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ABSTRACT 

COMPARATIVE GENOMICS EXPLORATION TOOLS 

by 

Shilpa Kulkarni 

University of New Hampshire, December, 2009 

Comparative Genomics focuses on elucidating the genetic differences between different 

species or different strains of the same species by the comparative analysis of DNA 

sequences to identify functional elements and regulatory regions. This thesis describes 

the design and development of two software tools to support comparative genomics 

research. These tools were specifically developed to support the analysis and assembly of 

sequence data produced from innovative new DNA sequencing technology from 454 Life 

Sciences using the PicoTiterPlate device. This technology will dramatically affect 

comparative genomics research. Currently available software tools were developed to 

handle traditional shotgun sequences averaging 500-1000 base pairs in length. These 

tools are inadequate to handle the unique characteristics of sequence reads generated by 

454 Life Sciences. The goal of this research is to adapt currently available tools and 

develop new tools to be used for sequence reads generated by any sequencing 

technology, even those having different characteristics from the traditional shotgun 

sequences. 
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CHAPTER 1 

INTRODUCTION 

Comparative Genomics looks for the similarities and differences between species or 

different individuals within a species. It also looks at heterozygosity within a single 

individual. This can help us understand the effects of natural selection acting on the 

individual genomes, which forms the basis for understanding evolutionary process and 

how species evolve. Comparative studies of model organisms such as yeast and Daphnia 

can aid in understanding the process of evolutionary change in a well-characterized 

system, which can then be extended to other organisms. Comparative genomics relies 

upon software tools which can look for similar regions between genomes by lining them 

up against each other. Currently, these tools are largely designed for the traditional 

shotgun sequence reads. The new sequencing technologies produce reads that have very 

different properties from the shotgun sequence reads. 

We developed two software tools and studied the feasibility of one tool with the 

specific goal to advance comparative genomics research with data from this new 

sequencing approach: 

1. Mutation Detector (MD) - This tool aids in confirming the mutations between 

comparatively assembled genomes of closely related organisms. It can identify 

mutations unique to a specific strain as compared with the reference genome. It 
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can be used to analyze the genome assemblies produced by the AMOScmp 

comparative assembler [10]. Although this tool was motivated by and is 

optimized for the sequence reads generated by the sequencing technology 

developed by 454 Life Sciences, it has proven to be an effective tool for analyzing 

shotgun sequence data as well. 

2. MAVEN (Multiple Assembly Viewer with Enhanced Navigation) - This genome 

assembly visualization tool assists interactive visualization of sequence assembly 

and alignment results for multiple genomes simultaneously. It is able to display 

the results of de novo assembly, comparative assembly, and sequence alignments 

at the same time. It aids in understanding how multiple strains of an organism 

assemble to a common reference sequence simultaneously. 

3. Iterative multi-genome comparative cross assembly processor - The idea behind 

this tool is that it helps in simultaneous comparison of multiple genomes that are 

assembled initially using a de novo assembler. The contigs of one organism can 

then be used as a reference sequence and the contigs of the other organism can be 

comparatively assembled against this reference. The hope is that simultaneous 

cross assembly of the sequence data from multiple closely related genomes will 

allow us to produce a better assembly than separate do novo assemblies. During 

our investigation we found that the de novo assembly of the individual strains was 

only able to generate contigs that averaged about twice the size of the input 

sequences. We were not able to significantly increase the contig sizes using cross 

assembly either. This has been a major setback and has hindered the development 

of this tool completely. 
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In the sections that follow, background for the research is provided followed by a 

description of the two completed tools: Mutation Detector and MAVEN. 
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CHAPTER 2 

BACKGROUND 

454 Life Sciences has developed a revolutionary technology, producing fast and cost-

effective DNA sequences using efficient, simple and convenient means. It is able to 

generate millions of raw bases within an hour on a single instrument. Based upon the 

genome size, a researcher can take less than a week to generate sequence reads and then 

to assemble them using their own Newbler Assembler. Using the shotgun process, it 

could take months to do the same task. This technology has very recently become 

available and promises to dramatically reduce the cost of genome sequencing. 

The sequencing technology using the PicoTiterPlace™ Device [7] from 454 Life 

Sciences can generate sequence data for 1% of the cost of the traditional techniques. This 

new technology promises to revolutionize the very important field of comparative 

genomics, which focuses on discovering the basics of evolutionary dynamics by 

comparing the genomes of different species. Because of the high cost of traditional 

sequencing, most comparative genomics studies so far have compared the genomes of 

species that are very divergent in evolutionary terms. As sequencing costs decrease 

dramatically, it is becoming feasible to compare the genomes of many very closely 

related organisms, which will yield more evidence to understand basic evolutionary 

principles. 
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The sequence reads produced by 454 Life Sciences have very different characteristics 

from the traditional shotgun sequencing reads. The 454 sequence reads are much smaller 

(averaging 108 base pairs in length) compared to the shotgun sequences that average 500-

1000 base pairs in length. The traditional sequence reads have highly variable quality and 

the quality deteriorates at the ends of the sequences. Traditional sequences also have 

mate-pairs; the shotgun pieces of DNA are sequenced from both ends to produce the 

mate-pairs. As opposed to this, the 454 sequences have very high quality base calls, 

except for homopolymers and did not have mate-pair sequences when this research was 

carried out. This technology has a significant limitation in that it cannot identify the 

accurate length of homopolymers (more than 4 consecutive identical base pairs). 

Effect on Sequence Analysis and Assembly Software 

Existing computer-based sequence analysis tools were developed to handle the 

traditional shotgun data and have been designed and optimized to deal effectively with its 

characteristics and idiosyncrasies. These tools do not work particularly well with the data 

generated by these new sequencing technologies. 

This newly emerging sequencing technology is bound to increase the number of 

organisms that can be sequenced within a short time. This, in turn, is going to place a 

high demand on the assembly processes, which reconstruct the original sequence from 

the smaller sequence reads. We need to produce more accurate sequence assemblies in 

less time. The results of these processes are crucial, since the annotation of the sequenced 

and assembled genome depends entirely on the assembly process. The mutation detection 

methods depend heavily on the results of the assembly process. Hence, choosing the 

appropriate assembler to assemble the sequences is imperative. The assembler needs to 
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be customized to handle the sequence reads produced by different sequencing 

technologies. 

Comparative Assembly 

In the comparative assembly process, the sequence reads are aligned by comparing 

them to a reference sequence. For all our comparative assemblies, we have used the tools 

provided by the AMOS package available for download at http://amos.sourceforge.net/ . 

This assembler is called AMOScmp [10]. AMOScmp can also assemble sequences 

against multiple reference sequences simultaneously. For this, the multiple references 

need to be provided in a multi-fasta file format. AMOScmp uses the MUMmer alignment 

tool [1] to produce alignments. The aligned sequences that overlap each other are then 

used to construct the contigs and the consensus of the contigs produces the output for this 

process. 

6 

http://amos.sourceforge.net/


CHAPTER 3 

MUTATION DETECTOR (MD) 

3.1 Introduction 

Mutation plays an important role in the evolution of organisms. All genomes are 

subject to a wide spectrum of naturally occurring mutagenic activities like recombination, 

replication errors, base substitutions and indels (insertions and deletions) [3, 6]. Although 

a small fraction of the mutations are useful for the survival of organisms under varied 

conditions, most mutations are considered to be harmful. Beneficial mutations are passed 

on to the surviving individuals in the next generations. Natural selection and DNA repair 

pathways reduce or filter mutations such that very few of these mutations are passed on 

to the next generation. 

Mutations are very rare; the best current estimate is 1 in 10~9 mutations per site per 

generation. In reference alignment based assays, mutations must be separated from 

sequencing errors and alignment errors. The MD tool has been developed as a collection 

of programs and scripts that aid in confirming the mutations between the comparatively 

assembled genomes of organisms. This tool is used to analyze the genome assemblies 

produced by the AMOScmp comparative assembler [10]. It can be used for the sequence 
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reads generated by 454 Life Sciences using the PicoTiterPlate device [7] as well as for 

shotgun sequence reads. 

3.2 Motivation 

Until now, the study of evolutionary process by detection of mutations has been 

derived from indirect inferences: 

1. phylogenetic comparisons of DNA sequences [5] 

2. indirect observations of the behavior of artificial reporter constructs [2] 

The first method makes assumptions about the times of divergence between the species 

and the neutrality of the surveyed genomic regions. The second method of inference 

makes assumptions about the mutation detecting ability in extrapolating to the genome 

level. Because of this, the indirect methods of mutation detection are inadequate. A new 

and more direct approach is to produce Mutation Accumulation (MA) lines that are 

developed in such a way as to effectively eliminate the ability of natural selection to 

eradicate mutations prior to their detection. 

Figure 3.2-1 Role of mutation and selection on genomic evolution. 
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Figure 3.2-1 shows how natural selection eradicates the baseline mutations even before 

they are detected. The selection sieve does not let all the mutations pass to successive 

generations. 

Baseline mutation 
rate and pattern 

Selection 

Mutation + Selection 

Figure 3.2-2 Reduced efficiency of natural selection 

We worked with yeast MA lines that have been developed from a single colony of 

yeast S. cerevisiae. A colony is recognizable only after 5 generations have been grown 

from a single yeast cell. Initially, a single colony is randomly chosen to start the next 

generation. After five generations, another colony is randomly chosen and a new 

mutation accumulation (MA) line is started from it. This process is repeated for each MA 

line. Currently, the yeast MA lines have been propagated 4600 generations. Altogether, 

48 yeast MA lines have been developed in the laboratory. From these, 32 are haploid and 

16 are diploid. For this assay, we have been working with four haploid MA lines Al 

(Gl), A4 (G2), C5 and C8. Figure 3.2-2 shows how this random selection of colonies 

bypasses the normal evolutionary process of natural selection that tends to limit the 

accumulation of deleterious mutations and linked neutral mutations. 
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The approach is used to detect mutations across these MA lines and thus study the 

evolutionary process. For mutations to be effectively studied in evolutionary genomics, 

detection of hundreds of mutations is necessary. The conventional PCR amplification and 

direct sequencing methods traditionally used for this purpose are not as cost-effective as 

the highly parallel sequencing technology developed by 454 Life Sciences. The highly 

parallel micro-technology is the most cost-effective for genome-wide mutation discovery. 

The availability of these sequence reads has been a motivating factor in the direct 

analysis of mutation rates and identifying qualitative aspects of the mutation spectrum. 

To study the mutation along each yeast line, it is compared with a reference sequence. 

The complete assembled sequence of S. cerevisiae is used as the reference sequence. In 

our case, we studied 4 MA lines Al (also known as Gl), A4 (also known as G2), C5 and 

C8. 

Figure 3.2-3 shows the relationship between S. cerevisiae and the strains Al, A4, C5 

andC8. 

Progenitor of S _-^~~~~~~~~~~^*»'*00^ Reference S. cerevisiae 
cerevisiae and Al, A^ 
C5 and C8 

Progenitor Al, A4, C5 
andC8 

Figure 3.2-3 Relation between the reference sequence and the yeast strains. 

3.3 Approach 

The MD approach is carried out in two phases. Phase I is carried out for each of the 

individual MA lines. Phase I includes: 
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1. Creation of the "Delta" file - Comparative assembly of the MA line against 

the reference sequence S. cerevisiae produces an output file that shows read 

alignments against the reference sequence. This is called the "Delta" file. 

2. Alignment Summary - MD scripts produce an alignment summary of the 

sequence reads against the reference sequence. 

3. Processing Alignment Summary - The alignment summary that is produced 

in step 2 is processed to remove insertions and homopolymer regions (regions 

that have more than 4 consecutive identical bases - any one of Adenine, 

Thymine, Guanine or Cytosine). 

Phase II of the approach is carried out for multiple MA lines and includes three steps: 

1. Combining MD output files 

2. Applying coverage restrictions 

3. Creation of analysis tables 

3.3.1 Phase I. step 1: Creation of "Delta" file 

We used the AMOScmp assembler to assemble the sequence reads for the MA lines 

using as a reference the complete assembly of the S. cerevisiae. MUMmer [1] performs 

the alignment step of the assembly and produces a 'delta' file that gives the alignment 

information for each read with respect to the reference sequence. It also tells about the 

relative distance between insertions and deletions in the alignment. Figure 3.3-1 shows a 

small portion of alignment data stored in a sample delta file. MUMmer internally uses 

NUCmer (Nucleotide MUMmer) to produce the alignment data. The first line specifies 

that the data in the file corresponds to alignments between the reference sequence stored 

in the file 'chrl.lcon' and the query sequences stored in the file 'chrlC5.seq'. The 
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second line says NUCmer was used as the alignment script. The alignment information 

between each query sequence and the reference sequence starts with a header '>' 

followed by the reference sequence length and the query sequence length. The lines that 

follow denote the actual alignment information: start and end co-ordinates in the 

reference and the query sequences, the number of errors, the number of similarity errors 

and the stop codon (always '0' for DNA alignments). The header is followed by a string 

of signed digits, one per line, denoting the distance to the next insertion (positive integer) 

or deletion (negative integer) in the reference sequence. The final line for each alignment 

before the next header is '0'. 

/home/bioinfo1/Yeast1/chr1/chr1.1con 
NUCMER 
>Chr 9 230208 57 
70663 70717 1 56 1 1 0 
-11 
0 
>Chr 93 230208 50 
132588 132636 49 1 0 0 0 
0 
>Chr 112 230208 111 
68025 68137 111 133 0 
33 
62 
0 
>Chr 139 230208 112 
162041 162152 1 112 44 0 
0 
>Chr 177 230208 94 
161054 161146 1 935 50 
0 

/home/bioi nf o 1 /Yeastl /C5_ _C8/C5/chii/chr1 C5.seq 

Figure 3.3-1 Sample Delta file 

The alignments produced during the comparative assembly process are then filtered 

and a layout is created from the selected read alignments. The layout is further used to 

construct the contigs. For our purpose of mutation detection, this delta file plays an 

important role. Mutations between MA lines and the reference sequence can be detected 
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using the alignments in this delta file, which is created individually for each assembly. 

Thus, each sister MA line is assembled against the same reference genome which 

produces a delta file for each. 

3.3.2 Phase I. step 2: Alignment Summary 

The MD tool takes this delta file and creates the actual alignments of the reads against 

the reference sequence. 

Reference Position 

1 
2 
3 
4 
5 

5.1 
6 
7 

7.1 
8 
9 
10 
11 

11.1 

Reference Base 

C 
C 
A 
C 
A 
-

C 
C 
-

A 
C 
C 

c 
. 

Bases of aligned reads 

cccc 
cccccc 
AAAAAA 
CCC-CCCC 
AAAAAAA 

cc 
cccc-cccc 
cccccc 
T 
AAACAAAA 

ccccccccc 
cccc 
CCACCCC 
AAAAAA 

Table 3.3-1 Sample Alignment Summary. 

Table 3.3-1 shows a sample section from an alignment summary table that is created by 

the MD tool using the delta file as the input. The table shows the alignment summary for 

each position in the reference sequence, which is identified in the 'Reference Position' 

column. The 'Reference Base' column denotes the corresponding base in the reference 

sequence for that position. The 'Bases of aligned reads' column denotes the bases in the 

sequence reads that aligned with the reference sequence at that particular position. The 

number of characters in the column represents the number of reads that aligned with the 
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reference sequence at that particular reference position. E.g. for the reference position 1, 

there are 4 'C's in that row, denoting there were 4 read sequences that aligned with the 

reference and all 4 of them had a ' C at that position. Also, the insertion positions (e.g. 

5.1, 7.1 and 11.1 in the table) denote that the reference sequence did not have the 

corresponding base, but the base was seen in the read sequences that aligned with the 

reference sequence. A "-" in the 'Bases of aligned reads' column denotes that the 

sequence read that aligned with the reference sequence had a deletion at that particular 

base position. E.g. for the reference base positions 4, 6 and 10, one of the reads that 

aligned at each of these positions had a base missing in it. 

3.3.3 Phase I. step 3: Processing Alignment Summary 

The MD output file which gives the alignment summary is further processed to 

eliminate insertion positions that are seen in the read sequences (Table 3.3-2). 

Reference Position 

1 
2 
3 
4 
5 

C J 
^ - j f — -

6 
• 7 

i . i 

8 
9 
10 
11 

^ ^ o ^ ^ ^ M W B K m ^ n B m M ^ ^ i i i ^ i i ^ ^ ^ ^ ^ ^ ^ B ^ ^ ^ ^ ^ 

• I I . I 

Reference Base 

c 
C 
A 
C 
A 

C 
C 

-
A 
C 
C 

c 
-

Bases of aligned reads 

cccc 
cccccc 
AAAAAA 

ccc-cccc 
AAAAAAA 
c c c ; c ; •* 

CCCC-CCCC 

cccccc 
i " , r l " 

AAACAAAA 

ccccccccc 
cccc 
CCACCCC 
aA^^IUAJL**.***™*™. 
^ n T f r t ^ ^ T L ^ 

Table 3.3-2 Removing the insertion positions. 

Also, the reference positions that are within a 10 base pair window of homopolymers 

of length 4 or more are eliminated. 
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Reference Position Reference Base Bases of aligned reads 

50 

51 
52 

53 

54 

55 

56 

57 
58 

59 
60 

61 
62 

63 
64 

65 

66 

T 

C 

C 

A 

C 

A 

C 

C 

c 
c 
A 

C 

c 
T 

G 

A 

G 

' 'Tv 1 v 1 v 1' T' 1 v 1 v 1' 

ccccccc 
cccccccc 
AAAAAAA 

CCCCCCC 

AAAAA 

cccccc 
CCCCCTCC 

cccccccc 
cccccccc 
AAAA 

cccc 
ccc 
TTTTTTTT 

GGGGGG 

AAAAAAAA 

GGGGGG 

Table 3.3-3 Homopolymer region 

Table 3.3-4 Eliminating 5 base positions surrounding homopolymer region of 4 or more 
bases 
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Table 3.3-3 shows the homopolymer region of length 4 (reference base positions 56 

through 59 have the same base "C"). Table 3.3-4 shows the 5 base positions before and 

after a homopolymer region of 4 or more bases, which are removed from further 

processing. 

We eliminate the 5 base positions surrounding a homopolymer region of 4 or more 

bases to avoid local alignment problems with read-length errors that can occur at 

homopolymer regions. The MD output file generated for each strain that is aligned 

against this reference sequence will eliminate base positions 51 through 64 from further 

processing, thus eliminating false positive mutations being detected due to sequencing 

errors in this region. As described earlier, the 454 sequencing technique is unable to 

identify homopolymers of length more than 4, which results in misalignments in areas 

with homopolymers. 

3.3.4 Phase II. step 1: Combining MD output files 

The MD output file generated for each MA line in Phase I is then combined with the 

output files generated for its sister MA lines. For each MA line (strain), we analyzed its 

MD output with its sister MA lines to generate a "Combined Output file" in 2 ways: 

1. Combine the MD output file with any one of its sister MA lines (Pair-wise 

Analysis). E.g. the Al strain was combined with one of the remaining strains: A4, 

C5 or C8. Analysis was done for the A1-A4, A1-C5 and C1-C8 pair-wise 

combinations. 

2. Combine the MD output file with the remaining sister lines considered as one MA 

line (All-strain Analysis). E.g. Al strain was combined with A4, C5 and C8 at the 

same time. Analysis was done for Al vs. A4C5C8 treated as a single strain. 
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For pair-wise as well as all-strain analysis, the combined output file gives the 

information about the number of reads and their corresponding bases aligning against the 

reference, for each base position in the reference, for the strains that are analyzed. 

Reference Position 

1 
2 
3 
4 

Reference Base 

A 
T 
G 
T 

Bases of aligned reads in 
Al 

AAAA 
TTT 
GG 

TT-T 
Table 3.3-5 Sample MD output file for strain Al 

Reference Position 

1 
2 
3 
4 

Reference Base 

A 
T 
G 
T 

Bases of aligned reads in 
A4 

AATA 
TTTT 
G-G 

TTTTTTTTATTTTATT 
Table 3.3-6 Sample MD output file for strain A4 

Reference Position 

1 
2 
3 
4 

Reference Base 

A 
T 
G 
T 

Bases of aligned reads in 
C5 

TTTT 
rrirTpnpi I • v i T p 

GGGGCG 
TTTTTTT 

Table 3.3-7 Sample MD output file for strain C5 

Reference Position 

1 
2 
3 
4 

Reference Base 

A 
T 
G 
T 

Bases of aligned reads in 
C8 

AAAAA 
TTTGTT 
GGGG 

r • ir ITT • v i v'l'i 

Table 3.3-8 Sample MD output file for strain C8 

Table 3.3-5 through Table 3.3-8 show sample lines from MD output files for strains 

Al, A4, C5 and C8 respectively. Table 3.3-9 shows lines from the 'Combined Output 
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file' that is created using the MD output files for A1-A4 pair-wise analysis. Similarly, 

combined output files were created for A1-C5, A1-C8, A4-C5, A4-C8 and C5-C8. 

Table 3.3-10 shows the combined output file that is created for an all-strain analysis. 

Al is analyzed with the A4, C5 and C8 treated as one single strain. The bases of aligned 

reads in A4, C5 and C8 are combined and then analyzed with Al. This combined output 

file is used for A1-A4C5C8 all-strain analysis. Similarly, combined output files were 

generated for A4-A1C5C8, C5-A1A4C8 and C8-A1A4C5 all-strain analysis. 

Reference Position 

1 
2 
3 
4 

Table 3.3-9 Samp 

Reference Base 

A 
T 
G 
T 

e Combined Output fi 

Bases of aligned 
reads in Al 

AAAA 
TTT 
GG 

TT-T 
le for pair-wise analy; 

Bases of aligned reads in 
A4 

AATA 
TTTT 
G—G 

TTTTTTTTATTTTATT 
sis of strains Al and A4 

Reference 
Position 

1 
2 
3 
4 

Reference 
Base 

A 
T 
G 
T 

Bases of 
aligned 

reads in Al 
AAAA 

TTT 
GG 

TT-T 

Bases of aligned reads in A4, C5, and C8 

AATATTTTAAAAA„ 
T T T T T T T T T T T T T G T T 

G—GGGGGCGGGGG 
TTTTTTTTATTTTATTTTTTTTTTTTTT 

Table 3.3-10 Sample Combined output file for all-strain analysis A1-A4C5C8 

3.3.5 Phase II. step 2: Applying coverage restrictions 

The combined output file that is generated as shown in section 3.3.4 is further 

processed to eliminate reference base positions that are covered by fewer than 3 or more 

than 10 sequence reads (for pair-wise analysis) or more than 30 sequence reads (for all-

strain analysis) during the assembly. Coverage of fewer than 3 reads can be considered as 

insufficient for correctly identifying the base. 
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We also need to eliminate positions with too much coverage since such positions are 

most likely part of a region that has replicated, perhaps many times. When this has 

happened a sequence from one of the replicated regions will align with all of them. Since 

it is not possible to know where the "correct" alignment is, we cannot determine whether 

a mutation has occurred in these positions - so they are eliminated from further 

consideration. For each strain, we had 5x coverage of the entire genome. Hence, we 

assume that coverage of more than 10 reads for any strain identifies regions that are 

highly repetitive. If a reference base position has more than 10 reads aligning at that 

position, it is eliminated from further processing for a pair-wise analysis. For an all-strain 

analysis, the upper limit for reads is set to 30 rather than 10 since one line is compared 

against the combined consensus of the 3 MA lines. (If there were 3 MA lines being 

studied, the all-strain analysis would analyze one strain against the combined consensus 

of the remaining two strains. In this case, coverage of more than 20 for the combined 

consensus would be discarded.) 

Reference 
Position 

Reference 
Base 

Bases of 
aligned reads in Al 

Bases of aligned reads in 
A4 

1 AAAA AATA 
TTT TTTT 

Table 3.3-11 Applying coverage restrictions for pair-wise analysis 

Reference 
Position 

1 
2 

EBSfBs^ass'-lsiKi^MisssazW 
" " " " T T " ™ " ™ 

4 

Reference 
Base 

A 
T 

T 

Bases of 
aligned reads in 

Al 
AAAA 

TTT 
^mmsi^m^^^^^^^^^ma^B^ 
^^^mmg^^^^Y^ss^im^m^ 

TT-T 

Bases of aligned reads in A4C5C8 

AATATTTTAAAAA 
T T T T T T T T T T T T T G T T 

s s s i m B S S R S i a ^ ^ 

\ j — V J X J V J V J C X C - O V J V J V J V J 

TTTTTTTTATTTTATTTTTTT 
Table 3.3-12 Applying coverage restrictions for all-strain analysis 
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Table 3.3-11 shows that base position 3 is eliminated from further processing since the 

coverage at the position for strain Al is less than 3. Also, base position 4 is eliminated 

since coverage at that position for strain A4 is more than 10. 

Table 3.3-12 shows that for all-strain analysis for A1-A4C5C8, base position 3 is 

eliminated from further processing since the coverage at that position for Al is less than 

3. Base position 4 is not eliminated because the combined coverage of A4, C5 and C8 at 

that position is less than 30. 

3.3.6 Phase II. step3: Creation of analysis tables 

The majority of the type of base in the aligned reads of an MA line for any particular 

base position decides the consensus. For example if 5 reads of an MA line align at a 

particular base position of the reference, and 3 out of them have the base 6A' at that 

position, while the other 2 reads have a different base, then the consensus for that base 

position will be 'A". 

The processed combined output file generated as described in section 3.3.5 is used to 

generate additional information about the consensus sequence for each strain that is 

analyzed. Table 3.3-13 shows the two columns 'Al consensus' and 'A4 consensus' that 

are generated using the data in the 'Bases of aligned reads' column for each strain. The 

consensus produced by each MA line, for each base position in the reference is the key 

information used for mutation detection. Note that base positions 3 and 4 are eliminated 

as explained in Table 3.3-11. This processed combined output file is further used to 

generate 4 different analysis result tables: Errors/Matches Matrices, Reference Difference 

Positions, Mutations, and Putations. The creation of the analysis tables is explained in 

detail in the following sections. 
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Reference 
Position 

1 
2 

Reference 
Base 

A 
T 

Bases of 
aligned reads 

inAl 
AAAA 

TTT 

Bases of 
aligned 

reads in A4 
AATA 
TTTT 

Al 
consensus 

A 
T 

A4 
consensus 

A 
T 

Table 3.3-13 Consensus creation 

3.3.7 Errors/Matches 

The 4 MA lines that we used were all haploid. This essentially means that all the copies 

of the same 454 sequence for a particular line should be identical. If they are not, then we 

can conclude that it is because of sequencing errors or because of misalignments in the 

assembly process in highly repetitive regions. Errors in base calls can affect the mutation 

detection result. 

The consensus failure rate is a combination of the false positive rate due to sequencing 

errors and the fact that consensus cannot be reached at all due to lack of majority base 

type. Thus, the false positive rate arising due to sequencing errors contributes to the 

consensus failure rate. So, it is imperative to find the sequencing error rate while 

identifying the mutations. 

We determined the 454 sequencing error rate by creating Error and Match matrices. 

The error and match information is gathered based upon the number of nucleotides that 

align to the same reference base position for the two genomes. For a particular base 

position in the reference, the number of errors is calculated as the number of differences 

between the bases of the reads spanning that position as compared to the consensus 

produced by the reads. The matches are the number of bases that are the same as the 

consensus. The number of "errors" found at a given base position, along with the 

coverage of reads at that base position is used to generate what we call the "Error 

Matrix". Similarly, the number of "matches" found at a given base position, along with 
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the coverage of reads at that base position is used to generate the "Match Matrix". These 

Error and Match matrices are used to detect the sequencing error rate of the 454 reads. 

For calculating the errors and matches at a given base position, the reference base can be 

anything. Matches and errors are calculated depending upon the consensus sequence for 

the two strains. 

Table 3.3-14 shows the computation of match and error values for three different 

positions. 'N' signifies that the corresponding base can be either 'A', 'T', 'G' or ' C . At 

position 100 in the reference, 3 matches for Al and 3 matches for A4 are found and 

hence 6 matches are counted for position 100. Similarly, 6 matches are counted for 

position 105 in the reference. For position 300, 2 matches for Al and 2 matches for A4 

account for 4 matches and 1 error from each strain accounts for 2 errors in all. 

Position 

100 

105 

300 

Reference 

N 

N 

N 

Al 

AAA 

AAA 

AAT 

A4 

AAA 

TTT 

TTA 

Al 
consensus 

A 

A 

A 

A4 
consensus 

A 

T 

T 

Remark 

6 matches 

6 matches 

4 matches, 
2 errors 

Table 3.3-14 Calculation of Errors and Matches for a base position 

We now use an example for 10 base positions and show how the errors and matches 

ultimately define the Error Matrix and the Match Matrix respectively for an analysis of 2 

MA lines. Note that this is just an example and not the actual data that we have for the 

lines Al and A4. In Table 3.3-15, the reference base is not shown since it is not required 

to generate the Match and Error matrices. It includes the reference position, bases of Al 

and A4 reads which span that position and the errors and matches calculated for those 

positions using the method shown in Table 3.3-14. 
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Position 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

Al 

AAA 

AAC 

ATT 

ccc 
TTC 

GGGG 

GAAAA 

GGGG 

CCCT 
rTnrTiHri r*pi r r i 

Tal 

A4 

AAA 

TTTA 

TTATT 

TTT 

TTTA 

GGA 

CCC 

GGC 

AAAT 

ACA 

>le 3.3-15 Si 

Al 
consensus 

A 

A 

T 

C 

T 

G 

A 

G 

C 

T 

A4 
consensus 

A 

T 

T 

T 

T 

G 

C 

G 

A 

A 

jmple data for 10 reference pos 

Remark 

6 matches 

5 matches, 2 errors 

6 matches, 2 errors 

6 matches 

5 matches, 2 errors 

6 matches, 1 error 

7 matches, 1 error 

6 matches, 1 error 

6 matches, 2 errors 

7 matches, 1 error 

•itions 

We want to determine if there is any relationship between error and match rates and 

coverage for the two genomes. Consequently, we want to compute summary information 

based on position coverage. In other words, we would like to summarize the error and 

match information for each possible combination of coverage of a given position for the 

two genomes. Since we allow coverage to range from 3 to 10 for pair-wise analysis, we 

need one 8x8 matrix to represent a composite summary of the relationship between 

coverage at a reference position and the error information and another 8x8 matrix to 

represent the composite match information. We call the 8x8 matrix that comprises the 

error information as the "Error Matrix" and we call the 8x8 matrix that comprises the 

match information as the "Match Matrix". For an 8x8 matrix, the matrix indices are 

between (0, 0) to (7, 7). Matrix position (0, 0) represents coverage of 3 for both the MA 

lines while the matrix position (7, 7) represents coverage of 10 for both the MA lines. 

Similarly position (0, 1) represents coverage of 3 for the first strain (Al) and 4 for the 

second strain (A4); and so forth. The entire matrix represents all the cases where the 
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reference base position is covered by a variable number of reads spanning it for the 2 MA 

lines. For example, in our sample Table 3.3-15, the reference base position 102 is 

spanned by 3 reads of strain 'Al' and 4 reads of strain 'A4' during the alignment. Thus 

the matrix position where the errors and matches would be counted for this particular 

base position would be (0, 1). There are 5 matches and 2 errors at this base position. The 

5 matches will be counted at the matrix position (0, 1) in the 'Match Matrix" while the 2 

errors will be counted at the matrix position (0, 1) in the 'Error Matrix'. Thus if the first 

MA line has a coverage of 'x' and the second MA line has a coverage of 'y' for a 

particular base position, then the errors and matches for that position would be 

summarized at the matrix position (x-3, y-3) in the Error Matrix and the Match Matrix 

respectively. 

Position 

101 
102 
103 
104 
105 
106 
107 
108 
109 
110 

Al coverage (x) 

3 
3 
3 
3 
3 
4 
5 
4 
4 
5 

A4 coverage (y) 

3 
4 
5 
3 
4 
3 
3 
3 
4 
3 

Matrix Position 
(x-3, y-3) 

(0,0) 
(0,1) 
(0,2) 
(0,0) 
(0,1) 
(1,0) 
(2,0) 
(1,0) 
(1,1) 
(2,0) 

Table 3.3-16 Matrix position calculation. 

Table 3.3-16 shows how the matrix position is calculated for our sample data in Table 

3.3-15. The errors for base position 101 is summarized in the Error Matrix at the position 

(2, 0) while the matches for this position is summarized in the Match Matrix at the 

position (2, 0). The errors mapping to a particular matrix position in the Error Matrix are 

added together. Similarly, the matches mapping to the same matrix position in the Match 
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Matrix are added together. Based on Table 3.3-16, we know that the errors for base 

positions 101 and 104 would be mapping to the same position in the Error Matrix, which 

is position (0, 0). Their matches also map to the same position in the Match Matrix. 

Hence in the Error Matrix, at position (0, 0), the errors for base positions 101 and 104 are 

added together. Similarly, their matches are added together at position (0, 0) of the Match 

Matrix. 

Matrix 
position 
(x,y). 

y — • 

0 

l 

2 

3 
4 
5 
6 
7 

0 

0 
(101 + 
104) 

2 
(106 + 
108) 

2 
(107 + 

110 
-
-
-
-
-

1 

4 
(102 
+105 

2 
(109) 

-
-
-
-
-

2 

2 
(103) 

-
-
-
- • 

-

3 

-
-
-
-
-

4 

-
-
-
-
-

5 

-
-
-
-
-

6 

-
-
-
-
-

7 

-
-
-
-
-

Table 3.3-17 Error Matrix. 

Table 3.3-17 shows the 'Error Matrix' for the sample data in Table 3.3-15. The 

reference positions in the brackets indicate that the errors (calculated in Table 3.3-15) for 

these positions are added together for that particular matrix position. The '-' indicates that 

there was no data available for these cells in the Error Matrix. This also means that there 

was no Al or A4 coverage for any of the reference positions which could be mapped to 

those cells in the Error Matrix. 

25 



Table 3.3-18 shows the 'Match Matrix' for the sample data in Table 3.3-15. Similar to 

the Error Matrix, the matches for a reference position as calculated in Table 3.3-15 are 

added to this Match Matrix using the matrix position in Table 3.3-16. The '-' means that 

there was no Al or A4 coverage that could be mapped to those cells in the Match Matrix 

and hence are kept empty. Similar to the Error Matrix, this is an 8x8 matrix with 'x' and 

'y' indices ranging from '0 to '7'. 

Matrix 
position 
(x,y). 

y — • 

0 

i 

2 

3 
4 
5 
6 
7 

0 

12 
(101 + 
104) 
12 

(106 + 
108) 
14 

(107 + 
110 

-
-
-
-
-

1 

10 
(102 
+105 

6 
(109) 

-
-
-
-
-

2 

6 
(103) 

-
-
-
-
-

3 

-
-
-
-
-

4 

-
-
-
-
-

5 

-
-
-
-
-

6 

-
-
-
-
-

7 

-
-
-
-
-

Table 3.3-18 Match Matrix. 

Using the Error and Match Matrix, the base calling error at a particular matrix position 

was calculated as follows: 

BCEy = Eij / (Ey + My) 

where BCEjj is the Base Calling Error at position (i, j) 

Ey is the value of the Error Matrix at position (i, j) 

My is the value of the Match Matrix at position (i, j) 
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Thus, for matrix position (0, 1), the base calling error rate is 4 / (4 + 10) = 0.286. For 

all the MA lines, after computing the Error and Match Matrix, we calculated the base 

calling error rate in the manner described above for each matrix position. Then we 

calculated the average of that error and found out that the total base calling error rate was 

0.13%. This error rate was approximately 4 times less than what we had expected from 

the previous studies where the base substitution sequencing error rate of 0.5% is assumed 

[7]. The low base calling error rate meant that the quality of sequences we worked with 

was really good. This also yielded 10-10,000 times (depending upon the coverage) 

reduction in the false positive rate. 

3.3.8 Reference Difference Positions 

For a particular base position in the reference, if all the reads spanning this position 

have the same base in both MA lines, but this base is different from the reference base, 

then the base position is counted as a reference difference position. An example of this 

situation is shown in Table 3.3-19. These positions indicate where the same base 

mutations have occurred with respect to the reference sequence, presumably in a 

progenitor of the MA lines. 

Position 

1020 

Reference 

A 

Al 

TTT 

A4 

TTT 

Al 
consensus 

T 

A4 
consensus 

T 

Table 3.3-19 Reference Difference positions 

3.3.9 Mutations 

Irrespective of the reference base, if the consensus base for the MA lines for a 

particular reference position is different, then this base position constitutes a mutation 

between the two lines. The consensus should be such that all the bases constituting the 
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consensus are the same and thus it is a unanimous consensus. These positions represent 

confirmed mutations between the 2 MA lines under observation. 

Table 3.3-20 shows two variations of reference difference positions. In the first case, a 

definite mutation from A to T can be seen along the A4 line with respect to the reference. 

This can be detected only by comparing the consensus of Al and A4 to the reference 

base. In the second case, it cannot be known for sure exactly where the mutation between 

the reference and the 2 strains occurred during the evolutionary process. 

Position 

1040 

1060 

Reference 

A 

T 

Al 

AAA 

AAA 

A4 

TTT 

CCC 

Al 
consensus 

A 

A 

A4 
consensus 

T 

C 

Table 3.3-20 Mutations 

3.3.10 Putations (Putative Mutations) 

Irrespective of the reference base, if the 2 lines have a different consensus, and the 

consensus consists of some bases that are not the same as the consensus, then such 

reference base positions constitute putations between the 2 lines. Putations can be 

considered as mutations that are not confirmed, since not all the reads spanning the base 

position have the same base. This can be attributed to the possibility that this read aligned 

at more than one place in the reference because of its occurrence in a repetitive region. 

This can also be attributed to a 454 sequencing error. 

Position 

1080 

1090 

Reference 

N 

N 

Al 

AAT 

AATTT 

A4 

TTT 

AAA 

Al 
consensus 

A 

T 

A4 
consensus 

T 

A 

Table 3.3-21 Putations 

In Table 3.3-21 'N' signifies that the corresponding base can either 'A', 'T', 'G' or ' C . 
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3.4 Implementation 

The various scripts needed to implement the mutation detection approach were first 

implemented in Perl. The results from the scripts were analyzed and it was confirmed that 

we were able to find many more mutations by comparing the assembly results of different 

strains as compared to the number of mutations reported by 454 after assembling the data 

using their Newbler Assembler. For chromosomes in the range of 200,000 base pairs, it 

took approximately 5 hours to produce the output files. For longer chromosomes 

(1,400,000 base pairs long), it took 12-13 hours. Although useful results were obtained, 

the process was time consuming. 

To improve the performance, the entire process was re-implemented in Java. The Perl 

script used the show-aligns utility provided by the MUMmer package to get the 

alignment information of an input sequence to the reference sequence. Processing the 

output of this utility consumed a lot of time. To avoid this, the Java implementation reads 

the reference sequence separately and the alignment information is extracted from the 

output of the delta file that is created as one of the outputs of the assembly process. Due 

to these changes, the Java implementation shows significant performance improvement 

over the Perl implementation. For smaller chromosomes (-200,000 base pairs length), it 

now takes around 1 minute to get the output and for larger chromosomes (-1,400,000 

base pairs long), it takes 2-3 minutes to get the output. 

3.5 Results 

We have used the MD tool with 4 yeast MA lines - Al, A4, C5 and C8. These lines 

were comparatively assembled against S. cerevisiae as the reference sequence. The 

output from each assembly process was then provided as input to the MD tool. During 
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Phase I of the MD tool approach, insertion positions and homopolymer regions were 

eliminated from further processing. 

Initially, each chromosome in the yeast genome was assembled separately against the 

reference chromosome sequence (chromosome assembly). But, once the performance 

was improved by the Java implementation, the entire genome of a strain was assembled 

against the entire genome of the reference sequence (genomic assembly). Table 3.5-1 

compares the results of these two types of assemblies and the number of positions 

assayed in each one. 

Genomic Assembly Vs. Chromosome Assembly 
Stra 
in 

Assembled positions with 
respect to reference 
sequence 

After removing insertions After eliminating 
homopolymer regions 
of 4 or more. 

Genome Chromosom 
e 

Genome Chromoso 
me 

Genome Chromoso 
me 

Al 11,810,882 11,847,100 11,133,368 11,487,142 8,169,073 8,445,134 
A4 12,020,356 12,305,578 11,328,367 11,729,731 8,299,926 8,615,613 
C5 10,505,708 11,023,547 10,337,691 10,794,238 7,596,643 7,922,054 
C8 10,766,874 11,293,467 10,557,340 11,014,515 7,761,680 8,089,638 

Table 3.5-1 Assembled positions in Genomic Assembly Vs. Chromosome Assembly 

After the comparative assembly, insertions within the MA lines were ignored. Also, by 

neglecting the regions around the homopolymers of length more than 4, any false positive 

mutations detected due to sequencing errors were avoided. 

We found more putations with a chromosome assembly because many reads that 

aligned with different chromosomes were also included in this assembly. These reads 

may not have had exact alignments since they aligned perfectly to other chromosomes. 

This resulted in more false positive putations being detected. Because of the whole 

genome assembly, we got better alignments and better assembly results since the reads 
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were no longer ambiguously aligned to the reference sequence. This reduced the number 

of alignment errors and therefore also the number of putations. 

After the individual strains were comparatively assembled with the reference sequence, 

during Phase II, the assembly results for individual strains were compared with one 

another and the mutation analysis was carried out on 2 strains at a time (pair-wise 

analysis) or a combined analysis using all 4 strains (all-strain analysis). During the all-

strain analysis, one strain was compared against a combination of the other three strains 

to find the mutations. The error and match matrices were created for both types of 

analysis. These matrices were generated based upon the alignment coverage for each 

strain for the same reference position. The goal was to see if there was any difference in 

the base calling, based on the relative coverage for each strain. Our analysis showed that 

there was no significant difference. 

Chr# Analysis type 

A1-A4 
C5-A1 
C5-A4 
C8-A1 
C8-A4 
C5-C8 

A1-A4C5C8 
A4-A1C5C8 
C5-A1A4C8 
C8-A1A4C5 

Positions 
assayed 

226,746 
167,111 
167,591 
167,080 
167,682 
162,522 
230,208 
230,208 
230,208 
230,208 

Positions 
with 3-10 
or 3-30 
coverage 

103,651 
71,751 
81,620 
61,659 
68,016 
66,115 
96,340 
110,725 
129,200 
86,826 

Table 3.5-2 Pair-wise strain analysis Vs. All-strain analysis 

Table 3.5-2 shows that more reference positions are assayed with the all-strain analysis 

as compared to the pair-wise analysis. A reference position that is not assayed in a pair 

wise assembly can be assayed in other assemblies thus increasing the total number of 
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reference positions assayed. Also, restricting coverage from 3-10 for pair-wise and 3-30 

for all-strain analysis avoids assaying positions in repeat regions. Since all-strain analysis 

was better than pair-wise, the mutation analysis was further carried out using the results 

of all-strain analysis. 

Table 3.5-3 compares the genomic and chromosome assemblies with respect to the 

analysis tables (reference difference, mutations and putations) generated for each type of 

assembly. The table shows that the number of putations decreased for the genomic 

assembly as compared to the chromosome assembly. By comparing strains with each 

other and also with the reference sequence, exact mutations occurring within a particular 

MA line are detected. This would not have been possible if a single strain had been 

compared with only the reference sequence. 

Genomic Assembly vs. Chromosome Assembly 

Analysis 

Al -
A4C5C8 

A4-
A1C5C8 

C5-
A1A4C8 

C8-
A1A4C5 

Tab 

Reference Differences 
Genome 

196 

244 

141 

132 

le 3.5-3 An 

Chromosome 
159 

214 

157 

149 

alysis tables for 

Mutations 
Genome 

9 

13 

14 

16 

Genomic A 

Chromosome 
14 

9 

59 

47 

ssembly vs. Chr 

Putations 
Genome 

1104 

1084 

933 

932 

omosome A 

Chromosome 
1367 

1544 

2394 

2341 

issembly 

Table 3.5-4 shows the entire list of mutations in the Yeast MA lines that the MD tool 

was able to find. 
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Yeast _tlA Line Mutations 
M«fariop Table as- of 6 Api.il .2004 

Lociticn 

Chr 2-1253*6-* 
Chr 2-5561(53 
Chr 2-62(5533 
Chr 5-5X21-
Chr - -11-S6- -
Chr5-351?~5 
Cbr ~-6"-53 
Chr-J-f^l-SS 
Cbr 7-62512^ 
Cbr " - 8 : ^ 3 
Cbr S-251-P3 
Cbr S-2621S" 
Cbr. ?-15-215 
Cbr ?-3SC2c5 
Cbr i : o i l - a 
Cbr 11-25^15 
Cbr 11-6353:? 
Cbr 1 2 - 2 " f -
Cbr 12-51-51? 
Cbr 12--166"C 
Cbr 13-213—C 
Cbr 15-5:3:2^ 
Cbr. 13-.5d©36"5 
Cbr. 13-824994 
Cbr 13-913509 
Cbr. ! 4*88148 
Cbr. 15-541539 
Cbr. 15-679548 
Cbr. 15-986649 
Cbr 16 331354 
Cbr 16 804029 
Our 16 834238 
Mek 
Chr. 4-117354 

Change 

Tv£G-*C) 
Tv (G-*C* 
Tv (G->T> 

Tscr^o T v f G ^ T j 
Ts<A-KS> 
T s f G ^ A ) 
T v f G ^ C ) 
Tv CA^C) 
Tv C A ^ O 
Tv(A^T) 
T s « » T > 
Tv (A->C) 
Tv£G-»T) 
T s ( G ^ A > -
Ts<G->A> 
Ts{C-»T> 
T s < T - > 0 
Tv CG^C) 
Tv CG^T) 
TvCG^C) 
TvfC-»A) 
Tv CA^T) 
TvCC->A) 
Ttr fC-»Al 
" invwskaT* 
Ts<"T->C> 
Ts(G-»A> 
TvCC^AI 
Ts (G-»A> 
Tv (G->T> 
Ts<G-»A> 

Deletion of G 

Context 

TGTGTCCAAG^ TGTGTGCAAG-
AGAAGAAACG->AGAACAAACG 
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Table 3.5-4 Yeast MA line mutations 

3.5.1 Base Substitutions 

With the help of the mutation detector, we were able to find 33 base substitutions in an 

average of 4.99 x 106 nucleotide sites that fulfilled our criteria for coverage and distance 

from a homopolymer region. These mutations were later verified by direct sequencing. 

This yielded an overall base substitution rate of 0.33 x 10~9 per site per cell division. 
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Along with base substitution, we were also able to find one single base pair deletion and 

a 3 base pair inversion. 

3.5.2 Reference Difference Positions 

Using the method defined in section 3.3.8 for the reference difference positions, we 

found 323 base positions with consistent consensus sequence across the 4 MA lines that 

differed from the base in the reference sequence. These are possibly the sequencing errors 

in the reference sequence or mutations arising in the progenitor of the MA lines before 

the start of the experiment. 

3.5.3 Heterozygous Sites and Mutations 

There was evidence found that the MA lines had become diploid in nature 

spontaneously in the early stages of the experiment. This meant that we would have 

failed to find mutations at heterozygous sites with our approach of using 'consensus 

sequence'. We attributed the reason for any base in the reads spanning the same base 

position of the reference being different from the consensus to be caused by a sequencing 

error. But, if the lines had been heterozygous, then such base differences would have 

been in fact a result of heterzygosity. 

For each point mutation that we found using our Mutation Detector, we sequenced 

DNA obtained from frozen cells stored at 5-30 day interval throughout the period of the 

experiment. We found that all the mutations detected were homozygous at the time of the 

first detection, except for 1. We also searched the 454 sequence data for potential 

heterozygotes. For this, we focused on base positions which were spanned by at least 2 

reads that had the same base as the reference and at least 2 reads that were different from 
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the base in the reference sequence. There were 202 potential heterozygous mutations that 

we found across all 4 MA lines. For each such mutation, we took the surrounding DNA 

28 base pairs up and down stream and BLASTed them against the reference sequence. 

This segment analysis revealed that except for ten, all the other potential mutations were 

a result of 454 assembly artifacts involving nearly identical paralogous sequences. Out of 

these ten, eight were false positives; one was a heterzygote that was already determined 

by initial analysis and only one novel mutation was detected. 

This analysis shows that relative to the total length of the experiment, the transient 

phase of heterozygous mutation was small enough and therefore any failure in 

determining heterozygous mutations would not have affected our mutation rate detection. 
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CHAPTER 4 

MULTIPLE ASSEMBLY VIEWER WITH ENHANCED 

NAVIGATION (MAVEN) 

4.1 Introduction 

The MAVEN genome assembly visualization tool supports interactive visualization of 

sequence assembly and alignment results for multiple genomes at the same time. The tool 

is part of an interactive environment to support research in the rapidly growing field of 

comparative genomics. In this context it is especially valuable to compare how many 

closely related species assemble to each other or to a common ancestor. Existing 

assembly visualization tools do not provide simultaneous views of multiple contigs, let 

alone entire genomes. Existing visualization" tools for comparing genomes do not 

incorporate assembly information, but instead focus on showing relative locations of 

conserved regions. MAVEN is able to show simultaneous views of de novo assemblies, 

comparative assemblies, and alignments. The combination of both assembly and 

alignment results into a single visualization has already helped to provide better insight 

into these two techniques and how they interact in a comparative genomics environment. 

A major motivation for the development of MAVEN has come from our efforts to 
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assemble sequence data generated by 454 Life Sciences using their PicoTiterPlate 

Device. This process generates sequence data that is approximately 1/10 the size of 

traditional sequence data; existing assembly software does not handle this data very 

effectively. MAVEN has helped us to identify more quickly where and why current 

assembly programs fail with this data. 

4.2 Motivation 

We felt particularly constrained by the existing visualization software that provided us 

with only very limited tools for exploring the assembly results in a way that would enable 

us to understand why the assembly program was not successfully assembling sections of 

the genome. Existing assembly viewers can only display the results of one assembly 

process at a time and can only show the composition of a single assembled sequence 

(called a contig) at a time. We wanted to be able to simultaneously view multiple contigs 

and multiple assemblies so that we could compare the effects of different parameters and 

different assemblers acting on the same input. 

This experience led to the design and implementation of MAVEN: Multiple Assembly 

Viewer with Enhanced Navigation. MAVEN aims to provide support for exploring and 

comparing results from multiple assembly and alignment steps and will serve as a 

fundamental component of a comprehensive environment for assembling multiple 

genomes simultaneously using an iterative, user-guided assembly process. The sections 

below provide a brief review of an existing typical visualization tool, BankViewer, and a 

summary of the goals and features of MAVEN along with some examples. 
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4.3 Existing Tool - Bank Viewer 

The assembly viewer called BankViewer (http://ainos.soureeforge.net/docs/viewer/) 

provided by the AMOS package [10], enables users to view all the information related to 

the assembly process in a single interactive tool. BankViewer is able to display the results 

of de novo as well as comparative assemblies. 
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Figure 4.3-1 BankViewer showing one (blue) contig and many (green) reads. 

BankViewer displays the contigs of a de novo assembly in different windows. The user 

has to select the contig of interest and only this particular contig is displayed in the main 

window; it is also able to display the results of only a single assembly process at a time. 

Figure 4.3-1 BankViewer showing one (blue) contig and many (green) reads.shows the 

results of a comparative assembly as displayed by BankViewer. The nucleotide view is 

shown in the middle; sequence details are shown on the bottom; and contig data on the 
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right. The upper portion of the figure shows the alignment information. The reference 

sequence (white) is at the very top. Below the reference sequence are 2 coverage graphs. 

Below the graphs are the blue contigs aligned with the reference. (Only 1 contig is visible 

in this view.) The input read sequences (green) are shown below the contigs where they 

align with the contig. Other portions of the figure show sequence read detail (on the 

right), contig detail information (on the bottom) and a nucleotide view of the selected 

contig, including the read sequences that align to it and the consensus sequence. 

Limitations of Bank Viewer \ 

The current functional goals for MAVEN are primarily influenced by BankViewer. 

MAVEN aims at improving the usability of BankViewer by eliminating two of its major 

limitations: 

For a de novo assembly, BankViewer displays only a single contig in a window. 

BankViewer is able to display the results from only one assembly process at a time. 

4.4 MAVEN as an Assembly Test and Tuning Tool 

Eventually, we envision MAVEN supporting a multigenome iterative assembly 

process. Currently, the ability to simultaneously show results from multiple assemblies 

and alignments makes MAVEN useful as an assembly testing and tuning tool. MAVEN 

functionality helps users to better understand the assembly process and to more 

effectively explore the effects of various assembly parameter choices. 

Our initial goal was to use the TIGR assembler to assemble 454 data. But, our initial de 

novo assembly efforts were disappointing; the assembly produced more contigs (of 

shorter length) than we had hoped. We subsequently used the AMOS comparative 

assembler to assemble these contigs against a reference genome of a very closely related 
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species. This approach enabled us to validate the basic assembly results of the de novo 

assembler, to see where it had failed to join sequences that belonged together, and to gain 

insight into the shortfalls of the assembly algorithm. 

MAVEN aids in such analyses because: 

1. The de novo assembly for the same set of sequence reads could be performed 

using many different parameter settings 

2. The de novo assembly outputs were input to the comparative assembler using the 

same reference sequence. 

These comparative assembly results can be viewed using MAVEN to get an idea of 

read coverage and sequence alignments for each of the assemblies. Depending upon these 

comparisons, the best assemblies were identified and we were more easily able to 

converge on a set of parameters for more effective de novo assembly of this kind of data. 

With the ability to view multiple comparative assemblies in the same window, it is much 

easier to see the contig alignment of two different genomes against a common reference. 

In the future, we plan to use the matching portions between 2 assemblies to create global 

alignments between the assembled genomes. The global alignment will then represent a 

potentially conserved region inherited from the ancestral genome of the assembled 

genomes. 

4.5 Results 

Currently, MAVEN is able to display the results of de novo assemblies done by the 

TIGR assembler [9, 12] and comparative assemblies done by AMOS [10]. It can display 

multiple assemblies in the same window. It has a zoom adjustment that can be used to 

change the view resolution. 
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MAVEN is also able to display the alignments of the sequences against a reference 

genome. The alignments are produced as a result of the 'nucmer' alignment tool which is 

part of the MUMmer package [1], available online at http://mummer.sourceforge.net/ 

The AMOS comparative assembler aligns input sequences against the reference 

sequence; those that align well become the input for the local assembly of contigs. Not all 

aligned sequences, however, contribute to contigs; these are discarded by AMOS and are 

not included in its final output. By including both the aligned sequences and the 

sequences that make up contigs in a single window, MAVEN is able to give a better idea 

as to why some of the aligned sequences are not included in the assembly. 
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Figure 4.5-1 Reads discarded from contig formation step in the assembly. 

Figure 4.5-1 displays one such scenario where the alignment is produced, but during 

the contig formation, the reads are discarded by the AMOS assembler. The top portion of 

Figure 4.5-1 displays the result of comparative assembly for a set of 4 test reads against a 

sample reference sequence. Out of 4 reads, 2 reads aligned from base position 1 to 65 
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and 125 to 195 with respect to the reference sequence. Thus, these 2 reads had a gap of 

60 base pairs as compared to the reference sequence. The other 2 reads matched 

completely with the reference sequence from base position 421 to 900. These 4 reads 

were comparatively assembled using AMOScmp, and the alignment produced for the 4 

reads is shown in the bottom part of Figure 4.5-1. The first 2 reads produced an alignment 

from base position 1 to 195 with respect to the reference sequence. AMOScmp was able 

to detect the gap of 60 base pairs in the reads. Because of this gap, the reads were 

discarded from the assembly since the percent identity match with the reference for these 

reads decreased. MAVEN is able to display the comparative assembly output along with 

the read alignments and so the case where reads are discarded from the assembly even 

when they align with the reference sequence, can be detected immediately. 
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Figure 4.5-2 Parts of a read aligning at different positions in the reference sequence 

Figure 4.5-2 again displays a comparative assembly result and the alignment result for 

4 test reads against a sample reference sequence. Two of the four reads are of particular 

interest. The alignment produced for these 2 reads shows 2 separate alignments for 2 

separate parts of the read. Both these reads are identical and are 360 base pairs long. The 
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first 180 bases of the reads align from base position 1 to 180 in the reference. The next 

180 bases of the reads align from base position 240 to 420 in the reference sequence. A 

single alignment with a gap is not produced. Due to this, the assembly accepts these 2 

reads for the further contig formation step. But in the actual layout the contig aligns from 

base position 1 to 360 with respect to the reference. MAVEN is able to display the 

assembly as well as the alignment results for such reads making it evident why the reads 

were included in the contig formation step. 

F i l e i" V i e v i ^ l l l i " ' ' I:""r • l-:^ •' 

Figure 4.5-3 Reads with gaps accepted in contig formation. 

Figure 4.5-3 displays yet another scenario where the 2 reads produce a single 

alignment with a gap of 50 base pairs. They align from base position 1 to 180 with 

respect to the reference. Even though this case is similar to the one shown in Figure 

4.5-2, these two reads are selected for the contig formation step and they form a contig 

that aligns from base position 1 to 130 with respect to the reference sequence. These 3 
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cases (Figure 4.5-1 through Figure 4.5-3) represent discrepancies between the read 

alignment and the actual contig formation and were easily identified with MAVEN 

because of its ability to display multiple assemblies at a time. 
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Figure 4.5-4 A view of de-novo assembly results. 

Figure 4.5-4 displays the de novo assembly results. The red lines indicate the contigs 

and the cyan lines indicate the sequence reads that made up the particular contig. Since 

there is no reference sequence for the de novo assembly, the placement of contigs next to 

each other is arbitrary. The pink at the end of a contig helps distinguish the contigs when 

the assembly view is zoomed out and the contigs are displayed very close to each other. 
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Figure 4.5-5 A MAVEN display of results from a comparative assembly. 

Figure 4.5-5 very well conveys the benefits gained by MAVEN for viewing the 

comparative assembly. White lines represent the reference genome. Blue lines are the 

assembled contigs. The other lines are input sequences aligned to the reference and color-

coded to represent the number of valid alignment locations for that sequence. 

The contigs formed and the aligned reads can be viewed at the same time. It can be 

clearly noted that the assembly failed to form a contig between 204.2K and 205.6K 

because the reads in that region were aligning at 6 or more different places within the 

reference region. This indicates that the red region is a repetitive region in the reference 

sequence and hence the comparative assembly failed to generate contigs in this region. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

The initial goals set for the research were to develop comparative genomics tools that 

could handle 454 sequence data. Accordingly, we identified three software tools to be 

developed: 

• Mutation Detector should be able to identify and confirm mutations across the 

different strains of organisms. 

• MAVEN should be able to display multiple assemblies simultaneously. It 

should also be able to display the results of de novo assembly and alignments. 

• Iterative Multi-Genome Comparative Cross Assembly Processor might provide 

a framework for better assembly of multiple related genomes in the absence of 

a common reference. 

The status of each of the three tools is summarized in the sections that follow. 

5.1 Mutation Detector 

The Mutation Detector is completely implemented. It can detect mutations across 

strains when compared to the reference sequence. It took approximately 55 seconds to 

produce the output files for genomes that were approximately 200,000 base pairs in 

length. For genomes that were approximately 1,400,000 base pairs long, it took 
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approximately 4 minutes to produce the output files. After the output of MD is obtained, 

it takes around 2-3 minutes to produce the error calculation tables. 

The mutation detection process is not limited to reads that are sequenced using the 454 

sequencing technology. The traditional sequence reads can take advantage of this method 

too. As long as there is a reference sequence available for comparative assembly, this 

method can prove to be very effective in finding mutations and putations occurring along 

any MA line. 

5,2 MAVEN 

MAVEN is able to display multiple assemblies simultaneously for comparative as well 

as de novo assembly. It can also display sequence alignments. From the results of 

comparative assembly combined with the sequence alignments for the same assembly, 

MAVEN is able to determine the highly repetitive regions within the reference genome. 

It can also determine the reads that aligned to the reference but are not used in the contig 

formation process. 

5.3 Iterative Multi-Genome Comparative Cross Assembly 

Processor 

To carry out an iterative comparative assembly of sequence reads, it is imperative to 

find a de novo assembler which is optimized for 454 data for the first step. We tried to 

use the TIGR de novo assembler [9, 12] to assemble the sequence data of the 4 yeast 

strains. The TIGR assembler is developed with the goal of being used with the traditional 

shotgun sequence reads. To be useful for 454 data, a complete analysis and understanding 

of the assembly algorithm is essential. We evaluated the use of this assembler with our 

data by setting up different assembly parameters. It was not very fruitful since the contigs 

47 



that were formed after the assembly were not long enough to be useful for further 

assembly. 

After a lot of experimentation with assemblers used for assembling different strains of 

yeast sequenced using the 454 technology, it has become evident that the AMOScmp 

comparative assembler is well suited for assembling the sequence reads, provided a 

closely related reference species is available. We tried multi-genome iterative cross 

assembly idea using AMOScmp, but the preliminary results were not very promising. 

The de novo assembly of the individual strains was only able to generate contigs that 

averaged about twice the size of the input sequences. Also, we were not able to 

significantly increase the contig sizes using comparative assembly. We believe that the 

iterative cross assembly idea may still have merit, but may need better de novo 

assemblies as starting points. 
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APPENDIX A 

MUTATION DETECTOR (MD) DOCUMENTATION 

Installation: 

• Install Java JDK on the computer 

• Perl, csh and tcsh need to be installed on the computer to run perl scripts. 

MD steps and scripts: 

The MD tool is made up of a Java program and a bunch of perl scripts that aid us in 

generating the analysis tables mentioned in section 3.3. We have programs/scripts written 

to carry out all the different steps mentioned in sections 3.3.1- 3.3.10. Summary of the 

steps follows: 

• Creation of a delta file for each strain - this is done by the comparative assembly 

process (AMOScmp). 

• Alignment Summary - this is where we create a summary of alignments for each 

comparative assembly. This is done by the Java program SeqAlignGenerator and 

the perl scripts align-summary, getrefPosnBa.se and combineRefDelta. 

• Processing Alignment Summary - this is where we remove the insertions, the 

homopolymer region of 4 or more and 5 bases around the homopolymer region. 

This is made possible by the perl scripts removelnsertions, delHomopolymers, 

getHPposns, addStrainName and the Java program DelByName. 

• Combining MD output files, applying coverage restrictions and creation of 

analysis tables - all these steps are done by the perl script sh_error 
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• Combined analysis - when a combined analysis is done for all the 4 strains 

together as mentioned in section 3.5, the perl script strainCombineAnalysis aids in 

combining the data for the 4 strains. Then the perl script sh_error is used to 

generate the analysis tables for the combined analysis. 

What follows is a detailed description of how these scripts are executed. 

1. Java SeqAlignGenerator <delta file> <sequence file> > outDeltaFinal 

a. SeqAlignGenerator - Java program that generates a read alignment from 

the delta file. A row in the output file that it generates consists of the 

reference base position, the read id that aligned at that position and the read 

base. 

b. <delta file > - delta file generated for the MA line by the comparative 

assembly is an argument to the script. 

c. <sequence file> - seq file generated for the MA line by the comparative 

assembly is passed as an argument to the script. 

d. outDeltaFinal - the output of the SeqAlignGenerator is redirected to a file 

which we call outDeltaFinal. The rows are sorted according to the read id 

(integer value). 

2. cat outDeltaFinal I sort -g > sortedResult 

a. cat - This is a unix command to print a file. 

b. outDeltaFinal-the output file from step# 1. 

c. sortedResult - we sort the data in outDeltaFinal file based on the reference 

position and store this sorted data in sortedResult file. Note that the 

'reference base position' values will not be unique in the column - they will 

appear as many times as there are reads aligning at that particular position. 
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3. align-summary sortedResult > sortedResultSummary 

a. align-summary - a perl script that generates the alignment summary for the 

strain. The output that it generates consists of 2 columns- 'reference base 

position' and 'aligned read bases'. The 'aligned read bases' column has the 

bases of all the reads that align to that particular position. It basically takes 

the output file from step#2 and makes the values in the 'reference base 

position' column unique by summarizing all the bases of the reads that align 

at that position in the same row. 

b. sortedResult - output file from step#2 is passed in as an argument to this 

script. 

c. sortedSummaryResult - output generated by the align-summary script is 

redirected to this file. 

4. getRefPosnBase refFile > refBases 

a. getRefPosnBase - perl script that reads in a reference sequence and 

generates an output that has 2 columns: 'reference base position' and 

'reference base'. 

b. refFile - fasta file consisting of the reference sequence is an argument to 

the script.. 

c. refBases - the output from the perl script is redirected to this file. 

5. combineRefDelta refBases sortedSummaryResult > deltaOut 

a. combineRefDelta - perl script that combines the data from the file refBases 

(from step#4) and sortedSummaryResult (from step#3). The output of this 

script has 3 columns - 'reference base position' (unique positions), 
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'reference base' (from reffiases file) and 'aligned read bases' (from 

sortedSummaryResult file). 

b. refBases - the output file from step#4 is passed as an argument to this 

script. 

c. sortedSummaryResult - the output file from step#3 is passed as an 

argument to this script. 

d. deltaOut - the output of the perl script is redirected to this file. 

6. removelnsertions deltaOut > strainDelta 

a. removelnsertions - perl script that removes the insertion positions from the 

deltaOut file generated in step#5 

b. deltaOut - this file is passed as an argument to the script 

c. strainDelta - the output of the script is redirected to this file. 

7. delHomoPolymers strainDelta > HPs 

a. delHomoPolymers - this perl script aids in finding the homopolymer 

regions in the reference sequence.. The output of this script gives a range of 

consecutive base positions that have the same base. For example, if the 

'strainDelta' file has data as shown in Table 3.3-3, this script will generate a 

single column with the following values (one value per row) - 50-50, 51-

52, 53-53, 54-54, 55-55, 56-59, 60-60, 61-62, 63-63, 64-64, 65-65,66-66. 

Using this information, we can see that there is a homopolymer of length 2 

(base positions 51-52) and a homopolymer region of 4 bases (base positions 

56-59). 
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b. strainDelta - the output from step#6 is passed in as an argument to this 

script. 

c. HPs - the output of this script is redirected to this file. 

8. getHPposns HPs <homopoIymer length> > homopoIymerBasePositions 

a. getHPposns - this perl script gets the homopolymer region base positions 

for the homopolymer regions in the file HPs (generated in step#7). 

b. HPs - output file from step#7 

c. <homopolymer length> - we want to detect the homopolymers greater than 

the number provided by this argument. In our analysis, since we want to 

delete all the homopolymers of length greater than 3, we pass in the integer 

value '3 ' as the second argument to this script. 

d. homopoIymerBasePositions - the output of this perl script is redirected to 

this file. 

9. Java DelByName homopoIymerBasePositions strainDelta > strainDeltaCopy 

a. DelByName - this Java program helps in deleting all the homopolymer 

regions of length 4 or more and also 5 base positions surrounding such 

homopolymer regions from the strainDelta file generated in step#6. 

b. homopoIymerBasePositions - this file generated in step#8 tells which base 

positions need to be deleted so that we eliminate the homopolymer region 

of 4 or more. 

c. strainDelta - the homopolymer region of 4 or more needs to be deleted 

from this file. 
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d. strainDeltaCopy - the output from this Java program is redirected to this 

file. 

10. addStrainName strainDeltaCopy <strain name> > finalStrainData 

a. addStrainName - this perl script appends the strain name as a column to 

the strainDeltaCopy file generated in step#9. 

b. strainDeltaCopy - output file generated ins stel#9 

c. <strain name> - name of the strain to be appended for example Al, A4 etc. 

d. finalStraiiiData - the output of the perl script is redirected to this file. This 

file has all the strain specific data that we need - the alignment summary 

without the insertions and the homopolymer region. One such file is created 

per strain. This file is then used to generate the analysis tables. 

\\.sh_error <finalStrainData 1> <finalStrainData 2> <min coverago <max 

coverago > analysisTable 

a. sh_error - this perl script is responsible for generating the analysis tables 

for the 2 strains whose 'finalStrainData' files we pass in as arguments. 

b. <finalStrainData 1> - the 'finalStrainData' file generated for the first strain 

(one of Al, A4, C5 or C8). This 'finalStrainData' file is generated for that 

particular strain in step#10. 

c. <finalStrainData 2> - the 'finalStrainData' file generated for the second 

strain (one of Al, A4, C5 or C8). 

d. <min coverago -. for a 2-strain or all-strain analysis the minimum 

coverage for our study is '3 ' . 
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e. <max coverago - for a 2-strain analysis, the max coverage should be '10'. 

For all-strain analysis, the max coverage should be '30'. 

f. analysisTable - the output for this script is captured in this file. 

12. strainCombineAnalysis ref <finalStrainData 1> <finalStrainData 2> 

<finalStrainData 3> > combinedStrainData 

a. strainCombineAnalysis - this perl script is used when we want to analyze 

one strain against the combination of the other three strains. The 

'finalStrainData' of the other three strains needs to be combined before we 

execute the sh_error script on those. 

b. ref - the reference sequence is passed as an argument to this script. 

c. <finaIStrainData 1>, <finalStrainData 2> and <finalStrainData 3> - the 

'finalStrainData' files for the three strains that needs to be combined. 

d. combinedStrainData - the ouput of this script is captured in this file. 

e. shjerror <finalStrainData 4> combinedStrainData 3 30 > analysisTable 

- this is how we execute the sh_error perl script when we want to do an all-

strain analysis. 
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Class Diagram 

SeqAlignGenerator 

String strDelaFile 
Strirsg sfrSeqFile 

Buffer edReader delta 
BufferedReader seq 
Alignlhfo alignlnfo 

Alignlnfo 

tot seqld 
GenericList afigsList 

SfrtngBuffer strSequeoce 
StriogBuffer reverseComplement 

GeoerfcList offsefList 

Alignment 

int starfRef 
int eii.dS.ef 

int startRead 
int eadRead 

GeaerkLfst offsefList 

GetierieList 
(implements Iterator) 

SeqReader 

int Seqld 
StringBuffer sequence 

boolean nextStored 
String prevSeq; 

int prevld 

DeltaReader 

boolean nextStored 

String prevSeq 

Class Diagram for SeqAlignGenerator 

Class Descriptions; 

1. SeqAlignGenerator: This is the main class used to generate the alignment 

information from the '.delta' and '.seq' files. It accepts these 2 files as input. 

2. Alignlnfo - This class is used to store the alignment information for a single read 

present in the delta file. It consists of the sequence id, the actual string sequence 

and the reverse complement. It also stores a list of alignments for the particular 

read. 

3. Alignment - This class is used to store the information of a single alignment for a 

read. 

4. DeltaReader - This class is used to read the delta file and create the alignment 

object. 
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5. SeqReader - This class is used to read the seq file. 

6. GenericList - This class is used to construct a list of objects (Object type). 
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APPENDIX B 

MAVEN DOCUMENTATION 

Installation: 

• Install Java JDK on the computer 

• Perl, csh and tcsh need to be installed on the computer to run perl scripts. 

MAVEN Usage 

• To launch the MAVEN tool 

o Open a command prompt 

o Go to the directory where the MAVEN software is deployed (the directory 

that has all the class files generated by compiling the tool). 

o From this directory, run the command "Java AsmRenderef .. 

In the visual tool, you can view the results of three assembly types which are 

discussed below. 

GUI Navigation: 

The MAVEN tool, can display three different types of assembly results: 

• De-novo Assembly - A de-novo assembler produces contig files as a result of the 

assembly. These contig files give the information about the number of sequence 

reads that make up the contig along with their alignments. To display the de-novo 
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assembly results, the data from the contig file is converted to a format suitable for 

MAVEN. The converted format is placed in a file with an extension ".denovo". 

The data format is converted using a perl script getContigReadlnfo. The contig 

file has information in the following format shown below. 

##1 chrlGl 18 462 bases, 00000000 checksum. 
#128698_3899_0794(0) [RC] 118 bases, 00000000 checksum. {116 1} <1 

118> 

This is converted to a format as shown below by the getContigReadlnfo perl 

script. 

Contig 1 462 

Read 128698_3899_0794 1 118 

The getContigReadlnfo perl script is executed as follows. 

getContigReadlnfo <contig file> > <output file namo.denovo 

<contig file> - name of the contig file generated by the assembly. Note that the 

file name should be specified with the ".contig" extension. 

<output file name> - output of the perl script should be redirected to a file with 

".denovo" extension. The output file has the assembly information that can be 

parsed by MAVEN. 

To see the de-novo assembly results inside MAVEN: 

o Open the 'File' menu on the left hand side of the tool. 

o Select your denovo output file (<output file namo.denovo). 

The data from the file is parsed by MAVEN and the assembly result is displayed 

in the MAVEN GUI. 

• Comparative Assembly - A comparative assembler (AMOScmp) generates a 

"layout" file. This layout file has all the information about the contigs and the 
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different reads that make up the contig. The getLayoutlnfo perl script is used to 

convert the data in the layout file so that it can be parsed properly by MAVEN. 

The getLayoutlnfo script is executed as follows. 

getLayoutlnfo <Iayout file> <reference length> > <output filo.comp 

<Iayout file> - layout file generated by the comparative assembler. The file name 

should be specified with its extension ".layout". 

-preference length> - length of the reference sequence must be provided 

<output file> - output of the perl script should be redirected to a file with 

".comp" extension. 

To see the comparative assembly results inside MAVEN: 

o Open the 'File' menu on the left hand side of the tool. 

o Select your comp output file (<output file namo.denovo). 

The data from the file is parsed by MAVEN and the assembly result is displayed 

in the MAVEN GUI. 

• Comparative Assembly Alignments - A comparative assembler (AMOScmp) 

generates a "delta" file during assembly. This file has the information about all 

the reads and their alignments with respect to the reference genome. It is not 

necessary that all of these reads are part of a contig. The alignment information is 

very important to determine the individual read alignments, especially for the 

reads that are discarded from the contig creation step. The getCompleteAlignment 

perl script is used to convert the data in the "delta" file to aid parsing. The 

getCompleteAlignment script is executed as follows. 

getCompleteAlignment <delta file> <output filo.align 
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<delta file> - delta file generated by the comparative assembler. The file name 

should be specified with extension. 

<output file> - output file name should be specified as an argument to the script. 

It should have an extension ".align". 

To see the comparative assembly alignment results inside MAVEN: 

o Open the 'File' menu on the left hand side of the tool. 

o Select your ".align" output file (<output file name>.align). 

The data from the file is parsed by MAVEN and the alignment result is displayed 

in the MAVEN GUI. 

Implementation Details: Class Diagram 

The figure below shows the class diagram of the classes used in MAVEN 

AsmSequence 
String seqld 

tat start 
int end 
ait lien 

int offset 
int count 

String type 
\ 

Contig 

int length 
Generic-List 
contisReads 

Assembly 
iat asrald 

GenericList ctgList 
String asniType 
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Alignmem 

int r efLengtfa 
GenericList reads 

GenericList 
(Implements Iterator) 

CompAssembly 

iat refLensfh DeNovo As-semblv 

CompAssembiyReaded 

CompAssembly 
compasm 

String fileName 

AlisnmentReader 

Alignment align 
String; fileName 

DeNovoAssemblvReader 

BeNovoAssembly asm 
String fileName 

Slider 
(extends JPaneD 

FloafListener 

DrawmgPane 
(extends JPaneJI 

AsmRendener 
(extends JPaitel) 

Class Diagram for MAVEN 
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Class Descriptions: 

1. AsmSequence: This class represents a generic sequence. It can be either a contig or 

a sequence read. It consists of the following member variables: 

a. sequenceld - unique identifier for the sequence 

b. start and end - these represent the start and end offset when this sequence 

aligns with its reference. If the sequence represents a "sequence read", then 

start and end offsets tell how this sequence read aligns with a contig. If the 

sequence represents a "contig", then start and end offsets tell how this 

contig aligns with a reference sequence for a comparative assembly. 

c. offset - this is used for display purposes. 

d. count - keeps a count of how many times this sequence aligns at different 

positions in the reference sequence. 

e. type - this value indicates whether the sequence is "sequence read" or 

"contig" 

2. Contig - This class extends from AsmSequence and represents a contig in an 

assembly. A contig has a length and a list of sequence reads associated with it. 

3. Assembly - This class represents an assembly object. It has the following member 

variables: 

a. asmld - unique identifier for the assembly 

b. ctgList - list of contigs that make up this assembly 

c. asmType - a string representing what type of assembly this is: comparative 

or de-novo. 
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4. CompAssembly - This class represents a comparative assembly object. It extends 

from the Assembly class. It defines an additional member variable called 

"refLength" that represents the length of the reference sequence. 

5. DeNovoAssembly - This class represents a de-novo assembly object and also 

extends from the Assembly class. 

6. Alignment - This class represents an alignment object used to display the 

alignment results for a comparative assembly. It is made of a list of aligning reads 

and the length of the reference sequence. Note that it does not have any contigs 

since the alignment is just for the sequence reads with respect to the reference 

sequence. 

7. CompAssemblyReader - This class helps in rendering the results of a comparative 

assembly. It reads in the data file that has the information about the comparative 

assembly and renders the information in the GUI. 

8. DeNovoAsmReader - This class helps in rendering the results of a de-novo 

assembly. It reads in the data file that has the information about the de-novo 

assembly and renders the information in the GUI. 

9. AlignmentReader - This class helps in rendering the results of read alignments for 

the comparative assembly. This reads in the data file that has the information about 

the alignments and renders the information in the GUI. 

10. GenericList - This class implements the Iterator and is used to construct a list of 

objects (Object) and iterate over them. For MAVEN, we use this class to represent 

a list of contigs, list of sequence reads and list if assemblies to be displayed in the 

GUI. 
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11. Slider - This class supports a JSlider with a label and an arbitrary range of floating 

point values. This class is used to implement the "zoom" functionality in MAVEN. 

It is implemented by RDB. 

12. FloatListener - This class allows us to connect to a Slider. This class is used to 

implement the "zoom" functionality. It is implemented by RDB. 

13. DrawingPane -This class extends from JPanel and provides the panel inside which 

all the assembly objects are displayed. 

14. AsmRenderer - This class is the driving class for the assembly viewer. It is the 

holder of the drawing pane, the slider and all the different parts that make up the 

viewer. 
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