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ABSTRACT

PRODUCTION OF BIODIESEL FROM MICROALGAE

By

NKONGOLO MULUMBA

University of New Hampshire, August, 2010

Biodiesel production from microalgae is a promising technique, with advantages of high
biomass yield with high lipid content. Challenges include effective techniques to harvest
the grown microalgae, extraction of the algal oil and its transesterification to biodiesel.
A microalgae strain was selected from 8 different species screened for growth rate and

lipid content. A Tubular Photobioreactor was designed and constructed to study
microalgae growth. Productivity of 1 g of dry algal biomass per liter of medium within 12
days was achieved, with lipid content up to 20 %. The observed 10 fold increase in
biomass is higher than those reported for open ponds and helical photobioreactors. In
situ transesterification of dry algae to fatty acids methyl esters (FAMEs) was achieved

using ultrasonication. A Gas Chromatograph was used to analyze the FAMEs. Biodiesel
produced through 20 minutes of in situ transesterification yields up to 3.679 mg of
FAMEs per g of dry algal.

xix



CHAPTER I

INTRODUCTION

1.1 BACKGROUND

Humankind depends on petroleum-based fuel as a source of energy since its discovery

years before Christ (BC) era. It is believed that the first well of petroleum was drilled in
China around 347 BC. Growing demands of this non-renewable source of energy, its

depletion and cost, the full dependency of all humankind on its usage as one of the
principal transportation fuel, motivate researchers to find an alternative fuel from
renewable sources, capable to replace fossil fuels.

Biodiesel looms as potential replacements of petrodiesel (Chisti, 2008). It is a renewable
and alternative fuel produced from a transesterification reaction between alcohol and

fatty acids (FAs) from animal fat or vegetable oil in the presence of a catalyst (Sahoo and
Das, 2009; Li et al., 2007). Chemically, biodiesel molecules consist of long chain of

mono-alkyl esters. Biodiesel can be used directly (100% termed BlOO) in any diesel
engines with no modification or blended with diesel fuel at different volumes ratio such
as 5% biodiesel in mixture (B5), 20% Biodiesel in mixture (B20), 50% biodiesel in

mixture (B50) and so on.
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Biofuel technology is not new to humanity. Numerous attempts have been made in the

past to produce or use biodiesel. In 1900, the French automobile company, Otto, ran a

diesel engine with pure peanut oil. Twelve years later, Rudolf Diesel stated that "the use

of vegetable oils for engine fuels may seem insignificant today, but such oils may

become, in the course of time, as important as petroleum and coal products of the present

time" (Knothe et al., 2005). The first transesterification reaction between vegetable oil

and alcohol is believed to be carried by G. Chavannes, on August 31, 1937 at the

University of Brussels in Belgium (Knothe et al., 2005). After World War II, several

countries including France, Germany, Brazil, Japan and China became interested in the

production of fuel from biomass.

Currently, several biodiesel producers use vegetable oil from food crops such as soybean,
canola, and palm to produce a transportation fuel with chemical and physical properties
similar to petrodiesel. However, the use of oil from food crops has created significant
worldwide opposition due to the increase of food price and growing food shortage. The
Food and Agriculture Organization (FAO) of the United Nations (UN) is persuading

researchers to redirect biodiesel production to the use of non-edible crops. In addition,

food based crops alone cannot produce enough biodiesel to satisfy the world demand.
For instance, The United States alone demand about 60 billion of gallons of diesel per

year; on the other hand, soybean, canola and palm produce only 50, 90 and 650 gallons of
biodiesel per acre per year (Chisti, 2007 and 2008). Microalgae can potentially produce
5,000 - 15,000 gallons of biodiesel per acre per year (Brown et al., 1993; Mulumba,

2009; Ferrentino, 2007). Moreover, the exploitation of food based crops to produce

2



biodiesel requires not only vast arable lands but also it creates environmental concerns

such as ozone depletion due to N2O emitted by fertilizers, acidification of soil due to

sulfur and nitrogen oxides from fertilizers as well as eutrophication and algal blooms due

to pesticides (Mousdale, 2008). Hence researchers have turned their interest to non-food
based crops such as microalgae and Jatropha as raw material for biodiesel production.

This work focuses on the use of microalgae.

1.2 BIODIESEL

Biodiesel is a renewable alternative transportation fuel for diesel engines. It is produced

through transesterification reaction between triglycerides (vegetable oil) or fatty acids
with alcohol (methanol) in presence of catalyst (Li et al., 2007; Knothe et al., 2005;
Chisti, 2007).

Biodiesel is recognized as a potential replacement for petrodiesel. Fossil fuel
(petrodiesel) currently becomes insufficient to satisfy worldwide demand due to the
depletion of its supplies and the significant contribution of greenhouse gases such carbon,
nitrogen and sulfur oxides released during petrodiesel combustion (Brown, 1993; Chisti,
2008). In contrast, biodiesel is considered a carbon neutral fuel, i.e., there is no net
emission of C02 during its use. Other environmental advantages of biodiesel include no
net emission of sulfur oxides (SOx), and nitrogen oxides (NOx) are significantly reduced

in comparison to the emission from petrodiesel. In addition, Biodiesel is an alternative

3



fuel to meet the health effect requirements for the US Clean Air Act (US CAA)

established in 1990 (Brown et al., 1993).

Biodiesel has been growing to be a vital alternative fuel to the United States (US)

economy with a doubling production nationwide each year as shown in Figure 1.1.

Furthermore, new plants or research centers for biodiesel production are built in US at

fast pace (National Biodiesel Board, 2008).

a -ft 500

-S 13 400en OX)

2000 2001 2002 2003 2004 2005 2006 2007 2008
Time

Figure 1.1: Estimate biodiesel production per fiscal year in the United States (US
National Biodiesel Board, 2008)

Chemically, biodiesel is a mixture of Fatty Acids Methyl Ester (FAMEs) produced from
a reaction of triacylglycerols or TAGs (vegetable oil or fatty acids) with methanol,
termed transesterification. This reaction requires a catalyst, which could be an acid or an

alkali. In most application sodium hydroxide, potassium hydroxide or sodium methoxide

is used. These are less expensive and result in much faster reaction rate compared to



acids catalysts and biocatalysts (Manesh and Enayati, 2008). Reaction 1.1 shows a

transesterification reaction for the production of fatty acid alkyl ester (FAAE) (Knothe et

al., 2005; Ferrentino, 2007).
Reaction (1.1)

O
Il

CH2-O-C-R CH2-OH
O

1 1 Catalyst

CH-O-C-R + 3ROH -> 3 R'-O-C-R + ÇH-OH
O
Il

CH2-O-C-R CH2-OH

, ¦ , Fatty Acid ^1 .Triacylglycerols (TAG) Alcohol Glycerol
/\iKyi ester

Where R represents chain of fatty acids in the TAG and R' represents the alkyl group in

the alcohol molecule; for example, for methyl alcohol R' is CH3".

The biggest challenge in biodiesel production is to find enough vegetable oil from non-
food based crops as raw material. Biodiesel produced from food crops would not be

competitive on price and quantity with petrodiesel. The price of soybean in the United

States has significantly increased, from $5.80/bushel in 2005 to $9.80/bushel in 2009 as

shown in Figure 1 .2. This price increase is due to soaring demand for food and also its

use in part as raw material for biodiesel production (National soybean index, 2009),

which would make biodiesel fuel non-competitive to petrodiesel.
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Figure 1.2: Soybean prices overtime tabulated by the National Soybean Index (NSI 2009)

13 FOOD CROPS CHALLENGE

1 .3. 1 FEEDSTOCK FOR BIODIESEL

Vegetable oil from food based feedstock is the classic raw material used in biodiesel
production throughout the world. The major feedstocks for vegetable oil are: canola,
soybean, palm, rapeseed and sunflower. The choice of vegetable oil for biodiesel
depends on the availability as well as the price. European Union (EU), for instance, uses
rapeseed and sunflower oil for biodiesel production; whereas US uses predominantly
soybean oil and waste vegetable oil (WVO, also termed as used vegetable oil, UVO)
(usually from cooking, characterized by the presence of free fatty acids, FFA) to produce
biodiesel (Knothe et al., 2005; Chisti, 2007). The biodiesel yield varies widely based on

6



the crop used. Table 1.1 shows a variety of crops and their relative biodiesel production

in gallon per acre per year. The crops are arranged in ascendant order based on the

biodiesel production. It shows the great advantage of algae.

Table 1.1: Feedstock and biodiesel yield (Brown, 1994; Chisti, 2007; Khan et al., 2009)

Feedstock

Corn
Hemp
Soybean
Canola
Sunflower
Peanut
Olive

Rapeseed
Coconut
Jatropha
Palm
Microalgae

Gallon of biodiesel
per acre per year

15
39
50
90
102
113
120
125
200
207
650

5,000-20,000

The United States alone consumes about 60 billion of gallons of diesel per year. Clearly,

food crops cannot be used to provide the biodiesel needed to replace petrodiesel. All
these food based crops can only be used to produce biodiesel that will be blended with

petrodiesel. In addition, the price increase of soybean in the United States, as stated in
section 1.2, will result in higher price of biodiesel, which will make it not competitive

with petrodiesel. Therefore, the world will continue to face dependency on fossil fuel
and suffer from greenhouse gas effects from petrodiesel believed to contribute to global

warming.



On the other hand, Table 1.1 shows that microalgae can yield 5,000-15,000 gallons of

biodiesel per acre per year. Obviously, microalgae loom as the only potential source of

vegetable oil that can be economically used to produce biodiesel.

1.3.2 MICROALGAE

Microalgae are single cell photoautotrophic (capable of synthesizing own food from

inorganic substances using light as an energy source) or photoheterotrophic (use light

energy but cannot use CO2 as source of carbon) microorganism. Photoautotrophic algal

cells grow like plant through photosynthesis process, during which algal cells capture

CO2 and photons, and convert them into biomass rich in lipid. More than 3000 algal
strains have been discovered and most of them live in aquatic habitat such as sea, rivers

and oceans (Sheehan et al., 1998). Based on their habitat, microalgae are classified into

fresh water and marine algae.

Algal cell may contain lipid up to 80% in mass depending on the strain, the growth
medium composition and the culture conditions such temperature, pH, carbon dioxide
and photonic energy absorption (Meng et al., 2009; Chisti, 2008). Table 1 .2 shows a
variety of microalgae, habitat and lipid content in g lipid per 100 g dry algae.

8



Table 1.2: Microalgae lipid content (Chisti, 2007; Bigogno et al., 2002)

Algal strain Habitat Lipid content in g lipid
per 1 00 g dry algae

Chlorella sp Freshwater 28-32

Amphidimium Carteri Marine >20

Tetraselmis Marine 15-23

Dunaliella primolecta Marine 23

Isochrysis sp Marine 25-33

Thalassiosira Pseudonana Marine >30

Nannochlorosis sp Marine 31-68

Porphyridium cruenturn Marine >40

Schizochytrium sp Marine 50-77

Monallanthus Salina
Phaeodactylum

>20
20-30

Neochloris oleoabundans 35-54

Botryococcus braunii 25-75

Being photosynthetic microorganisms, microalgae require water rich in nutrient, carbon
dioxide and photonic energy for growth. They grow like other microorganism

undergoing four growth phases: lag, exponential (growth), stationary, and death phase or
lysis as shown in Figure 1.3.

Microalgae convert photonic energy, water and CO2 to sugars; then sugars are converted
to macromolecules such as lipids or/and triacylglycerols (TAG) as shown in reactions

(1 .2) and (1 .3) below: two steps reactions.

CO2 + water + 8 photons -> Sugars + O2 Reaction (1 .2)

Sugars -> TAGs Reaction (1.3)

Lipids are believed to be the sustainable feedstock for biodiesel. In this process,

microalgae are also sequestering the carbon from CO2.



Stationary
Phase

Exponential
Phase

Lysis
Phase

Lag
Phase

0 2 4 6 8 10 12 14 16 18 20

Time [dayl

Figure 1.3: Algal growth phases. A culture performed at room temperature with blowing
air into the broth to supply CO2(MuIUmOa, 2009)

One of the biggest challenges in culturing microalgae for biodiesel is to find a suitable
strain that grow fast and capable to produce as much lipid as possible during its culture.
Another major challenge in algae culture is to design a cost effective photobioreactor,
which mitigates contamination risks and enhances high growth. An additional challenge
is the high cost of oil extraction from microalgae.

Even with all these challenges, biodiesel from microalgae looms as the only renewable
biofuel that can substitute petrodiesel completely (Chisti, 2007 and2008; Brown et al.,
1993). An additional advantage of microalgae is the capability to capture CO2 and
reduce greenhouse gas effects.
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1.4 BIODIESEL PRODUCTION FROM MICROALGAE

Numerous studies have been conducted to explore the use of algal oil for biodiesel.

Among them, the study conducted in 1993 by the National Renewable Energy Laboratory

(NREL) of Colorado in conjunction with the United States Department of Energy

(USDOE) to evaluate possibilities of producing biodiesel using algal oil (Brown et al.,

1993). This study demonstrated the potentiality of algal cells to yield enough oil usable
for biodiesel.

Certain strains of microalgae contain up to 80 % of vegetable oils as shown in Table 1.1.

Algal cell can be cultured phototrophically in two systems: open ponds and enclosed

photobioreactors (PBR). In this process, algae accumulate lipid (oil). At the appropriate
time, algae are harvested and dried, and then oil is extracted. Figure 1.4 shows the
different steps of biodiesel production from microalgae.

FuIs and Hugo (1984) concluded that the viscosity of vegetable oils and microalgal oils
are usually higher (3 to 5 times higher) than that of diesel oils. Algal oils (lipid) can
damage existing diesel engines, clog filters due to their high viscosity if they are used
without modification. The transesterification of algal oils will reduce the original

viscosity and increase the fluidity (Chisti, 2007). Alternatively, algal biomass can be
converted directly into biodiesel using in situ transesterification without prior oil
extraction. Both the in situ and the two step process are shown in Figure 1 .4.

11



Two step
transesterification

Water+N utrients

Harvested algae

inoculum

Centrifuge

% Algal growth
Data analysis

Oil extraction

In situ trans-
esterification

Dry algae

^ Waste Biomass

MeOH + catalyst

Dryer

Filtration

Reactor Recycled Methanol

Waste Biomass

KE- glycerol KB-
Biodiesel

----------------- ?] GC analysis

I
?

Fatty Acid Methy-Esters
(FAMEs) Analysis

Figure 1.4: Different stages ofbiodiesel production from microalgae

It is important to note that alcohols are key components in the transesterification.

Commonly used alcohols include methanol, ethanol, propanol, butanol and amyl alcohol.

However, methanol is the most used alcohol for the transesterification of algal biomass in

the United States (US). The US uses methanol because it is the least expensive alcohol,

whereas Brazil uses ethanol for biodiesel, for it is less expensive than methanol (Knothe

et al., 2005).
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Another key component in the transesterification process is the catalyst, which could be

an alkali (alkaline), acid or enzyme. Table 1.3 shows a comparison of these three

catalysts.

Table 1.3: Advantages and challenges of catalysts used in transesterification (Knothe
et al., 2005; Mousdale, 2008)

Catalysts Advantage/Use Challenges

Acid

Useful for the conversion of
high free fatty acids (FFAs)
feedstocks (like WVO) to
esters (biodiesel)

Very low reaction rate converting
triglycerides to FAMEs.
(Knothe, 2005; Mousdale, 2008)

Alkali or
Alkaline
(most
frequently
used)

Enzymes

Higher reaction rates (4000
times faster) than acid
catalyst

FFAs may react with alkali to from soap
and water. More alkali is needed.

FFA + KOH -» K-Soap + water

When FFA is greater than 5 %.
The resulting soap will emulsify FAMEs
and glycerol.

Good tolerance to FFAs in
the feedstocks

Expensive, may not be able to provide
high quality biodiesel to meet ASTM
specification. May not be as fast as
alkaline catalysts

The transesterification of algal oil is generally carried out by alkaline (alkali) catalyst

such as KOH, NaOH or sodium methoxide (NaOMe). These catalysts present a high

level of miscibility of vegetable oil with methanol or ethanol offering an advantage of a

homogeneous solution, which result in more rapid process as stated in Table 1.3.

However, a saponification reaction may occur during an alkali catalyzed reaction. The

presence of soap in the biodiesel necessitates a washing process for its complete removal.
If water is used to wash the soap, the biodiesel needs to be dried.

13



Xu et al. (2006) provided a comparison of biodiesel from algae petroleum diesel and the
ASTM standards shown in Table 1.4.

Table 1.4: Algal biodiesel/petrodiesel properties versus biodiesel
(Xu et al., 2006)

ASTM Standards

Properties

Density (kg/L)
Viscosity (mm7s, CST at 40
0C

Flash point (0C)

Solidify point (0C)

Cold filter plugging point (0C)

Acid value (mg KOH/g)

Heating value (MJ/Kg)

Heating value (cal/g)

Heating value (Btu/gal)

H/C ratio

Algal
Biodiesel

0.864

5.2

115

-12

-11

0.374

41

9795.1

127,127

Diesel fuel

0.838

1.9-4.1

75

-50to 10

-3 (max -6.7)

<0.5

40-45

9556.2- 10751

124,028-139,534

.81

ASTM Biodiesel
standard

0.84-0.90

3.5-5.0

> 100

Summer max 0
Winter max -15

<0.5

.5 PHOTOBIOREACTORS

1.5.1 OPEN-PONDS

Open-pond is referred to any container widely open or lakes used to grow algal cells.
Raceway ponds are the most used in an algal culture. They are made with recirculation
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channels equipped with paddlewheel for medium mixing and circulation to prevent

sedimentation. These channels are built in concrete or compacted earth or white plastic

(Chisti, 2007). The Photosynthesis process in open-pond occurs in a cycle; algal cells

capture photonic energy from sun during the day and cells undergo photosynthesis, which

discontinues during night time. Figure 1.5 shows an aerial view of a raceway pond

Water and nutrients /
inoculum

Waste C02 (up to 13%)

Algal drying
and oil

recovery

I
Harvest Feed Paddlewheel

C UJj

Biodiesel
Production C

Power plant

_______________I
Wastewater

Balde Flov.' Baffle

\ 1,

Source of
Photonic energy

Figure 1.5: Raceway pond photosynthesis system. Thefigure also shows the
possibility ofusing wastewater and waste CO2 (inflow gases) from a nearby power

plant (Chisti, 2007)

Raceway ponds are possibly more suitable for culturing microalgae for biodiesel

production due to the lower operating costs relative to enclosed PBR. The pond has to be

supplied with water, nutrient algae inoculum and CO2. If the pond is located outdoor

near a power plant, it is possible to use CO2 from waste flue gas and the wastewater from
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the plant, which may contain nutrients such as iron and nitrogen, as shown in Figure 1.5

(green line).

Culturing algae in Open Pond is more challenging. The following are technical issues that

arise when using open-ponds: water evaporation, pH and temperature control, cells

illumination and contamination risks by other organisms that overtake more often algal

growth (Ugwu et al., 2007). Not only there is a need of understanding those issues, but

also preventing them by using more efficient closed system such as tubular PBR that will

enhance temperature and pH control as well as support healthy algal culture.

It is certain that the population on the earth increases at exponential rate with projection

to reach 10 billion by 2040. This population requires approximately 5 billion acre of

arable land allocated to grow their food and space to accommodate their living

(Mousdale, 2008). Obviously, the use of open-ponds for fuel production will jeopardize
human resource for basic needs, which is food and living space. Moreover, algal cells

growth in open-ponds is often inhibited by photonic energy starvation. Richmond (2000)
showed that 85% of algal cells in a raceway pond are in the dark at any instance. As

result, photosynthesis process is very slow with a low growth rate for algal cells culture,

which would not make biodiesel from microalgae a replacement for petrodiesel. Chisti

(2007) stated that algae species cultured in Raceway Pond can produce oil at a rate of

0.12 Kg per m3of pond per day. Therefore, there is an important need of different types
of reactor for algae growth such as a closed PBR.
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1.5.2 CLOSED PHOTOB IOREACTOR

Algae best grow and produces oil in a narrow temperature range. Thus night sky

radiation, temperature variation (low temperature or high temperature) and excessive

solar radiation will interfere with algae growth and lipid production. Therefore, algal cell

can be cultivated in a closed photobioreactor (PBR). Virtually, any transparent container

can be called PBR. Contrary to open-ponds (such as raceway) or tank, a PBR is a closed

system that incorporates photonic energy to culture microorganism (algae). It is designed
to mitigate culture vulnerability to contamination mostly caused by bacteria attacks,

polluted air, rain and toxic debris. The productivity of closed PBR tends to be 5 times
higher than open pond. Hence they have smaller "foot print" and allow the use of single
microalgae species.

Photobioreactors may be classified based on their design/shape and on their operating

modes. Designs based on the shape are: serpentine tubular airlift, flat plate,

horizontal/circular/spiral/vertical tubular and cylindrical (Ugwu et al., 2007). Tubular
PBRs usually consist of several straight transparent tubes, of 0.1 m diameter or less. This
is important to ensure good light penetration. The microalgae broth is circulated through
a reservoir which acts as a degassing column. An example of a tubular PBR is shown in

Figure 1.6.

A second subdivision of photobioreactors is their operating mode: batch, semi-batch and

continuous. Each photobioreactor presents advantages and drawbacks. These are

detailed in Chapter 2, Section 2.2.
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Figure 1.6: Tubular PBR (Chisti, 2007)

1.5.3 HYBRID SYSTEM

Open-ponds and closed PBRs can all operate as a combined (or hybrid) system to

maximize algal biomass productivity. A common advantage in all PBRs is a high growth

rate of algal cells, achieved by controlling culture temperature, mixing mechanism,

carbon dioxide input as well as light intensity.

The Open-pond in Figure 1 .7 has a temperature regulator that keeps pond temperatures

well above the optimum minimum growing temperature for algae of 64°F. The hybrid

system in Figure 1.7 can also use additional external temperature controls, if necessary, to

cool the pond in the hot summer and heat the pond in winter conditions during extended

sunless days to maintain maximum growth conditions (Green Car Congress, 2007).
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Figure 1.7: 40000 L-Hybrid algae production system (HAPS) with incorporated
temperature regulator (Green car demonstration 2007)

In a hybrid system that has combined open-pond/closed PBR, cultures are first grown in

the closed system (closed PBR), where algae grow fast. Then algal culture is transferred

in the open-pond when it reaches stationary phase. The yield in algal biomass will then

increase in the open-pond. It is a significant advantage for hybrid system.

On the other hand, a culture transferred in an open-pond faces all risks of contamination,

which could lead to culture collapse. A combined open-pond/closed PBR elongate

growth period compared to the life of algae in single system PBRs. The elongation of

culture period is believed to increase the lipid yield of long chains of carbon such as C 18s

(Miyamoto, 1997).

1 .5.4 PBR ADVANTAGES

An earlier study done by NREL in collaboration with the United States Department of

Energy (USDOE) showed that microalgae can yield abouti 0, 000 gallons of biodiesel per

>*»
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acre per year (Brown et al 1993). This estimate was based on algal cultured in open-

ponds; consequently, the use of PBRs could even yield higher volume of biodiesel. The

US alone consumes about 60 billion gallons of diesel per year. The production of an

equivalent amount of biodiesel will require a significant amount of algal biomass rich in

oil, which can only be achieved with a well-designed PBR for any algal culture. The

detailed advantages of PBRs are further discussed in Chapter 2, Section 2.2.

1.6 NUTRIENTS

Each algal strain grows in a specific medium based on its ability to tolerate salinity,

acidity or alkalinity. Algal media vary widely from fresh water with low salinity to

medium highly concentrated in salt ions (Terry et al., 1986). For instance, the majority of
Chlorella strains grow in fresh medium whereas Diatom strains (such as Thalassiosira)

and some Chlorella termed Salina grow in medium with high salt concentration.

The three key nutrients that influence algae growth and lipid production are nitrogen,

phosphorus and carbon. The metabolism of microalgae is strongly affected by limitation
of these nutrients. Detailed of the nutrients used in this project are further discussed in

Chapter 3, Section 3.2.
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1.7 MOTIVATION

1.7.1 OPEN POND VERSUS PHOTOBIOREACTOR

In the United States (US), biodiesel is mostly produced from soybean oil. If the entire

production of soybean is allotted to the production of biodiesel, it would cover only 6%
of the US demand in diesel estimated at 60 billion gallons per year (Mousdale, 2008).

Clearly, there is an imperative need for profound research on alternative and renewable
source of raw material for biodiesel production such as microalgae cultivated in a PBR.

Due to their low costs, open ponds are widely used to phototrophically culture microalgae

for biodiesel. Open-ponds are normally designed to be 30cm deep. Light penetrates

roughly 3.5cm from the top. This means that 80% - 90% of the volume (dark zone) is not
used for photosynthesis. Hence, they offer limited surface exposed to sunlight. In
addition, they have poor mixing mechanism resulting in poor circulation of algal cells
from dark zones to area exposed to sunlight. As a result, Open Ponds have a low daily

productivity; roughly 0.12 kg of algae per m3 per day (Chisti, 2007). The design of
tubular PBR for microalgae culture is motivated by the incapacity of raceway ponds to

grow algae rich in lipid at high growth rate in a short period of time. A grown algal
biomass is to be used as a source of algae oil which is converted into enough biodiesel

capable to replace petrodiesel.
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The co-current flow of air/carbon dioxide in a tubular PBR facilitates culture mixing with

long residence time during which algae cells capture CO2 and multiply through

photosynthesis. Different forms of tubular PBRs such as horizontal, inclined, serpentine
and conical have been studied with satisfactory results (Ugwu et al., 2007). However,

none of these studies have addressed all characteristics of algal cultures. It is important

to conduct a study on a circular tubular PBR in order to assess algal productivity and the

quality of the resulting algal oil/biodiesel.

1 .7.2 TWO-STEP BIODIESEL PRODUCTION VERSUS IN SITUPROCESS

Algal culture is harvested after a broth reaches the stationary phase. This is characterized
by a cessation of cells growth due to numerous factors such as insufficient photonic
energy, excess dissolved oxygen (DO), insufficient nutrients and so on (Ugwu et al.,
2007; Chisti, 2007; Ferrentino, 2007). After harvesting, algal biomass is dewatered by
centrifugation then dried. Algae lipid (oil) is then extracted from dry algal biomass as
shown in Figure 1.4. The algal lipid can be converted into biodiesel through
transesterification as shown in Reaction 1.1. This two-step biodiesel production

increases production cost, which will make the biodiesel price noncompetitive with
petrodiesel.

The extraction of oil from any crops, algae included, requires significant amount of a

relatively volatile solvent such as hexane. Hexane is widely used in the solvent
extraction of vegetable oils. However, it has several disadvantages: It is a petroleum
product that has become very expensive and may be of limited availability in the future;
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it is extremely flammable and forms explosive mixtures with air; hexane vapors are toxic,

recovery of hexane from oil and meal is energy intensive; and recovery of hexane during

the conventional extraction process is incomplete, so some of the solvent must be

continuously replaced. Clearly combining the oil extraction and transesterification steps

into an integrated or in situ step will improve the biodiesel production economics.

1.7.3 TECHNICALCHALLENGES

The following technical issues need to be addressed: the selection of the proper algae

strain to be grown and harvested, the optimum harvesting time, the production of the dry

biomass from the grown algae, the extraction of the algae lipid (oil) from algae and the

transesterification of algal oil to biodiesel.

It is clear that despite the improvement in the algal biodiesel process there is a lack of

basic information to make the algal biodiesel process economical. Thus there is a need to

develop laboratory scale and bench scale setups to select algae and produce biodiesel

1.7.4 PRODUCTIONCOST

The cost of producing algae biomass and algae oil are crucial to the commercialization of
algal biodiesel. Recent cost estimation of algae biodiesel production assumed:
CO2 is available in abundance,

Dry algae contain 30% oil,

Oil recovery process is 50% of the final oil cost,
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Preliminary estimates are given in Table 1.5.

Table 1.5: Algal Biodiesel cost estimate for annual dry algae production of 10,000 tons
per year (Chisti, 2007)

Dry algae production cost
$/kg
Algae oil cost $/liter

Recovered oil use $/liter

Raceway Ponds

0.60

1.80

3.60

Photobioreactors

0.47

1.40

2.80

In the US the price of diesel is about $3/gallon or about $0.80/liter. The US price

includes 20% (16 cents, tax), 52% (42 cents, crude oil price), 19% (refining expenses)

and 9% (marketing and distribution) (Chisti, 2007). Excluding taxes and distribution, the

petrodiesel price is $0.56/liter. Thus a reasonable target price of algae oil is less than
$0.50/liter; for example, about $0.48/liter. The main challenge in algal biodiesel

production is to reduce the cost of production of algal oil from $2.80 to $0.48 per liter.
This investigation is looking into the use of a new photobioreactor (PBR) for algae

growth and using a one-step (in situ) process for algae oil extraction and
transesterification to biodiesel. Figure 1.8 displays the distribution of diesel production
cost.
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Figure 1.8: Petroleum diesel price Breakdown

1.8 OBJECTIVES

The goals of the present research are to design a PBR able to grow and maintain a healthy

algal culture, then produce biodiesel from algal biomass through an integrated process

called in situ transesterification. To accomplish these goals, the following objectives

have been identified:

1 . Select an algal strain based on growth rate and lipid content.

2. Select of appropriate instruments to monitor algae growth.

3. Develop a technique for harvesting algae, obtaining dry algae biomass, oil

extraction and biodiesel production.

4. Design and construct a laboratory scale PBR for algal growth.

5. Assess the functionality of the PBR by culturing the selected algal strain

followed by harvesting, drying, oil extraction and transesterification to

biodiesel.

6. Develop a kinetic model of algae growth in batch reactor.
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7. Produce biodiesel through in situ transesterification.

8. Perform lipid analysis of the resulting biodiesel.

1.9 APPROACH

1 .9.1 OBJECTIVES 1 and 2: Selection of algal strain and appropriate instrument to

monitor algae growth.

The first phase of this research is to select a suitable algal strain. Based on literature

review, eight strains are selected and screened for high lipid content and high growth rate.
These strains are cultured in 2 L-glass flask (batch PBR) and monitored over time by

measuring lipid content and growth rate. A cell counting microscope and
spectrophotometer are used to measure the concentration of algal broth overtime. Data
obtained are used to monitor the growth rate.

The neutral lipid content for each algal culture was initially screened by Nile Red
fluorescence in a spectrofluorometer (Cooksey et al., 1987). The Nile Red fluorescence
technique only shows variations of lipid content within a culture, but it does not quantify
the amount of lipid produced per broth. To quantify algal lipid per broth, the lipid

content of algal cultures in PBR is measured by lipid extraction using Soxhlet extractor.
Measurement details of this process as well as lipid content and growth rate measurement

are further described in Chapter 3, Section 3.2 and Chapter 4, Section 4.2.
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1 .9.2 OBJECTIVE 3: Harvesting, oil extraction and biodiesel production

Once an algal broth reaches a stationary phase, it is then harvested by adding aluminum

sulfate (A12(S04)3) as flocculent, which precipitates algal cells. These cells are then

separated from liquid by centrifugation, then vacuum dried by lyophilization. In this
phase, an alternative harvesting process is explored to avoid the use of flocculent by
direct centrifugation. Algal oil is extracted from lyophilized algae (dry algae) using a

mix of polar and non-polar solvents: chloroform and methanol respectively. These two
solvents have been replaced by normal hexane, which allows algal oil extraction within 5

to 6 hours using a Soxhlet extractor with no risk of transesterification at this stage. After
solvent evaporation, the remaining algae oil is further converted into biodiesel through
the transesterification reaction. Details of these four processes (harvesting, drying, oil

extraction and biodiesel production) are given in Chapters 3, Section 3.2 and Chapter 4,
Section 4.5.

1 .9.3 OBJECTIVE 4: Design and construct a PBR

The focus of the second phase of this research is the design and construction of a PBR.

This closed system consists of a 5 gal tank (main tank) connected to the PBR. The PBR
consists of 150 ft Polyvinyl Chloride (PVC) tubes (ID = 3A in) set in spiral (circular),
which gives the nomenclature of tubular PBR. An inoculated medium is introduced to
the reactor through the main tank, and then pumped through the tube along with
air/carbon dioxide in a co-current flow during which algal cells capture photonic energy
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(from a series of fluorescence lamps). The algae cells undergo photosynthesis and

convert captured carbon dioxide and photons into carbohydrates, mainly lipid.

1 .9.4 OBJECTIVE 5: Assess the functionality of the PBR by culturing the selected
algae strain

In the third phase of this research, the selected strain is cultured in the PBR to evaluate its
functionality in growing and maintaining a healthy culture. Algal concentration, pH and
nutrient concentration of all cultures occurring in the PBR are measured over time using a

spectrophotometer or microscope, strip pH paper, and colorimetrie paper respectively.
The details of measurement techniques are explained in Chapter 3, Section 3.2 and results

are displayed in Chapter 4, Section 4.4.

1.9.5 OBJECTIVE 6: Kinetic study of batch PBR

The variation of culture concentration is monitored overtime using microscope or/and

spectrophotometer. Data obtained are used to develop a kinetic model based on existing
models such as the Monod equation. Details of the model are discussed in Chapter 2,

Section 2.4 and Chapter 4, Section 4.5.

1 .9.6 OBJECTIVE 7: In situ transesterification

The fourth phase of this research consists of production of biodiesel through the
transesterification of algal oil while it is being extracted from algal biomass. This
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combined process is known as in situ transesterification (Ferrentino, 2007; Mulumba,

2009; Haas and Scott, 2007). The in situ transesterification is done in a batch reactor

where a sonicator breaks the walls of algal cells to release algal oil. This oil reacts with

methanol in the presence of a catalyst such as potassium hydroxide (KOH) or sodium

hydroxide (NaOH) to produce biodiesel (Schafer, 1998). The efficiency of the reaction
as well as the amount of biodiesel produced are measured using a gas chromatographic

(GC). This process is also compared to the traditional two-step process. Further details
of this procedure and measurement technique are discussed in Chapter 3, Section 3.2 and
Chapter 4, Section 4.6

1 .9.7 OBJECTIVE 8: Lipid analysis of the resulting biodiesel

A sample of transesterified algal oil is analyzed using a Gas Chromatograph (GC). A
calibration curve is generated to establish calculations basis for all FAMEs (biodiesel)

compounds present in algae cultured in this project. The procedure for lipid testing using
GC is further discussed in Chapters 3 and 4.

The four phase approach is summarized in Table 1 .6.
Table 1.6: Project approach summary

Phase Objectives

1,2,3 & 4

5&6

7&8

Descriptions
Algal strain selection and growth monitoring.
Algae harvesting, oil extraction and biodiesel
production
PBR design and construction
Algae culturing in PBR.
Kinetics model development
In situ transesterification
Lipid analysis by GC
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CHAPTER II

LITERATURE REVIEW

2.1 MICROALGAE

2.1.1 INTRODUCTION

Microalgae are a single cell photoautotrophic or photoheterotrophic microorganisms that
capture carbon dioxide and photonic energy to convert them into carbohydrates (mainly
lipid) (Richmond, 2000). Photoautotrophic algal cells are like plants due to their ability
to grow through photosynthesis process similar to regular plant. However, they have a
simple structure compared to regular plant. In this investigation, our focus is on
photoautotrophic algal cells.

Algal cells are aquatic organism. They grow well in water rich in nutrient in the presence
of C02and photons. An additional advantage of algal cells is the high ratio body surface
to volume. This latter advantage gives them the ability to consume enough nutrients

during photosynthesis process and produce oil approximately 30 times more than
terrestrial plants such as corn, soybean and canola (Khan et al., 2009). One the other

hand, the production cost of algal oil (lipid) is extremely high compared to the common

crop oils such as corn, soybean or canola oil. Microalgae play essential roles in aquatic
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animals and plant. Marine microalgae are the major source of food and oxygen for

aquatic organisms including human on the earth (Rao, 2006). Recently, microalgae have

been targeted as the major source of oil that can be converted into transportation fuel able

to compete with petrodiesel in quantity and quality.

2.1.2 CLASSIFICATION

Microalgae can be classified based on their pigmentation, growth conditions, cells wall

structure and flagellation. There are six phyla of algae: cyanobacteria, green algae, red

algae, diatomaceae, Eustigmatophytes and Prymnesiophyceae. A brief description of
each phylum of algae is given in Table 2.1.

Table 2.1 : Classification and description of microalgae phyla (Rodolfi et al., 2009)

Algal Phylum
Green algae or

Blue-green algae
Red algae or

Rhodophyceae

Cyanobacteria

Eustigmatophytes

Prymnesiophytes
or

Prymnesiophyceae

Diatomaceae

Description

Algal cells have green chloroplast that contains chlorophyll a and
b. These cells have mitochondria. Some species have flagella.
Cells have chloroplast with chlorophyll a and d, and phycobillins.
They have double cell wall, but do not have centrioles and flagella.
Class of prokaryotic cells that contain chloroplast with no
chlorophyll. These are bacteria; but they are assimilated to algae
due their growth through photosynthesis process similar to
microalgae. Some strains can grow in soil, marine or fresh water.
Class of eukaryotic algae which contain yellow-green chloroplast.
They include strains growing in marine, freshwater or solid
medium such as soil. Algae in this class have chloroplast
containing chlorophyll a.
Class of algae in chlorophyll a-c phyletic line. Some strains of this
group have one or two flagella. For example, Pavlova strain has
smooth flagella of equal length.
Class of Bacillariophyceae. Diatomaceae cells have chloroplast
carrying chlorophyll a and c. They have hard wall due to the
presence of silica. Most of these cells can be found in fresh or
salted sea. Majority of diatom species live in cold water.
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Khan et al. (2009) and Rodolfi et al (2009) studied a variety of microalgae. Table 2.2 list

the biomass productivity, the lipid content and lipid productivity for each algal strain.

Table 2.2: Lipid content and productivity of different phyla of microalgae: Algae
cultured in 250mlflask at 25°C using air as source ofCÖ2 and day lightfluorescent
lampfor in two weeks culture period (Khan et al., 2009; Rodolfi et al., 2009)

Algal
phylum

Strains
Biomass

productivity
(g/L/day)

Lipid
content

%
biomass

Lipid
produc-
tivity

(mg/L/day)
Chaetoceros muelleri F/MM 0.07 33.6
Chaetoceros calcitrans 0.04 39.8
P. Tricomutum 0.24 18.4

Diatoms Skeletonoma costatum CS
181

0.08 21.0

Skeletonoma sp. 0.09 31.8
Thalassiosira Pseudonana 0.08 20.6

Chlorocuccum sp. 0.28 19.3

Chlorella sp. F& M-M48 0.23 18.7

Chlorella sorokiniana 0.23 19.3

Chlorella vulgaris CCAP
lib

0.17 19.2

Green
Algae

Chlorella vulgaris F&M-
M49

0.20 18.4

Scenedemus quadricauda 0.19 18.4
Scenedemus F&M 0.21 19.6

Scenedemus sp 0.26 21.1
Tetraselmis suecica F&M-
M33

0.32 8.5

Tetraselmis sp. F&M 0.30 14.7
T. suecica F&M-M35 0.28 12.9

21.8
17.6
44.8

17.4

27.3
17.4
53.7

42.1

44.7

32.6

36.9

35.1
40.8
53.9

27.0

43.4
36.4

Pavlova Salina CS 49 0.16 30.9

Prymnes
iophytes

Isochrysis sp. M 177 0.17 22.4

Isochrysis sp. M37 0.14 27.4
Pavlova lutheri CS 1 82 0.14 35.5

Red
algae Porphyridium cruentum 0.37 9.5

Nannochlorosis sp. 0.19 28.4

Eustig-
mato-

phytes

Monodus subterraneus
UTEX

Nannochlorosis sp. CS 246
Ellipsoidion sp

0.19 16.1

0.17

0.17

29.2

27.4

49.4

37.7

37.8
50.2

34.8

53

30.4

49.7

47.3
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2.1.3 CHLORELLA MICROALGAE

Chlorella is a microorganism of interest in this work due its growth rate and lipid content.

Chlorella can be classified as a single cell and green algae based on the presence of green

chloroplast as described in Table 2.1. Chlorella cells make wide range of lipid during
their growth cycle. Khan et al. (2009) and Rodolfi et al. (2009) showed that some

Chlorella strains are able to yield about 44 mg of lipid per day per liter of broth as

displayed in Table 2.2.

2.1.4 ALGAEGROWTH

Algal cells multiply by cell division (mitosis). During the mitosis process, algal cells are
divided into two identical daughter cells. Certain strains of algae such as diatoms

Chaetoceros undergo gametes fusion through syngamy followed by mitosis (Rao, 2006).
It is believed that the syngamy process enhance algal cell enlargement in volume.

Algal cells capture carbon from CO2 in an intermediate step and transform it into
complex carbohydrate molecules such as lipids, which are the raw material in biodiesel
production.

Algal cells are either photoautotrophic or heterotrophic. Photoautotrophic cells capture
carbon dioxide and photonic energy to convert into sugars (glucose), then lipid, as shown
in Reactions 2.1 and 2.2.

6 CO2 + 6 H2O +8 photons -> C6H 1 206 + 6 O2 Reaction (2.1)
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C6H,206-> TGA (or lipid) Reaction (2.2)

Heterotrophic cells, on the other hand, use other organic compounds as source of carbon

and do not undergo photosynthesis.

In photoautotrophic algae, the photosynthetic reaction takes place within the chloroplast.

CO2, photons and water are key elements in algae growth process (photosynthetic

reaction). It is important to note that algal cells can tolerate CO2 up to certain

concentration. The level of tolerance depends mostly on the algal strains. Kurano and

Miyachi (2004) studied the impact of CO2 fixation in algal culture and showed that algal
culture of certain Chlorella strains were inhibited by CO2 if its concentration exceeded

5%. However, certain Chlorella strains can reach high biomass productivity with CO2

exceeding 10%. Khan et al. (2009) showed that Chlorella Kesslerican reach high

biomass productivity of 87 mg per liter per day with supplied CO2 exceeding 10%.

2.1.5 ALGAL LIPID METABOLISM

The term lipid is often used to mean fats. However, fat is a subgroup of lipids called

triglycerides. Conglomerations of different fatty acids in algae form algal lipids.

Fatty acids (FAs) are long hydrocarbon chain terminated with carboxylic acid group.

Fatty acids are classified into two categories: saturated and unsaturated. Saturated FAs

do not contain multiple bonded carbons whereas unsaturated FAs contain at least one
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double bonded carbon. Table 2.3 gives a list of some saturated and unsaturated FAs

found in algal cells.

Table 2.3: Saturated and unsaturated FAs found in Algal cells (Matsumoto et al.
2009; Singh, 2010)

Category
Saturated
Saturated
Saturated
unsaturated
Saturated
unsaturated

unsaturated

unsaturated

unsaturated

Saturated
unsaturated
unsaturated

unsaturated

unsaturated

Saturated

unsaturated

Saturated

Saturated

FA Name

Capric(10:0)
Laurie (12:0)
Myristic(14:0)
Myristoleic (14:1)
Palmitic (16:0)
Palmitoleic (16:1)

Sapienic (16:1)
Hexadecadienoic (16:2)
Hexadecatrienoic (16:3)

Stearic ( 18:0)
Oleic (18:1)
Linoleic (18:2)

a-Linolenic (18:3)
Octadecatetraenoic
(18:4)
Arachidic (20:0)

Arachidonic (20:4)

Behenic (22:0)

unsaturated

unsaturated

unsaturated

Saturated

Eicosapentaenoic (20:5)
Erucic (22:1)
Docosapentaenoioc
(22:5)
Docosahexaenoic (22:6)

Lignoceric (24:0)

Formula

CH3-(CH2)S-COOH
CH3-(CH2)Io-COOH
CH3-(CH2)I2-COOH
CH3(CH2)3CH=CH (CH2)7COOH
CH3-(CH2)I4-COOH
CH3(CHz)5CH=CH (CH2)7COOH (= bond at C7)
CH3(CH2)8CH=CH(CH2)4COOH (= bond at
ClO)
CH3(CH2)iqCH=CHCH=CHCOOH
CH3(CH2)4CH=CHCH2CH=CHCH2CH=CH-
(CH2)2COOH
CH3-(CH2)I6-COOH
CH3(CHz)7CH=CH (CH2)7COOH
CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH
CH3CH2CH=CHCH2CH=CHCH2CH=CH(CH2)7
-COOH
CH3CH2CH=CHCH2CH=CHCH2CH=Ch
CH2CH= CH(CH2)4-COOH
CH3-(CH2)|g-COOH
CH3(CH2)4CH=CHCH2CH=CHCH2CH=CHCH
2-CH=CH-(CH2)3COOH
CH3-(CH2)20-COOH
CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2-
CH=CHCH2CH= CH (CH2 )3COOH
CH3(CH2)7CH=CH(CH2)i,COOH
CH3CH2CH=CHCH2CH=CHCH2Ch=CHCH2-
CH=CHCH2-CH=CH-(CH2)3COOH
CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2-
CH=CH CH2CH=CH CH2CH=CH (CH2)2COOH
CH3-(CH2)22-COOH

The name of each FA is followed by the total number of carbon, and total number of

double bonds; for instance, (16:1) indicates FA (palmitoleic or sapienic) of 16 carbons

with one double bond.
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Algal cells of each strain do not contain every single fatty acid displayed in Table 2.3.

Matsumoto et al. (2009) stated that some Chlorella strains contain only C 16s and Cl 8s.

For example, the FAs in Chlorella sp. strain are: C16:0, C16:l, C18:0, C18:l, C18:2 and
C18:3.

Lipids are either polar or nonpolar. The polar lipids have a hydrophilic end, which make
them soluble in water. But the nonpolar lipids have a hydrophobic end making them

insoluble in water. The latter are compounds of interest in biodiesel production because

they consist mainly of triglycerides. It is important to understand the metabolism of fatty
acids in algal cells during their growth cycle. A better understanding of FAs metabolism
facilitates to determine the best harvesting time (BHT) which corresponds to the

cessation of growth culture. Therefore, unnecessary life time for algae cells in a growth
reactor can be eliminated by harvesting algal broth once it reaches the BHT.

Rao (2006) observed a major change in fatty acids during growth phase. It is believed
that the first pathway of FAs formation starts with carbon block construction resulting in
short chain of saturated FAs such as C6:0, C8:0 and C 10:0. These short chains change

overtime and become complex and saturated chain of FAs such as C 16:0, C 18:1, C 18:2
and Cl 8:3 (Ferrentino, 2007). On the other hand, Wood et al. (1998) investigation
showed that the majority of FAs in Chlorella are unsaturated. Their investigation implies
that short chains of FAs are transformed into long and unsaturated chain of FAs.

Lipid metabolism in algal cells can be affected by culture conditions such as temperature,
light and medium composition. Stitt and Hurry (2002), and Smith and Morris (1980)
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demonstrated that low temperatures allow cells of high plants to make significant amount

of fatty acids (FAs) during their growth cycle. It can be interpolated to low organism like

plant (microalgae) that low temperatures would increase lipid content in algal cells. Rao

(2006) stated that algal lipid content depend only on algal strain, culture medium and

light intensity. In addition, Boyle-Roden et al. (2003) denoted the effects of medium

composition on algal lipid content. Boyle-Roden et al showed that changing medium
composition may increase or decrease a specific fatty acid; for instance, nitrogen source

in culture media modifies fatty acids (lipid) composition in Chlorella cells depending on

whether the metabolism is autotrophic or heterotrophic as shown in Table 2.4.

Table 2.4: Effect of nitrogen on FAs content in Chlorella grown photoautotrophically
or photoheterotrophically (Boyle-Roden et al., 2003)

Fatty Acids
14
16
16

Autotrophic growth
NH4

29.0
1.1
1.2
1.1

20.
37.1

NO3"

22.9

1.4
7.2

32.2
35.7

Heterotrophic growth
NH4+

24.3

2.1
18.8
17.8
36.5

NO3"

23.5

2.1
19.4
24.6
30.4

Urea

21.9

12.7
25.8
37.6

Results were expressed as percentage oftotal amount offatty acids in Chlorella
strain. Percentage less than 1 were not reported and were represented by (-).

Table 2.4 indicates that Chlorella strain cultured photoautotrophically using a medium

that contained NH4+ as source of nitrogen (first case) produced algal oil that had the

following composition for 100 g of total FAMEs: 29.0 g of 16:0, 1.1 g of 16:1, 1.2 g of
18:0, 11.1 g of 18:1,20.1 g of 18:2 and 37.1 g of 18:3. Changing the source of nitrogen
to NO3", the same Chlorella strain cultured in the same conditions produced oil that had
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the following composition for 100 g of total FAMEs. 22.9 g of 16:0 with 21% decrease

compared to the amount of 16:0 produced in first case, no 16:1, 1.4 g of 18:0, 7.2 g of

18:1 with 35% decrease also compared to the first case, 32.2 g of 18:2 which increased

significantly (60% compared to 20.1 of 18:2 produced in first case), and a decrease of

18.3 from 37.1 g to 35.7 g of 18:3. It can be clearly seen, from Boyle-Roden study, that

the source of nitrogen had an effect on lipid composition.

Algae cells contain a range of fatty acids from Myristic acid (14:0) to Docosahexanoic

acid (22:6). Bigogno et al. (2002) study of lipid metabolism in algae showed that low

carbon fatty acids [(10:00) to (16:3)] are produced during lag phase and at the beginning

of exponential phase, which agrees with Ferrentino (2007) observation stated earlier in
this Section. Bigogno et al. (2002) also stated that Cl 8:0 and higher are produced in the

exponential and stationary phases. Triacylglycerols (TGA), which are the most important
compound of interest in biodiesel production, are more produced in exponential phase.
In addition, Bigogno et al. study demonstrated that the lipid content in algae is

proportional to the age of culture. The longer a culture last, the higher is the lipid yield.
For instance, Parietochloris incisa strain produced approximately 15% of fatty acids for

12 days of culture period. But this strain can produce approximately 27% if the culture is
extended to 25 days.

Bigogno et al. (2002) and Singh (2010) studied the fatty acids composition of fifty
different vegetable oils. They noted that the common fatty acids found in all vegetable

oils are stearic (18:0), oleic (18:1), palmitic (16:0) and linoleic (18:2), which agree with
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Bigogno et al. (2002) study of fatty composition in algae. Table 2.5 shows the fatty acids

compositions in different vegetable oils and including Chlorella oil.

Table 2.5: FAs composition found in different vegetable oils (Bigogno et al, 2002; Singh,
2010)

Vegetable oil

Soybean

Corn

Rapeseed

Tallow

Canola

Jatropha C.

Peanut

Chlorella

FAs composition (number of Carbon: number of double bond)

16:0

16:0

16:0

14:0

16:0

14:0

16:0

16:0

18:0

18:0

18:0

16:0

18:0

16:0

18:0

16:1

18:1

18:1

18:1

18:0

18:1

18:0

18:1

16:2

18:2

18:2

18:2

18:1

18:2

18:1

18:2

16:3

18:3

18:3

18:2

18:3

18:0

18:4

20:1

20:0

20:0

18:1

22:0

22:0

18:2

22:1

24:0

18:3 20:4 20:5

Bigogno et al. found that fatty acids composition in Parietochloris incisa is approximately
the same as in Chlorella strain. Fatty acids 16:1, 16:2 and 16:3 are about 1% of all FAs

present in Chlorella strains.

The absence or low percentage of C10:0, C16:l, C16:2 and C16:3 in algal cells post

harvesting may indicate that these FAs undergo biochemical transformation to form FAs
with long chain of carbons such as C18:0, C18:l, C18:2 and C18:3 found in the majority
of algae cells. The long chains of carbon in FAMEs (biodiesel) increase the cetane
number with high heat combustion. Biodiesel from Chlorella would have high cetane
number compared to biodiesel produced from soybean or corn.
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2. 1 .6 EFFECT OF LIPID COMPOSITION ON BIODIESEL

Algal lipid compositions have direct effect on biodiesel properties. The fatty acid content

of the lipid affects the properties of the resulting FAMEs. Figure 2.1 and Figure 2.2
show that:

1 . As the number of saturated C in the FAMEs increases the cetane number and the heat

of combustion increase. For example, the cetane number of 10:0 is 47.7 while for

18:0 is 86.9 as shown in Figure 2.1 . Biodiesel with high cetane number is a better

quality one. A cetane number > 40 indicates a good quality of fuel engine with high
heat combustion.

2. The presence of unsaturated bonds in the FAMEs lowers the cetane number
considerably. For example the cetane number of 1 8:0, 1 8: 1 and 1 8:3 are 86.9, 47.2,
28.5 and 20.6 respectively. Hence the presence of unsaturated FAMEs lowers the
quality of the biodiesel by decreasing the gel point for instance.
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Figure 2.1: Variation of cetane number with fatty acids (Briggs et al., 2004)
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However Figure 2.2 shows that the cloud point (in 0C) or gel point of the FAME
decreases as the number of unsaturated FAs increases. Lower cloud and gel points are

highly desirable in cold climate like New England.
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Figure 2.2: Variation of cetane number and gel point in vegetable oil.
(Briggs et al., 2004)

2.2 PHOTOBIOREACTIOR

2.2.1 INTRODUCTION

Photobioreactors (PBRs) have been defined in Chapter 1 as any transparent, closed

container that incorporates photonic energy to grow microorganism such as microalgae.
PBRs type and shape have a significant role on the microalgae culture growth. The type
or shape of PBRs can mitigate or eliminate culture contamination preventing culture
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collapse, increase algal growth rate enhanced by the surface exposed to light, and

provide efficient mixing in comparison to open-ponds.

2.2.2 PBRTYPES

Numerous types of PBRs have been designed in recent years and the most known are:

tubular, flat panel, and column (Eriksen, 2008). These PBR are discussed in Table 2.6.

Table 2.6: Description of three most known PBR (Chisti, 2007; Eriksen, 2008)

PBR Type

Tubular

Flat panel

Column

Description
TPBRs are composed of clear (transparent) tubes mounted
horizontally, inclined or helical. A mechanical or airlifting pump is
used to enhance Algal broth circulation in tubes. Broth is
homogenized by pump shears and gas (CO2 and O2). The length of
tubes is limited to avoid excess dissolved oxygen DO (O2 poisoning)
and C02decrease (CO2 starvation). On the other hand, a long
residence time, in a co-current flow, allows CO2 to be in contact with
algal cell for photosynthesis reaction. TPBRs offer large surface area
exposed to light compared to open-pond or cylindrical reactor
Flat panel photobioreactors consist of rectangular flat panel made with
transparent material such as PVC or glass sheet to maximize light
penetration. Several panels may be used to mount a reactor. They are
most of the time set in series. Broth flows in thin layer across the
panel or panels to ensure efficient mixing. One of the advantages of
flat panel is that dissolved oxygen in flat panel is lower compared to
the level of dissolved oxygen in a tubular reactor. It is desirable to
design flat panel with thin panel because thicker panel cause light
limitation resulting in culture collapse. Another advantage of flat
panel is that cultures reach high density as a result of high growth rate.
Column PBR consist of cylindrical tank (stirred tank) or bubble
columns set vertically. In some cases, these are constructed with split
cylinder or draft tube. The walls of the tank or columns are
transparent as in any other PBR to enhance light penetration for
photosynthesis reaction. The aeration (gas) is supplied at the bottom
of the tank or on the impeller. It is important to note that column
PBRs offer efficient mixing mechanism resulting in high growth rate.
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PBRs for microalgae growth are mostly designed in a way to increase the distance of

light penetration in algal broth as well as the area exposed to light rays in order to

maximize photosynthesis process. On the other hand, light does not have any effect on

microalgae strains that grow in the dark (heterotrophic cells).

All three types of PBR discussed in Table 2.6 offer considerable area exposed to light,

which facilitate the photosynthesis process. Moreover, these three types of PBR offer

good mixing mechanism compared to Open-Pond. The residence time for carbon dioxide
is much longer in PBRs than open-pond, allowing a good absorption of carbon dioxide by

algal cells.

All PBRs described in Table 2.6 can be illuminated with natural light (sun light) or

artificial light (mostly fluorescent lamps). The light bulbs can be installed outside or
inside of a PBR depending on its shape and size. It is believed that internal lighting offer
maximum illumination to algae cells.

2.2.3 PBR ADVANTAGES AND LIMITATIONS

Each type of PBR offers advantages and limitations. The following lines give advantages
and disadvantages of most known PBRs (Eriksen, 2008; Ugwu et al., 2007):

2.2.3.1 Open-Ponds

Raceway open ponds offer low cost for manufacturing and maintenance. They are easy

to clean after each culture (Ugwu et al., 2007). The production cost for algae biomass

ranges between $8-15 per Kg of dry biomass (Lee, 2001). However, they use large space
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and expose algae to the surroundings with high risk for culture contamination. Control of

culture growth conditions is limited, and water evaporation is a challenge. In addition,

algae cells in open ponds are poorly exposed to light resulting in low biomass

productivity of approximately 25 g/m2-day compared to 72.5 g/m2-day in an inclined
TPBR made with tube of 2.5 cm internal diameter ID (Lee, 2001). A typical Raceway

open pond is shown in Figure 2.3.

¡miKt..·' .;¦

Figure 2.3: Raceway Pond for algae culture (Huesemann et al., 2009)

2.2.3.2 Tubular PBRs

Tubular PBRs are suitable for outdoor and can be used indoor with artificial illumination

such as fluorescent lamp. Also they offer much larger illumination surface area

compared to flat panel or column PBR. In addition, they are relatively cheap compared

to flat panel PBRs. However, poor mass transfer between nutrient in medium and algal

cells is the major limitation in tubular PBRs. Non-dissolved CO2 and O2 can be

accumulated along the tubes resulting in culture growth inhibition (Richmond, 2000).

Tubular PBRs offer a good mixing mechanism. Nevertheless, if the thin layer at the wall

of the tubes is in laminar regime, cells may grow on the wall. This is undesirable because



the wall cells reduce light exposure and are hard to harvest. Further details of tubular

PBRs are given in Section 2.2.4.

2.2.3.3 Column PBRs

Column PBRs offer smaller surface area exposed to light in comparison to the tubular

PBR. The manufacturing of Column PBRs requires complex material such as glass, or

acrylics which increase the cost of production (Chiù et al., 2009). Also, scale up of
column PBR decreases the ratio of illumination surface area to the volume of the reactor.

Column PBRs produce higher yield of algae biomass compared to open ponds, as shown
in Table 2.7, and offer less space compared to open pond, Flat Panel or TPBR.

Table 2.7: Outdoor algae productivity versus PBR types (Lee, 2001)

Type of PBR

Open ponds

Horizontal
TPBR
Inclined
TPBR
Vertical Coil
PBR
Vertical
Column PBR
Flat Panel
PBR

Size

Depth: 13-15 cm

Depth: 1 cm

Tube ID: 2.5 cm

Tube ID: 2.5 cm

Tube ID: 2.4 cm

Col ID: 2.6 cm

Width: 3.2 cm

Algae strain

Spirulina
platensis

Chlorella sp
Spirulina
platensis
Chlorella

pyrenoidosa
Tetraselmis

chuii

Isochrysis
galbana

Spirulina
platensis

Productivity
(g/L/day)

0.18

2.50

1.60

2.90

1.20

1.60

0.80

Produc-
tivity

g/m2/day
27.0

25.0

27.8

72.5

24.0

Location

Israel

Czech

Israel

Singapore

Australia

Israel

Italy

2.2.3.4 Flat Panel PBR

Scale up of flat panel PBRs is more complex compared to previous reactors. It requires
additional compartments and widening of panel thickness. In addition, thicker panel
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decrease light penetration distance, which may result in low yield of algal biomass. Flat

panel PBRs offer large illumination surface area compared to open pond, and low oxygen

buildup. These reactors enhance high biomass productivities. In addition, they are easy

to clean and can be used indoor or outdoor (Ugwu et al., 2007). A sample of flat panel

PBR is displayed in Figure 2.4.
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Figure 2.4: A 500L-Flat panel PBR, The Jacob Blaustein Institute for Desert Research
laboratory (Richmond, 2000)

2.2.4 TUBULAR PHOTOBIOREACTOR

Tubular photobioreactors (TPBRs) are among the best PBRs for algae culture. TPBRs
can be used indoor or outdoor with possibility of switching from natural photonic energy

(sunlight) to artificial photonic energy using light bulbs or fluorescent lamps, for
instance.

A TPBR is constructed with transparent tubes made with polyvinyl chloride

(PVC)/plastic or glass. An air-lifting pump or a mechanical pump with low shear stress
is used to propel broth culture into tubes. Mechanical pumps with high shear stress are
avoided for microorganism cultivation because they can cause significant damage to algal
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cells and prevent healthy culture (Chisti, 2007). As noted in Section 2.2.1, a tubular PBR

presents a large surface area exposed to light.

Tubes orientation depends on the manufacturer. The following orientations are the most

applied to TPBR and they attribute their names to the PBR: horizontal, serpentine,

vertical and inclined (Ugwu et al, 2007; Chisti, 2007; Lee, 2001). These TPBRs are

described in as follow.

a. Horizontal TPBR consists ofhorizontal, straight and transparent tubes connected by

U-bends. The tubes are made in PVC or transparent plastics. It is preferable to have

tubes in glass; but glass-tubing present a breaking risk and their cost is higher

compared to PVC. An example of a horizontal TPBR is displayed in Figure 2.5.

http://www.oilgae.com/ref/glos/tubular_photobioreactors.html

Figure 2.5: Horizontal TPBR

b. Vertical and serpentine TPBR are similar to horizontal TPBR, except that tubes are

set vertically (as shown in Figure 2.6) or serpentine.
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Figure 2.6: Vertical TPBR (oilgae club)

c. a-type of TPBR consists of combined horizontal and crossed tubes arranged in certain

angles. The orientation of the tubing in a-type TPBR allows good liquid flow

throughout the tubing and an excellent exposure to the light rays for photosynthetic

reaction.

d. Coiled TPBR is composed with flexible tubes mounted in spiral around a vertical

cylindrical frame as shown in Figure 2.7. Coiled TPBR presents an advantage of

being illuminated from inside and/or outside the cylindrical frame. This advantage

cannot be done with horizontal or vertical TPBR.
m

Figure 2.7: Coiled/helical TPBR from Murdoch University in Australia (Chisti, 2007)
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It is important to note that sizes and orientations of tubes affect the growth of cells

culture. Chisti (2007) studied the effect of tubes length on the health of broth culture. He

demonstrated that the maximum rate of dissolved oxygen (DO) can reach 10 g/m3/min in
a TPBR. Certainly, the level of DO in a TPBR is proportional to the sizes of tubes: both

the tube diameter and the length. Thus, it is necessary to incorporate a degasification

mechanism along tubes on a TPBR preventing excessive DO. The TPBR constructed in

this work has a degasification mechanism placed at the cover of the main tank as

explained in Chapter 3, Section 3.2.

2.3 TRANSESTERIFICATION OF ALGAL LIPID

2.3.1 CONVENTIONAL TRANSESTERIFICATION

In 1900, a French automobile company Otto used crude or virgin vegetable oil (lipid)

from peanut to run a diesel engine at the Paris auto exposition (Knothe et al., 2005). Otto
showed clearly that vegetable oil can be used as transportation fuel in diesel engines

without modification. Virgin vegetable oil (VVO) has properties such as high viscosity

that do not facilitate a proper functionality of petro-diesel engines. For example, a diesel

engine can cease its normal operation due to filters clogging caused by VVO. Table 2.8
gives a list of known problems occurring in diesel engine when VVO is used without any
modification.
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All issues presented in Table 2.8 show that the need of transforming VVO prior being

used in existing diesel engines. The common potential solution to all the issues presented

in Table 2.8 is to "transesterify vegetable oil into FAMEs or Biodiesel."

Table 2.8: List of problems caused VVO in diesel engines, and potential solutions (Singh,
2010)

Problems

Short-term cold
weather starting,
plugging and gumming
of filters, lines and
injectors.

Engine knocking

Long-term coking of
injectors on piston and
head of engine.
Carbon deposits on
piston and head of
diesel engines.

Excessive engine wear.

Failure of engine
lubricating oil due to
polymerization.

Possible Cause

High viscosity, low cetane
number and flash point,
natural gums
(phosphatides) and in VVO
and other ash.

Very low cetane number of
certain oils and improper
injection timing.

High viscosity of vegetable
oil, incomplete or poor
combustion in the diesel
engines.

High viscosity of oil,
incomplete and poor
combustion of vegetable
oils, presence of free fatty
acids VVO, and dilution of
engine lubricating oil due to
blow-by of vegetable oil.

Potential solution

Preheat fuel before
injection, transesterify oil
to FAMEs; partially refine
oils to remove gums by
using 4 µ?? filter.
Adjust injection timing,
use higher compression
engines, and preheat fuel
prior to injection.
Transesterify oil into
FAMEs.

Heat fuel prior injection,
switch engine to diesel fuel
when operation at part
loads. Transesterify oils
into FAMEs.

Same as above row, plus
increase motor oil changes,
motor oil additives to
inhibit oxidation

Collection of
polyunsaturated vegetable
oil blow-by in crankcase to
the point where
polymerization occurs.

Heat fuel prior injection,
switch engine to diesel fuel
when operation at part
loads. Transesterify
vegetable oils to FAMEs,
increase motor oil changes,
motor oil additives to
inhibit oxidation
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Potential solutions suggested in Table 2.8 indicate the need of chemical or physical

transformation to adapt VVO to existing diesel engines. Chemical transformation occurs

through two different reactions: transesterification reaction in which vegetable oil reacts

with methanol in presence of a catalyst to produce biodiesel as shown in Reaction 1.1.

Pyrolysis reaction in which vegetable oils undergo thermal decomposition or cracking in
the presence of catalyst to produce FAMEs (biodiesel). Physical transformation is simply
a blending of vegetable oils with petrodiesel to decrease VVO viscosity, for instance.

Transesterification is the most used method to convert vegetable oil into a convenient

transportation fuel utilizable in existing diesel engines without any modifications.
Transesterification reaction has been defined early in this Section as a reaction between

alcohol (mostly methanol) and triacylglycerols (vegetable oil) in the presence of a
catalyst as shown in Chapter I, Section 1.2. The transesterification reaction can be
accelerated by an alkaline catalysts such as methoxide, NaOH, KOH or acidic catalysts
such a diluted hydrochloric acid HCl and sulfuric acid H2SO4 (Manesh and Enayati,
2008).

The choice of alcohol type is based on availability and cost. Short chains of alcohols

(C1-C4) are less dense with densities around 0.8 g/ml. They are suitable for
transesterification reaction. In the United States, for instance, biodiesel producers utilize

methanol because it is affordable and accessible. But in Brazil, ethanol is the most

utilized alcohol in biodiesel industries due to its affordability and high accessibility to

biodiesel producers (Knothe et al., 2005). Table 2.9 gives properties of most used
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alcohols in biodiesel production. It is important to note that methanol has been used in

the present work.

Table 2.9: Properties of alcohols used in transesterification reaction
(Knothe et al., 2005)

Alcohol

Methanol
Ethanol

2-propanol
Isopropanol
n-Butanol

2-Butanol

Isobutanol
Tert-butanol

Molecular
weight
32.04

46.07
60.10

60.10

74.12

74.12

74.12

74.12

Boiling
Point F0Cl

65
78.5

97.4

82.4

117.2

99.5
108

82.3

Melting
point r°C1

-93.9

•117.3
¦126.5

-89.5

-89.5

25.5

Density
rs/mn
0.7914
0.7893

0.8035

0.7855

0.8098

0.8080
0.8018

0.7887

Knothe et al. (2005) noted that the presence of moisture in alcohol hydrolyzes FAMEs

resulting in free fatty acids (FFA) and short (low) alcohol chains as shown in Reaction
2.2. The hydrolysis reaction between FAMEs with H2O is complete at 99% in 4 hours at
32°C in the presence of an alkaline catalyst such as KOH and NaOH.

R-COOCH3 + H2O^CH3OH + R-COOH Reaction (2.2)

or

FAMEs + Water -> Alcohol + Acid

Where R represents a FA radical.

Table 2.10 presents the advantages and disadvantages of methanol and ethanol when used
as a reactant to produce biodiesel.
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Table 2.10: Comparison of the two most common alcohols used in making biodiesel
(Briggs et al., 2004)

Alcohol

Methanol

Bioethanol

Ethanol

Advantages
-Less expensive in the US.
- More efficient reactant.
- EPA study showed that rats
can consume FAMEs with no
adverse effects (Briggs et al.,
2004)

Environmentally safe (green
chemical)

- Environmentally safe.
- Preferred alcohol to use for
cold weather operations.

Disadvantages

- Toxic causing nerve
deterioration due to
prolonged exposure.
-More poisonous than ethanol

- Higher viscosity of biodiesel
product.
- Large scale use will require
cellulose-based technology
(Farell et al., 2006)
- More expensive in the US.
-Heavier for biodiesel
- Transesterification reaction
is less forgiving.

A catalyst plays an important role in transesterification reaction; it reduces the reaction
time and increases FAMEs yield. The two most used catalysts in transesterification

reaction are alkaline NaOH and KOH. Table 2.1 1 presents the advantages and

disadvantages of these two alkaline catalysts.

Table 2.1 1: Advantages and disadvantages of NaOH and KOH in transesterification
reaction (Briggs et al., 2004)

Catalyst

NaOH

KOH

Advantages

- Less expensive in the US.
- Useful for oil titration to check Free

Fatty Acids (FFA).
- Easier to use
- Does a better catalytic job than NaOH.
- Provides potash fertilizer as a byproduct.

Disadvantages

Hard to use
Does not provide a valuable
byproduct

Use 40% more by mass than
NaOH.
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2.3.2 ALGAE HARVESTING

Harvesting is the process of separating algae from its growth medium. The challenge is

that algae are in a dilute solution with an alga content of about 10 g/L. The high water

content has to be removed to enable harvesting and oil extraction. Several processes

have been developed for water removal such as centrifugation, filtration, and use of

flocculent to decant algae cells followed by water removal.

Ferrentino (2007) used aluminum sulfate as flocculent for Chlorella cells sedimentation.

Aluminum sulfate binds to algae cells in dilute solution and precipitates them at the

bottom of a vessel creating two layers. The bottom layer contains sludge of algae. The

top layer consists of clear medium with no algae. The top layer is simply discarded when
using a toxic flocculent such as aluminum sulfate. However, if the separation of algae
cells and medium is done by using a mechanical method (i.e., centrifugation), the top

layer can be recycled for next cultures. In this work, aluminum sulfate has been used to
precipitate Chlorella cells, followed by décantation and centrifugation in order to obtain
Chlorella pellets. These pellets contain approximately 80% of water. These pellets are
then frozen and placed into a lyophilizer for complete drying. The final product is dry

algae ready for oil extraction or direct transesterification (in situ process).

2.3.3 OIL EXTRACTION

Vegetable oil is extracted from feedstock prior to be transesterified. The most used oil
extraction technique consist of solvent extraction (using hexane) combined with
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mechanical pressing. The same technique can be used to extract oil from dry algae. One

of the disadvantages of solvent extraction technique is the release of significant amount

of volatile solvent in the atmosphere which may contributes to the greenhouse effect.

Ferrentino (2007) stated that approximately 4000 liters of hexane are released into the

atmosphere to extract 4000 tons of vegetable oil. Certainly, oil production cost increases

the price of biodiesel that makes it difficult to compete with petrodiesel price. All these

elements motivate researchers to pursue alternative transesterification technique, which

could potentially eliminate the oil extraction step by performing the transesterification
process directly in crops or biomass. This type of transesterification process or one-step

process is termed in situ transesterification.

2.3.4 INSITU TRANSESTERIFICATION

In situ transesterification (or one-step process) of oil rich crops is performed to produce

biodiesel (biodegradable transportation fuel). Haas and Scott (2007) performed in situ
transesterification process on soybean flakes using 0. 1 N NaOH and methanol through a
16 hours reaction with 97 - 100% yield of fatty acids methyl esters (FAMEs) or

biodiesel. Hass and Scott also demonstrated that in situ transesterification on flakes was

efficient in a way that reduces about 60% of solvent compared to the conventional

transesterification or 2-step process. They also discovered that removing moisture from

soybean flakes reduces reaction time, which agrees with Knothe et al. (2005) statement.



The ¡? situ transesterification presents a major challenge which is the release of lipid (oil)

isolated in crops cells. Lipids (oils) are incorporated in cells crops (soybean, microalgae,

corn, etc. . .). This isolation requires sophisticated techniques to release lipids or oil for

the transesterification reaction to occur. Ferrentino (2007) applied ultrasonication to

break algae cell-walls in order to release lipid (oil) and perform transesterification at the

same time. Similar technique was used by Ji et al. (2006) to produce fatty acids methyl

esters (FAMEs) from soybean flakes using methanol in the presence of NaOH as a

catalyst. Ji et al experiment was carried out at 45 °C using an ultrasonic set at 100 Watts.
Thus the ultrasonication technique was used in this work to produce biodiesel.

2.4 KINETIC MODEL OF ALGAE

An important aspect of designing a PBR is the kinetic modeling of photosynthetic cell
growth. Kinetic models or growth kinetics of algal cells are generally expressed by a rate
of cell growth. A kinetic model can be affected by different parameters such as medium
composition, environmental and/or growth conditions. Lee (2001) described growth
kinetic as a result of several complex networks of biochemical/chemical reactions and

transport phenomena involving numerous phases and multiple component systems.
Monod model is a classic one, which is based on the specific growth rate (µ™?) of cell

grown in any reactors. Equation (2.1) gives the empirical expression of the Monod
equation or specific growth rate (inverse of time) (Lee, 2001).

U=Ll * —— Equation (2.1)µ ^max Ks+Cs M v
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Where Cs, K5 and µ?p3? represent the concentration of the limiting nutrient, the saturation

constant and the maximum growth rate respectively.

However, growth limiting nutrients in culture medium have to be determined in order to

use Monod model (Equation 2.1). If growth limiting nutrients are not determined, then

there is a need to develop a kinetic model specific to a reactor, culture performed and

strain in use.

Obviously, each growth phase has a different expression of growth rate; however, the
number of cells or cells concentration in the lag and stationary phases are approximately

the same resulting in negligible growth rates. Thus, the focus for a kinetic model is more

in the exponential phase where cells multiply rapidly.

Huesemann et al (2009) studied biomass productivities in algae. They calculated the

maximum specific growth rate (µp13? in 1/s) in the exponential growth phase of algae
batch culture using Equation (2.2).

µ™? = ¿ * ln[ ^f ] Equation 2.2
Where At [s], Cf and C1 [gmol/L] represent respectively the length period of incubation
time (exponential growth), the final and initial biomass concentrations over the At time
period. Equation 2.2 is applied in exponential or growth phase only; therefore, the
incubation period corresponds to the duration of exponential phase.
Huesemann et al also demonstrated that photosynthesis reaction can be a rate limiting in

algae growth caused by illumination (light intensity) and carbon fixation. They
demonstrated that photosynthetic oxygen evolution rate termed by P was a function of
light intensity as shown in an empirical expression in Equation 2.3.

P = Pmax*tanh [4± ] R4J3^ Equation 2.3
"max
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Where Pmax, I, Rdark and "a" represent respectively the photosynthetic oxygen evolution

maximum rate, the light intensity, the rate of oxygen uptake in the absence of light and

the initial slope of P-I curve as displayed in Figure 2.8. The initial slope in Huesemann

model (Equation 2.3) indicates the photonic energy efficiency in photosynthetic activity.

It indicates the minimum number of photons required to produce one molecule of oxygen

during photosynthesis reaction (Huesemann, 2009).

7000

PTOX 6000
5000

? Data

Model
4000

w 3000

2000

O. 1000

-1000
800

Light Intensity (nmole/m2-sec)

Figure 2.8: Photosynthetic oxygen evolution P versus light intensity (Huesemann, 2009)

Another kinetic model correlating growth rate to light intensity was developed by

Chojnacka and Marquez-Rocha (2004). They conducted a study of photoautotrophic
microalgae cultures which involved light as the source of photonic energy for
photosynthesis reaction. Photosynthetic activity can be limited by light and CO2. Light
was a growth limiting in Chojnacka and Marquez-Rocha (2004) experiment. They
considered light as physical substrate. Therefore, Monod model was applied in the

absence of photo-inhibition to determine specific growth rate as shown in Equation 2.4.

58



^max*!^ Equation (2.4)
Where µ , I0 and K i0 are respectively the maximum growth rate, the incident light

intensity and light saturation constant. The constant K i0 is expressed in the units of light

intensity I0. It can be seen that Equation 2.4 and 2.1 are exactly the same, except that

light intensity I0 was substituted by substrate concentration Cs from Equation 2.1 to 2.4.

If photo-inhibition is observed during photosynthetic activity, then Monod model

(Equation 2.4) is replaced by Haldane model Equation 2.5 (Chojnacka and Marquez-

Rocha 2004).

V = I1H13x * h Equation 2.5K10 + ^+I0
Where Ki represents the inhibition constant for incident light intensity. The constants K,o
and K1 have the same units as I0. All other parameters in Equation 2.5 were defined early
in this Section.

In this work, growth limiting substrates were not determined. Moreover, the light

intensity was found not to be limiting the photosynthetic activity in Chapter 4, Section
4.5. Therefore, Haldane, Monod and Huesemann models are not applied to microalgae

culture growth performed in the TPBR constructed in this project. However, µp13??5

evaluated using Huesemann approach in Equation 2.2, which allows calculating the

culture doubling time and dilution rate.
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2 . 5 GAS CHROMATOGRAPH ANALYSIS OF ALGAL OIL

Characterization of algal oil is needed to determine the fatty acid profile and the

percentage of different fatty acids present in algal oils. Basically a gas Chromatograph
(GC) is used to separate the mixture of different FAME molecules based on their physical
properties. A GC equipped with a narrow bore (0.1 nm ID) column (like the RTX-I
column used in our GC) is more attractive than conventional capillary column. This fast

GC column provides faster analysis time and higher resolution. The Gas Chromatograph
(GC) allows us to assign total carbon and total unsaturation number to each peak found in
transesterified algal oil (Ferrentino, 2007)

The typical fatty acid compositions of lipids from various sources are available in the
literature. For instance, Bigogno et al. (2002) studies provide composition of some lipids
shown in Table 2.7. A typical GC chromatogram in lipid oil, performed in this work, is

shown in Figure 2. 9.
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Figure 2.9: Chromatogram of transesterified algal oil
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Carrapiso et al. (2000) used GC chromatogram to analyze fatty acids from Iberian pig

subcutaneous adipose tissue. In their study, in situ transesterification of Iberian pig

subcutaneous adipose tissue with methanol was performed to produce FAMEs. The
transesterification reaction was conducted for 45 minutes using 5% HCl as catalyst to

accelerate this reaction. Similar technique is used in this project to produce and analyze

biodiesel from algal biomass.

2.6 CITED WORK SUMMARY

A brief summary of the literature review presented in this Chapter is given in Table 2.12.

Table 2.12: Summary of cited work in literature review

Research area
A review on microalgae
biotechnology
Microalgae characteristic

Biodiesel FAMEs

Microalgae culture and
lipid metabolism

Photobioreactor

Transesterification of
algal lipid

Kinetic models of algae
culture

Cited work

Amos Richmond 2000

Khan et al. 2009
Rodolfi et al. 2009

Matsumoto et al. 2009

Rao 2006, Kurano and
Miyachi 2004, Ferrentino
2007, Stitt and Hurry
2002, Boyle et al. 2003

Ferrentino 2007, Eriksen
2008, Chisti 2007, Lee
2001, Ugwu et al. 2007
Knothe 2005, Manesh and
Enayati 2008, Ferrentino
2007, Haas and Scott
2005, Carrapiso et al. 2000
Chojnacka and Marquez-
Rocha 2004, Huesemann
2009, Lee 2001

Comment/Conclusion

Definition of microalgae

Classification of microalgae

Lipid composition in
Chlorella
Fatty acids formation: short
chain of FAs are formed in
earlier culture stage and
long chains FA developed
from short chains in latter
culture stage (exponential
and stationary phase)
Construction and
classification of PBR

In situ transesterification of
algal biomass

Evaluation of maximum
specific growth rate

61



The literature review supports the objectives of this research. There is a need for

understanding algae culture in a PBR, developing a kinetic model of algae growth in a

batch reactor, and comparing a two-step versus one-step (in situ) biodiesel production

from microalgae. These are addressed in this investigation



CHAPTER III

EXPERIMENTAL PROCEDURES

3.1 MATERIALS AND REAGENTS

3.1.1 MATERIALS/INSTRUMENTS

The materials and instruments used in this work are described in Table 3.1

Table 3.1 : Materials/Instruments used in this work and their functions

Material/Instruments
Bausch and Lomb
Spectrophotometer

Cell disruptor sonicator

Varian SF-330
Spectrofluorometer
Vicon Sartorius Balance
ALLIED-7393D Balance
Oven: National Environment
Incubator
Corning magnetic stir Plate or
Stirrer
Water bath
Labconco Freeze-dryer
(lyophilizer)

Functions /Comments

Measure the turbidity (turbidity) of algal solution
Break cells walls during in situ transesterification
and provide heat to reagents for transesterification
reaction
Measure fluorescence signal of algal solution
corresponding to lipid content in algal
Gravimetric measurement: dry algal biomass,
nutrients, etc...

Dry glassware and samples containing excess
moisture
Mix algal biomass with solvent during oil
extraction and transesterification process
Provide heat to flask during solvent evaporation

Beckmann Coulter Centrifuge
(Allegra 25R)
Damon IEC B-20A centrifuge

Lyophilize slurry paste of algal cells to produce
pellets

Separate algal cells from media
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Table 3.1: Materials/Instruments used in this work and their functions (continued...)

Material Functions/Comments

HP3396 Integrator Collect GC raw data, integrate and plot
chromatogram

Hewlett Packard HP 5890
Series II Gas
Chromatograph (GC)

Data analysis

OriginPro software Analyze GC data; adjust base, show peaks, etc..
HP Peak96 software Transfer GC data from HP3396 integrator to PC
2 L- glass Büchner flask
Büchner funnel

Cooke Light meter
250 ml glass separatory
funnel

5 µ? Hamilton syringe
Restek RTX-I column:
15 m, 5µp^, 0.32 mm ID
Soxhlet extractor

Graduate cylinders
Brookfield viscometer
Whatman filter grade # 5,
0.25 µ??

Small photobioreactor to grow algal cells
liquid filtration
Measure light intensity

Separation of non-miscible liquid or liquid/solid
FAME sample injection in GC

Mounted in GC to analyze FAME compounds
Apparatus for algal oil extraction from dry algae
biomass
Liquid volume measurement
Liquid viscosity measurement
Filter samples post transesterification and during oil
extraction

3.1.2 REAGENTS

Reagents used in this work and their functions are summarized in Table 3.2. Salts used
as nutrients are not included in this table; they are shown in Table 3.3.
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Table 3.2: List of reagents used in this work

Reagents Use/Comments

Methanol high grade Solvent for oil extraction and reagent for
transesterification reaction

n-Hexane 98% purity Solvent for oil extraction

Chloroform Solvent for oil extraction and preservative for
FAMEs

Potassium hydroxide KOH (pellet) Catalyst for transesterification reaction

Hydrochloric acid HCl Enhancement agent for oil removal during
glassware cleaning

Reverse Osmosis (RO) water Prepare nutrient solution
Aluminum Sulfate anhydrous A12(S04)3 Flocculent to harvest algal broth

Sodium Sulfate Na2SO4 Drying agent, used to remove moisture in
FAME and oil

Methyl Dodecanoate or Methyl Laurate
C12:0

Methyl Palmitate C 16:0
Methyl Stéarate Cl 8:0
Methyl Oleate Cl 8:1
Methyl Linolate C 18:2

Methyl Linolenate C 18:3
Methyl Nonadecanoate C 19:0
FAME mix standard at 1000 µg/ml from
SUPELCO containing the following fatty
acid methyl ester:

Cis- 1 1 -Vaccinic Methyl ester (C 1 8 : 1 )
99% pure
Cis-9-Oleic Methyl Ester (C 18:2)
99% pure
Methyl Eicosenoate (C20:l) 99.9%
pure
Methyl Eicosadienoate (C20:2)
99.5% pure
Methyl Laurate (C 12:0) 99.8% pure
Methyl Linolenate (C19:3) 99.6%
pure.

Methyl Cis-9-octadecenoate C 19:1 at
0.874 g/ml

GC Standards for FAME analysis
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3.2 PROCEDURES

3.2.1 MICROALGAE CULTURE

3.2.1.1 Algal Strain Selection

Eight microalgae strains were tested. Six were obtained from Professor Leland Jahnke
laboratory, Plant Biology Department at the University of New Hampshire (UNH) in

Durham, New Hampshire. The remaining two were purchased from the Culture

Collection of Marine Phytoplankton (CCMP), Bigelow Laboratory for Ocean Sciences,

Boothbay Harbor, Maine. The algae strains and their oil contents are shown in Table 3.3.
These strains were selected based on information from the literature such as growth

conditions capability and lipid content. The selection procedure is described in section
3.2.1.2.

Table 3.3: Summary of algal strains and their oil content (Khan et al., 2009)

Algal Strain
Chlorella C2
Chlorella sp. (Cl)
Isochrysis sp
Thalassiosira Pseudonana

Porphyridium cruentum
Gymnodynium
Pavlova

Diatom Chaetoceros

Oil content
in%

19
19

22-27

20.6

9.5

30-36

33-40

Provider

UNH Plant Biology Department
Courtesy of Professor Leland
Jahnke

The Provasoli-Guillard National
Center for Culture of Marine
Phytoplankton (CCMP)
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3.2.1.2 Procedure

Each species was first inoculated in the Photosynthesis Laboratory at the UNH Plant

Biology Department. These inoculations were cultured in small glass tubes of 20 - 50 ml.

The growth culture for each strain was monitored by simple observation. After the

inocula reached stationary phase, they were transferred to the Biodiesel Laboratory for

screening.

The concentration of algal cells in each inoculum was determined before adding inocula

to the media in 2 L glass flasks (small PBR). An aliquot of each strain was placed into a

Bausch and Lomb spectrophotometer set at 682 nm of wave length for turbidity

measurement. The turbidity or optical density (OD) or turbidity of the solution is

assumed to be linearly proportional to the algae cell concentration (g of dry algal cell per
liter).

The spectrophotometer (Bausch and Lomb) has a measurement limit in the range of 0.0 -
2.0. Any samples with a turbidity (turbidity) exceeding the instrument high detection
limit of 2.0 was diluted with Salina solution (constituted with 0.1 M sodium chloride in

water or virgin medium), and re-measured till the results fell within the instrument
measurement ranges 0 - 2.0. The measured optical density was adjusted to the turbidity
of the initial solution using to the dilution factor applied to each case. For example, the

algae sample Sl volume is 5 ml and its turbidity is greater than 2. 1.0 ml of the sample
Sl is diluted with 4 ml of Salina solution to obtain sample S2; the dilution factor in this

case is 5. The resulting diluted solution S2still has a turbidity (optical density) greater

than 2. 1.0 ml of sample S2 is diluted with 2.0 ml of Salina solution to obtain solution
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S3. The dilution factor is 3. The resulting solution S3 has a turbidity of 0.8, which is

within the instrument measurement ranges. The turbidity of the original (undiluted) algae
solution Sl is calculated as follow.

Turbidity of undiluted solution Sl = (0.8)* (5)*(3) = 12

Each species of eight strains was cultured in a 2 L glass flask for two weeks. The
cultures were not monitored daily. The main goal of this work was to choose a suitable

strain that achieved high oil content and high yield of algal biomass within two weeks.

After two weeks, broth concentration and oil content were measured using a Bausch and

Lomb spectrophotometer and Varian SF-330 spectrofluorometer respectively.
An aliquot of 8 ml was placed into a Bausch and Lomb spectrophotometer set as
aforementioned and the turbidity measurement was read. Then the sample was

normalized to a turbidity of 0.05 with Salina solution followed by a lipid binding with
Niles Red solution at 250 µg/ml in acetone as described in Cooksey method (Cooksey et

al., 1987). The sample was placed into a Varian SF-330 spectrofluorometer for
fluorescence reading. The spectrofluorometer reading was assumed to be proportional to

the algae oil content. The Varian SF-30 spectrofluorometer was set at 525 nm for
excitation wave length and 575 nm emission detector. Sensitivity and read mode were
set at 100 and 0.25 as described by Ferrentino (2007). The full setting of The Varian SF-

330 spectrofluorometer is displayed in Appendix I. Chlorella C2 was selected based on
the combined results of oil content and algae concentration. The results are presented in

Chapter 4, Section 4.2. This strain (Chlorella C2) was retained for the rest of the project.
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3.2.2 TUBULAR PHOTOBIOREACTOR DESIGN

3.2.2.1 Experimental Setup

A laboratory scale tubular photobioreactor (TPBR) was designed and constructed as

shown in Figure 3.1. The TPBR system consists of six main sections: 1- Tank, 2- Pump,

3- Mixing Nozzle, 4- Air/gas supply, 5- Transparent PBR Tubes and 6-Photonic source.
These sections are described in this Section.

Gases
exhaust

rtube
(1 00ft)

Mazzie Nozzle
Air and C02

injector

Valve

Ir-M-L

!"tube

Pump 3-way valve

Main tank of
algal broth

Flow meter
MIÜ Sampling

(.) Cl Manometer
tl

Fluorescence
Lamps

Air compressor

C02 Tank

Figure 3.1: Flow chart of transparent tubular photobioreactor system

This TPBR was used to culture algal cells at high growth rate. Pictures of the constructed
TPBR are displayed in Appendix II.
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3.2.2.1.1 Main Tank

The main tank is a 5 gal container that can be a carboy or a bucket with cover. Both

containers the 5 gal bucket and the carboy were used in this work. The 5 gal carboy was

subjected of medium leaks on its connections. Thus it was discarded. The 5 gal

cylindrical bucket with a cover made in clear polyvinyl chloride (PVC) was retained for
the construction of the TPBR. The bucket has an external diameter of 304.8 mm (12")

and a height of 368.3 mm (14.5"). It has two outlets and one inlet. The first outlet,
located on the cover, serves to release insoluble gas such as CO2, air and resulting O2

from photosynthesis process. The second outlet located at the bottom of the bucket is
connected to a compact ball valve made in PVC. Algae broth exited the tank (bucket)

through this valve, which is connected to the pump by clear PVC tube 25.4 mm (I")
external diameter, 304.8 mm (12") long. The medium re-entered the tank (bucket) at the

inlet on the top of the tank after circulating throughout the tubular PBR.

3.2.2.1.2 Pump

A magnetic pump is installed in a line between the tank and the tubing. This line consists
of a tube that has an external diameter of 25.4 mm (I") and a length of 556 mm (22").

The pump has a flow rate ranging up to 27 gal per minute, with a maximum head of 8383
mm (27.5') and a maximum pressure of 75 psi. The pump is powered up by 1 15V/2-1.6
Amp and 50/60Hz motor equipped with a vented shaded pole to prevent rising
temperature. This pump has low shear stresses which prevent algal cells damage. The
magnetic pump is manufactured by Gorman Rupp Industries (GRI), model 14100-015. It
is important to note that pump flow rate is fixed; but a one-way valve is installed at the
pump entrance point to regulate the liquid flow and direct the medium into the pump.
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Since volume of the liquid in the main tank is 4 gal, the total volume in the system is 7.5

gal. At any moment 3.5 gal out of the 7.5 gal are exposed to the light or 47% of time,
which is equivalent to 10 hours per day.

3.2.2.1.3 Mazzei Nozzle

The Mazzei nozzle was installed in the line to diffuse gas (air/C02) flow into medium

line. The Mazzei nozzle is a high-efficiency, venture-type made in polypropylene (PP),

differential pressure injector with internal mixing vanes. It creates a vacuum inside the
injector body due to a sufficient pressure difference between the inlet and outlet ports
(www.Mazzei.net, Mazzei Injector Company). Gas velocity and pressure in/out of the
nozzle were not of interest in the present work. Thus they were not measured.

3.2.2.1.4 Gas Supply

Compressed air is introduced into the reactor via the Mazzei nozzle. A pressure gauge is
installed in the air/C02 line to measure the air pressure entering the reactor. The

operating gas pressure range is determined to insure parallel flow of air and culture
medium. If the air pressure is too low, it will not enter the PBR. If the air pressure is too

high, it will prevent the culture medium from entering the PBR. In both cases the algae
will not grow. The operating pressure is determined by trial and error, varying the

pressure gauge and observing the flow in the TPBR. The results of the gas pressure
optimization are included in Chapter 4, Section 4.3. The picture of the pressure gauge is
displayed in Appendix II.

Carbon dioxide was also supplied from CO2 gas cylinder connected to the reactor in

attempt to maximize photosynthesis process. However, it was observed that the

71



Supplement CO2 decreased the growth rate of the culture. Therefore the line supplying

neat CO2 was closed for the selected strain. However, the design allows the option of

adding supplement CO2 gas when using any strains that require an excess of CO2. It is

important to note that the compressed air contained about 300 ppm of CO2. This amount

OfCO2 in compressed air is sufficient to provide carbon needed for photosynthesis

process.

3.2.2.1 .5 Clear Tubing for Photobioreactor

Clear polyvinyl chloride (PVC) tube of 25.4 mm (I") external diameter (OD), 19.1 mm
(3/4") internal diameter (ID) and 45.72m (180O" or 150') length is used to circulate algal
broth throughout the reactor. These tubes consist of three pieces of 15.24 m (600" or 50')
each connected each other with PVC female connectors of 19.1 mm ID, strengthened

with clamps. These tubes can hold a total volume of 13.1 L (3.5 gal).

3.2.2.1.6 Photonic Energy Source

A total of 32 Phillips fluorescent lamps (J-12, 4OW each) were used to supply photonic

energy to the tubing. The PBR tubing is mounted on plywood (60 ft ? 1 80 ft) painted in
white to reflect the photon flux and maximize photonic energy turbidity. Light intensity
was measured at the center and edges of the plywood using Cooke light meter. The

measurement data are presented in Chapter 4, Section 4.3.

3.2.2.2 Batch System

A culture medium is manually transferred into the main tank. The pump is started

immediately to circulate the medium throughout the tubing. The air, which contains CO2,
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nitrogen and oxygen, flows co-currently with medium through the entire cycle and go

back into the main tank. Non-soluble gas (air and O2) is separated from medium in the

main tank and exit the tank via an outlet located at the tank top cover. The medium is

pumped back into the reactor to continue the cycle. Before adding inoculum, the medium

and air are circulated throughout the reactor for 1-2 hours to allow a complete dissolution

of nutrients with the light source on. The light can be kept off without impacting
nutrients dissolution.

Then inoculum is added to the medium in the main tank. The culture is then cycled

throughout the reactor where algal cells are exposed to the photonic energy. Algal cells

capture CO2 and photon, and convert them into carbohydrate (lipid) through

photosynthesis as shown in Reaction 2.1 and 2.2. It is important to note that the
inoculation is done at 1:10 volumetric ratio. For instance, a batch of 20 L start with 20 L

of medium prepared in a separate vessel (5 gal carboys) and poured into the reactor main
tank. The medium is inoculated with 2 L of Chlorella Salina at 1 g/L.

3.2.2.3 Reactor Characterization

The fluid flow throughout the TPBR is characterized using water in lieu of the medium

and air as source of CO2 and O2. The TPBR was tested to assess its stability and

functionality. Several parameters were determined during the testing: flow velocity, air

supply pressure, Reynolds number, and medium flow rate. It was determined that the
maximum density of Chlorella medium used in this work was approximately the same as

the density of water. Thus water was suitable for reactor testing process instead of

medium. The testing of the TPBR with water should show the same TPBR functionality

and performance as using algae solution.
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3.2.2.3.1 Flow Rate

Water is pumped into the reactor at constant rate and circulated throughout the tubing.

A3-way valve set in the liquid flow line is opened to fill a 2 L graduate cylinder with

water. The filling time is recorded for each trial or filling. After performing several

trials, an average time is estimated to calculate the flow rate using Equation (3.1).

Results are displayed in Chapter 4, Section 4.3.

2 ÍL1
Flow rate [Us] = — — Equation (3.1)average time [s]

3.2.2.3.2 Air/Carbon Dioxide measurement

Air containing carbon dioxide is supplied to the reactor. A manometer is installed in the
air supply line to measure air pressure before entering the reactor. The air pressure is
varied by closing or opening the gas valve, which changes the air pressure. Results are
shown in Chapter 4, Section 4.3.

3.2.2.3.3 Medium Velocity

Blue dye was introduced as a tracer into the water circulating throughout the reactor to

measure liquid flow velocity. A 4 ft (1 .2 m) portion of tubing that connected the two

spiral parts was used to measure the liquid flow velocity. Time was recorded when blue
dye passed the initial and end point of the 1.2 m section. Average time was estimated and
used in Equation (3.2) to calculate the liquid flow velocity (practical liquid flow

velocity).

1-2 Tm] ,, .Velocity [m/s]= — Equation (3.2)average time [s]
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This technique assumes highly turbulent flow so that the liquid has a uniform velocity

profile at each point inside the tubing.

The liquid flow velocity can also be calculated using Equation 3.4.a (theoretical liquid

flow velocity) from the flow rate measurement and the inside diameter of the tube d=

19.05 mm (V4").

q flow rate? = — = Equation (3 Aa)A cross section area of flow

Equation (3 Aa) becomes Equation (3 Ab) after substituting A by its expression (nd2/4).
4q_
pa2v = — Equation (3 Ab)

Results are displayed in Chapter 4, Section 4.3. The results of liquid flow velocity
calculated in Equation 3.2 can be compared to the results from Equation 3 Ab to assess
the difference between theoretical liquid flow velocity and really or practical

measurement.

3.2.3 CULTUREOFCHLORELLAINTPBR

The selected strain of Chlorella was grown for an average of 2 weeks in 2 L flask using
micro and macro-nutrient solution shown in Table 3.4. The culture served as inoculum

for large culturing in the TPBR.
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Table 3.4: Growth Medium Recipe

Chemical

Macro-nutrients

Calcium Chloride
Boric Acid

Potassium Nitrate

Magnesium Sulfate
Sodium Phosphate
Sodium Chloride

Micro-nutrients
EDTA
(Ethylenediamine
Tetra acetic Acid)
Ferrous Sulfate

Formula

CaCl2*2H20
H3BO3
KNO3

MgSO4
Na2HPO4

NaCl

C10H16N2O8

FeS04*7H20
Zinc Sulfate

Molybdenum
Oxide

Copper Sulfate
Cobalt Chloride
Manganese
Chloride
Extra nutrients***
Thiamine HCl
(vitamin Bl) at
IQ(^gZmI
Vitamin B12

Sodium selenite

ZnS04*7H20

MoO3

CuSO4* 5H2O
CoCl2*6H20

MgCl2MH2O

C12H17ClN4OS

C63H88CoN14O14
P

Molecular
weight

Na2SeO3

*** Usedfor algae screening only.

147

62

101

121

142

58

292

278

287

144

250

238

126

300.5

1353.9

173

Required Concentration

0.2 mM

0.13 mM

5.2 mM

5.OmM

0.4 mM

0.1 M

29.4 mg/L
8.0 mg/L

525.2 mg/L
600 mg/L
76.8 mg/L

5800 mg/L

26.9 mg/L

2.8 mg/L
0.288 mg/L

0.125 mg/L

0.075 mg/L
0.025 mg/L

0.15 mg/L

20 mg/L

0.5 mg/L

80 mg/L

Example
of 20 L
medium

588 mg
160 mg

10,504 mg
12,000 mg
1,536 mg
116,000

mg

538 mg

56 mg
5.76 mg

2.5 mg

1.5 mg
0.5 mg

3.0 mg

400 mg

10 mg

1600 mg

20 to 25 L of growth medium were prepared in separate vessel using reverse osmosis
(RO) water and micro & macro-nutrient at the required concentrations as shown in Table
3.4. Extra nutrients (vitamins and silicate) were not required for this species, but these
could be added as supplement. The medium was then poured into the main tank of the
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TPBR and circulated throughout the reactor along with air in co-current flow. After a

complete dissolution of nutrients, an inoculum from the 2 L flask was added to the
medium at a volumetric dilution of 1 : 1 0.

Macro and micro-nutrients in Table 3.4 have been used in all media for algae culture in

this project. Extra nutrients (sodium selenite, vitamin Bl and B 12) were used in media

for diatoms cultures during algae screening only. Vitamin Bl and B12 can be added to

the fresh medium for Chlorella to enhance the growth. All media prepared in this work

for the selected Chlorella strain did not contain any extra nutrients.

Culture growth was monitored every two days by measuring the cell concentration either
by turbidity measurement using a spectrophotometer or by cell count using an optical
microscope and a counting chamber. The pH of culture growth as well as the nitrite and
nitrate ions concentrations were monitored using strip pH paper (with a pH range of 1-

14), NO3 strip paper (with concentrations range of 0 ppm - 200 ppm)and NO2" strip paper
(with concentration range of 0 ppm -10 ppm). Monitoring results are displayed in
Chapter 4, Section 4.4.2.

Algal cells growth was similar to growth of bacteria with different distinct growth
phases: lag, exponential, stationary and death or lysis. At the beginning of the culture, in
lag phase, cells were auto-adapted to the new environment. At this stage, cells multiplied
at a low rate. The growth was unnoticed. The lag phase was followed by an exponential

or growth phase. Cells are believed to grow at high rate in this exponential phase. The
fast growth of cells in this phase attributed its name to the phase: growth phase. Cells
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growth reached stationary phase at the end of growth or exponential phase, which is

characterized by no-cells growth. The stationary phase is followed by lysis phase where

cells started to cease living, as shown in Figure 4.5.

It is important to note that concentrations of sodium chloride (NaCl) and potassium

nitrate (KNO3) were doubled compared to concentrations shown in Table 3.4 in order to

increase biomass productivity. Each algal culture in TPBR was grown for about 2 weeks

until the color became dark green as shown in Figure 3.2. The green dark color indicates

that the culture has reached its stationary phase and it is ready for harvesting.

,cï^W^Ï5W5gtaiafc|,M

Figure 3.2: Algal broth in TPBR in its stationary phase.
Broth collected after 2 weeks ofcultureperiodprior harvesting.

Algae cultures in this work were harvested when cells concentrations become constant

indicating that cultures reached stationary phase.
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3.2.4 BIOMASS PROCESSING

Once the culture reaches a stationary phase, it was stopped and the broth collected into 5

gal carboy. A flocculent, aluminum sulfate anhydrous A12(S04)3, was added to the broth
at a concentration of 0.5 g/L (0.5 g of A12(S04)3 per liter of algal broth) to precipitate

algal cells. For example, 10 g of A12(S04)3 were added to 20 L of broth solution to
precipitate algae. Carboys were manually shaken to allow all cells to bind to Al2(SO4)S,
then left to settle into two layers for at least half hour for total precipitation.

The top layer consisted of relatively clear medium at low algae cell concentrations was
gently discarded. The remainder, very condensed cell solution, was centrifuged using
Beckmann centrifuge or Damon IEC B-20A centrifuge. The centrifuge produced algal

paste or pellet, and a clear liquid. The clear liquid was discarded.
The algal paste or pellet was frozen using a mixture of dry ice, acetone and methanol in a
Labconco jar. The frozen algae paste was then lyophilized using Labconco dryer

(lyophilizer) for at least 48 hours depending on the level of moisture in the pellets and the
size of the pellet. Dry algal biomass was then collected in pre-weighed dry jars. These
jars were weighed again post-filling with dry algal biomass. The difference in weights
prior and post dry algal biomass filling gave dry biomass weight as shown in Equation
3.3.

Mass of algal dry biomass [g] = mass of (Jar + dry biomass) - mass of (empty jar)
Equation (3.3)

The final concentration of algal broth was calculated using Equation (3.4):
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mass of algal dry biomass [g]
Final concentration [g of dry algae/L] = — ; 7G,La J ° medium volume [L]

Equation (3.4)

Results for different batches of algae culture are displayed in Chapter 4, Section 4.5.

3.2.5 LIPID EXTRACTION

Lipids were extracted from dry algal biomass using two different techniques.

1- Long protocol using modified Bligh& Dyer (Ferrentino,2007)

2- Short protocol using Soxhlet extraction apparatus.

Both techniques are based on solvent extraction. Lipid extraction was performed on
different batches of samples cultured in TPBR. Prior to extraction, all glassware were

washed with soap and water, soaked in 1 N hydrochloric acid (HCl) and then rinsed

thoroughly with reversed osmosis (RO) water. All glassware in glass and metal were
then baked in the oven at 120 0C for about Ihr. Baked glassware was left in the

laboratory at ambient air to be cooled to room temperature. They were then rinsed with
acetone, methanol and chloroform respectively to remove any potential oil that may

affect results.

3.2.5.1 Long Protocol: Modified Bligh and Dyer

About 1 g of dry biomass was pulverized using a mortar and pestle. The powder was
added into a 125 ml glass-beaker with a stir bar plus 10 ml of chloroform, 20 ml of
methanol and 10 ml of RO water. The flask (containing chloroform, methanol, water, dry

biomass and stir bar) was placed on a Corning magnetic stir plate (stirrer) for 24 hours.

Sample was then filtered through 2.5 µp? filter paper (Whatman grade # 5) using a 125 ml
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Buchner flask, a 90 mm Buchner funnel and aspirator vacuums pump. The initial flask

and the filter were rinsed with 10 ml of chloroform plus 10 ml of RO water to collect any

remaining oil (lipid). Collected solvent mixed with algal oil (lipid) was transferred in a

250 ml glass separator funnel and settled for 1 to 2 hours to allow a total separation

water/methanol (top layer) from chloroform/lipid (bottom layer).

The bottom layer was collected in a pre-weighted flask, followed by solvent evaporation

using a water bath set at 40 - 45 0C under nitrogen or air blow. After a total evaporation

of solvent, the remainder was algal lipid or oil. It was placed in the oven (National

Environment Incubator) overnight at 45 0C to remove any remaining moisture. The lipid

content (g of lipid per g of dry algae) was calculated using Equation (3.5):

mass of (flask+lipid)-mass of (empty flask) [g]Lipid content = . . , ... -?77? 10° Equatlon (3·5)K mass of dry algal biomass weight [g]

The results of different batches are displayed in Chapter 4, section 4.5.2.

3.2.5.2 Short Protocol: Soxhlet Extraction

Normal hexane (n-hexane) at 95% purity was used to extract oil from algal biomass.
250 ml of n-hexane was transferred into a 250 ml or 500 ml round bottom flask with 4 to

6 carbon chips. The flask was connected to the Soxhlet extractor, which contained glass-
wool to prevent algal biomass from clogging solvent line or falling into the solvent (n-
hexane) flask. 1 g to 5 g of algal biomass was added on the top of the glass-wool. The
extraction was then connected to the condenser, which circulated cold water (at

4°Capproximately) from tap pipe. The Soxhlet set up is displayed in Figure 3.3.
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Mantel
Source of heat

·™*'**>*5(#ß?

Condenser

Soxhlet

n-hexane

250 ml or 500 ml
Round bottom flask

Figure 3.3: Soxhlet extractor setup

A water condenser was used during this process. Heat was provided via an electrical

mantel for 5 - 6 hours followed by cooling at room temperature.

The mixture of algae oil/hexane was filtered through 0.25 µp? Whatman filter grade

number 5 using a Büchner funnel and flask to remove algae particles that went into the

solvent during the oil extraction process. Sodium sulfate was used as a drying agent to

remove excess moisture from the sample (mixture of algae oil/hexane). About 3 g of

sodium sulfate Na2SC>4 granular was added on the top of Whatman filter paper during the

filtration process. Collected solvent/algal lipid was evaporated from the mixture using a
water bath set at 40 - 45 0C. The Büchner flask containing algal oil was then placed in

the oven overnight at 45 0C to remove remaining moisture. The lipid content was

calculated using Equation (3.5). Once it was confirmed that the two protocols gave the

same results, the long protocol was abandoned because it was time consuming and

excessive labor.
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3.2.6 TRANSESTERIFICATION

3.2.6.1 Conventional Transesterification

Conventional transesterification consists of a two-step process:

a) Extract oil from algal biomass as described in section 3.2.5;
b) Convert algal oil into biodiesel through transesterification reaction using methanol and
an alkaline catalyst; for example, potassium hydroxide (KOH). Figure 3.4 displays the
two steps process for biodiesel production from algal biomass.

Stepl Step 2

Soxhlet extraction Algal oil Oil transesterification Biodiesel

Figure 3.4: Biodiesel production in two-step: algae oil extraction followed by
transesterification

After a partial segregation of the oil from solvent (n-hexane), the oil (mixed with
remaining n-hexane approximately 1 ml) was mixed with 25 ml of 0.1 N KOH in
methanol (CH3OH) at 50 0C on a Corning stirring/heating plate for half hour. The
reaction time (stirring/heating time) can vary depending on the size of the sample and the
level of FAMEs yield needed. Transesterification reaction occurred during
stirring/heating process. Transesterification product (FAMEs + remaining of algal
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biomass + KOH+ methanol) was separated by filtration through a 0.25 µ?? Whatman

filter paper grade number 5 with sodium sulfate anhydrous using Büchner funnel.

Sodium sulfate anhydrous removes moisture from transesterified sample and the filter

retains algae particles that were not captured during filtration post oil extraction. Excess

solvent in transesterified sample was then evaporated to about 1 ml using water bath set

at 35 0C - 40 0C and blowing air. 1 ml of final product was then transferred in a 10 ml

graduate glass cylinder. The flask that served to evaporate excess solvent was rinsed
with about 2 ml chloroform several times. This chloroform mixed with FAMEs was

added to the 10 ml graduate glass cylinder till the final volume reached 10 ml mark. The

final product (final volume of 10 ml) consisted of FAME, traces of n-hexane, methanol
and chloroform. This final product was transferred into a 20 ml and it was ready for GC

analysis. The GC procedure is described in section 3.2.6.3. The GC analysis results are
presented in Chapter 4, Section 4.6.

3.2.6.2 In Situ ultrasonic assisted Transesterification

An aliquot of 1 to 5 g of dry algal biomass weighed in a 250 ml glass beaker was
combined with 40 ml of 0.1 N KOH in methanol. The mixture was sonicated using an

ultrasonic W375 Sonicator set to provide a power density of 9.4 W/ml with pulsed duty

cycle of 50%. The reaction time (transesterification time) was varied for optimum
biodiesel yield. The volume of methanol (0.1 N KOH in methanol) was kept constant at
40 ml for the completion of transesterification reaction. The amount of methanol was in
excess compared to algal biomass amount. This one-step process is shown in Figure 3.5
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One step process

Ultra-sonication Biodiesel

Figure 3.5: In situ (one-step) transesterification

At the end of the reaction, the mixture of Fatty Acids Methyl Esters (FAMEs), solvent

(mainly methanol) and remaining of algal biomass was filtered through 0.25 µp?

Whatman filter paper grade number 5 using filtration apparatus mentioned above to

remove the remaining of algae particles.

Excess solvent (methanol) was evaporated using a water bath set at 45 0C under blowing

air. Air was used in this process to minimize production cost, even though it was not the

focus of the present work. The final product after solvent evaporation was transferred in

a 10 ml glass graduate cylinder. The Buchner flask used during solvent evaporation was

rinsed several times with about 2 ml of chloroform to collect any remaining FAMEs from

the Büchner flask. The collect FAMEs in chloroform were added to the final product in a

glass graduate cylinder till it reached the 10 ml mark. The final 10 ml product was then

transferred in a 20 ml clear glass bottle. The FAMEs samples were ready for analysis in

the gas Chromatograph (GC). The results of the one step in situ process are presented in

Chapter 4, Section 4.6.
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Figure 3.6 shows different steps for biodiesel production in the two-step process and the

in situ or the one-step process.

One-step biodiesel production

Algal
biomass

In situ transesterification or
Combined extraction and

transesterification using 0.1 N
KOH in Methanol

Two-step biodiesel production

Biodiesel:
FAMEs

Oil extraction
using n-hexane

Transesterification
using 0.1 N KOH
in Methanol

Figure 3.6: Comparison of one-step and two-step biodiesel production.

3.3 GAS CHROMATOGRAPH PROCEDURE

3.3.1 GCSYSTEM

Hewlett Packard HP 5890 Series II Gas Chromatograph (GC) was used to identify

potential FAMEs compounds in the transesterified algal oil samples (biodiesel). The GC
had a cool on-column injection port. It was equipped with a flame ionization detector

(FID) and RTX-I fused silica fast column 15 m long, 5.0 µ?? df (film thickness) and 0.32

mm inner diameter (from Restek chromatography procedure). The GC was connected to
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a 3396 HP integrator linked to a computer loaded with HP Peak 96 software. The

settings of HP Peak 96 are displayed in Appendix III.

3.3.2 GC TEMPERATURE PROGRAM

The GC column is contained in an oven. The temperature of the column (or oven) is

programmed into the GC. In our case the temperature program (often called GC method)
is set as follows:

a. Injection port cool on-column at 40 0C.

b. Oven temperature profile: started at 40 0C and kept for 2 minutes (termed isothermal
hold), then ramped to 230 0C at 8 °C/min. The final temperature was held for 20
minutes to bake any remaining material within the column.

c. The detector and oven track temperatures were set at 230 0C. It is important to note

that the flame ionization detector was supplied with hydrogen gas to produce the

flame. The GC had an internal flame igniter.

d. Helium was used as carrier gas flowing at 2. 1 8 ml/min at 50 0C.

Figure 3.7 shows the variation of the column temperature versus time according to the
above method.
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Figure 3.7: Temperature profile in the GC oven

3.3.3 SAMPLE INJECTION

1 µ? of the liquid sample was injected into the cool on-column at 40 0C using a 5 µ?-
Hamilton syringe. The sample went through the total run time of 32 minutes with extra
time used for GC column conditioning. Data were collected using HP Peak 96 software,

and then transferred into a laptop equipped with OriginPro 8.1 software for analysis. Data

were acquired in "asc" format. They were converted into "csv", and then transferred in
OriginPro 8.1 for graphing and FAMEs analysis.

3.3.4 GC OPERATION AND DATA ANALYSIS

The GC operation was as follow:

a. First, a mixture of FAMEs standard in cocktail was prepared with C 16:0, Cl 8:0,

C18:l, C18:2, C18:3 and C19:0 at 16.7 mg/µ? each. This cocktail standard was run in
88
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the HP 5890 Series II GC to identify retention time of each peak. Results of cocktail

standard are displayed in Chapter 4, Section 4.6.

b. Second, a calibration curve was run using C 19:1 standard (Methyl Cis-9-

octadecenoate C19:l at 0.874 g/ml) diluted in chloroform in serial of dilution ranging

from 1:500 through 1:512000.

Results of calibration curves were analyzed in OriginPro and are displayed in Chapter 4

Section 4.6. A linear curve was established with coefficient "a" as a slope of the line

using calibration curve data. Equation (3.4) represents the linear curve.
Y = a X Equation (3.4)

Where Y and X represent respectively the FAME concentration and the integrated area
under standard peak. Equation (3.4) can be used to determine the concentration of any
FAME found in algal samples analyzed in GC. It is important to note that Equation (3.4)
gives an estimate FAME concentration, which may be biased by standard error in slope
calculation. However, interpolation method can be used in lieu of Equation (3.4) to

minimize the standard error. In this work, the interpolation method was used to

determine the concentration of each significant peak found in the transesterified algal

lipid.

Consider a FAME peak with an integrated area X corresponding to a concentration Y, if a
value X is between two known peaks of the calibration curve (X0, Yo) and (Xi, Yi), the

concentration Y of unknown peak that has integrated area X is calculated using Equation

3.5 (linear interpolation) with an assumption that two close points in any function (curve)
can be considered linear. X¡ and Y¡ represent an integrated area of peak i and its

concentration respectively.
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Y-Y-^yxV-' Equate (3.5,
A calculation of concentration of unknown FAME peak with an integrated area of 1538.8

is illustrated below.

The GC standard C 19:1 (Methyl Cis-9-octadecenoate at 0.874 g/ml) was diluted at 0.219

mg/ml which has an integrated area of 1932.4 (X,=1932.2, Y1= 0.219 mg/ml) and the

same standard C 19: !(concentrated at 0.874 g/ml) was diluted at 0.109 mg/ml

corresponding to an integrated area of 1406.2 (X0= 1406.2, Y0=O. 109 mg/ml).

The concentration of unknown FAME peak with an integrated area of 1538.8 is found by

substituting all terms of Equation 3.5.

(1538.8 -1406.2)*( 0.219 -0.109) ?1__ . .Y = 0.109 + - — = 0.137 mg/ml(1932.4-1406.2)

This unknown peak has been quantified and its retention time will be compared to those
of GC standard C 16:0, C 18s and C 19:1 in order to determine its identity.

A peak with a retention time which does not match any of the known GC standards run in
this work will be labeled as unknown.

Total biodiesel produced per g of dry algae biomass can be estimated using Equation 3.6.

Total biodiesel produced in Ig of dry algae = . , —— * S?=? Yjr ° initial mass of dry algae

Equation (3.6)

Where n, Y¡ [mg/ml] and V [ml] represent respectively the number of peaks,

concentration of FAME peak "i" and the volume of biodiesel plus solvent. In this work,

the volume of biodiesel plus solvent is 10 ml. The total biodiesel produced in 1 g of dry

algae represents also biodiesel yield based on the initial mass of dry algae used to
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produce biodiesel through either the in situ process or the conventional process (two-step

process).

3.4 SOFTWARE

3.4.1 JMP

JMP is a complex computer program developed to perform statistical analysis. It is also

used to design different sets of experiments and analyze data. JMP is an interactive and

comprehensive tool that links data to graphic for easy analysis. JMP version 8.1 was used
in this work to analyze transesteri fication results. The outputs of JMP are displayed in

Chapter 4, Section 4.6.

3.4.2 ORIGINPRO

OriginPro is also a computer program that performs data analysis and graphing. It
performs unique peak analysis and curve-fitting of data. OriginPro version 8.1 was used
in this work to perform FAMEs peaks analysis and fit curves of several data displayed all

across Chapter 4, Section 4.6. This program allows setting a baseline for FAMEs peaks
and calculating the integrated areas under peaks as shown in Appendix IV.
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3.4.3 PEAK 96

Peak 96 is a Hewlett Packard (HP) DOS based computer program that enhances

communication between a computer (PC) and an integrator connected to the GC. It

resides on the PC and has the capability of importing and exporting GC data from the HP

3396 integrator to a PC and vice-versa. It is also capable of storing data from the HP
3396 integrator. Peak 96 was used in this work to capture GC data from the HP 3396
integrator and transfer them to PC. These data were then exported to a laptop using a
USB flash disk, for further analysis in OriginPro. The settings of this software are

displayed in Appendix III.

3.5 EXPERIMENTAL PROCEDURES SUMMARY

Table 3.5 summarizes the methods and procedures used in this study.

Table 3.5: Summary of methods/procedures used

Property to
be measured

Algae growth

Biomass
yield

Lipid content

FAMEs
composition

Measurement

Algae concentration by measuring
turbidity.
Cells count in algal solution.
Mass of dry algae after harvesting per
liter of algal broth
Mass of dry algal lipid after extraction
per mass of dry algal biomass

Fatty acids methyl esters (FAMEs)
concentration ^g/ml) per g of dry
algal biomass

Equipment/software used

Spectrophotometer
Microscope and a counting
chamber
Centrifuge, lyophilizer and
balance
Soxhlet, oven (incubator),
water bath, stirring plates,
balance
Gas Chromatograph, HP
integrator, computer, JMP,
OriginPro 8.1 and Peak 96
software
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These methods were applied to reach the objectives of this research. The results obtained

from these techniques are presented in Chapter 4.
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CHAPTER IV

RESULTS AND DISCUSSIONS

4.1 INTRODUCTION

The results for this work are divided in six parts. The first part presents the results for

algae strains screening using appropriate measuring instruments. In the second part, the
tubular photobioreactor (TPBR) constructed in this work and presented in Chapter 3,
Section 3.2, will be characterized by assessing its functionality and defining its suitable

operational conditions. Results obtained culturing algae in the TPBR will be displayed
and discussed in the third part. The fourth part will show the results of harvesting

technique, drying algal pellet and oil extraction from dry algal biomass. The results for
maximum growth rate using Huesemann et al. approach as kinetic model for algae

growth in a batch reactor will be showed in the fifth part. In the last part, the results of
transesterification process for both conventional and in situ process will be displayed and
examined. The results displayed and discussed in all these 6 parts represent responses to

the 8 objectives addressed in Chapter 1, Section 1.8.
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4.2 PART I: ALGAL STRAIN SCREENING

4.2.1 CHLORELLASTRAINSSCREENING

Two strains of Chlorella were screened. An unidentified strain of Chlorella named

Chlorella sp. (also called Cl earlier in this work) was screened for high lipid content and

growth rate. Another Chlorella named Chlorella C2 was also screened for high lipid

content and growth rate. Chlorella C2 was later termed as Salina due their ability to grow

in medium containing high salt concentration especially NaCl and KNO3. These two

strains were obtained from Professor Leland Jahnke laboratory at the UNH Plant Biology

Department. Chlorella sp. and C2 were cultured for two weeks in 2 L Büchner flask used
as small PBR. These two cultures were performed in the same growth conditions set as

follow. The temperature was not measured; however, it was assumed to be room

temperature approximately 25 0C. The media cultures for both Chlorella strains
consisted of fresh nutrient solution or fresh medium shown in Table 3.4 with no

supplement of selenite, vitamins Bl and B 12. The two flasks were exposed to 8
fluorescent light bulbs, which provided photonic energy 24 hours per day for the entire
culture period. Air was bubbled in both flasks to homogenize algal broths and supply
CO2 for photosynthesis. The pH of these cultures started at 6 and increased until it
reached 9 at the end of cultures.

As stated previously in Chapter 3, Section 3.2, the growth of the two algae culture was

not monitored. The goal of this part of the work was to assess the extent of growth for
these two strains cultured in same conditions. This was done by measuring the turbidity

of algae broth (optical density) using a spectrophotometer at the beginning and at the end
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of the two week culture period. Turbidity (optical density) of algae broth is proportional

to the cell concentration of algae culture. Thus, a culture with high turbidity indicated a

high growth rate for algae broths of same age. Figure 4.1 shows results of the two

cultures as measured by turbidity or optical density.

4

!tT 3.5
= -È? 3
S -S 2.5

s a
è· g>? S3 ?
3 0.5
?-

0

¡Chlorella salina D Chlorellasp

¦H

MJ
Begining of culture End of culture

Algae growth

Figure 4.1 : Comparison of algae growth for two Chlorella cultures.

Figure 4.1 shows that Chlorella Salina has a higher growth rate compared to Chlorella sp
by comparing the two algae broths turbidity at the end of two week culture period. The
results of lipid content done using Red Nile Fluorescence technique were not conclusive;
they are included in Appendix V.

However, Khan et al. (2009), Chisti (2007) and Bigogno et al. (2002) stated that the lipid

content in dry algal biomass for Chlorella strains was approximately 20 % regardless of
strain types. Therefore, Chlorella sp. was eliminated due to the lower turbidity of its
broth compared to the Salina strain.
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4.2.2 SCREENING OF DIFFERENT ALGAE STRAINS

Seven strains were cultured in small PBRs (2 L glass Büchner filter) for two weeks.

These cultures were not monitored overtime. Nevertheless, growth rate of algae cells and

their oil content were measured at the end of the two weeks culture period. Culture

growth rate [cells numbers per unit time] was not measured, but the turbidity of each
culture were measured at the end of the two weeks growth period using

spectrophotometer with a wavelength set at 687 nm.

Results for oil content and turbidity at the end of two weeks culture period are displayed

in Figure 4.2. All these cultures started with much diluted broth (1 ml of inoculum in 2
L of culture medium) with a turbidity of zero.

6.0 U Optical density (OD) D Oil content (Fluorescence)

Strain

Figure 4.2: Algae concentration and oil content of seven algal strains

97



Oil content was measured from normalized algal broth using spectrofluorometer. The

normalization was performed at turbidity of 0.05 with Salina solution.

Some algae strains from Figure 4.2 such as Chaetoceros, Isochrysis sp or Thalassiosira

may grow fast if growth conditions were modified. For instance, diatom strain such as

Chaetoceros grows faster in medium with high concentration of sodium chloride (0.5 M

NaCl). But the medium used to culture Chaetoceros had NaCl at 0.1 M.

However, growth conditions were kept uniform for all seven strains at the screening

level. In addition, medium modification and/or variation of culture conditions such as

temperature, amount of CO2 and photonic energy supplied to algal cells were not the
main goal of this work at strain screening level.

It can be seen from Figure 4.2 that Chlorella Salina has the highest turbidity (optical

density), hence highest growth rate. But it has a low lipid content compared to Isochrysis
sp, Gymnodynium, Porphyridium and Thalassiosira. Combined results of turbidity
(optical density) and oil content, as seen in Figure 4.3, give high product for Chlorella
Salina compared to the other six strains. In addition, Chlorella Salina has a good
resistance to contamination resulting in less cultures collapse. Strains such as

Gymnodynium, Porphyridium and Isochrysis sp. have high lipid content. However, their
cultures tend to collapse rapidly in most cases and they are easily contaminated and

overtaken by Chlorella traces. As a result, Chlorella Salina was retained for the rest of
this investigation.
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Figure 4.3: Combined results of algal concentration (turbidity or optical density) and lipid
content. All seven strains ofalgae were cultured infresh medium, with air bubbling in the

medium at room temperature. PBR (2 L glassflask) for all strains were exposed to
fluorescent light bulbsfor 24 hours a day.

4.3 PART 2: TUBULAR PHOTOBIOREACTOR CHARACTERIZATION

Tubular Photobioreactor (TPBR) constructed in this work was characterized prior to

being used for Chlorella Salina cultivation. The following parameters were determined
for suitable functionality of the TPBR: light intensity, gas pressure ranges, medium flow

rate, medium viscosity and medium velocity in tubing. Results are displayed and

discussed in this section. After determining these parameters, the TPBR was operated

more than a week without any problems. Then the TPBR was ready to be used for

Chlorella Salina cultivation.
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4.3.1 GASPRESSURE

Compressed air supplied to the TPBR contained approximately 300 ppm of CO2. The

CO2 was consumed along with water by Chlorella Salina cells, which transformed them

into lipids essential to be used as raw material in biodiesel production process. The

supplied air pressure was measured using a graduated manometer (pressure gauge) placed
between air compressor and the reactor. Air pressure was varied by opening the air valve

gradually in order to determine the suitable operating pressure ranges. The readings
(measurements) for all pressures are presented in Table 4.1

Trial

Table 4.1: Air pressure readings with liquid flowing at 285.7 ml/s

Pressure

5.0

5.2

5.4

5.6

5.8

6.0

6.2

7.5

Observations

Small air bubbles observed in the reactor at supply point. It was
assumed that air supplied at this pressure was not sufficient to
provider CO2 necessary for photosynthesis reaction.
Similar as trial
Reactor runs with steady liquid flow through tubing without culture
interruption, air holding in tubing or air bubbles deficiency.
Similar as trial 3

Similar as trial 3

Flow of liquid ceases within (approximately) 3 hours of run
Flow of liquid stops 3 to 2 minutes after opening air line due to
holding air in tubing.
Flow of liquid stops within a minute of opening air line.

The desired pressure range is defined such that liquid flow through tubing cannot cease

due to excessive air in tubing or cause insufficient air in tubing with less CO2 for

photosynthesis reaction.
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When the supplied air had a pressure < 5.4 psi, air was spread in small bubbles in the

tubing and vanished within a few seconds. It was assumed that this pressure would not

allow a healthy culture due to insufficient air in tubing with less CO2 for photosynthesis

reaction. This range of pressures was not suitable for this TPBR.

An air pressure > 5.8 psi resulted in building up air in the tubing preventing free liquid

flow. This range of pressures was not used for this TPBR.

Air pressure ranging in the interval of 5.4 psi < P < 5.8 psi was ideal for a suitable

functionality of this TPBR; not only it allowed sufficient CO2 for photosynthesis process

along the tubing, but it also prevented air holding up inside the tubing which facilitate a
steady liquid flow in tubing. Air supplied at a pressure in the ranges of 5.4 psi < P < 5.8
psi enhances formation of small bubbles in the liquid flow, created by the Mazzei nozzle
as discussed in Chapter 3, Section 3.2. Therefore, air pressure ranging in the interval of

5.4 psi < P < 5.8 psi, was retained for suitable run of the reactor without liquid flow
cessation. A concurrent-flow of medium and air (gas) throughout the tubing was

observed during the entire cycle (in and out of the tubing).

The separation of undissolved air from the liquid (medium) occurred in the main tank at
medium returning point. The air went out of the main tank through an outlet and the
medium was kept in the main tank continuing the circulation cycle. The summary of
effects of air pressure on the operation of the TPBR is given in Table 4.2.
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Table 4.2: Summary of effect of air pressure on the operation of the TPBR at room
temperature, with a water flow rate of 285.7 ml/s

Air pressure Observed effects

P<5.4psi Small air bubbles, insufficient to provide C02
necessary for photosynthesis reaction

5.4psi<P<5.8psi TPBR runs with normal flow of liquid and air

P>5.8psi Liquid flow stops due to high air pressure

4.3.2 LIGHTINTENSITY

Light intensity is a vital part of algal cells growth during the photosynthesis process. In
this project, light intensity was measured using light meter (Cooke) at three different area
of the plywood (plw). Measurement picture is shown in Appendix II. Measurements in
Figure 4.4 show that light rays have high intensity (of about 1200 fc) on the center of the
plywood and less dense at the edges (around 600-900 fc). The average values at each
point (left, center, right and outside) of plywood are displayed in Figure 4.4 and Figure
4.5.
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Figure 4.4: Light intensity at different area of plywood
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Figure 4.5: Average light intensity at different area of TPBR

The average light intensity on left side, center and right side of the plywood measure in

foot-candle (fc) were 674 fc or 7254.9 Ix, 1222 fc or 13153.6 Ix and 907 fc or 9681.3 Ix

respectively. These light intensities are approximately 1/10 of the intensity of full,

unobstructed sunlight (around noontime) in summer (10,000 fc).

It is important to note that approximately 2/3 of the external area of tubing (TPBR) was

exposed to light provided by 32 fluorescent light bulbs 24 hours a day. As mentioned in

Chapter 3, Section 3.2.2, the tubing for this reactor was mounted on plywood (plw)

painted in white to enhance light reflection. It was assumed that reflected light rays were

captured by algal cells to maximize photonic energy absorption.

The photonic energy was not optimized in this work. However, it could be suggested that

the future project defines the optimum photonic energy amount required to culture

different strains of microalgae using this TPBR.
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One of the advantages of the TPBR compared to the raceway pond is the flexibility in

using natural light or artificial photonic energy that allows the cultivation of algae in any

seasons of the year (winter or summer) and overcome cool temperature and nighttime

challenges. Thus, the TPBR could be used indoor or outdoor. In addition, algae strains

that require intense light for a healthy growth still can be cultured in this TPBR by adding
more fluorescent light bulbs or combining fluorescent light bulbs with other types of

bulbs to provide desired light intensity.

On the other hand, adding more light bulbs could increase algae production cost. It is

preferable to balance the cost of production in order to keep the price of biodiesel
comparable with petrodiesel price. It was demonstrated in Section 4.5 of this Chapter
that light used on this TPBR did not inhibit algae growth.

4.3.3 MEDIUM FLOW RATE

Flow rate measurements were performed using a 2 L graduate cylinder and a timer. A

valve placed in tubing line served to collect water into a 2 L graduate cylinder. Table 4.3
displays filling time for different trials.

Table 4.3: Filling time of 2 L graduate cylinder, with air pressure set at 5.6 psi.

Trial

Filling time [s]
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The average time of all ten trials was 7 seconds. Thus, the flow rate can be calculated

using Equation 3.1.

2[L]Flow rate [L/s] =

Flow rate [ml/s] =

average time [s]

2000 [mL]

Equation (3.1)

7[s] 285.7ml/s = 0.0755 gal/s

The TPBR was tested with lower liquid flow rates using a reactor bypass mounted on the

return line into the main tank. The bypass line had a valve which allowed changing

liquid flow rate to lower ranges (< 285.7 ml/s).
It has been observed that the TPBR could operate at liquid flow rates < 0.075 gal/s, if air

is not supplied to the medium. Trials of flow rate using bypass are displayed in Table
4.4. It is important to note that the liquid flow stops when air is supplied to the reactor
with liquid circulating at flow rate < 285.7 ml/s.

Table 4.4: Flow rate measurement using bypass line and valve

2L-graduate cylinder,
filling time [s]

8

10

12
15

23

Flow rate
rmi/si
227

200

166.6

132.5

87.1

Comments

TPBR could operate with air
supplied to the tubing

Liquid flow stops as soon as air
pressure builds up in the tubing,
which occurs within 5 minutes
after opening the air valve.

Thus, liquid flow rates comprised in the range of 227 ml/s - 285.7 ml/s were retained for
a suitable operation of the TPBR allowing air/C02 supply through Mazzei nozzle. The
summary of all flow rates tested for this TPBR and their effects on the reactor is given in
Table 4.5.
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Table 4.5: Summary of liquid flow ranges

Flow rate < 227 ml/s

Liquid flow stops when
air is supplied to the
TPBR.

227 ml/s < Flow rate < 285.7 ml/s

Normal liquid flow with air
supplied at pressure ranging 5.4 -
5.8 psi, suitable for perfect run of
this TPBR.

Flow rate = 285.7 ml/s

Maximum flow rate
for the pump used in
this work. TPBR
operate without any
problems.

4.3.4 MEDIUM VELOCITY

Measurements of the liquid velocity were performed on a 4 ft (1.2 m) straight horizontal
section of the tubing (part of the TPBR). This section connected the two spiral sections
of the tubing as shown in Figure 3.1. The residence time of the air bubble in this section
was constant and equal to 2 seconds. Thus, fluid velocity could be calculated using

Equation 3.2 assuming that the air and liquid move at the same velocity in the TPBR.
1.2 [m]Velocity [m/s]

Velocity [m/s] =

average time [s]

1.2 [m]
2[s]

Equation (3.2)

= 0.6 m/s

The results obtained using an air bubble agreed with the results obtained by using blue

dye in the water circulating throughout the reactor. Consistently, the dyed water ran
through 1.2 m section in 2 seconds with water flowing at 285.7 ml/s or 0.075 gal/s in the
TPBR. Liquid flows in this TPBR with a velocity of 0.6 m/s.

Theoretical flow rate can be calculated using Equation 4.1.

v*7i*d2[m3]
4[S] Equation (4.1)
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Where q, ? and d are respectively, the theoretical flow rate, the medium velocity and the

tubing internal diameter (ID) (0.019 m or 3/4 in).
o.6*7t*d2[m3]Hence, q= ¦ 4[s] = 171 ml/s or 0.045 gal/s

The theoretical flow rate (171 ml/s) is approximately 40% less than the actual flow rate

(285.7 ml/s). The differences are due to unknown factors.

4.3.5 MEDIUM VISCOSITY

Medium viscosity was measured at room temperature using Brookfield viscometer and a
500 ml beaker containing about 150 ml of test sample. The measurements were taken

daily for 8 days of Chlorella Salina culture period in the TPBR.
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Figure 4.6: Viscosity of algal broth overtime

In Figure 4.6, clearly the viscosity of culture broth was relatively constant and close to
the viscosity of water (about 1 cP at 20 0C). This is an indication that the culture was not
dense enough to affect significantly the viscosity of medium.
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4.3.6 FLOWREGIME

The liquid flow regime was determined by evaluating the magnitude of Reynolds number

(Re) represented by Equation 4.2 and the results obtained in Section 4.3.5 and 4.3.4 of

this Chapter.

Re = ^-^ Equation (4.2)
µ

Where d, ?, µ and ? are the tubing internal diameter (d = 0.019 m or 3A in), the liquid flow

velocity (v = 0.6 m/s), the fluid viscosity (µ = 0.88 cP = 8.8* IO"7 kg/m-s) and the liquid
density (p = 1 000 kg/m3) respectively. It was assumed that the density of broth was
approximately equal to the density of water, 1000 kg/m .

Hence Reynolds number (Re) can be calculated as followed:

1000*0.019*0.6 ,„„„Re = = 12,955
8.8*10-7

Clearly the Re is large enough indicating that the TPBR was operating in a turbulent
regime.

4.4 PART 3: CULTIVATION OF ALGAE

4.4. 1 OPTIMUM NUTRIENTS CONCENTRATIONS

Five different media were prepared in small photobioreactor (2 L Clear glass Büchner

flask). The concentrations of potassium nitrate (KNO3) and sodium chloride (NaCl) were

108



changed for all five media as shown in Table 4.6. Each flask was labeled with letters A,

B, C, D and E. The cell growth was monitored by measuring the turbidity (optical

density: OD) of algae solution. Concentrations of all other nutrients present in these five

media were kept the same as indicated in Table 3.4 of Chapter 3.

Table 4.6: Composition of nutrient solution and KNO3/ NaCl effect on cell growth

Flask
NaCl

concentration
KNO3

concentration
Observations

B

0.1 M 5.2 mM Control with normal concentration
for both NaCl and KNO3.

5.2 mM
Very low growth rate, resulting in
low yield of algal biomass compared
to the control culture (flask A).

D

0.2 M

0.1 M

0.1 M

5.2 mM Same yield as the control culture
(Flask A).
No cells growth

10.4 mM
Excellent growth rate with algal
biomass yield greater than the control
culture.

In Figure 4.7, flask D that has nitrate (KNO3) deficiency shows no cells growth.

Similarly, sodium chloride (NaCl) deficiency (flask B) reduces cells growth rate. On the

other hand, doubling KNO3 concentration (flask E) increases the growth rate significantly

resulting in higher yield compared to the control culture in flask A. Moreover, doubling

NaCl concentration shows same algal biomass yield as the control in flask A. Thus

Chlorella (Salina) grows fast in media with high concentration OfKNO3 and NaCl. This

fact agrees with the name given to this species of Chlorella "Salina", which means this

strain grows well in medium with high salt concentration.
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Figure 4.7: Effect ofNaCl and KNOaconcentration on algal cells growth overtime.

The effect of nitrate and sodium chloride was done to assess the growth rate of cells

culture. However, no relations between growth rate and oil content were established

during this investigation.

The concentration of KNO3 as set in this work agrees with the results of the Food and

Agriculture Organization (FAO) of the United Nations (UN) as shown in Table 4.7

(Miyamoto, 1997).

Table 4.7: Effect of nitrogen on diatoms lipid content (Miyamoto, 1997)

KNO3 concentration [mM] Cell yield
Tg/Li

Lipid content Cell yield* Lipid
content

0.9 0.39 42.4 16.54

9.9 2.5 32.9 82.25

9.9 with supplement feeding
containing Nitrogen

2.6 33.6 87.36

Although the FAO results show that KNO3 concentration is inversely proportional to

algal lipid content (in g/L), the high concentration of KNO3 increases significantly algal
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biomass yield, which is also demonstrated in this work. In Table 4.7, the concentration

OfKNO3 at 9.9 mM, which is approximately the same as the results of our investigation,

showed a high product (cell yield * Lipid content) of 82.25. It can be inferred that high

KNO3 concentration is proportional to the product of combined cell yield and lipid

content. Therefore, the concentration of NaCl and KNO3 were doubled respectively at

0.2 M and 10.4 mM for the rest of this investigation.

4.4.2 ALGAL CULTURE IN TPBR

Several batches of Chlorella Salina were cultured in TPBR using medium containing

nutrients displayed in Table 4.8.
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Table 4.8: Composition of medium used to cultivate Chlorella Salina in TPBR

Chemical

Macro-nutrients

Calcium Chloride
Boric Acid

Potassium Nitrate

Magnesium Sulfate
Sodium Phosphate

Sodium Chloride
Micronutrients
EDTA
(Ethylenediamine
Tetra acetic Acid)
Ferrous Sulfate

Zinc Sulfate

Molybdenum Oxide
Copper Sulfate
Cobalt Chloride

Manganese Chloride

Formula

CaCl2*2H20
H3BO3
KNO3

MgSO4

Na2HPO4

NaCl

C10H16N2O8

FeS04*7H20
ZnS04*7H20

MoO3

CuSO4* 5H2O
CoCl2*6H20

Molecular
weight

147

62

101

121

142

58

292

278

287

144

250

Required Concentration

0.2 mM

0.13 mM

10.4 mM

5mM

0.4 mM

0.2M

29.4 mg/L
8.0 mg/L
1.05 g/L

600 mg/L

76.8 mg/L

11,6 g/L

26.9 mg/L

2.8 mg/L
0.288 mg/L

0.125 mg/L

0.075 mg/L

Example
of 20 L
medium

588 mg
160 mg
21.0 g

12,000 mg

MgCl2*4H20
238

126

0.025 mg/L
0.15 mg/L

1,536 mg

232 g

538 mg

56 mg
5.76 mg

2.5 mg

1.5 mg
0.5 mg
3.0 mg

Some batches were cultured simply to produce algal biomass. These latter batches were

not monitored; therefore, there is no data for them. Data for monitored batches are

reported in this section.

Figure 4.8 shows that Chlorella Salina cells grow like bacteria undergoing different
growth phases: lag phase, exponential (growth) phase and stationary phase. If the culture
goes more than 15 days, cells undergo lysis phase in which they cease.

It can be seen from Figure 4.8 that a healthy culture of Chlorella Salina can reach a

concentration up to 60*1 06 cells/ml.
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Figure 4.8: Growth phases of Chlorella Salina. Culture performed at room temperature,
medium compositionfrom Table 4.8, inoculum added at ratio of 1:10 (Volume of

inoculum: volume ofmedium)

It is important to note that, in the present work, batch-cultures start much diluted with
algal concentration of 0.1 g dry algae per liter of broth culture. They reach stationary
phase with an average algal biomass concentration of 1.1 g dry algae per liter of broth
culture. It can be seen from Table 4.8 that broth culture final concentration to initial

concentration ratio, in this investigation, is approximately 6 times the ratio for culture of

Arthrospira Platensis done using a Helix photobioreactor and medium of the following
composition. 17 g/1 NaHCO3, 1 g/1 K2SO4, 0.01 g/1 FeSO4JH2O, 0.08 g/1 EDTA, 2.5 g/1
Na NO3, 0.5 g/1 K2HPO4, 0.2 g/1 MgSO4JH2O, 1 g/1 NaCl, (1 m/1) of (2 g/1 H3BO3, 0.08
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CuS04.5H20, 0.2 g/1 ZnSO4JH2O) and 23 mg/1 NH4VO3, 44 mg/1 Co(NOs)2-OH2O

(Nerantzis et al 2000).

Even though the composition of medium and the species used in the Helix PBR were

different to the medium and species used in this work, this work shows high yield in

algae biomass by comparing the ratios final to initial algae concentration. This work

yields a ratio (final to initial broth concentration) of 1 1 and Nerantzis et al (2000) study

yields a ratio of 2, as shown in Table 4.9.

Table 4.9: Chlorella Salina culture characteristics comparison (Nerantzis et al 2000)

This work Helix PBR

Final/initial algae concentration 1 1 2

Lag phase [days] 3 5
Growth or exponential phase , ¿
[days]
Stationary phase [days] 3 9

Although Chlorella Salina cells resist attacks of bacteria and other algal strains, it can be
seen from Figure 4.9 that there were unknown limitations from time to time causing

culture collapse. For example, batch 3 in Figure 4.9 experienced lysis within 5 days of
inoculation.

Similarly, the maximum culture concentration in batch 2 was low, approximately 20*10
cells/ml compared to the culture concentration in batch 1, which was three times the

concentration of batch 3. Clearly cells in batches 2 and 3 suffered from unknown causes.

Causes of cultures failure or poor cells growth were not investigated in this project.

Nonetheless, these are important issues requiring a particular attention in future work.
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Figure 4.9: Chlorella Salina concentration versus time in 3 different batches over time.
Batches cultured with medium at concentrations displayed in Table 4.8, room
temperaturefor a week culture period.

4.4.3 BROTH CUTLURE pH

In Figure 4.10, pH started approximately at 6, then increased till it reached a plateau at 9

as (hydroxyl ions) OH" are released in solution during cells growth.
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Figure 4.10: pH of 3 batches of Chlorella Salina overtime.
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These 3 batches were cultured at different time in the same conditions, room
temperature, and medium compositionfrom Table 4.8, inoculafrom same source at 1:10.
Clearly, the pH of Chlorella Salina culture reaches a plateau after a week of culture

period as seen in Figure 4.10. Chojnacka and Marques-Rocha (2004) showed that OH"
ions are released in the reaction OfH2O and HCO3" (occurring due to the presence of CO2

in H2O) as shown in Table 4.10.

In this investigation, pH was not adjusted during cells cultures in the TPBR. It is likely

that the increase in alkalinity indicates that Chlorella Salina undergoes at least one of the
metabolisms described in Table 4.10. It can be inferred from Figure 4.8 that Chlorella

Salina culture reaches a stationary phase after a week of culture period in TPBR. This

may imply that when Chlorella Salina cells reach the stationary phase, photoautotrophic
or mixotrophic metabolism ceases indicating the end of Chojnacka and Marques-Rocha

(2004) reactions.

Table 4.10: Cells growth metabolism (Chojnacka and Marques-Rocha 2004)

Metabolism

Photoautotrophic

Mixotrophic

Chojnacka and Marques-Rocha Reactions
H2O + HC03"-> C + V2 O2 + 3 OH"

aHC03 + bCH20-*cC + 30H"+dC02

Comments

Both reactions
release OH"

resulting in pH
increase

C represents the algal biomass in the two Chojnacka and Marques-Rocha reactions of
Table 4.10

4 .4.4 NITRATE AND NITRITE CONCENTRATION MEASUREMENT

The nitrate (NO3") and nitrite (NO2") ion concentrations were measured with strip paper

indicating the concentrations ranges for both the nitrate and nitrite ions in culture
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solutions. The concentrations limits on these strip papers for both NO3" and NO2" were

respectively (0 ppm - 200 ppm) and (0 ppm - 10 ppm). The results in Table 4.1 1 showed
that KNO3 were in excess and was not consumed completely by Chlorella during its

culture period.

Table 4.1 1: Nitrate and Nitrite concentrations of four batches of Chlorella Salina cultured
in TPBR, fresh media with double concentration ofNaCl and KNO3, compressed air
supplied to provide CO2, light supplied 24hoursfor the entire culture period of2 weeks.

Time
[day]

0

10

12

NO3" concentration * 1 0 [ppm]
Batch

0.2

0.16-0.2

0.16-0.2

0.2

0.2

0.16-0.2

0.16-0.2

B

0.16-0.2

0.2

0.2

0.2

0.16-0.2

0.08-0.16

0.16-0.2

0.2

0.2

0.2

0.16-0.2

0.16

0.16-0.2

0.2

D

0.2

0.16

0.16

0.2

0.2

0.16-
0.2

0.2

NO2" concentration [ppm]
Batch

5-10

10

10

5-10

5-10

5-10

1-3

5-10

5-10

10

5-10

1-5

1-5

1-3

5-10

5-10

5-10

1-5

D

5-10

5-10

5-10

5-10

5-10

5-10

4.5 PART 4: ALGAE BROTH HARVESTING

4.5.1 BIOMASSCONCENTRATION

Chlorella Salina cultured in TPBR yield an average of 1.0 g of dry algal biomass per liter

of broth as displayed in Figure 4.1 1. The 4 batches in Figure 4.1 1 were inoculated at

1:10 ratio with algal seed solution (inoculums) at 1 g dry algae per liter of algal broth. To
illustrate, a batch of 20 L was inoculated with 2 L of algal solution at 1 g/L resulting in
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broth culture initially at 0.1 g dry algae per liter of algal broth. At the end of two week

culture period, the culture reached a concentration of 1.1 g/L. The concentration
increased 10 times from 0.1 g of dry algae per liter of algae broth to 1.1 g of dry algae per

liter of algal broth. These results agreed well with the results of the Food and Agriculture
Organization (FAO) of the United Nations (UN) when the light intensity was 5000

lumens or 465 foot candle (fc) (Miyamoto, 1997)

!Concentration of algal biomass DOiI content

ra t. (U
ap-o ?

13 <+- öd
° ?a
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H

r

«?

IV

Batches

Figure 4.1 1 : Algal biomass yield and lipid content after 12 days of culture period.
Culture done at room temperature, normal light 24 hours a dayfor the entire

culture period, air entering the TPBR at 5.6 psi.

The four batches in Figure 4.1 1 were cultured in the same conditions with inoculum from
same source. Batch-I showed higher biomass concentration than the other three batches.

Causes affecting growth rate of batches II, III and IV were unknown. However, culture
contamination and level of dissolved oxygen (DO) cannot be ruled out as causes of low

growth rate in the three batches.
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4.5.1.1 Light effect on growth culture

Once a batch-culture become dense, it can be assumed that a dark color decrease light

flux which will slow the growth with a risk to enter in to a stationary phase prematurely.

Oswald empirical formula (Anderson, 2005), Equation 4.3, can be used to assess the

effect of light on algae growth inhibition. This equation gives the maximum distance dv

(in cm) of light penetration.

, 6000 ^ ,„ „Ndp = Equation (4.3)

Where C is the broth concentration in mg of dry algae per liter of broth culture. The

average value of C (from Figure 4.1 1) was 1.1 g of dry algae per liter of broth or 1 100

mg/1. Hence dp is:

dp = 6000/1 100 = 5.5 cm.

The maximum distance of light penetration is greater than the external diameter of tubes

(1 inch or 2.5 cm) in the TPBR.

dp= 5.5 cm >» external d = 2.5 cm.
Therefore, light was not an inhibitor of Chlorella Salina growth in the TPBR.

4.5.1.2 Culture Dilution Rate

In Figure 4.1 1, the culture age of all 4 batches was 12 days. This was cells residence
time in the reactor. Thus, a dilution rate D can be calculated using Equation 4.4.

D = „ ._, 1—:— Equation (4.4)Residence time

D = 0.08 day "'
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The productivity of Chlorella Salina in TPBR can then be calculated using Equation 4.5

P = C*D Equation (4.5)

Where C and D are the average increase in biomass concentration and the dilution rate

respectively. The gain in concentration of algal biomass was 1.0 g dry algae per liter of

broth culture (from Figure 4.1 1) and dilution rate was 0.08/day. Hence, 0.08 g dry

biomass of Chlorella Salina could be produced in the TPBR per liter of algal broth per

day.

P = 0.08 g/day-L or 80 mg/day-L

Huesemann et al. (2003) screened marine microalgae for maximum flue gas CO2

biofixation potential. Two of the marine microalgae studied were Chlorella Salina and
Chlorella Sp. Their dilution rate were in the range of 0.4 - 0.9 per day (larger than our
work of 0.08 per day). Their results indicate a Chlorella Salina productivity of about 850
mg/L-day or 0.85 g/L-day at a dilution rate of 0.4 per day. Extrapolating their results to a
dilution rate of 0.08 per day will bring their productivity closer to the present work.

Table 4.12 compares results of this work with those of Chisti photobioreactor (PBR) and
raceway pond (Chisti 2007).

Table 4.12: Comparison of results based on TPBR producing 1 g of algal biomass per
liter in 12 days (**Chisti, 2007)

Variable

Biomass concentration [Kg/m ] or g dry
algae per liter

Productivity [g *L ''* day "']

Dilution rate [day

This work

1.1

0.08

0.08

PBR
Facility**

4.0

1.5

0.4

Raceway
Pond**

0.5

0.2
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As seen in Table 4.12, the productivity in this work is approximately the same as in

raceway pond; however, the biomass concentration is twice the concentration in raceway

pond. The TPBR showed 100% increase in biomass yield (about 1.1 g of dry algae per

liter) compared to the yield of 0.5 g of dry algae per liter from raceway pond (Chisti

2007).

It is important to note that all Chlorella named Salina or sp are not exactly same strains.

Nomenclature Salina indicates only that the species tolerate high concentration of salt.

Similarly, sp. indicates that the species have not been identified yet. It can be inferred
that Chlorella strains studied by Huesemann et al (2003) or Ben-Amotz and Gilboa

(1980) may not be the same strains as the one selected and cultured in this investigation.

4.5.2 LIPID CONTENT

In Figure 4.12, lipid (algae oil) was extracted from eight different batches of dry algal
biomass using Soxhlet apparatus. Batches 1 through 5 had an average of 9 g of lipid per
100 g dry algae biomass. Batches 6 and 7 had almost twice as much lipid as batches 1-5.

Lipid in Batches 6 through 8 were extracted from more than 2 g of dry algal biomass,
which implies that the amount of dry algal biomass as well as extraction method at

laboratory scale affect lipid content results. Results of batches 6 and 7 showed that the
TPBR can be used to culture Chlorella Salina able to yield up to 20% in mass of algal

lipid. These results agreed with Bigogno et al (2002) results.
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Figure 4.12: Lipid content extracted using Soxhlet apparatus

4.6 PART 5: KINETIC MODEL

A kinetic model for cells growth consists of an expression defining the variation of cells
concentration with time. This expression can be determined if at least one of the

following is cells growth limiting: one nutrient in broth culture, light intensity and/or CO2
concentration. In this investigation micro-nutrients and macro-nutrients were not totally

consumed over the two weeks culture period. In addition, it was proved in Section

4.5.1 . 1 of this Chapter that light was not a limiting factor on cells growth. Also Table
4.1 1 showed that NO3" and NO2" were in excess. They were not completely consumed

over the two weeks culture period. However, the specific maximum growth rate ßmax
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could be calculated using Equation 4.6, Huesemann approach (Huesemann et al 2009).

This approach is applicable in exponential (growth) phase only.

Umax = ¿ * In(^O Equation (4.6)
Where Cf and C¡ are respectively algal broth final and initial concentrations in

exponential (growth) phase, and Atis the exponential growth time.

Equation 4.6 was simplified to estimate the maximum growth rate µt?a? using the
following assumptions:

a. There was no significant cell growth in the lag phase resulting in constant

concentration; thus cells concentration at the end of the lag phase was the same as

the initial concentration.

b. These cultures were harvested when they reached stationary phase. It can be

assumed that the final concentration of the culture was the same as the

concentration at the end of exponential phase.

c. Equation 4.6 was linearized throughout exponential phase and rewritten as follow:
In(Cf ) = ßmax * ^t + Zn(C1 ) Equation (4.6)

Where At was constant and equal to 6 days (data from Table 4.9) and C¡ was 0.1
g/L.

Table 4.13: Maximum growth rate of batches with initial concentration of 0.1 g/L

Batch

II

III
IV

Mean

Biomass
concentration [g/L]

1.6

0.7

1.2

1.04

[day1]
0.46

0.32
0.41

0.39

0.4
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Hence, the average maximum growth rate from Table 4.13 was:

Umax = 0.4/day

Ben-Amotz and Gilboa (1980) studied the growth of several microalgae on enriched sea

water at 20 0C. They reported the following results for Chlorella Salina strain: cell

length 8µ??, cell width 6 µp?, maximum growth rate µt?a? = 2/day and cell maximum
concentration 8* 106 cells/ml. The present work results show a maximum growth rate

that is5 times less compared to Ben-Amotz and Gilboa results. The differences may be

due to culture condition, reactors used as well as the inoculums used (Chlorella Salina

strains).

The average doubling time can then be estimated as follow.

Doubling time = = 1 .7 day

Thus Chlorella Salina concentration doubles every two days when cultured in the TPBR

constructed in this work using modified fresh medium of Table 4.8. But Ben-Amotz and

Gilboa results showed a doubling time of 0.3 day or 8 hours.

It can be suggested that a detailed study be conducted in the future to determine growth
rate for Chlorella Salina or other species by culturing them in the TPBR.

4.7 PART 6: LIPID ANALYSIS OF BIODIESEL

4.7. 1 FATTY ACIDS METHYL ESTERS (FAMEs) PEAKS IDENTIFICATION

The mixture FAMEs standards (cocktail) was prepared by pooling 100 µ? of each of the

following standard: C 16:0, Cl 8:0, C 18:1, C 18:2, Cl 8:3 and C 19:0 resulting in a final

124



concentration ofl6.7 mg/µ? each. 1 µ?. of the cocktail standard was injected in the HP

5890 Series II Gas Chromatograph (GC) in order to identify the retention time of each

fatty acid methyl ester (FAME) present in the mixture.

Figure 4.13 shows show retention times of C 16:0, C 19:0 and all C 18s. C 18:1, C 18:2 and

Cl 8:3 were not well separated in this method. Their peaks overlapped in one peak when
there were in a mixture.

15000

Solvents:
Chloroform
n-hexane
Methanol

C16:0
C18s

—? ¦ 1 ¦ 1—
10 15 20

Time [min]

C19:0

/

25

Figure 4.13: FAMEs peaks of cocktail standard. 1 µ? ofcocktail standard injected into
the GC, GC data analyzed in OriginPro.

Each of these GC standards (C16:0, C18:0, C18:l, C18:2, C18:3 and C19:0) was

analyzed individually prior to be mixed in a cocktail. The retention times of these peaks
are shown in Table 4:14.
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Table 4:14: Retention time of main FAMEs standard analyzed individually. OriginPro
output ofthe data initially analyzed in GC.

Fatty Acid Methyl
Ester: FAME

C16:0

C18:0

C18:

C18:2

C 18:3

C19:0

Retention time
[minutes]

14.9

20.9

21

21

21

21.4

Results displayed in Table 4:14 and Figure 4:13 indicate that all C18s peaks (C18:0,

C 18:1, C 18:2 and C 18:3) have a retention time of 21 minutes, same for all three peaks.

Therefore, a FAME peak with a retention time of 21 minutes will be identified as Cl 8

with no specific number of double bond. Similarly C16:0 has a retention time of 14.9
minutes; thus a FAME peak with a retention time of 14.9 minutes (approximately 15

minutes) will be identified as C16 with no specific number of double bonds. The C 19:0
standard has a retention time of 25 minutes when analyzed in a cocktail. However, C 19:0

analyzed individually, showed a retention time of 21 minutes, which was the same as the
C 18s FAMEs retention time.

Furthermore, it was observed that a biodiesel sample (produced in this work) contained

an unknown FAME peak with the same retention time as C 19:0. The C 19:1 standard

analyzed individually has a retention time of 21.5 minutes as shown in Figure 4:15,
which is also closed to C 18s retention times. Thus using C 19:0 or C 19:1 as an internal

standard to analyze biodiesel produced in this work, produce overlapped peaks (C 18s,

Cl 9 and the unknown peak). Overlapped peaks made the results hard to analyze.
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Therefore, C 19:0 and C 19:1 standards were not used as internal standard for quantitative

analysis of biodiesel samples. As a result, a calibration curve was established (using

C 19:1 standard) as a basis for quantitative analysis of FAMEs in this investigation.

These retention times may shift if the GC column is truncated for maintenance, or if the

GC setting is changed. For example, increasing the temperature ramp from 8 °C/min to
15 °C/min shifts the retention time of all FAMES with approximately 5 minutes less than

the initial retention time. The order peaks retention time stays the same.

4.7.2 CALIBRATION CURVE

Methyl Cis-9-octadecenoate or C 19:1, GC standard, at 0.874 g/ml was analyzed in GC at
different concentrations in order to generate a calibration curve. This calibration curve
served as basis for the calculations of FAMEs concentration. Different concentrations of

calibration curve were obtained by diluting C 19:1 in Chloroform. Table 4.15 displays the

different concentrations of C 19:1 with their integrated area under FAME C 19:1 peak.
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Table 4.15: Different concentration of C 19:1 standard in chloroform and their integrated
area under the FAME peak.

Dilution factor

500

1000

2000

4000

8000

16000

64000

128000

256000

512000

Area
[Arbitrary unit]

12035.17

8746.5

3282.4

1932.4

1406.2

667.6

208.7

94.5

48.9

35.5

Concentration

1.748

0.874

0.437

0.219

0.109

0.055

0.014

0.007

0.003

0.002

Figure 4.14 shows an example of a C19:l peak. This peak shows a retention time of 21
minutes in the HP 5890 Series II GC column.

e
a 7000

Chloroform
C19:

15 20

Retention time [min]

Figure 4.14: Peak of C 19:1 standard
?µ? of Cl 9:1 standard injected in the GC1 data analyzed in OriginPro.
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Data from Table 4.15 represent a linear function defined as an equation of a line (an

integrated area under the peak C19:l as function of C19:l standard concentration) with a

slope of 1.3* 10"4 as showed in Figure 4.15.

1·5- Y=1.3*10"4X
s>

CQ 1.0

tu

CO
CU

LU

0.0 P , . 1 . 1 > 1 > ? ' -i
O 2000 4000 6000 8000 10000 12000

Integrated peak area [arbitrary unit]

Figure 4. 1 5: Calibration curve of C 1 9: 1 standard.

The concentration of any FAMEs peaks can be determined using Equation 4.7. or by

interpolation using data from Table 4. 1 5.

Y=l.3*lO"4X Equation (4.7)

Where X represents the integrated area under FAME peak with unknown quantity
(species) and Y is the concentration of the unknown species. Equation 4.7 gives
approximate results due to high magnitude of the slope standard error. Thus, the
interpolation method, using data from Table 4.13, was used to quantify FAMEs found in
biodiesel samples. The area of the peak with unknown concentration has to be within the
range of calibration curve data. For instance, a concentration of peak with an area of 5
cannot be evaluated accurately using the calibration curve data in Table 4.15. Similarly,

a concentration of a FAME peak with an area of 40000 cannot be evaluated precisely

using data of Table 4.15. If the area of the FAME peak is out of the calibration curve
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range, it is recommended to run a new curve with extended data point or dilute the

sample if it has a huge area under the FAME peak.

4.7.3 CONVENTIONAL TRANSESTERIFICATION: TWO-STEP PROCESS

The conventional transesterification refers to two-step process. In this process, oil is

extracted from algae biomass first, and then converted into biodiesel as described in

Chapter 3, Section 3.2.6. 1 µ? of a transesterified sample was injected into the Hewlett
Packard HP 5890 Series II Gas Chromatograph (GC). GC data were analyzed in

OriginPro 8.1, which generated integrated area under FAME peak corresponding to
FAMEs concentration.

Figure 4.16 displays an example of a chromatogram for a biodiesel sample produced in
two-step process.

C18:

Unknown
Deaks

Unknown peaks

10 15 20

Retention time (min]

Figure 4.16: FAMES produced through transesterification in two-step on a stirrer
9.6 g ofdry algae biomass at room temperature, reaction time 6 hours.
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The C 1 6 peak and C 1 8s are well identified due to their retention times. C 1 8s peak

consists of overlapped peaks; they are identified as Cl 8 without specifying the presence

of double bonds. Figure 4.16 shows C 16, C 18s and unknown FAMEs peaks. The

concentration of these peaks can be determined by interpolation using the calibration

curve. C 18s peaks overlapped. Thus their concentrations were evaluated as one peak. It

can be seen from both Figure 4.15 and 4.16 that Chlorella Salina produced more C 18s

compared to other FAMEs present in the sample.

Biodiesel produced in two-step process contains up to 2.315 mg of fatty acids methyl

ester per g of dry algae for a process performed in 24 hours (oil extraction and

transesterification). Figure 4.17 shows that54% of FAMEs produced is C 18s, which

agrees with results found by Ferrentino (2007).
Unknown 1Unknown 5

12% 7%
Unknown 2

6%

Unknown 3
8%

Unknown 4
4%

Figure 4.17: Composition ofFAMEs produced in two-step on a stirrer.
9.6 g ofdry algae biomass used at room temperature on one trial

It is important to note that the two-step process takes more than 20 hours to produce

biodiesel: from lipid extraction to biodiesel production. The two-step process uses
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solvent (n-hexane: 250 ml per trial) for lipid extraction, followed by 0.1 N KOH in

methanol for lipid transesterification. Obviously, the conventional transesterification is

time consuming and uses excessive solvent (n-hexane and methanol), which are toxic.

Two batches of algal oil were transesterified through the two-step process. The oil

batches were extracted from two different cultures of dry algal biomass. One sample

yielded 2.315 mg of total FAMEs per g of dry algal biomass and the other one
yielded 1.1 89 mg of total FAMEs per g of dry algal biomass. FAMEs yielded through the
two-step process in this work are lower compared to Ferrentino (2007) results of 1 1 mg
of FAMEs per g of dry algae. The difference may be due to the algae strains, their lipid
content, culture conditions as well as transesterification time.

The two-step process for these two samples was performed in the same conditions. 40 ml
of 0.1 N KOH in methanol were mixed with algal oil (stored in 10 ml of n-hexane) using

a magnetic stir plate for 6 hours at room temperature. The difference between these two
runs can be due to the amount of algal oil in each algae batch. FAMEs yield per batch

can be improved by a long transesterification (two-step process). The purpose of the
two-step process in this work was to compare the FAMEs yield against the one-step
process yield.

4.7.4 TRANSESTERIFICATION IN SITU: ONE-STEP PROCESS

4.7.4.1 One-step transesterification with no sonication

In this process, biodiesel is produced directly by reacting algal biomass with KOH in
methanol. Figure 4.18 shows that fatty acids methyl esters (FAMEs) peaks produced
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using one-step transesterifícation are similar to those produced in two-step
transesterification.

C18s

C16

Unknown
peaks

/ /

Unknown peak

J Il
Retention time [min]

Figure 4.18: FAMEs produced through one-step process on a stirrer.
2.6 g ofdry algae transesterified in 30 minutes transesterification

The results in both the one-step and two-step transesterification show that Chlorella

Salina grown in this project is rich in C 18s fatty acids or lipid (oil). Thus, C 18s are the
dominant FAMEs followed by Cl 6 as shown in Table 4.16.

Miyamoto (1997) stated that lipids with high number of carbon are formed toward the
end of exponential phase during algae culture. The formation of lipid with long chains of
carbon extends in the stationary phase. Miyamoto also stated that light enhances the

formation of polyunsaturated fatty acids C16 and Cl 8 as well as other lipid such as mono
and di-glactosyl-diglycerides, sphingolipids and phosphoglycerides in Chlorella vulgaris
and Euglena. It may be inferred that extending stationary phase would increase lipid
content in Chlorella Salina. This hypothetical observation would require profound study

in future work.
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Unknown FAMEs are found also in biodiesel produced through in situ transesterification.

Thus one-step process is comparable to the two-step process. It can be seen from Figure

4.18 that sample transesterified in one-step process (in situ transesterification) has a good

resolution on unknown peaks (with high magnitude) compared to the sample

transesterified in the two-step process, Figure 4.16. The unknown FAMEs peaks

considered in this work are the follow: small peak with retention time of 14 minutes

termed as unknown 1 and another small peak with retention time of 22 minutes termed as

unknown 2. The unknown peaks with retention times of 10, 12, 16 and 19 minutes were

very small with areas values out of calibration curve range. Thus those peaks were not

quantified.

None of the GC Standards analyzed during this investigation had the retention times of

14 and 22 minutes. As a result, the two unknown peaks (unknown 1 and 2) were

quantified, but not identified. Hence, they did not have a specific number of carbons, or
number of double bonds attributed to them. It can be assumed that the unknown FAMEs

peaks with retention time less than 15 minutes contain chain of carbon less than 16 (C 16).
Similarly, the unknown peak with retention greater than 21 minutes has long chain of
carbon greater than 19.

Table 4.16 lists the yield of each FAME found in the transesterified algal sample through
the one-step process. The total FAMEs yields of all 4 runs of Table 4.16 are displayed in
Figure 4.19.
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Table 4.16: Identified FAMEs biodiesel produced through transesterification in situ
using a magnetic stir plate.

Batch
Reaction
time [hr]

FAMEs concentration [ mg of FAME per g of dry algal biomass]

Unknown 1 C16 C18 Unknown 2
Total

FAMEs

Run 1 24 0.01 0.046 3.048 0.029 3.133

Run 2 1/2 0.023 0.029 0.136 0.188

Run 3

Run 4

1/2

1/2

0.147 0.163 0.777

0.092 0.106 0.501

0.079

0.030

1.166

0.729

The differences in FAMEs yield for runs 2, 3 and 4 (from Table 4.16) can be attributed to

the presence of moisture, although they may be other unknown causes triggering lower
yield in these runs. Transesterification times for these runs are 24 hours (for run 1) and
30 minutes (for runs 2, 3 and 4).

3.5

3.0
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2.0

1.5

1.0

0.5

A 0.0
Run 1 Run 2 Run 3 Run 4

Trials

Figure 4.19: FAMEs yield for 4 batches produced through one-step process on a
stirrer.
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Biodiesel for all four runs of Figure 4.19 was produced using algal biomass from same

batch. It is important to note that the reaction time for run 1 was 24 hours, but the

remaining trials (run 2, 3 and 4) had a reaction time of 30 minutes. Clearly, the reaction

time affects FAMEs yield.

On one hand, the in situ transesterification reduces the biodiesel production time and

minimize excessive use of solvent such as n-hexane, chloroform and methanol, which are

hazardous and toxic. On the other hand, mixing mechanism using magnetic bar with

stirrer may not be sufficient to break Chlorella wall and release algal oil needed to
produce biodiesel. Therefore, the in situ process was further explored by using an
ultrasonicator to break cells wall, provide thermal energy (heat) and mix well reagents

(dry algal biomass and 0.1 N KOH in methanol) engaged into the transesterification
reaction

4.7.4.2 One-step transesterification with sonication

It was observed early in the two-step process that increasing the reaction time

(transesterification time) results in high Fames yield. This observation was further
studied in one-step process by changing the reaction time. In addition, a sonicator was
used to enhance the release of lipids from Chlorella Salina dry biomass in order to

increase FAMEs yield. Results in Table 4.17 showed FAMEs yield (mg of FAMEs per g

of dry algal biomass) produced through in situ transesterification (one-step process) for
different reaction time.
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Table 4.17: Identified FAMEs produced through transesterification in situ using an
ultrasonicator. Batches with the same letter are replicate performedfor reproducibility
purpose. For example, Al andA2 were performed exactly in the same manner; A2 is a

replicate ofAl

Batch
Reaction

time
[minute]

Al

A2

Bl
B2

B3

Cl

Dl
D2

D3

El

E2

E3

Fl
F2

Gl
G2

unknown

30

30

30
30

30

60

20
20

20

10

10
10

FAMEs yield [mg of FAME per g of dry
biomass]

algal

0.068

0.111

0.118

0.505

0.508

0.055

0.146

0.403
0.219

0.153

0.180

0.141

0.146

0.223

0.095

0.071

C16

0.119

0.217

0.234

0.602

1.018

0.048

0.200
0.509

0.286

0.184

0.185

0.158

0.108
0.172

C18

0.475

0.913

1.154
2.803

3.243

0.354

0.991
2.675

1.504

0.881

0.965
0.798

0.145
0.059

0.572

0.934

0.388

0.430

Unknown 2

0.076

0.070
0.101

0.137

0.098

0.039

0.031

0.093
0.044

0.038

0.060

0.045

0.0

0.031

0.079

0.056

Total
FAMEs

Volume of
Chloroform

used [ml]

0.737

1.311

1.606

4.047

4.867

0.495

1.368
3.679

2.053

1.256

1.390
1.141

0.826

1.360

0.706

0.616

15

15

10

Table 4.17 shows that Cl 8 FAMEs in each run (batch) still is dominant of all FAMEs

found in the algal biodiesel. Table 4.17 also shows that sonicating the mixture of algal

dry biomass and 0.1 N KOH in methanol increases FAMEs yield compared to FAMEs
yield in Table 4.15 for in situ transesterification with mixing (agitation) done using a
magnetic stirrer.

Same pattern can be seen in Figure 4.20; FAMEs yield for batches B are higher compared
to the yield in Table 4.15 with FAMEs produced through in situ transesterification with
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the same reaction time of 30 minutes with different mixing mechanism. Results for

batches B were obtained using ultrason icator as mixing mechanism whereas results in

Table 4.15 were obtained using magnetic stirrer as mixing mechanism.
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Batch within Reaction time [min] Time
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Figure 4.20: JMP output of time effect on FAMEs yields in one-process.
A letter indicates batch name and numbers indicate replicates batches; for example, Gl
and G2 indicate batch G, with two replicates (replicate 1 and 2). Dots within column
represent a specific FAME yield (µg ofFAME per g ofdry algae) with no specific
identification. A quick comparison ofFAMEs yield can be established based on this
figure.

A.1A3 One-step transesterification with sonication plus chloroform.

Biodiesel was produced through in situ transesterification by adding chloroform (CHCl3)
to reagents (algal biomass and methanol). Chloroform was used to enhance the release of
algal lipid. Figure 4.20 shows the effect of chloroform on FAMEs yield.
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Figure 4.21: Chloroform effect on FAME yields produced in one-step process with an
ultrasonicator.

30 minutes oftransesterification. Datafrom Table 4.1. 7

Clearly, in situ transesterification with chloroform has low FAMEs yield compared to the
FAMEs yield in the sample transesterified without CHCl3. It can be inferred that
Chloroform does enhance the increase of FAME yield. Thus, the ultrasonication process

is sufficient in breaking Chlorella wall and releasing algal lipid needed for
transesterification reaction.

4.7.4.4 Reaction Time effect on FAMEs yield in one-step process

The effect of reaction time on the FAME yield of one-step process using ultrasonication
was studied. Six different runs were made with reaction time of 1, 5, 10, 20, 30 and 60

minutes. The total FAME yields are shown in Figure 4.22.
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Figure 4.22: Effect of time on average total FAMEs yield, in situ transesterification.

In Figure 4.22, batch C (60 minutes of transesterification adding chloroform, in situ
process with ultrasonicator) has the lowest yield of FAME produced in this investigation.
Thus, lengthening the reaction time decreases FAME yield in one-step transesterification
using ultrasonicator. The decrease in yield FAMEs can be due to solvent evaporation, for
as the sonication proceeds, sonicator probe provides heat (thermal energy) to the reagents
increasing the temperature up to 50 0C.

Ferrentino (2007) found that lengthening the transesterification time in one-step process

decrease FAMEs yields, which agrees with observation made in this investigation.

Figure 4.22 also shows that FAMEs (biodiesel) can be produced through one-step process
even within 1 minute of reaction time. In addition, a high FAMEs yield can be obtained
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through in situ transesterification in 30 minutes or half hour (batch B) without adding
CHCl3. On the other hand, batch D performed in only 20 minutes through one-step

process using ultrasonication shows high yields of FAMEs similar to the yields obtained
with 30 minutes of transesterification in the same conditions. Therefore, 20 minutes

transesterification time is the ideal for this investigation.

Thus, in situ transesterification shows high yield of FAMEs (biodiesel) for a reaction
time of 20 minutes without the use of chloroform or n-hexane in lipid extraction,

compared to the yields obtained in two-step (conventional) transesterification in 24 hours.
The composition of FAMEs produced using in situ process is shown in Figure 4.23.

These results agree with the composition of FAMEs found using the two-step process.

Clearly, C 18s is the majority of total FAMEs found in biodiesel from Chlorella Salina.

Unknown

2%
Unknown

C18
11%73%

C16
14%

Figure 4.23: Composition of FAMEs produced using one-step process.

4.7.4.5 Analysis of B 100

Neat BlOO was diluted in chloroform at 1 : 100 in chloroform (1 volume of B1000: 100

volume of chloroform). 1 µ? of diluted sample was injected in the HP GC and the output

results are as follow.
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Figure 4.23: FAMEs in BlOO from WVO

Table 4.18: FAMEs compositions in BlOO produced from WVO

Peak

C16

C18s

Unknown peak

Area

370.78193

3359.64409

189.29302

Concentration [mg/ml]

0.0285

0.443

0.012

Results in this work (for total FAMEs per batch) varied from 0.4 mg to 4.9 mg per g of

dry algae biomass.

Based on Table 4.18 the total FAME concentration in BlOO is 0.483 mg/ml of B100.

Assuming a BlOO density of 0.85 g/ml (or 850 mg/ml) we obtain 0.57 mg lipid/mg B-
100, so the B-100 has 57% lipids that we detect on our GC.
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CHAPTER V

CONCLUSIONS

This investigation was conducted to design and construct a Tubular Photobioreactor that

can be used to culture a suitable microalgae strain rich in lipid. This lipid can be

converted into biodiesel through in situ transesterification termed as one-step process.

The following can be concluded from this work:

1 . Chlorella termed Salina was selected from 8 algae strains screened for fast growth and

high lipid content.

2. A tubular photobioreactor (TPBR) was designed and constructed. It was run for more
than 6 months without any operation problems. This TPBR was characterized as

followed. The compressed air containing CO2 was supplied to the reactor at a pressure

ranging between 5.4 psi and 5.8 psi with a liquid flow rate of 285.7 ml/s or 0.075 gal/s.
The broth culture had an average viscosity of 0.88 cp. It was flowing in the tubing at

0.6 m/s in a turbulent regime (Re = 12,955).

3. Chlorella Salina was successfully cultured in this TPBR using a modified fresh

medium, which had double concentration of NaCl (at 0.2 M) and KNO3 (at 10.4 mM).

A healthy culture of Chlorella Salina grown in this reactor reached a broth

concentration of 60*1 06 cells per milliliter of fluid culture (broth). AU cultures
performed in this work started with a diluted broth at 0.1 g of dry algal biomass per
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liter of broth culture and reached an average of 1 .1 g of dry algal biomass per liter of

broth in two weeks of culture period. The yield in algal biomass was 1.0 g of dry algal

biomass per liter of broth culture.

4. The maximum growth rate of 0.4/day in average was determined using Huesemann et

al. (2009) approach as kinetic model.

5. We were able to harvest cultures performed in this TPBR by using flocculent

technique to precipitate algal cells followed by centrifugation technique and
lyophilization. The dry algal (Chlorella Salina) biomass could contain up to 20 % of
lipid (20 g lipid per 100 g of dry biomass) able to be converted into biodiesel through
transesterification process.

6. We were also able to convert Chlorella Salina lipid into biodiesel (FAMEs) through in

situ transesterification or one-step process. The one-step transesterification was

performed using ultrasonication technique (sonication) to produce up to 3.679 mg of
FAMEs per g of dry algal biomass within 20 minutes compared to the two-step
transesterification which takes hours even days to produce the same amount of

FAMEs. The in situ transesterification or one-step process is fast, easy to perform and

eliminate excessive use of solvent especially n-hexane and chloroform..

7. Transesterified samples were analyzed in HP 5890 Series II GC equipped with

RESTEK capillary column. Data captured by an HP integrator connected to the HP
GC were transferred to a laptop equipped with OriginPro version 8.1 . We successfully

analyzed data in OriginPro version 8.1 and found that Cl 8 FAMEs were the most
dominant in biodiesel produced from Chlorella Salina biomass. The biodiesel
contained also Cl 6 and 4 unidentified FAMEs. Two of these unknown FAMEs were
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quantified and the two remaining were not quantified due to their low concentration

(being out of calibration range). The two unidentified FAMEs with low
concentrations were considered as traces.
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CHAPTER VI

RECOMMENDATIONS FOR SUCCESSFUL CULTURE AND PRODUCTION
OF BIODIESEL

The following recommendations are made in order to perform successful culture using
the tubular photobioreactor (TPBR) constructed in this work and produce biodiesel
through in situ transesterification:

1 . To double the concentration of NaCl and KNO3 to 0.2 M and 1 0.4 mM

respectively in fresh medium used to culture Chlorella Salina.
2. To clean the TPBR with bleach followed by several rinse with tape water and

reversed osmotic (RO) water respectively to remove any algae stuck on the tubing
wall and avoid contamination of the next batch culture.

3. To inoculate the culture at a ratio of 1:10 (1 volume of inoculum for 9 volume of

medium) to maximize algal biomass yield. Starting with much diluted broth
culture tends to lead to culture collapse.

4. To dry transesterified samples with an appropriate hydrophobic substance such as
sodium sulfate anhydrous (Na2SO4) to avoid FAMEs alteration. This process is
done prior sample analysis into GC.

5. To avoid long reaction times for in situ transesterification. They tend to decrease
FAMEs yield.
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CHAPTER VII

FUTURE WORK RECOMMENDATION

The following investigations need to be studied in details in order to addressed questions
or some difficulties encountered all along the present work. However, most of these

questions and/or difficulties were not among the main goals of the present work.

1 . An investigation of culture collapse or failure mode needs to be conducted. This
work will allow us to understand causes of cultures collapse and suggest

eventually ways to prevent its occurrence.
2. More work is needed to study light effect on cultures performed in this TPBR and

find optimum light intensity for maximum algal biomass and algal lipid yields.
3. A study needs to be conducted to determine all limiting factors on algae

cultivation in this TPBR and define kinetic models that will characterize algae

growth in this TPBR. It is important to understand the kinetic of algal cells in this
TPBR, which will give us a complete understanding of the best harvesting time

(BHT). Kinetic models are required for both cells growth and lipid content.
Some algae strains grow fast but produce low lipid or vice versa. If the kinetic
models for both cell growth and lipid production are known, their common
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denominator will define the BHT. It may help in selecting an improved algae

strain for biodiesel production.

4. More work is needed to study in depth the lipid metabolism. Not only this study

will allow us to understand a formation of lipid within algal cells, but it will also

give us an insight on the paths of lipid production within algal cell. This is an
important work, which can serve as basis to modify genes sequences of algal cells
for high lipid production.

5. The algae harvesting process requires more study to eliminate the use of

flocculent and lyophilization (freeze-drying). The lyophilization process is

suitable for laboratory work, but it may increase the production cost of biodiesel

at industrial scale. It is imperative to find different way to harvest algal broth and

dry the algae pellet in a time and cost effective ways.

6. More investigation is needed to study a scale up of the TPBR by increasing the
sizes (length and diameter) of tubing. It is important to assess the effect of the
tubing sizes on algae growth, which will allow us to know if this type of reactor
can be used at industrial level.

7. A profound investigation is needed to refine the biodiesel produced from
microalgae and compare the final product with BlOO from WVO or soybean. The
present work was conducted on crude algal oil extracted from crude algal biomass
that may contain impurities. The elimination of impurities should improve the
quality of the algal biodiesel.
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APPENDIX II
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APPENDIX III

GC HP PEAK96 SETTING

Peak96 Data Transfer Procedure

1 . Run Peak 96 on computer that is connected to running HP 3396 Integrator.

2. Set integrator setting to save signal file to storage device M, bunched data

3. Perform GC run per HP 5890 manual instructions, controlling start of run from GC

keypad

4. After run has ended and signal file is closed (will be displayed on integrator printout),
use Peak 96 to transfer file

5. Go to Utilities: Transfer : Integrator-to-PC, hit enter

6. File options to transfer will include "Signal.BNC," select this and hit enter

7. After file has transferred (1-2 minutes), go to Utilities: Files: Rename, hit enter

8. From the list of files, select "Signal.BNC" and rename- making sure to add the

".BNC" extension

9. Next go to Utilities: Files: Export

10. Select file/files to export and export them to the default (Export 1) directory

1 1. In windows, files can be transferred through e-mail by attaching exported files
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APPENDIX IV

EXAMPLE OF ORIGINPRO OUTPUT

Plotting the GC data in OriginPro 8.1
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4. Chromatograph
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APPENDIX V

RESULTLS OF LIPID CONTENT USING RED NILE METHOD

1 . Fluorescent readings for Chlorella sp. and Salina

Chlorella sp Chlorella Salina
-0.023 -0.021
-0.015 -0.02
-0.014 -0.016
-0.014 -0.019
-0.09 -0.017
-0.011 -0.016
-0.012 -0.017
-0.015 -0.011
-0.013 -0.017

The lipid content results for the two strains of Chlorella are not conclusive, for a negative
signal does give indications of good binding between lipid and the Red Nile.
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APPENDIX VI

EXTENDED ABSTRACT

PRODUCTION OF BIODIESEL FROM MICROALGAE

By

NKONGOLO MULUMBA

University of New Hampshire, August, 2010

Biodiesel production from microalgae is a promising technique, with advantages of high
biomass yield with high lipid content. Challenges include effective techniques to grow

microalgae and harvest the grown microalgae, extraction of the algal oil and its
transesterification to biodiesel. The goals of the present research are to design a

photobioreactor (PBR) able to grow and maintain a healthy algal culture, and then
produce biodiesel from the harvested algal biomass through an integrated process called
in situ transesterification.

A microalgae strain was selected from 8 different species screened for growth rate and
lipid content. This strain was cultured in a modified nutrient medium in which the
concentrations of sodium chloride and potassium nitrate were doubled to expedite the

production of algal biomass rich in lipid. Techniques were developed to monitor growth
and harvest algae, obtain dry algae biomass, extract and quantify the microalgae lipids,
and biodiesel production. A simple kinetic model for the algae growth was developed,

which indicated that the microalgae doubling time is about 2.5 days.
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A Tubular Photobioreactor (TPBR) was designed and constructed to study microalgae

growth. Water and air flow studies were done to determine the average residence time

and the stable operating regions of the TPBR. The selected microalgae strain was
cultivated in this TPBR to assess its functionality. Cultures were monitored over time by

measuring the pH and the concentrations of nitrate/nitrite and algal biomass. The TPBR

produced Ig of dry algal biomass per liter of medium within 12 days, with lipid content
up to 20%. Healthy algal culture grew well in the TPBR reaching about 6OxIO6 cells/ml
of culture medium. The TPBR achieved a ten times increase in algae concentration,

which is higher than those reported for open ponds and helical PBR. Lyophilized algal

biomass was successfully converted into fatty acids methyl esters (FAMEs) or biodiesel

through in situ transesterification or one-step process using methanol, alkaline catalyst
(potassium hydroxide) and an ultrasonicator. The resulted FAMEs were analyzed in a
gas Chromatograph equipped with a Restek FAME column. It was found that Cl 8 methyl
esters were the most dominant FAMEs in biodiesel produced from the selected

microalgae. Approximately 3.679 mg of FAMEs per g of dry algal biomass were

produced in 20 minutes. The in situ transesterification reduces production time by
eliminating the algae oil extraction process and the long transesterification time
compared to the conventional transesterification which produced 1 .2 - 2.3 mg of FAMEs
per g of dry algal biomass in one day.
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