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ABSTRACT

VARIATION IN FOLIAR NITROGEN AND ALBEDO IN RESPONSE TO

NITROGEN FERTILIZATION AND ELEVATED CO2

by

Haley F. Wicklein

University of New Hampshire, September, 2010

It has recently been demonstrated that foliar nitrogen is positively

correlated with surface albedo over a broad range of plant functional types.

However, the mechanism(s) driving the nitrogen- albedo relationship remain

elusive. This study investigated leaf spectral properties from three deciduous

species subjected to either nitrogen or CO2 fertilization and compared results to

measured chemical and structural properties. We measured reflectance and

transmittance, foliar nitrogen, leaf mass per unit area, water content, and d13C
values for stacks of 1 , 2, 4, and 8 leaves. Nitrogen was the best predictor of leaf-

level albedo of the traits that we measured. There were no significant differences

in albedo between CO2 or nitrogen treatments. Across all species there was a

negative relationship between albedo and foliar nitrogen, suggesting that the

previously observed nitrogen- albedo relationship is not caused by leaf-level

interactions, but is likely due to structural properties at the canopy or stand level.
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CHAPTER I

INTRODUCTION

Nitrogen (N) is a limiting nutrient for plants (Gruber and Galloway 2008)

and a crucial component of the proteins and enzymes needed for all

photosynthetic processes (Larcher 1995). As a result, it plays a key role in

controlling primary production, leading to highly coupled N and carbon (C) cycles.

It has been well documented that leaf-level foliar N and photosynthetic capacity

are positively correlated (Field and Mooney 1986, Evans 1989) across a wide

range of plant functional types (Reich et al. 1997, Reich et al 1999). Foliar N and

photosynthetic capacity also covary at the canopy level across boreal and

temperate ecosystems (Ollinger et al. 2008). Recently, Ollinger et al. (2008) and

Hollinger et al. (2010) demonstrated that both of these variables are also

significantly and positively correlated with growing season shortwave surface

albedo (the fraction of incident solar radiation that is reflected by a surface) over

a broad range of plant functional types. Bala et al. (2007), with results from a

coupled global carbon-cycle and climate deforestation model, suggested that the

warming effects of a forest's low albedo can sometimes overwhelm the cooling

effects of its potential for C storage. Given the importance of even small

changes in surface heat exchange, the occurrence of an N effect on albedo

would bear interesting and important consequences for climate.
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Although the effects of N deposition on photosynthetic capacity have

received considerable attention (e.g., Bauer et al. 2004, Finzi et al. 2006), there

are no studies to our knowledge that examine how increased N levels affect

albedo and other biophysical factors, and hence the mechanism(s) driving the N-

albedo relationship remain elusive. There are many sources of variation in

albedo, ranging from chemical and structural properties at the leaf level, to micro-

scale structural changes in the canopy (i.e. leaf clumping, leaf inclination angle)

to macro-scale differences in the canopy or landscape (i.e. canopy volume, leaf

area index, spatial vegetation patterns).

At the leaf level, photosynthetic pigments dominate reflectance in the

visible part of the spectrum (350 - 700 nm), water content dominates reflectance

in the mid-infrared (MIR, 1350 - 2500 nm), and reflectance in the near infrared

(NIR, 700 - 1350 nm) is determined mainly by leaf structure and scattering

(Gates et al. 1965). Plants are well adapted to their light environment in that they

absorb efficiently in regions where energy is readily usable (i.e. the visible) and

poorly where photons lack sufficient energy for photosynthesis (i.e. the NIR),

which also serves to reduce their heat load (Gates et al. 1965, Kumar et al.

2001). Consequently, it is the NIR region where the greatest differences in leaf

to canopy reflectance patterns are often observed (Sánchez and Canton 1999),

and this region is the primary driver of the observed relationship between N and

albedo (Ollinger et al. 2008). Therefore, if structural changes within the leaf are

driven by, or covary with, foliar N concentration, it is possible that this could be

one of the main drivers in the N-albedo relationship observed at the canopy level.
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Although it has been observed that N covaries with some leaf structural

parameters, clear implications for leaf albedo cannot yet be drawn. For example,

Pañuelas et al. (1994) found that foliar N covaried with leaf thickness in

sunflowers and Makoto and Koike (2007) found that greater N availability

increased leaf mass per unit area (LMA, a proxy for thickness) in Korean pine

seedlings. However, Baltzer and Thomas (2005) found that in deciduous

saplings, foliar N correlated with palisade mesophyll thickness, but not leaf

thickness or LMA. Similarly, Trapani et al. (1999) found no response of LMA to N

fertilization in sunflowers, although they did observe an increase in cell number,

cell area, and total leaf area.

Hollinger et al. (2010) hypothesized that the N - albedo relationship is due

to increased backscattering (i.e. reflectance) resulting from leaf internal structural

changes that are necessary to support rapid CO2 diffusion and the increased

photosynthesis rates made possible by increased foliar N. Particularly important

are changes in the ratio of the mesophyll surface area exposed to intercellular air

spaces to the area of the leaf (Ames/A), which has been shown to be positively

correlated with both photosynthetic rates (Nobel et al. 1975, Longstreth et al.

1985) and NIR reflectance (Slaton et al. 2001). Given differences in the refractive

indices of hydrated mesophyll cells (refractive index of 1 .4 to 1 .48) and the

intercellular airspace (reflective index of 1.0) (Woolley 1971, Gausman et al.

1974a), a higher Ames/A value should lead to more opportunities for radiation

scattering, and a correspondingly greater chance of the light exiting the leaf.

Nobel et al. (1975) showed that the Ames/A ratio and leaf thickness are positively
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correlateci, suggesting that measuring leaf thickness may be a way to indirectly

assess this leaf trait. Despite these expectations, results in the literature are

often contradictory, with some studies measuring higher NIR reflectance for

thicker leaves (e.g., Gates et al. 1965, Knapp and Carter 1998, Merzlyak et al.

2004, Castro-Esau et al. 2006) and some observing no significant relationship

(e.g., Slaton et al. 2001 , Castro and Sanchez-Azofeifa 2008) or even higher NIR

reflectance in thinner leaves (e.g., Ceccato et al. 2001).

Long-term N and C fertilization studies provide the opportunity to measure

a wide range of N concentration in species growing in similar climatic and

environmental conditions. Both leaf- and canopy- level studies (e.g. Reich et al.

1997, Smith et al. 2002, Giunger et al. 2008) have shown an increase in

productivity with increasing foliar N concentration, and low availability of N has

been shown to suppress the positive response of plant biomass to elevated CO2

(Reich 2006). Free air CO2 enrichment (FACE) sites simulate future

concentrations of atmospheric CO2 by fumigating plots with elevated levels of

CO2. Data from multiple FACE sites have shown that elevated CO2 leads to an

increase in LMA (Norby et al. 2003) and the consequent dilution of foliar N due to

the accumulation of carbohydrates (Oren et al. 2001 , Ellsworth et al. 2004, Norby

and Iversen 2006). This raises the questions of whether elevated CO2, by

effecting foliar N levels, could alter a forest's albedo.

Human activities have more than doubled the inputs of N to the terrestrial

biosphere (Smil 1990), a trend that is likely to continue or even increase (Gruber

and Galloway 2008). Similary, CO2 has risen from a preindusthal level of 280
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ppm to 379 ppm (IPCC 2007 Synthesis Report) and it is expected to continue to

rise well into the future. With the potential for increasing anthropogenic

perturbations of the N and C cycles, it is important to understand how changes in

N status, through high levels of N and C deposition, could influence a forest's

albedo and photosynthetic rates, and therefore its overall feedback (positive or

negative) to global warming.

The objective of this study was to examine the degree to which the

canopy- level N-albedo relationship stems from leaf-level interactions, and to

determine whether leaf albedo is affected by elevated rates of N deposition and

CO2 fertilization. To assess the impact of changes in foliar N concentration on

leaf-level optical properties, we measured leaf reflectance and transmittance, as

well as leaf chemical and anatomical traits (N concentration, leaf mass per area,

equivalent water thickness, water content, 613C), for three deciduous species in
the eastern United States that have been subjected to either long-term N or CO2

fertilization. If the albedo-N relationship is driven by changes at the leaf level, we

would expect to see higher leaf-level albedo in plots with high N fertilization

treatments and lower albedo in plots receiving high CO2 fertilization than those

receiving solely ambient N or CO2 deposition.
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CHAPTER II

MATERIALS AND METHODS

Study Sites

We measured leaf spectral, chemical, and structural characteristics of leaf

samples from two sites in the eastern United States: Harvard Forest, Petersham,

MA (42.5°N, 72°W) and Oak Ridge National Laboratory, Roane County, TN

(35.9°N, 84.3°W). Harvard Forest contains a long-term N fertilization study.

Monthly mean temperatures range from 20 0C in July to -7°C in January. Annual

mean precipitation is 1 10 cm, distributed fairly evenly throughout the year.

Ambient nitrogen (N) deposition averages around 8 kg N ha"1 yr"1 (Ollinger et al.
1993). The dominant soil types are stony- to sandy-loams formed from glacial till.

Elevation is 385 m above sea level.

Oak Ridge National Laboratory in contains both CO2 and N fertilization

plots. Mean annual temperature is around 14°C, and mean annual precipitation

is 1371 cm, distributed fairly evenly throughout the year. Ambient N deposition

averages between 10 and 15 kg N ha"1 yr"1 (Johnson et al. 2004). The dominant
soil type is an Aquic Hapludult, a silty clay loam.
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Harvard Forest, MA

Harvard Forest (HF) was established in 1907 and has been a long-term

ecological research (LTER) site since 1988. A chronic N amendment experiment

was established at HF in 1988, and is maintained by the Forest Ecosystems

Study Group at the University of New Hampshire's Complex Systems Research

Center. Two adjacent stands were chosen for N additions on the Prospect Hill

Tract. The first is a mixed hardwood stand dominated by black oak (Quercus

velutina Lam.), red oak (Q. rubra L.), black birch (Betula lenta L.), red maple

(Acer rubrum L.), and American beech (Fagus grandifolia Ehrh.), which

regenerated naturally after a clearcut around 1945. The second is an even-aged

red pine (Pinus resinosa AitonJ stand that was heavily disturbed by an ice storm

in December of 2008, and not used in this study.

In each stand, four plots were established: control (no added N), low N

(additions of 50 kg N ha"1 yr"1), low N plus sulfur (not included in this study;
additions of 50 kg N ha"1 yr"1 and 74 kg S ha"1 yr"1), and high N (additions of 150

kg N ha"1 yr"1). Each plot measures 30 ? 30 m and is divided into thirty-six 5x5
m subplots. Fertilizer additions of ammonium (NH4+), nitrate (NO3") and sodium

sulfate (NaSO4) began in 1988 as six equal applications over the growing season

(May-Sept.). The sulfur additions were terminated in 1998. Starting in 2005, N

additions consisted of NH4+, NO3", and potassium (K).
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Oak Ridge National Environmental Research Park, TN

The free air CO2 enrichment (FACE) facility at the Oak Ridge National

Laboratory (ORNL) Environmental Research Park is located in a sweetgum

(Liquidambar styraciflua L.) monoculture that was established in 1988. Dominant

understory species include predominantly Japanese stilt grass (Microstegium

vimineum Trin., a C4 invasive), with lesser amounts of flowering dogwood

(Cornus florida L.), Japanese honeysuckle (Lonicera japónica Thunb.), autumn

olive (Elaeagnus umbellate Thunb.) and eastern red cedar (Juniperus virginiana

LO-

ln 1996, a FACE experimental facility was set up in the sweetgum stand.

Five 25 m diameter plots were established: two with FACE apparatus emitting

elevated CO2, two with FACE apparatus but ambient CO2, and one with no FACE

apparatus. Exposure to elevated CO2 began in the spring of 1998. Average

daytime CO2 concentration (for 1998 - 2003) is maintained at around 544 ppm

for the enriched plots, and averages 391 ppm for the ambient plots (Norby and

Iversen 2006).

In 2004, an N fertilization experiment at ORNL was initialized. A 85 m ?

50 m area was fertilized in a block pattern within a sweetgum stand planted at

the same time as the FACE site sweetgum plantation, but separated by a small

stand of sycamore (Platanus occidentalis L.). Each block contains two control

plots and two fertilized plots (both 12 ? 16 m). The fertilized plots receive 200 kg

N ha"1 yr"1, applied as urea each year before leaf out (Iversen and Norby 2008).
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Data Collection and Analysis

Field Sampling: Harvard Forest

At HF, sampling of foliage from the hardwood plots was conducted at each

treatment level between July 20 and July 23, 2009. Within each treatment plot,

five red maple and seven black oak individuals were randomly selected and

sampled. Using a 12-gage shotgun, green leaves were collected from the top,

middle, and bottom of the canopy. Sample collection heights were determined

using a digital hypsometer (Haglöf Vertex). Leaves were placed in plastic Ziploc

bags and stored on ice until analysis, which was carried out within 36 hours of

collection. In each treatment plot, three litter and two bark samples were

collected from each species.

Field Sampling: Oak Ridge National Environmental Research Park

At ORNL, field sampling was conducted between July 28th and July 30th,

2009. Using a slingshot canopy sampler (N fertilized site) or tower climbing with

pole pruners (FACE), we collected green leaves from the top, middle, and bottom

of the canopy. Heights were determined using either a digital hypsometer

(Haglöf Vertex) or measuring tapes attached to climbers. Within each treatment

at the FACE site (ambient and elevated CO2) we sampled 10 sweetgum trees,

At the N fertilized site, a total of 12 upper canopy and 12 lower canopy samples

were collected for each treatment (control and N fertilized). However, due to the

physical proximity of the control and N fertilized plots (and consequent N
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contamination of the control treatment), we used the adjacent FACE ambient

CO2 plots as our control treatment for statistical analysis. Additionally,

understory plants were collected at 1 m intervals on a north-south transect in

each treatment, with a visual qualitative assessment to determine percent cover.

In all cases, leaves were placed in plastic Ziploc bags and stored on ice until

analysis.

Spectral data collection

We measured hemispherical reflectance and transmittance spectra for

healthy leaves from each individual using a spectrophotometer (ASD Inc.,

Boulder, CO) attached to an integrating sphere (SphereOptics), with a halogen

bulb light. The ASD spectrophotometer measures reflectance from 350 to 2500

nm, in 1 nm intervals. Measurements were taken for a single leaf and a stack of

2, 4, and 8 leaves (both adaxial and abaxial sides) for each individual tree within

several hours of sampling. Reflectance and transmittance spectra of leaf stacks

were taken to simulate light movement through canopy layers without the

influence of canopy structure. Because of time constraints, we were not able to

measure the abaxial reflectance and transmittance for leaf stacks of 2,4, or 8 for

all individuals. Leaves were kept in the same order for all stack measurements.

Stem bark and understory reflectance was also measured with the ASD

spectroradiometer and integrating sphere. Each reflectance and transmittance

sample was determined as the mean of 50 spectral measurements. The spectra

were corrected for dark current, and a white reference standard was taken prior
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to each set of measurements (reflectance or transmittance of one growing stack

of leaves). For reflectance spectra, both the sample and the white reference

were kept on the integrating sphere at the same time in order to maintain the

integrating sphere's port fraction. However, their port positions were switched

between the measurement of the white standard and the sample spectra.

SW spectrally weighted albedo (350 - 2500 nm) values were calculated

by multiplying the reflectance or transmittance spectra with the solar spectrum

(matching wavelength for wavelength) to create an energy flux spectrum (Fig. 1).

The integral of the energy flux spectrum was then divided by the integrated solar

spectrum to obtain a value representing the reflected energy as a proportion of

incident. For visible (350 - 700 nm), NIR (700 - 1300 nm), and Mid IR (1350 -

2500 nm) reflectance and transmittance values, the same process was followed

using only wavelengths from the regions of interest. All reported reflectance and

transmittance values are weighted by the solar energy spectrum.

Figure 1 . Albedo calculation for
a single leaf reflectance
spectrum (dashed line, in this
case a sweetgum leaf). For
each waveband, the reflectance
spectrum was multiplied with the
solar spectrum (grey line) to
create an energy flux spectrum
(black line). The integral of the
energy flux spectrum was then
divided by the integrated solar
spectrum to obtain an albedo
value representing the reflected
energy as a proportion of
incident.
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Leaf Chemical and Structural Analysis

For measuring water and structural properties, two circular disks (2.035

cm2 area) were removed from each leaf. These tissue samples were weighed so

the amount of leaf tissue for each stack could be calculated (e.g., disks from first

leaf, disks from first two leaves, first four leaves, etc.). Leaf disks were then oven

dried at 70 0C for at least 72 hrs and weighed again to determine water content

(% leaf fresh weight), equivalent water thickness (EWT, measured as g water per

cm2 leaf), and leaf mass per unit area (LMA, measured as g leaf per m2 leaf).

The remaining leaf sample (after leaf punches were removed) was then

ground using a Wiley mill and passed through a 1 mm mesh screen. Prior to N

concentration analysis, the ground samples were dried for 24 hours at 7O0C. The

mass-based leaf-level foliar N concentration (Nmass, measured as g of N per 100

g of dry leaf matter) was determined from the dried samples using a visible and

near infrared spectrophotometer (Foss NIRSystems 6500, Eden Prairie, MN)

following the procedure described by Bolster et al. (1996). We determined N per

unit leaf area (Narea) by multiplying Nm by the LMA of the sample (Narea = Nmass *

LMA).

We also measured leaf 513C for all samples. Leaf 13C can become

enriched through long - term water stress (Farquhar et al. 1982) or increased

photosynthetic rates (Duursma and Marshall 2006). Both of these variables

could lead to changes in leaf structure (e.g., Chartzoulakis et al. 2002, Nobel et

al. 1975, respectively); therefore 513C has the potential to be used as an indicator
of processes that influence light scattering within the leaf. A positive correlation
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between foliar N and 513C values has been observed in some species (e.g.,

Livingston et al. 2002, Duursma and Marshall 2006). This relationship could be

driven by inherent tradeoffs between nitrogen and water use efficiency (Fredeen

et al. 1991) or the importance of foliar N in driving photosynthetic rates (Reich et

al. 1997). We measured isotopie 513C using a Costech Elemental Analyzer
coupled to a Thermo Finnigan Delta Plus XP isotope ratio mass spectrometer.

Isotope values were expressed as 513C (%o) = ([13C/12C sample] / [13C/12C
standard] - 1) * 1000%o. Leaves from the elevated CO2 treatment at ORNL had

extremely low 613C values (Table 1), however this was likely due to the isotopie

signature of the CO2 being used for fumigation, not a greater discrimination of

13CO2. Therefore, 513C data from the elevated CO2 treatment was excluded in

subsequent analysis.

Statistical Analysis

Summary statistics (means and standard error) were computed for all

optical properties and leaf traits. The significances of the mean differences

between treatments were determined by analysis of variance (ANOVA), with pair-

wise comparisons tested using Tukey's 'Honest Significant Difference' method.

Regression analysis was used to determine relationships between optical

properties and leaf traits. For multiple regressions the adjusted r2 was
considered instead of r2 because this statistic penalizes the model for an

increased number of parameters, thereby decreasing the likelihood of overfitting.
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Prior to analysis, variables were tested for normality with the Shapiro-Wilk

statistic and in subsequent analysis, variables were power transformed where

needed to correct for skew. Single leaf SW and NIR albedo were non-normal

due to a small number of outliers (determined by 1 .5 * interquartile range).

Statistical tests were performed with and without the outliers, and because the

resulting explained variances were similar, outliers were removed to follow

assumptions of normality in linear regression models. All statistical analysis was

completed using the software R, version 2.8.1 (R Foundation for Statistical

Computing 2008). Results were considered statistically significant at the 0.05

level. Reported results are for single leaves, adaxial side, unless otherwise

specified.
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CHAPTER III

RESULTS

Adaxial vs. Abaxial Leaf Side

Similar to results from other studies (e.g. Woolley 1971) the adaxial side

reflected less in the visible than the abaxial side, but for transmittance the pattern

was reversed (p < 0.001 in both cases). There were no significant differences

between sides for either NIR reflectance or transmittance (p > 0.1 ). The mid IR

did not differ significantly between sides for reflectance, but transmittance was

slightly higher for the abaxial side. This pattern was consistent for all species,

treatments, and canopy heights. A two-way ANOVA showed no side - NmaSs

interaction for any of the species; although there are differences in reflectance

between leaf sides, this does not change based on the N content of the leaf.

Given an absence of an N - leaf side interaction, the remainder of the paper is

constrained to measurements from the adaxial leaf side.
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Treatment Differences

Leaf Traits

Harvard Forest

For red maple and black oak, Nmass was higher in the high N treatment

than the low N and control treatments (p < 0.001, Fig. 2d-e, Table 1). There

were no differences in LMA between treatments for black oak or red maple

individuals (p > 0.1 , Fig. 2g-h, Table 1). EWT did not differ between treatments

for any species (p > 0.1, Table 1). O13C was only significantly different between

treatments for black oaks, with the control treatment being more depleted in 13C
than the high N treatment (p < 0.05, Table 1).

Oak Ridge National Laboratory

Similar to results from HF, NmaSs was higher in the N fertilized treatment

than the ambient or elevated CO2 treatments (which were not significantly

different from each other) (p < 0.001 , Fig. 2f, Table 1). The N fertilized treatment

at ORNL had significantly lower LMA than the ambient or elevated CO2

treatments (p > 0.1 , Fig. 2i, Table 1 ). EWT and 613C did not differ between

treatments for any species (p > 0.1 in both cases, Table 1).
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Optical Properties

Harvard Forest

There were no differences between treatments in SW reflectance (Fig. 2a-

b) or transmittance, NIR reflectance or transmittance, Mid IR reflectance and

transmittance, or SW absorption (!-[réflectance + transmittance]) for any species

(p > 0.1 in all cases). Visible reflectance and transmittance followed differences

in N between treatments, with lower values corresponding to higher N fertilization

(p < 0.05 in all cases).

Oak Ridge National Laboratory

There were no differences between treatments in SW reflectance (except

for higher mean values in the ORNL elevated treatment than ORNL N fertilized

treatment, Fig. 2c), NIR reflectance, SW transmittance, or SW absorption (1-

[reflectance + transmittance]) for any species (p > 0.1 in all cases). NIR

transmittance in the ORNL N fertilized treatment was higher than in the ambient

or elevated CO2 treatments (p < 0.01). Visible reflectance and transmittance

followed differences in N between treatments, with lower values corresponding to

higher N fertilization (p < 0.05 in all cases). Mid IR reflectance and transmittance

were both higher for N fertilized sweetgums (p < 0.01), likely due to differences in

LMA and EWT.
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Relationships Between N and Optical Properties

The relationships between both NmaSs and Narea and reflectance and

transmittance of all optical regions were qualitatively similar across sites and

treatments, however the explained variances were lower for Narea (Table 2). An

increase in Narea could be due to either an increase in LMA or and increase in

Nmass, however Nmass and LMA generally exhibit opposite trends (i.e. LMA is

positively correlated with visible reflectance, while the relationship between NmaSs

and visible reflectance is negative). Therefore it is probable that the similarities

between the NmaSs and Narea relationships are in fact driven by changes in Nmass,

but mediated by the opposing affects of LMA. Because the changes in Narea can

be explained by these two variables, the subsequent analysis and discussion of

foliar N and optical properties will focus on Nmass.

Table 2. Comparison of regression statistics for foliar N on a mass (NmaSs> %) and
area basis (Narea, g m"2). This table reports the coefficient of determination (r), ?
value, and the sign of the slope of the regression line ('Sign' column) for each
model. Insignificant trends are represented by 'ns.' All species and sites were
included in the regression analyses. Both Nmass and Narea exhibit similar trends,
although the explained variances are lower for Narea, likely due to the opposing
effects of LMA.

____________Source of Variation
INmass Icárea

Response Variable r2 ? value Sign r^ ? value Sign
SW Albedo Ö29 < 0.001 ~ 017 < 0.001 ~
SW Transmittance 0.1 < 0.001 + ns
NIR Reflectance 0.17 < 0.001 - 0.08 < 0.001
NIR Transmittance 0.25 < 0.001 + 0.08 < 0.001 +
Mid IR Reflectance ns 0.06 < 0.001
Mid IR Transmittance 0.32 < 0.001 + ns
VIS Reflectance 0.54 < 0.001 - 0.18 < 0.001
VIS Transmittance 0.28 < 0.001 - 0.25 < 0.001



Furthermore, although we did sample leaves from three different heights

in the canopy, NmaSs was not correlated with canopy height within species or

treatments for BO or RM (p > 0.1 in all cases). NmaSs was negatively correlated

with canopy height in the elevated SG treatment (r2 = 0.14, ? < 0.05), however
there was no relationship between Nmass and canopy height in either the nitrogen

fertilized or ambient CO2 treatments (p > 0.05 in both cases). Therefore, it is

likely that the height from which a leaf was collected is not driving the wide range

in foliar N observed within each species, and so the following relationships

include leaf measurements from all canopy heights.

Across all species, NmaSs was the single best single predictor of SW, NIR,

and visible reflectance and transmittance for all species combined (Fig. 3 a-c).

However, contrary to our expectations, for all the spectral regions above, the

relationship between NmaSs and reflectance were negative (i.e. the more N

present in the foliage, the lower the reflectance). There was a positive

relationship between both SW and NIR transmittance and Nmass, whereas the

relationship between Nmass and visible transmittance was negative (Fig. 3 d-f).

Although Nmass was not the best predictor for Mid IR reflectance or transmittance

(EWT was, see below), the relationship was significant and positive for Mid IR

transmittance (r2 = 0.32, ? < 0.001). There was no significant relationship
between NmaSs and Mid IR reflectance (p > 0.1). Absorption was negatively

correlated with Nmass in the visible (r2 = 0.48, ? < 0.001), positively in the Mid IR

(r2 = 0.24, ? < 0.001), and very weakly positively in the NIR (r2 = 0.04, ? < 0.01),
leading to no significant relationship between total SW absorption and Nmass.
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The above results describe how NmaSs varied with reflectance and

transmittance for a single leaf. As the number of leaves in each stack increased,

the correlation coefficients for the relationships between NmaSs and all optical

properties decreased, however, the overall patterns (i.e. sign of the slope of the

regression line) remained the same for all leaf stacks (Fig. 4).
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Figure 4. Foliar Nmass versus SW reflectance albedo for stacks of one (black, r2 =
0.29, ? < 0.001), two (red, r2 = 0.26, ? < 0.001), four (green, r2 = 0.18, ? < 0.001),
and eight (blue, r2 = 0.13, ? < 0.001) leaves. Black oaks (o), red maples (+), and
sweetgums (?) were all included in the regression analysis. Although the y-
intercept changes, all stacks show similar negative relationships between foliar N
and SVV reflectance albedo.
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Relationships Between Leaf Traits and Optical Properties

There was a weak, but significant, positive relationship between LMA and

SW reflectance, and weak negative relationships between LMA and both SW and

NIR transmittance (Fig. 5). There were stronger negative correlations between

LMA and Mid IR reflectance (r2 = 0.38, ? < 0.001) and transmittance (r2 = 0.40, ?
< 0.001), although this is likely due to the influence of EWT (see below). Visible

reflectance was positively correlated with LMA (r2 = 0.20, ? < 0.001), whereas

there was no relationship between visible transmittance and LMA (p > 0.1).

Canopy height (the height in the canopy from which each leaf was collected) was

positively correlated with visible reflectance (r2 = 0.12, ? < 0.001) and negatively
correlated with both Mid IR reflectance and transmittance (r2 = 0.18 and 0.23 and

? < 0.001 , respectively). These relationships are most likely due to the response

of the optical properties to changes in LMA, which was positively correlated with

canopy height (r2 = 0.61 across all species).

EWT was the single best predictor for Mid IR reflectance and

transmittance (Fig. 6). Although the coefficients of determination were weaker,

EWT was also positively correlated with SW (r2 = 0.06, ? < 0.01), NIR (r2 = 0.04,

? < 0.01), and visible reflectance (r2 = 0.28, ? < 0.001), and negatively correlated
with SW (r2 = 0.10, ? < 0.001) and NIR transmittance (r2 = 0.09, ? < 0.001 ).

Relative water content (%) was not correlated with any optical parameter that we

considered (p > 0.1). Other studies (e.g., Datt 1999, Ceccato et al. 2001) have

also demonstrated that EWT is strongly related to IR reflectance for many
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vegetation types, whereas the correlation between water content and IR

reflectance is often weak to nonexistent.
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transmittance(p < 0.001). Relationship between LMA and NIR reflectance is not
significant. LMA explains little to no variation in NIR or SW albedo. Black oaks
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analysis.

613C was positively correlated with height in all species (r2 = 0.06, 0.27,

and 0.55 and ? < 0.1, 0.001, and 0.001 for black oak, red maple, and sweetgum

respectively). Overall, O13C was negatively correlated with SW reflectance (r2 =

0.12, ? < 0.001). The relationship between 613C and SW reflectance was likely

driven the stronger negative correlation between 613C and visible reflectance (r2 =

0.23, ? < 0.001), although O13C was very weakly, but negatively correlated with

NIR (r2 = 0.04, ? < 0.05) and Mid IR reflectance as well (r2 = 0.07, ? < 0.001).

613C was only significantly correlated with transmittance in the visible region (r2 =

0.31, ? < 0.001). Positive correlations between 513C and both NmaSs and Narea
were also observed across all sites and species (Fig. 7).
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Although there were significant correlations between SW reflectance and

the leaf traits other than NmaSs> the measured leaf traits explained none of the

scatter from the regression between NmaSs and SW reflectance. We compared

the residuals of the Nmass - SW reflectance correlation against each of the other

measured leaf traits, none of which were significantly correlated with the

residuals (p > 0.05 in all cases), and none explained more than 1% of the

variation. The same pattern was found when comparing the leaf traits against

the residuals of the Nmass - NIR reflectance model. Similar results were obtained

when the leaf traits were compared to the SW and NIR transmittance - NmaSs

models, however the explanatory power was slightly higher (2-7% for canopy
13/·height, EWT, and 1X).
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SW reflectance predictions were only slightly improved through multiple

regression models. Models that included NmaSs and either LMA, EWT, canopy

height, or some combination of these three parameters improved the prediction,

but only slightly (r2 = 0.31 as compared to an r2 of 0.29 for a linear model
between SW albedo and NmaSs)· The best SW reflectance prediction was

obtained with a model including NmaSs, LMA, and EWT (r2 = 0.31, ? < 0.001).

However, the interaction term between LMA and EWT was marginally significant

(p < 0.1 ) suggesting that the effects of these two parameters may not be

completely independent. No other combinations of leaf traits increased the

explanatory power of the prediction model.

The ratio between NIR reflectance and NIR transmittance (the scattering

coefficient, Allen et al. 1970) gives insight into the number of refractive interfaces

between cell walls and the intercellular airspace. As the amount of intercellular

airspace (and hence the number of refractive surfaces) increases, the probability

that light will be reflected increases while the probability that it will be transmitted

simultaneously decreases, causing the scattering coefficient to increase. The

scattering coefficient was negatively correlated with NmaSs (Fig. 8). It was also

slightly positively correlated with LMA, EWT, and height, and slightly negatively

with O13C, however none of these variables explained more than 10% of the

variance.
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CHAPTER IV

DISCUSSION AND CONCLUSIONS

The goal of this study was to examine leaf-level relationships that might

help to explain a previously observed positive relationship between canopy N

and shortwave surface albedo (Ollinger et al. 2008, Hollinger et al. 2010). Our

initial hypothesis, that we would observe differences in leaf albedo between

fertilization treatments, was not substantiated by the results of this study. There

were no differences in leaf SW reflectance or transmittance between comparable

treatments for both the N and CO2 fertilization plots. Although there were no

differences in leaf albedo between CO2 fertilization treatments, we also observed

no differences in mean foliar N between the ambient and elevated CO2

fertilization plots, and hence our results neither support nor refute our hypothesis

that leaf albedo would decrease with increased CO2 fertilization. Differences in

foliar N between CO2 treatments have been observed in the past at ORNL

(Norby and Iversen 2006); however, after 1 1 years of CO2 fertilization,

differences between treatments appear to be diminishing. Nevertheless, the

absence of differences in albedo between the N fertilization treatments at HF,

despite observed differences in foliar NmaSs, indicate that we are correct in

rejecting our initial hypothesis.
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However, although no treatment differences were observed for leaf

albedo, NmaSs was the best predictor of leaf-level reflectance and transmittance of

the leaf traits that we measured. With all species combined, there was a

significant negative relationship between foliar NmaSs and reflectance, and a

positive relationship between foliar NmaSs and transmittance. Hollinger

(unpublished) also observed a similar negative relationship between foliar N and

both SW and NIR reflectance at the leaf level across 20 deciduous tree species

(Table 3). Leaf SW radiation scattering is caused by a combination of pigment

concentration and leaf structural properties (Buschmann et al. 1990). Therefore,

the negative relationship between foliar NmaSs and leaf-level reflectance is likely

driven in part by the visible spectrum, where high N foliage absorbs more light

due to increased pigment concentration and hence has lower reflectance.

Incoming solar radiation contains more energy in the visible region than other

regions of the SW spectrum (Fig.1). Therefore, visible reflectance has a greater

influence on SW reflectance than might be expected given the generally low

reflectance values recorded from vegetation in this region. Nevertheless, when

restricted solely to the NIR region, there was still a negative, although slightly

weaker, relationship between leaf-level reflectance and foliar Nmass. This runs

contrary to our prediction that leaves with higher foliar N would have higher leaf

reflectance, particularly in the NIR region.

NIR scattering is thought to be due to leaf structural parameters such as

leaf thickness, the amount of intercellular air space (%IAS), or the Ames/A ratio

(Knapp and Carter 1998, Gausman et al. 1970, Slaton et al. 2001). Our study
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Table 3. Comparison of regression statistics between this study and data from
Hollinger (unpublished), which included 20 different deciduous tree species.
Both studies measured single leaf reflectance using a spectrophotometer
attached to an integrating sphere. Data from both studies show a negative
relationship between both SW and NIR leaf albedo and foliar Nmass.

Region regression line

Wicklein SW 0.29 < 0.001 -0.019
NIR 0.17 < 0.001 -0.021

Hollinger SW 0.20 < 0.001 -0.014
NIR 0.15 < 0.001 -0.019

found NIR reflectance was correlated with LMA (often used as a proxy for

thickness), although the relationship was weak (R2 < 0.05). However, LMA is a

product of both the thickness and the density of leaves, and the two parameters

have opposing effects: increased leaf thickness increases %IAS, whereas

increased leaf density decreases %IAS (Niinemets 1999, 2001). Castro-Diez et

al. (1997) found LMA to correlate better with density in some species and

thickness in others, and Knapp and Carter (1998) found that LMA has less

explanatory power than thickness when considering variation in NIR light

scattering. It is possible that the confounding effects of density and thickness in

the LMA measurements prevented us from obtaining a clear understanding of the

structural parameters affecting leaf radiation scattering. For example, although

black oaks (the species with the highest foliar N) had a high mean LMA (Table

1), this could actually be due to increased leaf density, leading to less potential

for internal light scattering. Castro-Esau et al. (2006) found that species with
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leaves that had low %IAS also had lower reflectance and higher transmittance in

the NIR region compared to leaves with high %IAS. The same pattern was also

seen as the %IAS developed throughout the maturation of cotton leaves

(Gausman et al. 1970). It is possible that this is also the mechanism driving the

observed patterns in leaf reflectance and transmittance for the species we

sampled.

Our results suggest that, at least to some extent, foliar N directly affects,

or covaries with, structural differences in leaves in such a way that leaf

reflectance is reduced with increasing foliar N. For example, a strong positive

correlation between foliar N and 513C has been observed in many conifer species

(Duursma and Marshall 2006) and nitrogen stress has been shown to decrease

water use efficiency and 513C in white spruce (Livingston et al. 2002). Similarly, a
positive correlation between 513C and N on both a mass and area basis was

observed in this study (Fig. 7). Although we could not separate out the effects of

water stress and photosynthetic CO2 drawdown in our 513C measurements, if
either variable decreases reflectance though changes in leaf morphology, this is

a potential way that foliar N could affect light scattering within the leaf. Nitrogen

could also be influencing cell growth within the leaf. Rademacher and Nelson

(2001) found that, in tall fescue {Festuca arundinacea Schreb.), mesophyll tissue

was the tissue fraction most responsive to changes in N. More specifically, they

observed that the proportion of IAS to total mesophyll space was lower in higher

N foliage because mesophyll area was enhanced by high N fertilization to a

greater degree than low N fertilization. Although we did not directly measure
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%IAS in this study, we could infer the number of refractive interfaces between

cell walls and the intercellular airspace through the scattering coefficient (NIR

reflectance/ NIR transmittance). We found that the scattering coefficient

decreased as foliar NmaSs increased, suggesting that there was a negative

relationship between %IAS and NmaSs across the species in this study.

Conversely, Niinemets (1999), across a broad range of species, observed a

negative relationship between density and both Nmass and the fraction of leaf

mesophyll as intercellular airspace. This implies that leaves with high foliar N

should be less dense and have a greater %IAS. Further work will be needed to

tease out the relationships between internal leaf parameters, N, and radiation

scattering.

Multiple regression models only improved the SW reflectance prediction

by 2% (from an r2 of 0.29 with Nmass as the only predictor, to an r2 of 0.31 when
LMA and EWT were also included in the model), and none of the leaf traits we

measured explained more than 1% of the variability in the Nmass - SW or NIR

reflectance correlations. Other studies have also observed large variation in leaf

reflectance within a single species (e.g., Cochrane 2000). This suggests that

factors other than those that we measured are important in determining how

much light is reflected from or transmitted through leaves. General scatter

around the prediction lines could be due to a multitude of different factors,

including: differences in leaf maturity (Gausman et al. 1970, Carter et al. 1989),

dehydration (Gausman et al. 1974b), stress/ disease (Rock et al. 1986, Knapp
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and Carter 2001), or differences at the cellular level (i.e. Ames/A, %IAS, cuticle

thickness, etc.; Knapp and Carter 1998, Slaton 2001).

Contrary to our results, Ollinger et al. (2008, SI text) report a strong

positive relationship between fresh foliage NIR reflectance and foliar N (R2 ~ 0.5).

However, their sampling method differed from this study in that they included

both conifer and deciduous species, and they measured an optically dense stack

instead of single leaves using a bench top spectrometer with no integrating

sphere. Only including the deciduous species during statistical analysis resulted

in an insignificant relationship between NIR reflectance and NmaSs- Perhaps the

absence of a positive relationship between N and foliar reflectance in our data is

simply due to our sampling design of only measuring deciduous species.

Nevertheless, we did see a large range in NmaSs even within each of the three

species; if the N - canopy albedo relationship were driven primarily by N

interactions at the leaf level, we would expect to see a response even within a

species.

Overall, although some interesting leaf-level relationships emerged, the

leaf level N - albedo relationship was the inverse of what has previously been

observed at the canopy level (Ollinger et al. 2008, Hollinger et al. 2010).

Additionally, stacks of multiple leaves, which simulate canopy layers without the

canopy structure, exhibited the same negative relationship between reflectance

and Nmass- This suggests that there are factors other than leaf level N-light

interactions that are driving the N-albedo relationship observed from the canopy.

Dungan et al. (1996) also observed no N fertilization treatment differences in
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infrared reflectance at the needle level for douglas fir seedlings, although

differences could be seen at the canopy level. Similarly, Knapp and Carter

(1998) did not see a large difference in optical properties at the leaf level across

a large range of species (and presumably a large range in foliar N).

If leaf-level interactions are not the primary influence on the previously

observed N-albedo relationship, it is likely structural properties at the canopy or

stand level that are the major drivers. (For a brief discussion of canopy spectral

measurements from HF and ORNL, and the results from a simple modeling

exercise highlighting the influence of canopy structural parameters on surface

albedo see the appendix). Ollinger et al. (2008) have shown that for temperate

and boreal forests, there is no relationship between canopy albedo and LAI;

however there are a number of other canopy-level factors that could be

influencing albedo. Ogunjemiyo et al. (2005) estimated canopy albedo and

rugosity (essentially the roughness or complexity of the outer surface of a

canopy) for douglas fir forests in the Cascade Range in the western US. Their

results suggest that shortwave albedo declines about 3% for every 4-m increase

in canopy rugosity, which they attribute to greater complexity promoting

absorption of scattered light. However, rugosity is measured as the standard

deviation of height in a given area (Ogunjemiyo et al. 2005), and Ollinger et al.

(2008) did not see a relationship between albedo and canopy height with

deciduous and coniferous species combined.

The N-albedo relationship could also stem from other within-canopy

structural parameters. For example, Close and Beadle (2006) found that as foliar
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N increased the leaf angle decreased (i.e. leaves became more horizontal in

orientation relative to the ground) in eucalyptus seedlings. This could lead to

increased canopy reflectance because it would limit the movement of uncollided

or scattered radiation down through the canopy (Asner 1998). Niinemets et al.

(2002) found a similar relationship between site fertility and scots pine needle

inclination angle. However, results are inconsistent with two other studies (Kuers

and Steinbeck 1998 and Gielen et al. 2003) where no relationship between leaf

angle and N fertilization was observed for two deciduous species (sweetgum and

poplar, respectively).

The area of individual leaves has also been shown to increase with

increasing foliar N. Maier et al. (2008) found that N fertilization increased needle

length in loblolly pine and Trapani et al. (1999) observed an increase in leaf area

in sunflowers due to increased N fertilization. Visual inspection of the sweegum

leaves used in our study support this, with N fertilized leaves appearing much

larger than leaves from the ambient or elevated CO2 treatments (Fig. 9). In a

modeling study, Rautiainen et al. (2004) demonstrated that canopy reflectance

increased as canopy volume increased; therefore, if increasing leaf area

increased the canopy volume, this could be a potential link between N and

canopy albedo.
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Figure 9. Sweetgum leaves collected from ORNL. On the left, a typical leaf
subjected to elevated CO2; on the right, a typical leaf subjected to N fertilization.
Although not measured in this study, visual inspection shows greater leaf area in
N fertilized leaves.

It is also possible that broad-scale changes in canopy albedo are due to

differences in species composition. Recent studies have shown that species

classification is possible through leaf and canopy spectral indices (e.g. Martin et

al. 1997, Roberts et al. 2004, Castro-Esau et al. 2006). This suggests that

different species likely have distinct structural and chemical features in their

leaves and canopy. Increasing our knowledge of these differences will likely

improve our understanding of what causes N and albedo to covary.
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Conclusions

This study investigated the importance of leaf-level N-light interactions as

a driver of the previously observed nitrogen- canopy albedo relationship.

Although we cannot completely rule out the importance of leaf-level N - albedo

interactions, our results suggest that they are not the dominant influence on this

relationship. It is likely that canopy structure, which could potentially covary with

canopy N status, is the main driver of this relationship. Future work should

include investigation of these canopy structural parameters in conjunction with

both N and albedo in order to better understand the underlying mechanisms

driving the positive correlation seen at a broad scale. An understanding of this

relationship would allow us to better understand interactions in the Earth's

climate system, and would improve parameterization of, and predictions from,

climate and ecosystem models.
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Radiative Transfer Modeling

In order to estimate the potential importance of various canopy structural

parameters in influencing canopy reflectance, we used the SAIL (Scattering by

Arbitrarily Inclined Leaves) radiative transfer model (Verhoef 1984, Verhoef

1985) to integrate leaf level reflectance measurements to canopy-level albedo.

The SAIL model predicts the bidirectional reflectance of plant canopies using

radiative transfer theory to characterize the flow of energy through a canopy.

SAIL is based on the Suits model (Suits 1972), which only takes into account

vertically and horizontally angled leaves. SAIL improves Suits' predictions by

basing extinction and scattering coefficients on a leaf inclination angle distribution

and a given LAI. This model has been discussed extensively in the literature for

both crops and forests (e.g. Huemmrich and Goward 1997, Andrieu et al. 1997,

Daughtry et al. 2000, Zhang et al. 2005, Zhang et al. 2006). SAIL has undergone

various minor changes since its conception, and we chose to use the SAIL-2

version of this model (Braswell et al. 1996), which includes hot spot

parameterization (self shading effect of both stems and leaves) (Kuusk 1991)

and a two-component canopy (photosynthetically active and non-photosynthetic

vegetation). Model inputs include reflectance and transmittance of component

leaves, plant area index (PAI, including both photosynthetic and non-

photosynthetic parts), reflectance of stem and soil substrate, mean leaf

inclination angle (ellipsoidal distribution with mean leaf angle), a hot spot

parameter, and viewing and solar geometry. We used a combination of

measured and literature values to parameterize the model.
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Sensitivity analysis of the SAIL-2 parameters was carried out first by

varying each model parameter along its appropriate range individually. From the

results of this simple sensitivity analysis, the parameters that most strongly

influenced canopy reflectance were chosen for a Monte Carlo approach

sensitivity analysis as described in Ollinger et al. (1998). The Monte Carlo

approach allowed us to determine the relative importance of various canopy

structural parameters in influencing canopy albedo. Multiple model runs were

carried out using the spectral measurements from field observations, with LAI,

mean leaf angle, fraction ground cover, and fraction of PAI due to non

photosynthetic vegetation (SFRAC) determined stochastically from ecologically

appropriate distribution functions. LAI was allowed to vary randomly from 1 to 8,

with a mean of 5.1 and a standard deviation of 1.6, which are the values reported

by Asner et al. (2003) in the global LAI distribution of temperate deciduous

broadleaved forests. Mean leaf inclination angle was allowed to vary randomly

from 0 to 90, with a mean of 60° for sweetgums (Kjelgren and Clark 1993) and

33° for black oaks and red maples (Hutchison et al. 1986), with a standard

deviation of 10° in both cases. SFRAC was set as a normal distribution with a

mean of 0.1 and a standard deviation of 0.03. Fraction cover was allowed to

vary from 0.5 to 1 , with a mean of 0.8 and a standard deviation of 0.1 . The

model was run 1000 times for each treatment, and the randomly chosen LAI, leaf

angle, SFRAC, and fraction cover were recorded along with the predicted canopy

albedo.
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LAI and fraction cover only explained more than 10% of the variation in

albedo when the understory had very different reflectance properties than the

canopy. This only occurred in the ORNL ambient CO2 plot, where the difference

between the understory NIR and the canopy NIR values was quite substantial

(around 0.5). Otherwise, leaf angle and SFRAC explained the majority of the

variance in albedo (Fig. A1). On average, SFRAC explained 31% (with a range

of 7 to 75%) and leaf angle explained 52% (with a range of 18 to 85%). The SAIL

model describes a relatively simple canopy, and hence does not take into

account some variables that could influence canopy reflectance (i.e. clumping,

crown shape, species composition, etc.). Nevertheless, this modeling exercise

highlights the importance of non-photosynthetic vegetation, leaf angle, and the

background/ understory reflectance in determining canopy albedo. It also

suggests that avenues of future study should empirically address the

relationships between these canopy structural parameters, N, and albedo to

determine their relative importance in N-albedo interactions.
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Figure A1 . Results from a Monte Carlo analysis demonstrate the influence of
leaf angle and the fraction of non-photosynthetic vegetation (SFRAC) on albedo
values calculated via the SAIL model. Darker points correspond to lower percent
SFRAC. For this run, the model was parameterized with reflectance and
transmittance values of leaves from the elevated CO2 treatment.
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Canopy Spectral Images

Canopy spectral ¡mages were acquired for the Oak Ridge FACE and N

fertilized sites on July 28, 2009. Pictures were taken from a small plane with

both a visible and NIR camera (both Nikon D90, one of which was retrofitted for

NIR use, MaxMax LLC). AIMS (Airborne Imaging Multispectral Sensor, which

includes a three-CCD multispectral camera) images were acquired over HF on

August 25, 2009. The average flying height was ~ 300 m, giving an image

resolution of ~ 0.16 m. Data was projected to Massachusetts State Plane

Coordinate System, NAD 1983, units meter. Data was acquired and produced

by the GeoProcessing Lab. of Mount Holyoke College.

From visual inspection of the Oak Ridge photos, the N fertilized plots were

easily distinguishable in the visible region, but not in the NIR. The FACE plots

were not easily distinguishable in either region. Furthermore, NIR differences

between plots at ORNL were likely an artifact of the sun angle, as there was

substantial variation in brightness across the images. For the Harvard Forest

images, it was not possible to visually distinguish the fertilization treatment plots

in any of the four bands (red, green, blue, and NIR). When images were resized

to 5 m resolution (to decrease the high pixel-to-pixel variability) there were no

significant differences between plots in any band (p > 0.1). However, there was

a significant difference in NIR, red, and blue reflectance between a nearby pine

stand the mixed deciduous forest (p < 0.05, Fig. A2). These results suggest that

either: differences are simply occurring at the species/ plant functional type level,
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that because N fertilization started after the forest was already established we

aren't seeing the changes in canopy structure that could cause an increase in

reflectance, that the plot sizes are too small to detect differences due to

fertilization, or that the differences in species composition and/or understory

cover are obscuring the N fertilization effects. Analyzing NIR images from areas

that have been fertilized with N, but are much larger in size or have been

fertilized since forest conception, may help to elucidate the reason we did not

observe differences between fertilization treatments.

araBKtcM BMWMH

?«

«

1?· ill· Vh» <¦*
) 1

¡JMl r*yi1

SI
I

Figure A2. Harvard Forest IR image. Fertilization plots are outlined in black and
labeled: (a) control, (b) low N and (c) high N. The darker pixels in the upper left
are from a neighboring red pine plantation, whereas the rest of the image is
mixed hardwood forest.
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