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ABSTRACT 

A VORTEX PAIR NEAR A DENSITY-GRADIENT INTERFACE 

by 

Nicholas S. Jenkins 

University of New Hampshire, May, 2010 

The dynamics of a vortex pair in a stratified atmosphere near a density gradient interface 

is considered here using direct numerical simulations. The vortex pair is released below the 

interface and allowed to propagate vertically toward the interface. The results show that 

strong vortices propagate through the interface without much change in dynamics. Weaker 

vortices will dissipate energy when they reach the interface and although a remnant of the 

vortex pair transits the interface, it does not achieve the same altitude that it would have 

without the interface. Overall, the interface is not a barrier to vortex pairs, but would be 

expected to change the distribution of energy in more complicated flows. 
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Introduction 

The Earth's atmosphere is warmest at the ground on average, and becomes cooler with 

increasing altitude. This cooling trend continues with surprisingly constant rate (the lapse 

rate) until the tropopause altitude, approximately 12 km at mid-latitudes. Beyond the 

tropopause, the temperature increases with approximately constant rate. This sudden 

change in the sign of the gradient of temperature is important for internal waves and other 

dynamic processes. Two other persistent density gradient interfaces exist at higher altitudes: 

the stratopause at approximately 40 km and the mesopause at approximately 90 km. All of 

these interfaces are important to weather and climate. The tropopause is also important to 

civil and military airplane operation. Commercial airliners in particular often cruise at or 

near the tropopause altitude, and need to avoid strong turbulence that might exist there. 

The buoyancy frequency is the maximum frequency of internal waves, and in a com­

pressible atmosphere is defined as 

V edz 

where 9 is the potential temperature, z is the vertical distance, g is the gravitational con­

stant, and the over line indicates a mean quantity. The sudden change in the gradient of 

the mean temperature also has a corresponding change in the gradient of potential tem­

perature, *j | , and therefore a sudden change in N. The tropopause therefore is an altitude 

where internal waves must adjust to this sudden change in background state. It has been 

known for a long time that linear internal waves will reflect at the tropopause [14]. More 

recent work has shown that nonlinear internal waves will create a horizontal mean flow at 

the tropopause altitude [7] and that higher harmonics will accumulate at the tropopause 

[8], indicating that the tropopause is a location of strong nonlinear wave behavior, including 

breaking waves and the resulting turbulence that is created. Recent observations appear to 
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confirm that the tropopause may have higher levels of turbulence than that found at other 

altitudes [5, 13]. 

Density interfaces (as opposed to density-gradient interfaces) are well-known to restrict 

the dynamics of turbulence, sometimes even providing a barrier to the spreading of tur­

bulence. Shear flows can also act as a turbulence guide. The ability of a density gradient 

interface to restrict turbulence is considered here using a vortex pair. A counter-rotating 

vortex pair in a stratified fluid is a common model of the trailing vortex system behind an 

airplane. This vortex system has often been treated with constant density flow. Saffman [12] 

included stratification without any interfaces using a relatively simple conceptual technique. 

Saffman recognized that mixing within the vortex pair will result in a uniform density within 

the vortex, making the vortex buoyant. As a result of the buoyancy, Saffman predicts that 

an ascending vortex pair will reach a maximum vertical position and then descend. However 

Saffman's results assumed that the vortices remain a fixed distance apart, something that 

is not in general true. More recently, Garten, Arendt, Fritts, and Werne [4] treated a vortex 

pair in a stratified fluid using direct numerical simulations again without interfaces. Garten 

et. al. showed that the important parameter is what they called the Froude number: 

r " Nb0> 

where WQ is the vortex strength and bo is the initial spacing of the vortices. Garten et. al. 

state that there are two categories of behavior for the vortex pair released in a stratified 

atmosphere. One outcome is that the vortex pair will very quickly dissipate into internal 

waves which propagate away from the location of the vortex pair. This happens when the 

initial vortices have Fr less than unity which corresponds to relatively weak vortices. The 

second outcome is vertical propagation of a coherent vortex pair, which occurs when Fr 

is greater than unity corresponding to relatively strong vortices. Garten, et. al. [4] also 

showed that the vortices move closer together during their evolution, causing much faster 

vertical motion of the pair. 

The dynamics of a vortex pair in a stratified atmosphere near a density gradient interface 

is considered here using direct numerical simulations. The vortex pair is released below the 
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interface and allowed to propagate vertically toward the interface. The results show that 

strong vortices propagate through the interface without much change in dynamics. Weaker 

vortices will dissipate energy when they reach the interface and although a remnant of the 

vortex pair transits the interface, it does not achieve the same altitude that it would have 

without the interface. Overall, the interface is not a barrier to vortex pairs, but would be 

expected to change the distribution of energy in more complicated flows. 

3 



CHAPTER 

Governing Equations 

The governing equations are the two-dimensional anelastic equations. The anelastic equa­

tions are the Navier Stokes equations with the effects due to sound wave propagation re­

moved. For a two-dimensional compressible atmosphere, the anelastic equations are 

du du du dp* 
dt dx dz dx 

d2u d2u 
dx2 dz2 (LI) 

dw dw dw 
dt dx dz 

dp* 9 d2 w d2w 
dx2 dz2 (1.2) 

de de de de 
dt dx dz dz 

d26 d29 
dx2 dz2 (1.3) 

dpu dpw 
dx dz 

(1.4) 

,-+£- (1.5) 

d = T{Po\<» (1.6) 
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where the horizontal and vertical velocities are u and w, respectively, the horizontal and 

vertical components of position are x and z, respectively, the potential temperature is 9, 

the pressure is p, the temperature is T, the specific heat at constant pressure is cp, the gas 

constant is R, the kinematic viscosity is u, the thermal diffusivity is n and po is a constant. 

The background state is indicated with an overbar: ~p and 6. 

Re-Scaling 

The horizontal length of the domain is L, and the vertical height is D. The coordinate 

system origin is chosen to be at the bottom left corner of the domain, thus 0 < x < L and 

0 < z < D. 

The equations will be treated using a spectral method, with a periodic horizontal direc­

tion, and a non-periodic vertical direction. The horizontal direction is treated using Fourier 

series while the vertical direction uses Chebyshev-Gauss-Lobatto collocation. 

This choice of basis function requires the horizontal computational domain to be 0 < 

x < 2ir and the vertical computational domain to be —1 < z < 1, shown in Figure 1.1. The 

domain is rescaled using 

x x z z+1 
L = ^ a n d D = — W 
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D 

_ l l 
0 x L 0 x 271 

(a) Physical Domain (b) Computational Domain 

Figure 1.1: The dimensional physical domain and the computational domain after rescaling. 

6 



The other variables are non-dimensionalized using 

u = Uu, w = Uw, (1.8) 

* = 2 ^ * ' (1.9) 

9 = 909, (1.10) 

P* = U2p*, (1.11) 

where U is a velocity scale and 6?o is a constant. 

The rescaled dimensionless equations are 

du zsc dp dw 
-^z + —-^=w + zac-^r = 0, ox p dz dz 

(1.12) 

du _du _ <% dp* 2-7T 

95 i?e dx2 ~o + ^sc 
3^2 
dz2 (1.13) 

<9u) <9u; _diu dp* 1 9 2-K 

<9i ox <9z <9z 2irF*g Re 

d2w 2 criul , . 
^ 2 - + ^ c ^ | 2 - . U-14) 

89 
~ + « — + WZsc—z + WZSC— = 

56 2TT 

RePr 

d2§ 2d^l 
dx2 + Zscdz2 (1.15) 

where, 

7rP" 
(1.16) 
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The Reynolds, Froude and Prandtl numbers are 

Re. — 
UL 

F2 = — r gV 
Pr = 

K 
(1.17) 

The side boundaries are periodic, and do not require additional enforcement of boundary-

conditions. The top and bottom boundaries are no-slip and have zero potential temperature 

fluctuation: 

= w -1,1 -1,1 
= 0 = 0. 

- i , i 
(1.18) 

These boundary conditions allow for the reflection of waves back into the computational 

domain. The maximum vertical speed of an internal wave created at the same location as 

the vortex pair would reflect off the bottom and reach the vortex in t = 23. However, these 

waves have a very low energy value and the associated effects are considered negligible. 



CHAPTER II 

Background State 

The two basic state quantities that are needed are 9 and p. Three equations are required 

to fully define the basic state : the perfect gas law, 

P = pRT, (II.l) 

the equation of static equilibrium, 

dp _ 
(II.2) 

and the definition of potential temperature, 

= T(^-)^ (II.3) 

Single Layer 

Typically the base state temperature is first chosen and the other base state variables are 

then calculated. To obtain the base state density, eliminate pressure between ( II.l) and 

( H.2): 

d_ 
dz 

pRT\ -pg- (II.4) 



Separate the variables, and integrate: 

P = Cxe 
-So' 

g+R dT ' 
3^. dz (II.5) 

The value of the background density at the bottom of the domain is po; thus, 

Po 

= e 2TT L (5+1) 

(II.6) 

p = e2*"2sc (5+1) (II.7) 

The potential temperature and pressure can be found using ( II. 1) and ( II.3). Two impor­

tant quantities are the Brunt-Vaisala frequency, N, and the scale height, H: 

N=g=, (II.8) 

_1_ 

p' 
(11.9) 

Equations ( II.1), ( II.2) and ( II.3) are manipulated to create two convenient relations. 

Combine the perfect gas law and the equation for static equilibrium to obtain 

T 
^ + U + -̂ = = 0. 
P T RT 

(11.10) 

The second relation uses the definition of potential temperature along with the other 

two equations: 

T CpT 6 
(11.11) 
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If the background temperature is chosen to be constant, then 

dz 

Equations ( 11.10) and ( 11.11) reduce to 

dT 
- = 0. (11.12) 

^ + 4 = = 0, (11.13) 
P RT v ' 

and 

4 = - °-± = 0. (11.14) 
CpT 9 v ' 

Equation ( 11.14) relates the background temperature to the Brunt-Vaisala frequency: 

T = ^ - ( I L 1 5 » 

Thus, constant temperature means constant Brunt-Vaisala frequency. The base state poten­

tial temperature profile is determined by separating the variables in (11.14) and integrating: 

0 = 0 o e ^ * = 6Qe*Tz. (11.16) 

Rescale the Brunt-Vaisala frequency as before: 

N2 = ^Nl (11.17) 

The rescaled background potential temperature is 

0 = e ^ ( 2 + 1 ) . (11.18) 

The mean flow is zero in the results given below. Therefore, another definition for U must 
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be chosen: U = \[gL. The Froude number then reduces to unity: 

Fr
2 = 1. (11.19) 

The rescaled Brunt-Vaisala frequency is modified slightly: 

AT2 = | iV^. (11.20) 

By ( 11.13), since T is a constant, ^ is also constant, as is the scale height: 

— = -£*. = JL 
H p RT' 

A new parameter is introduced here purely for notation convenience: 

7-2 _ 1 9 _Pz 

Rescale TV: 

(11.21) 

N' = —- = —?= = ^ (11.22) 
H RT p y ' 

N2 

N2 = -^, (11.23) 
Li 

and the background density, 

^ = e^^'z+1\ (11.24) 

Two Layer 

A two-layer base state is chosen with each layer having a constant and unique value of T. 

The resulting Brunt-Vaisala frequencies and scale heights are 

N? = -4jT, (11.25) 
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JV2
2 = - ^ 

Cp2T2 

(11.26) 

Hi RxTi 
(11.27) 

H2 R2T2 
(11.28) 

where subscript ' 1 ' indicates the lower layer, and '2' denotes the upper layer. At the interface 

the pressure of the lower layer must match that of the upper layer: 

Pi V2 (11.29) 

where za is the height of the interface. Since the density is continuous across the interface, 

the perfect gas law and ( 11.29) results in 

fliTi = R2T2. (11.30) 

As a result, scale heights in the two layers are equal: 

Hi RXTX R2T2 H2' 

thus, 

(11.31) 

Hi = H2. (11.32) 

In addition to pressure and density being continuous along the interface the potential 

temperature is chosen to be continuous at the layer interface. The potential temperature 

in each layer is, 

= 00e 9 , (11.33) 

13 



and 

NU 92 = eae~tz. (11.34) 

Equating 6\ to 62 at the interface, (z = za), determines 6a: 

_ _ N%-N? 

ea = 90e 9 z\ (11.35) 

Rescale as before to obtain 

61 = J- = e~Vz = e 2 ^ 7 ^ + 1 ) (11.36) 
#0 

where 

Nf = ^Nl (IL37) 

For the top layer, 

,r? 

ft 0 N9
2 d M ^ L fl ^ ^ 0 

#0 #0 #0 #0 

N2 

The value -^k is chosen to be 4 for all results. 
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CHAPTER III 

Computational Method 

The computational method for temporal integration is that of Slinn and Riley [2]. The 

method uses four steps, three for the horizontal and vertical flow and one for the potential 

temperature. The first step solves explicitly for an auxiliary flow field, the second step 

determines the pressure field, and the last step combines the pressure field and the auxiliary 

flow to determine the final velocity field. The solution of the potential temperature profile 

is performed explicitly. 

Consider the horizontal component of the Navier-Stokes equation: 

du 

~dt 
.du 
dx 

~du 
— + u— + zscw— = -

ox 
dp* 2TT 

dx Re 

d2i :2 ~n d2u 
dx2+z'scdz2 (III.l) 

The auxiliary horizontal velocity, u*, is defined by 

du* _ du dp* 
~dt ~ ~dl + ~dx~' 

(III.2) 

Inserting this into ( III.l) gives 

du* 

di 

du 
dx 

du 
- = ~ u — - zscw—z + 

dx 
2TT 

Re 

d2u dH 2 v U 

dip + Zac~d& 
(III.3) 
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Discretizing in time using third order Adams-Bashforth, 

du* 

~dt At 

23 
16 

12 
16 

+ 

_du _du 2n/'d2u d2u\ 
dx dz Re \ dx2 dz2 J 

_<9u -du 2-n ( d2u d2u\ 

dx dz Re \ dx2 dz2 J 

_du -du 2TT / d2u d2u 

16 dx dz Re \dx2 dz2 

n-X 

(III.4) 

ra-2 

The same procedure is performed with the vertical component. The auxilary vertical ve­

locity, w* is defined by 

dw* _ dw dp* 
~dT = ~dt+Zsc~dJ--

(III.5) 

and when inserted into ( 1.14), results in 

w — w" 
At 

23 

16 

-dw 
dx 

. dw 
dz 

1 0 2TT_{& w d2 
w 

U-~ W - + 2TTF2 % + Re [dx2 + dz2 

12 
16 

+ 

_ dw _ dw 
dx 

1 6 2K_((PW_ d2w 

dz ' 2 T ^ | + R~e\dx^ + ~dl2 

n - 1 

16 u 
.dw 
dx 

1 -dw 
Wl)z~ + 2TTF2 • + 

2-K (d2w d2w\ 2,7, \ 1 1 - 2 

Re\dx2 dz2 ) \ 

(III.6) 

Note that u* and w* do not necessarily conform to continuity. 

Now solve for p* using the values of the auxiliary flow fields and the conservation of 

mass. Integrate ( III.2) over a single time step, 

du* __ du dp* 
~~dT ~~ ~dt+~di 

(III.7) 

u* - un un+1 - »n 

At At 

un
 i dp* 

dx + (III.8) 

and take a horizontal derivative to obtain 

dun+1 _du*__A d2p* 
dx dx dx2 (III.9) 
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Integrate ( III. 5) similarly, 

yjU+l _ ^U 

At At 

dp* 
(111.10) 

then take a vertical derivative: 

dwn+1 

dz + zs 

wn+l dp 

15 dz 
dw* 

dz - + zs 
w* dp 

' 1> dz 

2~* dzp A ^ i ^ r - AtzL^ 2 1 dp dp* 
dz2 pdz dz 

(111.11) 

Add ( III.9) and ( III.9) to obtain 

At 
m* 
dx 

w* dp dw* 
- r Zsc—^—z + Zsc 

p dz dz 
d2p* zjc dp* dp 2 dp 

+ ^ dx2 p dz dz -+z. dz 
(111.12) 

The boundary condition on pressure used in the simulation is 

dp* _ w* 
dz zacAt' 

(III. 13) 

From ( III. 13) it may appear an infinite change in pressure is expressed as the time step 

is decreased. However, w* also goes to zero on the boundary with At, and the right-hand-

side of ( III. 13) remains finite. More sophisticated methods can be used for the pressure 

boundary. However, for large Re this proves unnecessary [11]. This can also be seen by 

expressing -J-=- in terms of w rather than w*: 

dp* 
dz 

2TT 2?,d2wn 12 d2wn-X 

16 dz2 16 dz2 + 
r ,-.0 ~ ra—2' 5 d W 

16 dz2 (111.14) 

Note that At no longer appears in the denominator of this expression. 

The final step finds un+1 and wn+1 using ( III.8) and ( 111.10): u* and w*, 

un+1 = u* At 
dp* 
dx 

(111.15) 

and 

w
n+l = w* - z,cAt 

dp* 
dx 

(111.16) 
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Integrate ( 1.15) using the same third order Adams-Bashforth method to get, 

5n+l 

At 

23 
16 — u 

.89 .89 .d9 2TT (d2~9 d29\ 
ox dz dz RePr\8x2 dz2) 

12 
16 

+ 

.d9 .89 .89 2TT ( d29 d29 
— ii in — w 1 I 1 r 

8z RePr \8x2 8z2 
u 8x dz 

n-l 

16 
,89 89 
8x dz 

_d0 2n 

dz RePr 

829 829 
8x2 dz2 

ra-2 

(111.17) 

The computational domain is discretized spatially using a Fourier transform in the 

horizontal and Chebyshev-Gauss-Lobatto collocation in the vertical. Discrete Fourier series 

[1] for Nx terms are 

Nx-1 

-n = ^Y,^-l2Vn3'Nx- (111.18) 
j = 0 

The vertical direction uses collocation on the Chebyshev-Gauss-Lobatto points: 

zk = cos 
irk 

k = 0,Nz (111.19) 

where Nz is the resolution in the vertical direction. Vertical derivatives are performed by 

multiplication of a derivative matrix [1][6][15]. The derivative matrix is defined as 

dd 
dx 

1+2JVJ? 
6 

1+2JV| 

= < 

2(1-*?) 

(~l)i+j Pi 
Pj\Xi Xj) 

i = j = 0 

i = 3 = Nk 

i = j;0<j<Nk 

(111.20) 
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CHAPTER I V 

Initial Conditions 

Single Vortex 

The primary goal is to initiate two counter-rotating vortices and determine their behavior 

in a stratified flow. The initial conditions are chosen to be a diffusing line vortex, which 

is an exact solution to the constant-density viscous Navier-Stokes equations. The velocity 

field for a single vortex located at the origin in cylindrical coordinates is 

(IV.l) 

and 

ur = 0, (IV.2) 

where ur and UQ are the azimuthal and radial velocity components, r is the radial distance, 

and T is the circulation. [3] 

Convert to Cartesian coordinates using 

u = ur cos 9 — UQ sin9, (IV.3) 

w — ursin0 + ug cos 9, (IV.4) 

U0 r 
27rr 

e 2vt 
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and 

The result is 

and 

Rescale using 

COS0 = 

sin# = 

x 
\/x2 + z2' 

z 

\/x2 + z2 

u = — 
r z 

2TT x2 + z2 
1 — e 2ut 

w = 
r x 
2ir x2 + z2 

1 — e 2i/t 

(IV.5) 

(IV.6) 

(IV.7) 

(IV.8) 

u = WQU, 

w = WQW, 

x = box, 

z = b0z, 

(IV.9) 

(IV.10) 

( IV . l l ) 

(IV.12) 

where Wo and 60 are chosen to match previous work done by Fritts [4], and will be defined 

later: 

u = — 27r60W0 x
2 + z2 

l _ e - ^ ( - 2 + i 2 ) (IV.13) 

Define, 

w = 2TTb0Wo x2 + z2 
l _ e - ^ ( - 2 + i 2 ) (IV. 14) 

W0 = 
2 7 T 6 0 ' 

(IV.15) 
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a2 = 2ut, (IV.16) 

a = b0a, (IV.17) 

finally getting 

u = — x2 + z2 (IV.18) 

and 

w = X2 + Z2 

x -\-z 
(IV. 19) 

Symmetric Vortex Pair 

Now consider a symmetric vortex pair, as shown in IV. 1. The quantity bo is now defined 

as the distance between the vortices, and Wo is the velocity induced at the center of one 

vortex by the other. 

Figure IV. 1: The initial conditions. The distance between the vortex centers is b0. The 
solid line is the release height and the dotted line is the interface height. The left figure is 
the physical domain with the right being representative of the domain after rescaling has 
occurred. 
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The left vortex has velocity components, 

u\ = - 7 7 
z — z\ 

{x-xtf + (z-h)2\. 
1 - e " 2^2 (IV.20) 

and 

W\ 
x — x\ 

(x -xi)2 + {z — z\)2 1-e 
(Z-xrf + jZ-zt)2 

(IV.21) 

where x\ and z\ are the location of the vortex center. 

Although the quantities are all now dimensionless, they must be rescaled again to match 

the nondimensionalization of the governing equations: 

- - L - (IV.22) 

(IV.23) 

Define 

h L 

bsc~ 2TT60' 
(IV.24) 

Thus, 

•K — 0SQX, (IV.25) 

and 

-(* + !)• (IV.26) 

Finally, 

Mi = 
z — z\ 

bScZsc[(x - xi)2 + jr{z - h)2] [ 

b2
sc[(x-x1)

2+-k-(z-z1)}1 

1-e i 
e2a2 

(IV.27) 
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and 

W\ x — x\ 
bsc^x-x.Y + Mz-h)2] 

6 2 c [ ( S - i 1 ) 2 + - l - ( 2 - - J 1 ) ] 

1 - e " 
1 — e2s2 

(IV.28) 

The same procedure performed for the right-hand vortex results in 

U2 

Z — Z2 

bsczsc[(x - x2)
2 + 4-(z- z2)

2] 

b2sC\(i-i2)2+-V(z-Z2))-\ 

1 - e " 
-1 — ez*2 

(IV.29) 

and 

w2 = 
X - X2 

bsc[{x-x2y + M~z-~z2)
2] 

b2
scKx-x2)

2 + ^-(z-z2)} 

1 - e " 
1 — e2a 

(IV.30) 
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CHAPTER V 

Results 

The fundamental parameters are the Reynolds, Froude and Prandlt numbers: 

ft = ^ = ^ , (v.i) 
v v 

^ = v ^ = 1 ( 

gL gL 

and 

Pr = -. (V.3) 
K 

The Prandlt number was chosen to have a value of unity for all results, as this is a convenient 

approximation for the typical atmosphere value of 0.7. An additional parameter is the aspect 

ratio of the computational domain: 

, « = ^ . (V.4) 

The initial conditions add two more parameters of importance, one related to the vortex 

strength, 

G^ip' (V5) 

24 



and another relating to the spacing between vortices, 

For all results given here, the Reynolds number was chosen to have a constant value 

of 1,000,000. Similarly, the core size of the initial vortex was kept constant, and only the 

initial strength was changed between cases. All test results were performed in a square 

computational domain with zsc = ^. The domain size was chosen to model a 10 km by 10 

km physical domain. 

Single Layer 

Garten, et. at., [4] treated the dynamics of a counter-rotating vortex pair in a single layer 

of stratified fluid with constant N, as discussed previously. The Froude number of Garten, 

et. al. [4], 

T* - mi- <v-7> 

will be referred to here as the alternate Froude number and is related to the fundamental 

parameters used here by 

TV - * 2 k (v.8) 
N 

For the purpose of validation, several cases considered by Garten, Arendt, Fritts and 

Werne [4] have been repeated using the present methods. The results of a typical case are 

shown in figure V.l using shaded contours of vorticity. The parameters for this case are 

given in table V.l, and with Fr = 2, this vortex pair exhibits vertical propagation of the 

vortex pair. 

The present results match the previous results of Garten, et. al. [4] very well (see figure 

1 of Garten, et. al.). The difference between the contours in figure V.l and the contours 

in figure 1 of Garten, et. al. can be attributed mostly to the choice of contour values. The 

overall behavior of the vortex pair is the same. 
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Present Results 

Fr = 1 

Re = 1,000,000 

G = 0.028 

Res = 256 x 256 

Garten, Arendt, Fritts and Werne 

~Fr = 2 

i?e = 1000 

G = 0.028 

.Res = 512 x 1536 

Table V.l: Input parameters from comparison to Garten, et. al. results 

(a) i = 40.0 (b) i = 60.0 

(c) i = 80.0 (d) i = 100.0 

Figure V.l: Contours of vorticity from the results used for comparison with Garten, et. al. 
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Numerical solution of the flow in a discrete vortex is well-known to be sensitive to 

spatial resolution. Simulations using the present methods with different resolutions have 

shown that a resolution of Nx = 512 and Nz = 512 (512 x 512) is adequate to resolve 

the flow throughout the life span of the vortices. However, this high resolution case is 

computationally expensive, taking four weeks on a recent desktop computer dedicated to 

the task. A lower resolution case (256 x 256) takes only several days on this same computer, 

and produces results with most of the same details. Note that the higher resolution case 

uses a smaller time step to avoid instability, exacerbating the problem. 

Two simulations with identical parameters but different resolutions have been performed 

for a direct comparison. Figure V.2 shows shaded contours of vorticity for the high resolution 

case (512 x 512) while figure V.3 shows the same graphics for the low resolution case. A 

higher alternate Froude number was chosen (Fr = 4) for this test so that the vortex pair 

would move further for a chosen time. Other parameter values are given in table V.2. 

Fr = 4 High Resolution Parameters 

Fr = 1 

Re = 1,000,000 

G = 0.056 

Res = 256 x 256 

Table V.2: Fr = 4 High resolution parameter table 

Figures V.2 and V.3 show that the vortex behavior is very similar with the different 

resolutions. The most visible differences are in the trailing wake beneath the vortex pair, 

which is unlikely to effect the vortex pair significantly. For practical reasons, most of the 

cases considered here have been treated with the lower resolution (256 x 256), with several 

cases at the higher resolution (512 x 512) to confirm conclusions. 
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(a) i= 12.5 (b) i = 25.0 

(c) i = 37.5 (d) t = 50.0 

l.u 
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s 
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1 
i ~ 

k 1 
(e) f = 67.5 (f) t = 75.0 

Figure V.2: Contours of vorticity for the single layer case with FT = 4 and a resolution of 
512x512. 
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(a) i = 12.5 (b) i = 25.0 

( c ) £ = 3 7 . 5 ( d ) t = 50.0 

(e) i = 67.5 (f) t = 75.0 

Figure V.3: Contours of vorticity for the single layer case with Fr = 4 and a resolution of 
256x256. 
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The vertical location of the vortex pair is determined by finding the location of the 

point of maximum vorticity. This method effectively tracks the vortex pair until the pair 

begins to disintegrate. As disintegration begins other points of high vorticity arise and the 

center can no longer be tracked easily. Time histories of the vertical position of the vortex 

pair are provided in figure V.4 for the same case of table V.2. Again the lower resolution 

case adequately predicts the correct behavior of the vortex pair, until the pair has reached 

the upper boundary. 

o 

0 . 5 h 

0.0 

-0.5 

•1.0 

Figure V.4: Time history of vertical position of the vortex pair for two resolutions. 
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Mixing within a vortex 

The velocity field of the initial vortex is an overturning flow, and the mean state is stably 

stratified. This means that the vortex flow acts to move heavier flow to the top and lighter 

fluid to the bottom, creating a statically unstable environment. If the vortex is relatively 

weak, then this static instability causes the vortex to disintegrate into internal waves. This 

is the mechanism that dominates the dynamics for Fr < 1. 

For large values of Fr, the vortex is strong enough for centripetal acceleration to over­

come the gravitational effect and stabilize the motion, allowing the vortices to remain 

coherent. However, even with coherent vortices, there is tremendous mixing within each 

vortex, very quickly resulting in a well-mixed vortex core. This can be seen in figure V.5, 

which shows a sequence of vertical profiles of total potential temperature at a horizontal 

position chosen to correspond to the initial position of the center of the left vortex. Note 

in figure V.5 that initially the potential temperature increases linearly, indicating static 

stability. As time progresses however, the region where the vortex resides (near z = —0.5) 

becomes complicated and finally reaches a state where the potential temperature inside the 

vortex is constant. This constant temperature state can be seen more clearly later in the 

vortex motion, shown in figure V.6. Note that a constant value of potential temperature is 

neutrally (statically) stable. Hence, before the vortex pair has moved significantly, it has 

become a fully mixed region of fluid. This fact was also indicated by Garten, et. al. [4]. 

The mixing process can be seen more clearly in figures V.7 and V.8, which show con­

tours of total potential temperature. These contours show that the vortex motion has 

caused streams of fluid of different temperature to be rolled up in a spiral pattern, allowing 

molecular dissipation to smooth out the difference very rapidly. However, the potential 

temperature never reaches a perfectly mixed state, evidenced by the continued presence of 

distinct contours throughout the life of the vortex. 

After the initial mixing process, the vortex pair moves upward in a manner very similar 

to a vortex pair in constant density flow. The two vortices move closer together, as they do 

when p is constant. However one significant difference here is the temperature inside each 

vortex. The fluid that was entrained within each vortex in the early mixing stage remains 
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within the vortex and is forced to move upwards with the vortex. This can be best seen 

in the time sequence of vertical profiles of the total potential in figure V.6. The profiles 

show clearly that the well-mixed core of the vortex retains the potential temperature that 

it had when initiated, rising as a cold volume of fluid in increasingly warmer surroundings. 

This suggests that the motion of the vortex must overcome not only viscosity but also the 

negative buoyancy, as the entrained fluid is heavier than it's surroundings. Later results 

will show indeed that in some cases the vortex pair ceases to ascend and begins to descend, 

apparently unable to resist the buoyant force. 
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I 00 1.02 1.04 1.06 1 08 1.10 
theta + thetoBar 

(a) £ = 0.5 (b) £=1.0 

1.04 1 06 
theta + lheiaBar 

(c) £ = 2.0 

OS 1.10 1.04 1.06 1.08 
theta-HheloBar 

(d) £ = 3.0 

(e) £=4.5 (f) £ = 6.0 

Figure V.5: Total potential temperature for the single layer case with Fr = 4, a resolution 
of 512x512 and a vertical slice at x = 2.9575 
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1.00 1 02 1 04 1.06 1.03 1 10 
theto+theloBar 

1.04 1.06 1.0S 1.10 
theta-i-theiaBor 

(a) i = 7.5 (b) i = 15.0 

1.00 1 02 1.04 1 06 1 08 
theto + iheiaBor 

1.04 1.06 1.0S 
Iheia + lhetaBor 

(c) i = 22.5 (d) i = 30 

1.04 1.06 
(hela + thetaBar 

(e) i = 45.0 (f) i = 52.5 

Figure V.6: Total potential temperature for the single layer case with Fr = 4, a resolution 
of 512x512 and a vertical slice at x = 2.9575 
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- 0 5 - 0 . 4 - 0 . 2 0.0 0.2 0.4 0.6 - 0 6 - 0 . 4 - 0 . 2 0.0 0 2 0.4 0.6 

(a) f =0.5 (b) i= 1.0 

- 0 6 -0 .4 -0 .2 0.0 0.2 0.4 0.6 - 0 . 6 -0 ,4 - 0 . 2 0.0 0.2 0.4 0.6 

(c) i = 2.0 (d) i = 4.0 

Figure V.7: Contours of total potential temperature for the single layer case with Fr — 4 
and a resolution of 512x512. 
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-0 .6 - 0 . 4 - 0 2 0.0 0.2 0.4 0 6 -0 .5 -0 .4 - 0 . 2 0 0 0.2 0.4 0.6 

(a) i= 6.0 (b) i = 8.0 

-0 .6 -0 .4 - 0 2 0.0 0.2 0.4 0.6 - 0 6 -0 .4 - 0 . 2 0.0 0.2 0.4 0.6 

(c) t = 12.0 (d) t= 16.0 

Figure V.8: Contours of total potential temperature for the single layer case with FT = 4 
and a resolution of 512x512. 
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Results for two typical cases are shown in figures V.9 through V.12. The alternate 

Froude number is Fr = 2 (figures V.9 and V.10) and Fr = 1.5 (figures V.l l and V.12). 

Each frame in figures V.9- V.12 show contours of vorticity for one time value, and the solid 

line across each figure represents the vertical position of the initial vortices. The last frame 

in figures V.10 and V.12 show a time history of the vertical position of the vortex pair. This 

time history shows that the vortex pair for these parameters begins to ascend slowly, but 

then descends. For Fr = 2, the strength of the vortex pair is still great enough to regain 

upward propagation. This is clearly seen in the final frame of figure V.10. However, with 

Fr = 1.5 the strength of the vortex pair is not sufficient to overcome the buoyant forces on 

the vortex pair. In contrast to the case with Fr = 2 this case shows that the vortex pair 

continues its descension past the initial release point. Interestingly, the vortex pair appears 

to be asymptotically approaching its original position for large times. This happens when 

the strength of the vortex pair has withered, and the remaining effect is buoyancy: merely 

cold patches of the entrained fluid oscillating about the original equilibrium position, slowly 

dissipating energy. 

Fr = 2 Low Resolution Parameters 

Fr = 1 

.Re = 1,000,000 

G = 0.028 

Res = 256 x 256 

Table V.3: Fr = 2 Low resolution parameter table 
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(a) i= 15.0 (b) i = 30.0 

2 3 4 

(c) i = 45.0 (d) i = 60.0 

Figure V.9: Contours of vorticity for the single layer case with Fr = 2 and a resolution of 
256x256. 
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(a) i= 75.0 (b) £ = 9 0 . 0 

I 

W! 

•S 0.0 h 

3 4 5 6 20 40 60 SO 100 

(c) i= 105.0 (d) tracking 

Figure V.10: Contours of vorticity for the single layer case with Fr = 2 and a resolution of 
256x256. 

Fr = 1.5 Low Resolution Parameters 

Fr = l 

Re = 1,000,000 

G = 0.021 

Res = 256 x 256 

Table V.4: Fr = 1.5 Low resolution parameter table 
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(a) i = 15.0 (b) i = 30.0 
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Figure V.l l : Contours of vorticity for the single layer case with Fr = 1.5 and a resolution 
of 256x256. 
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(a) i = 75.0 

%mtmK 

(c) i = 105.0 

(b) t = 90.0 

0 20 40 60 30 100 120 140 

(d) tracking 

Figure V.12: Contours of vorticit for the single layer case with Fr = 1.5 and a resolution 
of 256x256. 

Figure V.13 shows the time histories of the vertical position of the vortex pair for several 

different values of Fr. As the strength of the initial vortex is increased, the maximum height 

that the pair will achieve is increased. Finally, for Fr = 4 the strength is great enough that 

the vortex pair achieves a constant vertical speed, maintaining this vertical motion until 

the top of the computational domain is reached. 

A final single-layer case is shown in figure V.14. The initial strength for the vortex 

pair is weak, chosen such that Fr = 0.5. Although Fr is below the critical value of unity, 

the vortex pair still has minimal vertical propagation before dissipating into internal waves. 

Hence, Fr is not quite the steep transition reported by Garten, et. al. 
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Figure V.13: Max vorticity location for single layer cases. 

42 



1.0 

0.5 

0 0 

1 n 

-

-

z s 

•flff. xJi0WJ 

. 
0 1 2 3 

(a) t = 15.0 

(c) i = 45.0 

3 4 5 S 

(b) i = 30.0 

(d) i = 60.0 

0 20 40 50 80 100 120 140 

(e) i = 75.0 (f) tracking 

Figure V.14: Contours of vorticity of single layer with Fr = 0.5 and a resolution of 256x256. 
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Two Layers 

Now consider two-layer flow, as described in the introduction. Each layer has a constant 

value of N, and the horizontal interface between the layers is a density gradient interface, 

where the density is continuous, but the density gradient is discontinuous. For all cases 

considered here, the vortex pair is released in the lower layer and allowed to propagate 

vertically toward the interface. 

The results may be categorized again by the value of the alternate Froude number in 

each layer. If Fr in the lower layer is less than unity, then the vortex pair will not propagate 

very far, and never reaches the interface. The results show that the vortex disintegrates 

into internal waves, as with the single layer. This case will not be considered further. 

If Fr in the lower is greater than unity, but only slightly greater, then the vortex pair 

still will not ascend far enough to reach the interface. Hence, only strong vortices (larger 

values of Fr) are considered here, which do reach the interface. 

The value of N in Earth's atmosphere increases at the tropopause by a factor of two. 

This means that the alternate Froude number decreases in value by the same factor. Hence 

a vortex pair in the lower layer with Fr = jfy- greater than unity may reach the upper 

layer where Fr = jj-%- is less than unity. Hence it would appear that there are two distinct 

cases depending on the value of Fr in the upper layer. 

However, the critical Froude number of unity only applies to an impulsively started 

vortex in a stratified flow, before any mixing has occurred. Once the vortex flow becomes 

fully mixed, the value of Fr may be less than unity and the vortex does not immediately 

dissipate into waves. 

Results for a relatively strong vortex (Fr of 4) are shown in figure V.15, again using 

contours of vorticity for a sequence of times. The position of the interface is indicated 

with a horizontal dashed line, and again the initial position of the vortex pair is indicated 

with a horizontal solid line. The results in figure V.15 use the higher resolution (512x512). 

These results correspond to figure V.2 for the single layer case. Figure V.17'shows a time 

history of the vertical position of the vortex pair for both the two layer and single layer 

case. Figure V.15 shows that this strong vortex pair moves through the interface with only 
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minor changes in the behavior of the flow. There are almost no differences between the two 

layer images in figure V.15 and the single layer images in figure V.2. This is because the 

vortex is already fully mixed when it reaches the interface, and therefore mostly isolated 

from the surrounding fluid. The fluid in the upper layer does not get entrained significantly 

into the vortex, hence the only effect on the vortex pair is the increased buoyant force due 

to the lower density fluid in the upper layer. The effect of this buoyant force can be seen in 

the time history of vertical position in figure V.17. The vertical position for the two cases 

is nearly identical until the interface is reached. Then the vortex pair in the two layer case 

cannot keep up with the single layer case, and does not reach the same final height. This 

difference is due mostly to the increased buoyant force slowing down the vortex pair in the 

two layer case. 

Figure V.16 shows the same case as figure V.15 except now with the lower resolution 

(256x256). Once again, the lower resolution case shows the same basic dynamics, with some 

differences mostly in the wake region behind the vortex pair. 
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(a) i= 12.5 (b) i = 25.0 

(c) i = 37.5 (d) i = 50.0 
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Figure V.15: Contours of vorticity for the two layer case with Fr = 4 and a resolution of 
512x512. 
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(a) i= 12.5 

(c) i = 37.5 

(b) i = 25.0 

(d) t = 50.0 

(e) i = 67.5 (f) t = 75.0 

Figure V.16: Contours of vorticity for the two layer with Fr = 4 and a resolution of 256x256. 
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Figure V.17: Fr = 4 single layer and Fr = 4 two-layer. The single layer case clearly has a 
higher vertical displacement as it collides with the top boundary, where the two-layer case 
only reaches z = 0.75. 

A second two-layer case is shown in figures V.18 and V.19 for a weaker vortex pair, now 

with Fr = 2. This weak vortex does not reach the interface if the interface is maintained at 

the same position as figure V.15 and V.16 (z ^ 0.2), so the interface for this second case has 

been moved down to z = —0.225. For this lower Froude number, even in a single layer, the 

vortex begins to ascend, but then descends as the vortex pair evolves. The vortices then 

move closer together, increasing the dynamic effect that causes the upward motion, and 

the vortices then ascend again. When the interface is located nearby, this process evolves 

near the interface, resulting in an interaction with the interface. The vorticity patterns in 

figures V.18 and V.19 shows this interaction first at the top of the vortices. This pattern 

indicates that the vortices are creating waves in the upper layer, which doesn't happen 

without the interface. This behavior drains energy away from the vortex pair, and causes the 

48 



vortex pair to descend further. Figure V.20 shows the time history of the vertical position 

of the vortex pair for this case, along then the analogous single-layer case. Figure V.20 

shows that the vortex pair with two layers descends further, but does recover and ascend 

once more, finally penetrating the interface. However, figure V.19 shows that the vortex 

pair that actually penetrates the interface is much reduced in size and strength than the 

analogous single-layer case. Furthermore, the flow is much different, being mostly composed 

of an internal wave pattern that was created before penetration. 

This case with lower Fr is different than the high Fr case because the adjustment 

period where the vortices move closer together happened in the vicinity of the interface. 

This appears to be the primary manner in which these results can be categorized. If the 

vortex pair can become fully mixed and then the vortices reach this equilibrium where they 

are close together, then the dynamics proceeds as with a single layer, only different as a 

result of the somewhat different buoyant force. However, if the vortex pair is created near 

the interface, the vortices adjust differently, release most of their energy as internal waves, 

and finally result in a much different overall flow. Hence on average the interface does act as 

a barrier to this form of kinetic energy, but only if the flow is not fully mixed. The interface 

will therefore treat vortices created nearby differently than vortices created far from the 

interface. 
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Figure V.18: Contours of vorticity for the two layer case with Fr = 2 and a resolution of 
256x256. 
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Figure V.19: Contours of vorticity for the two layer case with FT = 2 and a resolution of 
256x256. 
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Figure V.20: Fr = 2 single layer and Fr = 2 two-layer. The single layer case clearly has a 
higher vertical displacement as it collides with the top boundary, where the two-layer case 
only reaches z = 0.75. 
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CHAPTER V I 

Conclusions 

The dynamics of a vortex pair in a stratified atmosphere near a density gradient interface is 

considered here using direct numerical simulations. The vortex pair was released below the 

interface and allowed to propagate vertically toward the interface. The results show that 

strong vortices propagate through the interface without much change in their dynamics. 

Weaker vortices will dissipate energy when they reach the interface and although a remnant 

of the vortexxpair transits the interface, it does not achieve the same altitude that it would 

have without the interface. Overall, the interface is not a barrier to vortex pairs with fully 

developed cores. However, if the interface between the layers is sufficiently close so that 

interaction occurs before the core becomes well mixed, the vortex is dramatically affected. 

This interaction with the interface causes the vortex pair to radiate energy as internal waves 

above the interface. Hence, the interface is a barrier to vortex pairs created nearby. 
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