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ABSTRACT 

SEPARATION OF RIVER NETWORK SCALE NITROGEN REMOVAL AMONG MAIN 

CHANNEL AND Two TRANSIENT STORAGE COMPARTMENTS 

by 

Robert J. Stewart 

University of New Hampshire, December 2009 

Reach scale experiments have shown that transient storage (TS) could be an 

important control on dissolved inorganic nitrogen (DIN) export to coastal waters. Here, 

the relative roles the main channel (MC), surface TS (STS) and hyporheic TS (HTS) have in 

DIN removal at the network scale are investigated using a model applied to the Ipswich 

River in Massachusetts. Collaborative field investigations in 1st through 5th order reaches 

of the Ipswich River provided the mean and range for the hydraulic parameters 

controlling TS connectivity and residence time. DIN removal was simulated in the MC, 

STS and HTS compartments for every river grid cell using hydraulic characteristics, 

simulated discharge, and a constant reaction rate. Application of mean network 

parameters resulted in removal of 73.1% of total DIN inputs with the MC, HTS, and STS 

contributing 38.2%, 20.9%, and 14.0% respectively. Sensitivity analyses suggest large 

rivers and hotspots greatly impact DIN fluxes. 
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CHAPTER I 

INTRODUCTION 

Understanding processes controlling nitrogen removal (e.g. denitrification) in 

ecosystems has become important due to the increase in anthropogenic nitrogen (N) 

inputs to our environment. Human activities such as fertilizer application, N fixation by 

crops, human and animal waste management, and fossil fuel emissions (Vitousek 1997) 

saturate terrestrial ecosystems with N (Aber et al. 1998), degrade the quality of streams 

that drain them (Peterson et al. 2001) and can ultimately lead to eutrophication of lakes 

and coastal waters. However, evidence suggests that the proportion of N retained in 

basins can be relatively high despite anthropogenic increases in N (Howarth et al. 1996; 

Boyer et al. 2002). Terrestrial systems account for most of the N removed in 

watersheds, but aquatic systems also play an important role (Bernhardt et al. 2005), 

particularly during summer low flow periods (Wollheim et al. 2008). A significant 

challenge in aquatic ecology is to identify the specific locations responsible for 

denitrification in streams (Thomas et al. 2003) and to quantify these processes at large 

scales. 



N removal in aquatic systems is a function of 1) the strength of biological activity (Triska 

et al. 1989; Fellows et al. 2001), 2) the proportion of mass solute exposed to biologically 

active surfaces (Harvey et al. 1996), and 3) the duration of exposure to these surfaces 

(Findlay 1995; Runkel 2000). These factors are determined by a combination of biologic, 

hydrologic, and geomorphic components and subsequently vary over space and time 

(Doyle 2005; Wollheim et al. 2006; Wollheim et al. 2008). There have been a number of 

investigations looking into these factors at fine scales (Bencala et al. 1993; Mulholland 

and DeAngelis 2000; Peterson et al. 2001; Hall et al. 2002; Thomas et al. 2003; Briggs et 

al. 2009). One factor that could be important is the degree of water exchange between 

advective and non-advective habitats (Triska et al. 1989; Valett et al. 1996; Thomas et al. 

2003; Gooseff et al. 2004). 

The advective zone, or the main channel (MC), consists of the majority of the 

river cross-sectional area where the highest velocities occur. Non-advective, or 

transient storage (TS), zones are flow paths with significantly reduced downstream 

velocities (Bencala and Walters 1983; Harvey et al. 1996). Transient storage zones are 

hypothesized to influence dissolved inorganic N (DIN) fluxes because they extend 

residence times and facilitate water exposure with biochemically reactive surfaces 

(Findlay 1995; Dahm et al. 1998; Baker et al. 2000; Harvey and Wagner 2000; Ensign and 

Doyle 2005; Hancock et al. 2005; Briggs et al. 2009). TS hydraulic data measured in the 

field have been paired wi th nutrient reaction rates to quantify the role of TS in DIN 

removal at the reach scale (Mulholland and DeAngelis 2000; Hall et al. 2002; Thomas et 

al. 2003; Faulkner and Campana 2007). Some studies found a strong correlation 
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between transient storage characteristics and DIN removal in river segments (Triska et 

al. 1989; Valett et al. 1996; Thomas et al. 2003; Gooseff et al. 2004) while others found a 

weaker correlation (Hall et al. 2002; Lautz and Siegel 2007) or no correlation at all 

(Ensign and Doyle 2006). The role of TS in DIN removal varies because TS hydraulics and 

biogeochemical processes are heterogeneous across systems, within systems, and 

through time (Thomas et al. 2003). Further, non-advective zones can be categorized 

into surface transient storage (STS) and hyporheic transient storage (HTS) (Briggs et al. 

2009) and these two compartments can have significantly different hydraulic and 

biogeochemical processes (Thomas et al. 2003). Because traditional field methods 

cannot distinguish the relative control that the STS and HTS have on water transport 

(Briggs et al. 2009), it is understandable that there is not a general consensus on the role 

of TS on DIN removal. 

STS includes side pools or back eddies along the river channel (Harvey and 

Wagner 2000) where water exchange from the channel is controlled by lateral 

dispersion (Fischer et al. 1979) and turbulent processes (Ghisalberti and Nepf 2002). 

Sub-surface HTS is located beneath or adjacent to the water column where water is 

forced into sediments via Darcian flow through porous media (Harvey and Bencala 

1993), interacts with microbial communities and groundwater, then resurfaces at some 

distance downstream. STS and HTS characteristics are expected to adjust along a river 

network in response to gradients in channel morphology (Gooseff et al. 2007; Battin et 

al. 2008) but may do so at separate rates because of underlying differences in hydraulic 

dynamics (Briggs et al. 2009, in revision). Due to differences in STS and HTS 
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characteristics, biogeochemical processes in the two compartments are likely to also 

differ. For instance, STS are depositional zones that typically accumulate large stocks of 

organic matter (Hall et al. 2002) whereas HTS facilitates water exposure to sediment 

biofilms and alternating oxic and anoxic environments. 

To better understand DIN removal in aquatic systems, the STS and HTS must be 

considered separately. As part of this collaborative study, a new method was developed 

to partition between the hydraulics of these non-advective compartments (Briggs et al. 

2009). This work refined traditional lumped hydraulic parameters such as the TS 

exchange coefficient (aTs), TS zone size (ATs), and the fraction of median travel time 

through a stream reach that is due to temporary retention in transient storage (Fmed
200) 

(Runkel 2002) into aSTS, aHTS, ASTS, AHTs, Fmed
200STS and Fmed

200HTS (Briggs et al. 2009). A 

subsequent field study was conducted to inform a river network DIN removal model 

with a range in STS and HTS hydraulic parameters found in channelized sections 

throughout a 5th order river network (Briggs et al. 2009, in revision). Here, I use this 

model to quantify how much DIN removal occurs in the MC, STS and HTS at the river 

network scale during a summer baseflow period. 

It is important to take reach scale observations of TS and place them in a 

broader context. Previous studies have shown that a river network perspective is 

essential to understand DIN removal processes because downstream river segments 

buffer upstream inefficiencies associated with increased DIN inputs (Mulholland and al. 

2008) and discharge (Wollheim et al. 2008). However, there have been few studies that 
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have taken a river network approach to quantifying DIN removal in stream ecosystems. 

Generally, these studies have assumed that biological rates are independent of river size 

and changes are driven by predictable downstream adjustments in river hydraulics 

(Seitzinger et al. 2002; Wollheim et al. 2006; Wollheim et al. 2008). This is a valid 

approach because river size is directly correlated to benthic surface-to-volume ratios 

but this assumption ignores the potentially critical role of water exchange between 

advective and non-advective compartments. However, to the best of my knowledge, 

there are no river network models that incorporate TS processes. 

Here, I develop a river network model and parameterize the model with 

empirical TS measurements to quantify basin scale DIN removal in MC, STS and HTS 

compartments during a summer baseflow period. The model basin is the Ipswich River 

located in northeastern Massachusetts. The goals of this study with respect to DIN 

removal by MC, STS, and HTS compartments at network scales are to determine 1) the 

relative importance of each compartment, 2) the role of stream size, 3) the importance 

of spatial heterogeneity or gradients (e.g. hotpsots), and 4) the sensitivity to hydraulic 

and biologic parameters in each zone. 
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CHAPTER II 

METHODS 

Study Site 

The Ipswich River is a coastal 5th order watershed located approximately 30 km 

north of Boston, Massachusetts, and is experiencing rapid suburbanization (Figure 1). 

The watershed is shallowly sloped (0.06%) (Claessens et al. 2006), drains an area of 

approximately 400 km2 and consists of 36% forest, 30% suburban, 20% wetlands, 7% 

agriculture, 4% industrial/commercial, and 3% open water (Wollheim et al. 2008). 

Nearly 10% of the basin is impervious. The population density in the basin is 302 people 

per km2, and 60% of the population is served by septic systems. Mean annual 

precipitation is approximately 1188 mm per year, 45% of which is converted to runoff 

reaching the basin mouth (Claessens et al. 2006). Mean annual discharge at the basin 

mouth is 5.4 m3 s"1 and typical summer baseflow is about 1 m3 s 1. The Ipswich River has 

high nitrate concentrations that are correlated with suburban and agriculture land types 

(Williams et al. 2004; Wollheim et al. 2005). Due to an increase in anthropogenic 

disturbances, there have been significant changes to the system's hydrology 
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(Claessens et al. 2006; Pellerin et al. 2007), DIN inputs (Williams et al. 2004), and DIN 

retention in headwater catchments (Wollheim et al. 2005). 

Ipswich River Network 
River 

Mouth 

# Discharge Gauge Stations 

Tracer Experiment Locations 

(Briggsetal. 2008) 

Stream Order 
1st 4th 
2nd — 5th (a) 
3rd 5th (b) 

Figure 1 The Ipswich River is a 5 order river network and has two USGS gauge stations 
on its mainstem (USGS Ipswich Gauge No. 0110200 and USGS Middleton Gauge No. 
01101500). Five tracer experiments were conducted in Ipswich River segments and a 
sixth was completed in the neighboring Parker River (Briggs et al. 2009, in review). 
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River Network Model 

The Ipswich River DIN removal model was developed to evaluate the role of TS 

on DIN removal processes at basin scales. Hydraulic and biogeochemical parameters 

quantified in the field were used in this spatially-distributed, gridded river network 

model to simulate DIN inputs, hydrology, hydraulic processes, and denitrification during 

a summer baseflow period. The Ipswich river network DIN removal model is operated 

within the UNH aquatic modeling system, the Framework for Aquatic Modeling in the 

Earth System (FrAMES) which has been employed in a number of previous hydrological 

studies (Wollheim et al. 2008; Wollheim et al. 2008; Wisser et al. 2009). The model has 

been populated with Ipswich-specific empirical data collected through various field 

investigations and data sets downloaded from national inventories. The month of 

August, 2001 was selected as the primary study period because the range of flow 

conditions observed at the river mouth (mean = 1.32 m3 s"1, median = 0.91 m3 s"1, 

standard deviation = 0.82 m3 s"1, n = 31) matched the range in flow conditions observed 

at the river mouth during field evaluations of hydraulic parameters (mean = 1.30 m3 s"1, 

median = 1.05 m3 s_1, standard deviation = 0.89 m3 s"1, n = 6) (Briggs et al. 2009, in 

revision). Field evaluations of hydraulic parameters occurred during the summers of 

2007 and 2008 but simulations were not conducted during this t ime period because 

there was not sufficient DIN monitoring data to compare model results wi th. 

8 



DIN Removal Approach 

Nitrogen removal in each river grid cell was simulated using a stream TS model 

derived from Mulholland and DeAngelis (2000) (Figure 2). Since DIN in the Ipswich River 

is dominated by NO3, removal is applied specifically to NO3. Total DIN removal for each 

grid cell is the combination of removal in the MC, STS, and HTS compartments and is 

calculated as: 

Removalj = RemovalMc + (TransferSTS * RemovalsTs) + (TransferHTs * Removal^s) (1) 

Where Removalj is the total proportional removal of DIN within grid cell i (unitless), 

RemovalMc (unitless) is the proportional removal of DIN in the MC compartment within 

grid cell i, TransferSTs (unitless) is the fraction of discharge and mass solute entering the 

STS compartment from the MC within grid cell i, RemovalSTs (unitless) is the proportional 

removal of DIN from the STS compartment within grid cell i, Transfer^ (unitless) is the 

fraction of discharge and mass solute entering the HTS compartment from the MC 

within grid cell i, and RemovalHTs (unitless) is the proportional removal of DIN from the 

HTS compartment within grid cell i. The transfer and removal terms for each 

compartment are defined as: 

RemovalMc = 1-0-exp (-Uf/HL) (2) 

TransferxTS = (axTS * AMc * L) / Q (3) 

RemovalXTs = 1.0 - exp (-kt * TXTS) (4) 

v f = kt * d (5) 
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HL = Q / ( w * L ) (6) 

TxTS = AxTS / (OxTS * AMC) (7) 

TMC = L / ( Q / A M C ) (8) 

where Vf is the apparent nutrient uptake velocity (m d1), kt is the time-specific DIN 

uptake rate (d1), d is water depth (m), HL is hydraulic load (m d"1), w is width (m), L is 

reach length (m), ctxTs is the exchange coefficient for the STS or HTS compartment (d *), 

AMC is the simulated cross-sectional area of the MC (m2), AxTs is the cross sectional area 

of the STS or HTS compartment (m2), Q. is the simulated average daily discharge in the 

grid cell i (m3 d"1), TXTS is the residence time of water in the STS or HTS compartment (d), 

and TMC is the residence time of water in the MC compartment (d). It is important to 

note the underlying differences in the two nutrient removal metrics applied in this 

study. A vertical uptake velocity is applied to the MC (vf) whereas time-specific 

volumetric DIN uptake rates (kt) are applied to STS and HTS compartments. Therefore, 

when applying spatially uniform reaction rates to all three compartments, the Uf value 

for the MC will remain constant throughout the network, but the kt value for the MC will 

vary because it is a function of river depth (Alexander et al. 2000). 

The downstream flux of DIN from grid cell i (Fluxi) is calculated as: 

FIUXJ = (Upstreami + Localj) * (1.0 - Removal^ (9) 

where Upstreami (kg d1) is the sum of DIN inputs flowing into grid cell i from 

immediately upstream grid cells during the time step, and Locali (kg d"1) is the total DIN 
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input from land generated within grid cell i. The output flux from immediate upstream 

grid cells become the input flux to the cell immediately downstream, and so on 

downstream for the sequence of cells to the river mouth. Removal is calculated on a 

daily time-step and results are processed using monthly averages. 

DIN inputs 

Local "">• 
Upstream B ^ 

Surface TS 

Removals = 1 - exp (-k,TSTS) 

ISTSTransfer = {ou^s* AMC * L) / Q 

| | HTS Transfer = ( a ^ * AMC * L) / Q 

Main Channel 

RemovalMt = 1 - exp (-Vf/HL) 

Downstream 
DIN Flux 

Hyporheic TS 

RemovalHTS= 1 - exp (-k,TliTS) 

Headwaters •> Basin Mouth 

Figure 2 Conceptual model of MC, STS, and HTS DIN removal for a single river grid cell, 
derived from Mulholland and DeAngelis (2000) and updated to account for two TS 
compartments instead of one lumped zone. The resulting DIN flux from a river grid cell 
goes downstream to the next sequential grid cell and so on to the basin mouth for every 
flow path in the river network. 
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The fraction of median travel time due to STS or HTS (Fmed) is a useful and 

commonly applied metric in evaluating the relevance of TS on water transport (Runkel 

2002). The fraction of median travel time due to STS or HTS (xTS) is calculated as: 

Fmed xTS = (1 - e _L(a/u)) * AxTS / (AMC + ASTS + AHTS) (10) 

Where a is the exchange coefficient for the xTS compartment, u is velocity (m s" 

x) and u = (Q / AMc)- To compare studies conducted at different scales, a standard 

distance (L) of 200 m is typically applied (Fmed
200) (Runkel 2002). 

To assess the importance of exchange with TS at network scales, I have adjusted 

several existing metrics and created a few new ones. First, the average flow path 

distance required for an average water molecule to enter HTS or STS once (SHTS or SSTS) 

was derived from Mulholland (1994) and is calculated by dividing the total length of a 

particular river order by the summation of Transfers terms (equation 3) for the river 

order: 

n 

5X.) 

Where SXTS, Z is the flow path distance (m) required to enter the STS or HTS one 

time for a stream of order Z, n is the total number of grid cells of stream order Z, and Lz 

is the length of each grid cell of stream order Z (m). 
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The number of times an average water molecule enters TS along a flow path 

from the grid cell of runoff generation, j , to the river mouth is calculated as: 

n 

EntriesxTSj = ^ [Transfer^] 
i = 1 (12) 

where EntriesXTs, j is the number of entries into STS or HTS for an average water 

molecule along its flow path from the grid cell of runoff generation, j , to the basin 

mouth, i is the local river grid cell, and n is the total number of river grid cells in 

sequence to the river mouth. A basin-scale average (EntriesxTs, basin avg) is calculated by 

dividing the total number of entries of runoff from all grid cells (k is the total number of 

grid cells) by the total volume of runoff generated by all grid cells (Runoffj): 

/ J [ErrtriesxTS j * Runoffj] 

tn tnes^g ^ âsm ^g— -

^ [Runoff] 
i = 1 (13) 

The total residence time (d) that an average water molecule spends in STS, HTS, 

and MC compartments along its flow path from the grid cell of runoff generation, j , to 

the basin mouth is calculated as: 

TxTS, M 

i = l (14) 
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'S*orFlowpath, MC, j ~ 2id ^MC- '' 
i = l (15) 

Where i is the local river grid cell, n is the total number of river grid cells in 

sequence to the river mouth, and xxTs and xMc (d) are defined in equations 7 and 8, 

respectively. A basin-scale average (Tstorbasin avg), is calculated by weighting the average 

residence time in each compartment (TstorF|0Wpath, MC,J, TstorFi0wPath, HTSJ, TstorF|0wpath,sTs,j) 

by the volume of runoff that travels through each flow path (Runoffj): 

Tstor, basin avg' 

X [TstorF!owpathj * Runoff] 
j = i 

5V 

^ [Runoff^ 
i= i (16) 

Hydrologic Conditions 

A hydrologic approach was applied that provided an accurate portrayal of 

baseflow conditions throughout the river network, while also giving slightly greater 

weight to urban portions of the basin which tend to have somewhat higher flows. 

USGS gage data were used to calculate mean basin runoff for the upper and lower 

portions of the Ipswich basin. Daily runoff for the upper basin (ROmid, rnm d"1) was 
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based on discharge measured at the USGS gage station 01101500 at Middleton and then 

scaled using the contributing drainage area to the gage. Runoff for the lower portion of 

the watershed was calculated based on the difference in discharge measured at the 

Middleton gage and the USGS gage station 01102000 at Ipswich and then scaled by the 

amount of inter-station contributing drainage area (ROjPS/ mm d"1) (Figure 1). To 

account for an increase in runoff due to imperviousness, the Ipswich River basin was 

partitioned into approximately 2 km2 subbasin areas and percent impervious surfaces 

were calculated for each (Wollheim et al. 2008). Runoff from each subbasin was derived 

from ROmid and ROipS/ depending on whether the subbasin is in the upper or lower 

portion of the watershed, and was scaled based on a factor that is a function of 

subbasin imperviousness: 

ROsub = ROx * F_IMPsub (17) 

FJMPsub = (22.4 + 0.27 * IMPsub)/25 (18) 

where ROx is ROmid or ROips (mm d"1), IMPSUb is the percent of impervious area in the 

subbasin, and F_IMPsub is an empirical scaling factor that accounts for a greater 

proportion of runoff generated in urban catchments than in forested catchments 

(Wollheim et al. 2005; Pellerin et al. 2007). Daily discharge in each river grid cell was 

calculated by flow accumulation of runoff from upstream grid cells. The approach used 

here follows that used in a study by Wollheim et al. (2008). 

Comparisons of predicted and observed daily discharges for the month of 

August, 2001, were made at the USGS Ipswich gauge (324 km2 drainage area, 11.7% 
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impervious), USGS Middleton gauge (115 km2 drainage area, 16.4% impervious), and the 

UNH Sawmill Brook gauge (4.1 km2 drainage area, 24.6% impervious). Measures of 

correlation and difference between predicted and observed discharge were quantified 

using the observed mean (6), predicted mean (P), the standard deviation of the 

predicted discharge (Sp), the standard deviation of the observed discharge (S0), the 

intercept of the regression line (a), the slope of the regression line (b), the mean 

absolute error (MAE), the root mean square error (RMSE), and the Nash-Sutcliffe 

coefficient (NS). The MAE, RMSE, and NS measures are calculated as follows (Willmott 

1982): 

MAE 

E ^i"Oil 
i = i 

n (19) 

RMSE 

2>rOiF 
i = i 

n 

0.5 

(20) 

NS = 1 

5>,-P,]a 

i = l 

2 > r O F 
i = l (21) 

16 



River Network Geomorphology 

A digital topological river network with 120 m grid cell resolution (STN-120m) 

was used that was previously applied by Wollheim et al. (2008). The network was 

originally developed using 30-meter resolution digital elevation model (DEM) with USGS 

hydrography (1:25,000) burned in using the AGREE program (Hellweger and Maidment 

1997). Grid cells that are not intersected by hydrography are strictly land cells and do 

not have a river component. The resulting drainage network is a 5 l order river system 

(Table 1, Figure 1). Due to a long 5th order river segment that is not typical of observed 

scaling relationships (Horton 1945), I partitioned the 5th order reach into 5a and 5b 

segments to avoid skewing results based on river size. The 5a segment was identified as 

having a contributing area of 140 km2, as would be expected in the Strahler stream 

order system (Horton 1945) based on the configuration of the Ipswich River and its 

network drainage area ratio of 4. The 5b segment is downstream of the 5a section and 

constitutes the remaining length of the mainstem. 

Table 1 Geomorphic characteristics of the Ipswich River network. 

Stream Order 

1 

2 

3 

4 

5a 

5b 

M i 

Dra 
ean Direct 
inage Area3 

(km2) 

0.52 

2.35 

9.60 

34.5 

148 

404 

Mean Stream 
Length 
(km) 

0.65 

1.33 

2.77 

5.62 

13.3 

23.5 

Stream 
Count 

432 

103 

28 

6 

1 

1 

Direct 
Drainage Area 

(fraction) 

0.57 

0.21 

0.11 

0.05 

0.03 

0.04 
a Average watershed area draining directly to each stream order 

Proportion of total watershed area draining directly to each stream order 
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River hydraulic geometry was simulated using downstream power law 

relationships specific to the Ipswich network that adjust cross-sectional form to 

accommodate the mean annual discharge. Mean annual channel width (Wj) and depth 

(D|) in river grid cell i were calculated using mean annual discharge (Qj) with the 

following set of equations: 

Wi = 9.56 * Qj 0 6 5 (22) 

D, = 0.45 * Qj 0 1 7 . (23) 

These power law relationships were derived from Ipswich River hydraulic data at 10 

USGS streamflow gauges (Zarriello 2000), and 8 years of field data collected at two 

headwater stream locations. Instantaneous channel width and depth in grid cell i (WJ 

and di) at each time step is based on the at-a-site power relationship with instantaneous 

discharge (q,): 

w, = 9i * qi
Y (24) 

di = b;*qiz , (25) 

AMC = w, * d| (26) 

where aj = Wi / QiV, bi = D, / QjZ, and AMc is the cross sectional area of the main channel 

(m2). The values for y and z are 0.1 and 0.4, respectively and are based on Ipswich data 

(Zarriello 2000) and are typical of rivers worldwide (Park 1977). 
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Transient Storage Hydraulic Characteristics 

To model DIN removal in non-advective zones, specific TS hydraulic parameters 

are needed to characterize the TS compartment's connectivity with the MC and 

residence times (Figure 3). River network STS and HTS hydraulic parameters are based 

on values reported for 6 tracer experiments conducted as part of this collaborative 

study during summer low f low periods in 1 s t through 5 th order stream segments within 

the Ipswich and Parker Rivers (Briggs et al. 2009, in revision) (Figure 1). Assuming that 

the four transient storage parameters (aSTs, CXHTS, AS TS/AMC, and AHTS/AMC) are typical of 

most hydrology data and are log-normally distributed (Yevjevich 1972), a log-

transformed mean was calculated for each parameter value. The mean values were 

then re-transformed via exponentiation to original units and applied throughout the 

river network. From this point forward, re-transformed lognormal mean values are 

simply referred to as mean values. The mean exchange coefficient for the STS (1.3 x 10"4 

s"1) is about an order of magnitude higher than the mean exchange coefficient for the 

HTS (9.5 x 10"6 s_1) while the mean cross-sectional area of the STS relative to the MC 

(ASTS/AMC = 0.20) is smaller than the mean value for AHTS/AMC (0.35) (Table 2). 

Uncertainty in each parameter mean value was quantified with a 95% confidence 

interval (CI) (Table 2). While these experiments indicate that ASTS, AHTS, and AMc increase 

with contributing drainage area, it remains uncertain whether the relative cross-

sectional areas (ASTS/AMC and AHTS/AMC) change with stream size because of a limited 

sample size. Various spatial distributions of STS and HTS parameter values were 

evaluated with the model as alternative scenarios (see below). 
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Table 2 Summary of TS hydraulic and reactivity parameters. 

Statistic 

N 
Lognormal Mean 

Lognormal Standard 

Deviation 

Re-transformed Mean 

(original units) 

Re-transformed 95% 

Confidence Interval 

(original units) 

C(STS 

6 
-8.95 

0.41 

1.3 x 10"4 

(s1) 

0.94 x 10"4 -

1.82 x 10"4 

Is"1) 

OHTS 

6 

-11.6 

0.76 

9.53 x 10° 

(s1) 

0.49 x l O " 6 -

18.5 x 10"6 

(s1) 

ASTS/AMC 

6 
-1.59 

0.37 

0.20 

(mVm'J 

0.15-

0.27 

(m / m ) 

AHTS/AMC 

6 
-1.06 

1.71 

0.35 

(m7mJ) 

0.09-

1.36 

(m2 /m2) 

k, 

8 
-0.45 

1.1 

0.64 

Id"1) 

0.26-

1.53 

(cf1) 

A/ 

T 
STS i^SurfaceTS 

Main Channel f\\ (STS) 
(MC) a \ j ... 

" H T S 

HyporheicTS(HTS) 

Figure 3 Conceptual diagram of advective (MC) and non-advective (STS and HTS) 

compartments in a river cross-section. The blue, green, and orange areas represent AMC, 

ASTS/ and AHTs, respectively. Exchange coefficients (aSTs, aHTs) characterize the 

compartments connectivity w i th the MC. 
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DIN Inputs 

Spatially distributed DIN inputs to the river network were derived from empirical 

relationships between DIN concentration and land use and are described in full by 

Wollheim et al. (2008). Using this relationship, the model simulates runoff DIN 

concentrations as a function of percent human land cover (residential + commercial + 

agricultural land) and runoff conditions (Wollheim et al. 2008). Percent human land 

cover for the Ipswich basin is provided in Figure 4. Load concentration estimates match 

observations best when flow conditions measured at the basin mouth are greater than 1 

m3 s"1 (Wollheim et al. 2008) and, therefore, are suitable for this study. 

8* 
Percent Human Land Use 

0-10% 11150-80% 
10-20% I j i l i 60-70% 

' 20- 30% — 70-80% 
' " * : :"'-"i 30-40% I 80-80% 

13340-50% 

Figure 4 Percent human land use in the Ipswich basin (residential, commercial and 
agricultural land types). Data is source is MassGIS land use layer (2005) based on 0.5 m 
resolution ortho photographic imagery captured in April 2005. 
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Biological Activity 

DIN uptake values were based on results from 15N03 tracer experiments 

performed during the summers of 2003, 2004 and 2005 in eight headwater streams in 

the Ipswich River as part of the LINX2 project (Mulholland and al. 2008). The time-

specific biological reactivity rate (kt) required in TS and the MC to match observed reach 

DIN uptake velocities (vf) was solved for each of the eight experiments using a single-

compartment version of the TS model presented in Figure 2. A lumped compartment 

model was used here because the LINX2 data were not partitioned between STS and 

HTS compartments. A kt value for each experiment was computed using the Solver 

function in Excel and a lognormal mean was calculated from all 8 experiments. The 

resulting re-transformed mean reactivity rate was 0.64 d"1 and was applied uniformly 

throughout the river network in the MC, STS and HTS. The average depth across all the 

LINX2 stream experiments was 0.131 m, therefore a kMC value of 0.64 d"1 in these 

headwater streams equates to a Vf value of 0.084 m d"1. From this point forward, the 

re-transformed lognormal mean reaction rate is referred to as the mean reactivity rate. 

It should be noted that it is highly unlikely that reactivity in the three 

compartments are identical, but there are very few studies that separate processing 

rates between advective and non-advective zones of the stream channel (Thomas et al. 

2003). Generally, HTS is considered to have the highest processing rate for nitrate 

removal because water would encounter a greater degree of biofilms and anoxic zones 

there than it would in surface water (Hall et al. 2002). STS is a depositional zone for 

organic matter and could promote these conditions along the water-sediment interface 
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and therefore, it is likely that STS has a greater processing rate than the MC (Hall et al. 

2002). To test the sensitivity of network scale DIN removal to different processing rates, 

alternative scenarios were developed that varied (1) the uniform processing rate applied 

to all three compartments, and (2) independent rates in each compartment. 

Observed Concentration Data 

Observed DIN concentrations at the basin mouth are based on two-day 

composite samples taken from an automated sampler by the Plum Island LTER during 

the months of July, August and September (2002 - 2006). Comparisons are made 

between predicted and observed DIN concentrations at the river mouth. In addition, a 

synoptic survey of DIN concentrations was conducted on August 26, 2001 at 15 

locations along the mainstem and tributaries of the Ipswich River. A comparison was 

made between predicted and observed DIN concentrations along a basin profile of the 

longest distance from the river mouth to a headwater stream and the prediction error 

(PE) was calculated at the river mouth. PE is calculated as (P - O) / O * 100, where P and 

O are predicted and observed values, respectively (Alexander et al. 2002). Negative PE 

values indicate the model prediction is too low while positive PE values indicate it is too 

high. 

Scenarios 

A number of scenarios were developed to test the sensitivity of river network 

scale DIN removal to uncertainties in the magnitudes and spatial distributions of TS zone 
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hydraulic parameters (Table 2). In the base scenario (Scenario la) , the mean value for 

each of the five parameters (AHTS/A = 0.35, ASTs/A = 0.20, aHTs= 9.5E6 s"1, aSTs = 1.3E4 s"1, 

and k t= 0.64 d"1) was applied uniformly throughout the river network. These estimates 

represent our "best understanding" of parameter values throughout the basin, based on 

empirical findings. To address the uncertainty in network DIN removal associated with 

these empirical averages, a Monte Carlo analysis was conducted (500 model runs) using 

randomly selected combinations of the 5 parameter values (Scenario l b , Figure 5b, 

Table 3) from ranges developed from the lognormal mean and standard deviation for 

each parameter (Table 2). Random values for each parameter were selected from a 

lognormal distribution using a rational approximation (Odeh and Evans 1974; Salas 

1993) and applied uniformly throughout the river network. 

Next, a sensitivity analysis was conducted to evaluate how network scale DIN 

removal would respond to a heterogeneous spatial distribution of parameter values. 

The magnitude and spatial distribution of runoff and DIN inputs to the river network 

remain the same for all scenarios. The cross-sectional area of the MC (AMc) varies 

identically with discharge in all scenarios (equation 26). These scenarios are discussed 

in greater detail, below. 

Spatial Heterogeneity (Scenario 2). It is unreasonable to expect that TS hydraulic 

characteristics and processing rates will be spatially uniform throughout the river 

network. I explored the sensitivity of network DIN removal to 500 random 

configurations of spatial heterogeneity in TS hydraulic and biogeochemical parameters. 
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Each grid cell in the river network was assigned random parameter values (Figure 5c) 

selected from lognormal distributions developed from the lognormal mean and 

standard deviation for each parameter (Table 2). Random values were selected from 

the lognormal distribution using a rational approximation (Odeh and Evans 1974; Salas 

1993). Processing rates in the MC, STS, and HTS are identical within a grid cell, but vary 

spatially. In contrast, STS and HTS hydraulic parameters vary independently. 

Spatial Heterogeneity and Increase in AT,S/AMC with River Size (Scenario 3). 

Results from Briggs et al. (2009) suggest that AHTS/AMC and ASTS/AMC may increase with 

river size for contributing drainage areas up to 200 km2. This relationship was not 

significant because of limited data points. A scenario was developed to evaluate the 

impact of this potential scaling relationship on network scale DIN removal with an 

embedded degree of spatial heterogeneity (Figure 5d). It was assumed the lognormal 

means for ASTS/AMC and AHTS/AMC generally increase with basin size, based on fits to the 

empirical data (Briggs et al. 2009, in revision). Heterogeneity was introduced by 

selecting random parameter values from a lognormal distribution around the empirical 

means and standard deviations (Table 2). No empirical data were available for river 

segments with drainage areas greater than 200 km2, so parameter values in these 

segments were selected from the full distribution range. Reactivity rates (kt) and 

connectivity parameters (CISTS, ctHTs) were distributed heterogeneously throughout the 

river network as they were in Scenario 2, with no constriction based on contributing 

drainage area. 
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Sensitivity to TS Hydraulic Parameters (Scenario 4). The sensitivity of total 

network DIN removal to various combinations of exchange coefficients (aSTs, ctHTs) and 

TS zone sizes (ASTS/AMO AHTS/AMC) was investigated in Scenario 4. A hypothetical range 

in TS hydraulic parameters was established from 0 to 10 times the mean network values 

provided in Table 2. DIN processing rates are kept constant throughout the river 

network (kt = 0.64 d_1) 

Sensitivity to Reactivity Parameters (Scenario 5). It is highly unlikely that 

processing rates in the three compartments are identical. The sensitivity of total 

network DIN removal to various combinations of individual processing rates in the three 

compartments was evaluated in Scenario 5. A hypothetical range in kt values from 0.0 

to 10 times the mean empirical value of 0.64 d"1 was used. In this scenario, all TS 

hydraulic parameters (aSTS, aHTs, ASTS/AMO and AHTS/AMC) were kept constant throughout 

the river network as the mean values provided in Table 2. 
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Table 3 Summary of model scenarios. 

No. Description TS Hydraulic Parameters Reactivity Parameters 

Base Scenario: 
la . uniform parameter 

values (mean) 
Uniform 

lb . parameter values 
(Monte Carlo Analysis) 

Spatial heterogeneity 
(Monte Carlo Analysis) 

Spatial heterogeneity 
with increase in AT;-,/A\ic 

with river size 
(Monte Carlo Analysis) 

Sensitivity to 
4. TS hydraulic 

Parameters 
Sensitivity 

5. to reactivity 
parameters 

Mean network values 

Uniform network values 
randomly selected from 
log-normal distributions 
Grid cell values randomly 
selected from log-normal 

distributions 

Grid cell values randomly 
selected from log-normal 

distribution and adjusted based 
on contributing drainage area 

Hypothetical range 

Mean network values 

Mean network value 

Uniform network values 
randomly selected from 
log-normal distributions 
Grid cell values randomly 
selected from log-normal 

distributions 

Grid cell values randomly 
selected from log-normal 

distributions 

Mean network value 

Hypothetical range 
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Figure 5 Conceptual diagram of spatially varying grid cell parameter values for a single 
model run for a.) Scenario la , b.) Scenario l b , c.) Scenario 2 and d.) Scenario 3. Each 
point represents an individual grid cell with a specified contributing drainage area. 
Scenario la applies a mean network parameter uniformly throughout the river network. 
Scenario l b randomly selects parameter values and applies them uniformly throughout 
the network. Scenario 2 applies a random distribution of parameter values throughout 
the river network. Scenario 3 applies a trend of increasing TS size with drainage area 
(up to 200 km ), with all other parameters distributed heterogeneously. 
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CHAPTER III 

RESULTS 

Discharge 

The hydrological model adequately predicts discharge throughout the river 

network during baseflow conditions (Figure 6a, 6b, and 6c). Predicted flows at the 

Ipswich (gauge number 00102000) and Middleton (gauge number 00101500) USGS 

gauge locations closely match observed discharges as indicated by Nash-Sutcliffe values 

of 1.00 at each site (Table 4). The variability in predicted discharge is similar to the 

variability in observed discharge at these two gauge locations (Table 4). The RMSE and 

MAE are among the best metrics of model performance (Willmott 1982) and indicate 

there is very little difference between observed and predicted flows at these two 

locations on the main stem. Predicted discharge at the Sawmill Brook station was 

significantly lower than observed discharge during four days that had relatively high 

flow levels (8/3, 8/4, 8/10, and 8/12/2001). Therefore, the model may overestimate DIN 

removal in small urban catchments during precipitation events because discharge is 

inversely proportional to removal efficiency (Wollheim et al. 2008). Omitting these four 

days from the data set indicates the model slightly overestimates baseflow levels (Figure 
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6c). Therefore, the model provides a conservative estimate of DIN removal in urban 

headwater catchments during normal baseflow conditions. 
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Figure 6 Scatter plots of observed versus predicted daily average discharge for the 
month of August, 2001, at a.) USGS Ipswich gauge number 00102000, b.) USGS 
Middleton gauge number 00101500, and c.) Sawmill Brook gauge maintained by the 
Water Systems Analysis Group at the University of New Hampshire. Observed and 
predicted flows at the Sawmill Brook gauge are highly correlated for flows less than 0.07 
m3s"1(n = 27). 

Table 4 Quantitative measures of runoff model performance at three gauge locations for the 

month of August, 2001. The Nash-Sutcliffe (NS) value for Sawmill Brook is negative which 

indicates the observed mean is a better predictor than the model. 

O P S0 Sp 

Gauge 3 - 1 3 - 1 3 - i 3 - 1 n 
m s m s m s m s 

B R MAE RMSE NS 

USGS 
Ipswich 

USGS 
Middleton 

UNH 
Sawmill1 

1.32 1.35 

0.63 0.67 

0.02 0.03 

0.82 0.84 31 

0.59 0.62 31 

0.01 0.02 27 

0.00 1.02 1.00 0.03 0.05 1.00 

0.00 1.05 1.00 0.03 0.04 1.00 

-0.01 1.76 0.8 0.01 0.02 -0.57 

^our days (8/3, 8/4, 8/10, and 8/12/2001) were removed from the data set because of high flows 
associated with precipitation events. 
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MC-STS and MC-HTS Exchange: Base Scenario 

Empirical results (Briggs et al. 2009, in revision) indicate that hydrological 

conductivity, determined as the per time water exchange coefficient (a, s"1), is greater 

between the MC and STS than between the MC and HTS (Table 2). Model results 

further quantify this connectivity at the reach and network scales. For the base 

scenario, in which the mean TS hydraulic characteristics are applied throughout the river 

network and AMc increases with discharge, model results suggest the flow path distance 

required for an average water molecule to enter the HTS (SHTS) is approximately 10 

times the distance of SSTS (Table 5). Per unit length, water has the greatest opportunity 

to enter TS in headwater streams, and connectivity decreases as river size increase 

(Table 5). However, water is more likely to enter TS in a higher order reach because 

these reaches are longer (Table 5). 

Table 5 Average number of water molecule entries into STS, HTS for base scenario. 

River 
Order 

1 
2 

3 
4 

5a 
5b 

Mean 
Reach 
Length 
(km) 

0.65 
1.33 
2.77 
5.62 

13.3 
23.5 

Average number of TS 
entries per water 
molecule per km 

STS 

3.60 
2.70 
2.07 

1.70 

1.26 

1.02 

HTS 

0.26 
0.20 

0.15 
0.12 

0.09 
0.07 

Average Travel 
Distance required 

for one entry intoTS 
(km) 

STS 

0.28 
0.37 
0.48 

0.59 

0.79 
0.99 

HTS 

3.79 

5.05 
6.59 
8.04 

10.8 
13.4 

Average number of TS 
entries per water 

molecule per mean 
reach length 

STS 

2.34 

3.60 
5.74 
9.54 

16.8 

23.9 

HTS 

0.17 
0.26 
0.42 
0.70 

1.23 
1.75 

Average number of STS entries per 200 m Ipswich segment = 0.58 

Average number of HTS entries per 200 m Ipswich segment = 0.04 

At basin scales, and given the geomorphology of the Ipswich, half of the runoff 

generated basin-wide during baseflow periods enters the STS at least 36.6 times as it 

31 



travels through the river network (Figure 7). Some water molecules enter the network 

at the most distant headwater streams and, therefore, can pass through the STS 

approximately 75.8 times. Predicted connectivity between MC and HTS at network 

scales is much lower than between MC and STS. On average, 50% of runoff enters the 

HTS at least 2.68 times during its flow path through the network (Figure 7) and the 

maximum number of entries for an average water molecule is 5.6. Over 90% of runoff 

water molecules pass through HTS at least once before exiting the river network. 
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Figure 7 Cumulative frequency distribution of basin wide runoff entering STS and HTS 
during baseflow conditions for Scenario la . These results are calculated using equation 
12 and weighted by the total volume of water that travels along each flow path. Results 
account for the spatial distribution of runoff inputs to the river network. 
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MC. STS. and HTS Residence Times: Base Scenario 

The model predicts a network-wide average STS residence time of 0.018 days per 

entry to this zone before continuing downstream (Table 6). This is similar to the average 

empirical residence time of 0.019 days per entry measured at the 6 experiment sites 

(Briggs etal . 2009, in revision) (Table 6). The average modeled residence time in the 

HTS compartment, 0.42 days, is much lower than the empirical average of 1.03 days 

(Briggs et al. 2009, in revision). Residence times in the MC compartment per grid cell 

(120 m, or 170 m flow length) range from 0.01 day to 0.07 day with shorter durations 

occurring in downstream river segments. The fraction of median travel time due to 

temporary retention in TS compartments over a 200 m segment (Fmed
200) is a function of 

both connectivity and residence time. Model results were similar to observations in 

that Fmed
200STS was significantly higher than Fmed

200HTS (Table 6). 

Table 6 Comparison of observed and modeled TS residence times. 

Average Residence Time 200 

per Entry (d) rmed 

STS HTS STS HTS 

Observed3 

ID • . 1 ™nm ° - 0 1 9 L 0 3 1 0" 6 % °" 9 2 % 

(Briggs et al., 2009] 
Predicted 

, . „ _ , , „ • , 0.018 0.42 5.23% 0.92% 
(Model Results) 

' Average results for 6 experiment locations conducted during baseflows (Briggs et al., 2009b) 
'Average network results during baseflow conditions (this study) 

At the network scale, total residence time in TS is determined by the distribution 

of runoff, geomorphology, the probability of water entering TS in each grid cell, and the 

residence time of water upon entry into TS. Half the runoff generated at baseflows in 

the Ipswich has a total residence time of at least 3.26 days in the MC, 1.11 days in HTS, 
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and 0.65 days in STS (Figure 8). This suggests that the average runoff molecule will 

spend a total of nearly 5 days in the river network at low flow, 65% of this time in the 

MC, 22.1% in HTS, and 12.9% in STS. These results assume the river network consists of 

channelized reaches only, and do not reflect the role of wetlands and lakes. Only 15.3% 

of baseflow runoff remains in STS for longer than one day during its flow path through 

the river network (Figure 8). The longest residence time that any grid cell's average 

runoff water molecule resides in STS as it moves through the network is 1.38 days. 

Some water molecules can remain in HTS and MC on average up to 2.35 days and 6.75 

days, respectively. Approximately 47.4% of the watershed surface area generates runoff 

that remains in HTS for at least one day (Figure 9), whereas only 10.8% of surface area 

generates runoff that remains in STS for at least one day (Figure 10). Runoff from 92.0% 

of the watershed area remains in the MC for at, least one day. 

The fraction of median transport time (Fmed) due to MC, STS, and HTS is different 

depending on whether evaluated at reach or network scales. Based on reach scale 

Fmed200 results (Briggs et al. 2009, in revision), the MC contributes the most to median 

travel times (88.5%), followed by STS (10.6%) and HTS (0.92%) (Table 6). However, at 

the network scale, a greater proportion of median transport time is due to TS and HTS 

becomes more important than the STS (Figure 8). Model results indicate the fraction of 

total basin residence time due to MC, STS and HTS are 65%, 12.9% and 22.1%, 

respectively. This discrepancy indicates that Fmed
2°° is not a scale independent measure 

of transport times. The importance of HTS retention on median travel times emerges 

only at large scales because although MC-HTS exchange is relatively small for any given 
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reach, at the scale of the entire flow path, there is a high probability of water entering 

HTS at some point. The limitation in the Fmed
200 metric is visited further in the discussion 

section. 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Fraction of Total August Runoff 

Figure 8 Cumulative frequency distribution of the total residence times that water 
molecules spend in surface transient storage (STS), hyporheic transient storage (HTS) 
and main channel (MC) during baseflow conditions in Scenario la. These results were 
calculated using equations 14 and 15 and were weighted by the total volume of water 
that travels along each flow path. Results account for the spatial distribution of runoff 
inputs to the river network. 
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Figure 9 Spatial distribution of the total cumulative residence time of runoff in HTS. 
Colors represent the total cumulative residence time that runoff will remain in HTS 
during its flow path from point of generation to the river mouth. 

Figure 10 Spatial distribution of the total cumulative residence time of runoff in STS. 
Colors represent the total cumulative residence time that runoff will remain in STS 
during its flow path from point of generation to the river mouth. 
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Network Scale DIN Removal Among MC. STS, and HTS Compartments: Base Scenario 

The river system was extremely effective at removing DIN under baseflow 

conditions. DIN removal predicted by the model base scenario for August 2001 

accounted for 73.1% of total DIN inputs to the river network (Figure 11). The MC 

compartment removed the largest proportion of total DIN inputs (38.2%), whereas the 

HTS and STS removed 20.9% and 14.0%, respectively (Figure 11). These results are 

supported by the long total residence times in the MC at the network scale compared to 

total residence times in STS and HTS (Figure 8). 

A comparison based on uniform segment lengths (200 m) indicates that small 

streams were the most efficient in removing DIN fluxes (Table 7). The fraction of stream 

DIN flux removed decreased with increasing stream order. The MC compartment is the 

most efficient at removing DIN flux per unit distance, and HTS is more efficient than STS 

(Table 7). The effectiveness of MC to remove DIN per uniform length decreases with 

increasing stream order because depth and velocity increase with river size and a 

constant uptake velocity (uf) was applied. The fraction of stream DIN flux removed in 

the STS and HTS decreased with river size because there is a disproportional increase in 

AMC in the downstream direction and this reduces the proportion of water transfer from 

MC to TS (equation 3). The removal percentages in Table 7 are not additive over a string 

of multiple 200 m segments because downstream segments cannot processes any DIN 

removed by upstream reaches and new DIN inputs are continuously being added along 

the river continuum. 

37 



Table 7 Average percent DIN flux removed per 200 meter stream segment. These values represent the 
average percent removal of DIN flux that enters a 200 m segment and do not reflect the proportion of 
total basin inputs removed by the entire network. 

Stream Order MC STS HTS Total 

1 7.27% 0.83% 1.25% 9.35% 

2 4.31% 0.62% 0.94% 5.88% 

3 2.63% 0.48% 0.72% 3.83% 

4 1.82% 0.39% 0.59% 2.80% 

5a 0.93% 0.29% 0.44% 1.67% 

5b 0.56% 0.23% 0.35% 1.15% 

In terms of total basin DIN inputs removed by all river segments, the majority of 

predicted DIN removal occurred in higher order river segments (Figure 11). 5th order 

river segments contributed 46.5% of total predicted network DIN removal while 

representing only 7.3% of the total river length. This is largely due to the downstream 

location of 5th order reaches where a large proportion of total basin inputs enter the 

upstream ends of these segments. Although the 5th order reach represents only 7.3% of 

total river length, it is all in one continuous segment, and therefore is the longest part of 

the total flow path traveled by an average water molecule. 

Generally, the proportion of total DIN inputs removed by stream order increases 

from 1s t to 5th order streams (Figure 11). The exception is 3rd order streams which 

contribute greater DIN removal than 4th order streams due to the relatively short total 

lengths of 4 th order streams in the Ipswich river network (5.9% of total river length). 

Headwater streams (orders 1 -2 ) contribute a relatively small amount to total network 

removal. The MC compartment dominates removal across river order, because of the 
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substantial total residence time of water there and because identical reactivity rates 

were assigned to all three compartments. The HTS contributes more removal than the 

STS compartment for all river orders, but the effectiveness of STS relative to HTS 

increases with river size. 
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Figure 11 Proportion of total network inputs removed during August 2001 by main 
channel (MC), surface transient storage (STS), and hyporheic transient storage (HTS) 
throughout the river network for August 2001 flow conditions. 5* order river segments 
with contributing drainage areas greater than 140 km2 were classified as '5b'. 

Comparison with Observations 

Predicted and observed NO3 concentrations are similar at the river mouth during 

summer flow levels (Figure 12). Predictions fall short of capturing the observed 

variability in DIN concentrations at all flow levels (Figure 12). The model generally 
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under-predicts N03 concentrations during flows between 1.0 and 2.0 m3 s \ whereas 

the model over-predicts N03 concentrations during higher discharges. These results 

suggest that predicted network removal is too high for flows between 1.0 and 2.0 m3 s"1 

and too low for flow above 2.0 m3 s"1 measured at the basin mouth. Predicted removal 

is too low during high discharges because TS hydraulics may adjust with discharge and 

the model does not account for these changes. The TS hydraulics in the model are 

optimized for the flow conditions observed during the 6 tracer experiments (1.4 m3 s"1) 

conducted by Briggs et al. 2009. 

Modeled N03 concentrations match observations quite closely along the basin 

profile, tending to straddle the observed values (Figure 13). The prediction error (PE) at 

the basin mouth is -30% for typical baseflow conditions. A model run that mixes 

terrestrial DIN loads without any in-stream biological activity (i.e. kt = 0 d"1 in MC, STS, 

and HTS compartments) suggest removal processes in river networks are extremely 

important in regulating DIN concentrations along the basin profile and the simple 

dilution of DIN inputs, alone, cannot explain DIN concentrations at the basin mouth 

(Figure 13, red line). 
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Figure 12 Observed and predicted DIN concentrations for various summer flow 
conditions (binned based on discharge at the river mouth). Observed concentrations 
are two-day composite samples taken during the months of July, August and September 
from 2002 - 2006. Predicted concentrations are average daily DIN concentrations for 
the months of July, August and September, 2001 
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Figure 13 Comparison of observed and predicted DIN concentrations along the basin 
profile for August 26, 2001. The mixing scenario (red line) describes predicted DIN 
concentrations as a function of downstream mixing and no reactivity, the reactivity 
scenario (blue line) shows DIN concentrations as predicted by the base scenario 
(reactivity in MC, STS, HTS). 
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Sensitivity Analysis 

A number of scenarios were evaluated to test the sensitivity of river network 

scale DIN removal to varying magnitudes and spatial distributions of TS hydraulic 

parameters and biogeochemical characteristics (Table 3). Results for each scenario are 

discussed in detail, below. 

Uncertainty in Mean Network Parameters (Scenario lb) 

In this scenario, the model randomly selected a value from a lognormal 

distribution for each parameter and applied these values uniformly throughout the 

entire river network. Based on the uncertainty in the empirical mean network 

parameters, the model predicts a range in total network DIN removal from 10.8% to 

99.6% (Figure 14a) with first, second, and third quartiles of 54.2%, 74.3% and 90.0%, 

respectively (Table 9). The median removal value for the MC was 34.8% (first and third 

quartiles were 22.2% and 49.3%, respectively), 14.8% for the HTS (first and third 

quartiles were 5.8% and 30.7%, respectively), and 12.5% for the STS (first and third 

quartiles were 7.3% and 17.5%, respectively). It should be noted the median removal 

values for each compartment are mutually exclusive and do not correspond to the same 

model run. 

The Wilcoxon Two-Sample test is a nonparameteric statistical method used to 

determine if two groups of observations were drawn from the same distribution. This 

test was used to determine whether there is a statistical difference between the 

predicted removal by the MC, STS, and HTS in the 500 model runs. In this instance, the 
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null hypothesis (H0) was that the contribution of DIN removal in two compartments X 

(STS) and Y (HTS) have a common cumulative distribution function over the model runs. 

The alternative hypothesis (Ha) was that a randomly selected value from population X is 

smaller than a randomly selected value from population Y. This test was used to 

evaluate comparisons for STS-HTS, STS-MC, and HTS-MC. 

The Wilcoxon two-sample tests indicate that H0 is rejected in all cases (Table 8) 

and suggests there is a statistical difference in the removal proportions provided by 

each compartment in the 500 model runs. Therefore, the Monte Carlo analysis supports 

the finding that the MC removes the greatest proportion of total basin DIN inputs, 

followed by the HTS, and then the STS. However, this evaluation assumes reaction rates 

in the three compartments are identical. Further, it is acknowledge the importance of 

each compartment is based on empirical findings measured in channelized segments 

only. Wetlands, lakes, and beaver dams may have a significant role in network scale 

removal, but are not reflected in these calculations. 

Table 8 Wilcoxon two-sample test. 

Sum of 
Ranks (W) 

n 

|Z| 
Prob. > 

|Z| 
Result 

HTS - STS Comparison 

STS (X) 

231736 

500 

HTS (Y) 

268764 

500 

4.054 

<0.0001 

Reject H0, accept Ha 

HTS - MC Comparison 

HTS (X) 

184956 

500 

MC(Y) 

315544 

500 

14.298 

<0.0001 

Reject H0, accept Ha 

MC - STS Comparison 

STS (X) 

151540 

500 

MC(Y) 

348960 

500 

21.615 

<0.0001 

Reject H0, accept Ha 
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Spatial Heterogeneity (Scenario 2) 

Model runs of 500 combinations of spatially heterogeneous parameter values 

result in a small range of total network scale DIN removal from 83.4 to 87.7% (Figure 

14b). The median network removal for all model runs is 85.4%, which was a 

considerable increase from Scenario l b (74.3% of total basin inputs). Spatial 

heterogeneity increased the median network DIN removal from Scenario lb in the MC 

(from 34.8 to from 43.3%), the STS (from 12.5 to 18.0%) and the HTS (from 14.8 to 

24.0%) (Figure 14b, Table 9). Network removal is consistently higher across the 500 

model runs compared to Scenario lb because a spatially heterogeneous distribution of 

random parameters ensures the existence of a number of "hotspots" scattered 

throughout the river network. These hotspots are able to buffer upstream inefficiencies 

in DIN processing in river grid cells that were assigned low parameter values. Hot spots 

are created via a combination of one or more of the TS hydraulic parameters or biologic 

reactivity parameters. 

Spatial Heterogeneity and Increase in AJS/AMC with River Size (Scenario 3) 

An increase in ASTS/AMC and AHTS/AMC with contributing drainage area results in 

an increase in median network removal from Scenario lb from 74.3 to 89.3% (Table 9, 

Figure 14c). Network removal remains consistently high (from 87.7 to 92.3%) in the 500 

model runs evaluated (Figure 14c). Increasing TS size with contributing area (with 

heterogeneity) results in an insignificant increase (3.9%) in median network DIN removal 

compared to the scenario using mean TS size with heterogeneity (Scenario 2). 5th order 

rivers remove considerably more inputs in Scenario 3 (42.2% of total DIN inputs) than 
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they do in Scenario 2 (34.1% of total DIN inputs) (Table 9). The increase in 5 order 

removal occurs exclusively in the TS compartments, and most of this increase can be 

attributed to HTS. Conversely, removal by the MC in this scenario shifts upstream 

because inefficiencies in STS and HTS in small streams increases the exposure of the MC 

to a greater proportion of total basin DIN inputs in the headwaters. Therefore, the 

difference between Scenario 2 and Scenario 3 with regards to network DIN removal is 

not the total proportion of inputs removed, but the general location where this removal 

occurs in the network. 
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Figure 14 Monte Carlo model results for a) Scenario l b , b) Scenario 2 and c) Scenario 3. 
Box plots indicate the sample minimum, lower quartile, median, upper quartile, and 
sample maximum for 500 model runs. 

Table 9 Monte Carlo results for each scenario. Data shown are medians (and first and third 

quartiles) for 500 model runs. Results for 5 order river segments are in italics. Note that 

median values for each compartment are mutually exclusive, and do not correspond to the same 

model run. 

Scenario 
Proportion of Total Basin DIN Removed 

MC STS HTS Total 

Mean Network Value 

(lb) 

Spatial Heterogeneity 

(2) 

34.8(22-49) 
11.6(8-16) 

43.3 (43 - 44) 
13.6(13-14) 

12.5(7-18) 
6.0 (4 - 9) 

18.0(18-19) 
8.7(8-9) 

14.8(6-31) 
7.4 (3 -15) 

24.0(24-25) 
11.7(11-12) 

74.3 (54 - 90) 
30.5 (23 - 33) 

85.4(85-86) 
34.1 (34 - 35) 

Spatial Heterogeneity and 
increase in ATS/AMC (3) 

44 .3 (44 - 45) 

12.4 (12 -13) 

17.8(17-19) 
11.4(11-12) 

27.2(27-28) 
18.3 (18 -19) 

89.3(89-90) 
42.2 (42 - 43) 

Sensitivity to TS Hydraulic Parameters (Scenario 4) 

Network scale DIN removal is sensitive to STS and HTS hydraulic parameters. 

Model results suggest that without TS (ASTS = AHTS = 0.0) and a constant Uf (based on kt = 

-1 : 0.64 d" in the headwaters) the MC is able to remove approximately 50% of total inputs 
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during baseflow conditions (Figure 15a, 15b). Network scale removal increases from 

50% with increases in the AHTS/AMC and ASTS/AMC parameters (Figure 15a, 15b). Removal 

is particularly sensitive to high ASTs/AMc values because the STS compartment is highly 

connected to the MC. This is consistent with the notion that large STS features, such as 

wetlands, beaver ponds, and floodplains are important controls of DIN retention. 

Network scale DIN removal is not particularly sensitive to TS exchange 

coefficients, aSTs and aHTs (Figure 16b). Given the mean values for ASTS/AMO AHTS/AMC# 

and identical reactivity rates in all three compartments, the critical range in aHTs values 

is between lxlO"7 s"1 to 1x10s s 1, where removal slightly increases with increasing HTS 

exchange coefficient values. Network scale DIN removal does not respond to changes in 

a above or below this range. The critical range in aHTs values overlaps the uncertainty in 

the mean value for this parameter (Figure 16b). The critical range in a vaiues is 

relatively smaller in the STS than in the HTS and is between 1 x 10"7 s"1 to 5 x 10"6 s"1. 

Variation in network mean CISTS value does not have an impact on the predicted total 

network scale DIN removal because it does not overlap the critical range in aSTs values 

(Figure 16a). Network scale DIN removal is not highly sensitive to exchange coefficients 

because a has a dual effect. Exchange coefficients control the fraction of discharge that 

enters TS, but also control the residence t ime of water in storage and these have 

offsetting effects. 
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Figure 16 Response of network scale DIN removal to a) aSTS, and b) ctHTs- All other 
parameters are constant with values set as the mean values provided in Table 2. Figure 
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Varyinfi Processing Rates in MC, STS, and HTS (Scenario 5) 

Total network DIN removal is sensitive to processing rates in the STS, HTS, and 

MC. When the MC is biologically inactive (vf = 0 m d"1, kMc [headwaters] = 0 d"1), basin 

scale DIN removal responds to changes in kSTs and kHTs (Figure 17a). This sensitivity 

diminishes with higher reactivity rates in the STS and HTS as network DIN removal 

approaches 1 (Figure 17a). However, as MC reactivity increases, total network removal 

becomes less responsive to kSTs and kms to the point where removal is entirely 

dominated by MC processes (Figure 17d). The high sensitivity of network DIN removal 

to MC reactivity (ut) is supported by the hydraulic model results, which indicate runoff 

spends the majority of its residence time in the MC (Figure 8). Therefore, network scale 

DIN removal is more responsive to MC reactivity than it is to reaction rates in STS and 

HTS. 

It is important to evaluate the system under the assumption that MC reactivity is 

low because theoretical implications suggest reaction rates in STS and HTS are elevated 

relative to MC (Hall et al. 2002). Due to the hydraulic characteristics of the STS (high 

connectivity, low residence time) and HTS (low connectivity, high residence time), the 

STS has a greater opportunity to dominate network scale DIN removal if processing 

rates are high, whereas the HTS has a greater opportunity to do so under lower rates 

(Figure 18). Assuming MC is biologically inactive (i)f = 0.0 m d"1) model results indicate 

that if ksis > kHTS/ the STS compartment would contribute a greater proportion of total 

DIN removal than HTS despite providing shorter total residence times (Figure 18, green 

lines). If reaction rates in the STS and HTS are identical, the HTS will contribute more 
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removal than the STS when reaction rates are low whereas the STS will contribute more 

removal than the HTS when reactivity is high (Figure 18, blue lines). However, it is 

hypothesized that reaction rates are higher in HTS than in STS (Hall et al. 2002; Runkel et 

al. 2003). Assuming reaction rates in HTS are double those in STS, the STS can still 

contribute a greater proportion of total network removal than HTS if reactivity in the 

STS is greater than 4.0 d"1 (Figure 18, red lines). This is because when reactivity is high, 

DIN is instantly removed upon entrance to TS and removal becomes more a function of 

how much water passes through TS then how long water remains in storage. When 

reaction rates in HTS are ten times those in STS, the STS can still remove more DIN at 

the network scale than the HTS if kSTs is greater than 4.25 d"1 (Figure 18, black lines). 

When any two compartments are biologically inactive (kt = 0.0 d1), the 

effectiveness of the single active compartment can be considerable due to a buffering 

effect. For instance, assuming that denitrification occurs only in the HTS, and a mean 

reactivity rate is applied (kHTs = 0.64 d"1), 37.6% of total basin DIN inputs are removed 

(Figure 17a). When STS is the only active compartment, 25.8% of total basin DIN inputs 

are removed assuming the same processing rate (Figure 17a). The MC removes 50.8% 

of inputs when it is the only active compartment (kMc = 0.64 d"1 [headwaters]) (Figure 

17b). The removal contribution for each of the compartments when they are the single 

active zone exceeds the contribution of the compartment in the base scenario when 

other zones are active (Figure 11). 
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Figure 17 Response of total river network DIN removal to varying reaction rates in the 
MC, STS, and HTS. All TS hydraulic parameters are constant with values set as the mean 
values provided in Table 2. 

51 



1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 
* > 

, 4t 

i* 

** + 

*STS' "HT5 

1:1 
1:2 
1:10 

s ^^ jUBAHflO^fc my-i. • !„" ^ _^ ^ ^ ^ " • • ^ 

^ " " " 

. - - ' 

STS HTS 

»ipa r«>. i ift, & fji tBK, 

^̂ *̂*"ll*,|"***̂ 1_ 

HT5 dominates ^ 
(long residence times) 

J— STS dominates —3 
(high water exchange) 

kSTS (d 1 ) 
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with Vf [MC] > 0 m d" (data not shown). 

52 



CHAPTER IV 

DISCUSSION 

Influence of TS on Network Scale DIN Removal 

Transient storage zones in streams can exert considerable control over N 

removal dynamics (Triska et al. 1989; Valett et al. 1996; Thomas et al. 2003; Gooseff et 

al. 2004). Most studies of TS in streams have focused at reach scales and considered TS 

as a single compartment (Choi et al. 2000; Hall et al. 2002; Runkel et al. 2003; Gooseff et 

al. 2004; Ensign and Doyle 2005; Gooseff et al. 2005). Recent advances in field 

methodology allow separate estimation of hydraulic parameters for both surface and 

hyporheic zones (Briggs et al. 2009). In an evaluation of the role of TS on DIN removal, I 

partitioned between the MC, STS, and HTS compartments using empirically derived TS 

parameters and found that assuming identical reaction rates in all three zones the MC 

exerts the most control on DIN removal both at reach and network scales followed by 

HTS, and then STS (Figure 14a). The large role of the MC is due to the fact that all water 

passes through the MC in a particular river segment, whereas only a fraction passes 

through a segment's HTS and STS compartments. Although STS is relatively more 

connected to channel flow than the HTS, residence times in the HTS are significantly 
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longer (Table 6) which results in a greater proportion of stream DIN flux removed in HTS 

than in STS at the reach scale (Table 7). At network scales, HTS removes a greater 

proportion of total DIN inputs than STS because nearly all runoff will enter the HTS at 

least once and water must enter the STS many times to compete with the total 

residence time provided by a single entrance into HTS. However, these results assume a 

constant reaction rate in all three compartments which is unlikely according to empirical 

studies (Thomas et al. 2003) and theoretical considerations (Hall et al. 2002; Runkel et 

al. 2003). Uncertainty in the mean network values indicates that we have an unclear 

picture of the roles the three compartments play at network scales because DIN 

removal in the STS and HTS compartments are sensitive to hydraulic and biologic 

parameters. Sensitivity analyses indicate all three compartments have the potential to 

be the dominant control on network scale DIN removal depending on reaction rates in 

the compartments (Figures 17 and 18). 

Model results suggest a uniform increase in the size of TS and/or its connectivity 

with the MC increases network DIN removal (Figures 15 and 16). These relationships 

are supported by earlier modeling studies. A single compartment TS model indicated 

that nutrient uptake length (the average distance a nutrient molecule travels 

downstream before being removed from the system) decreases with an increase in the 

relative size of TS (AJS/AMC) for a given water exchange rate (ctTs) (Mulholland and 

DeAngelis 2000). This earlier model also suggests nutrient uptake length declines as otis 

increases at a given ATs/AMc (Mulholland and DeAngelis 2000). A number of empirical 

studies that quantified TS hydraulics and nutrient uptake rates in streams have generally 
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found similar results (Triska et al. 1989; Valett et al. 1996; Gooseff et al. 2004). 

However, these previous studies do not address the potential impact that reaction rates 

have on the importance of ATS/AMC and aTs-

The model results presented here suggest that biologic reactivity in TS 

compartments can affect the sensitivity to TS size (ATS/AMC) and connectivity (ctTs). 

Network scale DIN removal is not highly sensitive to exchange coefficients when 

reaction rates are low to moderate (Figure 16a, 16b) because a affects both connectivity 

and residence times in TS pools, and these effects are offsetting. However, when TS 

reactivity is high, DIN is removed rapidly upon entrance into TS and therefore network 

scale removal becomes more a function of how much water is exposed to each 

compartment than the duration of storage. Therefore, the size of TS (ATs/AMc) is more 

important than its connectivity (aTs) with the MC when reactivity rates are low to 

moderate (kt < 2.85 d"1) whereas TS connectivity is more important when reaction rates 

are elevated (kt > 2.85 d"1) (Figure 18). This explains the relatively greater importance of 

the HTS compared to STS when a mean reaction rate (kt = 0.64 d"1) is applied (Figure 11, 

14a) and the dominance of the STS on network removal when reactivity is elevated 

(Figure 18). 

The Effect of TS on Transport Times at the Network Scale 

A commonly used metric to characterize water transport times in rivers due to 

TS is Fmed200 (Runkel 2002). Fmed
200 is a unique metric because it accounts for the 

55 



interaction between advective and non-advective controls on reach travel time and 

mass transport (Runkel 2002). However, as noted by Runkel (2002) and discussed here, 

Fmed200 is inadequate in characterizing the role of TS on transport times at large scales. 

Field experiments in Ipswich River segments indicate that STS (average Fmed
200 

STS = 10.6%) exerts greater control on median transport times than HTS (average Fmed
200 

HTS = 0.92%) (Briggs et al. 2009, in revision). The reason for this is because STS-MC 

connectivity is high enough over short segment distances for median travel times to be 

affected by the temporary retention of water in STS. HTS is relatively unimportant for 

median transport times in 200 m segments because HTS-MC connectivity is too low for a 

significant number of water molecules to enter the compartment. This is supported by 

model results which indicate average water molecules enter the STS 0.58 times per 200 

m reach, but enter the HTS only 0.04 times (Table 5). Because 200 m is not long enough 

to capture the effect that HTS has on water transport, I suggest Fmed
200 is predominantly 

a measure of STS control on median transport times. 

When evaluating transport times at the scale of entire river networks, HTS can 

substantially affect median travel times because nearly all water molecules enter HTS at 

least once before exiting the river system (Figure 7). A single entrance into HTS has a 

greater effect on median network transport time than many entrances into STS due to 

the orders of magnitude greater residence time in HTS (Table 6). As such, although HTS-

MC connectivity is much lower than STS-MC connectivity, HTS exerts greater control on 

median transport times over long flow path distances (Figure 8). 
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Consider, for example, two cars on a cross-country trip from New York, NY to Los 

Angeles, CA (3,000 miles). When in motion, the two cars travel at an identical speed of 

50 miles per hour. However, Car A makes a half hour stop every 50 miles, whereas car B 

makes a 6 hour stop every 500 miles. For the first 200 miles, the percent of total 

transport t ime due to stoppage for car A and car B, respectively, are 33.3% (4 hours of 

travel, 2 hours of stoppage) and 0.0% (4 hours of travel, 0 hours of stoppage). However, 

we cannot use the first 200 miles to characterize how stoppage time has affected each 

cars total tr ip from NY to CA. The percent of total transport t ime for the entire NY-CA 

trip due to stoppage is 33.3% for car A, and 37.7% for car B. This stresses the 

importance of considering entire flow paths when evaluating basin scale processes. 

The effects that STS and HTS have on median water transport times (FmeciSTS, 

FmedHTS) are a function of the reach length evaluated (Figure 19). Assuming the mean 

network TS parameters used in the base scenario of this study, median transport times 

due to TS switch from being STS dominated to being HTS dominated at a segment length 

(L) of about 20 km (Figure 19). Fmed values for STS and HTS asymptote at high L values 

(Figure 19) due to the size of the TS compartment (AHTS or ASTS) relative to the total size 

of the MC and all TS compartments (AMc + AHTS + ASTS)- These calculations indicate that 

the fraction of median transport times due to STS and HTS cannot exceed 17% and 26%, 

respectively given the mean hydraulic parameters applied in this study (Figure 19). The 

calculations of Fmeci using equation 10 are similar to the network model predictions for 

the average fraction of total residence time in STS and HTS of 11.7% and 22.3%, 

respectively (Figure 8). This suggests that the average f low path length in the Ipswich 
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River is close to the length required for the Fmed relationship to asymptote, but 

discrepancies occur because advective velocities (u) in the model increase in the 

downstream direction which reduces the effect of TS retention. Since the fraction of 

transport t ime due to TS is a function of stream length evaluated, Fmed
200 cannot be used 

to characterize the role of TS on mass transport at large scales. 

A number of studies have failed to find a significant relationship between DIN 

uptake and Fmed
200 in small river segments (Ensign and Doyle 2006; Lautz and Siegel 

2007). This is not surprising considering 1) I have shown Fmed
200 is primarily a metric of 

STS processes (Figure 19), and 2) HTS removes more DIN than STS at reach scales 

assuming low to moderate reaction rates (Table 7). Therefore, assuming STS processes 

also dominate Fmed
2°° in other empirical studies, I would expect little correlation 

between Fmed
200 and DIN removal. However, I have based this finding on an empirical 

model in the Ipswich basin where channelized river segments are shallowly sloped and 

STS processes could be much more important than what has been modeled here. More 

two-compartment TS studies are needed in steeper watersheds to verify these findings. 
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Figure 19 Fmed (Runkel, 2002) calculations using mean parameter values and a discharge 
of 1.0 m s" . MC cross sectional area (A) and velocity were calculated from Q using 
power law relationships for the Ipswich River provided in equations 22 and 23. 

Spatial Distribution of TS and the Impact of Hotspots 

TS characteristics and biogeochemical processing are likely to be heterogeneous 

in space and time (Jones and Mulholland 2000), potentially leading to hotspots (McClain 

et al. 2003) of removal at river network scales. Here, spatial heterogeneity was 

simulated by randomly selecting parameter values (kt, aSTs, ams, ASTS/AMG and AHTS/AMC) 

for each river grid cell from lognormal distributions that were fit by each parameter's 

empirical mean and standard deviation (Table 2). In this way, hotspots were created 

stochastically throughout the river network due to a combination of increased TS 

connectivity, residence time, or reactivity and resulted in localized areas of high 

removal. Spatial heterogeneity in the Ipswich River network results in removal 

(Runkel, 2002) 
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increases in the MC, STS and HTS compartments compared to the base scenario. These 

results indicate that hotspots buffer the inefficiencies of upstream "cold spots", leading 

to greater removal compared to application of uniform parameters (Scenario 1) (Figure 

14a, 14b). Overall, these results suggest that hotspots in river networks potentially 

enhance removal at basin scales. 

Areas of high removal could come in the form of lakes (David et al. 2006), beaver 

ponds (Correll et al. 2000), wetlands (Johnston et al. 1990; Johnston 1991; Johnston et 

al. 2001) and floodplains (Pinay et al. 2000). These features are generally well 

connected to the MC, provide substantial cross-sectional areas and may have high 

reactivity rates because they expose water to large stocks of organic material. Future 

work should be conducted to quantify the number and magnitude of hotspots required 

to maintain high removal despite upstream processing deficiencies. 

Previous research has investigated how TS characteristics scale throughout river 

networks (Harvey and Wagner 2000; Battin et al. 2008; Briggs et al. 2009, in revision). A 

study in the Ipswich River suggests that ASTS/AMC and AHTS/AMC may increase with river 

size (Briggs et al. 2009, in revision) and this relationship was embedded in Scenario 3 

with a degree of spatial heterogeneity (Figure 5d). Results for Scenario 3 (Figure 14c, 

Table 9) indicate only a small increase in network scale removal compared to a simple 

spatial heterogeneous scenario (Scenario 2) (Figure 14b). Although the increase in TS 

size in downstream segments does not significantly increase total network DIN removal, 

it does shift the locations where removal occurs (Table 10). Spatial heterogeneity 
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(Scenario 2) increases the role of 1s t through 4 th order rivers relatively more than it does 

5th order rivers (Table 10). In contrast, increasing ATS/AMC downstream (Scenario 3) 

substantially increases the importance of 5th order river segments (Table 10). This 

reflects the nature of river networks in which reductions in upstream efficiency are 

compensated by increases in downstream processing and vice versa. As such, overall 

removal changes little between the spatial configurations of Scenario 2 and Scenario 3, 

while location of removal changes more (Table 10). 

Table 10 Percent change in median removal compared to Scenario l b . Percent changes in 5th order 
reaches compared to base scenario are provided in parentheses. 

Scenario MC STS HTS Total 

,. . , , , . , „ , +24.4% +44.0% +62.2% +14.9% 
Spat,al Heterogeneity (2) ( + l ? J%) { ^ Q%) ( + 5 g l%) ( + n g % ) 

Spatial Heterogeneity w/ increasing +27.3% +42.4% +83.8% +20.2% 
TS/MC size (3) (+6.9%) (+90.0%) (+147%) (+38.4%) 

Role of River Size 

Model results indicate large streams remove a greater proportion of total basin 

DIN inputs than smaller streams. This contradicts some earlier studies that suggest 

headwater streams are a fundamental control on N retention (Alexander et al. 2000; 

Peterson et al. 2001). However, our results indicate that small streams (orders 1-3) still 

contribute a reasonable proportion (39.8%) of total basin DIN removal (Figure 11). This 

finding is supported by an earlier study of network scale DIN removal that reported 

small streams provide approximately 40% of network scale denitrification during similar 
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baseflow conditions (Wollheim et al. 2008). Similar to the study presented here, 

Wollheim et al. (2008) derived reaction rates (kt) from the LINX2 project (Mulholland 

and al. 2008) however they assumed no transfer between advective and non-advective 

compartments. Despite this, the findings of Wollheim et al. (2008) provided supporting 

evidence of the buffering capacity of river networks. 

Large rivers play a fundamental role in regulating DIN exports from river systems 

in the model because 1) on a per mean reach length basis, water molecules enter TS 

compartments more times in larger rivers, 2) all DIN input not removed by smaller rivers 

eventually pass through large river segments, and 3) some DIN inputs to the river 

network bypass smaller streams and drain directly to large rivers (Ensign and Doyle 

2006; Wollheim et al. 2008). The significant role of large rivers in our model is also in 

part due to the assumption that uptake velocity in the MC is independent of river size 

(Wollheim et al. 2008). The rate at which rivers widen and lengthen with increasing 

discharge creates a disproportional increase in benthic habitat in larger downstream 

reaches (Ensign and Doyle 2006; Wollheim et al. 2006; Wollheim et al. 2008). These 

findings support earlier studies that stress the importance of evaluating river processes 

with a network perspective (David et al. 2006; Royer et al. 2006; Wollheim et al. 2006; 

Wollheim et al. 2008). 

Removal processes in TS and MC become less efficient per unit distance in 

downstream reaches (Table 7). However, the removal contribution of TS relative to the 

MC increases in the downstream direction in the base scenario (Table 7). TS provides 
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approximately 29% of total DIN removal in 1 order streams and 57% of the total 

removal in 5th order streams (Figure 11). Removal processes in TS and MC become less 

efficient in downstream reaches because of scaling relationships between channel 

depth, channel width and increasing discharge. Removal in the MC becomes less 

efficient in large reaches because of decreasing benthic surface area to volume ratios in 

the downstream direction (Wollheim et al. 2006). Removal in TS becomes less efficient 

in larger reaches because water transfer to TS is a function of AMc and discharge, and 

discharge increases disproportionally with AMc in the downstream direction. STS and 

HTS become more effective downstream relative to the MC because the ratio of depth 

to discharge decreases faster than the ratio of AMcto discharge. 

The spatial distribution in TS characteristics throughout the river network can 

affect the role of larger rivers (Table 10). Spatial heterogeneity of TS connectivity, size 

and/or reactivity (Scenario 2) tends to reduce the leakiness of upstream systems by 

creating hotspots in smaller river segments, thereby reducing the relative role of 5th 

order river segments in network scale removal. However, downstream systems still 

have the potential to buffer upstream processing inefficiencies. When the cross-

sectional area of TS relative to MC increases with river size (Scenario 3), so does the 

importance of STS and HTS DIN processing in 5th order river segments (Table 10). 

Because Scenario 3 limits the size of TS relative to the MC area in smaller streams, the 

MC compartment becomes more important in upstream segments, but most of the 

buffering occurs downstream. 
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implications for Land Use Management 

Anthropogenic disturbances have altered the N cycle by substantially increasing 

N inputs (Howarth et al. 1996; Vitousek 1997). Increased DIN loading to rivers is a result 

of a growth in non-point sources (Howarth et al. 1996), NOx emissions (Vitousek 1997), 

septic and point source waste (Williams et al. 2004), and fertilizer additions to lawns 

(Valiela and Bowen 2002). Patterns of land use greatly influence the distribution of 

these inputs to river systems. Knowing the distribution of inputs relative to removal 

(especially hotspots) in a river network, would be helpful for watershed management. 

The configuration of land use in the Ipswich basin results in a disproportional amount of 

DIN inputs to headwater streams (Williams et al. 2004; Wollheim et al. 2005). This may 

lead to high network removal because DIN must travel through long distances before 

reaching the river mouth. However, watersheds with a more uniform distribution of 

land use and DIN inputs may not result in an increase in DIN export because streams 

may be able to uptake more nutrients when concentrations are low (Wollheim et al. 

2008). Recent studies have shown that processing rates decline in efficiency with 

increased nutrients but do not saturate (O'Brien et al. 2007, Mulholland et al. 2008). 

The model used here assumes DIN processing increases linearly with concentration 

because there is no data available for efficiency loss in TS compartments. The concept 

of efficiency loss and the impact it may have on this study is discussed in the following 

section. 

The model outlined in this study can be applied to identify zones of influence for 

water quality at key locations in the river network. The zone of influence for a particular 
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location on a river is the drainage area that contributes to the DIN observed at that 

point. The zone of influence for estuarine health is only 11.5% of the total watershed 

area for the base scenario (Figure 20), indicating that the river network removes DIN 

inputs from 88.5% of the watershed by the time runoff exits the basin. This stresses the 

importance of having higher standards in land use management practices in areas that 

have short flow path distances to the basin mouth if one is interested in managing for 

estuarine health during summer periods. Future work should focus on how this zone of 

influence varies with changing flow conditions, not just for nutrients, but for other 

related pollutants such as fecal coliform which can significantly impact the health of 

shell fish in the estuarine Ipswich. Zones of influence for town water supply intakes are 

also important (Figure 21). The zones identified for the Salem/Beverly and Lynn town 

water supply intakes (Figure 21) are likely to be underestimated in size because water 

withdrawals occur only during winter periods at high flows when streams are less 

efficient in removal (Claessens et al. 2006). 
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Fraction of Local DIN 
Inputs Removed 

Figure 20 Zone of influence for estuarine health. Shaded areas represent the fraction of 
local DIN inputs removed before reaching river mouth for base scenario (Scenario la). 
White regions of the basin have local DIN inputs removed entirely before runoff reaches 
the river mouth. 

Fraction of Local DIN 
Inputs Removed 

Figure 21 Zones of influence for town water supply intakes. Shaded areas represent the 
fraction of local DIN inputs removed before reaching each intake under base scenario 
conditions (Scenario la). White regions of the basin have local DIN inputs removed 
entirely before runoff reaches the river mouth. 
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Key Model Uncertainties 

The model presented in this study is a valuable tool for integrating geomorphic, 

hydrological and biological characteristics at basin scales, but is limited by a number of 

uncertainties. The model was applied only at summer baseflow because this is when 

hydraulic and reactivity parameter measurements were conducted. In order to model 

these processes over annual time scales, we first need a better understanding of how 

hydraulic parameters scale with increasing flow (at-a-site). Furthermore, to model 

removal across the annual hydrograph, the model would need to incorporate additional 

systems (i.e. floodplains) that are not currently represented. 

Although I address the uncertainty associated with mean network parameters, I 

do not expect the few measurements taken to represent the entire range of 

characteristics that exist in the Ipswich basin. TS hydraulic measurements (n = 6) were 

taken in channelized stream segments during low flows over a two year period and do 

not account for the presence of large wetlands and lakes. Furthermore, no 

measurements were taken in reaches with drainage areas greater than 200 km2 which 

represents more than half of the total length of the 5th order river segment. As a result, 

the importance of TS in large rivers comes with a large degree of uncertainty. To reduce 

uncertainty in the model more field studies are needed to partition between STS and 

HTS hydraulics, particularly in large river segments. 

There are a number of limitations associated with our biological assumptions. 

First, biological reactivity parameters were based on measurements taken within the 
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Ipswich basin (n=8), but at a different time (2003-2005) and assuming a single TS 

compartment (Mulholland and al. 2008). Furthermore, a simplified approach was used 

to partition reaction rates between the MC and TS compartments. Earlier studies have 

suggested that reactivity in the HTS is greater than in the MC and STS (Hall et al. 2002), 

but more studies are needed to quantify the specific reaction rates in the three 

compartments (Thomas et al. 2003). As part of this collaborative study there is an 

ongoing field effort looking into the specific reaction rates in the MC, STS, and HTS 

compartments but these results are not yet available. Further, studies have shown 

that DIN removal processes are less efficient at high concentrations (Earl et al. 2006; 

O'Brien et al. 2007; Mulholland et al. 2008). Efficiency loss was not incorporated into 

this model because the rate at which processing decreases in TS with increasing 

concentration is unknown. As a result, the findings presented here could be an 

overestimation of DIN removal under high DIN concentrations (O'Brien et al. 2007), as 

demonstrated in Wollheim et al. (2008) at network scales without explicit consideration 

of TS. Future network scale TS models should incorporate the concept of N saturation 

when more TS data becomes available. Finally, the interaction of DIN processing with 

other element cycles, such as carbon and oxygen, was not included in this study but 

could play a significant role. 

There are a number of hydrologic factors that also need further consideration. 

Although observed and predicted flows fit well at the USGS gauge stations at Ipswich 

and Middleton on the main stem, the model significantly underestimates flows in flashy 

urban headwater streams during precipitation events (Figure 6). Spatially variable 
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precipitation and runoff conditions would significantly improve flow estimates in 

headwater catchments. Furthermore, channel routing would substantially increase our 

understanding of the timing of water transport and DIN fluxes through the river network 

but simple flow accumulation is acceptable for this study since the focus was on average 

summer baseflow conditions.. Surface and groundwater withdrawals from the Ipswich 

River should be incorporated into the model when evaluating DIN removal at annual 

timescales. The omission of surface withdrawals should not impact these results 

because these occur predominantly during winter periods (Claessens et al. 2006), but 

groundwater withdrawals could have an effect. Processes associated with wetlands, 

lakes and beaver ponds are also important and should be incorporated into future 

models. The removal reported here is underestimated based on hydraulic 

considerations alone, but full accounting for wetlands, lakes and beaver dams requires 

characterization of reactivity which might also vary over time. 
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CHAPTER V 

CONCLUSION 

DIN removal processes in advective and non-advective compartments in river 

systems are the result of reach scale interactions among connectivity, residence time, 

and the strength of biological reactivity. Although HTS does not appear to be highly 

connected to the MC at small scales, most runoff enters the HTS at least once at the 

scale of the entire network. As a result, HTS is more important in controlling water 

transport at network scales than STS. Recent advancements in field techniques have 

built upon our knowledge of hydraulics in non-advective zones, but there remain key 

questions regarding the specific biological processing rates in each compartment. 

Although evidence points to reactivity rates being the greatest in HTS (Hall et al. 2002), 

this study indicates that without more information on how these rates vary between 

compartments we cannot fully understand DIN removal processes among the three 

compartments at network scales. Assuming reaction rates are identical in all three 

compartments, the MC exerts the greatest control on DIN removal, followed by the HTS, 

and then STS. The relative importance of STS and HTS in network scale DIN removal 

depends on the reaction rate applied to both compartments. The HTS removes more 
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DIN than STS when a low reactivity is applied because HTS provides longer residence 

times, whereas STS removes more DIN than HTS when a high reaction rate is applied 

because STS is more connected with the MC. 

Despite uncertainties in TS hydraulic and biological parameters, large rivers were 

found to have a considerable role in regulating DIN fluxes. However, the importance of 

river size on DIN removal can be offset by the spatial distribution of TS characteristics 

throughout the river network. Hotspots potentially have a critical role in maintaining 

high levels of DIN removal in river networks and this work supports earlier studies that 

suggest a network perspective is needed to fully understand processes in river systems 

(Seitzinger et al. 2002; Wollheim et al. 2006; Battin et al. 2008; Wollheim et al. 2008). 

Due to current limitations in field methods, this model accounts only for hydraulic 

processes within channelized sections of the Ipswich and does not account for wetlands 

and lakes. These omitted features have the potential to play significant roles in DIN 

processing during baseflow periods and should be incorporated in future studies. The 

work presented here helps understand the fate of DIN in aquatic systems and the 

relationships among connectivity, TS size and reactivity. 
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