
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Winter 2009

Comparative genomics exploration tools
Shilpa M. Kulkarni
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Kulkarni, Shilpa M., "Comparative genomics exploration tools" (2009). Master's Theses and Capstones. 524.
https://scholars.unh.edu/thesis/524

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/524?utm_source=scholars.unh.edu%2Fthesis%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

COMPARATIVE GENOMICS EXPLORATION TOOLS

BY

SHILPA M. KULKARNI

Bachelor of Engineering, Maharashtra Institute of Technology, 2000

THESIS

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Computer Science

December, 2009

UMI Number: 1481728

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 1481728
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

uest
ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

This thesis has been examined and approved.

Thesis Director, R. Daniel Bergeron
Professor of Computer Science

W. Kelley Thomas
Professor of Biochemistry and Molecular Biology and Genetics

Philip J. Hatcher
Professor of Computer Science

il.//^/g..^1
Date

ACKNOWLEDGEMENTS

I take this opportunity of expressing my heart-felt gratitude towards the key personnel

who have been instrumental towards the completion of this thesis work: Dan Bergeron,

W. Kelley Thomas and Phil Hatcher. I would like to thank Dan and Phil for encouraging

me to take the Genomics courses as part of my Masters' course work. This led to my

research work in the same area. Dan has provided valuable insights in the project and has

tirelessly guided me throughout the research. I would like to thank Kelley for his

immense knowledge, his interest in this project and for funding my research. My

understanding of Genomics field would not have been easier without the weekly

discussions carried out during the Genomics course taught by Kelley.

I would like to thank Krystalynne Morris for her immense support and the discussions I

had with her about my thesis work. Her thorough understanding of the research area

helped me enormously. I would also like to thank all my colleagues at the Thomas Lab

for all their help: Darren Bauer, Abraham Tucker, Way Sung and Mingju Li.

I would like to thank my parents, my family and my friends for their constant support

and encouragement. Last but not the least, I thank my husband Abhijeet and daughter

Trishna for supporting and understanding me throughout the completion of this thesis.

in

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF FIGURES vi

LIST OF TABLES , vii

ABSTRACT ix

CHAPTER PAGE

INTRODUCTION... 1

BACKGROUND 4

MUTATION DETECTOR (MD) 7

3.1 Introduction 7

3.2 Motivation 8

3.3 Approach , 10

3.3.1 Phase I, step 1: Creation of "Delta" file 11

3.3.2 Phase I, step 2: Alignment Summary 13

3.3.3 Phase I, step 3: Processing Alignment Summary 14

3.3.4 Phase II, step 1: Combining MD output files 16

3.3.5 Phase II, step 2: Applying coverage restrictions 18

3.3.6 Phase II, step3: Creation of analysis tables 20

3.3.7 Errors/Matches 21

3.3.8 Reference Difference Positions 27

iv

3.3.9 Mutations 27

3.3.10 Putatioms (Putative Mutations) 28

3.4 Implementation 29

3.5 Results.... 29

3.5.1 Base Substitutions..... 33

3.5.2 Reference Difference Positions 34

3.5.3 Heterozygous Sites and Mutations 34

MULTIPLE ASSEMBLY VIEWER WITH ENHANCED NAVIGATION

(MAVEN) 36

4.1 Introduction 36

4.2 Motivation 37

4.3 Existing Tool - BankViewer 38

4.4 MAVEN as an Assembly Test and Tuning Tool 39

4.5 Results 40

CONCLUSION AND FUTURE WORK 46

5.1 Mutation Detector 46

5.2 MAVEN 47

5.3 Iterative Multi-Genome Comparative Cross Assembly Processor 47

LIST OF REFERENCES 49

APPENDIX A 51

MUTATION DETECTOR (MD) DOCUMENTATION 51

APPENDIX B 60

MAVEN DOCUMENTATION 60

v

LIST OF FIGURES

Figure 3.2-1 Role of mutation and selection on genomic evolution 8

Figure 3.2-2 Reduced efficiency of natural selection 9

Figure 3.2-3 Relation between the reference sequence and the yeast strains. 10

Figure 3.3-1 Sample Delta file., 12

Figure 4.3-1 BankViewer showing one (blue) contig and many (green) reads 38

Figure 4.5-1 Reads discarded from contig formation step in the assembly 41

Figure 4.5-2 Parts of a read aligning at different positions in the reference sequence 42

Figure 4.5-3 Reads with gaps accepted in contig formation 43

Figure 4.5-4 A view of de-novo assembly results 44

Figure 4.5-5 A MAVEN display of results from a comparative assembly 45

VI

LIST OF TABLES

Table 3.3-1 Sample Alignment Summary 13

Table 3.3-2 Removing the insertion positions .<. 14

Table 3.3-3 Homopolymer region 15

Table 3.3-4 Eliminating 5 base positions surrounding homopolymer region of 4 or more

bases .v 15

Table 3.3-5 Sample MD output file for strain Al 17

Table 3.3-6 Sample MD output file for strain A4... 17

Table 3.3-7 Sample MD output file for strain C5 17

Table 3.3-8 Sample MD output file for strain C8 17

Table 3.3-9 Sample Combined Output file for pair-wise analysis of strains Al and A4 . 18

Table 3.3-10 Sample Combined output file for all-strain analysis A1-A4C5C8 18

Table 3.3-11 Applying coverage restrictions for pair-wise analysis 19

Table 3.3-12 Applying coverage restrictions for all-strain analysis 19

Table 3.3-13 Consensus creation 21

Table 3.3-14 Calculation of Errors and Matches for a base position 22

Table 3.3-15 Sample data for 10 reference positions 23

Table 3.3-16 Matrix position calculation 24

Table 3.3-17 Error Matrix 25

Table 3.3-18 Match Matrix 26

Table 3.3-19 Reference Difference positions 27

vn

Table 3.3-20 Mutations ...28

Table 3.3-21 Putations 28

Table 3.5-1 Assembled positions in Genomic Assembly Vs. Chromosome Assembly... 30

Table 3.5-2 Pair-wise strain analysis Vs. All-strain analysis 31

Table 3.5-3 Analysis tables for Genomic Assembly vs. Chromosome Assembly 32

Table 3.5-4 Yeast MA line mutations 33

viii

ABSTRACT

COMPARATIVE GENOMICS EXPLORATION TOOLS

by

Shilpa Kulkarni

University of New Hampshire, December, 2009

Comparative Genomics focuses on elucidating the genetic differences between different

species or different strains of the same species by the comparative analysis of DNA

sequences to identify functional elements and regulatory regions. This thesis describes

the design and development of two software tools to support comparative genomics

research. These tools were specifically developed to support the analysis and assembly of

sequence data produced from innovative new DNA sequencing technology from 454 Life

Sciences using the PicoTiterPlate device. This technology will dramatically affect

comparative genomics research. Currently available software tools were developed to

handle traditional shotgun sequences averaging 500-1000 base pairs in length. These

tools are inadequate to handle the unique characteristics of sequence reads generated by

454 Life Sciences. The goal of this research is to adapt currently available tools and

develop new tools to be used for sequence reads generated by any sequencing

technology, even those having different characteristics from the traditional shotgun

sequences.

ix

CHAPTER 1

INTRODUCTION

Comparative Genomics looks for the similarities and differences between species or

different individuals within a species. It also looks at heterozygosity within a single

individual. This can help us understand the effects of natural selection acting on the

individual genomes, which forms the basis for understanding evolutionary process and

how species evolve. Comparative studies of model organisms such as yeast and Daphnia

can aid in understanding the process of evolutionary change in a well-characterized

system, which can then be extended to other organisms. Comparative genomics relies

upon software tools which can look for similar regions between genomes by lining them

up against each other. Currently, these tools are largely designed for the traditional

shotgun sequence reads. The new sequencing technologies produce reads that have very

different properties from the shotgun sequence reads.

We developed two software tools and studied the feasibility of one tool with the

specific goal to advance comparative genomics research with data from this new

sequencing approach:

1. Mutation Detector (MD) - This tool aids in confirming the mutations between

comparatively assembled genomes of closely related organisms. It can identify

mutations unique to a specific strain as compared with the reference genome. It

1

can be used to analyze the genome assemblies produced by the AMOScmp

comparative assembler [10]. Although this tool was motivated by and is

optimized for the sequence reads generated by the sequencing technology

developed by 454 Life Sciences, it has proven to be an effective tool for analyzing

shotgun sequence data as well.

2. MAVEN (Multiple Assembly Viewer with Enhanced Navigation) - This genome

assembly visualization tool assists interactive visualization of sequence assembly

and alignment results for multiple genomes simultaneously. It is able to display

the results of de novo assembly, comparative assembly, and sequence alignments

at the same time. It aids in understanding how multiple strains of an organism

assemble to a common reference sequence simultaneously.

3. Iterative multi-genome comparative cross assembly processor - The idea behind

this tool is that it helps in simultaneous comparison of multiple genomes that are

assembled initially using a de novo assembler. The contigs of one organism can

then be used as a reference sequence and the contigs of the other organism can be

comparatively assembled against this reference. The hope is that simultaneous

cross assembly of the sequence data from multiple closely related genomes will

allow us to produce a better assembly than separate do novo assemblies. During

our investigation we found that the de novo assembly of the individual strains was

only able to generate contigs that averaged about twice the size of the input

sequences. We were not able to significantly increase the contig sizes using cross

assembly either. This has been a major setback and has hindered the development

of this tool completely.

2

In the sections that follow, background for the research is provided followed by a

description of the two completed tools: Mutation Detector and MAVEN.

3

CHAPTER 2

BACKGROUND

454 Life Sciences has developed a revolutionary technology, producing fast and cost-

effective DNA sequences using efficient, simple and convenient means. It is able to

generate millions of raw bases within an hour on a single instrument. Based upon the

genome size, a researcher can take less than a week to generate sequence reads and then

to assemble them using their own Newbler Assembler. Using the shotgun process, it

could take months to do the same task. This technology has very recently become

available and promises to dramatically reduce the cost of genome sequencing.

The sequencing technology using the PicoTiterPlace™ Device [7] from 454 Life

Sciences can generate sequence data for 1% of the cost of the traditional techniques. This

new technology promises to revolutionize the very important field of comparative

genomics, which focuses on discovering the basics of evolutionary dynamics by

comparing the genomes of different species. Because of the high cost of traditional

sequencing, most comparative genomics studies so far have compared the genomes of

species that are very divergent in evolutionary terms. As sequencing costs decrease

dramatically, it is becoming feasible to compare the genomes of many very closely

related organisms, which will yield more evidence to understand basic evolutionary

principles.

4

The sequence reads produced by 454 Life Sciences have very different characteristics

from the traditional shotgun sequencing reads. The 454 sequence reads are much smaller

(averaging 108 base pairs in length) compared to the shotgun sequences that average 500-

1000 base pairs in length. The traditional sequence reads have highly variable quality and

the quality deteriorates at the ends of the sequences. Traditional sequences also have

mate-pairs; the shotgun pieces of DNA are sequenced from both ends to produce the

mate-pairs. As opposed to this, the 454 sequences have very high quality base calls,

except for homopolymers and did not have mate-pair sequences when this research was

carried out. This technology has a significant limitation in that it cannot identify the

accurate length of homopolymers (more than 4 consecutive identical base pairs).

Effect on Sequence Analysis and Assembly Software

Existing computer-based sequence analysis tools were developed to handle the

traditional shotgun data and have been designed and optimized to deal effectively with its

characteristics and idiosyncrasies. These tools do not work particularly well with the data

generated by these new sequencing technologies.

This newly emerging sequencing technology is bound to increase the number of

organisms that can be sequenced within a short time. This, in turn, is going to place a

high demand on the assembly processes, which reconstruct the original sequence from

the smaller sequence reads. We need to produce more accurate sequence assemblies in

less time. The results of these processes are crucial, since the annotation of the sequenced

and assembled genome depends entirely on the assembly process. The mutation detection

methods depend heavily on the results of the assembly process. Hence, choosing the

appropriate assembler to assemble the sequences is imperative. The assembler needs to

5

be customized to handle the sequence reads produced by different sequencing

technologies.

Comparative Assembly

In the comparative assembly process, the sequence reads are aligned by comparing

them to a reference sequence. For all our comparative assemblies, we have used the tools

provided by the AMOS package available for download at http://amos.sourceforge.net/ .

This assembler is called AMOScmp [10]. AMOScmp can also assemble sequences

against multiple reference sequences simultaneously. For this, the multiple references

need to be provided in a multi-fasta file format. AMOScmp uses the MUMmer alignment

tool [1] to produce alignments. The aligned sequences that overlap each other are then

used to construct the contigs and the consensus of the contigs produces the output for this

process.

6

http://amos.sourceforge.net/

CHAPTER 3

MUTATION DETECTOR (MD)

3.1 Introduction

Mutation plays an important role in the evolution of organisms. All genomes are

subject to a wide spectrum of naturally occurring mutagenic activities like recombination,

replication errors, base substitutions and indels (insertions and deletions) [3, 6]. Although

a small fraction of the mutations are useful for the survival of organisms under varied

conditions, most mutations are considered to be harmful. Beneficial mutations are passed

on to the surviving individuals in the next generations. Natural selection and DNA repair

pathways reduce or filter mutations such that very few of these mutations are passed on

to the next generation.

Mutations are very rare; the best current estimate is 1 in 10~9 mutations per site per

generation. In reference alignment based assays, mutations must be separated from

sequencing errors and alignment errors. The MD tool has been developed as a collection

of programs and scripts that aid in confirming the mutations between the comparatively

assembled genomes of organisms. This tool is used to analyze the genome assemblies

produced by the AMOScmp comparative assembler [10]. It can be used for the sequence

7

reads generated by 454 Life Sciences using the PicoTiterPlate device [7] as well as for

shotgun sequence reads.

3.2 Motivation

Until now, the study of evolutionary process by detection of mutations has been

derived from indirect inferences:

1. phylogenetic comparisons of DNA sequences [5]

2. indirect observations of the behavior of artificial reporter constructs [2]

The first method makes assumptions about the times of divergence between the species

and the neutrality of the surveyed genomic regions. The second method of inference

makes assumptions about the mutation detecting ability in extrapolating to the genome

level. Because of this, the indirect methods of mutation detection are inadequate. A new

and more direct approach is to produce Mutation Accumulation (MA) lines that are

developed in such a way as to effectively eliminate the ability of natural selection to

eradicate mutations prior to their detection.

Figure 3.2-1 Role of mutation and selection on genomic evolution.

8

Figure 3.2-1 shows how natural selection eradicates the baseline mutations even before

they are detected. The selection sieve does not let all the mutations pass to successive

generations.

Baseline mutation
rate and pattern

Selection

Mutation + Selection

Figure 3.2-2 Reduced efficiency of natural selection

We worked with yeast MA lines that have been developed from a single colony of

yeast S. cerevisiae. A colony is recognizable only after 5 generations have been grown

from a single yeast cell. Initially, a single colony is randomly chosen to start the next

generation. After five generations, another colony is randomly chosen and a new

mutation accumulation (MA) line is started from it. This process is repeated for each MA

line. Currently, the yeast MA lines have been propagated 4600 generations. Altogether,

48 yeast MA lines have been developed in the laboratory. From these, 32 are haploid and

16 are diploid. For this assay, we have been working with four haploid MA lines Al

(Gl), A4 (G2), C5 and C8. Figure 3.2-2 shows how this random selection of colonies

bypasses the normal evolutionary process of natural selection that tends to limit the

accumulation of deleterious mutations and linked neutral mutations.

9

The approach is used to detect mutations across these MA lines and thus study the

evolutionary process. For mutations to be effectively studied in evolutionary genomics,

detection of hundreds of mutations is necessary. The conventional PCR amplification and

direct sequencing methods traditionally used for this purpose are not as cost-effective as

the highly parallel sequencing technology developed by 454 Life Sciences. The highly

parallel micro-technology is the most cost-effective for genome-wide mutation discovery.

The availability of these sequence reads has been a motivating factor in the direct

analysis of mutation rates and identifying qualitative aspects of the mutation spectrum.

To study the mutation along each yeast line, it is compared with a reference sequence.

The complete assembled sequence of S. cerevisiae is used as the reference sequence. In

our case, we studied 4 MA lines Al (also known as Gl), A4 (also known as G2), C5 and

C8.

Figure 3.2-3 shows the relationship between S. cerevisiae and the strains Al, A4, C5

andC8.

Progenitor of S _-^~~~~~~~~~~^*»'*00^ Reference S. cerevisiae
cerevisiae and Al, A^
C5 and C8

Progenitor Al, A4, C5
andC8

Figure 3.2-3 Relation between the reference sequence and the yeast strains.

3.3 Approach

The MD approach is carried out in two phases. Phase I is carried out for each of the

individual MA lines. Phase I includes:

10

1. Creation of the "Delta" file - Comparative assembly of the MA line against

the reference sequence S. cerevisiae produces an output file that shows read

alignments against the reference sequence. This is called the "Delta" file.

2. Alignment Summary - MD scripts produce an alignment summary of the

sequence reads against the reference sequence.

3. Processing Alignment Summary - The alignment summary that is produced

in step 2 is processed to remove insertions and homopolymer regions (regions

that have more than 4 consecutive identical bases - any one of Adenine,

Thymine, Guanine or Cytosine).

Phase II of the approach is carried out for multiple MA lines and includes three steps:

1. Combining MD output files

2. Applying coverage restrictions

3. Creation of analysis tables

3.3.1 Phase I. step 1: Creation of "Delta" file

We used the AMOScmp assembler to assemble the sequence reads for the MA lines

using as a reference the complete assembly of the S. cerevisiae. MUMmer [1] performs

the alignment step of the assembly and produces a 'delta' file that gives the alignment

information for each read with respect to the reference sequence. It also tells about the

relative distance between insertions and deletions in the alignment. Figure 3.3-1 shows a

small portion of alignment data stored in a sample delta file. MUMmer internally uses

NUCmer (Nucleotide MUMmer) to produce the alignment data. The first line specifies

that the data in the file corresponds to alignments between the reference sequence stored

in the file 'chrl.lcon' and the query sequences stored in the file 'chrlC5.seq'. The

11

second line says NUCmer was used as the alignment script. The alignment information

between each query sequence and the reference sequence starts with a header '>'

followed by the reference sequence length and the query sequence length. The lines that

follow denote the actual alignment information: start and end co-ordinates in the

reference and the query sequences, the number of errors, the number of similarity errors

and the stop codon (always '0' for DNA alignments). The header is followed by a string

of signed digits, one per line, denoting the distance to the next insertion (positive integer)

or deletion (negative integer) in the reference sequence. The final line for each alignment

before the next header is '0'.

/home/bioinfo1/Yeast1/chr1/chr1.1con
NUCMER
>Chr 9 230208 57
70663 70717 1 56 1 1 0
-11
0
>Chr 93 230208 50
132588 132636 49 1 0 0 0
0
>Chr 112 230208 111
68025 68137 111 133 0
33
62
0
>Chr 139 230208 112
162041 162152 1 112 44 0
0
>Chr 177 230208 94
161054 161146 1 935 50
0

/home/bioi nf o 1 /Yeastl /C5_ _C8/C5/chii/chr1 C5.seq

Figure 3.3-1 Sample Delta file

The alignments produced during the comparative assembly process are then filtered

and a layout is created from the selected read alignments. The layout is further used to

construct the contigs. For our purpose of mutation detection, this delta file plays an

important role. Mutations between MA lines and the reference sequence can be detected

12

using the alignments in this delta file, which is created individually for each assembly.

Thus, each sister MA line is assembled against the same reference genome which

produces a delta file for each.

3.3.2 Phase I. step 2: Alignment Summary

The MD tool takes this delta file and creates the actual alignments of the reads against

the reference sequence.

Reference Position

1
2
3
4
5

5.1
6
7

7.1
8
9
10
11

11.1

Reference Base

C
C
A
C
A
-

C
C
-

A
C
C

c
.

Bases of aligned reads

cccc
cccccc
AAAAAA
CCC-CCCC
AAAAAAA

cc
cccc-cccc
cccccc
T
AAACAAAA

ccccccccc
cccc
CCACCCC
AAAAAA

Table 3.3-1 Sample Alignment Summary.

Table 3.3-1 shows a sample section from an alignment summary table that is created by

the MD tool using the delta file as the input. The table shows the alignment summary for

each position in the reference sequence, which is identified in the 'Reference Position'

column. The 'Reference Base' column denotes the corresponding base in the reference

sequence for that position. The 'Bases of aligned reads' column denotes the bases in the

sequence reads that aligned with the reference sequence at that particular position. The

number of characters in the column represents the number of reads that aligned with the

13

reference sequence at that particular reference position. E.g. for the reference position 1,

there are 4 'C's in that row, denoting there were 4 read sequences that aligned with the

reference and all 4 of them had a ' C at that position. Also, the insertion positions (e.g.

5.1, 7.1 and 11.1 in the table) denote that the reference sequence did not have the

corresponding base, but the base was seen in the read sequences that aligned with the

reference sequence. A "-" in the 'Bases of aligned reads' column denotes that the

sequence read that aligned with the reference sequence had a deletion at that particular

base position. E.g. for the reference base positions 4, 6 and 10, one of the reads that

aligned at each of these positions had a base missing in it.

3.3.3 Phase I. step 3: Processing Alignment Summary

The MD output file which gives the alignment summary is further processed to

eliminate insertion positions that are seen in the read sequences (Table 3.3-2).

Reference Position

1
2
3
4
5

C J
^ - j f — -

6
• 7

i . i

8
9
10
11

^ ^ o ^ ^ ^ M W B K m ^ n B m M ^ ^ i i i ^ i i ^ ^ ^ ^ ^ ^ ^ B ^ ^ ^ ^ ^

• I I . I

Reference Base

c
C
A
C
A

C
C

-
A
C
C

c
-

Bases of aligned reads

cccc
cccccc
AAAAAA

ccc-cccc
AAAAAAA
c c c ; c ; •*

CCCC-CCCC

cccccc
i " , r l "

AAACAAAA

ccccccccc
cccc
CCACCCC
aA^^IUAJL**.***™*™.
^ n T f r t ^ ^ T L ^

Table 3.3-2 Removing the insertion positions.

Also, the reference positions that are within a 10 base pair window of homopolymers

of length 4 or more are eliminated.

14

Reference Position Reference Base Bases of aligned reads

50

51
52

53

54

55

56

57
58

59
60

61
62

63
64

65

66

T

C

C

A

C

A

C

C

c
c
A

C

c
T

G

A

G

' 'Tv 1 v 1 v 1' T' 1 v 1 v 1'

ccccccc
cccccccc
AAAAAAA

CCCCCCC

AAAAA

cccccc
CCCCCTCC

cccccccc
cccccccc
AAAA

cccc
ccc
TTTTTTTT

GGGGGG

AAAAAAAA

GGGGGG

Table 3.3-3 Homopolymer region

Table 3.3-4 Eliminating 5 base positions surrounding homopolymer region of 4 or more
bases

15

Table 3.3-3 shows the homopolymer region of length 4 (reference base positions 56

through 59 have the same base "C"). Table 3.3-4 shows the 5 base positions before and

after a homopolymer region of 4 or more bases, which are removed from further

processing.

We eliminate the 5 base positions surrounding a homopolymer region of 4 or more

bases to avoid local alignment problems with read-length errors that can occur at

homopolymer regions. The MD output file generated for each strain that is aligned

against this reference sequence will eliminate base positions 51 through 64 from further

processing, thus eliminating false positive mutations being detected due to sequencing

errors in this region. As described earlier, the 454 sequencing technique is unable to

identify homopolymers of length more than 4, which results in misalignments in areas

with homopolymers.

3.3.4 Phase II. step 1: Combining MD output files

The MD output file generated for each MA line in Phase I is then combined with the

output files generated for its sister MA lines. For each MA line (strain), we analyzed its

MD output with its sister MA lines to generate a "Combined Output file" in 2 ways:

1. Combine the MD output file with any one of its sister MA lines (Pair-wise

Analysis). E.g. the Al strain was combined with one of the remaining strains: A4,

C5 or C8. Analysis was done for the A1-A4, A1-C5 and C1-C8 pair-wise

combinations.

2. Combine the MD output file with the remaining sister lines considered as one MA

line (All-strain Analysis). E.g. Al strain was combined with A4, C5 and C8 at the

same time. Analysis was done for Al vs. A4C5C8 treated as a single strain.

16

For pair-wise as well as all-strain analysis, the combined output file gives the

information about the number of reads and their corresponding bases aligning against the

reference, for each base position in the reference, for the strains that are analyzed.

Reference Position

1
2
3
4

Reference Base

A
T
G
T

Bases of aligned reads in
Al

AAAA
TTT
GG

TT-T
Table 3.3-5 Sample MD output file for strain Al

Reference Position

1
2
3
4

Reference Base

A
T
G
T

Bases of aligned reads in
A4

AATA
TTTT
G-G

TTTTTTTTATTTTATT
Table 3.3-6 Sample MD output file for strain A4

Reference Position

1
2
3
4

Reference Base

A
T
G
T

Bases of aligned reads in
C5

TTTT
rrirTpnpi I • v i T p

GGGGCG
TTTTTTT

Table 3.3-7 Sample MD output file for strain C5

Reference Position

1
2
3
4

Reference Base

A
T
G
T

Bases of aligned reads in
C8

AAAAA
TTTGTT
GGGG

r • ir ITT • v i v'l'i

Table 3.3-8 Sample MD output file for strain C8

Table 3.3-5 through Table 3.3-8 show sample lines from MD output files for strains

Al, A4, C5 and C8 respectively. Table 3.3-9 shows lines from the 'Combined Output

17

file' that is created using the MD output files for A1-A4 pair-wise analysis. Similarly,

combined output files were created for A1-C5, A1-C8, A4-C5, A4-C8 and C5-C8.

Table 3.3-10 shows the combined output file that is created for an all-strain analysis.

Al is analyzed with the A4, C5 and C8 treated as one single strain. The bases of aligned

reads in A4, C5 and C8 are combined and then analyzed with Al. This combined output

file is used for A1-A4C5C8 all-strain analysis. Similarly, combined output files were

generated for A4-A1C5C8, C5-A1A4C8 and C8-A1A4C5 all-strain analysis.

Reference Position

1
2
3
4

Table 3.3-9 Samp

Reference Base

A
T
G
T

e Combined Output fi

Bases of aligned
reads in Al

AAAA
TTT
GG

TT-T
le for pair-wise analy;

Bases of aligned reads in
A4

AATA
TTTT
G—G

TTTTTTTTATTTTATT
sis of strains Al and A4

Reference
Position

1
2
3
4

Reference
Base

A
T
G
T

Bases of
aligned

reads in Al
AAAA

TTT
GG

TT-T

Bases of aligned reads in A4, C5, and C8

AATATTTTAAAAA„
T T T T T T T T T T T T T G T T

G—GGGGGCGGGGG
TTTTTTTTATTTTATTTTTTTTTTTTTT

Table 3.3-10 Sample Combined output file for all-strain analysis A1-A4C5C8

3.3.5 Phase II. step 2: Applying coverage restrictions

The combined output file that is generated as shown in section 3.3.4 is further

processed to eliminate reference base positions that are covered by fewer than 3 or more

than 10 sequence reads (for pair-wise analysis) or more than 30 sequence reads (for all-

strain analysis) during the assembly. Coverage of fewer than 3 reads can be considered as

insufficient for correctly identifying the base.

18

We also need to eliminate positions with too much coverage since such positions are

most likely part of a region that has replicated, perhaps many times. When this has

happened a sequence from one of the replicated regions will align with all of them. Since

it is not possible to know where the "correct" alignment is, we cannot determine whether

a mutation has occurred in these positions - so they are eliminated from further

consideration. For each strain, we had 5x coverage of the entire genome. Hence, we

assume that coverage of more than 10 reads for any strain identifies regions that are

highly repetitive. If a reference base position has more than 10 reads aligning at that

position, it is eliminated from further processing for a pair-wise analysis. For an all-strain

analysis, the upper limit for reads is set to 30 rather than 10 since one line is compared

against the combined consensus of the 3 MA lines. (If there were 3 MA lines being

studied, the all-strain analysis would analyze one strain against the combined consensus

of the remaining two strains. In this case, coverage of more than 20 for the combined

consensus would be discarded.)

Reference
Position

Reference
Base

Bases of
aligned reads in Al

Bases of aligned reads in
A4

1 AAAA AATA
TTT TTTT

Table 3.3-11 Applying coverage restrictions for pair-wise analysis

Reference
Position

1
2

EBSfBs^ass'-lsiKi^MisssazW
" " " " T T " ™ " ™

4

Reference
Base

A
T

T

Bases of
aligned reads in

Al
AAAA

TTT
^mmsi^m^^^^^^^^^ma^B^
^^^mmg^^^^Y^ss^im^m^

TT-T

Bases of aligned reads in A4C5C8

AATATTTTAAAAA
T T T T T T T T T T T T T G T T

s s s i m B S S R S i a ^ ^

\ j — V J X J V J V J C X C - O V J V J V J V J

TTTTTTTTATTTTATTTTTTT
Table 3.3-12 Applying coverage restrictions for all-strain analysis

19

Table 3.3-11 shows that base position 3 is eliminated from further processing since the

coverage at the position for strain Al is less than 3. Also, base position 4 is eliminated

since coverage at that position for strain A4 is more than 10.

Table 3.3-12 shows that for all-strain analysis for A1-A4C5C8, base position 3 is

eliminated from further processing since the coverage at that position for Al is less than

3. Base position 4 is not eliminated because the combined coverage of A4, C5 and C8 at

that position is less than 30.

3.3.6 Phase II. step3: Creation of analysis tables

The majority of the type of base in the aligned reads of an MA line for any particular

base position decides the consensus. For example if 5 reads of an MA line align at a

particular base position of the reference, and 3 out of them have the base 6A' at that

position, while the other 2 reads have a different base, then the consensus for that base

position will be 'A".

The processed combined output file generated as described in section 3.3.5 is used to

generate additional information about the consensus sequence for each strain that is

analyzed. Table 3.3-13 shows the two columns 'Al consensus' and 'A4 consensus' that

are generated using the data in the 'Bases of aligned reads' column for each strain. The

consensus produced by each MA line, for each base position in the reference is the key

information used for mutation detection. Note that base positions 3 and 4 are eliminated

as explained in Table 3.3-11. This processed combined output file is further used to

generate 4 different analysis result tables: Errors/Matches Matrices, Reference Difference

Positions, Mutations, and Putations. The creation of the analysis tables is explained in

detail in the following sections.

20

Reference
Position

1
2

Reference
Base

A
T

Bases of
aligned reads

inAl
AAAA

TTT

Bases of
aligned

reads in A4
AATA
TTTT

Al
consensus

A
T

A4
consensus

A
T

Table 3.3-13 Consensus creation

3.3.7 Errors/Matches

The 4 MA lines that we used were all haploid. This essentially means that all the copies

of the same 454 sequence for a particular line should be identical. If they are not, then we

can conclude that it is because of sequencing errors or because of misalignments in the

assembly process in highly repetitive regions. Errors in base calls can affect the mutation

detection result.

The consensus failure rate is a combination of the false positive rate due to sequencing

errors and the fact that consensus cannot be reached at all due to lack of majority base

type. Thus, the false positive rate arising due to sequencing errors contributes to the

consensus failure rate. So, it is imperative to find the sequencing error rate while

identifying the mutations.

We determined the 454 sequencing error rate by creating Error and Match matrices.

The error and match information is gathered based upon the number of nucleotides that

align to the same reference base position for the two genomes. For a particular base

position in the reference, the number of errors is calculated as the number of differences

between the bases of the reads spanning that position as compared to the consensus

produced by the reads. The matches are the number of bases that are the same as the

consensus. The number of "errors" found at a given base position, along with the

coverage of reads at that base position is used to generate what we call the "Error

Matrix". Similarly, the number of "matches" found at a given base position, along with

21

the coverage of reads at that base position is used to generate the "Match Matrix". These

Error and Match matrices are used to detect the sequencing error rate of the 454 reads.

For calculating the errors and matches at a given base position, the reference base can be

anything. Matches and errors are calculated depending upon the consensus sequence for

the two strains.

Table 3.3-14 shows the computation of match and error values for three different

positions. 'N' signifies that the corresponding base can be either 'A', 'T', 'G' or ' C . At

position 100 in the reference, 3 matches for Al and 3 matches for A4 are found and

hence 6 matches are counted for position 100. Similarly, 6 matches are counted for

position 105 in the reference. For position 300, 2 matches for Al and 2 matches for A4

account for 4 matches and 1 error from each strain accounts for 2 errors in all.

Position

100

105

300

Reference

N

N

N

Al

AAA

AAA

AAT

A4

AAA

TTT

TTA

Al
consensus

A

A

A

A4
consensus

A

T

T

Remark

6 matches

6 matches

4 matches,
2 errors

Table 3.3-14 Calculation of Errors and Matches for a base position

We now use an example for 10 base positions and show how the errors and matches

ultimately define the Error Matrix and the Match Matrix respectively for an analysis of 2

MA lines. Note that this is just an example and not the actual data that we have for the

lines Al and A4. In Table 3.3-15, the reference base is not shown since it is not required

to generate the Match and Error matrices. It includes the reference position, bases of Al

and A4 reads which span that position and the errors and matches calculated for those

positions using the method shown in Table 3.3-14.

22

Position

101

102

103

104

105

106

107

108

109

110

Al

AAA

AAC

ATT

ccc
TTC

GGGG

GAAAA

GGGG

CCCT
rTnrTiHri r*pi r r i

Tal

A4

AAA

TTTA

TTATT

TTT

TTTA

GGA

CCC

GGC

AAAT

ACA

>le 3.3-15 Si

Al
consensus

A

A

T

C

T

G

A

G

C

T

A4
consensus

A

T

T

T

T

G

C

G

A

A

jmple data for 10 reference pos

Remark

6 matches

5 matches, 2 errors

6 matches, 2 errors

6 matches

5 matches, 2 errors

6 matches, 1 error

7 matches, 1 error

6 matches, 1 error

6 matches, 2 errors

7 matches, 1 error

•itions

We want to determine if there is any relationship between error and match rates and

coverage for the two genomes. Consequently, we want to compute summary information

based on position coverage. In other words, we would like to summarize the error and

match information for each possible combination of coverage of a given position for the

two genomes. Since we allow coverage to range from 3 to 10 for pair-wise analysis, we

need one 8x8 matrix to represent a composite summary of the relationship between

coverage at a reference position and the error information and another 8x8 matrix to

represent the composite match information. We call the 8x8 matrix that comprises the

error information as the "Error Matrix" and we call the 8x8 matrix that comprises the

match information as the "Match Matrix". For an 8x8 matrix, the matrix indices are

between (0, 0) to (7, 7). Matrix position (0, 0) represents coverage of 3 for both the MA

lines while the matrix position (7, 7) represents coverage of 10 for both the MA lines.

Similarly position (0, 1) represents coverage of 3 for the first strain (Al) and 4 for the

second strain (A4); and so forth. The entire matrix represents all the cases where the

23

reference base position is covered by a variable number of reads spanning it for the 2 MA

lines. For example, in our sample Table 3.3-15, the reference base position 102 is

spanned by 3 reads of strain 'Al' and 4 reads of strain 'A4' during the alignment. Thus

the matrix position where the errors and matches would be counted for this particular

base position would be (0, 1). There are 5 matches and 2 errors at this base position. The

5 matches will be counted at the matrix position (0, 1) in the 'Match Matrix" while the 2

errors will be counted at the matrix position (0, 1) in the 'Error Matrix'. Thus if the first

MA line has a coverage of 'x' and the second MA line has a coverage of 'y' for a

particular base position, then the errors and matches for that position would be

summarized at the matrix position (x-3, y-3) in the Error Matrix and the Match Matrix

respectively.

Position

101
102
103
104
105
106
107
108
109
110

Al coverage (x)

3
3
3
3
3
4
5
4
4
5

A4 coverage (y)

3
4
5
3
4
3
3
3
4
3

Matrix Position
(x-3, y-3)

(0,0)
(0,1)
(0,2)
(0,0)
(0,1)
(1,0)
(2,0)
(1,0)
(1,1)
(2,0)

Table 3.3-16 Matrix position calculation.

Table 3.3-16 shows how the matrix position is calculated for our sample data in Table

3.3-15. The errors for base position 101 is summarized in the Error Matrix at the position

(2, 0) while the matches for this position is summarized in the Match Matrix at the

position (2, 0). The errors mapping to a particular matrix position in the Error Matrix are

added together. Similarly, the matches mapping to the same matrix position in the Match

24

Matrix are added together. Based on Table 3.3-16, we know that the errors for base

positions 101 and 104 would be mapping to the same position in the Error Matrix, which

is position (0, 0). Their matches also map to the same position in the Match Matrix.

Hence in the Error Matrix, at position (0, 0), the errors for base positions 101 and 104 are

added together. Similarly, their matches are added together at position (0, 0) of the Match

Matrix.

Matrix
position
(x,y).

y — •

0

l

2

3
4
5
6
7

0

0
(101 +
104)

2
(106 +
108)

2
(107 +

110
-
-
-
-
-

1

4
(102
+105

2
(109)

-
-
-
-
-

2

2
(103)

-
-
-
- •

-

3

-
-
-
-
-

4

-
-
-
-
-

5

-
-
-
-
-

6

-
-
-
-
-

7

-
-
-
-
-

Table 3.3-17 Error Matrix.

Table 3.3-17 shows the 'Error Matrix' for the sample data in Table 3.3-15. The

reference positions in the brackets indicate that the errors (calculated in Table 3.3-15) for

these positions are added together for that particular matrix position. The '-' indicates that

there was no data available for these cells in the Error Matrix. This also means that there

was no Al or A4 coverage for any of the reference positions which could be mapped to

those cells in the Error Matrix.

25

Table 3.3-18 shows the 'Match Matrix' for the sample data in Table 3.3-15. Similar to

the Error Matrix, the matches for a reference position as calculated in Table 3.3-15 are

added to this Match Matrix using the matrix position in Table 3.3-16. The '-' means that

there was no Al or A4 coverage that could be mapped to those cells in the Match Matrix

and hence are kept empty. Similar to the Error Matrix, this is an 8x8 matrix with 'x' and

'y' indices ranging from '0 to '7'.

Matrix
position
(x,y).

y — •

0

i

2

3
4
5
6
7

0

12
(101 +
104)
12

(106 +
108)
14

(107 +
110

-
-
-
-
-

1

10
(102
+105

6
(109)

-
-
-
-
-

2

6
(103)

-
-
-
-
-

3

-
-
-
-
-

4

-
-
-
-
-

5

-
-
-
-
-

6

-
-
-
-
-

7

-
-
-
-
-

Table 3.3-18 Match Matrix.

Using the Error and Match Matrix, the base calling error at a particular matrix position

was calculated as follows:

BCEy = Eij / (Ey + My)

where BCEjj is the Base Calling Error at position (i, j)

Ey is the value of the Error Matrix at position (i, j)

My is the value of the Match Matrix at position (i, j)

26

Thus, for matrix position (0, 1), the base calling error rate is 4 / (4 + 10) = 0.286. For

all the MA lines, after computing the Error and Match Matrix, we calculated the base

calling error rate in the manner described above for each matrix position. Then we

calculated the average of that error and found out that the total base calling error rate was

0.13%. This error rate was approximately 4 times less than what we had expected from

the previous studies where the base substitution sequencing error rate of 0.5% is assumed

[7]. The low base calling error rate meant that the quality of sequences we worked with

was really good. This also yielded 10-10,000 times (depending upon the coverage)

reduction in the false positive rate.

3.3.8 Reference Difference Positions

For a particular base position in the reference, if all the reads spanning this position

have the same base in both MA lines, but this base is different from the reference base,

then the base position is counted as a reference difference position. An example of this

situation is shown in Table 3.3-19. These positions indicate where the same base

mutations have occurred with respect to the reference sequence, presumably in a

progenitor of the MA lines.

Position

1020

Reference

A

Al

TTT

A4

TTT

Al
consensus

T

A4
consensus

T

Table 3.3-19 Reference Difference positions

3.3.9 Mutations

Irrespective of the reference base, if the consensus base for the MA lines for a

particular reference position is different, then this base position constitutes a mutation

between the two lines. The consensus should be such that all the bases constituting the

27

consensus are the same and thus it is a unanimous consensus. These positions represent

confirmed mutations between the 2 MA lines under observation.

Table 3.3-20 shows two variations of reference difference positions. In the first case, a

definite mutation from A to T can be seen along the A4 line with respect to the reference.

This can be detected only by comparing the consensus of Al and A4 to the reference

base. In the second case, it cannot be known for sure exactly where the mutation between

the reference and the 2 strains occurred during the evolutionary process.

Position

1040

1060

Reference

A

T

Al

AAA

AAA

A4

TTT

CCC

Al
consensus

A

A

A4
consensus

T

C

Table 3.3-20 Mutations

3.3.10 Putations (Putative Mutations)

Irrespective of the reference base, if the 2 lines have a different consensus, and the

consensus consists of some bases that are not the same as the consensus, then such

reference base positions constitute putations between the 2 lines. Putations can be

considered as mutations that are not confirmed, since not all the reads spanning the base

position have the same base. This can be attributed to the possibility that this read aligned

at more than one place in the reference because of its occurrence in a repetitive region.

This can also be attributed to a 454 sequencing error.

Position

1080

1090

Reference

N

N

Al

AAT

AATTT

A4

TTT

AAA

Al
consensus

A

T

A4
consensus

T

A

Table 3.3-21 Putations

In Table 3.3-21 'N' signifies that the corresponding base can either 'A', 'T', 'G' or ' C .

28

3.4 Implementation

The various scripts needed to implement the mutation detection approach were first

implemented in Perl. The results from the scripts were analyzed and it was confirmed that

we were able to find many more mutations by comparing the assembly results of different

strains as compared to the number of mutations reported by 454 after assembling the data

using their Newbler Assembler. For chromosomes in the range of 200,000 base pairs, it

took approximately 5 hours to produce the output files. For longer chromosomes

(1,400,000 base pairs long), it took 12-13 hours. Although useful results were obtained,

the process was time consuming.

To improve the performance, the entire process was re-implemented in Java. The Perl

script used the show-aligns utility provided by the MUMmer package to get the

alignment information of an input sequence to the reference sequence. Processing the

output of this utility consumed a lot of time. To avoid this, the Java implementation reads

the reference sequence separately and the alignment information is extracted from the

output of the delta file that is created as one of the outputs of the assembly process. Due

to these changes, the Java implementation shows significant performance improvement

over the Perl implementation. For smaller chromosomes (-200,000 base pairs length), it

now takes around 1 minute to get the output and for larger chromosomes (-1,400,000

base pairs long), it takes 2-3 minutes to get the output.

3.5 Results

We have used the MD tool with 4 yeast MA lines - Al, A4, C5 and C8. These lines

were comparatively assembled against S. cerevisiae as the reference sequence. The

output from each assembly process was then provided as input to the MD tool. During

29

Phase I of the MD tool approach, insertion positions and homopolymer regions were

eliminated from further processing.

Initially, each chromosome in the yeast genome was assembled separately against the

reference chromosome sequence (chromosome assembly). But, once the performance

was improved by the Java implementation, the entire genome of a strain was assembled

against the entire genome of the reference sequence (genomic assembly). Table 3.5-1

compares the results of these two types of assemblies and the number of positions

assayed in each one.

Genomic Assembly Vs. Chromosome Assembly
Stra
in

Assembled positions with
respect to reference
sequence

After removing insertions After eliminating
homopolymer regions
of 4 or more.

Genome Chromosom
e

Genome Chromoso
me

Genome Chromoso
me

Al 11,810,882 11,847,100 11,133,368 11,487,142 8,169,073 8,445,134
A4 12,020,356 12,305,578 11,328,367 11,729,731 8,299,926 8,615,613
C5 10,505,708 11,023,547 10,337,691 10,794,238 7,596,643 7,922,054
C8 10,766,874 11,293,467 10,557,340 11,014,515 7,761,680 8,089,638

Table 3.5-1 Assembled positions in Genomic Assembly Vs. Chromosome Assembly

After the comparative assembly, insertions within the MA lines were ignored. Also, by

neglecting the regions around the homopolymers of length more than 4, any false positive

mutations detected due to sequencing errors were avoided.

We found more putations with a chromosome assembly because many reads that

aligned with different chromosomes were also included in this assembly. These reads

may not have had exact alignments since they aligned perfectly to other chromosomes.

This resulted in more false positive putations being detected. Because of the whole

genome assembly, we got better alignments and better assembly results since the reads

30

were no longer ambiguously aligned to the reference sequence. This reduced the number

of alignment errors and therefore also the number of putations.

After the individual strains were comparatively assembled with the reference sequence,

during Phase II, the assembly results for individual strains were compared with one

another and the mutation analysis was carried out on 2 strains at a time (pair-wise

analysis) or a combined analysis using all 4 strains (all-strain analysis). During the all-

strain analysis, one strain was compared against a combination of the other three strains

to find the mutations. The error and match matrices were created for both types of

analysis. These matrices were generated based upon the alignment coverage for each

strain for the same reference position. The goal was to see if there was any difference in

the base calling, based on the relative coverage for each strain. Our analysis showed that

there was no significant difference.

Chr# Analysis type

A1-A4
C5-A1
C5-A4
C8-A1
C8-A4
C5-C8

A1-A4C5C8
A4-A1C5C8
C5-A1A4C8
C8-A1A4C5

Positions
assayed

226,746
167,111
167,591
167,080
167,682
162,522
230,208
230,208
230,208
230,208

Positions
with 3-10
or 3-30
coverage

103,651
71,751
81,620
61,659
68,016
66,115
96,340
110,725
129,200
86,826

Table 3.5-2 Pair-wise strain analysis Vs. All-strain analysis

Table 3.5-2 shows that more reference positions are assayed with the all-strain analysis

as compared to the pair-wise analysis. A reference position that is not assayed in a pair

wise assembly can be assayed in other assemblies thus increasing the total number of

31

reference positions assayed. Also, restricting coverage from 3-10 for pair-wise and 3-30

for all-strain analysis avoids assaying positions in repeat regions. Since all-strain analysis

was better than pair-wise, the mutation analysis was further carried out using the results

of all-strain analysis.

Table 3.5-3 compares the genomic and chromosome assemblies with respect to the

analysis tables (reference difference, mutations and putations) generated for each type of

assembly. The table shows that the number of putations decreased for the genomic

assembly as compared to the chromosome assembly. By comparing strains with each

other and also with the reference sequence, exact mutations occurring within a particular

MA line are detected. This would not have been possible if a single strain had been

compared with only the reference sequence.

Genomic Assembly vs. Chromosome Assembly

Analysis

Al -
A4C5C8

A4-
A1C5C8

C5-
A1A4C8

C8-
A1A4C5

Tab

Reference Differences
Genome

196

244

141

132

le 3.5-3 An

Chromosome
159

214

157

149

alysis tables for

Mutations
Genome

9

13

14

16

Genomic A

Chromosome
14

9

59

47

ssembly vs. Chr

Putations
Genome

1104

1084

933

932

omosome A

Chromosome
1367

1544

2394

2341

issembly

Table 3.5-4 shows the entire list of mutations in the Yeast MA lines that the MD tool

was able to find.

32

Yeast _tlA Line Mutations
M«fariop Table as- of 6 Api.il .2004

Lociticn

Chr 2-1253*6-*
Chr 2-5561(53
Chr 2-62(5533
Chr 5-5X21-
Chr - -11-S6- -
Chr5-351?~5
Cbr ~-6"-53
Chr-J-f^l-SS
Cbr 7-62512^
Cbr " - 8 : ^ 3
Cbr S-251-P3
Cbr S-2621S"
Cbr. ?-15-215
Cbr ?-3SC2c5
Cbr i : o i l - a
Cbr 11-25^15
Cbr 11-6353:?
Cbr 1 2 - 2 " f -
Cbr 12-51-51?
Cbr 12--166"C
Cbr 13-213—C
Cbr 15-5:3:2^
Cbr. 13-.5d©36"5
Cbr. 13-824994
Cbr 13-913509
Cbr. ! 4*88148
Cbr. 15-541539
Cbr. 15-679548
Cbr. 15-986649
Cbr 16 331354
Cbr 16 804029
Our 16 834238
Mek
Chr. 4-117354

Change

Tv£G-*C)
Tv (G-*C*
Tv (G->T>

Tscr^o T v f G ^ T j
Ts<A-KS>
T s f G ^ A)
T v f G ^ C)
Tv CA^C)
Tv C A ^ O
Tv(A^T)
T s « » T >
Tv (A->C)
Tv£G-»T)
T s (G ^ A > -
Ts<G->A>
Ts{C-»T>
T s < T - > 0
Tv CG^C)
Tv CG^T)
TvCG^C)
TvfC-»A)
Tv CA^T)
TvCC->A)
Ttr fC-»Al
" invwskaT*
Ts<"T->C>
Ts(G-»A>
TvCC^AI
Ts (G-»A>
Tv (G->T>
Ts<G-»A>

Deletion of G

Context

TGTGTCCAAG^ TGTGTGCAAG-
AGAAGAAACG->AGAACAAACG
AGAACGTCTT-^AGAACTTCTT
CCTTTACAAA-> CCTTCACAAA
GGATGCTAAG^ -GGATTCTAAG
TCCTGAGCAG->TCCTGGGCAG
GGCGGATTTC -»GGC AGATTTC
AATCGTGCAC-^AATOCTGCAC
CTTGAAGTGC^CTTGCAGTGC
TTTGAATTGG-^TTTGCATTGG
TGGA.TATTGT->TGGA.TTTTGT
GAATAGAACT-^GAATAGAATT
'TTATAGAAGG-^TTATCGAAGG
GAGAGTCAGCG-»GAGATTCAGCG
GGAAGGATAT^-GGAAGAATAT
ACTAGATTGA->ACTAAATTGA
TCATJGATCCT->TCATXATCCT
CATTGTTCTC-* CATTGCTCTC
GGGAAGGGTT^GGGAACGGTT
CTATAGAATT-3CTATATAATT
CTGGCGGATC-> CTGGCCGATC
CGAACCGTAA^CGAACAGTAA
AAACCATAAT-^AAACCATTAT
CCGTCACTCA->CCGTAACTCA
CCTGTCGACC -^CCTGTAGACC
IGCCGAAGGCA^TGCCTTCGGCA
AATTTCTTAC^AATTCCTTAC
AACTGCTAAA-^AACTACTAAA
GCTGCGTCGC->GCTGAGTCGC
CAGTGAGGAT^CAGTAAGGAT
AGGTGCCAGA->AGGTGCCAGA
TTATGTGAAA->TTATATGAAA

TCTGGGGACT-?TCTGGG-ACT

Linefs)

A 4 *
CB
A4.A5
C 8

cs
A l
C5
A l *
A4
C 8
A 4 *
A4.A5
CB;
C5
A1.A2
C 8
C 5
A l
A4,A5
AL A2
AL.A2
A4.A5
A2

eg
A4.
C5
C5

cs
C 8
C 8
C 8
C S

ALA2: -

*-*5(fedaJiQ!iis fcesEssazygoaspossible seae dsiplicstksi??
#aa cliaasgeE *a F i n ABZ1 (aaiiBBiieasydbsCfcissHafca syssazsa)
Imp- Vdfc/y&ast°'gmfj cnTgi'gg£-Mn-l«rns.p]?teng=J=YKBjS'3 3W
PmtaSMXEi rsmaiDiEs; Jo Is . coaStsjBJi
Car '4 3S7SO C so T asd SS7Pi T to €s Our IS 57SSB5 G to C K£D© WIT*
C a r 6 18277^ A to T
Car i 0 19358© A to Q CarI2. 490683 X to G

: BOB-WARE PHIMER.

Table 3.5-4 Yeast MA line mutations

3.5.1 Base Substitutions

With the help of the mutation detector, we were able to find 33 base substitutions in an

average of 4.99 x 106 nucleotide sites that fulfilled our criteria for coverage and distance

from a homopolymer region. These mutations were later verified by direct sequencing.

This yielded an overall base substitution rate of 0.33 x 10~9 per site per cell division.

33

http://Api.il

Along with base substitution, we were also able to find one single base pair deletion and

a 3 base pair inversion.

3.5.2 Reference Difference Positions

Using the method defined in section 3.3.8 for the reference difference positions, we

found 323 base positions with consistent consensus sequence across the 4 MA lines that

differed from the base in the reference sequence. These are possibly the sequencing errors

in the reference sequence or mutations arising in the progenitor of the MA lines before

the start of the experiment.

3.5.3 Heterozygous Sites and Mutations

There was evidence found that the MA lines had become diploid in nature

spontaneously in the early stages of the experiment. This meant that we would have

failed to find mutations at heterozygous sites with our approach of using 'consensus

sequence'. We attributed the reason for any base in the reads spanning the same base

position of the reference being different from the consensus to be caused by a sequencing

error. But, if the lines had been heterozygous, then such base differences would have

been in fact a result of heterzygosity.

For each point mutation that we found using our Mutation Detector, we sequenced

DNA obtained from frozen cells stored at 5-30 day interval throughout the period of the

experiment. We found that all the mutations detected were homozygous at the time of the

first detection, except for 1. We also searched the 454 sequence data for potential

heterozygotes. For this, we focused on base positions which were spanned by at least 2

reads that had the same base as the reference and at least 2 reads that were different from

34

the base in the reference sequence. There were 202 potential heterozygous mutations that

we found across all 4 MA lines. For each such mutation, we took the surrounding DNA

28 base pairs up and down stream and BLASTed them against the reference sequence.

This segment analysis revealed that except for ten, all the other potential mutations were

a result of 454 assembly artifacts involving nearly identical paralogous sequences. Out of

these ten, eight were false positives; one was a heterzygote that was already determined

by initial analysis and only one novel mutation was detected.

This analysis shows that relative to the total length of the experiment, the transient

phase of heterozygous mutation was small enough and therefore any failure in

determining heterozygous mutations would not have affected our mutation rate detection.

35

CHAPTER 4

MULTIPLE ASSEMBLY VIEWER WITH ENHANCED

NAVIGATION (MAVEN)

4.1 Introduction

The MAVEN genome assembly visualization tool supports interactive visualization of

sequence assembly and alignment results for multiple genomes at the same time. The tool

is part of an interactive environment to support research in the rapidly growing field of

comparative genomics. In this context it is especially valuable to compare how many

closely related species assemble to each other or to a common ancestor. Existing

assembly visualization tools do not provide simultaneous views of multiple contigs, let

alone entire genomes. Existing visualization" tools for comparing genomes do not

incorporate assembly information, but instead focus on showing relative locations of

conserved regions. MAVEN is able to show simultaneous views of de novo assemblies,

comparative assemblies, and alignments. The combination of both assembly and

alignment results into a single visualization has already helped to provide better insight

into these two techniques and how they interact in a comparative genomics environment.

A major motivation for the development of MAVEN has come from our efforts to

36

assemble sequence data generated by 454 Life Sciences using their PicoTiterPlate

Device. This process generates sequence data that is approximately 1/10 the size of

traditional sequence data; existing assembly software does not handle this data very

effectively. MAVEN has helped us to identify more quickly where and why current

assembly programs fail with this data.

4.2 Motivation

We felt particularly constrained by the existing visualization software that provided us

with only very limited tools for exploring the assembly results in a way that would enable

us to understand why the assembly program was not successfully assembling sections of

the genome. Existing assembly viewers can only display the results of one assembly

process at a time and can only show the composition of a single assembled sequence

(called a contig) at a time. We wanted to be able to simultaneously view multiple contigs

and multiple assemblies so that we could compare the effects of different parameters and

different assemblers acting on the same input.

This experience led to the design and implementation of MAVEN: Multiple Assembly

Viewer with Enhanced Navigation. MAVEN aims to provide support for exploring and

comparing results from multiple assembly and alignment steps and will serve as a

fundamental component of a comprehensive environment for assembling multiple

genomes simultaneously using an iterative, user-guided assembly process. The sections

below provide a brief review of an existing typical visualization tool, BankViewer, and a

summary of the goals and features of MAVEN along with some examples.

37

4.3 Existing Tool - Bank Viewer

The assembly viewer called BankViewer (http://ainos.soureeforge.net/docs/viewer/)

provided by the AMOS package [10], enables users to view all the information related to

the assembly process in a single interactive tool. BankViewer is able to display the results

of de novo as well as comparative assemblies.

• " ' • . ' . > • • " " •

c

Î C'.li.'

-.-: —_ -
. -

V'"* ""-f.V
r : . - \

'" -*z;

- - T .•-. ~ ~

: • " > • ' ! . : " , - /

T - " - - ~ " ' • ' - " "

- — " "__'

. _ __._ _._,

-,- % - x -
, »~ _ —.

tfc&dij • -ask** JiJtJ- rOrtffrl

, • - ' -F~"? ' : •

><fe|
'"* -̂"_ "" :

' ' • " — - - - l : - -

" • r^i-/£!*
- " " • > : . ' . ; • : ; _ -

IS
' - ' A" A is

J , .

Figure 4.3-1 BankViewer showing one (blue) contig and many (green) reads.

BankViewer displays the contigs of a de novo assembly in different windows. The user

has to select the contig of interest and only this particular contig is displayed in the main

window; it is also able to display the results of only a single assembly process at a time.

Figure 4.3-1 BankViewer showing one (blue) contig and many (green) reads.shows the

results of a comparative assembly as displayed by BankViewer. The nucleotide view is

shown in the middle; sequence details are shown on the bottom; and contig data on the

38

http://ainos.soureeforge.net/docs/viewer/

right. The upper portion of the figure shows the alignment information. The reference

sequence (white) is at the very top. Below the reference sequence are 2 coverage graphs.

Below the graphs are the blue contigs aligned with the reference. (Only 1 contig is visible

in this view.) The input read sequences (green) are shown below the contigs where they

align with the contig. Other portions of the figure show sequence read detail (on the

right), contig detail information (on the bottom) and a nucleotide view of the selected

contig, including the read sequences that align to it and the consensus sequence.

Limitations of Bank Viewer \

The current functional goals for MAVEN are primarily influenced by BankViewer.

MAVEN aims at improving the usability of BankViewer by eliminating two of its major

limitations:

For a de novo assembly, BankViewer displays only a single contig in a window.

BankViewer is able to display the results from only one assembly process at a time.

4.4 MAVEN as an Assembly Test and Tuning Tool

Eventually, we envision MAVEN supporting a multigenome iterative assembly

process. Currently, the ability to simultaneously show results from multiple assemblies

and alignments makes MAVEN useful as an assembly testing and tuning tool. MAVEN

functionality helps users to better understand the assembly process and to more

effectively explore the effects of various assembly parameter choices.

Our initial goal was to use the TIGR assembler to assemble 454 data. But, our initial de

novo assembly efforts were disappointing; the assembly produced more contigs (of

shorter length) than we had hoped. We subsequently used the AMOS comparative

assembler to assemble these contigs against a reference genome of a very closely related

39

species. This approach enabled us to validate the basic assembly results of the de novo

assembler, to see where it had failed to join sequences that belonged together, and to gain

insight into the shortfalls of the assembly algorithm.

MAVEN aids in such analyses because:

1. The de novo assembly for the same set of sequence reads could be performed

using many different parameter settings

2. The de novo assembly outputs were input to the comparative assembler using the

same reference sequence.

These comparative assembly results can be viewed using MAVEN to get an idea of

read coverage and sequence alignments for each of the assemblies. Depending upon these

comparisons, the best assemblies were identified and we were more easily able to

converge on a set of parameters for more effective de novo assembly of this kind of data.

With the ability to view multiple comparative assemblies in the same window, it is much

easier to see the contig alignment of two different genomes against a common reference.

In the future, we plan to use the matching portions between 2 assemblies to create global

alignments between the assembled genomes. The global alignment will then represent a

potentially conserved region inherited from the ancestral genome of the assembled

genomes.

4.5 Results

Currently, MAVEN is able to display the results of de novo assemblies done by the

TIGR assembler [9, 12] and comparative assemblies done by AMOS [10]. It can display

multiple assemblies in the same window. It has a zoom adjustment that can be used to

change the view resolution.

40

MAVEN is also able to display the alignments of the sequences against a reference

genome. The alignments are produced as a result of the 'nucmer' alignment tool which is

part of the MUMmer package [1], available online at http://mummer.sourceforge.net/

The AMOS comparative assembler aligns input sequences against the reference

sequence; those that align well become the input for the local assembly of contigs. Not all

aligned sequences, however, contribute to contigs; these are discarded by AMOS and are

not included in its final output. By including both the aligned sequences and the

sequences that make up contigs in a single window, MAVEN is able to give a better idea

as to why some of the aligned sequences are not included in the assembly.

J tSMiftfeB

He * »

Figure 4.5-1 Reads discarded from contig formation step in the assembly.

Figure 4.5-1 displays one such scenario where the alignment is produced, but during

the contig formation, the reads are discarded by the AMOS assembler. The top portion of

Figure 4.5-1 displays the result of comparative assembly for a set of 4 test reads against a

sample reference sequence. Out of 4 reads, 2 reads aligned from base position 1 to 65

41

http://mummer.sourceforge.net/

and 125 to 195 with respect to the reference sequence. Thus, these 2 reads had a gap of

60 base pairs as compared to the reference sequence. The other 2 reads matched

completely with the reference sequence from base position 421 to 900. These 4 reads

were comparatively assembled using AMOScmp, and the alignment produced for the 4

reads is shown in the bottom part of Figure 4.5-1. The first 2 reads produced an alignment

from base position 1 to 195 with respect to the reference sequence. AMOScmp was able

to detect the gap of 60 base pairs in the reads. Because of this gap, the reads were

discarded from the assembly since the percent identity match with the reference for these

reads decreased. MAVEN is able to display the comparative assembly output along with

the read alignments and so the case where reads are discarded from the assembly even

when they align with the reference sequence, can be detected immediately.

_; Assembly * t « r

His Vim

Figure 4.5-2 Parts of a read aligning at different positions in the reference sequence

Figure 4.5-2 again displays a comparative assembly result and the alignment result for

4 test reads against a sample reference sequence. Two of the four reads are of particular

interest. The alignment produced for these 2 reads shows 2 separate alignments for 2

separate parts of the read. Both these reads are identical and are 360 base pairs long. The

42

first 180 bases of the reads align from base position 1 to 180 in the reference. The next

180 bases of the reads align from base position 240 to 420 in the reference sequence. A

single alignment with a gap is not produced. Due to this, the assembly accepts these 2

reads for the further contig formation step. But in the actual layout the contig aligns from

base position 1 to 360 with respect to the reference. MAVEN is able to display the

assembly as well as the alignment results for such reads making it evident why the reads

were included in the contig formation step.

F i l e i" V i e v i ^ l l l i " ' ' I:""r • l-:^ •'

Figure 4.5-3 Reads with gaps accepted in contig formation.

Figure 4.5-3 displays yet another scenario where the 2 reads produce a single

alignment with a gap of 50 base pairs. They align from base position 1 to 180 with

respect to the reference. Even though this case is similar to the one shown in Figure

4.5-2, these two reads are selected for the contig formation step and they form a contig

that aligns from base position 1 to 130 with respect to the reference sequence. These 3

43

cases (Figure 4.5-1 through Figure 4.5-3) represent discrepancies between the read

alignment and the actual contig formation and were easily identified with MAVEN

because of its ability to display multiple assemblies at a time.

:FJte View::':... ;= ,:;yi.:;;.'..: - >&:••• • • i i ' t i :

Figure 4.5-4 A view of de-novo assembly results.

Figure 4.5-4 displays the de novo assembly results. The red lines indicate the contigs

and the cyan lines indicate the sequence reads that made up the particular contig. Since

there is no reference sequence for the de novo assembly, the placement of contigs next to

each other is arbitrary. The pink at the end of a contig helps distinguish the contigs when

the assembly view is zoomed out and the contigs are displayed very close to each other.

44

i_ As*(*6»¥ie«8f

He WISH

Figure 4.5-5 A MAVEN display of results from a comparative assembly.

Figure 4.5-5 very well conveys the benefits gained by MAVEN for viewing the

comparative assembly. White lines represent the reference genome. Blue lines are the

assembled contigs. The other lines are input sequences aligned to the reference and color-

coded to represent the number of valid alignment locations for that sequence.

The contigs formed and the aligned reads can be viewed at the same time. It can be

clearly noted that the assembly failed to form a contig between 204.2K and 205.6K

because the reads in that region were aligning at 6 or more different places within the

reference region. This indicates that the red region is a repetitive region in the reference

sequence and hence the comparative assembly failed to generate contigs in this region.

45

CHAPTER 5

CONCLUSION AND FUTURE WORK

The initial goals set for the research were to develop comparative genomics tools that

could handle 454 sequence data. Accordingly, we identified three software tools to be

developed:

• Mutation Detector should be able to identify and confirm mutations across the

different strains of organisms.

• MAVEN should be able to display multiple assemblies simultaneously. It

should also be able to display the results of de novo assembly and alignments.

• Iterative Multi-Genome Comparative Cross Assembly Processor might provide

a framework for better assembly of multiple related genomes in the absence of

a common reference.

The status of each of the three tools is summarized in the sections that follow.

5.1 Mutation Detector

The Mutation Detector is completely implemented. It can detect mutations across

strains when compared to the reference sequence. It took approximately 55 seconds to

produce the output files for genomes that were approximately 200,000 base pairs in

length. For genomes that were approximately 1,400,000 base pairs long, it took

46

approximately 4 minutes to produce the output files. After the output of MD is obtained,

it takes around 2-3 minutes to produce the error calculation tables.

The mutation detection process is not limited to reads that are sequenced using the 454

sequencing technology. The traditional sequence reads can take advantage of this method

too. As long as there is a reference sequence available for comparative assembly, this

method can prove to be very effective in finding mutations and putations occurring along

any MA line.

5,2 MAVEN

MAVEN is able to display multiple assemblies simultaneously for comparative as well

as de novo assembly. It can also display sequence alignments. From the results of

comparative assembly combined with the sequence alignments for the same assembly,

MAVEN is able to determine the highly repetitive regions within the reference genome.

It can also determine the reads that aligned to the reference but are not used in the contig

formation process.

5.3 Iterative Multi-Genome Comparative Cross Assembly

Processor

To carry out an iterative comparative assembly of sequence reads, it is imperative to

find a de novo assembler which is optimized for 454 data for the first step. We tried to

use the TIGR de novo assembler [9, 12] to assemble the sequence data of the 4 yeast

strains. The TIGR assembler is developed with the goal of being used with the traditional

shotgun sequence reads. To be useful for 454 data, a complete analysis and understanding

of the assembly algorithm is essential. We evaluated the use of this assembler with our

data by setting up different assembly parameters. It was not very fruitful since the contigs

47

that were formed after the assembly were not long enough to be useful for further

assembly.

After a lot of experimentation with assemblers used for assembling different strains of

yeast sequenced using the 454 technology, it has become evident that the AMOScmp

comparative assembler is well suited for assembling the sequence reads, provided a

closely related reference species is available. We tried multi-genome iterative cross

assembly idea using AMOScmp, but the preliminary results were not very promising.

The de novo assembly of the individual strains was only able to generate contigs that

averaged about twice the size of the input sequences. Also, we were not able to

significantly increase the contig sizes using comparative assembly. We believe that the

iterative cross assembly idea may still have merit, but may need better de novo

assemblies as starting points.

48

LIST OF REFERENCES

1. Delcher, A.L., S. Kasif, R.D. Fleischmann, J.Peterson, O. White and S.L.

Salzberg Alignment of whole genomes, Nucleic Acids Research, 1999,

27(ll):2369-2376

2. Drake, J., B. Charlesworth, D. Charlesworth, and J. F. Crow. 1998. Rates of

spontaneous mutation. Genetics 148: 1667-1665

3. Friedberg, E. C, G. C. Walker, and W. Siede. 1995. DNA Repair and

Mutagenesis. ASM Press, Washington, D. C.

4. Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E.S., 2003.

Sequencing and Comparison of Yeast Species to Identify Genes and Regulatory

Elements. Nature 423:241-254.

5. Li, W.-H. 1997. Molecular Evolution. Sinauer Assocs., Inc. Sunderland, MA.

6. Maki, H. 2002. Origins of spontaneous mutations: specificity and directionality of

base-substitution, frameshift, and sequence-substitution mutageneses. Ann. Rev.

Genet. 36: 279-303.

7. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre

reactors, Nature 437:376-80, 2005.

8. Pop, M. Shotgun sequence assembly. Advances in Computers vol. 60, M.

Zelkowitz ed. June 2004.

9. Pop, M., D. Kosack. Using the TIGR Assembler in shotgun-sequencing projects,

in Bacterial Artificial Chromosomes vol. 1, S. Zhao and M. Stodolsky eds.

Humana Press, pp. 79-294, March 2004.

10. Pop, M., A. Phillippy, A.L. Delcher, S.L. Salzberg. Comparative Genome

Assembly. Briefings in Bioinformatics, 2004. 5(3):237-48. (AMOS)

11. Pop, M., S. L. Salzberg, M. Shumway. Genome Sequence Assembly: Algorithms

and Issues. IEEE Computer 35(7) 2002, pp. 47-54.

49

12. Sutton, G.G, 0. White, M. Adams, and A.R Kerlavage. TIGR Assembler: A New

Tool for Assembling Large Shotgun Sequencing Projects. Genome Science and

Technology, 1:9-19, 1995. ,

50

APPENDIX A

MUTATION DETECTOR (MD) DOCUMENTATION

Installation:

• Install Java JDK on the computer

• Perl, csh and tcsh need to be installed on the computer to run perl scripts.

MD steps and scripts:

The MD tool is made up of a Java program and a bunch of perl scripts that aid us in

generating the analysis tables mentioned in section 3.3. We have programs/scripts written

to carry out all the different steps mentioned in sections 3.3.1- 3.3.10. Summary of the

steps follows:

• Creation of a delta file for each strain - this is done by the comparative assembly

process (AMOScmp).

• Alignment Summary - this is where we create a summary of alignments for each

comparative assembly. This is done by the Java program SeqAlignGenerator and

the perl scripts align-summary, getrefPosnBa.se and combineRefDelta.

• Processing Alignment Summary - this is where we remove the insertions, the

homopolymer region of 4 or more and 5 bases around the homopolymer region.

This is made possible by the perl scripts removelnsertions, delHomopolymers,

getHPposns, addStrainName and the Java program DelByName.

• Combining MD output files, applying coverage restrictions and creation of

analysis tables - all these steps are done by the perl script sh_error

51

http://getrefPosnBa.se

• Combined analysis - when a combined analysis is done for all the 4 strains

together as mentioned in section 3.5, the perl script strainCombineAnalysis aids in

combining the data for the 4 strains. Then the perl script sh_error is used to

generate the analysis tables for the combined analysis.

What follows is a detailed description of how these scripts are executed.

1. Java SeqAlignGenerator <delta file> <sequence file> > outDeltaFinal

a. SeqAlignGenerator - Java program that generates a read alignment from

the delta file. A row in the output file that it generates consists of the

reference base position, the read id that aligned at that position and the read

base.

b. <delta file > - delta file generated for the MA line by the comparative

assembly is an argument to the script.

c. <sequence file> - seq file generated for the MA line by the comparative

assembly is passed as an argument to the script.

d. outDeltaFinal - the output of the SeqAlignGenerator is redirected to a file

which we call outDeltaFinal. The rows are sorted according to the read id

(integer value).

2. cat outDeltaFinal I sort -g > sortedResult

a. cat - This is a unix command to print a file.

b. outDeltaFinal-the output file from step# 1.

c. sortedResult - we sort the data in outDeltaFinal file based on the reference

position and store this sorted data in sortedResult file. Note that the

'reference base position' values will not be unique in the column - they will

appear as many times as there are reads aligning at that particular position.

52

3. align-summary sortedResult > sortedResultSummary

a. align-summary - a perl script that generates the alignment summary for the

strain. The output that it generates consists of 2 columns- 'reference base

position' and 'aligned read bases'. The 'aligned read bases' column has the

bases of all the reads that align to that particular position. It basically takes

the output file from step#2 and makes the values in the 'reference base

position' column unique by summarizing all the bases of the reads that align

at that position in the same row.

b. sortedResult - output file from step#2 is passed in as an argument to this

script.

c. sortedSummaryResult - output generated by the align-summary script is

redirected to this file.

4. getRefPosnBase refFile > refBases

a. getRefPosnBase - perl script that reads in a reference sequence and

generates an output that has 2 columns: 'reference base position' and

'reference base'.

b. refFile - fasta file consisting of the reference sequence is an argument to

the script..

c. refBases - the output from the perl script is redirected to this file.

5. combineRefDelta refBases sortedSummaryResult > deltaOut

a. combineRefDelta - perl script that combines the data from the file refBases

(from step#4) and sortedSummaryResult (from step#3). The output of this

script has 3 columns - 'reference base position' (unique positions),

53

'reference base' (from reffiases file) and 'aligned read bases' (from

sortedSummaryResult file).

b. refBases - the output file from step#4 is passed as an argument to this

script.

c. sortedSummaryResult - the output file from step#3 is passed as an

argument to this script.

d. deltaOut - the output of the perl script is redirected to this file.

6. removelnsertions deltaOut > strainDelta

a. removelnsertions - perl script that removes the insertion positions from the

deltaOut file generated in step#5

b. deltaOut - this file is passed as an argument to the script

c. strainDelta - the output of the script is redirected to this file.

7. delHomoPolymers strainDelta > HPs

a. delHomoPolymers - this perl script aids in finding the homopolymer

regions in the reference sequence.. The output of this script gives a range of

consecutive base positions that have the same base. For example, if the

'strainDelta' file has data as shown in Table 3.3-3, this script will generate a

single column with the following values (one value per row) - 50-50, 51-

52, 53-53, 54-54, 55-55, 56-59, 60-60, 61-62, 63-63, 64-64, 65-65,66-66.

Using this information, we can see that there is a homopolymer of length 2

(base positions 51-52) and a homopolymer region of 4 bases (base positions

56-59).

54

b. strainDelta - the output from step#6 is passed in as an argument to this

script.

c. HPs - the output of this script is redirected to this file.

8. getHPposns HPs <homopoIymer length> > homopoIymerBasePositions

a. getHPposns - this perl script gets the homopolymer region base positions

for the homopolymer regions in the file HPs (generated in step#7).

b. HPs - output file from step#7

c. <homopolymer length> - we want to detect the homopolymers greater than

the number provided by this argument. In our analysis, since we want to

delete all the homopolymers of length greater than 3, we pass in the integer

value '3 ' as the second argument to this script.

d. homopoIymerBasePositions - the output of this perl script is redirected to

this file.

9. Java DelByName homopoIymerBasePositions strainDelta > strainDeltaCopy

a. DelByName - this Java program helps in deleting all the homopolymer

regions of length 4 or more and also 5 base positions surrounding such

homopolymer regions from the strainDelta file generated in step#6.

b. homopoIymerBasePositions - this file generated in step#8 tells which base

positions need to be deleted so that we eliminate the homopolymer region

of 4 or more.

c. strainDelta - the homopolymer region of 4 or more needs to be deleted

from this file.

55

d. strainDeltaCopy - the output from this Java program is redirected to this

file.

10. addStrainName strainDeltaCopy <strain name> > finalStrainData

a. addStrainName - this perl script appends the strain name as a column to

the strainDeltaCopy file generated in step#9.

b. strainDeltaCopy - output file generated ins stel#9

c. <strain name> - name of the strain to be appended for example Al, A4 etc.

d. finalStraiiiData - the output of the perl script is redirected to this file. This

file has all the strain specific data that we need - the alignment summary

without the insertions and the homopolymer region. One such file is created

per strain. This file is then used to generate the analysis tables.

\\.sh_error <finalStrainData 1> <finalStrainData 2> <min coverago <max

coverago > analysisTable

a. sh_error - this perl script is responsible for generating the analysis tables

for the 2 strains whose 'finalStrainData' files we pass in as arguments.

b. <finalStrainData 1> - the 'finalStrainData' file generated for the first strain

(one of Al, A4, C5 or C8). This 'finalStrainData' file is generated for that

particular strain in step#10.

c. <finalStrainData 2> - the 'finalStrainData' file generated for the second

strain (one of Al, A4, C5 or C8).

d. <min coverago -. for a 2-strain or all-strain analysis the minimum

coverage for our study is '3 ' .

56

e. <max coverago - for a 2-strain analysis, the max coverage should be '10'.

For all-strain analysis, the max coverage should be '30'.

f. analysisTable - the output for this script is captured in this file.

12. strainCombineAnalysis ref <finalStrainData 1> <finalStrainData 2>

<finalStrainData 3> > combinedStrainData

a. strainCombineAnalysis - this perl script is used when we want to analyze

one strain against the combination of the other three strains. The

'finalStrainData' of the other three strains needs to be combined before we

execute the sh_error script on those.

b. ref - the reference sequence is passed as an argument to this script.

c. <finaIStrainData 1>, <finalStrainData 2> and <finalStrainData 3> - the

'finalStrainData' files for the three strains that needs to be combined.

d. combinedStrainData - the ouput of this script is captured in this file.

e. shjerror <finalStrainData 4> combinedStrainData 3 30 > analysisTable

- this is how we execute the sh_error perl script when we want to do an all-

strain analysis.

57

Class Diagram

SeqAlignGenerator

String strDelaFile
Strirsg sfrSeqFile

Buffer edReader delta
BufferedReader seq
Alignlhfo alignlnfo

Alignlnfo

tot seqld
GenericList afigsList

SfrtngBuffer strSequeoce
StriogBuffer reverseComplement

GeoerfcList offsefList

Alignment

int starfRef
int eii.dS.ef

int startRead
int eadRead

GeaerkLfst offsefList

GetierieList
(implements Iterator)

SeqReader

int Seqld
StringBuffer sequence

boolean nextStored
String prevSeq;

int prevld

DeltaReader

boolean nextStored

String prevSeq

Class Diagram for SeqAlignGenerator

Class Descriptions;

1. SeqAlignGenerator: This is the main class used to generate the alignment

information from the '.delta' and '.seq' files. It accepts these 2 files as input.

2. Alignlnfo - This class is used to store the alignment information for a single read

present in the delta file. It consists of the sequence id, the actual string sequence

and the reverse complement. It also stores a list of alignments for the particular

read.

3. Alignment - This class is used to store the information of a single alignment for a

read.

4. DeltaReader - This class is used to read the delta file and create the alignment

object.

58

http://eii.dS.ef

5. SeqReader - This class is used to read the seq file.

6. GenericList - This class is used to construct a list of objects (Object type).

59

APPENDIX B

MAVEN DOCUMENTATION

Installation:

• Install Java JDK on the computer

• Perl, csh and tcsh need to be installed on the computer to run perl scripts.

MAVEN Usage

• To launch the MAVEN tool

o Open a command prompt

o Go to the directory where the MAVEN software is deployed (the directory

that has all the class files generated by compiling the tool).

o From this directory, run the command "Java AsmRenderef ..

In the visual tool, you can view the results of three assembly types which are

discussed below.

GUI Navigation:

The MAVEN tool, can display three different types of assembly results:

• De-novo Assembly - A de-novo assembler produces contig files as a result of the

assembly. These contig files give the information about the number of sequence

reads that make up the contig along with their alignments. To display the de-novo

60

assembly results, the data from the contig file is converted to a format suitable for

MAVEN. The converted format is placed in a file with an extension ".denovo".

The data format is converted using a perl script getContigReadlnfo. The contig

file has information in the following format shown below.

##1 chrlGl 18 462 bases, 00000000 checksum.
#128698_3899_0794(0) [RC] 118 bases, 00000000 checksum. {116 1} <1

118>

This is converted to a format as shown below by the getContigReadlnfo perl

script.

Contig 1 462

Read 128698_3899_0794 1 118

The getContigReadlnfo perl script is executed as follows.

getContigReadlnfo <contig file> > <output file namo.denovo

<contig file> - name of the contig file generated by the assembly. Note that the

file name should be specified with the ".contig" extension.

<output file name> - output of the perl script should be redirected to a file with

".denovo" extension. The output file has the assembly information that can be

parsed by MAVEN.

To see the de-novo assembly results inside MAVEN:

o Open the 'File' menu on the left hand side of the tool.

o Select your denovo output file (<output file namo.denovo).

The data from the file is parsed by MAVEN and the assembly result is displayed

in the MAVEN GUI.

• Comparative Assembly - A comparative assembler (AMOScmp) generates a

"layout" file. This layout file has all the information about the contigs and the

61

different reads that make up the contig. The getLayoutlnfo perl script is used to

convert the data in the layout file so that it can be parsed properly by MAVEN.

The getLayoutlnfo script is executed as follows.

getLayoutlnfo <Iayout file> <reference length> > <output filo.comp

<Iayout file> - layout file generated by the comparative assembler. The file name

should be specified with its extension ".layout".

-preference length> - length of the reference sequence must be provided

<output file> - output of the perl script should be redirected to a file with

".comp" extension.

To see the comparative assembly results inside MAVEN:

o Open the 'File' menu on the left hand side of the tool.

o Select your comp output file (<output file namo.denovo).

The data from the file is parsed by MAVEN and the assembly result is displayed

in the MAVEN GUI.

• Comparative Assembly Alignments - A comparative assembler (AMOScmp)

generates a "delta" file during assembly. This file has the information about all

the reads and their alignments with respect to the reference genome. It is not

necessary that all of these reads are part of a contig. The alignment information is

very important to determine the individual read alignments, especially for the

reads that are discarded from the contig creation step. The getCompleteAlignment

perl script is used to convert the data in the "delta" file to aid parsing. The

getCompleteAlignment script is executed as follows.

getCompleteAlignment <delta file> <output filo.align

62

<delta file> - delta file generated by the comparative assembler. The file name

should be specified with extension.

<output file> - output file name should be specified as an argument to the script.

It should have an extension ".align".

To see the comparative assembly alignment results inside MAVEN:

o Open the 'File' menu on the left hand side of the tool.

o Select your ".align" output file (<output file name>.align).

The data from the file is parsed by MAVEN and the alignment result is displayed

in the MAVEN GUI.

Implementation Details: Class Diagram

The figure below shows the class diagram of the classes used in MAVEN

AsmSequence
String seqld

tat start
int end
ait lien

int offset
int count

String type
\

Contig

int length
Generic-List
contisReads

Assembly
iat asrald

GenericList ctgList
String asniType

~7F:

Alignmem

int r efLengtfa
GenericList reads

GenericList
(Implements Iterator)

CompAssembly

iat refLensfh DeNovo As-semblv

CompAssembiyReaded

CompAssembly
compasm

String fileName

AlisnmentReader

Alignment align
String; fileName

DeNovoAssemblvReader

BeNovoAssembly asm
String fileName

Slider
(extends JPaneD

FloafListener

DrawmgPane
(extends JPaneJI

AsmRendener
(extends JPaitel)

Class Diagram for MAVEN

63

Class Descriptions:

1. AsmSequence: This class represents a generic sequence. It can be either a contig or

a sequence read. It consists of the following member variables:

a. sequenceld - unique identifier for the sequence

b. start and end - these represent the start and end offset when this sequence

aligns with its reference. If the sequence represents a "sequence read", then

start and end offsets tell how this sequence read aligns with a contig. If the

sequence represents a "contig", then start and end offsets tell how this

contig aligns with a reference sequence for a comparative assembly.

c. offset - this is used for display purposes.

d. count - keeps a count of how many times this sequence aligns at different

positions in the reference sequence.

e. type - this value indicates whether the sequence is "sequence read" or

"contig"

2. Contig - This class extends from AsmSequence and represents a contig in an

assembly. A contig has a length and a list of sequence reads associated with it.

3. Assembly - This class represents an assembly object. It has the following member

variables:

a. asmld - unique identifier for the assembly

b. ctgList - list of contigs that make up this assembly

c. asmType - a string representing what type of assembly this is: comparative

or de-novo.

64

4. CompAssembly - This class represents a comparative assembly object. It extends

from the Assembly class. It defines an additional member variable called

"refLength" that represents the length of the reference sequence.

5. DeNovoAssembly - This class represents a de-novo assembly object and also

extends from the Assembly class.

6. Alignment - This class represents an alignment object used to display the

alignment results for a comparative assembly. It is made of a list of aligning reads

and the length of the reference sequence. Note that it does not have any contigs

since the alignment is just for the sequence reads with respect to the reference

sequence.

7. CompAssemblyReader - This class helps in rendering the results of a comparative

assembly. It reads in the data file that has the information about the comparative

assembly and renders the information in the GUI.

8. DeNovoAsmReader - This class helps in rendering the results of a de-novo

assembly. It reads in the data file that has the information about the de-novo

assembly and renders the information in the GUI.

9. AlignmentReader - This class helps in rendering the results of read alignments for

the comparative assembly. This reads in the data file that has the information about

the alignments and renders the information in the GUI.

10. GenericList - This class implements the Iterator and is used to construct a list of

objects (Object) and iterate over them. For MAVEN, we use this class to represent

a list of contigs, list of sequence reads and list if assemblies to be displayed in the

GUI.

65

11. Slider - This class supports a JSlider with a label and an arbitrary range of floating

point values. This class is used to implement the "zoom" functionality in MAVEN.

It is implemented by RDB.

12. FloatListener - This class allows us to connect to a Slider. This class is used to

implement the "zoom" functionality. It is implemented by RDB.

13. DrawingPane -This class extends from JPanel and provides the panel inside which

all the assembly objects are displayed.

14. AsmRenderer - This class is the driving class for the assembly viewer. It is the

holder of the drawing pane, the slider and all the different parts that make up the

viewer.

66

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 2009

	Comparative genomics exploration tools
	Shilpa M. Kulkarni
	Recommended Citation

	ProQuest Dissertations

