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ABSTRACT 

NANOFORMING OF BULK METALLIC GLASS 

by 

Catherine Mros 

University of New Hampshire, December, 2009 

High aspect ratio nanostructures have been successfully fabricated in supercooled 

Bulk Metallic Glass (BMG) by molding against patterned Silicon. Nanoforming allows 

for a high rate manufacturing of nanostructures. In past research, two theoretical models 

to analyze the nanoforming process were created. These models were combined and 

further developments were made. This model is used to predict the depth of fill for a 

trench feature at a particular location on the mold based on molding parameters specified. 

The effects of surface tension of the BMG were also considered. An experimental setup 

was constructed and experiments were performed in an attempt to investigate the highest 

achievable aspect ratio for a specified size feature and known molding parameters to 

compare with the theoretical model. While flow into the trench features did not occur, 

observations confirmed that the pressures at the centers of molds were higher than at the 

edges, which agrees with the theoretical model qualitatively. 
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CHAPTER I 

INTRODUCTION 

With rapidly increasing advances in technology, nanotechnology is becoming 

vital to the developments in miniaturization. Nanotechnology is currently being used in 

many types of applications including cancer identification tools, mechanical and 

electrical devices such as memory and DNA chips, and improved performances in 

sporting goods, clothing, and sunscreen. With these technological advances, there is a 

demand for high rate nanomanufacturing processes. 

Current processes at the nanoscale can be time intensive and costly. With 

lithography processes such as ion beam and electron beam, material can be removed or 

added to a substrate based upon the type of photoresist used. For example, thin film 

deposition, a process by which atoms are deposited onto a substrate one layer at a time 

[1], is precise, yet slow and costly. Another more traditional process is lithography 

which is used to create integrated circuits. Again this process produces high quality parts 

but has high costs due to the clean room space and nanofabrication equipment required. 

Also features are limited to 2.5 dimensions and certain materials. 

Thus there is a need for mass producing precisely patterned nanoscale features at 

low costs and with durable materials. The nanoforming process described in this thesis is 

an inexpensive mass production manufacturing process that can produce Bulk Metallic 

Glass (BMG) components. BMG is strong, high impact resistant, amorphous material 

that makes it ideal for nanoforming. The BMG formed features created with the 
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nanoforming process can be used in different ways. For example, its properties make it 

an ideal material to be used as a mold for other processes such as injection molding. The 

BMG is more robust than materials currently used and will last longer, decreasing 

manufacturing costs. The BMG could also be used as an initial substrate for other 

applications such as Ion Beam Assisted Deposition providing a high rate 

nanomanufacturing process for these applications to decrease manufacturing costs. 

There are several types of BMGs, and numerous BMGs have been used in micro 

and nanoforming processes. In 2001 precision microstructures were formed into a 

Palladium based BMG using a silicon mold via superplastic microforming [2]. It was 

also shown that nanoscale features could be formed using the same process. The Si 

molds were fabricated with traditional nanofabrication methods. The Si molds and Pd-

BMG counterparts are shown in Fig. 1-1. 

'a- <r 
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Figure 1-1: a-c) SEM images of Si fabricated dies, d-f) SEM images of Pd-BMG features 
formed from the Si molds. [2] 
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Later experiments demonstrated that other BMGs could be successfully formed 

into nanofeatures [3,4]. Research continued to create smaller nanoscale features. Using 

an embossing process, experiments were performed to find the smallest diameter rods 

that could be formed with the highest aspect ratio (length/diameter) [5]. SEM images of 

nanoformed rods in platinum based BMG are shown in Fig. 1-2. Complex, precise 

microparts including tweezers and gears, shown in Fig. 1-3 have been successfully 

fabricated using a hot embossing process [5]. The Si molds were fabricated using 

traditional lithography and etching techniques. 

• ""AMI l"Wi//I * 

Figure 1-2: SEM images of Pt-based BMG rods by embossing. [5] 
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Figure 1-3: SEM images of Pt-BMG microparts: a) Microtweezers b) Microgear [5]. 
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Geometrically complex, high aspect ratio microstructures have been successfully 

replicated into Zirconium based BMGs, commercially known as the Vitreloy series of 

alloys from LiquidMetal Technologies [6]. This has been done by molding them against 

patterned Silicon or SiC>2 substrates [4,7]. Although there are several types of BMG, the 

one used in this research is Z^BeisTinCuioNiio, or Vitreloy lb. This particular alloy is 

well suited for filling high aspect ratio, complex features and withstanding high 

temperatures for molding processes [4]. 

Figure 1-4: a) SEM image of Si mold, b) SEM image of Vit-lb formed features. [8,9] 

The interfacial interaction between supercooled Vit-lb and the nanoscale mold 

material was investigated for a few mold materials. The wetability of these mold 

materials, which affects the BMG's ability to flow into mold features, was also examined. 

The results of experiments showed that the pure silicon molds were better than the Si02 

for high rate nanomanufacturing processes. SEM images of the silicon mold and Zr-

BMG formed features are shown in Fig. 1-4. Although pressure distribution across the 

mold and achievable aspect ratio were investigated, limitations of the molds led to 

inconclusive results [8,10,11]. In order to use the nano-thermoforming process as a high-
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rate nanomanufacturing process, further understanding of the pressure distribution across 

a mold and the achievable aspect ratios is required. 

Figure 1-5: (a) Amorphous structure, (b) Polycrystalline structure. [12] 

Bulk metallic glass (BMG), a typical material used in nanoforming processes has 

properties that are useful in forming on smaller scales. The property that allows BMG to 

be formed at the nanoscale is that it has an amorphous structure, i.e., it contains no 

metallic grains unlike typical polycrystalline metals. This causes it to be homogenous 

and isotropic at the atomic scale, as shown schematically in Fig. l-5a. This is important 

because without a polycrystalline structure, such as the schematic of Fig. l-5b, forming 

more complex shapes of smaller sizes becomes possible. Since forming is limited due to 

the grain boundaries, a material cannot form into a feature that is smaller than the grains 

of the material. This concept is illustrated in Fig. 1-6. Given, that most materials have 

grains too large to form on the nanoscale, a material without grains is a desirable property 

of a material used for nanoforming. 

5 
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Figure 1-6: Schematic shows grain size effects forming certain size features [13]. 

Further understanding of this material can be obtained through a time temperature 

transformation (TTT) diagram as shown in Fig. 1-7. As long as the forming process stays 

to the left of the TTT curve the material will not crystallize. If the process causes the 

BMG to be heated for too long, the glass will start to form crystals and become brittle. 

Preventing crystallization is ideal, as the BMG remains strong with a high impact 

resistant. 

i 
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Figure 1-7: Time Temperature Transformation diagram. [14] 

The molding temperature of BMG is not only important to the crystallization 

time, but also determines its viscosity. The viscosity controls the ability of the BMG to 

flow into mold features. The viscosity of Vit-lb decreases drastically as temperature is 
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increased, allowing the material to flow much easier at higher temperatures [15]. The 

effect of temperature on the viscosity and recrystallization time of Vit-lb is clearly 

shown in Fig. 1-8 [14]. 
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Figure 1-8: Recrystallization time and viscosity versus temperature for Vit-lb [14]. 

In this thesis, the nanomolding process for BMGs is further investigated by 

further developing a theoretical model, conducting experiments and comparing results. 

In Chapter II, past research conducted by Rason et al. [8] is reviewed. The surface 

tension of BMG is considered in Chapter III. Chapter IV develops a theoretical model 

for predicting the achievable depth of fill for a given time, temperature, applied pressure, 

and trench width. Chapter V shows the experimental setup and results. Chapter VI 

contains the conclusions and future work. 
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CHAPTER II 

PAST RESEARCH 

2.1 Thin Film Model 

While a single pressure is applied to the BMG and mold chip during the 

nanoforming process, the pressure distribution would not be uniform since the BMG 

behaves as a Newtonian fluid. To quantify the pressure distribution across the BMG 

during the molding process, a Thin Film model was developed by Rason et al. [8]. The 

assumptions in the model are: 

o For a film thickness which is much smaller than the film width (i.e., a 5mm x 

5mm mold with an initial BMG thickness of approximately 1mm that is rapidly 

decreasing during processing) and a film that is an incompressible, Newtonian 

fluid (i.e., BMG supercooled liquid at elevated temperatures), the molding process 

can be modeled as a viscous thin film. 

o The small variation in pressure across the thickness of the film is neglected. 

o Although the flow is not at a steady state, inertial effects within the flowing film 

are neglected by a creeping flow assumption, which is supported by a low 

characteristic Reynolds Number of the flow. 

o The pressure at the edge of the mold is zero. 

o The area of the thin film is equal to the surface area of the mold. 

o The process is symmetric [8,10]. 
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The molding process consists of three phases. First the film is heated to a 

constant temperature (e.g., 450°C) by contact with heated platens (see Fig. 2-la.). It is 

then squeezed by a constant force applied equally by the upper platen and the 

nanopatterned molding chip (see Fig.2-lb.). Finally, once the molding process is 

completed, the film is rapidly quenched back to room temperature and the applied 

pressure is removed (see Fig. 2-lc). The process produces a thin film of BMG between 

the mold and the platen. 

Platens 

Area of Mold Op p 

H ^ = ^ 

Applied Pressure 

Figure 2-1: Macroscopic schematic of the molding process a) initially, b) as the BMG is 

squeezed and flows laterally, and c) with the final thin film of BMG between the mold 

and the platen [8,10]. 

To start the model, a simplification of the Navier-Stokes equations and the 

continuity condition for a squeezed viscous film yields: 
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\_d_ 

H dx 
H 

dp 

dx, 
= -12 

dH 

dt (2-1) 

where ju is the viscosity, x is the lateral distance from the center of the mold, His the film 

thickness (see Fig. 2-1), t is the time, andp is the local pressure within the thin film. This 

equation is commonly known as the Reynolds Equation for a squeezed film [16]. Taking 

advantage of symmetry, this expression is integrated from the center of the mold (x=0) to 

the edge of the squeezed film (x=L/2, where L is the total width of the mold) to yield the 

lateral pressure gradient in the film of BMG: 

dp 12// dH 

dx 
, -x + C, 

H3 dt 
(2-2) 

where the constant of integration, C\, is zero due to the symmetry boundary condition at 

the center of the chip. 

dp 

dx 
0 

x=0 (2-3) 

Integrating a second time and applying the free surface condition at the edge of the chip 

p(L/2) = 0 ( 2 . 4 ) 

the pressure distribution in the film is: 

PBMG \X> 0 — 
6ju dH 

H(ty dt 

2 \ 

(2-5) 

Note that the pressure is a function of time and location, and the film thickness is 

a function of time. In order to substitute for the film thickness function, the average 

applied pressure is equated with the undefined film pressure as depicted in Fig. 2-2. 
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Figure 2-2: Schematic of molding process including definitions of parameters [8,10]. 

LA LA 

0 ° . (2-6) 

The BMG film pressure is defined by Eq. 2-5, and the applied molding pressure is 

constant with respect to time and location on the surface of the mold chip: 

F F 
P = —= — 

applied , j 2 

since the mold chip is square with a dimension of L. Substituting into Eq. 2-6: 

(2-7) 

IJ. 77 /J. 2 6// dH 

0H(tf dt 

( 2\ 

v 4 j 

dx 

(2-8) 

Performing these integrations and rearranging yields an expression for the thinning rate 

of the squeezed film, as a function of the film viscosity and known molding parameters: 

dH F H, 

(2-9) dt ZV 

Note that the rate of film thinning decreases at a rate which is proportional to a 

reduction in film thickness cubed. From Eq. 2-5, the pressure within the film will 

increase at a rate which is proportional to a reduction in film thickness cubed. Therefore, 
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substitution of Eq. 2-9 into Eq. 2-5 results in a cancellation of the effect of the thinning 

film thickness. Subsequently, all time dependence of the pressure within the thin film of 

BMG is eliminated, since the film thickness was the only time dependent parameter in 

Eq. 2-5. Similarly, the effect of material viscosity also cancels out, yielding: 

P&im = 
3F 

2L2 

2x 

\ L j 
•1 

(2-10) 

Finally, substituting the applied molding pressure term (Eq. 2-7) into Eq. 2-10 

yields: 

film i ^applied \film *y • 

' 2 ^ 2 

V ^ J 
•1 

(2-11) 

This expression allows for the determination of the local pressure within the squeezed 

film of BMG as a function of the known applied molding pressure. A properly scaled 

representation of the squeezed, thin film pressure distribution is provided in Fig. 2-3 

[8,10]. This relationship will be used with an equation for the feature height based on the 

local pressure in the BMG to determine the feature height distribution over the mold chip. 

Figure 2-3: Predicted pressure distribution within the thin film of the BMG [8,10]. 
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2.2 Nanoforming Model 

In order to calculate the required pressure to cause viscous flow of the BMG into 

nanoscale features and the subsequent achievable feature height, a nano-molding 

theoretical model was developed based on a force equilibrium approach. A schematic of 

the flow of the BMG into the nanoscale mold features is shown in Fig. 2-4 [8,9]. The 

assumptions in this model are [8,9,11]: 

o Due to the nanoscopic size of mold features into which the BMG is flowing, the 

continuum assumption of fluid mechanics is validated by computation of the 

Knudsen number. 

o Inertial effects within the BMG are neglected. This is validated by calculating the 

Reynolds number. 

o The pressure induced by compressing the air in the mold features is neglected 

since by using the ideal gas law, it can be found that this pressure is much less 

than the typical molding pressures. 

o A frictionless condition is assumed for the flow, and therefore a pressure term to 

account for the frictional effect between the advancing flow and the mold feature' 

is neglected. 

13 



BMG 

1 I I I I 

Figure 2-4: Schematic of molding process including definitions of parameters [8,9]. 

For molding to occur, the viscous (u) and capillary (y) pressures must be 

overcome. These pressures can be modeled separately, P^ and Py respectively, and 

equated to the applied pressure to satisfy equilibrium [4,8,9,11]: 

P =P +P 
1BMG *M y (2-12) 

The capillary pressure was assumed to be worst case, with complete anti-wetting between 

the BMG and the mold trench (i.e. 0=0 in Fig. 2-4). This results in a semicircular 

meniscus of flow into the mold feature, with a radius, R, equal to one half of the mold 

trench width, h. An experiment was conducted, in which it was assumed that no viscous 

flow (Pj!=0) occurred [8]. Eq. 2-12 may then be written as: 

PBMo=Pr (2-13> 
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The radius of curvature was found to be 182 nm. A value of surface tension was then 

calculated to be 27 N/m using Eq. 2-14 [8]. Ultimately, the capillary pressure was 

determined to be approximately 150 MPa [8]. 

r = PBUGR (2-14) 

Pressure loss due to viscous dissipation is modeled as a modified version of the 

pressure drop experienced by viscous Poiseuille flow. The modification is required to 

account for the depth of flow, D, varying with time, t, as the BMG fills the initially empty 

trench features [8,9,11]. 

h dt (2-15) 

Solving this differential equation results in: 

D{t) = h\^t (2-16) 

The viscosity of the BMG is \i which is a function of temperature, see Fig. 1-8. Note that 

the instant t = 0 is defined as the onset of viscous flow, which cannot occur until the 

capillary pressure is overcome by the applied molding pressure [8,9,11]. Also note that 

the time is limited by the crystallization of the BMG. 

2.3 Past Experimental Results 

Silicon molds were initially produced using ion etching with PMMA as the 

photoresist to create trench features with an aspect ratio of approximately 1.4 as shown in 

Fig. 2-5a [8,9]. A molding experiment was conducted at 450°C for 2 minutes at lOOMpa 

using a Silicon die as shown in Fig. 2-5b. Feature heights, measured with an AFM to be 
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470nm in height, were uniform over the patterned area, and had an aspect ratio of 

approximately 1.3 [8,9]. Since the mold trench was almost completely filled, results 

were unable to validate the models. The effect of pressure distribution could not be 

observed most likely due to a small patterned area, and the aspect ratio was limited by the 

mold depth. 

Figure 2-5: a) SEM image of Si mold b) SEM image of a Vit-lb specimen formed into a 

Silicon mold at 450°C at lOOMpa. Specimen's tilts are 80° providing a near cross 

sectional view of feature meniscus [8]. 

In order to validate the theoretical model, molds with a larger array of features 

needed to be investigated. Mold chips were designed taking this into consideration. The 

molds were designed to have varying sized trenches, triangular trenches and holes. The 

features were to be repeated over a 5mm x 5mm and 10mm x 10mm mold area. These 

molds were to be fabricated to contain high aspect ratio features. The process that was to 

be used was deep reactive ion etching (DRIE) with ZEP as the photoresist in order for the 

high aspect ratio to be obtained. The results of this investigation will be discussed in 

Chapter V, Section 3. 
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CHAPTER III 

SURFACE TENSION 

3.1 Background 

In past research a nanomolding model was developed [8,11]. Assumptions within 

this model have led to quantitatively incorrect results, although qualitatively acceptable. 

One such assumption is the interface between the BMG and silicon is complete anti-

wetting (0 = 0). As can be observed from Figure 3-1, complete anti-wetting does not 

occur. A second assumption is that no viscous flow (P^ = 0) occurs while the features are 

being formed for the experiments conducted to find the capillary pressure. 

Figure 3-1: SEM image of a formed BMG feature from a silicon mold shows that 

complete anti-wetting (8 = 0) does not occur [8]. 

Finding a more accurate surface tension value between the BMG and the silicon 

would eliminate these two assumptions that have partially led to the quantitative 

inaccuracies. 
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3.2 Determining surface tension 

When the BMG is heated to a liquid, the surface tension between the BMG and Si 

is the surface tension between the liquid and solid, YSL- This can be modeled as puddle as 

shown in Fig. 3-2. The surface tension of the liquid BMG to air is that of the liquid to 

gas, YLG, and the surface tension of the silicon to air is that of the solid to gas, yso- The 

angle between the liquid-gas surface tension and the solid-liquid surface is the contact 

angle, p\ Note that the thickness and contact angle of puddles is relatively uniform and 

consistent for various size puddles of the same liquid on the same surface. This is shown 

in Fig. 3-3 for water on a waxed surface. 

TSG 

Fig. 3-2: Schematic of a puddle. 
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Figure 3-3: Water on a waxed surface shows that puddles have relatively consistent 

heights despite differences in the size of the puddles [12]. 
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The height of the puddle, z, is given by [17]: 

V PS 

where p is the contact angle, shown in Fig. 3-2, p is the density of the liquid and g is the 

acceleration due to gravity. Rearranging Eq. 3-1 for the surface tension between the 

liquid and gas, YLG, yields: 

v - PS'2* rx o\ 
^ G ~2( l - cos ( / ? ) ) ( ] 

The surface tension of interest, between the liquid BMG and the silicon mold, can be 

described by the balance of forces of a liquid drop on a dry surface. This is entitled 

Young's equation and is given by [17]: 

YSL =rSG-rLGC0S(P) (3-3) 

Young's equation assumes the surface is perfectly fiat. Since silicon is a smooth material 

any surface roughness and impurities of the material that would cause inaccuracies in the 

result are negligible. Substituting in Eq. 3-2 into Eq. 3-3 yields: 

_ pg • z2 cos(/?) 
/ f f l " / s G ~ 2 ( l - c o s ( / ? ) ) ( } 

The value of p for Vit-lb is 1.6 g/cm [14]. In order to find the height of a 

puddle, z, and the contact angle, P, experiments were conducted. Silicon samples were 

heated in a heat treating oven to 1000+ K in order to melt the BMG. For Vit-lb the 

liquidus point is 1026 K [18]. The silicon samples were placed on a level surface near 

the edge of the door. Small volumes of BMG were then placed onto the heated silicon to 

allow a puddle to form. BMG was added after heating the oven and the silicon so that 
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crystallization would not occur. A digital camcorder was set to record time stamped 

pictures of the puddle from when the BMG is placed on the silicon until the BMG has 

been cooled. The camera was aligned such that with the oven door open the silicon front 

appeared as a 2D image. A schematic of the image seen by the camera is shown in Fig. 

3-4. A Micro-Epsilon optris CT laser thermocouple with data recording, with a 

resolution of 0.1 °C was used to record the temperature with respect to time. 

Figure 3-4: Schematic of oven with liquid BMG on silicon samples. Note that the sizes 

of BMG samples varied. 

The experiments yielded no results as the BMG did not become liquid even with 

increased temperatures. BMG droplets have been formed before as shown in Fig. 3-5 

[19]. The BMG not melting can most likely be explained by not conducting the 

experiments in a vacuum such as in Fig. 3-5. If oxidation occurred, the oxide layer may 

have prevented the melting process [20]. Experiments were not performed in a vacuum 

due to lack of time, cost, and lack of the facilities to conduct them in. 
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Figure 3-5: Images of Vit-lb processed on graphite discs at various temperatures [19]. 

The digital images were to be used to find z and P values as a function of time. 

Note that scaling of the picture to find z values, could be performed by scaling to the 

known length of silicon samples. The time stamps of the temperature recordings would 

then be matched to the time stamps on the digital pictures to obtain values for z and (3 as a 

function of temperature. As the temperature starts to cool, the contact angle will 

increase. As the contact angle increases, the puddle height will also increase. This 

concept is illustrated by Fig. 3-6. 

Figure 3-6: Illustration of the effect that higher contact angles produce a higher puddle 

height. 

The z and fS results from the experiments substituted into Eq. 3-4 would produce a 

value for the surface tension of interest, YSL- Solving for ySL at several temperatures 
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establishes a plot of YSL as a function of temperature, so that these values can be used in 

the model. An example of this kind of plot for water is shown in Fig. 3-7. 

:.om. 

:'\ •••• .-'. •'•••'"•••".••"• V e h S f i w a t U F e i , ; - : ! ! , •••.'/'•' 

Figure 3-7: Plot of surface tension water, versus temperature [21]. 

Due to the inability to melt the BMG, the surface tension of the BMG on silicon is 

set to 1.47 N/m as suggested by Mukherjee et al. [15]. Although the surface tension of a 

material is known to vary with temperature this value is assumed to be constant for all 

temperatures. This is acceptable since temperature has a smaller effect on surface tension 

for metals than it does most liquids [22]. The surface tension for Vit-1 for higher 

temperatures than molding experiments is shown in Fig. 3-8 [15]. 
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Figure 3-8: Surface tension for Vit-1 [15]. 
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CHAPTER IV 

THEORETICAL MODEL 

4.1 Nanoforming Model 

There are two modifications proposed to the model by Rason et al. [8,9]. The thin 

film and nanoforming models discussed in Chapter II, section 1, and section 2, 

respectively, were combined to form a single model with the modifications. First 

capillary pressure is modeled through force equilibrium and the results to surface tension 

discussed in Chapter III are applied. 

Recall Eq. 2-12 [4,8,9,11]: 

P -P +P 
rBMG rfi^ry (4_1) 

where P^ is the viscous pressure and Py is the capillary pressure. The applied BMG 

pressure here is the local pressure within the BMG, -PBMG? from Chapter II and is given 

by: 

.V 
P = -±P 
1 BMG ~ * applied 

2x 
•1 (4-2) 

The length of the chip is L, the distance from center is x, and the applied pressure is 

-^applied [8 ] . 

When a liquid is unable to expand freely, there exists an interface with a second 

liquid or gas. If this interface is curved, as in the case of the BMG to air interface while 

BMG is being formed, there is a pressure difference across the interface. The capillary 

pressure can be found by the force equilibrium depicted in Fig. 4-lb [23]. 
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b) 

Figure 4-1: a) Schematic of molding process [8,9]. b) Pressure change across a curved 

interface due to surface tension [23]. 

From force equilibrium: 

MP, = 2 • ySLl (4-3) 

The trench length, /, cancels out, so that Py is a function of the trench width, h, shown in 

Fig. 4-1, and the surface tension of the liquid BMG on the Si mold. Rearranging for the 

capillary pressure: 

Pr = 
2/, SL 

h 
(4-4) 

Rearranging and substituting Eqs. 4-2 and 4-4 into Eq. 4-1 yields an expression for the 

viscous pressure: 

BMG P =—P 
y n applied 

(2x^ 
- 1 

V ^ j 

2/, SL (4-5) 
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Figure 4-2: Pressure applied versus molding time. 

Due to physical processing requirements to reach a constant applied pressure a 

ramp to the desired pressure is required (see Fig. 4=2). Thus flow occurs in two stages. 

Including both stages into the model is the second proposed change to the model by 

Rason et al. [8,9]. The first stage is during the ramp, and will be discussed later in this 

section. The second stage is while molding is at a constant applied pressure for a period 

of time, tc. Note that time, /, is equal to the sum of tr and tc. While PapPiied is constant, the 

viscous pressure, Py, is also constant so that the depth of flow is the only variable that is a 

function of time. Recall Eq. 2-15 [8,9,11]: 

" h2 at (4-6) 

To obtain the depth of flow for which the pressure is constant, Eq. 4-6 is integrated and 

rearranged to yield: 

Eq. 4-7 agrees with Rason et al. [8,9,11]. Substituting Eq. 4-5 into Eq. 4-7 yields: 

(4-7) 
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D(tc) = hltc 
6/1 

" applied 

'2x^2 

- 1 
V ^ J 

2/, SL 

6// 
(4-8) 

The other molding stage in which filling occurs is during a ramp time, tr, which is 

the time in which the pressure is being applied at a constant rate from zero to the final 

constant applied pressure. Recall that until the viscous pressure is overcome, the flow 

depth remains zero. However, from this point, which will occur along the ramp, to the 

constant applied pressure, flow occurs. To account for the depth of flow during the time 

of the ramp, tr, Eq. 4-5 becomes: 

"ft v r ) ~~ "BMG v r ) "•y ~ ^ "applied Vr ) ' 

(2x 

\^ J 
•1 

2r. SL 

h 
(4-9) 

The applied pressure, Pappiied('r) in Eq. 4-9 is a function of the ramp rate, Rrate, the area of 

the mold chip, L2, and time it takes to get to pressure, tr, and is given by: 

p (t \= ra,e r 

applied \ r / T2 
(4-10) 

Note that Pappiied is a function of time here, while Eq. 4-5 is not. Now integrating Eq. 4-6 

with the pressure varying with ramp time and rearranging for the depth of fill yields: 

D(tr) = h (4-11) 

To find the total depth of fill, the results of Eqs 4-8 and 4-11 can be summed together to 

yield Eq. 4-12. 
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D(t) = h\tr 

2 L2 

4y SL IP. applied 

12// 
+ h\\L 

4y, SL 

12 ju 
(4-12) 

Note that no fill will occur until Pappiied is greater than Py to overcome the capillary 

pressure of Eq. 4-4. Also note that the molding temperature is a critical processing 

parameter even though not explicitly included in Eq. 4-12, since viscosity and surface 

tension are affected by the temperature. 

4.2 Theoretical Results 

Using Eq. 4-12 the depth of fill for various trench widths, h, with respect to the 

distances from the center of the mold can be predicted. A plot of the results is shown in 

Fig. 4-3. The processing parameters were a temperature of 450°C, a time of 65 sec, and a 

pressure of 100 MPa. The ramp rate was 0.08 kN/s and the viscosity was 30 MPas. As 

expected, as the trench width increases, the depth of fill increases, and as the distance 

from center increases, the depth of fill decreases. 
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Distance from center (mm) 

Figure 4-3: Plot of depth of fill vs. distance from center for various trench widths, with 

processing parameters: temperature (450°C), time (65 sec), and pressure (100 MPa). 

The effects of the applied pressure on the depth of fill can be observed in Fig. 4-4. 

An increase in the applied pressure for a known time, temperature, and trench width, 

increases the depth of fill. Again the pressure distribution across the mold exists, where 

the greatest depth of fill occurs at the center. The plot shown in Fig. 4-4 can be 

normalized in order to show the achievable aspect ratio for different applied pressures 

and a known time and temperature (see Fig. 4-5). 
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Distance from center (mm) 

Figure 4-4: Plot of depth of fill vs. distance from center for various applied pressures, for 

a temperature of 450°C, a time of 65 sec, and trench width of 300 nm. 

Distance from center (mm) 

Figure 4-5: Plot of achievable aspect ratio vs. distance from center for various pressures 

for a temperature of 450°C, and a time of 65 sec. 

Although temperature is not a variable in part of Eq. 4-12, viscosity is directly 

affected by temperature. Thus, the temperature will affect the depth of fill. As can be 
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seen from Fig. 4-6, as temperature increases the depth of fill increases. It should be noted 

that the crystallization time of the BMG decreases rapidly, allowing less time for the 

molding process to occur, and thus decreasing the distance between curves. Fig. 4-6 was 

created for 80% of the crystallization time of the BMG found in Fig. 1-8. The highest 

achievable aspect ratio for different temperatures and a known time and pressure is 

shown in Fig. 4-7. While it is obvious that increasing the temperature to 500°C will 

drastically increase the depth of fill, the crystallization time is approximately 30 seconds, 

not allowing for much processing time. Note that Fig. 4-7 was done for a processing time 

of 65 seconds, in which crystallization would occur for the 500 C case and flow would 

stop 30 seconds into the experiment. 
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Figure 4-6: Plot of depth of fill vs. distance from center for various temperatures, a given 

pressure (100 MPa), time (80% of crystallization time) and trench width (300 nm). 
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Figure 4-7: Plot of highest achievable aspect ratio vs. distance from center for various 

temperatures, a given pressure (100 MPa) and time (65 sec). 

The results produced from Eq. 4-12 in Fig. 4-3 through 4-7 appear to be over 

predictions of the attainable depth of fills. The results may be too high due to the surface 

tension. A better prediction of surface tension would lead to a better prediction of the 

capillary pressure, resulting in a more reasonable depth of fill prediction. A large source 

of error that has led to an over prediction of fill is the BMG to silicon interface is not 

frictionless. Another source of error could be that other pressures ignored in the 

assumptions need to be taken into account, such as the backfilling pressure. 
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CHAPTER V 

EXPERIMENTAL INVESTIGATION 

5.1 Experimental Set-up 

In order to test the validity of the theoretical model discussed in chapter IV, molds 

and an experimental set-up were designed. A custom fixture was installed on a model 

1350 Instron mechanical testing machine which includes a pair of parallel H-13 tool steel 

platens (see Fig. 5-3, 5-4). Each of these platens is attached to another steel block that 

interfaces with the Instron (i.e. mounting blocks, see Fig. 5-3, 5-4). Cogetherm-P 

insulation blocks with ceramic standoffs are sandwiched between the platens and the 

mounting blocks in order to protect the rest of the set-up and Instron from heating. The 

bottom mounting block attaches directly to the Instron, while the top mounting block is 

attached to the bottom mounting block through a set of guide rods and springs with a 

spring constant of 0.01 kg/s2. A steel ball sits on the top mounting block for a single 

point of contact with the Instron. This ensures the force applied by the Instron is 

perpendicular to the platens. The Instron is equipped with an Instron Corp. model 

number 3116-135 load cell with a capacity of 100 kN and a resolution of 0.05 N. A load 

is applied at a constant rate of 0.08 kN/s and then held at a constant load which is varied 

and controlled through a FastTrack8800LT control system to an accuracy of ±0.005% of 

the load cell capacity or 0.5% of the indicated load, whichever is greater. If the rate at 

which the load is applied is too large, the mold can break. The rate chosen was the fastest 

to get to the desired applied pressure without breaking the molds and was found through 
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experimentation. Heating cartridges and cooling lines are incorporated into the platens 

for the accurate heating and subsequent rapid quenching of molded specimens. The 

heating cartridges, manufactured by Omron are 6.35 mm diameter 50.8 mm long and 

produce a maximum temperature of approximately 550°C. The heating rate is shown in 

Fig. 5-1. Temperature is measured using K-type thermocouples with a resolution of 

2.2°C and confirmed using a Micro-Epsilon optris CT IR sensor, with a resolution of 

0.1 °C. Note that due to data scatter at lower temperatures, the temperature at time zero is 

not ambient. 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 

Time (minutes) 

Figure 5-1: Plot of heating rate of experimental setup produced using K-type 

thermocouples with a resolution of 2.2°C. 
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Figure 5-2: Plot of cooling rate of experimental setup produced using K-type 

thermocouples with a resolution of 2.2°C. 

The cooling lines are attached to a circulating pump with an approximate flow 

rate of 530,000 cm3/hr and provide a cooling rate depicted in Fig. 5-2. Note that between 

experiments the temperature was not necessarily reduced to ambient temperature in order 

to decrease the cycle time of the experiments. See Fig. 5-3 for a schematic of the system, 

and Fig. 5-4 for a picture of the experimental set-up. 

35 



Force applied by Instron 

I -
Cartridge Heaters 

Cooling Lines 

BMG/Si mold Stack 

Thermocouples 

Platens 

Insulation Blocks 

Mounting Blocks 

t 
Figure 5-3: Schematic of experimental set-up including components for heating and 

cooling. 

Figure 5-4: Picture of the experimental set-up. 
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A trade-off exists between the viscosity and the crystallization time as shown in 

Fig 1-8 for BMGs. Viscosity determines the flow characteristics of the BMG while the 

time is critical to assure that the BMG does not crystallize and the advantageous strength 

properties of the BMG remain. With a reduction of processing time through the 

quenching of the BMG, the process can be conducted at higher temperatures in order to 

decrease the viscosity, thus increasing the flow into the mold. The parameters used for 

molding experiments varied. The BMG is preheated before the pressure is applied, but is 

at temperature for no more than 75% of the crystallization time found from Fig. 1-8 

except in the 500°C case. The BMG is rapidly quenched while pressure is still being 

applied to insure that the material does not flow back out of the nanoscale mold features. 

5.2 Experimental Method 

Experiments were conducted with the set-up described in the previous section and 

silicon molds to be discussed. Preparation for the experiment includes characterizing the 

mold with an SEM and AFM, and cleaning the BMG and silicon. The BMG is cleaned 

by soaking in alcohol, rubbing with a Q-tip while in the alcohol, and then blowing dry 

with compressed air. The silicon is first rinsed in acetone, followed by alcohol, and then 

soaked in a 110°C heated piranha bath (i.e. 2:1 HiSO^FkCh) for 10 minutes. It is then 

rinsed in deionized (DI) water before blowing dry to keep organic residue from forming. 

The mold is then immediately placed on the platen to be preheated to temperature. 

Once temperature is reached as measured by the thermocouple, the BMG is placed onto 

the mold. The BMG is allowed to get to temperature, measured by the IR sensors before 

the pressure is ramped to a constant pressure based on the given test. While still under 
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pressure the BMG is rapidly quenched by the cooling lines in the platens. The 

BMG/silicon mold is then removed from the set-up. 

In order to examine the BMG features, further processing must occur. When 

separating the BMG from the silicon, pieces of the silicon break and remain with the 

BMG. A 30% KOH bath is used to dissolve any remaining silicon on the BMG by 

soaking for 2 hours at 70°C-80°C. The BMG is then placed into an exothermic 

decontaminating bath (i.e. 5:1:1 HiC^FFiC^HO) for 20 minutes while still hot, rinsed in 

DI water, and then blown dry. The SEM and AFM are then used to measure the results. 

5.3 Preliminary Experiments and Results 

The molds briefly mentioned in Chapter II, Section 2 were fabricated and 

characterized. The silicon molds were produced to contain high aspect ratio 

(height/width) features in order to validate the theoretical model. Two sizes of mold 

chips were created via electron beam lithography and deep reactive ion etching with ZEP 

used as the resist. The first chip is 10mm x 10mm. These chips have 35 sets of features 

arranged as shown in Fig. 5-5a. Each set of features on the 10mm x 10mm chips 

consisted of 16 trenches, which were 400nm wide and approximately 800nm apart, a 

triangular trench, which was 3 urn at its widest point, and 24 trenches, which were 200nm 

wide and approximately lum apart. All features were HOum in length. These features 

are shown in the SEM image of Fig. 5-6 [10]. 

38 



a) 

£3 
S3 
e 
•® 

& s & & ® & t?s.?? 
a 
^ 8 
0 

ss o 8 it 

S ; 
n > 
a 
o ! 

i «J es « M i , 
, 8 r 

£s 
B | 
sa i 

b) 

Figure 5-5: a) Arrangement of feature sets on the 10mm x 10mm chips and b) 

Arrangement of feature sets on the 5mm x 5mm chips [10]. 

Triangular Trench: 
Length = 110pm 
Width at top = 3um 

16 Trenches: 
Length = 110|jm 
Width = 400nm 
Spacing = 800nm 
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Length = 
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200nm 
= 110(jm 
- 1 \im 

Figure 5-6: SEM image of 10mm x 10mm chip features [10]. 

The second chip is 5mm x 5mm. Each chip contains 5 sets of features arranged as 

shown in Fig. 5-5b with multiple sets of varied sized trenches and spacing. The 

arrangement of the feature types on the 5mm x 5mm mold is shown in Fig. 5-7. They 

also contain a triangular trench (see Fig. 5-8a) of the same measurements as the one on 

the 10mm x 10mm chips. Finally there is a set of holes as shown in Fig. 5-8b. 
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Figure 5-7: SEM image of 5mm x 5mm chip features [10]. 
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Figure 5-8: a) SEM image of triangular trench feature on both size chips and b) SEM 

image of hole type features on 5mm x 5mm size chips [10]. 
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Figure 5-9: SEM image of sample set of trench features. 

The depths on both sizes of chips vary from approximately 550nm to 

approximately 750nm. This creates aspect ratios ranging from 1.8 to 3 (see Fig. 5-9). 

The deep reactive ion etching did create higher aspect ratios than the molds in the past 

results shown in Chapter II, Section 2. 

Experiments were conducted at 80MPa at 450°C. Flow into the trenches was 

limited (see Fig. 5-10), since capillary pressure was most likely not overcome. The bump 

features observed in Fig. 5-10 were limited. The holes in the molds did not show any 

indication of bumps on the BMG. The triangular trenches and the trenches showed the 

bump features. There was a trend in which the larger the feature size, the more 

pronounced the bump. Note that the diagonal marks in Fig. 5-10 are shear bands, which 

is how BMG is formed. 
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Figure 5-10: SEM image of BMG formed at 80MPa and 450°C. 

Increasing the pressure to lOOMPa at 450°C caused the silicon molds to shatter 

during the forming process. This may have been caused by the high feature density, 41 

features per 0.0121mm2 area for the lowest feature density chip, which created stress 

concentrations at each feature and resulted in broken molds. This phenomenon can be 

observed in the silicon molds, to be described in section 5.4, where cracks most likely 

due to stress were found near the features after molding experiments were conducted (see 

Fig. 5-11). The feature density may therefore be a limiting factor in producing features 

with this method. 

. - - atress z'az'.s 

Figure 5-11: Microscope image of Si mold after molding experiment shows stress cracks 

around mold features. 
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5.4 Experiments and Results 

An additional set of silicon molds were designed and fabricated to obtain high 

aspect ratio (height/width) features. These molds were specifically designed for 

validation of the theoretical predictions. In addition, the molds planned to have a lower 

density of features in order to reduce the breaking of molds. A single chip pattern was 

created by an external supplier, MEMS Exchange, who also created the molds discussed 

in the previous section, via electron beam lithography and deep reactive ion etching with 

ZEP used as the photoresist [24]. The size chip is 5mm x 5mm. Each chip is comprised of 

11 patterned feature sets arranged as shown in Fig. 5-12. The varying distances from the 

center of the chip was designed to allow for validation of the thin film model. 

^ * Patterned 
Outer most ^ * feature set 
feature set a 

S «=t 5 = <=S 

0.7 mm 
5 mm 

III 

0.6 mm 

5mrr 

Figure 5-12: Arrangement of feature sets on a 5mm x 5mm chip. 

These 11 patterned sets contain varying trench widths and feature spacings. 

Trenches were chosen for the feature of interest in order to compare with the 2D 

analytical model results. The widths of the trenches range from 300 nm to 100 nm in 50 

nm increments, while the spacing between the trenches is 10 times the trench width. 
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These feature sizes were chosen to find the smallest feature sizes obtainable. Since 

300nm trenches have been formed in the past, it was known that this trench width is 

formable [8]. Trench spacing was chosen in order to allow suitable feature densities to 

help prevent molds from breaking. The arrangement is shown in Fig. 5-13. An SEM 

image of this arrangement is shown in Fig. 5-14. Although the depths on these chips vary 

due to the feature sizes, the aspect ratio determined via SEM is approximately 5 for all 

feature sizes [24]. 
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Figure 5-13: Trench sizes for each set of patterned features. 
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Figure 5-14: SEM image of a single patterned set [24]. 

Experiments were performed at varying temperatures, pressures, and times. 

These molding parameters are shown in Table 5-1. The viscosity value, \i, was 

determined from Fig. 1-8 based on the molding temperature. 

Temperature 

450 

415 

500 

Viscosity 
(MPa-s) 

30 

4 

0.2 
• 

Pressure 
|MPa) 

100 

* l j2o ' 
140 
100 
120 

t _ J t 4 j } _ _ 
160 

100 

Time 

50 
~~ 65 

80 
' 65 
" ^ ^ 6 5 ^ " 

65 

50 
[ . 65 

Table 5-1: Table of molding parameters used in experiments. 
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Again SEM images revealed that no fluid flow into the trenches was obtained, and 

thus molding was limited. An example of these molded features can be observed in Fig. 

5-15. However, bump features on the molds confirmed the pressure was the highest at 

the center of the chip and decreased to the edges as evident by the number of features 

visible. An example of this array can be seen in Fig. 5-16. All samples were observed at 

a higher magnification (50 mag) than Fig. 5-16 (5 mag), and a sample set was verified 

using the SEM. 

Figure 5-15: SEM image of two feature sets after a molding experiment. 
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Figure 5-16: Microscope image of an example array of features and features sets in 

BMG. 
r 

The cause of the failed experiments is unknown. One possible explanation is that 

the particular alloy of BMG used, Vit-lb, may be affected by aging. The crystallization 

time has seemed to decrease and the melting temperature increased. When comparing 

experiments performed a year apart, with pieces from the same original sample, the time 

before crystallization had decreased significantly in the more recent experiments. This 

did not allow enough time for the flow of the BMG into the Si mold features. 

Table 5-2 provides data for the effect of the applied molding pressure at a given 

temperature (475°C) and molding time (65 sec) on feature sets and feature sizes that can 

be observed. Pressure showed a predictable trend in both the feature sizes and the 

feature sets of the bumps achieved. With increasing pressure, more feature sizes were 

observed both in the center and outer feature sets. With respect to feature sets, there was 
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a slight increase in the number of feature sets observed with increasing pressure. This 

supports that a pressure distribution across the mold during the molding experiments does 

exist and affects the fill of the mold as the distance increases from the center. It should 

also be noted that the higher the pressure the more discoloration of the BMG was 

observed, which may indicate further crystallization or oxidation. 

Pressure 
{Mpa> 
too 
120 
140 
160 

Feature Sets i Feature Sizes Observed 
Observed {Center) 

All except outer most j 3/5 
Aii except outer most i 4/5 

AH 1 • : •• 5/5 
All ! 5/5 

Feature Si zes Observed 
(2nd outer most set) 

Feature Sizes Observed 
(Outer most set) 

2/5 0/5 
3/5 0/5 
4/5 3/5 
4/5 4/5 

Table 5-2: Chart of the effect of applied molding pressure on the feature sets and feature 

sizes for a molding temperature of 475°C and a molding time of 65s. 

When varying the molding time, there were slight differences observed with 

respect to bump features achieved (See Table 5-3). Fewer feature sets were produced 

with a shorter molding time. The same is true for the feature sizes observed at the outer 

most sets with fewer produced for a shorter molding time. For the case of 50 sec, 450°C, 

and 100 MPa molding parameters, the feature sizes observed decreased as distance from 

center increased. This indicates a pressure distribution as the distance from center 

increases. 

Time {s} 

50 
65 
80 

Feature Sets 
Observed 

AS! except outer raost 
All 
A l 

Feature Sizes Observed 
{Center} 

5/5 
5/5 
5/5 

Feature Sizes Observed 
(2nd outer m ost set) 

3/5 
•5/5 : 

Feature Sizes Observed 
(Outer most set) 

0/5 
5/5 

5/5 1 5/5 

Table 5-3: Chart of the effect of molding time on the feature sets and feature sizes for a 

molding temperature of 450°C and a molding pressure of lOOMPa. 
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The molding temperature had opposite trends than expected. Based on Fig. 1.8, 

increasing the temperature should decrease the viscosity and thus allow better flow of the 

material. Table 5-4 shows the effect of molding temperature on feature sets and feature 

sizes for three different molding pressures. For a given pressure, as temperature 

increases the number of feature sets and feature sizes (e.g., 140 MPa and 475^0 case) 

observed decreases. These observations contradict the expected effect of temperature due 

to decreases in viscosity and can be explained by crystallization occurring more rapidly 

than expected. Thus, care must be taken to prevent crystallization of the material. 

Pressure 
(Mpa) 

100 

120 

140 

temperature 

450 . 
r- : 475 , ^ 

500 
450 
475 
4 5 0 • • : > 

475 

Feature Sets 
Observed 

.A i l 
Atl except outer most 

•• • N o n e 

Alt 
Atl except outer ims t 

• • ' / • - , A H . ' • • ' • . - . . - . ' 

A(! 

Feature Sizes 
Observed 
(Center) 

• 5/5 ., 
• • • • . 3 / 5 . , 

n/a 
:. 5/5 

' 4/5 -
• 5 / 5 . : . : •: 

.-•••,• : ' 5 / 5 ; •• 

Feature Sizes 
Observed 

{2nd outer most set) 
;. 5/5,:. 

2/5 
: Wa : 

'•• 5/5 ' • . 
-V:: <:3/5'.:-"\,:.'' 

..::. 575 
: • • : . • - . , . • . • • 4 / 5 : ' . : . . 

Feature Sizes 
Observed 

(Outer most set) 
5/5'. :• 
075; 
n/a": 

r- '5/5' : 

:'.;:..;.. o/5 
: ' ' • : ' . : : , 5 / 5 - - " : . ' • • • , - . 

.r^-3/5 

Table 5-4: Chart of the effect of molding temperature on the feature sets and feature sizes 

for various molding pressures and a molding time of 65s. 

As temperature increased, it was observed that discoloration and brittleness, 

which was determined by how easily and into how many pieces the BMG broke when 

handled in similar manners, of the BMG increased. This is an indication of 

crystallization. X-ray diffraction tests verified that a crystalline structure was more 

prevalent in samples molded at higher temperatures (see Fig. 5-17). In Fig. 5-17 few 

peaks are observed in the 4 5 0 ^ sample indicating a material that is mostly amorphous, 

while there are several more defined peaks in the 500 °C sample. Due to the brittleness of 

the 5 0 0 ^ samples only a small piece of BMG could be analyzed in comparison to the 

49 



whole sample of the 4 5 0 ^ sample, causing a difference in the intensities recorded (i.e., 

y-axis of Fig. 5-17). Peak positions occur when the X-ray beam has been diffracted by 

the lattice of the crystal. Since crystals are a periodic structure, the peaks should be 

periodic when crystals are present. Thus the number of peaks observed in the 500C 

sample shows the sample has been crystallized. The exact time in which crystallization 

began to occur in experiments could not be determined. It is however, not surprising that 

the 500^0 case crystallized since heat was applied during the molding experiment for 65 

seconds. Based on the TTT diagram (Fig. 1-7), crystallization occurs for this material 

when heated for approximately 30 seconds at 500 qC. 

4509Csample 

1 I 1 ; ! ;.;•:' J :'. ..' •':• ' ! :': '..-:''•-.•' .•:•! ! •. ! ••:'-:..' I ' ' ' : . ' : ' i : 1 , •':;.:.'• •' I . : 1 , : ' . ; ' ! i : ; ' . . ' !. ' ' I ! : 1 J • ' . ; ' : ••;! , ' ! '.:••';, I ~ : 

'•;.: • 'as '" :-30 ;:;''V. ' 49 ,;:; :;; so • ' ;.:;' , e*>; . . '"':.;" ; ;70 : ' , • ";:y ''.'•' so ' 

. :: 53AnipT)iiouit rnetaltest nested 5D0C - f i l e : A;morphqu.st meta:i:testl0'O:,S;0OCraw- type: 2Thalone - Start: 27 A 0 0 * -End: 81 600 V-.Step-O.lOO"".- : 
'. P J v * 20.0 jTlirr-Ampipli0U!iimetaitesi'45OC - f 5ie::Arriorp>ouil nieta'J test;450_00.raw-.Type: 2Th akMiei Start 27.100 ' - Ercd:8';600>?;- Step:'0:10 . 

Figure 5-17: X-ray diffraction plot of intensity (counts per sec) versus x-ray diffraction 

angle. Plot shows BMG formed at a higher temperature crystallized, while lower 

temperature remained mostly amorphous. 
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CHAPTER VI 

CONCLUSIONS & FUTURE WORK 

6.1 Conclusions 

Nanosized features have been manufactured using the nanoforming process in the 

past. The goal is to create a cost effective mass production nanomanufacturing process to 

produce nanoscale parts. 

In this research, a theoretical model for predicting the depth of fill as a function of 

mold location for a known set of molding parameters was further developed. The two 

past models were combined, and two modifications were proposed. The capillary 

pressure was modeled using force equilibrium. Also, since experiments apply the 

pressure at a constant ramp until the full pressure is reached, some filling will occur prior 

to the constant applied pressure. The depth of fill that occurs during the ramp was added 

to the depth of fill while being held at pressure, to find a total depth of fill. Also as part 

of the model development, the effect of surface tension for BMG on Si was considered. 

Through experimentation it was found that the area density of features on a mold 

may create increased stress concentrations causing molds to break. A robust 

nanoforming process was implemented and low feature density molds were designed and 

fabricated in order to reduce the breaking of molds. The molds were produced using 

deep reactive ion etching to obtain high aspect ratio features. 

Although complications in the experiments led to limited results, observations 

were made on the molding parameters (time, temperature, and applied pressure). With 

increased applied pressure, the number of features and feature sets visible increased. 
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Also, as the distance from center increased the quantity of features visible decreased for a 

given experiment. Although not as apparent as the pressure results, increased molding 

time also increased the number of features visible. These findings indicate that a pressure 

distribution across the mold exists. Temperature exhibited the opposite trend than 

expected; increased temperature decreased the number of features visible. This 

difference might be explained by crystallization, since temperature also affects the 

crystallization time. At higher temperatures further discoloration and brittleness of the 

BMG was observed. 

6.2 Future Work 

Due to the inability to create flow of the BMG into the features, quantitative 

results could not be found. In order to better compare experimental results and 

theoretical results, further research should be done in this area. It is important to properly 

predict the required parameters for filling the desired feature sizes in order to insure a 

low-cost, quality, high rate nanomanufacturing process. Two areas of experimentation 

should be completed in order to fully understand nanoforming. 

The first area of experimentation that should be conducted is further 

investigations with the deep reactive ion etched molds discussed in Chapter V, Section 4. 

Experiments can be performed with a different alloy of BMG, or the same alloy newly 

manufactured. This would eliminate the possibility that the BMG degrades with age. 

These experiments can be used to find the highest achievable aspect ratio and the 

pressure distribution across the mold. The second area of experimentation needing to be 

explored further is the surface tension of BMG being used. Conducting the surface 
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tension experiments in a vacuum should allow the BMG to melt. This will result in 

surface tension values for the temperature range of molding experiments. These values 

can then be used to better predict the depth of fill in the theoretical model. The 

improvements in these two areas of experimentation should help make the theoretical 

predictions align quantitatively with the experimental results. While the pressure 

distribution across the mold has been observed qualitatively, the effects of pressure 

should be confirmed quantitatively by comparing experimental and theoretical results. 

Ultimately the molds and/or molding process should be modified to allow for 

reusable molds. The silicon molds are brittle and can be used only once, since the 

material tends to break during molding process. This may be due to any non vertical 

forces, such as flow into features and forces due to possible slightly unparallel platens. A 

different material that is stronger in the lateral direction and more durable than silicon 

should be investigated, perhaps quartz. Note that a stronger mold material may also 

allow for a higher feature density. Also note that the wetability of the mold is important 

for ease of flow into features. 

53 



LIST OF REFERENCES 

I] Sachin, B. "Thin Film Deposition on Plastic Substrates using Silicon Nanoparticles 
and Laser Nanoforming", Journal of Materials Science and Engineering B, 2006, pp. 
228-236. 

2] Saotome, Y., Itoh, K., Zhang, T. and Inoue, A. "Superplastic Nanoforming of Pd-
Based Amorphous Alloy," Scripta Materialia. 44, 2001, pp. 1541-1545. 

3] Saotome, Y., Hatori, T., Itoh, K., Zhang, T. and Inoue, A. "Superplastic micro/nano-
formability of La6oAl2oNiioCosCu5 amorphous alloy in supercooled liquid state," 
Materials Science & Engineering. A304-306, 2001, pp. 716-720. 

4] Schroers, J. "The Superplastic Forming of Bulk Metallic Glasses", Journal of Metals, 
May 2005, pp. 35-39. 

5] Kumar, G., Tang, H., Schroers, J. "Nanomoulding with amorphous metals", Nature 
Letters, Dec. 2008, pp. 1-5. 

6] LiquidMetal Technologies, Inc., www.liquidmetal.com 

7] Bardt, J.A., Ziegert, J.C., Schmitz, T., Sawyer, W.G., and Bourne, G., "Micromolding 
Three-Dimensional Amorphous Metal Structures", Journal of Materials Research, 
Vol. 22, No. 2, 2007, pp. 339-343. 

8] Rason, K. "Nanoscale Molding of Bulk Metallic Glass", University of New 
Hampshire, M.S. Thesis, September 2007. 

9] Rason, K., Kinsey B. "Nanoscale Molding of a Zirconium Based Bulk Metallic 
Glass", ASME International Mechanical Engineering Conference and Exposition, 
Seattle, WA, Nov. 2007. 

10] Mros, C , Kinsey B., Rason, K. "Validation of Superplastic Forming Models for 
Nanoscale Bulk Metallic Glass Features", ASME International Mechanical 
Engineering Conference and Exposition, Boston, MA, Oct. 31-Nov. 6 2008. 

II] Mros, C, Kinsey B., Rason, K. "Nanoscale Molding Model for Nanoscale Bulk 
Metallic Glass Features", ASME International Manufacturing Science and 
Engineering Conference, West Lafayette, IN, Oct. 4-7 2009. 

12] Google Images, www.google.com 

54 

http://www.liquidmetal.com
http://www.google.com


[13] Vollertsen, F., Hu, Z., Niehoff, H.,S., Theiler, C, "State of the art in micro forming 
and investigations in micro deep drawing", Journal of Materials Processing 
Technology, Vol. 151, No. 1-3, 2004, pp. 70-79. 

[14] Schroers, J., Pham, Q., Desai, A., "Thermoplastic Forming of Bulk Metallic Glass-A 
Technology for MEMS and Microstructure Fabrication", Journal of 
Microelectromechanical Systems, vl6 N 2, April 2007 pp. 240-7. 

[15] Mukherjee, Johnson W., and Rhim, W. "Non-contact Measurement of High-
Temperature Surface Tension and Viscosity of Bulk Metallic Glass-Forming Alloys 
Using the Drop Oscillation Technique", Applied Physics Letters 2005 86, 014104. 

[16] R. Panton, Incompressible Flow, Wiley-Interscience 1984. 

[17] Gennes, Pierre-Gilles De. Capillarity and wetting phenomena drops, bubbles, pearls, 
waves. New York: Springer, 2003. 

[18] Masuhr, A., Busch, R., and Johnson, W.L. Material Science Forum 269-272,779 
(1998). 

[19] Schroers, J., Samwer, K., Szuecs, F. and Johnson, W.L. "Characterization of the 
interface between the bulk glass foming alloy Zr4iTii4Cui2NiioBe23 with pure metals 
and ceramics", Materials Research Society, Vol. 15, No. 7, July 2000, pp. 1617-1621. 

[20] Schroers, J. "Re: possible collaboration on nanomolding BMG project." Email to B. 
Kinsey. 23 Oct. 2009. 

[21] Chaplin, M. "Explanation of the Physical Anomalies of Water." London South Bank 
University, UK. 11 Aug. 2009 <http://wwwl.lsbu.ac.uk/water/explan5.html>. 

[22] Iida, T., Guthrie, R., "The Physical Properties of Liquid Metals", Oxford Science 
Publications, Clarendon Press, Oxford, 1987. 

[23] White, F. M. Fluid Mechanics. New York: McGraw-Hill Companies, 2002. 

[24] Mems Exchange Inc., www.Mems-exchange.org 

55 

http://wwwl.lsbu.ac.uk/water/explan5.html
http://www.Mems-exchange.org

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Winter 2009

	Analytical model prediction and experimental investigation of nanoforming of Bulk Metallic Glass
	Catherine Mros
	Recommended Citation


	ProQuest Dissertations

