chapter,
we describe the process for building our error-driven adaptive resolutions.

4.1 Components

4.1.1 Data Sets

A data set with multiple resolutions is required to build an adaptive resolution repre-
sentation. This can be done with data generated through uniform decimation, wavelet
decomposition, or some other means.

'The reconstruction algorithm produces a value that differs greatly from the actual value.
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4.1.2 Error Sets

Error information for each resolution in the multiresolution set is required to drive the

adaptive representation. The original resolution is considered to be error free. Any error
metric can be used in building adaptive resolutions, provided there is a function to compare

error values. Error sets used for building adaptive resolutions can usually be kept at much

coarser resolutions than their corresponding data sets.

Many different error configurations can be used, but in the following examples, we use
a set of error sets in which each level uses the same resolution offset between its data and

error sets (£1,3, #2,4, #3,5 for example). This has the advantage that each error point at
every level represents the same number of data points.

4.1.3 Subdomains

Building an adaptive representation requires the original domain to be divided into sub-

domains that can be placed at different resolutions. An octree (or quad tree in the case
of two dimensions) can be used to organize the subvolumes. Each node in the tree stores

a reference to a corresponding volume at some level in the multiresolution data set, along
with an error value to represent the quality of the volume's data (see Figure 4-2).

Subvolumes are divided along the boundaries of the regions used in the error set. This

avoids the case where an error value is split across, two regions and the case where a sub-

volume is smaller than an error region. For simplicity, we use the error resolution to define

the subvolumes in our adaptive resolutions, but it is possible to build representations with

more than one error value per subdomain.

The number of subdomains strongly affects the performance and the effectiveness of the

adaptive resolution. Small subdomains can closely fit the features of the data set, reducing
the need to use the finest resolutions, but the overhead associated with so many subdomains

may negate any benefits. Large subdomains avoid this cost, but risk assigning unnecessarily

high resolution levels to certain subvolumes. The size of subdomains is a key parameter

17
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Figure 4-1: Slice renders of three low resolution data sets generated through uniform dec-
imation with maximum absolute error at offset two. Darker areas indicate higher error
values.
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for producing effective representations. Because the subdomains we use are directly tied
to the error regions, we refer to them by the offset between a low resolution and its error
resolution.

4.1.4 Error Tolerance

A function is required to determine whether a subdomain should be assigned to a low
resolution or a higher one. In practice, this is a simple comparison between the error for the

region and the user-specified error tolerance. This could be replaced with another predicate
function for more complicated comparisons. For example, a more advanced error tolerance

could take both average and maximum absolute error into account.

4.2 AR Tree Construction

Octrees for adaptive resolution representations can be constructed with or without a target
error tolerance. Both methods use the same tree structure and can potentially be traversed
dynamically to build a new representation with a different tolerance.

General AR Tree Construction

Each node of the AR Tree represents an area or volume in the domain, with the root node
representing the entire domain. Each node contains a reference to a subvolume at one level

in the multiresolution hierarchy (the data), and the error value associated with it. Each

child node represents a subvolume of its parent's volume.

Starting with the full volume of the data set at the lowest resolution, the volume is
subdivided along the boundaries of the error set regions (eight children in the case of an
octree; four if it's a quad tree). Each node is assigned its volume in the lowest resolution

with the error value associated with it. This is repeated until the volume cannot be divided

further at this resolution (there is only a single error value for the region). The volume is
subdivided and the child nodes are moved to the next higher resolution. This process is
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Figure 4-2: An octree representing the domain of the data set. Every level of the tree
stores an entire representation of the domain at some resolution. Child nodes represent a
subvolume of its parent. Each node contains a reference to the data for the subvolume.
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repeated for each subvolume until the data for the subvolume is at the original resolution

and no further subdivision is necessary.

Trees constructed in this manner are full trees, in that every leaf of the tree is at the

original resolution. By traversing (pruning) this tree with an error tolerance, adaptive

resolutions can be produced. This would be useful in an interactive scenario where a

scientist could "play" with the error tolerance, while zooming into regions in the data

set. An adaptive resolution representation generated with an extremely low error tolerance

could possibly result in the original data set. Conversely, a very high error tolerance could
result in the lowest uniform resolution data set.

4.2.1 AR Tree Construction with an Error Tolerance

Similarly, AR trees can be constructed with a target error tolerance. This process is the

same as the general AR tree construction except that each node in the tree is tested against

the error tolerance before expansion. If the data in the volume is within the error tolerance,

the node is not expanded. The result is equivalent to traversing a tree constructed without

an error tolerance and pruning the children of nodes that meet the error tolerance. This

method could be useful in situations where the user has some desired floor tolerance. It

is still possible to traverse such a tree to produce adaptive resolutions with greater error

tolerances.

4.3 AR Tree Traversal

Once an AR tree has been constructed, the tree can be traversed based on a given error

tolerance. In the case of a tree constructed with an error tolerance, it is only possible to

build additional adaptive resolutions with larger error tolerances.

For each node in the tree, the error value associated with its data block is tested against

the tolerance. If the data block meets the tolerance requirements, that block is incorporated

into the result. Otherwise, the test is applied to the children for the node. If the node has
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Figure 4-3: An adaptive resolution tree and two possible representations generated from it
with two different error tolerances.
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no children, the subvolume is at the highest resolution possible. In the case of a full AR

tree, this occurs when the node is at the original resolution.

4.3.1 Tree Simplification

Once the tree has been pruned to the error tolerance, an optional pass can be made to

simplify the structure of the AR tree. For example, if all of the children of a node are

placed at the same resolution, the volumes of the children can be combined into a single

block for the parent node (Figure 4-4). These methods can also involve more complicated,

heuristic approaches, such as raising the resolution of a few small, low resolution volumes

to match that of its siblings (Figure 4-5).

Reducing the size of the tree should also reduce the overall cost of the adaptive resolution.

If the tree is used in an interactive setting, reducing the number of nodes also reduces

the number of issued read commands. When the adaptive resolution is generated offline,

simplifying the tree reduces the number of separate meshes needed when the data set is
rendered.
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Figure 4-4: The child nodes can be collapsed into the parent if they are all leaves at the
same resolution level.

X ??

ti!

?

Figure 4-5: One child node's resolution is raised to match its siblings. The child nodes can
then be collapsed into the parent to simplify data access.
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CHAPTER 5

RESULTS

With the techniques described in Chapters 3 and 4 multiresolution and adaptive resolu-

tion representations can be constructed from a large, uniform data set. To understand

what benefits these offer over the original data, we evaluated the performance of these new

representations compared to the original.

Unlike a uniform resolution, multiresolutions and adaptive resolutions use several pa-

rameters that can affect their performance. In multiresolution data sets, the user specifies

the number of levels in the hierarchy and the resolutions for the data and error sets. For

adaptive resolutions, these factors include:

• The decomposition method used to generate the low resolutions from the original data

set.

• The size of the subdomains used to calculate error and assign resolution levels.

• The error function and tolerance value used to generate the adaptive resolution.

• The tree simplification parameters used to reduce the number of meshes in the final

representation.

Our evaluation focuses on how subdomain sizes and error tolerance affect the perfor-

mance of adaptive resolution. The two decomposition methods we implemented (uniform

decimation and wavelet decomposition) produce low resolutions of nearly the same size.

Therefore, the use of one over the other is not expected to affect the performance sig-

nificantly. Tree simplification methods were not compared because their effect can vary
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depending on the data set and the impact of the number of meshes can be seen by varying

the resolution offset. In all our adaptive resolutions, nodes whose siblings are all at the

same resolution are collapsed into their parents, as described previously.

5.1 Evaluation Methods

5.1.1 Data Sets

The data set used in our evaluation consists of 30 time steps of simulation data from the

Open Geospace General Circulation Model (Open GGCM) [18]. Each time step
contains a volume of 630 x 200 x 300 floating point values. One time step is roughly 145 MB

in size, making the total size of the data set around 4.2 GB. Since each time step can easily

fit into memory, this is not the best example for demonstrating the benefits an adaptive

resolution offers over the original. With this in mind, a second data set was generated by

scaling up the original to 630 x 400 x 600. At 577 MB, each time step can still fit into main

memory, but less space is left for calculations made during visualization. The total size of
this data set is 16.9 GB.

Figure 5-1 shows two pseudocolor slices from the first and last time steps of the data set.

From these we can see that there are large portions of the data set that could be represented

at lower resolutions. This is already done to some degree through the perimeter lattice used

in simulation. This grid increases sampling in areas where interesting behavior is expected,

leaving areas such as the edges and the left-hand side of the image at lower resolutions. The

grid is fixed through all time steps, while our adaptive resolutions are generated separately

for each one. Because of this, we can expect from comparing these two images that earlier

time steps will be more easily reduced in adaptive resolutions than later ones.

5.1.2 Parameters

The adaptive resolutions we used were constructed from a multiresolution data set of four

levels (including the original) generated through uniform decimation with error sets calcu-
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Figure 5-1: Two pseudocolor slices from the first and last time steps from the simulation
data.

Resolution
0
1
2
3
4
5
6
7
8
9
10

Small Data Set
630 ? 200 ? 300
315 ? 100 ? 150

158 ? 50 ? 75
79 ? 25 ? 38
40 ? 13 ? 19
20 ? 7 ? 10
10 ? 4 ? 5
5x2x3
3x1x2
2x1x1
lxlxl

Large Data Set
630 ? 400 ? 600
315 ? 200 ? 300
158 ? 100 x 150

79 ? 50 ? 75
40 ? 25 ? 38
20 ? 13 ? 19
10 ? 7 ? 10
5x4x5
3x2x3
2x1x2
lxlxl

Table 5.1: Low resolution sizes for each test data set. Resolutions lower than 3 are only
used for error data.
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Res. Offset
2
3
4
5
6
7

Small Data Set
75,050
9,880
1,440
200
30

Large Data Set
296,250
38,000
4,940
700
100
18

Table 5.2: Maximum number of meshes (subdomains) possible for each resolution offset.

lated using a maximum-absolute error function. The choice of error function is important
as it defines the subvolumes of the domain that are most important to the user. Maximum-
absolute error is good for capturing the largest error values in the data set but has the
disadvantage that small spikes can overpower the error for an entire region.

From the smaller data set, we constructed 20 adaptive resolution representations of our
data set using four resolution offsets and five error tolerances. We used resolution offsets

2, 3, 4, and 5 to build the subdomains. The error tolerances (0.5, 1, 3, 7, 15) roughly
correspond to 0.5, 1, 5, 10, and 20 percent error. For the larger data set, we constructed 25
adaptive resolutions, using offsets 3, 4, 5, 6, and 7 and the same error tolerances.

5.1.3 Timings

All timings were made on a commodity desktop with an Intel Core 2 Quad processor
(4 ? 2.40GHz) and 2GB of RAM. We used VisIt [2] to render an image for each time step
of the original and adaptive resolution data sets. The total engine time and time to render
one frame were noted individually for each time step. Engine time includes the time for
the I/O operations to read the data set into memory, the database operations to filter the
data, and the overhead from its socket interface. Although the desktop had multiple cores,
we used the serial version of the Visit engine for simplicity.

This was done for three plot types; a pseudocolor slice along the Y-axis, a diagonal
pseudocolor slice, and a volume rendering by splatting (Figure 5-3) of the full domain.

In order to use Visit, our uniform and adaptive resolution representations are written
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Figure 5-2: Detail of a pseudocolor slice plot of an adaptive resolution representation with
a grid overlay. Four resolution levels are present in this image.
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Figure 5-3: A partial volume rendered (splatting) plot of an adaptive resolution represen-
tation.

out in Silo format [I]. Each subdomain is added as a single mesh and variable to a multi-
mesh and multi-variable structure. For uniform, multiresolution data, only one Silo mesh
and variable for the entire domain were added.

Finally, we have very little control over how Visit and Silo choose to read and render

our representations. For the purposes of these evaluations, Visit is treated as a "black box"

where the only element we can directly control is the data we give it.

5.2 Multiresolution Demonstration

Multiresolution data sets are more than just an intermediate step between a large, uniform
resolution and an adaptive representation. They can be used on their own for visualization
and exploration of the domain. Figure 5-4 shows three slices taken from low resolution data

sets along with the corresponding slices from the error sets. For comparison, each error set
is at the same resolution and rendered with the same color scale, meaning that each was
created using a different resolution offset from the original data. The result is three error
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sets of the same size that represent the error for three data resolutions. As expected, we can
see from the darker areas in the images the error becomes greater with lower resolutions.

Figure 5-5 shows a box plot of combined timings for rendering pseudocolor slices from
two data sets (data and error) at varying resolutions. From the plot, we can see that there
is very little variance between the time steps for each data/error pairing. Also, there is
little difference among the error offset choices for each low resolution data set. Finally,
the changes in overall time after resolution 1 are not very dramatic. From these times, we
see that using low resolution data with error information is a reliable way of decreasing
the engine and render times. This demonstration also shows us that low resolutions with

error information have value on their own for getting broad overviews of the domain and
examining some areas in more detail.

5.3 Adaptive Resolution Evaluation

5.3.1 630x200x300 Data Set

Figure 5-6 is a box plot of the combined engine and render times for volume rendered

plots of all individual time steps, grouped by the parameters used to generate the adaptive
resolutions. The timings for the original uniform resolution are also included for comparison.
For each grouping, the box indicates the middle 50 percent around the median (line), while
the whiskers show the upper and lower quartiles. The shaded box represents the 95 percent
confidence interval for the mean. Outliers are shown with a circle. From these plots we can
see that the performance of an adaptive resolution depends greatly on the parameters used
to generate it. As expected, higher error tolerances are associated with lower total times

and many subdomains incur significant overhead in the representation. We also begin to
see the predicted slow down from large subdomains between resolution offsets 4 and 5.

Figures 5-7 and 5-8 show the separate engine and render times for volume rendered

plots. Although the render times appear to be affected by the parameters of an adaptive
resolution, engine time accounts for most of the overall time. Figure 5-9 demonstrates this
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Figure 5-4: Slice renders of three low resolution data sets generated through uniform deci-
mation with maximum absolute error. Darker areas indicate higher error values.
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Combined Timings for Pseudocolor Slices of Single Time Steps (630x200x300 Original Data Set)
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Figure 5-5: Total times for pseudocolor slice plots of a data set with error rendered along
side.

by showing the render and engine times by time step for adaptive resolutions constructed
with resolution offset 4 and error tolerances 1.0, 3.0 and 7.0. We can also see from the error

bars indicating the 95 percent confidence interval for the mean times that engine time can
vary greatly while render times remain relatively constant.

The most striking difference between adaptive resolution and the original resolution is
the wide range of observed times for adaptive resolution and the extremely narrow range for
uniform resolution. This can be attributed to some time steps being more easily reduced in
adaptive resolution than others, as discussed previously. Figure 5-10 shows the combined
times for each time step. Again, earlier time steps in the simulation are simpler and can be
reduced to lower resolution with less error. As the simulation continues, interesting behavior
fills more of the domain, forcing more subdomains to be kept at higher resolutions. Figure
5-11 also shows this trend.

Finally, we also recorded rendering times for each time step using two pseudocolor slices:
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Combined Timings for Volume Plot for Single Time Steps (630x200x300 Original Data Set)

JL

T

-JL-

T

Full
Resolution

ET=LO ET=3.0

RO=3

ET=7.0 ET=LO ET=3.0 ET=7.0

RO=4

ET=LO ET=3.0 ET=7.0

RO=5

Figure 5-6: Total times for volume render plots of individual time steps at adaptive resolu-
tions with different resolution offsets (RO) and error tolerances (ET) with the original data
set for comparison (Maximum Absolute Error).
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Engine Timings for Volume Plot for Single Time Steps (630x200x300 Original Data Set)

a
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RO=3

ET=LO ET=3.0 ET=7.0

RO=4

ET=LO ET=3.0 ET=7.0

RO=5

Figure 5-7: Engine times for volume render plots of individual time steps at adaptive
resolutions (Maximum Absolute Error).

Render Timings for Volume Plot for Single Time Steps (630x200x300 Original Data Set)

T3
§ 0.17'

£
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Resolution

ET=LO ET=3.0 ET=7.0

RO=3

ET=LO ET=3.0 ET=7.0

RO=4

ET=LO ET=3.0 ET=7.0

RO=5

Figure 5-8: Render times for volume render plots of individual time steps at adaptive
resolutions (Maximum Absolute Error).
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Engine and Render times for Adaptive Resolutions with RO=4 and ET=LO, 3.0, and 7.0 (Volume)
—— Combined
—-¦- Engine TimeRender Time

1O 1.6

¿—{i
300 900

Time Step

Figure 5-9: Engine and render times by time step for adaptive resolutions with a resolution
offset of 4 (Maximum Absolute Error).

Combined times for Three Adaptive Resolutions with ET=LO (Maximum-Absolute Error)
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Figure 5-10: Total time for each time step for adaptive resolutions generated with the same
error tolerance (1.0) and varying resolution offsets (Maximum Absolute Error).
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Average Number of Meshes (Subdomains) vs. Time Step
-— R0=3
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Figure 5-11: Average number of meshes (subdomains) for each time step organized by-
resolution offset. Each grouping includes all 5 error tolerances (Maximum Absolute Error).

across the Y-axis (5-12), and diagonally (5-13). In these two cases, engine time represents
not only the I/O involved in reading the data set into memory but the filtering process
for the slice operator. Uniform resolution has an advantage for the Y-axis slice, since the
pertinent data can be retrieved more easily compared to the multi-mesh adaptive resolution.
Figure 5-14 shows the mean engine and render times for a slice plot from the same adaptive
resolutions used in Figure 5-9. Again, engine time is the main contributor to the overall

time, but render time is greater and varies more than before. When the slice is taken

diagonally, the results are similar to the volume rendering timings. Despite the differences,
the same patterns of error tolerance and subdomain size affecting the overall performance
can be observed.

5.3.2 630x400x600 Data Set

For the larger data sets, we see most of the same features in the results as before. Figure
5-15 show the combined times for volume rendered plots of the larger data set. Again, we
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Combined Timings for Pseudocolor Y-axis Slice Plot for Single Time Stpng (630x200x300 Original Data Set)
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Figure 5-12: Total times for slice (Y-Axis) plots of individual time steps at adaptive reso-
lutions (Maximum Absolute Error).

Combined Timings for Pseudocolor Diagonal Slice Plot for Single Time Steps (630x200x300 Original Data Set)
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Figure 5-13: Total times for slice (diagonal) plots of individual time steps at adaptive
resolutions (Maximum Absolute Error).
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Engine, Render and Combined times for Adaptive Resolutions with RO=4 and ET=LO, 3.0, and 7.0 (Slice)
------ Combined
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—¦·¦· Render Time

s

?~*»*«?
1800

Time Step

Figure 5-14: Engine and render times for slice (Y-Axis plots) by time step for adaptive
resolutions with a resolution offset of 4 and error tolerances 1.0, 3.0 and 7.0 (Maximum
Absolute Error).

Combined Timings for Volume Plot for Single Time Steps (630x400x600 Original Data Set) (Maximum-Absolute Error)

??f T F
U=I

ET=LO ET=3.0 ET=7.0 ET=LO ET=3.0 ET=7.0 ET=LO ET=3.0 ET=7.0 ET=LO ET=3.0 ET=7.C
RO=3 RO=4 RO=5 RD=G

Figure 5-15: Total times for volume render plots of individual time steps at adaptive reso-
lutions (Maximum Absolute Error).
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Combined Timings for Pseudocolor Y-axis Slice Plot for Single Time Steps (630x400x600 Original Data Set) (Maximum-Absolute Error)

•a
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Resolution ET=LO ET=3.0 ET=7.0 ET=LO ET=3.0 ET=7.0 ET=LO ET=3.0 ET=7.0 ET=LO ET=3.0 ET=7.0
RO=3 RO=6

Figure 5-16: Total times for slice (Y-Axis) plots of individual time steps at adaptive reso-
lutions (Maximum Absolute Error).

see that times for adaptive resolutions vary greatly compared to the uniform resolution and
adaptive resolutions with lower error tolerances have lower times. The slow down from large
subdomains can be seen more clearly with the addition of resolution offset 6 and the cost

of many, small subdomains is still present with resolution offset 3.

In the slice rendering test case (Figure 5-16), we see a drastic rise in the combined times
from the smaller data set (Figure 5-12) for the original, uniform data set. This is caused by
the paging that occurs during the test, despite the fact that the larger time steps are still
small enough to fit in main memory. Adaptive representations follow the same patterns as
before.
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5.4 Average Absolute Error

Maximum absolute error captures the largest differences between the original and recon-

structed data sets. Because of this, the values of large error regions can be dominated by

a few high error values. Average absolute error can be used to reduce the impact of these

high values in the error set and in the adaptive resolution.

Figures 5-17 and 5-18 show combined timings for slice and volume plots rendered from

adaptive resolutions generated with average absolute error. Compared with the adaptive

resolutions generated with maximum absolute error, we see faster times for lower error

tolerances. In fact, some of these adaptive data sets reach our goal of interactive time ( < 1
Second per time step ) for the whole time series.

Another important property of this error function is that error values tend to decrease as

the size of the error region increases and move values are included in the error calculation.

The effects of this can be seen in resolution offset 5 where the times do not begin to increase

as they had with maximum absolute error. Interestingly, the adaptive resolutions generated

with error tolerance 3.0 using offsets 4 and 5 are actually entirely at the lowest resolution

possible.

5.5 Summary

In these evaluations we have seen both multiresolution and adaptive resolution data sets

achieve faster times than the full resolution data set. For adaptive resolutions, we have

learned that the parameters used to build the representations have a strong effect on their

performance.

Although many individual time steps can be said to have reached interactive time, only

a few the results from our adaptive resolution data sets are entirely within this range.

However, there are many aspects of our evaluation set up that could be improved. First,

the error tolerances we used were stringent. Using more relaxed error tolerances should

improve the performance. Also, all of our engine times were made using the serial version
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Combined Timings for Volume Plot (630x200x300 Original Data Set) (Average-Absolute Error)
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Figure 5-17: Total times for volume plots of individual time steps at adaptive resolutions
generated using average absolute error.

Combined Timings for Pseudocolor Y-axis Slice Plot (630x200x300 Original Data Set) (Average-Absolute Error)
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Figure 5-18: Total times for slice (Y-axis) plots of individual time steps at adaptive resolu-
tions generated using average absolute error.
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of the Visit engine. Adaptive resolutions should benefit greatly from parallel environments
as each subdomain can be processed individually, in parallel. Finally, these evaluations were
run using commodity software on a modest desktop. Improved times would certainly be
achieved with a specialized rendering tool running on a more powerful workstation.
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CHAPTER 6

CONCLUSIONS

6 . 1 Conclusions

The goals of this thesis were to develop an error model for calculating and representing local
error from data reduction, use this model to develop tools for generating multiresolution and
adaptive resolution data sets, and evaluate the performance of these representations. This
paper has described a flexible error model that can be used to generate low resolution data
sets with error information. We have presented a process for building adaptive resolutions
from this data and evaluated their performance. We have seen from the results that adaptive
resolutions generated with the proper parameters can achieve faster overall times compared
with the original uniform resolutions, while still providing a useful rendering of the data.
In addition, error information generated simultaneously with the low resolution can also be
visualized to help the user understand the authenticity of the low resolution data.

6.2 Future Work

The process of constructing adaptive resolutions as described in this paper can be improved
in several ways. We have not explored in great detail the many possible tree simplification
methods and their effects on performance. Another way to improve the use of subdomains is
to create them more intelligently. Currently, the domain is subdivided without any regard
to the contents of the underlying error set. A kd-tree could replace the existing octree
and be used to partition each subdomain according to error values. This may improve
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Figure 6-1: Two domains partitioned into four subdomains. Colored squares represent error
regions with darker colors indicating higher error, (a) Split around a central point, (b) Split
along planes with regard to error values.

performance by avoiding cases where regions of high error are split across several nodes in
the tree (Figure 6-1).

In the future, the ideas presented in the paper could be incorporated into an interactive
system either built as a stand-alone tool or plug-in for an existing visualization environment.
The user would be given controls to choose the error tolerance and other parameters for a
given data set. The representations could be generated offline and stored until needed.

Ultimately, these adaptive resolutions should be generated dynamically for the user. An
adaptive resolution tree can be kept by the visualization tool. When the user changes a
parameter, the required data is fetched from the multiresolution hierarchy and the adap-
tive resolution is rebuilt. Through this interaction users can find the best parameters for
exploring their data set.
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Appendix A

BORDER AND GAP

PRESERVATION

A.l Edge Data Loss

When generating a lower resolution data set, by wavelet or decimation, data at the edges
of the data set can be lost. In most applications this is not a serious problem. However,
there are some situations where preserving the edge data is important. For example, in a
rectilinear grid, losing the edge data may cause obvious size reduction when the data set is
visualized. This data loss can occur in several ways.

When using decimation, it is possible, at any resolution r, to lose up to 2r - 1 rows
of data on the edge, depending on the dimension size. At lower resolutions this number

becomes larger and the loss more significant. Wavelets also suffer from edge data loss.
When a lower resolution is generated using a wavelet, the borders are contracted by T - 1
points in the base resolution. In addition to this, if a dimension in the original data set is
not evenly divisible by 2r, there is not enough data to perform the full wavelet calculation
at the end of the row/column/slice.

Our solution to this problem is to allow the user to select a border preservation option
when generating low resolutions. When enabled, the edges of the data set are preserved in
the lower resolution data sets. How this is done depends on how the lower resolutions are
generated.
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A.2 Decimation Border Preservation

Using decimation, the edges along the axes are always saved. Figure A-Ia shows an example
where the last point in each row is lost without border preservation. The only change that
has to be made is to add an additional data point to the end of each row as shown in

Figure A-Ib. In this example, the last row is already included in the lower resolution, so no
special action is required. In general, the last value along a dimension is already included
if the dimension's size is n2r + 1, where r is the resolution and ? is some integer. At most,
each dimension of the lower data set is increased by one. As a result, the size of the first
resolution generated from the original data set of size ? ? m, is always(n + 1)/2 ? (m + 1)/2
(using integer arithmetic), no matter the values of ? and m.

Additional points retain their original geometry space positions. However, there are two
options for placing the new points in the index space. One option, is to use the base coor-
dinate system and place the points where they were sampled. This requires some previous
knowledge, including the dimensions of the original data set and how border preservation
is implemented. The other option is to place the points uniformly along with the rest of
the low resolution data set. In this case, the additional points are moved to new positions
outside of the original domain, preserving the uniform placement of low resolution points
in the index space.

A.3 Wavelet Border Preservation

Preserving the edges with wavelets is not as simple. Because of the nature of the wavelet
method, all sides of the resulting data set are reduced and require preservation. As shown
in Figure A-2 all corner points must be saved and new data generated along each dimension
in order to preserve the domain's size. This is achieved by applying the appropriate wavelet
transformation to the first and last row and column of data (in the two-dimensions). In the
case of three dimensions, both two and one dimensional wavelets would be used to capture
the border data.
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Figure A-I: First resolution data sets generated with uniform decimation. Red circles
indicate points directly sampled from the original data set; dotted circles show the placement
of unsampled points, (a) First resolution, (b) Points added to preserve the domain border.
(c) Points shifted to preserve the domain size.
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The resulting border data can be placed in the index space using two methods. The
first is to locate the data at the points where it was calculated (see Figure A-2). This
requires the application to know that the data set was generated with border preservation
so the edge data can be placed in this non-uniform way. The alternative is to display the
data uniformly, as if it had been generated without border preservation. To do this, the
base coordinate system must be extended to allow for two additional rows and columns

to be added to both ends of each dimension in the original resolution. Each data point is
"shifted", from its original position to the new wavelet points. Data on the leading edges as
well as data on the trailing edges of dimensions with an even number of points, are shifted
by 3 points in the base resolution. Trailing edges of dimensions with an odd number of
points will only need to be shifted by 1. Corners are shifted twice, once for each edge they
lie on. The geometry space positions are calculated along with each value, and are not
dependent on the index space position for the data point.

From an original resolution of ? ? m, a first resolution data set generated with border
preservation has a size of (rc/2 + 2) ? (m/2 + 2) regardless of the parity of ? and m.

A.4 Gap Preservation for Adaptive Resolutions

In adaptive resolutions, neighboring regions of differing resolution can cause gaps in the
domain when visualized. Just as in border preservation, extra data points can be introduced
to close the spaces in between the subvolumes. How this is done depends on what data
reduction method is used.

A.4.1 Gap Preservation in Decimation

In uniform decimation, points that are sampled from the original data set retain their
original positions. When the interval of a single decimation step is a power of 2, every point
contained in the lowest resolution is contained in all resolutions. This provides one solution
to the gap problem. If subvolumes are selected, so that each starts on the boundary of the
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Figure A-2: First resolution data sets generated through wavelet decomposition. Red cir-
cles indicate points directly sampled from the original data set; yellow circles represent base
resolution position of summary values; orange circles are summary values from one dimen-
sional wavelets; dotted circles show the placement of unsampled points, (a) First resolution,
(b) Points added to preserve the domain borders, (c) Points shifted to preserve the domain
size.
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Figure A-3: (a) A simple adaptive resolution representation built from two resolutions, (b)
Boundaries of each region fall on low resolution points, eliminating the interior gap.

lowest resolution, there are no interior gaps. In Figure A-3a, the 6 x 4 domain is divided
in half, resulting in a gap between the two regions. However, if it is split into two regions
(Figure A-3b), one 3x4, the other 4x4, there would be no gap, since the two resolutions
share points on that edge. The only gaps left are on borders at the edge of the domain,
which can be filled using border preservation.

A.4.2 Gap Preservation in Wavelets

Filling gaps in between different resolutions generated through wavelet decomposition is
not as simple. In a wavelet multiresolution hierarchy, points are not shared between levels
at all. Regions can be selected to minimize the size of the gaps, but cannot close them
completely. To fully close them, additional data points can be added to the edge of one of
the regions.

Figure A-4b shows a gap closed by extending the high resolution region (right). In this
example, four new interpolated points are added, resulting in three new cells. To minimize
the number of additional cells, gaps can be filled by extending the lower resolution at a
boundary, to meet the edge of the higher resolution region (Figure A-4c).

A third option is to allow the data for each region to overlap (Figure A-4d). This is
done by supplying data outside of the region's bounds in response to a data query for the
region. Since this data already exists in the data set, there is no need for any interpolation.
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Figure A-4: (a) A simple adaptive resolution representation built from two resolutions, (b)
Higher resolution is extended through interpolation to close the gap. (c) Low resolution
is extended, (d) An extra column is fetched with the query for the second subdomain (no
interpolated points).

Generally, areas of high resolution should be extended over areas of low resolution to avoid
introducing error outside of the specified tolerance.

A.5 Implementation

Border preservation through point shifting is included as an option in the tool for building
adaptive resolutions. This was chosen for its ease of implementation and because it does
not require new low resolution data sets to be generated.

Gap preservation is implemented as an option for adaptive resolutions built with wavelet
decomposition. The gaps between subdomains are filled by extending the bounds of each
subdomain by 1 in each dimension and allowing them to overlap. Only data from the low
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resolution data sets is used without any need to calculate values for intermediate points.
Gap preservation for data sets generated with uniform decimation is not necessary because
subvolumes are always divided along the points included in the lowest resolution data set.
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Appendix B

USER'S GUIDE

This chapter describes the tools used to build the multiresolution and adaptive resolution
representations described in this thesis.

B.l MREBuilder

The multiresolution with error builder (MREBuilder) generates a multiresolution hierarchy
with localized error information from a single, high resolution data source. The original
data set is provided through a GRANITE File Descriptor Language (FDL) file or as a binary
file if the —binary option is used. This tool works by reading in the minimum number of
slices of the original data set needed to calculate the error for one slice at the lowest error

resolution. For each resolution level, a low resolution version of the subset is generated
and used to reconstruct the original resolution. Once the reconstruction for this subset is
complete, error values are calculated for each error resolution and error function. Values

for additional error functions and resolutions can be calculated easily without repeating the
reconstruction process.

The low resolution data and error are written to the same directory as the original
data set. The resolution levels and error function names are appended to the original file
name to make the file names for the new data sets. For example, for file timestepOl
files timestepOl. dl, timestepOl .d2, and timestepOl. d3 are created for the lower res-
olution data sets and files timestepOl. dl.e2.maxabs, timestepOl .d2.e3.maxabs, and
timestepOl. d3.e4.maxabs are created for the error sets.
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Finally, a Multiresolution Descriptor Language (MRDL) file is written along with the
data and error files. This file describes the structure of the multiresolution hierarchy in-
cluding the resolution levels, references to the data and error file descriptors, and the rela-
tionships between data and error sets (Figure B-I).

B. 1.1 Usage

MREBuilder [OPTIONS] FILE

B. 1.2 Options

Reducing Operators

—uniform

Use uniform decimation to build lower resolutions (default).
—wavelet

Use wavelet decomposition to build lower resolutions.

Resolutions

-n NUMBER-OF-RESOLUTIONS

The number of lower resolutions to generate. The default value is 1.

-e NUMBER-OF-ERROR-RESOLUTIONS

The number of error resolutions to generate. The default value is 1.

-o ERROR-RESOLUTION-OFFSET

The resolution offset between a low resolution data set and its first error set. The
default value is 0.

Error Functions

—maxabs

Calculate the maximum absolute error for each region.
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—avgabs

Calculate the average absolute error for each region.

—stddev

Calculate the standard deviation for each region.

—snr

Calculate the signal-to-noise ratio for each region.

Other

—binary WIDTH HEIGHT DEPTH

Generate an FDL file for the binary input file. This assumes the file contains single
floating-point values and little endian byte order.

—nofdl

Suppresses FDL file output for the low resolutions and error sets.

B.2 ARBlocksWriter

This tool generates the subblocks and submeshes for an adaption resolution from a mul-
tiresolution data set with error and a user-specified error tolerance. The multiresolution
data is read through a Multiresolution Descriptor Language (MRDL) file. This file stores
the structure of the multiresolution data set and references to the FDL files for the data
and error sets.

From this data set, an adaptive resolution tree is generated and pruned based on the
error tolerance. A final pass is made to collapse children of equal resolution into the parent
node (see Chapter 4). The resulting leaves are written out as a directory structure with
the directory ARBlocks/ as the root. This directory contains a subdirectory for each block
(leaf) in the adaptive resolution. Each subdirectory contains a binary data file, and a grid
file that describes the data point's location in base coordinates.
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<?xml version=" 1.0" encoding="UTF-8"?>
< !DOCTYPE mr_descriptor PUBLIC "-//SDB//DTD//EN"

"http : //www . cs . unh . edu/~svohr/DTD/mrdl . dtd">
<mr_descriptor levels="2" offset="3" coords="uniform">

<level id="0">
<source type="data" resolution="0"

desc="timestep01 . fdl"/>
</level>
<level id="l">

<source type="data" resolut ion=" 1"
desc="timestep01 . dl . fdl"/>

<source type="error" resolution="4"
desc=" timestepOl . dl . e4 . maxabs . idl"/>

</level>
<level id="2">

<source type="data" resolution="2"
desc="timestep01 . d2 . fdl"/>

<source type="error" resolution="4"
desc= "timestepOl. d2.e5. maxabs. fdl"/>

</level>
<level id="3">

<source type="data" resolution="3"
desc="timestepQl.d3.fdl"/>

<source type="error" resolution="4"
desc="timestep01.d3.e6. maxabs. fdl"/>

</level>
</mr_descriptor>

Figure B-I: A sample MRDL file with 4 levels at error resolution offset 3.
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This tool also provides options for extending edges to match the original domain and
filling in gaps between subvolumes of differing resolutions (generated through wavelet de-
composition).

B.2.1 Usage

ARBlocksWriter [OPTIONS] IN-FILE

B.2.2 Options

-e VALUE

The error tolerance for the adaptive resolution. If unspecified, a "full" tree will be
built.

-b

Shift the points along the edges to match the original domain.

-g

Fill gaps in the domain by allowing subdomains to overlap (wavelet only).

B.3 ar2silo

This tool takes the directory structure generated by ARBlocksWriter and the grid geometry
file for the original resolution and builds a Silo file for the adaptive resolution. Each block
is added as a quad mesh and variable with a multi-mesh and multi-variable added for all
blocks.

B.3.1 Usage

ar2silo [OPTIONS] GEOMETRY-FILE BLOCKS-DIR

-o FILENAME

Set a name for the output file. If this option is not present, the filename ar-grid. silo
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is used.

-?

Enables verbose mode. Prints each block as it is processed.
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