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ABSTRACT 

AGE AND AGE STRUCTURE OF AN INVASIVE PLANT, LYTHRUM SALICARIA 

by 

Kimberly L. Therrien 

University of New Hampshire, May 2010 

My objective was to determine whether purple loosestrife (Lythrum 

salicaria L.) individuals could be aged using the pattern of ramet 

production. Assuming current year loosestrife ramets produce new basal 

ramets only in the following year, plant age could be estimated by 

counting ranks of sequentially produced ramets. I found that in four New 

Hampshire wetlands the assumptions of the method were generally met, 

although some ramets were not produced sequentially. Using ramet 

counts I was able to estimate minimum age for individuals in each of the 

four populations. All populations were dominated by individuals > 1 year 

old. I tested whether mechanical damage to ramets releases lateral buds, 

inducing production of more than one rank of new ramets in one growing 

season and thus affecting age estimates. Clipped ramets produced lateral 

ramets (from leaf axils) that were morphologically distinct from basal 

ramets that characterize normal annual growth. 
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INTRODUCTION 

Background 

Commerce, transportation, and cultivation have led to the expansion of 

species distribution beyond natural barriers, such as oceans, mountains and 

climatic zones. The naturalization and continued expansion of non-indigenous 

species, a process called invasion, may alter fire regimes, nutrient cycles, 

hydrology, and soil structure (Mack et al. 2000). Approximately 5000 introduced 

plant species now exist in natural habitats in the US (Morse et al. 1995). Invasive 

plants present serious economic costs of $33 billion annually in agricultural 

losses (Pimentel et al. 2005). In the northeast, 1/3 of the plant species are 

introduced (Oehler et al. 2006). 

Although invasive species are well documented, relatively little is known 

about why they are able to succeed. Some researchers believe that a 

community's tolerance to invasion relates to community structure. According to 

Elton (1958), invasion should be less likely in communities with high species 

richness. Fewer species means less competition and thus more resource 

availability, which lowers a community's biological resistance to invasion. 

Experimental studies have found support for Elton's hypothesis (Kennedy et al. 

2002, Naeem et al. 2000). However, correlational studies often support the idea 
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that species richness may not be an effective barrier to invasion (Lonsdale 1999, 

Stohlgren et al. 2003). 

Disturbance maintains species diversity by preventing competitive 

exclusion and, for the same reason, can facilitate invasion of non-indigenous 

species (Burnham and Lee 2010, Hobbs and Huenneke 1992). Burke and Grime 

(1996) found that abundance of introduced species increased from less than 25 

percent to greater than 40 percent as levels of vegetation removal and 

fertilization increased. Recent studies have shown, however, that disturbance 

may not be a factor for all invasive species. For instance, a shade-tolerant 

invasive shrub, Rhamnus frangula (Gleason and Conquist 1991), is able to 

colonize undisturbed forest (Burnham and Lee 2010, Frappier et al. 2003a). 

Martin and Marks (2006) found that even though its rate of invasion was 

suppressed, Acer platanoides (L.) was able to colonize intact forests. 

According to Blossey and Notzold (1995), reduced levels of herbivory can 

lead to an increase in plant vigor. As natural predators of invasive plants often 

do not occur in an invader's new environment, there is less herbivory, thus 

increasing invasion success (Keane and Crawley 2002). Recent studies on Acer 

platanoides support this "enemy release hypothesis" (Adams et al. 2007, 

Cincotta et al. 2009). However, research conducted by Agrawal and Kotanen 

(2003) determined that the occurrence of herbivory on non-indigenous species 

was similar or greater than that experienced by native plants. 
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Age and Age Structure 

Some insight into the causes of invasion might be gained by observing the 

timing and pattern of the invasion process. Unfortunately, we often become 

aware of invasions only after they have occurred (e.g., Cunard and Lee 2009, 

Wangen and Webster 2006). Thus, we have little knowledge of the timing and 

pattern of invasion or of the population dynamics of the invading species. 

Understanding the timing and temporal pattern of invasion might provide insight 

into the roles competition, disturbance, and herbivory have in controlling plant 

invasions. The age and age structure of an invasive plant population may provide 

insight to the mechanisms underlying the invasion. 

The ability to determine the age structure of a population may be useful to 

characterize demography, estimate the rate of spread, and develop hypotheses 

about the processes and factors controlling the invasion. It may be possible 

to approximate time of invasion based on the current age structure (Dietz 2002 

Frappier et al. 2003b, Perkins et al. 2006, Wangen & Webster 2006). 

Population dynamics can provide insight to the life history characteristics 

and mechanisms that provided the opportunity for invasion, such as disturbance, 

dispersal, or community structure. Burnham and Lee (2009) were able to age 

invasive glossy buckthorn (Frangula alnus) and this allowed them to show that, 
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while buckthorn invasion of a hemlock-pine forest began prior to canopy opening, 

most individuals established afterward. Wangen & Webster (2006) used age 

structure to determine that seed dispersal and canopy gaps governed invasion of 

Acer platanoides. Perkins et al. (2006) studied the relationship between 

population age and both disturbance and environmental gradients. 

In addition, age structure may also allow for the prediction of future 

population size (Bullock et al. 1996). Growing populations are characterized by 

age structures with large numbers of juveniles and few adults (Hett 1971, Leak 

1975). If recruitment is high and the population is growing then it may be 

necessary to implement a control method. Conversely, a declining population 

often may have many adults but few if any juveniles (Leak 1975). In such a case 

there may be no need to apply control measures. However, the ability to predict 

future population sizes accurately relies upon knowledge of the survivorship of 

individuals. For example, the assumption that a population with a high 

percentage of juveniles is growing may be inaccurate if there is a high rate of 

juvenile mortality. 

In an effort to identify age structure and invasion patterns of invasive 

forbs, Dietz (2002) investigated the possibility of aging individuals by counting 

annual growth rings in a select group of invasive species. Using perennial plants 

that grow in seasonal climates and that produce annual growth rings in the root 

structures, he found temporal patterns of population development. Recently, the 
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spatial and temporal invasion pattern of Rhamnus frangula, was determined by 

aging and mapping individual stems (Frappier et al. 2003b). Individuals were 

aged using annual wood rings. 

Purple Loosestrife (Lythrum salicaria LJ 

I studied invasive Lythrum salicaria (purple loosestrife). Demographics of 

purple loosestrife have not been well investigated despite major efforts to control 

spread. Age structure of purple loosestrife may provide information on which to 

base control procedures for land managers as well as allow assessment of the 

long-term environmental impact of the invasion. 

The history of purple loosestrife invasion as well as the key life history 

characteristics of the plant were reviewed by Thompson et al. (1987) and are 

summarized here. Purple loosestrife, an aquatic plant species of Eurasian origin, 

was introduced to North America in the early 1800's. Ship's ballasts, livestock 

bedding, and the horticulture industry were largely responsible for purple 

loosestrife's introduction. Within a few decades of introduction, purple loosestrife 

was observed forming monospecific stands and having detrimental impacts to 

wetland ecosystems along the New England coast. The early expansion 

coincided with the construction of canals in NY and later enhanced by the 

development of road systems. Currently, purple loosestrife has been declared a 
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noxious weed in 19 states and occurs in 48 states in the US and in 9 Canadian 

provinces (Blossey et al. 2001). 

Today, purple loosestrife occupies freshwater marshes, alluvial 

floodplains, and stream margins in the northeastern and north-central United 

States (Thompson et al. 1987). Optimum site conditions include a moist soil with 

a slightly acid pH and experiments have shown temperatures between 15 - 20°C 

are optimum for germination (Shamsi & Whitehead 1974b). Purple loosestrife 

reaches 2 m in height with 30-50 ramets that form a dense canopy. Perennial 

rootstocks provide energy for the production of new shoots. Purple loosestrife 

produces long-lived seeds that are dispersed via water, wind, and wildlife. 

Temperature limits growth and expansion in northern distributions in North 

America. Purple loosestrife forms monospecific stands that may persist for at 

least 20 years within wetland communities. Purple loosestrife is often associated 

with communities of cattails (Typha spp.), reed canary grass (Phalaris 

arundinicaea), sedges (Carex spp.), bulrushes (Scirpus spp.), willows (Salix 

spp.), and horsetail (Equisetum fluviatile) (Thompson et al. 1987). 

Purple loosestrife's impact on wetland ecosystems has been the topic of 

many studies resulting in conflicting conclusions. Some assert that purple 

loosestrife out-competes native wetland species, reducing biodiversity 

(Thompson et al. 1987). The plant's perennial habit and ability to adjust to a 

wide range of environmental conditions enable it to thrive in disturbed habitats in 
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temperate climates. Weihe and Neelly (1997) found purple loosestrife to replace 

Typha latifolia (broad-leaved cattail) in both shaded and unshaded conditions. In 

a laboratory experiment, purple loosestrife suppressed the biomass of all the 

forty-four herbaceous wetland species tested (Gaudet and Keddy 1988). In 

conjunction with its competitive ability, another factor commonly attributed to the 

invasiveness of purple loosestrife is the absence of natural enemies to regulate 

population growth (Malecki et al. 1995). Blossey and Notzold (1995) tested the 

effect of herbivory on purple loosestrife growth, concluding that plant height and 

biomass increased in the absence of herbivores. In addition, Anderson (1991) 

found purple loosestrife responded to herbivory by producing multiple lateral 

ramets near the point of damage. 

Some believe that there is a lack of quantitative evidence supporting the 

theory that purple loosestrife reduces native biodiversity. Anderson (1995) 

disputes claims that purple loosestrife reduces species diversity. He suggested 

that the long-lived individuals with increasing stem density might be deceiving. 

Purple loosestrife may be increasing in percent coverage but may not reduce 

species richness as previously thought. Anderson (1991) found no correlation 

between species richness and purple loosestrife abundance in the wetland he 

studied. In addition, he suggests that purple loosestrife is used by native fauna 

such as insects, muskrats, and deer (Anderson 1995). Mahaney et al. (2006) 

found that loosestrife invasion might not negatively impact undisturbed wetlands 

with low diversity. Others have rejected the hypothesis that purple loosestrife 
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reduces species diversity (Hager and McCoy 1998, Lavoie et al. 2003, Treberg 

and Husband 1999). Similarly, Morrison (2002) concluded that purple loosestrife 

did not form monospecific stands in two sites located in lowland meadows in New 

York. In addition, Hager and Vinebrook (2004) found an increase in plant 

diversity in the presence of L. salicaria. 

According to Thompson et al. (1987), the occurrence of disturbance 

increases the colonization of purple loosestrife by providing a favorable habitat. 

In a comparison of L. salicaria seedling germination among plots which P. 

arundinacea was removed and undisturbed plots of Phalaris arundinacea, 

Rachich and Reader (1999) concluded that disturbance allowed purple 

loosestrife to establish through the removal of a vegetative barrier. 

Some have attempted to age herbaceous perennials using morphological 

indicators that mark annual growth (Dietz 2002, Harper and White 1974). 

Anderson (1991) studied the age structure of purple loosestrife individuals by 

examining its pattern of annual ramet production. Anderson harvested entire 

loosestrife individuals in the field and, based on careful examination of 

relationships among ramets, he developed hypotheses about patterns of ramet 

production. He hypothesized that every year a loosestrife individual produces 

one or more new ramets, each of which dies back to its base at the end of that 

year. He then hypothesized that, in the following year, each such ramet produces 

a new ramet or ramets only at its base. As one ramet may give rise to more than 
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one ramet in the next year, whole plants may show a sequential pattern of ramet 

production that radiates out from a central point (Figure 1). Based on the 

morphological relationships among ramets, Anderson estimated that, of 152 

current year's stems, 90% arose from the base of a previous year's ramet. He 

also estimated that a single ramet originated from the previous year's ramet in 

78% of the ramets produced. Less than 5% of the ramets produced did not 

originate from the basal portion of the previous year's ramet. These ramets 

originated on either current year stems or on stems greater than 1 year old. 

Based on the inferred pattern of ramet production, Anderson (1991) 

further hypothesized that the age of an individual plant could be estimated by 

counting backward across sequentially produced ramets, from the current year's 

ramet to the oldest available ramet (Figure 1). Applying this method to his 

populations he found evidence for episodic recruitment of purple loosestrife with 

low densities of new genets per year (Anderson 1991). 

Anderson's aging method assumes that the current year's ramets do not 

produce additional ramets in that year, but only produce new basal ramets in the 

following year. In addition, he assumed 1 year old ramets would not produce 

new ramets in subsequent years. However, Anderson did not test his aging 

method directly as the consistency of the numbers of stems produced was not 

monitored across growing seasons; Anderson's inferences were made solely 

from an interpretation of spatial ramet relationships made at one point in time. 
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2005 2005 

Figure 1. Stems of Lythrum salicaria depicting: the yearly production 
of basal ramets originating from the base of an existing stem. 

Anderson (1991) believed that there was one major uncertainty about his 

proposed aging method. He worried that herbivory to the upper parts of 

loosestrife ramets might release basal buds on those ramets, thus causing the 

production of a second rank of ramets in the same year. If one assumed that one 

set or rank of ramets was produced per year and estimated age by counting 

backwards from the current year's ramet, a year in which herbivory occurred 

might be tallied as two years. 

10 



I. OBJECTIVES 

The main objective of this study was to test and apply Anderson's 

(1991) method of aging purple loosestrife. First I tested the hypotheses 

that (a) current year ramets of purple loosestrife produce new basal 

ramets only in the following year, (b) that this pattern can be used to 

estimate the age of the purple loosestrife individuals, and c) that damage 

to ramets does not interfere with the method of aging. The second 

objective was used to determine the age structure of four purple 

loosestrife populations. 
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II. METHODS 

A. Study Sites 

This study was conducted in four, freshwater emergent wetlands in the 

New Hampshire seacoast region: Upper Peverly Pond, Bellamy Reservoir, 

Pease Tradeport, and Brown Mill Pond (Figure 2). 

Figure 2. Four emergent freshwater wetlands in the New Hampshire seacoast region: Upper 
Peverly Pond Bellamy Reservoir, Pease Tradeport, and Brown Mill Pond. 
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The Brown Mill Pond site (herafter 'Brown'), owned and managed by The 

Nature Conservancy, was located west of Love Lane in Rye, Rockingham 

County (42° 59.202' N lat. 70° 46.613' W long.). Brown Mill Pond and associated 

littoral habitat was created by an earthen dam constructed before 1800. Soil was 

Chocorua mucky peat (Soil Survey Staff) and the site had a well developed 

hummock-hollow microtopography. Elevation was 12 m above sea level. The 

sampled loosestrife population was located on the northern edge of the pond, in 

emergent palustrine vegetation dominated by tussock sedge (Carex stricta), 

Canada bluejoint (Calamagrostis canadensis), cattail (Typha latifolia), and poison 

ivy (Toxicodendron radicans). 

The Upper Peverly Pond site (hereafter 'Peverly') was on the 1089 acre 

Great Bay National Wildlife Refuge, which is located along the eastern shore of 

the Great Bay Estuary in Newington, Strafford County (43° 05.235' N lat. 70° 

50.406' W long.). Upper Peverly Pond was constructed around 1900 as a water 

supply for the City of Portsmouth. The soil adjacent to the pond was an Eldridge 

silt loam (Soil Survey Staff). Elevation was 10 m above sea level. The sampled 

loosestrife population was located within a littoral habitat with palustrine 

vegetation dominated by cattail (Typha latifolia), and Canada bluejoint 

(Calamagrostis canadensis). 

Bellamy Reservoir (hereafter 'Bellamy'), located in the town of Madbury, 

Strafford County (43° 11.843' N lat. 70° 57.137' W long.), is fed by the Bellamy 
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River and Mallego Brook. Bellamy Reservoir is a 420 acre impoundment created 

in 1960 and is the drinking water supply for the City of Portsmouth. The study 

site was located just northwest of the Route 9 bridge, which bisects the reservoir. 

The soil was a Swanton, fine, sandy loam (Soil Survey Staff). Elevation was 13 

m above sea level. The sampled loosestrife population was located in palustrine 

vegetation dominated by cattail (Typha latifolia). 

The Pease site (hereafter 'Pease'), owned by the Pease Development 

Authority, was located in the town of Newington, Strafford County (43° 04.241' N 

lat. 70° 46.613' W long.). The site was located 100 m east of an abandoned 

school building. The site was impacted, and perhaps created, during the 

construction of interstate 95 during the 1960s. The soil was a Squamscott fine 

sandy loam (Soil Survey Staff). Elevation was 12 m above sea level. The 

palustrine vegetation is dominated by cattail (Typha latifolia), Canada bluejoint 

(Calamagrostis canadensis), purple loosestrife and silky dogwood (Cornus 

amomum). 

B. Growth Patterns 

During June - August, 2004, at all four sites, I selected purple loosestrife 

individuals along evenly spaced transects using restricted random sampling. The 

sample area at each site ranged from 0.04 - 0.1 ha. Distance between transects 

varied from site to site but was generally 2.5 to 5 m. The loosestrife population at 
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Peverly was highly fragmented, occurring in small patches along the shore of the 

pond. Consequently, at Peverly, I established one transect per patch, oriented 

along the long axis of the patch. At all sites, each transect was divided into 

segments of equal lengths (1 - 5m, depending on site) and a random point was 

chosen along each segment. The loosestrife individual closest to the point was 

selected for study. 

An individual was defined as a single plant consisting of one or more living 

ramets all derived vegetatively from the same primary ramet. I identified each 

plant with an aluminum tag. Thirty plants each were chosen at Peverly and 

Brown. At Bellamy and Pease, I selected 60 plants, 30 of which were randomly 

designated as control plants, with the remaining 30 as experimental (manually 

clipped) plants. On each individual, all current year ramets (2004) were marked 

with flagging. I recorded the number of current year live ramets per plant. I 

monitored the plants monthly through October 2004, noting the occurrence of 

stem damage and mortality. 

During the months of June - October of the following year, I examined 

each ramet tagged in 2004 on the control plants and marked new ramets 

produced in 2005 with flagging, recording the total number of new ramets per 

plant and noting plant mortality and any damage to ramets produced in 2004 and 

2005. In September and October of 2005, I used a shovel to extract the 30 

control plants at each site and cleaned the soil and debris from their roots and 
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lower ramets. In the laboratory, I re-counted the total number of new (2005) 

ramets produced per plant and determined the location on the plant where each 

new stem originated. 

I analyzed the spatial pattern of the production of 2005 ramets in two 

ways. First, on each plant, I randomly selected 3 ramets produced in 2004. For 

each of these "2004 ramets", I recorded the number of new ramets produced in 

2005. All 2005 ramets originating from the base of a 2004 ramet were said to be 

of the same "rank". When the 2004 ramets produced multiple new ramets in 

2005, I noted whether the ramets originated from the 2004 stem (same rank) or 

from one of the other ramets produced in 2005 (different rank) (Figure 3). 

a. b. 

2002 

2005 2005 2005 

2002 

Figure 3. Stems of Lythrum salicaria depicting: a) ramets originating from the base of 
an existing stem (same rank) and b) ramets originating from the base of a stem 
produced in the same year (different rank). 

I also randomly selected 3 ramets produced in 2005 on each plant and 

recorded whether each originated from a) a 2004 stem, b) an untagged stem 
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(one that either lost its tag or was produced before 2004), c) an older stem 

(produced before 2004), d) root tissue, e) or could not be determined. 

C. Estimation of Age 

The method of aging (Anderson 1991) assumes that each current year 

ramet arises from the basal portion of a ramet that was produced in the previous 

year. Using the extracted and cleaned plants, I estimated the minimum age of 

purple loosestrife individuals by counting the number of ranks of ramets, starting 

with the most recently produced ramet (2005) and working backwards to the 

oldest rank (Figure 3a). Some plants were branched, meaning that at one or 

more times in the past a single stem gave rise to two or more new ramets in the 

following year. At least two of the daughter ramets produced new ramets and 

proliferated further. In branched plants, I estimated the age by counting 

backwards from two or more current year ramets (each on a different branch) to 

the oldest available stem. In some plants, the oldest available stem appeared to 

be the original stem tissue while in others it was a broken stem. 

In some cases, I clipped the ramets close to the rootstock to clearly see 

the pattern of ramet proliferation and in some cases I dissected the plant to get a 

better view. Some plants were already in pieces due to breakage during 

extraction or cleaning. In these cases, I pieced the plants back together if 

possible. 
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D. Effects of Clipping 

During the first two weeks of July, 2004, at the two sites selected for the 

clipping experiment (Bellamy & Pease), all ramets produced per selected plant (n 

= 30 per site; see above) were tagged. From each plant, half of all the ramets 

were selected haphazardly and clipped using pruning shears at 16 cm above 

water level. The 16 cm height was chosen to allow plants to respond by making 

either basal or lateral ramets. Between August and September 2004, the sites 

were visited, and all marked ramets (clipped and not clipped) were checked for 

the production of new lateral ramets. On each marked ramet, the number of new 

ramets produced and location at which they were produced along the marked 

stem were recorded. 

E. Data Analysis 

To test whether the number of ramets per plant varied across the four 

sites, a Kruskal-Wallis non-parametric ANOVA was run. The data were not 

normally distributed and so a parametric test was not run. To test whether 

survival of plants from 2004 to 2005 varied among sites, I ran a x2 test of 

independence. Individual plants varied greatly in the number of ramets produced 

and, as whole plants were the independent study units, I elected to examine 

performance of individual ramets based on a random sample of 3 ramets per 

plant. Thus, bias due to plants with large numbers of ramets would be avoided. 
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To assess variation across the four sites in the production of ramets in 2005 by 

ramets produced in 2004, the location of stem origin, and the propensity of 

ramets to develop single or multiple ramets I ran x 2 tests of independence. To 

compare the percent of ramets producing lateral ramets across treatments in the 

clipping experiment, I ran a Kruskal-Wallis one way ANOVA. 
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III. RESULTS 

Characteristics and Fate of Tagged Control Plants 

In total, I tagged 121 plants and over 700 ramets in 2004. The mean 

number of living ramets per plant in 2004 ranged from 3.10 at Peverly to 9.07 at 

Pease, with both Bellamy and Brown having intermediate values (Table 1). The 

number of ramets per plant varied significantly among sites (Kruskal-Wallis non-

parametric ANOVA, x2 = 10.9, d.f. = 3, P = 0.012). At all four sites, the minimum 

number of ramets per plant was 1, but the maximum number of ramets ranged 

from 9 at Peverly to 28 at Pease (Table 1). 

Table 1. Sample size and characteristics of Lythrum salicaria control plants at 
four southeastern New Hampshire sites in 2004 and 2005. 

Number 
of plants 

Mean 
Number of 
ramets per 

plant tagged 
in 2004 

(St. Dev.) 

Minimum 
number of 

ramets 
per plant 
in 2004 

Maximum 
number of 
ramets per 

plant in 
2004 

Plant 
Survival 
2004-05 

(%) 

Mean 
Number of 
ramets per 

plant in 
2005 

(St. Dev.) 
Peverly 31 3.10 ±1.83 1 9 45 2.87 ±1.30 

Pease 30 9.07 ±8.10 1 28 100 8.07 ±5.90 

Bellamy 30 6.40 ±4.38 1 17 93 6.54 ±4.44 

Brown 30 6.20 ±5.79 1 24 73 3.86 ±3.56 
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Most of the plants tagged in 2004 survived to 2005, but survival was site 

dependent (x2 test of independence, x2 = 32.1, d.f. = 3, P < 0.001; Table 1). 

Plants that were tagged in 2004 but not recovered in 2005 were assumed to 

have not survived. However, the apparent absence of a plant could have been 

due to lost tags. Survival at Peverly was lowest; only 45% of the plants were 

recovered in 2005. At all other sites survival exceeded 73%. In most plants that 

did not survive, cause of death was not possible to discern. At Peverly, however, 

some plant death was associated with herbivory. These plants were visibly 

grazed and trampled, with some ramets grazed near the base. The pattern of 

cutting combined with nearby tracks suggested white-tailed deer (Odocoileus 

virginianus) as a major herbivore. Survival at Brown may have been impacted by 

the release of the biological control beetle (Galerucella sp.) in 2005. 

In 2005, the 94 remaining plants produced over 500 new ramets. The 

mean number of ramets produced per control plant was greater than 6 at both 

Bellamy and Pease and less than 4 at Brown and Peverly (Table 1). These 

values are generally similar to those obtained at these sites in 2004. The 

maximum number of ramets produced per plant in 2005 ranged from a high of 22 

at Pease to a low of 5 at Peverly. 
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A. Growth Patterns 

Production of New Ramets by the Previous Year's Ramets 

The focus of this next section turns from the whole plant to individual 

ramets (regardless of what plant they were part of) and the ability of 2004 ramets 

to produce new ramets in 2005 (Figure 4). Most of the 2004 ramets produced at 

least one new ramet in 2005. At the Pease site, an average of 67.8% of the 

ramets produced at least one new ramet in 2005. Corresponding values for 

Brown, Peverly, and Bellamy were 81.1%, 61.9%, and 71.4%, respectively. The 

fraction of 2004 stems producing one or more new ramets in 2005 (71.7% 

overall) did not differ among sites ( x 2 test of independence, x 2 = 4.56, d.f. = 3, P 

= 0.207). 

o 
140 i 

• stems producing one ramet 

• stems producing >1 ramets 

p ^ 80 -P ™ 80 - M M 

ii I 1 I II i o- w , , n , i 
~ E 

Pease Bellamy Brown Peverly 

Sites 

Figure 4. Percent of Lythrum salicaria ramets in 2004 that produced new 
ramets in 2005 at four southeastern New Hampshire sites (st. dev.). 
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At all four sites, some flagging on 2004 ramets were lost prior to sampling 

in 2005. If ramets losing tags were more or less likely to produce new ramets 

than ramets with tags, there could have been bias in the data. Consequently, 

over all four sites, I analyzed the data from all 2004 plants that were not missing 

tags to see if lost tags had biased the results. In this reduced, pooled sample (n 

= 32 plants), 72.9% of the 2004 ramets produced one 2005 ramet, similar to the 

overall mean for plants all plants (71.7%). 

Of those 2004 ramets producing one or more ramets in 2005, most 

produced a single new ramet in 2005 (Figure 3a, Figure 4). At the Pease site, a 

mean of 90.2% of 2004 ramets that produced ramets in 2005 produced only one 

new ramet in 2005. Corresponding values for Brown, Peverly, and Bellamy were 

84.6%, 93.3%, and 63.2% respectively. In the reduced/pooled sample of plants 

that did not lose tags (n = 32 plants), 77.9% of 2004 ramets produced only one 

2005 ramet. 

In some cases, a 2004 ramet produced multiple (2, 3, 4, or 5) ramets in 

2005 (Figure 4). The maximum number of 2005 ramets produced by a 2004 

ramet was 5. At the Pease site, an average of 9.8% of all 2004 ramets produced 

multiple ramets in 2005. Corresponding values for Brown, Peverly, and Bellamy 

were 15.4%, 6.7%, and 36.8%. The propensity to develop multiple ramets 

differed across sites ( x 2 test of independence, x 2 = 16.367, d.f. = 3, P < 0.001). 
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In the reduced/pooled sample that included only plants that did not lose tags (n = 

32 plants), 22.1% of the 2004 ramets produced multiple ramets in 2005. 

Origin of New Ramets 

When 2005 ramets were produced, they generally originated from buds 

near the base of 2004 ramets (Figure 3a). These buds occurred haphazardly on 

the ramet surface within ca. 10 cm of the ramet base (the point at which it 

attached to another ramet or root) and were not associated with leaf axils (Figure 

5). Based on the sample of 3 randomly chosen ramets per plant, 82% of the 

2005 ramets arose directly from basal buds on the 2004 ramets at Bellamy. 

Values for Brown, Pease, and Peverly were 81%, 76%, and 48%, respectively 

(Table 2). The location where 2005 ramets derived from was site dependent ( x 2 

test of independence, x 2 = 17.46, d.f. = 3, P < 0.001). I also analyzed the data 

from plants at all four sites that were not missing any tags from 2004 (n = 32 

plants). On these plants, an average of 83% of the 2005 ramets originated from 

2004 ramets. 
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Fogyr® S. Basal ramet produced near the base of a 2004 
Lythrum salicaria stem in 2005. 
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Some 2005 ramets originated from ramets estimated to be 2 years old 

(Figure 6). This was clearly the case when both a marked 2004 and a marked 

2005 ramet originated from the same ramet. At the Pease site, on average, 

5.6% of the 2005 ramets originated from ramets produced in years prior to 2004. 

Corresponding values for Brown, Peverly, and Bellamy were 1.6%, 2.4%, and 

1.8%, respectively. In the reduced sample of plants that were not missing any 

tags from 2004 (n = 32), none of the 2005 ramets were produced on ramets that 

were 2 or more years old. 

Some 2005 ramets were found to originate directly from root tissue (Figure 

7). Origin from the roots occurred at Bellamy on 1.2% of the ramets. At Pease 

10.0%, and at Brown 1.6% of the 2005 ramets had at least one 2005 ramet that 

originated directly from the rootstock. At Peverly, a very high 22.6% of the 2005 

ramets originated from root tissue. Of the plants not missing any tags from 2004 

2004 2005 

200 

Figure 6. Stems of Lythrum salicaria depicting a 2005 ramet that 
originated from a ramet estimated to be 2 years old. 
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(n = 32), only 5.73% of the 2004 ramets produced ramets in 2005 that originated 

from root tissue. 

2005 \ 
2005 Stem Tissue 

•v 
Root tissue 

Figure 7. Lythrum salicaria stem depicting 2005 ramets originating from 
root tissue. 

Finally, I examined the possibility that some 2005 ramets arose from 

another 2005 ramet (Figure 3b). As shown above, when a 2004 ramet produced 

multiple ramets in 2005, each 2005 ramet was usually produced directly from 

basal buds on the 2004 ramet; thus, the 2005 ramets were denoted as all having 

the same "rank". Only in one instance, at Peverly, did a 2005 ramet arise from 

the base of another 2005 ramet (Figure 8). The result was that a 2004 ramet 

produced two ranks of new ramets in 2005. In this particular case, it appeared 

that the plant exhibited injury, possibly herbivory, to the upper part of the initial 

2005 ramet at some point during the 2005 season. 
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Figure 8. Lythrum salicaria stem depicting a 2005 ramet 
producing an additional ramet in 2005 (different rank). 

Clearly, some 2005 ramets originated from untagged ramets. These 2005 

ramets may have arisen from 2004 ramets that were missed (i.e., not tagged) 

during the initial sampling procedure or from ramets that lost their tags during the 

winter. Others may have arisen on ramets originating in years prior to 2004. At 

all sites, between 8 - 25% of the 2005 ramets were produced on these 'untagged 

ramets'. When I eliminated from the data all plants that lost tags on 2004 ramets 

and then combined data from all four sites (n = 32), only 8.85% of the 2005 

ramets were produced from ramets other than those flagged in 2004. 
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The origin of a small number of 2005 ramets could not be determined. In 

some of these cases, factors such as decomposition and breakage inhibited my 

ability to determine ramet origin. In other cases, the 2005 ramet originated too 

close to the base of the older ramet making it difficult to differentiate between 

ramet and root tissue. At the Pease, Brown, and Bellamy sites, the origin of the 

2005 ramet could not be determined in 1 - 7% of the ramets. The origin of all 

ramets could be determined at Peverly. I also analyzed the data from plants at 

all four sites that were not missing any tags from 2004. The origin of each the 

2005 ramets in this reduced sample was unaccounted for in 2.08% of the ramets. 

B. Estimation of Ape 

Mean Age 

The age of each plant was estimated by counting backwards, rank by 

rank, from the 2005 ramet to the plant's oldest available or original ramet. Aging 

required complete removal of peat and debris from the ramets and root system. 

While dissecting the plants, it became apparent that some plants tagged as one 

were actually comprised of 2 or more plants that could be identified as separate 

individuals. These plants were counted as separate individuals when estimating 

age. 
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Some plants included the original ramet while others could only be traced 

back to a point where the ramet was broken or decomposed. In the latter case 

the plant's age could have been much greater than estimated. On plants that 

had multiple branches, each branch was individually aged back to the original 

ramet or, in the case of broken plants, the oldest available ramet. In some 

branched plants, there was disagreement among the branches in estimated age. 

Inconsistent aging was caused by ramets that did not give rise to a new ramet in 

the next year, ramets that produced a ramet in the same year it originated 

(different rank), or when a ramet greater than one year in age produced a new 

ramet. In these cases, the age from the branch that could most clearly be aged 

was used. Often this was the youngest age. 

Based on this analysis, the estimated age of plants at Pease ranged from 

2-14 years (Figure 9). The mean minimum age was 6.3. The modal age was 3. 

Brown plants also ranged in minimum age from 2-14 years old, but here the 

mean minimum age was 6.1 years, with 6 year old plants being the most 

common. Plants ranged from 4-14 years old at Bellamy, with a mean minimum 

age of 6.9. Most plants fell in the 6 year old age class. At Peverly, the plants 

ranged from 2-5 years with the mean minimum age being 3.4. The modal age 

was 3. 
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Figure 9. Comparison of mean age estimates of Lythrum salicaria at four 
sites in southeastern New Hampshire (st. dev.). 

At Peverly, Pease, and Bellamy 72 - 88% of plants were complete, 

including what appeared to be the original ramet. The remaining plants ended in 

a broken ramet. Only 12% of the plants at Brown were complete. The plants at 

Brown were difficult to extract from the deep water (greater than 1 m in some 

cases) and dense peat and tussocks of Carex stricta. 

When a plant was branched, I estimated plant age from each branch. 

Specifically, I counted the ranks of ramets on each branch starting with the most 

recent ramet and working back to the original ramet or break. For each plant, I 

then compared the ages to see if they were congruent. If age estimates differed 

among branches, I determined the difference between the maximum and 

minimum age estimates and called this 'deviation in years'. At all four sites, 
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mean deviation was less than 1 year (Table 3). The maximum deviation in years 

was 3 at both Pease and Brown. 

Table 3. Number of plants1 with branches, mean plant age based on all 
branches, mean minimum and mean maximum age, and deviation in branch 
age (max - min) of Lythrum salicaria individuals at four southeastern New 
Hampshire sites. 

Number Deviation 
of plants Mean Mean in Years 

with Minimum Maximum (max age - Maximum 
branches Mean age age age min age) Deviation 

Pease 34 7.8 7.4 8.1 0.8 3 
Bellamy 23 7.1 6.9 7.3 0.4 2 
Brown Mill 9 6.6 6.3 6.9 0.6 3 
Peverly 2 3.5 3.5 3.5 0.0 0 

Age structure graphs of Lythrum salicaria at the four sites show that these 

populations were multi-aged (Figure 10). It appears that these populations had 

continual recruitment, but because some plants were damaged and thus 

impossible to age, recruitment patterns were difficult to determine. At Bellamy 

and Pease, the percentage of broken plants was 11.1% and 26.7%, respectively. 

At these sites, the number of broken plants seemed to increase with age. The 

percentage of broken plants was 22.2% at Peverly. These plants were much 

smaller in size than those at the other three sites. A larger percentage of broken 

plants occurred at Brown (88%) due to the difficulties during extraction and to the 

decomposition of the buried portions of these plants. 

1 Plant number exceeds 30 at Pease as some Lythrum salicaria plants identified and tagged as 
individuals were later determined to be comprised of two or more plants that could be identified 
as separate individuals. 

33 



12 

10 -

8 -

6 

4 -

2 -

0 

Peverly o Incomplete plant 

• Complete plant 

H i l l I 

Figure 10. Age structure of Lythrum 
salicaria populations at four sites in 
southeastern New Hampshire. Solid 
columns indicate complete plants, 
open columns indicate incomplete 
plants (plants ending in broken or 
decomposed ramets). 

i i — r -

Pease 

12 

10 

8 

6 

4 

2 

0 

Brown 

J1 a i a 

n n i I I 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Age (Years) 

34 



c. Effects of Clipping 

Individual loosestrife ramets can produce new shoots either from buds 

within a few cm at the base of the ramet, or from the axils of leaves which occur 

from near the ramet base to the ramet tip. I refer to shoots produced from the leaf 

axils as 'lateral ramets' and those from basal buds as 'basal ramets'. Lateral 

ramets have a distinctive growth form in which they ascend from the axils of 

leaves and leaf scars, forming a "V" relative to the original ramet. Basal ramets 

have a distinguishable curvature from the point of origin on the base of the 

original ramet (Figure 11). 

a) 

2004 
Ramet 

b) 

2005 
Basal 
Ramet 

2004 
Lateral 
Ramets 

Figure 11. Lythrum salicaria ramet producing a) a basal ramet and b) lateral 
ramets on clipped ramet. 
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Of the ramets that were clipped at 16 cm above water level in 2004, 

92.5% at Pease and 92.1% at Bellamy produced lateral ramets later that year 

(Table 4; note that observations were mean percent of ramets producing lateral 

ramets per plant). The undipped ramets on the same plants produced lateral 

ramets less frequently: 11.1% of the ramets at Pease and 13.1% at Bellamy. It is 

important to note that clipped ramets had less stem length available for lateral 

ramet production than did undipped stems. The percent of ramets producing 

lateral ramets varied significantly between the clipped and undipped treatments 

(Kruskal-Wallis non-parametric ANOVA, for Bellamy x2 = 40.3, d.f. = 1, P < 

0.001; for Pease x2 = 40.2, d.f. = 1, P < 0.001). The control plants (no clipped 

ramets) at these sites produced lateral ramets less frequently, however the 

difference was not significant (5.1% at Bellamy, 5.1% at Pease) than undipped 

ramets on clipped plants (Kruskal-Wallis non-parametric ANOVA, for Bellamy x2 

= 0.065, d.f. = 1, P = 0.799; for Pease x2 = 0.250, d.f. = 1, P = 0.617). At all sites 

and in all treatments, the ramets produced in 2004 were of the lateral form and 

were not produced from the bases of ramets. 

Table 4. Percent of Lythrum salicaria ramets that produced lateral ramets in two 
southeastern New Hampshire sites in 2004. Observations were the mean 
percent of ramets producing laterals per plant. 

Site Number of Clipped Ramets Undipped Control 
Plants (%) Ramets (%) Ramets (%) 

Pease 30 92.5 11.1 5.1 

Bellamy 30 92.1 13.1 5.1 
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IV. DISCUSSION 

A. Can we age purple loosestrife plants? 

The method of aging purple loosestrife proposed by Anderson (1991) 

assumes that each current year ramet produces a single rank of one or more 

new ramets in the following year, and that each new ramet arises from basal 

buds on the ramet of the previous year. Anderson noted that over time the 

persistent woody base creates a sequential pattern of growth with multiple 

branches radiating from a central core. By counting the progression of ramets 

backwards from the current year's ramet to the original ramet or oldest ramet, a 

minimum age can be estimated. 

My results suggest that, while Anderson's assumptions are usually met, 

there are some notable exceptions. Most importantly, not all new ramets 

emerged from the basal buds of the previous year's ramets. Some ramets arose 

from root tissue, some arose from the base of ramets produced earlier in the 

year, others arose from ramets that were more than one year old, and the origin 

of some was difficult to determine. 
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Production of new ramets from ramets more than a year old is the most 
i 

serious source of error in aging loosestrife. For example, a ramet produced in 

2004 may produce a ramet in 2005 and another in 2006 (Figure 12a), or a 

branch may not produce a new ramet in 2005, but does so in 2006 (Figure 12b). 

In both cases, simply counting backwards through the ranks of ramets would 

yield an under-estimate of age. The problem is not negligible, as between 1.6 

and 5.6% of new ramets arose from ramets more than a year old in my study, 

numbers that compare favorably to Anderson's (1991) estimate of 4% from sites 

in Massachusetts. Gilbert and Lee (1980) noted that some loosestrife plants may 

not produce new ramets in some years. In addition, stressed plants may 

decrease ramet production (Rawinsky 1982). 

Figure 12. Stems of Lythrum salicaria depicting: a) a 2004 ramet producing ramets in both 2005 
and 2006 and b) a 2006 ramet produced from a 2004 ramet. 
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Overestimation of plant age can be avoided to some extent with branched 

plants. Anderson (1991) was able to verify estimated plant age by comparing the 

ages of different branches on the same plant. Using this method, I was able to 

estimate a minimum mean age for most of my plants (55% of the aged plants 

were branched) even when ramets were not produced sequentially. 

Ramets arising from root tissue do not necessarily prevent Anderson's 

method from being used to age loosestrife. It is usually obvious when ramets 

arise from roots, and as long as some ramets on the plant produce new basal 

ramets every year, accurate aging of the plant should be possible. Anderson 

(1991) found that the sequential branching pattern was hampered by compacted 

soils resulting in a compressed appearance where stem tissues fuse forming a 

woody central core. 

Only in one instance (out of 248 ramets examined in my study) did I 

observe a 2004 ramet producing two ramets of differing rank in 2005 (i.e., the 

first 2005 ramet gave rise to another ramet in 2005). The initially produced 2005 

ramet on this plant, which was located at Peverly, was damaged (either eaten or 

trampled) close to the base of the plant by white-tailed deer (Odocoileus 

virginianus). As shown by my clipping experiment, plants respond to herbivore 

damage on the upper portion of the ramets by producing multiple lateral ramets 

from axillary buds immediately below the point of damage. Consumption of 
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ramets close to the basal portion of the plant, however, may result in the release 

of buds near the stem base. These ramets may resemble the basal ramets 

typically produced at the start of each year. 

I was not able to determine the origin of some ramets. In some cases this 

was due to stem breakage during extraction or decomposition of plants in deep 

water. Radial proliferation of stem tissue sometimes impaired the ability to 

clearly identify where a stem originated. This was most problematic where the 

stem was produced at or near the junction of shot and root tissue. Inability to 

determine ramet origin complicates the estimation of plant age. However, as 

noted above, if the plant has multiple branches, a minimum plant age can be 

estimated by comparing the ages and growth patterns of the different branches. 

The minimum age of each purple loosestrife plant was derived by counting 

backwards from the youngest to the oldest available ramet. When possible this 

included the original ramet tissue. The original ramet tissue was not present on 

some plants due to stem decomposition or stem breakage during extraction. At 

Brown, many loosestrife plants were broken during extraction from the dense 

Carex stricta tussocks and some plants in deep water were partially 

decomposed. Broken loosestrife stems are capable of serving as vegetative 

propagules (Brown and Wickstrom 1997, Thompson et al. 1987). Given the 
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frequency of broken and decomposed plants at Brown, plant age was certainly 

underestimated. 

Even when whole plants were collected, age was probably greater than 

estimated. Radial proliferation of stem and root tissue at the original base of the 

plant often covered the remnants of stems produced earlier, making it difficult to 

determine if the oldest observed ramet was indeed the first. Some have tried to 

age loosestrife by counting the annual growth rings (Dietz 2002). However, this 

method might not work well with loosestrife as older sections of root may die off. 

It was not possible to estimate how many years came prior to the oldest 

discernible ramet in either the whole or incomplete plants. Thus, using the aging 

method outlined here results in a minimum estimation of age. 

I found that loosestrife plants respond to manual clipping by producing 

lateral ramets just below the point of damage. Similarly, Schat & Blossey (2005) 

observed an increased branching resulting from insect herbivory on foliage. 

Severe herbivory alters the branching pattern in loosestrife and may affect the 

ability to estimate age. Some stems at Peverly were consumed to the base of 

the plant by white tailed deer. The result was new stems produced close to the 

plant base and in some cases from root tissue. Although severe herbivory may 

complicate the estimation of age, a small amount herbivory and damage to the 

upper portion of the ramets will not affect the ability to age, as it only releases 
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axillary buds resulting in lateral ramets. High levels of herbivory at Peverly were 

not only associated with the single case of multiple basal ramets but also with 

whole plant mortality. 

The loosestrife populations at Bellamy, Pease, and Brown were estimated 

to be a minimum of 14 years old and a minimum of 5 years at Peverly. As some 

plants were incomplete and, in whole plants, the first years were not always 

included in the age estimate, these populations were likely older than estimated. 

Even if plants could be aged accurately, these populations might be older than 

their oldest living plant and may have been in existence for many generations. 

Both Bellamy and Pease are recent impoundments formed in the 1960's; 

therefore, the loosestrife populations were at most ca. 50 years old when I 

sampled them. The loosestrife population at Peverly was as great as ca. 100 

years old as Upper Peverly Pond was constructed around the 1900's. It is more 

difficult to determine the maximum possible age of the populations at Brown as 

this site has been in existence for over 200 years. 

Herbaceous plants vary greatly in maximum ages. Of the loosestrife 

plants aged, I estimated the oldest plants to be 14 years old, while Anderson 

(1991) reported loosestrife plants in wetlands of northeastern Massachusetts that 

were at least 22 years old. Inghe & Tamm (1985) calculated the half life of 

Hepatica nobilis and estimated a range from 32 years to 320 years old. A review 
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of 23 herbaceous species determined life spans to range from 3.9 - 127.7 years 

(Garcia et al. 2008). Similarly, Harberd (1962) found that a population of 

Festuca rubra was mostly derived from clones, despite the short lived nature of 

the perennial. Given the pattern of stem proliferation of loosestrife described in 

this study, it is possible that loosestrife could grow indefinitely. In addition, 

loosestrife has the ability to vegetatively propagate from stem fragments 

(Thompson et al. 1987). Thus, it is possible that the loosestrife plants I sampled 

were derived from a few individuals and therefore are actually much older than 

estimated. Despite the potential for unlimited growth, mortality is a factor. At my 

sites, 22.5% of plants did not survive. Factors such as fluctuating water levels 

and herbivory can lead to mortality. 

B. Recruitment Patterns and Population Growth 

The ability to determine the age structure of a population may be useful to 

characterize demography, estimate the rate of spread, and develop hypotheses 

about the processes and factors controlling the invasion. In some cases, the 

current maximum population age can be used to infer an approximate time of 

invasion. For instance, Frappier et al. (2003b), used population age structure of 

Frangula alnus L. to estimate that the time of invasion in a forest stand in 

southeastern New Hampshire. 
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Age structure can be used to recreate invasion pattern and elucidate the 

rate of expansion. Wangen and Webster (2006) were able to reconstruct the 

invasion pattern of non-native Acer platanoides on Mackinac Island in Michigan 

using dendrochronology. They found a lag time occurred between the 

introduction of species and period of rapid expansion. Others have been able to 

map invasion history of common buckthorn and estimated rate of expansion 

using estimate plant ages (Frappier et al. 2003b). 

Age structure can provide insight to the life history characteristics that 

govern invasion. Frappier et al. (2003b) suggested that the lag phase in the 

invasion of Frangula alnus resulted from early local selection and adaptation to 

environment. Perkins et al. (2006) aged populations of Potentilla recta L, an 

invasive plant in northeastern Oregon to examine the relationship between age 

and plant size or production of flowers. In addition, they studied whether 

population age was related to either environmental gradients or disturbance 

history. By reconstructing the invasion pattern and rate of spread, Wangen & 

Webster (2006) were able to infer that the key factors governing invasion for Acer 

platanoides were seed dispersal and creation of canopy gaps. 

Age structures can be used to make inferences about the past and future 

of a population. In general, a growing population would be dominated by young 

individuals with numbers of individuals per age class declining with age 
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(Silvertown and Charlesworth 2001). Similarly, a population with few juveniles 

and dominated by old individuals would be declining. A population characterized 

as having episodic or irregular recruitment would be described as some classes 

being well represented and others with few or no individuals. A population fitting 

this description could either be stable or be in decline depending on the rate of 

mortality. I suggest that the loosestrife populations at my four sites can be 

characterized as being dominated by older individuals with episodic recruitment. 

Similar to my results, Anderson (1991) found that his Massachusetts 

loosestrife populations were dominated by older plants and, based on lack of 

representation in some age classes, appeared to have irregular recruitment. In 

both our populations it was difficult to know if these loosestrife populations were 

increasing or decreasing in number of individuals. Age specific mortality rates 

would provide the insight needed to determine if a population is growing or in 

decline. In an increasing population, the population would be dominated by 

young genets with few older individuals. In a declining population, the population 

would be dominated by older individuals. If my populations were increasing at 

all, expansion would be occurring slowly as recruitment seems to be occasional. 

The absence of 1 year old plants at my sites is an artifact based on the methods 

of sampling. Loosestrife plants flagged in 2004 would be at least 2 years old 

when extracted in 2005. The infrequent number of 2 year olds at my sites could 

be a result of either low recruitment, the juveniles are hard to identify, or a biased 

sampling procedure. It is unlikely juveniles were missed as the area was 



searched closely. It is possible that older plants with a greater number of ramets 

were more likely to be selected. At the Bellamy, Brown, and Pease sites there 

are certain age classes not represented. At Bellamy age class 12, at Pease age 

class 9, and at Brown age classes 9-12 are not represented. Plants either did 

not survive or there was no recruitment in these years. Given the number of 

juveniles at my four sites is low it is unlikely that loosestrife will become a 

dominant figure at these sites. Anderson (1991) also thought it was unlikely that 

loosestrife would form a monoculture at his sites. However, the existing plants 

(genets) may expand by production of increasing numbers of new ramets, and 

until we know the rate of expansion it is dangerous to say the populations are in 

decline. However, in Table 1, the total number of ramets per plant either stays 

the same or is in decline. 

Lower survival and obvious herbivory at Peverly suggest that constant 

pressure from white tailed deer prevent these plants from reaching ages from in 

excess of 5 years. In contrast, the other populations have plants that are at least 

14 years old. Anderson (1991) reports ages of up to 22. 

In North America, loosestrife invades two wetland types: recently 

disturbed habitats and established, undisturbed wetland. Some research has 

emphasized the tendency of loosestrife to form monocultures, but monocultures 

are typically found only on sites that have been recently and heavily disturbed 
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(Rawinski 1982, Thompson et al. 1987). In these cases, loosestrife colonizes 

open space quickly and at high densities. Neither my sites nor Anderson's 

showed evidence of loosestrife forming monocultures. In older, less disturbed 

wetland communities, loosestrife has a different population structure. As the 

community matures, limited access to resources due to competition reduces 

recruitment and the rate of expansion slows. In an established wetland, only 

occasional recruitment is expected. 
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V. CONCLUSION 

Current year ramets of purple loosestrife generally emerged from basal 

buds on a previous year's ramet. While current year ramets occasionally 

originated on stem tissue or on older ramets, it was usually possible to estimate 

the age of an individual by counting the number of ranks of ramets. Some plants 

(34%) were broken due to decomposition and others during the process of 

extraction. Even though the breakage interfered with the ability to accurately age 

these plants, I was still able to estimate a minimum age. 

Other ramets originated elsewhere on the plant (current year ramets, 

ramets 1 year or older, and root tissue). Over-estimation of age would result if a 

current year ramet produced an additional ramet in the same year. A new ramet 

that was produced on a ramet greater than one year old would result in the under 

estimation of age. A minimum mean age can be estimated on plants that are 

branched by aging each branch separately. This can alleviate errors that may 

arise when ramets are not produced by basal buds on previous year ramets. 

Using this method of aging, I was able to estimate a minimum age for four 

populations in the New Hampshire Seacoast region. Minimum population ages 

were 2 and maximum ages were 14. The mean age at Bellamy, Brown, and 



Pease was 6. The mean age at Peverly was 3. Based on the age structure of 

loosestrife in these four wetlands, the populations were dominated by older 

individuals and had relatively few juveniles. Given the low number of juveniles at 

my sites, it is unlikely that loosestrife will become a dominant species in the 

future. However, as some plants were damaged and thus impossible to age 

accurately, actual recruitment patterns were difficult to determine. 

Loosestrife ramets can produce new shoots either from buds within a few 

cm the base of the ramet (basal ramet), or from the axils of leaves (lateral ramet) 

which occur from near the ramet base to the ramet tip. I investigated whether or 

not mechanical damage to stems affected basal ramet production and thus the 

method of aging. Loosestrife plants responded to clipping by producing lateral 

ramets on 92% of the ramets clipped at Bellamy and Pease. At all sites and in all 

treatments, the ramets produced in 2004 associated with clipping were of the 

lateral form and were not produced from the bases of ramets. Thus, unless 

mechanical damage occurs close to the plant base, it is unlikely to induce the 

production of basal ramets that would confound the aging process. 
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