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ABSTRACT 

PATTERNS OF POPULATION STRUCTURE AND CONNECTIVITY IN 

SALTMARSH SPARROWS 

By 

Jennifer Walsh 

University of New Hampshire, December, 2009 

The Saltmarsh Sparrow {Ammodramus caudacutus) is one of the few 

species globally that is exclusively restricted to coastal wetlands. Despite the high 

vagility characteristic of avian species, the highly patchy distribution of tidal marshes can 

often lead to fine scale genetic structure in salt marsh obligates. To elucidate patterns of 

population structure, we investigated the degree of genetic differentiation among nine 

Saltmarsh Sparrow populations along the northeastern coastline of the United States. 

Although overall FST values were small (0.008), population substructuring was detected 

along with a positive correlation between geographic distance and genetic differentiation, 

suggesting that Ammodramus caudacutus follow an isolation by distance model. 

However, Chapman's Landing was a distinct outlier despite it's close proximity to other 

sampled marshes, indicating that additional factors other then geography play a role in 

genetic structuring. To identify patterns of source/sink dynamics, we implemented 

assignment tests from the software program GENECLASS2 using an exclusion method. 

Results from the assignment tests indicate that Parker River, in Newburyport, MA, is a 

source population. Findings from the genetic analyses were combined with field data 

collected on nesting success and density of breeding adults to correlate overall 

productivity of the sites sampled with results from assignment tests. Furthermore, results 

from point count surveys indicate a positive correlation between marsh size and the 
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density of breeding adults (P= 0.0148, R2=0.8954), with the most birds observed at points 

located in Parker River. Results from our nesting study indicate that nesting success is 

variable among sites, and that the cause of chick mortality also varies. Despite this the 

percent of failed nests is comparably similar among four of the five sites surveyed. Our 

results offer new insight for conservation strategies, including information on population 

clusters, data on population trends, and the identification of source/sink dynamics. 
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CHAPTER 1 

Introduction 

Genetics and wildlife conservation are two fields that are merging more 

frequently as the sensitivity of genetic markers to changes in natural populations 

increases. Recent advances in genetic techniques have allowed for a more sophisticated 

approach to analyzing both fine and broad scale genetic structure in populations. 

Specifically, the use of microsatellite markers in dispersal studies has become 

increasingly popular, with their use in genetic studies surpassing that of other molecular 

markers available (Zhang and Hewitt, 2003). The use of microsatellites in wildlife studies 

has a multitude of practical conservation implications. Molecular markers can be used to 

determine whether fragmented populations are displaying balanced rates of gene flow, 

and whether populations with decreased rates of dispersal warrant increased management 

(DeYoung, 2005). Maintenance of populations as genetic units or identifying populations 

as source stocks can also be achieved through genetic analysis (DeYoung, 2005). 

Characterizing patterns of dispersal and identifying source populations is important for 

maintaining connectivity and genetic diversity within less suitable and fragmented habitat 

patches. 

Human development, combined with natural processes has led to highly fragmented 

habitats, creating barriers to dispersal for some organisms. The patchy nature of available 

habitat has led to the concept of metapopulations. A metapopulation is a group of 
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populations experiencing constant fluctuations in the colonization and extinction of local 

populations (Hanski and Simberloff, 1997). The concept of metapopulations includes the 

assumptions that there are noticeable differences between patch suitability for the habitat 

requirements of a species, and that patches are large enough to sustain panmictic local 

populations (Hanski and Simberloff, 1997). These differences in patch quality can affect 

the rates of dispersal of individuals between isolated patches. The difference in dispersal 

rates between subpopulations may manifest itself in source/sink dynamics. A source/sink 

metapopulation is defined as a metapopulation in which there are patches experiencing a 

negative population growth rate in the absence of immigration (sink) and patches in 

which the growth rate is positive (sources; Hanski and Simberloff, 1997). The source/sink 

metapopulation theory can be applied to natural populations, as areas with better quality 

habitat will support higher reproductive success in individuals, making these habitats 

sources due to their relatively high population productivity. Individuals from source areas 

immigrate to patches experiencing lower rates of reproductive success, a process known 

as the rescue effect (Brown and Kodric-Brown, 1977). Populations experiencing 

immigration without emigration, due to poor habitat quality, are population sinks. 

Identifying population sources and sinks is a key aspect of conservation biology. It is 

important to identify population sources, as species will be lost from the sink if the source 

is destroyed. 

Salt marshes are unique ecotonal habitats characterized by high productivity and a 

large proportion of species endemism. Coastal wetlands play a significant role in coastal 

productivity, acting as nutrient sources and sinks and sites for nutrient transformation 

(Daiber, 1986). Tidal salt marshes act as sites for both detritus decomposition and the 

2 



transformation of indigestible plant matter into available resources for consumers; this is 

the major pathway of energy utilization in a marsh ecosystem (Gosselink and Mitsch, 

1993). Additional attributes of salt marsh ecosystems include the provision of shelter and 

nutrients to fish and shellfish (Gosselink and Mitsch, 1993). 

Despite the ecological importance of tidal wetlands, anthropogenic stressors, both 

historical and current, have lead to the degradation of coastal habitat. Salt marsh 

disturbance began as early as the 18th century, through the conversion of natural habitat 

into managed land for livestock grazing (Bertness, 2004). More recent impacts stem from 

the influx of settlement in coastal areas. At the end of the last century, it was 

approximated that 37% of the world's population was living within 100 km of the coast 

(Greenberg, 2006a). This vulnerability to coastal development has led to the 

fragmentation of salt marsh habitat; and as a result, a high percentage of the supported 

endemic species are classified as endangered or as species of conservation priority 

(Greenberg, 2006a). 

The Saltmarsh Sparrow is a salt marsh obligate, and one of only two passerines, 

globally, that nest exclusively in salt marshes (Greenberg, 2006b). The breeding range of 

the Saltmarsh Sparrow extends from Maine to Virginia (Greenlaw and Rising, 1994) with 

an estimated 90% of the breeding population focused in the Northeast (Hodgman et al., 

2002). Due to its limited range and reliance on a patchily distributed habitat, the 

Saltmarsh Sparrow is considered globally vulnerable to extinction (IUCN Red List 

criteria; Birdlife International, 2004) and a species of conservation priority (U.S Fish and 

Wildlife Service, 2008). 

Saltmarsh Sparrows are promiscuous, displaying a mating system that is 
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uncommon in passerines (DiQuinzio, 2001). With this promiscuous mating system, 

Saltmarsh Sparrows do not form pair bonds or defend territories (DiQuinzio, 2001). The 

breeding season of the Saltmarsh Sparrow extends from early June to mid-August 

(Greenlaw and Rising, 1994). Females construct nests using marsh grasses, and build the 

nest a few centimeters off of the ground; nest building takes approximately four days 

(Greenlaw and Rising, 1994). 

As ground nesting birds, Saltmarsh Sparrows have adapted to ensure nesting 

success in a habitat experiencing tidal fluctuations. Nest site selection appears to be based 

on vegetation types. The females choose areas where the vegetation is taller and denser 

for nest construction (Gjerdrum, 2005). Saltmarsh Sparrows may be using vegetation 

type as cues to indicate both substrate elevation and tidal flow when selecting nesting 

sites (DiQuinzio, 2002). Research has also shown that female Saltmarsh Sparrows 

display synchrony with tidal cycles as they, on average, build nests within three days 

after a tidal flood (Shriver, 2007). The initiation of nest construction immediately after a 

high tide increases the probability that nesting would be completed before the next flood 

(with spring flood tides occurring every 28 days; Shriver, 2007). 

As salt marsh obligates, Saltmarsh Sparrows must inhabit an environment that 

experiences tidal fluctuations, habitat fragmentation and the increasingly problematic 

effects of climate change and sea level rise. It is estimated that 50% of the available 

breeding habitat for Saltmarsh Sparrows has been lost over the past 300 years to wetland 

draining and ditching (Greenlaw and Rising, 1994). Despite the increasing concerns for 

Saltmarsh Sparrow conservation, there is little information on population dynamics. 

Information on the dispersal and structure of Saltmarsh Sparrow populations would 
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contribute to the determination of management units. Genetic analysis can provide insight 

about population structure and dynamics, allowing for a more informed approach to 

conservation and consideration in the formation of future management plans. 

In this study, application of the above genetic techniques in combination with 

models of daily survival rates and field estimates of adult abundance is used to provide 

insight into the ecological patterns characteristic of this species. The following chapters 

aim to characterize patterns of genetic structure in Saltmarsh Sparrows and to combine 

data on productivity and dispersal to identify possible source populations. 

The objectives of my thesis research were to: 

1. Assess population structure and identify genetically similar population clusters 

2. Characterize patters of dispersal and source/sink dynamics 

3. Compare relative abundance of breeding adults between marsh complexes 

4. Determine nesting success and fledgling survival rates 
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CHAPTER 2 

GENETIC VARIATION AND POPULATION CONNECTIVITY IN A SALT 
MARSH BREEDING PASSERINE, THE SALTMARSH SPARROW 

(AMMODRAMUS CAUDACUTUS) 

Abstract 

Despite the high vagility characteristic of migratory avian species, behavioral 

mechanisms and habitat fragmentation may lead to reduced connectivity and patterns of 

genetic substructuring. The Saltmarsh Sparrow {Ammodramus caudacutus) is a saltmarsh 

obligate that breeds along the Northeast coast of the U.S. and is exclusively restricted to 

patchily distributed wetland habitat. Field observations of site fidelity in Saltmarsh 

Sparrows combined with the fragmentation of salt marsh habitat may lead to patterns of 

fined scale genetic structure. To elucidate patterns of population structure, we 

investigated the degree of genetic differentiation among nine Saltmarsh Sparrow 

populations in the northeastern United States. Although overall Fsr values were small 

(0.008), population substructuring was detected along with a positive correlation between 

geographic distance and genetic differentiation, suggesting that Ammodramus caudacutus 

follow an isolation by distance model. We also identified inland marshes that displayed 

high levels of genetic differentiation despite their close geographic proximity to other 

sampling locations, suggesting that additional mechanisms, besides geography, influence 

population genetic structure. Our results offer new insight for conservation strategies, 
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specifically the assessment of potential management units, as we highlight five 

population clusters based on genetic similarity. 

Introduction 

Gene flow among geographically fragmented populations acts as a cohesive force 

that maintains genetic connectivity and increases variation within populations (Allendorf 

and Luikart, 2007). Thus, characterizing patterns of dispersal and population connectivity 

is a fundamental component of developing and implementing effective management 

systems for species of conservation priority. Natural populations are often described as 

hierarchical, with multiple levels existing both regionally and locally. Thus, the 

identification of population sub structuring can be useful in the determination of 

appropriate management units (Allendorf and Luikart, 2007). Furthermore, identifying 

the degree of connectivity between geographically separated subpopulations can 

highlight dispersal patterns, including the identification of sources and sinks. Individuals 

from source areas immigrate to patches experiencing lower rates of reproductive success 

(sinks), a process known as the rescue effect (Brown and Kodric-Brown, 1977). 

Therefore, if the source population is lost, the sink populations can no longer sustain a 

viable population size. This is often seen in cases of patchy populations, where high 

dispersal rates between sites that are spatially separated create homogenous populations 

(Scheiman et al., 2007). 

The classification of the above processes in natural populations is increasingly 

important in light of habitat degradation and fragmentation, especially in ecosystems 

subject to anthropogenic stressors. Fragmented populations often experience reduced 

rates of migration, leading to subsequent loss of genetic diversity (Frankham et al., 2002). 
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The identification of source populations is important for maintaining connectivity and 

genetic diversity within less suitable habitat patches. 

Coastal wetlands are an ecotonal system inhabited by a variety of salt marsh 

specialists suited for a range of extreme abiotic conditions including daily fluctuations in 

salinity and tidal cycles (Greenberg, 2006a). Coastal areas are some of the most heavily 

settled areas globally, with 37% of the world's population living within 100 km of the 

coast at the end of the last century (Greenberg, 2006a). Increasing anthropogenic 

pressures, however, such as coastal development, has lead to the fragmentation and loss 

of marsh habitat. In New England, human development has resulted in the loss of 80% of 

coastal wetlands (Bertness et al., 2002). As a result, a high percentage of the supported 

endemic species are endangered or of conservation priority (Greenberg, 2006a). Because 

habitat fragmentation can restrict movement between populations, the loss of coastal 

habitat may inhibit the dispersal of salt marsh obligates and act to reduce gene flow 

among populations. 

Globally, the Saltmarsh Sparrow (Ammodramus caudacutus) is one of only two 

passerine species found exclusively in salt marshes (Greenberg, 2006b). The breeding 

range of the Saltmarsh Sparrow extends from Maine to Virginia (Greenlaw and Rising, 

1994) with an estimated 90% of the population breeding in the northeastern coast of the 

United States (Hodgman et al., 2002). Due to the limited range of this species, and its 

exclusive habitat requirements, the Saltmarsh Sparrow is listed as a species of 

conservation priority (U.S. Fish and Wildlife Service, 2008) and is considered globally 

vulnerable to extinction (IUCN Red List criteria; Birdlife International, 2004). Despite 

the conservation status of this species, information on the impacts of coastal 
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fragmentation on population structure is limited. Information on genetic substructuring 

and the identification of genetically similar population clusters can provide insight in the 

formation of appropriate management units in Saltmarsh Sparrow populations. 

Population structure is expected to be more pronounced in sedentary organisms, 

in comparison to birds, which are characterized by high vagility (Avise, 2004). However, 

many avian species are characterized by site fidelity (Wheel Wright and Mauck, 1998) 

and mating systems (Woxvold, 2006; Bouzat, 2004) that can lead to genetic structuring. 

Habitat disruption and patchy distribution further contribute to population structure by 

reducing migration between breeding populations (Frankham et al., 2002; Chan, 2006). 

Observations of site fidelity in Saltmarsh Sparrows coupled with their exclusive reliance 

on a highly patchily distributed ecosystem may lead to fine scale patterns of genetic 

structure. To elucidate these patterns of genetic structure in this coastally restricted avian 

species, we investigated the degree of connectivity between breeding populations of 

Saltmarsh Sparrows. 

In this study, we used microsatellite analysis to assess the level of genetic 

variability and patterns of dispersal between Saltmarsh Sparrow populations sampled 

from nine marsh complexes along the northeastern coastline of the United States. Our 

main objective was to characterize patterns of population substructuring. We predicted 

that the fragmented nature of wetland habitat combined with behavioral characteristics of 

Saltmarsh Sparrows would result in fine scale genetic structure among sampled 

populations. We also predicted that larger, more continuous marshes would act as 

population sources for smaller, more isolated patches. Individual and population based 

analyses were used to: (i) characterize population genetic structure among sampled 
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populations; (ii) identify genetically similar population clusters that can provide insight in 

the formation of management units; (iii) determine whether the degree of genetic 

differentiation is explained by geographic distance; (iv) characterize patterns of dispersal 

and source/sink dynamics. 

Methods 

Study System and Sample Collection 

We sampled Saltmarsh Sparrows during June and July of 2006 to 2008 at multiple 

subsites within nine marshes along the northeastern coast of the U.S. within the northern 

half of the species' breeding range. Study marshes were located in Wells, ME (Rachel 

Carson NWR), Scarborough, ME (Rachel Carson National Wildlife Refuge, NWR), 

Hampton, NH, Rye, NH, Stratham, NH, Newburyport, MA (Parker River NWR), 

Narragansett, RI (John H. Chafee NWR), Shirley, NY (Wertheim NWR) and Oceanside, 

NY (Figure 1). Most sites were sampled in one year; Rhode Island and Parker River were 

sampled in two and three years, respectively (Table 1). At each site, we deployed two to 

six 12-m mist nets with size 36 mm mesh to capture a target sample of 50 birds from each 

site. Blood samples (30-50 ul) were drawn from the cutaneous ulnar vein using a non-

heparinized capillary tube and stored at room temperature on Whatman filter cards for 

later genetic analysis. The location of mist net deployment was recorded using GPS. 
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Figure 1: Location of marshes where Saltmarsh Sparrows were sampled. Marshes are labeled by a 
marsh code described in Table 1. 
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DNA Extraction and Microsatellite Analysis 

DNA was extracted from blood samples using a DNeasy Blood Kit (Qiagen, 

Valencia, CA). Because some of our field sites were located within an overlap zone 

between the Saltmarsh Sparrow and a congener, the Nelson's Sparrow (Ammodramus 

nelsoni), we performed a genetic bar-coding assay on all samples to confirm the species 

identity of sampled individuals (Walsh et al, in prep; see appendix A). DNA was 

amplified using 11 microsatellite loci combined in 4 multiplexes: AcaOl, Aca04, Aca05, 

Aca08, Acal 1, Acal2, Acal7, Aca21 (Hill, 2008), Escul, Escu£ (Hanotte et al, 1994) 

and Asul5 (Bulgin, 2003). 12.5 ul polymerase chain reactions contained 2ul of eluted 

genomic DNA, 0.3-0.8uM of each primer (labeled with Hex, Ned or Fam), 1.5-2.5mM 

MgCh, 5X colorless buffer (Promega), 0.2mM of deoxyribonucleotides, and 0.1-0.2 units 

of Taq DNA polymerase (Promega). Optimized cycling conditions were as follows: 30-

32 cycles of 94°C for 30 s, 53°-56°C for 45 s, 72°C for 1 min and a final extension step at 

72°C for 5 min. Optimal annealing temperatures were 53°C for Asul5, 55°C for Escu-1 

and Escu-6 and 56° for AcaOl, Aca04, Aca05, Aca08, Acal 1, Acal2, Acal7 and Aca21. 

Amplified products were electrophoresed on an automated DNA sequencer (ABI 3130 

genetic analyzer, Applied Biosystems, Foster City, CA) and individual genotypes were 

scored using PEAKSCANNER software (ABI). Positive controls were used in 

conjunction with the software program Allelogram (Morin et al., 2009) to standardize 

across electrophoretic runs. Alleles were binned manually based on the normalized raw 

scores generated by Allelogram. 

We used the software program MICRO-CHECKER (Van Oosterhout, 2004) to 

check the data set for errors and to test for the presence of null alleles. We identified null 

13 



alleles in Aca21 and subsequently dropped this locus from the final data set. The data 

were tested for linkage disequilibrium using the randomization method implemented in 

the software program FSTAT (Goudet et al., 2002). To assess genetic diversity, unbiased 

estimates of expected and observed heterozygosities and allelic richness were calculated 

in FSTAT. Estimated FJS values generated in FSTAT were used to test for deviations 

from Hardy-Weinberg equilibrium (significance testing was preformed using 10,000 

randomization steps with a Bonferroni adjustment). 

Population Structure and Connectivity 

To characterize genetic differentiation among sampled populations, pairwise FST 

values were calculated using FSTAT. For sites that were sampled in multiple years (RI 

and PR), we used FST values to test for annual fluctuations in genetic variation. There 

were no significant differences in FST values when comparing the same site over multiple 

years, allowing us to combine multi-year data for the Parker River and Rhode Island 

sites. Significance testing was performed by the permutation method in FSTAT with a 

nominal level of 5/100 and a Bonferroni adjustment was applied to correct for multiple 

tests. 

To investigate the presence of hierarchical structure, the software programs 

SAMOVA (Dupanloup, 2002) and BARRIER (Manni et al., 2004) were used to identify 

population clusters. The program SAMOVA uses an Arlequin input file in conjunction 

with a geographic file containing lat/long coordinates for the sample sites to cluster 

populations. SAMOVA is run multiple times on the same data set with variations in the 

number of groups of populations (K) specified. The most appropriate number of groups 

for the data set is achieved by maximizing the value for FCT- We ran our data set in 

14 



SAMOVA for K=l-9 clusters and compared FQT values between each run to identify the 

most appropriate number of clusters for our data set. 

We used the software program BARRIER, which implements the Monmonier 

algorithm to identify genetic barriers between adjacent populations. Unlike SAMOVA, 

which does not truly implement a geometric approach and thus can identify populations 

that are maximally differentiated, BARRIER only compares adjacent populations and is 

more suited for finding genetic barriers between sets of populations (Manni et al, 2004). 

First, second, and third order barriers were generated using ten per locus F$T matrices 

calculated per locus in the program GENEPOP (Raymond and Rousset, 1995). We used 

overall FST values to generate a consensus of first, second, and third order barriers 

between all loci. A principle components analysis (PCA) is complementary to the 

Monmonier boundary plots generated in BARRIER, and thus both methods were used in 

conjunction to strengthen the interpretation of the results (Manni et al., 2004). A PCA 

was generated with 1000 permutations in the software program GenAlEx 6.1 (Peakall 

and Smouse, 2006). To test for a correlation between geographic distance and genetic 

distance we used a Mantel test with 1000 permutations, as implemented in GenAlEx 6.1. 

Patterns of Dispersal and Source Sink Dynamics 

Assignment tests were used to characterize dispersal patterns among sampled 

populations and to detect the presence of source/sink dynamics. We used the software 

program GENECLASS 2 (Piry, 2004) to calculate partial Bayesian assignments. We used 

the Cornuet et al. (1999) resampling method to calculate assignment probabilities. The 

Cornuet et al. (1999) method uses a population's observed allele frequencies to simulate 

multilocus genotypes and then compares the probability that a sampled individual 
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originated from a population to the distribution of probabilities calculated through 

simulations. Because this method considers each individual separately, as opposed to 

comparing populations, it does not assume that all possible putative populations of origin 

have been sampled (Berry, 2004). Thus this approach is the most appropriate for our 

sampling methods, as we know that we have not sampled all of the Saltmarsh Sparrow 

populations in the northeast. Assignment probabilities were calculated using 10,000 

simulations. Since our objective was to identify overall dispersal trends as opposed to 

detecting first generation migrants we chose the Cornuet et al. (1999) method over that of 

Paetkau et al. (2004). 

We used the exclusion methods described in Manel et al. (2002) and chose a 

threshold value of 0.1 to assign individuals. When the individual genotype likelihood is 

below the chosen threshold, the population can be excluded as the origin of the 

individual; if all but one population can be excluded using this method, we can assign the 

remaining population as the population of origin (Manel et al., 2002). The 'detect 

migrants' option in GENECLASS2 was also applied to lend further support to our 

assignment results. We chose the likelihood-based test statistic L/,, as this is the most 

appropriate statistic when all putative source populations have not been sampled (Piry, 

2004). 

To test for the presence of sex-biased dispersal, males and females were 

compared using corrected assignment indices and Fsj-based tests implemented in 

GENECLASS 2 and FSTAT, respectively. To be consistent with the assignment tests, we 

grouped populations based on the 5 clusters identified in SAMOVA for all analyses of 

sex-biased dispersal. We tested for statistical significance in differences between FST, FJS 
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and relatedness values for males and females using a randomization test implemented in 

FSTAT (Goudet, 2002). Significant differences in FST,FIS, and relatedness between males 

and females are indicative of sex-biased dispersal. If, for example, males are the 

dispersers and females display philopatry, the males should be less related to each other 

then the females. Based on our assignment tests (see above), we also determined what 

proportion of the individuals assigned as migrants were male or female for each 

population. We also calculated log transformed assignment indices (AT) using 

GENECLASS. To do this, log values generated using the Paetkau (2004) frequency 

methods were corrected (Ale) for a population effect by subtracting individual 

assignment probabilities from an overall probability averaged over the entire population 

(Favre et al., 1997). It is expected that corrected AT values for a population will average 0 

and negative Ale values will be indicative of dispersing individuals, as immigrants into a 

population will have a lower assignment probability. Finally, to test for patterns of 

relatedness for each population, we estimated mean relatedness between males (MM), 

females (FF) and opposite-sex pairs (FM) using the Queller and Goodnight (1989) 

estimate as implemented in the software program SPAGeDi (Hardy and Vekemans, 

2002). 

Results 

Microsatellite Analysis 

We genotyped 421 individuals; 34 individuals were found to have Nelson's 

specific mitochondrial DNA and were removed from the data set (see appendix 1). Of the 

remaining samples (n= 387), 13 individuals (3.3%) had missing values for no more then 
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two loci. Individual loci were variably polymorphic, with the number of alleles for each 

locus ranging from 4 to 29. There were a total of 137 alleles and of those, 16 were found 

in only a single population (Table 1). Mean observed and expected heterozygosities 

ranged from 0.717-0.826 (see Table 1). There were no significant deviations from Hardy -

Weinberg, and no linkage between loci. 

Population Structure and Connectivity 

Small but significant differences in genetic divergence (FST) were detected among 

sampled populations (Table 2), with values ranging from 0.0001 to 0.0240 and an overall 

Fsr value of 0.008. Chapman's Landing and Spurwink were the most differentiated 

populations by FST- Significant FST values indicated differentiation of Long Island and 

Rhode Island from the other populations. The smallest FST values occurred in the 

comparison of Parker River and Hampton to all other populations. This was true even in 

the comparison of Parker River to the sites in Long Island, despite the large geographic 

distance separating these sites. The two Long Island sites (WNWR and MNC) were 

combined based on small sample size; this was supported by small, non-significant Fst 

values between the two sites (0.0015). Thus these locations were treated as one 

population for all subsequent analyses, including PCA and the Mantel test. To test for 

isolation by distance, Chapman's landing was an outlier (R = 0.122, P= 0.149; Table 2) 

and was removed from the data. When a Mantel test was preformed on the 7 remaining 

populations, we found that the degree of genetic differentiation was positively correlated 

with geographic distance (R = 0.41, P= 0.001; Figure 2). 
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Results from SAMOVA and BARRIER were used to identify clusters of 

genetically similar populations. Results from SAMOVA yielded small but significant FQT 

values (PO.001), with K=6 and K=5 equally yielding the highest FCT values (0.00797 

and 0.00792, respectively). For K=5, the clusters were as follows: Chapman's Landing, 

Fairhill/Furbish/Hampton/Parker River, Spurwink, Rhode Island, and the 2 Long Island 

sites. For K=6, the Fairhill/Furbish/Hampton/Parker River cluster was split into two 

separate clusters comprised of Fairhill/Furbish and Hampton/Parker River. We chose 5 

clusters (Figure 3) due to the high connectivity observed between Parker River, Fairhill, 

and Furbish. For all values of K, the CL population was consistently selected first as the 

most differentiated population and WNWR and MNC were invariably clustered together. 

Results from BARRIER coincided with the clusters identified in SAMOVA. BARRIER 

identified first, second and third order barriers separating CL, the Long Island cluster and 

JHC respectively (Figure 3). A first order barrier fully separating CL from all three 

adjacent populations was supported by 4 out of 10 loci, while at least a partial barrier, 

separating CL from one or more adjacent population, was supported by the remaining 

loci. A second order barrier fully separating the Long Island complex was supported by 7 

out of 10 loci and a third order barrier fully separating RI from northern marsh complexes 

was supported by 3 out of 10 loci. A PCA provided further support for the population 

clusters (Figure 4); results correspond with those of SAMOVA and BARRIER. 
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Figure 2: A Mantel test plotting Isolation by distance in Saltmarsh Sparrows: a. With all populations, 
the results are not significant, b. With Chapman's Landing removed. 
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Figure 3: Genetically similar population groupings and dispersal barriers in 9 Saltmarsh Sparrow 
populations. Five clusters identified by SAMOVA are circled (Fct=0.007, P< 0.0001) and the first, 
second and third order barriers identified by BARRIER are indicated by dotted lines. 

22 



V» 

! 

% Z 9 " 9 Z :Z "PJOOO 

23 



Patterns of Dispersal and Source Sink Dynamics 

We ran assignment tests on the 5 and 6 population clusters identified by 

SAMOVA and BARRIER. The number of individuals correctly assigned ranged from 

40.6-43.26% for 6 and 5 populations, respectively. Although the Fairhill/Furbish cluster 

was differentiated enough from the Hampton/Parker River cluster to detect migrant 

individuals, our assignment results indicated that the only other population of origin for 

Fairhill/Furbish individuals was the Hampton/Parker River cluster. Based on these 

results, we chose 5 clusters as the most appropriate grouping for the sampled populations. 

Using these 5 populations, 31% of the total individuals were assigned, with the number of 

individuals assigned back to the population from which they were sampled ranging from 

4-28%o and the number of individuals immigrating into a population ranging from 1.8-

30% (Table 3). The PR/HB/RCF/FH cluster had the highest percentage of resident 

individuals and the lowest percent of immigrants in comparison to the other populations. 

The number of individuals dispersing from a given population ranged from 3-27, with the 

PR/HB/RC/FH cluster as the origin of the highest number of dispersers. The results from 

the 'detect migrants' function in GENECLASS were consistent with the results of the 

assignment tests 86 times out of 105 (82%) and detected 13 additional migrants. 

We found no evidence of sex-biased dispersal, using the randomization test in 

FSTAT for comparisons of FST (P=0.1461), FJS (P=0.6015) and relatedness (P= 0.1801). 

Similarly, the sex ratio of migrants detected by the assignment tests showed no clear 

patterns of a dispersal bias (Table 3). In CL and the PR/HB/FH/RCF cluster a higher 

percentage of females were identified as resident and a higher percentage of males as 
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migrants, however, assignment results from the remaining population clusters did not 

support this. Corrected assignment indices also did not show a consistent pattern, with 

Ale values negative for males in some populations and for females in others; overall no 

Ale values were strongly negative in any population, suggesting no sex-bias in dispersal. 

Relatedness values were consistently close to 0 (indicating unrelated) for all populations, 

averaging -0.02 for MM pairs, -0.017 for FF pairs, and -0.019 for MF pairs. 
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Discussion 

Population Structure and Connectivity 

We observed small yet significant differences (0.0001 to 0.0240 and an overall 

FST value of 0.008) in the genetic structuring of Saltmarsh Sparrow populations. Five 

clusters were identified based on groups of genetically similar populations. The five 

clusters we identified in BARRIER and SAM OVA were comprised of a Long Island 

complex (WNWR and MNC), Rhode Island, Chapman's Landing, Spurwink and Parker 

River/Hampton Beach/Fairhill/Furbish. Although the clusters we identified appear to 

follow an overall isolation by distance trend, where distance contributes to genetic 

differentiation, population outliers indicate that factors other than geography are 

impacting population structure. This raises the question of the role of geographic scale in 

forming management units, as our results indicate that location and the proximity of a 

marsh to other marshes is not necessarily indicative of high connectivity. 

Chapman's Landing was the most genetically differentiated from all other 

sampled marshes. This degree of genetic differentiation observed in Chapman's Landing 

is unexpected, as it is located within 16.1 Km of Fairhill and Hampton and within 38.5 

Km of Parker River and Furbish. One interesting feature of Chapman's Landing is that it 

is the most inland of any of our sampled marshes, located approximately 15 Km from the 

coast. Similarly to Chapman's Landing, Spurwink was significantly genetically distinct 

from all other sampled marshes, and in comparison is further inland (approximately 3.5 

Km from the coast). The location of these sites (Figure 1) combined with their relatively 

small size may influence the ability of dispersing individuals to detect the habitat patch; 
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as the spatial scale of a patch and inter-patch distances effect the movement and the 

perceptual range of a species (Moilanen and Hanski, 2006). Because Saltmarsh Sparrows 

are restricted to coastal wetlands, the degree off fragmentation creates "islands" of 

suitable habitat patches. Thus, this is similar to the theory of island biogeography, in 

which smaller islands or patches support fewer individuals simply because they provide 

smaller "targets" for potential colonists (MacArthur and Wilson, 1963; Lomolino, 1990). 

Saltmarsh Sparrows are also likely following a typical coastal migration pattern 

characteristic of birds breeding in tidal marshes, and are thus less likely to detect the 

inland marshes. Furthermore, field observations and banding recapture data indicate that 

Saltmarsh Sparrows display some level of site fidelity (O. Lane, Biodiversity Research 

Institute, personal communication). Therefore, the small percentage of individuals that 

detect Chapman's Landing and Spurwink as suitable breeding habitat may return for 

subsequent breeding seasons, contributing to the level of genetic differentiation observed 

in these populations. 

Long Island and Rhode Island were also identified as genetically distinct by all of 

our methods. This is likely due to geographic isolation relative to the other sampled 

populations (Figure 1). The Long Island populations (WNWR and MNC) and the Rhode 

Island population (JHC) are relatively distant from both each other (approximately 140 

Km) and from the northern Massachusetts/New Hampshire/Maine cluster (approximately 

312 Km from WNWR to Hampton and 172 Km from Rhode Island to Hampton). This 

finding is consistent with the results from the Mantel test, which detected an increase in 

genetic differentiation in correlation with geographic distance. 

28 



The detection of genetic structure over the geographic scale in which we sampled 

is further consistent with findings from previous studies on population structure in 

saltmarsh breeding passerines. A study by Chan (2006) found detectable patterns of 

genetic structure in populations of seaside sparrows (Ammodramus maritimus) over 

geographic distances of 100 Km. The small pairwise FSTvalues observed in Saltmarsh 

Sparrow populations fall within the range detected in previous studies on avian species in 

fragmented habitats (Barnett, 2008; Lehtonen, 2009), which suggests that disrupted or 

patchily distributed habitat may be less of a barrier to movement in vagile avian species. 

Despite this commonality of low FST with previous studies on avian populations, 

however, the above studies failed to detect genetic differentiation over distances of 

thousands of kilometers in some instances and found no trends of isolation by distance. 

This indicates that despite the migratory nature of Saltmarsh Sparrows, there are factors 

that are responsible for detectable patterns of genetic structuring. 

Patterns of Dispersal and Source Sink Dynamics 

The assignment tests in GENECLASS suggest that the Parker River cluster is 

sending out the largest number of dispersers and is receiving the lowest percentage of 

immigrants, indicating that this cluster may be acting as source populations. Furthermore, 

we detected migrants from the Parker River cluster in all of the populations that we 

sampled, including populations separated by large geographic distances (Long Island and 

Rhode Island), which is inconsistent with our findings of isolation by distance. Although 

our analyses were conducted on the five population clusters, marshes from the Parker 

River/Hampton Beach/Fairhill/Furbish cluster were individually analyzed in separate 
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assignment tests to identify individual population effects. Our results indicated that when 

Parker River was removed from the cluster, the remaining marshes are comparable to that 

of the four other clusters, in that they display higher immigration rates and low numbers 

of dispersers. This indicates that Parker River is the true source population as it was 

representative of the only sampled population characterized by high numbers of 

dispersers. 

Results from the assignment tests are consistent with pairwise Fsr values, as 

Parker River displayed the most genetic similarity in comparison to other populations. An 

important feature of Parker River is that it is the largest stretches of continue marsh 

habitat in our study (approximately 9,000 hectares). The size of the marsh complexes 

may contribute to the level of connectivity observed. Previous research has found that the 

density of breeding Saltmarsh Sparrow adults is positively correlated to marsh size 

(Benoit and Askins, 2002; Shriver, 2004). Furthermore, field data from breeding bird 

surveys (see chapter three) indicate that Parker River supports the highest abundance of 

breeding adults in comparison to four of the other sampled marshes (Furbish, Chapman's 

Landing, Fairhill and Hampton). Thus, large quantity of continuous marshland habitat 

characteristic of Parker River may be responsible for the degree of connectivity we are 

observing. This would seem likely in terms of source-sink dynamics, as areas with better 

quality habitat support higher reproductive success in individuals, making these habitats 

sources due to their relatively high population productivity (Brown and Kodric-Brown, 

1977). This is often seen in cases of patchy populations, where high dispersal rates 

between sites that are spatially separated create homogenous populations (Scheiman et 

al, 2007). 
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We found no evidence of sex-biased dispersal in Saltmarsh Sparrows. Sex-biased 

dispersal is a common occurrence in higher vertebrates, with one sex dispersing and one 

sex remaining in their natal territory for subsequent breeding seasons (Moller, 2004). 

Patterns of sex-biased dispersal are often shaped by mating behavior, seasonal cues, and 

resource availability (Mossman and Waser, 1999). In cases where the female is 

responsible for rearing young and defending territories, there is a stronger selective 

pressure for philopatry in females then in males (Favre, 1997). The breeding behavior of 

Saltmarsh Sparrows is such that females provide all of the parental care (Greenlaw and 

Rising, 1994), and thus sex-biased dispersal may be expected, as it would be beneficial 

for the females to return to an area where they were successful in previous years. We did 

not find distinct evidence of sex-biased dispersal, although this may be due to a limitation 

of our data set, as the ratio of males to females sampled was almost 2:1, which, along 

with uneven sample sizes, may bias our estimates. Furthermore, Saltmarsh Sparrows are 

highly promiscuous and do not defend territories. High rates of infidelity can complicate 

the interpretation of biased dispersal, as promiscuity can reduce patterns of genetic 

structure by mediating gene movement (Double et al., 2005). 

Conservation Implications 

Our study contributes to the larger understanding of population structure and 

dispersal patterns among populations of Saltmarsh Sparrows. We identified five 

population clusters based on genetic similarity and connectivity between breeding 

populations. Our results indicate that some degree of substructuring is occurring despite 

the vagility of this species. Overall, populations follow an isolation by distance model but 

the smaller more inland marshes appear to be less connected, indicating that geographic 
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distance is not the only factor contributing to genetic structure. Our results provide new 

insight for future management initiatives. Further thought may be required to assess 

whether Saltmarsh Sparrow populations should be managed as one contiguous 

population, or if smaller management units are more appropriate. It would be beneficial 

to fill in geographic gaps in the sampling locations (Connecticut and extend data 

collection to the most southern point of the species' range) to further understand the scale 

of genetic structuring in Saltmarsh Sparrow populations. Our results show that creating 

management units based on a pre-chosen geographic distance is not appropriate for 

maintaining diversity, as some marshes display comparatively high levels of genetic 

differentiation despite close geographic proximity to other wetlands. 

Our findings also lend support to the idea that larger stretches of continuous 

marshes are important. Our largest and most continuous stretch of wetland habitat 

displayed the highest amount of connectivity and was identified as a source of dispersers 

to populations as far as 300 Km away. Although smaller marshes, such as Chapman's 

Landing, appear to sustain healthy, viable populations (see chapter three), these 

populations are characterized by low numbers of dispersers. Such considerations should 

be taken into account when implementing management systems. Large marshes may not 

be essential for healthy populations but may be important in that they are large enough to 

sustain smaller, less suitable patches of habitat. We highlight the need for further research 

concerning the scale at which Saltmarsh Sparrows should be managed. Large populations 

such as Parker River are a conservation priority as they are sending out large numbers of 

dispersers to surrounding marshes. Efforts should be made to determine whether similarly 

large stretches of continuous wetland habitat in other portions of the species' range 
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display comparable levels of genetic connectivity. However, we also show that smaller, 

inland populations are the most genetically distinct. Thus, in terms of preserving genetic 

diversity, considerations should also be made for these divergent populations in terms of 

their adaptive potential. 
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CHAPTER 3 

NESTING SUCCESS AND DENSITY OF BREEDING SALTMARSH 
SPARROWS (AMMODRAMUS CAUDACUTUS) IN FIVE NEW ENGLAND 

SALT MARSHES 

Abstract 

To assess reproductive success and overall density of breeding adult Saltmarsh 

Sparrows (Ammodramus caudacutus), we monitored nests and conducted point count 

surveys in five salt marshes in Maine, New Hampshire, and Massachusetts. Breeding bird 

surveys were used to obtain a relative index of adult Saltmarsh Sparrows that ranged 

from 3 to 27 individuals. Furthermore, we found a positive correlation between Saltmarsh 

Sparrow density and size of continuous marsh (R-0.8954, P= 0.0148). Models of daily 

survival were used to estimate the probability of a Saltmarsh Sparrow chick surviving a 

26-day nesting cycle. Nesting success varied from 0.50-0.05. In three of the five marshes, 

the primary cause of nest failure was flooding, while in two of the marshes predation was 

the primary cause. 

Introduction 

The Saltmarsh Sparrow (Ammodramus caudacutus) breeds in coastal wetlands 

ranging from Maine to Virginia, USA (Greenlaw and Rising, 1994) and is one of only 

two passerines exclusively restricted to salt marshes (Greenberg, 2006). Due to their 

limited range and specialized habitat requirements, the Saltmarsh Sparrow is classified as 
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a species of conservation priority (U.S. Fish and Wildlife Service, 2002) and is 

considered globally vulnerable to extinction (Birdlife International, 2004). The 

conservation status of the Saltmarsh Sparrow coupled with increased impacts of 

anthropogenic stressors on nesting habitat (habitat loss and the spread of invasive 

vegetation; Greenberg, 2006) raise the need for baseline information on nesting success 

and overall population viability. 

As ground nesting birds, Saltmarsh Sparrows have adapted to nest in a habitat 

characterized by daily tidal inundation. The females choose areas where the vegetation is 

taller and denser for nest construction (Gjerdrum, 2005). Saltmarsh Sparrows may rely on 

vegetation cues to indicate both substrate elevation and tidal flow when selecting nesting 

sites (DiQuinzio, 2002). Furthermore, female Saltmarsh Sparrows display synchrony with 

tidal cycles, as they, on average, build nests within three days after a tidal flood (Shriver, 

2007). The initiation of nest construction immediately after a high tide increases the 

probability that nesting will be completed before the next flood (Shriver, 2007). The 

period between egg laying and fledging is about 26 days long (Greenlaw and Rising, 

1994), with spring flood tides occurring every 28 days. The incubation period averages 

11 days-, and although Saltmarsh Sparrows are altricial upon hatching, chicks are ready to 

fledge 8-11 days after hatching (Greenlaw and Rising, 1994). 

Flooding is generally documented as the leading cause of nest failure in Saltmarsh 

Sparrow nests (Greenlaw and Rising, 1994; Shriver, 2007), and has been documented to 

cause up to 60% of nest failures in past studies (Greenlaw and Rising, 1994). Additional 

causes of nest failure include predation and failure of the eggs to hatch due to either 

embryo mortality or infertility (Greenlaw and Rising, 1994). Although nesting success is 
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highly variable among sites and years (Post and Greenlaw, 1982; DiQuinzio et al., 2002), 

previous studies focused in Rhode Island and New York have documented nesting 

success averaging 52% (Greenlaw and Rising, 1994). To identify causes of nesting 

mortality, we monitored nesting success in Saltmarsh Sparrows within five marshes 

located in Maine, New Hampshire and Massachusetts and discuss possible causes for 

variability among sites. We also conducted breeding bird surveys at our five sites to 

assess the density of breeding adults. Our objectives were to evaluate the relative 

productivity of these sites based on the reproductive success and abundance of Saltmarsh 

Sparrows and to lend support to the identification of source/sink populations. We 

predicted: i) flooding would be the leading cause of nest failure in the five sites; ii) larger 

marshes would support a larger density of breeding adults. 

Methods 

Study System 

Surveys were conducted during the 2008 summer breeding season at multiple 

subsites within five marshes along the New England coast: Wells, ME (Rachel Carson 

NWR), Hampton, NH, Rye, NH, Stratham, NH and Parker River, MA (Plum Island 

NWR; Figure 5). We defined the area of the salt marsh as any wetland habitat connected 

by tidal flow and where patches were separated by less then 500 m of open water or 50 m 

of upland habitat (Benoit and Askins, 2002). When possible, the entire marsh was 

surveyed for the collection of both point count and nest data. Some marshes were only 

partially sampled due to large size or lack of accessibility; the size of the marshes and the 

number of points varied broadly between the five sample sites (Table 4). 
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Figure 5: Location of Saltmarsh Sparrow point count surveys and nest monitoring efforts. Marsh 
location code names: Furbish marsh (RCF), Fairhill marsh (FH), Chapman's Landing (CL), 
Hampton marsh (HB), and Parker River (PR). 
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Adult Abundance and Point Counts 

To estimate population abundance of Saltmarsh Sparrows, we conducted bird 

surveys during the months of June through August of 2008. Population density was 

estimated using the point count method (counting the number of birds seen or heard 

within a specified range over ten minutes). The number of points we surveyed was 

dependent on the size of the marsh. Once chosen, the points were flagged and their 

locations recorded with a GPS unit (Conway, 2006). To avoid counting the same 

individuals twice, all survey points were a minimum of 250 meters apart. To ensure that 

the individuals surveyed were within the marsh being sampled, all points were located a 

minimum of 75 meters from upland habitats (Benoit and Askins, 2002). At each point, 

we surveyed birds for 10 minutes by passive observation and recorded all individuals 

seen or heard within 100 meters of the point (Shriver et al. 2004). We conducted point 

counts between dawn and 11:00 am. Surveys were not conducted in the rain or when 

wind speed exceeded 20km/hr, as this would have affected the probability of detection 

(Conway, 2006). We conducted three replicate surveys, increasing the probability of 

conducting a survey during the period of peak seasonal response for individuals within 

the focal marsh (Conway, 2006). Points were re-surveyed in random order, with a 

minimum of two weeks separating surveys at the same site (Benoit and Askins, 1999). 

All five of the marshes surveyed were located in a region where Saltmarsh 

Sparrows occur sympatrically with a congener, the Nelson's Sparrow (Ammodramus 

nelsoni). Although visual and auditory cues can be used to differentiate between Nelson's 

and Saltmarsh Sparrows in the field, accurate visual and auditory species identification 

decreases with distance. Therefore, for adult abundance estimates, point count data from 



Nelson's Sparrows and Saltmarsh Sparrows were combined to include data on 

individuals that could not be visually identified as one species or the other. An index of 

abundance for each marsh was calculated as the maximum number of individuals counted 

at a single point (Hodgman et al., 2002). Relative abundance of sparrows was quantified 

as the mean number of individuals surveyed across all points at a given marsh. We used 

linear regression to assess the relationship between marsh area and the relative abundance 

of Sharp-tailed species. 

Nest Monitoring and Survival 

To determine nesting success of Saltmarsh Sparrows, we monitored nests over three 

nesting cycles (June, July and August). Nests were located through extensive searches of 

the salt marsh sites. Once a nest was found, we marked the area 5 meters to the North 

with a flag and checked the nest every 3-5 days. If at least one chick fledged from the 

nest, we considered it a success (Mayfield, 1975). Nests were defined as failed based on 

one of the following categories: flooding, defined by a minimum of one egg found 

outside of the nest cup and with the female no longer attending the nest, and depredation, 

when nests showed signs of predation (torn nests, broken egg shells, or chicks too young 

to fledge disappearing from nests; Gjerdrum, 2005; DiQuinzio, 2002). We classified the 

cause of nest failure as unknown if neither of the above scenarios could be used to 

explain nest failure 

We modeled daily survival rates (DSR) using the software program MARK (White 

and Burnham, 1999). Data were grouped by sample site; we additionally included an 

individual covariate for distance of nest to edge to model edge effect on nest survival. 

The simplest model (constant) used a single constant parameter to estimate daily survival 
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and is comparable to the approach implemented by the Mayfield estimator (Mayfield, 

1975). We also modeled linear and quadratic time trends to account for temporal 

variation in nest survival (T and TT). To obtain an average survival rate per site, we 

combined nest success data from the first and second nesting cycle. Due to small sample 

sizes (n= 11), data from the third nesting cycle were not included in the analysis. 

Results 

Adult Abundance and Point Counts 

The maximum number of Saltmarsh and Nelson's Sparrows surveyed at a single 

point ranged from 0-27, with the average number of sparrows at a site ranging from 1.7-

10 (Table 4). We observed birds at 88%-100% of all of the points we surveyed. We found 

a positive correlation between marsh size (ha) and the relative abundance of breeding 

Saltmarsh Sparrows (R2=0.8954, P= 0.0148; Figure 6). 

Nest Monitoring and Survival 

We located and monitored a total of 112 nests over two cycles in our five sample 

sites (Table 4). The percentage of failed nests ranged from 33-74%. Flooding was the 

leading cause of failure in Chapman's Landing, Fairhill, and Hampton. Predation was the 

leading cause of nest failure in Furbish and Parker River, with 85% and 91% of the nest 

failures caused by predation, respectively. The best model for nest survival (Table 5) 

included site and a linear time trend (site*T). Overall nesting success for Saltmarsh 

Sparrows varied from 0.5 to 0.05 (Table 6). Survival rate estimates decreased daily over 

the duration of the study (Figure 7). 
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Table 5: Number of Saltmarsh Sparrow nests monitored, % failed, and outcome (predated or 
flooded) on five marshes. 

Site 

Chapman's 
Landing 

Fairhill 

Hampton 

Parker river 

Furbish 

Total 

Total nests 

12 

7 

27 

39 

27 

112 

Failed 

33% 

7 1 % 

63% 

6 1 % 

74% 

Predated 

0 

4 0 % 

12% 

9 1 % 

85% 

Flooded 

75% 

6 0 % 

8 2 % 

9% 

15% 

Unknown 

25% 

0 

6% 

0 

0 
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Table 7: Probability of Saltmarsh Sparrow chicks surviving the duration of a 26-day nesting cycle. 
Survival estimates were calculated in MARK using the Site*T model. 

Study Site 

Chapman's 
Landing 

Fairhill 

Hampton 

Parker River 

Furbish 

Survival 

0.508111 

0.142154 

0.193783 

0.120608 

0.058071 

Standard Error 

0.19914 

0.13572 

0.06807 

0.04630 

0.03448 

Lower CI 

0.17811 

0.01836 

0.09283 

0.05508 

0.01761 

Upper CI 

0.83120 

0.59480 

0.36085 

0.24396 

0.17497 
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Discussion 

Adult Abundance and Point Counts 

Point count surveys provided an estimate of the density of breeding adults within 

our five sample sites. The highest number of Saltmarsh Sparrows surveyed at a single 

point was documented at Parker River and Hampton Beach, which were the two largest 

marshes surveyed. These results are consistent with genetic findings (see chapter two), 

which indicate that Parker River is highly connected to surrounding marshes through the 

large number of dispersers originating from the Parker River marsh complex. We 

additionally found a significant, positive correlation between the density of breeding 

adult sparrows and the size of continuous marsh habitat (P=0.0148). Although our study 

only included five sampling locations, our results are consistent with previous research 

on sparrow abundance and marsh size (Benoit and Askins, 2002; Shriver, 2004). To 

further test for a correlation between marsh size and sparrow density, it would be 

beneficial to sample marshes that range from 2,000-8,000 hectares to obtain more data on 

the middle range of marsh area not covered in this study. 

The percentage of points where sparrows were observed ranged from 88%-100% 

indicating that the areas we surveyed were representative of appropriate breeding habitat 

for Saltmarsh and Nelson's Sparrows. For Parker River, Furbish, and Hampton Beach, 

we were unable to survey the entire marsh due to the large size and overall lack of 

accessibility. However, the percentage of points with individuals again indicates that the 

areas of marsh we chose to survey were appropriate and are representative of the overall 

abundance within the marsh, specifically in areas that are composed of similar habitat 



features to the areas in which surveys were conducted. For Fairhill and Chapman's 

Landing, the size of the marsh was small enough that we could survey a high proportion 

of the area, and thus are confident that the results from the point count surveys are 

representative of the relative abundance of individuals inhabiting those sites. 

The point count surveys provide a baseline index of the number of adults 

occupying the marshes surveyed. This may be particularly important for some of the sites 

in New Hampshire, which are not managed by U.S Fish and Wildlife Services. Thus, 

information on the relative abundance of breeding adults in these areas may be useful to 

local management agencies. A benefit of the radial point count method implemented in 

this study is that it is standard protocol that is also used in many of the National Wildlife 

Refuges (Conway, 2006), thus this format of data collection provides flexibility in that 

data is easily transferable to that of similar research efforts, and as a result data from 

multiple marsh monitoring projects can be pooled together to gain insight on local and 

regional trends (Conway, 2006). Because we chose this standardized survey method, our 

results can be easily translated to fit the formats of local and regional management 

agencies, which may prove to be beneficial for future endeavors to monitor local and 

regional population trends of Saltmarsh Sparrows in the area. 

Nesting Success 

We found nesting success to be highly variable among marshes, with the 

percentage of failed nests ranging from 33% to 74%. Previous research has documented 

nesting success in Saltmarsh Sparrows as 58.7% (Rhode Island), 46.9% (New York), and 

41% (Connecticut), with flooding generally identified as the leading cause of failure 



(Greenlaw and Rising, 1994; Gjerdrum et al, 2995). With the exception of Chapman's 

Landing, nesting success within our sampled marshes was slightly below the average 

(26-39%) in comparison to previous nesting studies. It should be noted that in some 

cases, such as Fairhill, low nesting success might be a product of small sample size 

(n=7), and thus may not accurately reflect nest success. 

Although previous studies have documented flooding as the leading cause of 

failure for Saltmarsh Sparrow nests, this was only observed in our three New Hampshire 

sites. In Parker River and Furbish, predation was the leading cause of failure, accounting 

for 91% and 85% of the total nests failed, respectively. High predation rates in Furbish 

and Parker River may be attributed to a number of factors. Furbish is surrounded by roads 

and neighborhoods, which may provide easy corridors and access points for predators. In 

Parker River, the surrounding woodland habitat is additionally under the protection of 

U.S Fish and Wildlife Services and thus it is possible that the number of predators in 

these areas is higher. There was a higher occurrence of research activity surrounding 

nests in Furbish and Parker River, which may also have contributed to the predation rates 

observed. In some instances, visiting a subject can temporarily decrease its chance of 

survival, particularly in bird studies as researchers may lead predators to the nest (Bart 

and Robson, 1982). A temporal factor may also be contributing to the low survival 

estimates, as previous research has documented extreme annual fluctuations in Saltmarsh 

Sparrow productivity (Post and Greenlaw, 1982; DiQuinzio et al., 2002). Despite the high 

predation rates observed in Parker River and Furbish, however, it should be noted that the 

overall nesting success of Saltmarsh Sparrows was comparable to that of Fairhill and 

Hampton Beach. So although predation was higher in these sites in comparison to 
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flooding, the resulting survival rates from these sites are similar. Survival in Chapman's 

Landing was comparably high in relation to the other marshes sampled, with low 

flooding and predation rates. The relatively inland location of Chapman's Landing may 

contribute to the low flooding rates observed, although future research may be warranted 

to determine if tidal patterns vary enough to have less of an impact on Saltmarsh Sparrow 

nesting success. 

Conservation Implications 

Our results indicate higher than expected predation rates in two of our study sites 

(Furbish and Parker River), with only a 5% and 12% probability of chicks surviving the 

duration of the study, respectively. However, the percentage of nests that failed in Parker 

River and Furbish is comparable to that observed in Fairhill and Hampton Beach (Table 

5), indicating that the higher observation of predation rates in these areas may not have a 

significant impact on the overall productivity of these marshes. If high predation rates can 

be contributed to an edge effect or a larger number of predators in these managed areas it 

may be difficult to control these factors. However, if predation rates are indicative of an 

observer effect, it may be worth considering the impacts of nesting studies on Saltmarsh 

Sparrows when planning future field experiments, as this is something that wildlife 

managers can control. We recommend designing a field study that can control for 

observer effects to assess whether frequent nest visits or increased activity surrounding 

nesting sparrows increases predation. 

Nest studies and breeding bird surveys can provide valuable insight on the 

reproductive success and abundance of a species. Our study resulted in general trends of 
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survival and estimates of relative abundance that can act as a basis for future research 

initiatives. It is recommended that data from multiple years be collected to provide future 

insight on long-term population trends. Our results provide baseline data for future 

studies on nesting success and point count surveys, information from which will be an 

important contribution to future management initiatives for a species of conservation 

priority. 
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CHAPTER 4 

CONCLUSTION 

The objectives of this study were to collect data on dispersal rates and population 

connectivity in Saltmarsh Sparrow populations and to correlate findings with field data 

on relative abundance and nesting success to provide insight on source-sink dynamics. 

Results from the genetic analyses suggest that there are significant levels of genetic 

differentiation observed in the sampled populations. Overall, populations follow an 

isolation by distance trend (R2= 0.41, P= 0.001), but this is not applicable to all of the 

populations we sampled, indicating that other factors in addition to geography are 

shaping patterns of genetic substructuring in Saltmarsh Sparrows. Furthermore, results 

from assignment tests highlight Parker River as a possible source population, with the 

highest numbers of dispersers originating from this population. We found no evidence of 

sex-biased dispersal in the populations we sampled, however it is possible that the male 

bias in our sampled individuals is responsible, and thus closer inspection is warranted. 

We were additionally able to define five population clusters based on genetic 

similarity among sampled marshes. The five clusters we defined consist of a Long Island 

complex (WNWR and MNC), Rhode Island, Spurwink, Chapman's Landing, and Parker 

River/Hampton Beach/Fairhill/Furbish. Although Fsr values were small, genetic 

structuring was detected in the sampled populations providing insight on the formation of 

appropriate management units for this species. Results from the genetic analyses also 
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provide insight into the movement and connectivity between populations of a migratory 

avian species. Although genetic structuring is unexpected in organisms characterized by 

high vagility, we have shown that there are mechanisms, whether behavioral or related to 

habitat features, which are resulting in patterns of substructuring in a mobile species. 

Results from the field component of our study further are consistent with the 

genetics findings that Parker River is a source population. A linear regression of 

continuous marsh size and the density of breeding adults resulted in a significant, positive 

relationship (P=0.0148), with the highest observations of breeding adults occurring in 

Parker River, representing approximately 9,000 hectares of continuous marshland. 

Although our nesting data suggest that Parker River displayed the highest predation rates 

in 2007, the overall nest failures observed during the season were not lower than that seen 

in marshes with low predation rates (Hampton Beach and Fairhill). This suggests that 

although predation rates were high, the number of chicks surviving to fledge in this site is 

as expected based on data from the other sites monitored during this year. Thus, results 

from our nesting study further support the finding that Parker River is a source 

population. The average nesting success in Parker River combined with its large size 

supports our findings of high connectivity and large numbers of dispersing individuals. 

Our study provides valuable insight on the population trends, dispersal patterns 

and genetic connectivity among Saltmarsh Sparrow populations. Future research focused 

on filling in the geographic gaps between Massachusetts and Rhode Island and in 

marshes further south of Long Island, would be beneficial in determining the scale of 

management required to preserve the genetic diversity of these populations. Identification 

and preservation of source populations, including Parker River, should also be an 
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important consideration for future management initiatives. To assess whether predation 

rates observed in Parker River and Furbish are a product of annual fluctuations or of 

increased research activity within the marsh, we also suggest conducting a study on 

observer effects and modeling the survival data in MARK. Data from both the field and 

genetics component of this study can be used in conjunction with past and current 

research efforts as a source of baseline information on determining the most appropriate 

strategy for effective management plans for a species that is globally vulnerable to 

extinction. 
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Appendix A. Implementing a DNA-barcoding approach to identify Saltmarsh Sparrow 
{Ammodramus caudacutus) and Nelson's Sparrow {Ammodramus nelsoni) hybrids. 

ABSTRACT 

We developed a DNA bar-coding approach to discriminate between Nelson's Sparrows 

{Ammodramus nelsoni) and Saltmarsh Sparrows {Ammodramus caudacutus) and applied 

it to 441 putative Saltmarsh Sparrows sampled from Maine to Long Island. Although all 

individuals were identified in the field as Saltmarsh Sparrows based on plumage 

characteristics, 34 (7.7%) were found to have Nelson's specific mitochondrial DNA, 

indicating that they were of hybrid origin. This discrepancy in morphological and genetic 

data highlights the difficulties associated with accurate field identification and may 

hinder conservation efforts by confounding attempts to identify and monitor "pure" 

populations. We found evidence of an expansion of the hybrid zone, with Nelson's 

mitochondrial DNA prevalent in the most southern point of the previously documented 

overlap zone and as far south as Rhode Island. Our findings raise additional questions 

concerning the fitness of hybrids and the extent of introgression into both the nuclear and 

mitochondrial genomes of each species and highlight the need for further investigation 

into the consequences of hybridization on Saltmarsh Sparrows. The latter is especially 

important in light of other stressors potentially affecting the persistence of this threatened 

species. 
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INTRODUCTION 

The distribution and taxonomic classification of the Nelson's Sparrow 

(Ammodramus nelsoni) and Saltmarsh Sparrow {Ammodramus caudacutus) has been a 

topic of ornithological debate for over a century (Rising and Avise 1993, Greenlaw 1993, 

Shriver et al. 2005). Both species breed in coastal marshes, with a subspecies of Nelson's 

Sparrow (A. n. subvirgatus) breeding in marshes from coastal Quebec to northeastern 

Massachusetts and the two subspecies of Saltmarsh Sparrow (A. c. caudacutus and A. c. 

diversus) breeding from Maine to New Jersey and New Jersey to Virginia, respectively 

(Greenlaw and Woolfenden 2007). Both Species are a high conservation priority in the 

northeastern United States (U.S Fish and Wildlife Service 2008) because of the high 

proportion of the global populations breeding in these areas (Hodgman et al. 2002). 

Hybridization between Nelson's and Saltmarsh Sparrows has been previously 

documented, as the two species are sympatric within an overlap zone spanning from 

central Maine to the northeast shore of Massachusetts (Hodgman et al 2002, Shriver et al. 

2005). 

In light of the potential negative consequences of hybridization in wildlife 

populations (Rhymer and Simberloff 1996), it is important to monitor and consider the 

impacts of hybridization on these threatened species. The possible expansion of the 

overlap zone and the potential for increased hybridization may present another threat to 

the long-term persistence of the Saltmarsh Sparrow, which as a salt marsh obligate, is 

limited to a heavily fragmented range of coastal habitat. Thus the identification and 

monitoring of genetically "pure" populations of this species may warrant consideration as 

a conservation priority. 
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In this paper, we present the results of a DNA-barcoding approach to identify 

hybrids in a large sample of Saltmarsh Sparrow individuals studied in multiple salt 

marshes across the northeastern U.S. We report evidence that hybridization between 

Nelson's and Saltmarsh Sparrows is occurring at a greater rate than previously thought 

and that the hybrid zone may be expanding. 

METHODS 

STUDY AREA AND SAMPLE COLLECTION 

Genetic samples used in this study were collected from Nelson's and Saltmarsh 

Sparrows during ongoing toxicological (Lane and Evers 2007; Lane et al. 2008) and 

population genetics (Walsh et al. in prep; see chapter 2) research. To capture adult 

sparrows, we deployed two to six 12-m mist nets with size 36 mm mesh. Blood samples 

(30-50 ul) were drawn from the cutaneous ulnar vein using a non-heparinized capillary 

tube. In a few cases, one or two tail feathers were obtained instead of blood. Individuals 

were identified in the field as either Nelson's or Saltmarsh Sparrows by plumage 

characteristics; measurements of bill size (culmen, depth and width), wing chord and 

weight were also recorded. All birds were released within 10-20 minutes of capture. 

Blood samples were stored at room temperature on Whatman filter cards for later genetic 

analysis. 

To develop a genetic assay for species identification, blood or feather samples were 

obtained from known individuals of each species outside of the overlap zone {n= 4 

Nelson's Sparrows from Penobscot River, ME and n= 10 Saltmarsh Sparrows from 

Shirley and Oceanside, NY). Individuals were also sampled within the overlap zone, for 

which species identification was based on morphological features and differences in 

62 



nesting behavior and spatial segregation (O. Lane, personal observation; n= 4 Saltmarsh 

Sparrows and n= 2 Nelson's Sparrows from Wells and Scarborough, ME). For 

morphological comparisons, we also collected field measurements of culmen length, bill 

width, bill depth and weight for 34 Nelson's Sparrows sampled along the Penobscot 

River and 29 Saltmarsh Sparrows sampled from Shirley, NY. 

We applied our genetic test (see below) to 441 samples collected from putative 

Saltmarsh Sparrows (based on morphology) during 2006-2008 on nine marshes along the 

northeastern coast. Study marshes were located in Wells, ME (Rachel Carson National 

Wildlife Refuge; NWR), Scarborough, ME (Rachel Carson NWR), Hampton, NH, Rye, 

NH, Stratham, NH, Newburyport, MA (Parker River NWR), Narragansett, RI (John H. 

Chaffee NWR), Shirley (Wertheim NWR), NY and Oceanside, NY. 

GENETIC IDENTIFICATION 

To develop our assay for species identification, we employed a DNA bar-coding 

approach (Hebert et al. 2003). DNA was extracted from the known Nelson's and 

Saltmarsh Sparrow samples using a DNeasy Blood Kit (Qiagen, Valencia, CA). 

Universal avian primers (BirdFl and BirdR2) were used to amplify a 648 base pair region 

of the cytochrome c oxidase I (COI) gene in a 12.5ul polymerase chain reaction 

following the conditions described by Hebert et al. (2004). Samples were sequenced by 

Geneway Research, LLC (Hayward, CA) or by the Hubbard Center for Genome Studies 

at the University of New Hampshire. 

To identify variation within and between species, Nelson's and Saltmarsh Sparrow 

sequences were edited to 600 base pairs and aligned in Geneious Pro 4.7.6 (Biomatters 

Ltd, Auckland, NZ). In addition, we included three Nelson's sequences from GenBank 
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(accession numbers DQ433298, DQ432709 and DQ432708) in our alignment; these 

specimens originated from the Midwest (Minnesota and Illinois) and were highly 

consistent with the sequences from our Nelson's reference individuals despite being 

representative of a different subspecies (A. n. nelsoni). We consistently found the same 

species-specific nucleotide variations at seven sites (1.2% interspecific variation) when 

comparing Nelson's and Saltmarsh Sparrow sequences. With the exception of one 

Saltmarsh individual at one site, there was no intra-specific variation within these seven 

sites when comparing our Nelson's samples with those on GenBank, nor when 

comparing our species-specific samples collected within and outside of the overlap zone; 

the latter confirms that our reference individuals for each species were correctly 

identified in the field. Outside of the seven sites, we observed 0.2% and 0.4% 

intraspecific variation in Saltmarsh and Nelson's Sparrow sequences, respectively. The 

higher intraspecific variation observed in the Nelson's Sparrow sequences might be 

reflective of the large geographic distance between sampling locations and genetic 

variation between two subspecies. 

We identified a nucleotide difference in one of the seven sites that was located in a 

Hinfl specific restriction site, and used this as the basis for the development of a species-

specific diagnostic assay. Amplified products were digested in a 10.5ul reaction (9ul 

template DNA, 0.5ul enzyme Hinfl and l.Oul of buffer 2) and incubated overnight at 

37°C. When resolved on a 3% agarose gel, the test yielded 2 fragments (approximately 

100 and 550 in size) in Saltmarsh Sparrows, and 3 fragments (approximately 100, 150 

and 400 in size) in Nelson's Sparrows. 
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We then applied this diagnostic assay to the 441 individuals identified 

morphologically as Saltmarsh Sparrows from Maine to Long Island. Individuals with 

Nelson's mitochondrial DNA were identified as potential hybrids. 

MORPHOLOGICAL COMPARISONS 

Field measurements of the putative hybrids were compared to those of known Nelson's 

and Saltmarsh individuals sampled outside of the overlap zone, from the Penobscot River 

in Maine (w=34) and from Shirley, NY (n=29). Averages and standard deviations were 

calculated for four morphological features (culmen length, bill width, bill depth and 

weight) for the three groups (hybrid, Nelson's and Saltmarsh). ANOVA and a Tukey's 

test were used to assess differences between morphological characteristics among the 

three groups. 

RESULTS 

Our genetic testing revealed 34 of the 441 putative Saltmarsh Sparrows had 

Nelson's mitochondrial DNA (Figure 1). The majority («=18) of the sparrows with 

Nelson's mtDNA were captured on Plum Island (Newburyport, MA). The most southern 

site at which we identified an individual with Nelson's mtDNA was in the John H Chafee 

Wildlife Refuge in Narragansett, Rhode Island. 

On average, bill measurements and weights were smaller in pure Nelson's 

individuals in comparison to pure Saltmarsh individuals (Table 1) and hybrid 

measurements were more similar to that of pure Saltmarsh Sparrows. For all four 

morphological features, pure Nelson's measurements were significantly different 

(PO.0001) from those of the Saltmarsh and hybrid groups. 
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DISCUSSION 

We found the occurrence of Nelson's specific mtDNA in about 8% of the 

individuals identified morphologically as Saltmarsh Sparrows, suggesting that they were 

of hybrid origin. Our findings indicate an expansion of the hybrid zone, with a large 

proportion of hybrids identified in what was previously thought to be the most southern 

point of the overlap zone (Parker River) and one individual identified as a hybrid as far 

south as Rhode Island. In a previous study, Hodgman et al. (2002) conducted point count 

surveys within numerous marshes to evaluate the extent of the overlap zone. Hodgman et 

al. (2002) surveyed 40 points in Parker River and documented a maximum of one 

Nelson's Sparrow at 3% of their points in comparison to a maximum of 10 Saltmarsh 

Sparrows at 78% of their points. Of the 95 blood samples collected from Parker River in 

this study, 18 individuals (19%) were identified as having Nelson's mitochondrial DNA, 

indicating a higher proportion of Nelson's individuals present on Plum Island then 

previously recorded. Furthermore, previous research documenting hybridization between 

Nelson's and Saltmarsh Sparrows identified putative hybrids only as far south as 

Scarborough, ME (Shriver et al. 2005). We identified hybrids in Maine, New Hampshire, 

and Massachusetts indicating a southern expansion of Nelson's alleles. 

Our study did not assess the expansion of Saltmarsh Sparrow genes into Nelson's 

populations, as we focused only on the genetic analysis of Saltmarsh Sparrows. However, 

more information on the direction of introgression will be critical in determining the role 

of hybridization in these species. The use of mitochondrial DNA to assess hybridization 

is a further limitation to our study, as mtDNA is maternally inherited. Thus we are unable 

to detect hybrid individuals that have inherited Nelson's DNA paternally. We may be 
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grossly underestimating the extent of hybridization by restricting our analysis to 

maternally inherited genes. 

CONSERVATION IMPLICATIONS 

Due to the morphological similarities between the hybrids and the Saltmarsh 

Sparrows, there may be an underestimation of the size and range of the hybrid zone. Our 

results indicate that a higher proportion of Nelson's Sparrows inhabit the most southern 

point of the overlap zone then previously documented. Furthermore, results from our 

population genetic study (Walsh et al., in prep; see chapter 2) indicate that Parker River is 

genetically similar, in pairwise genetic comparisons, to other marshes along the 

northeastern coast. This is likely due to the large size of the marshes sampled on Plum 

Island. Due to the difficulty associated with accurate species identification in the field, 

we may be grossly underestimating the percentage of hybrids present in the Parker River 

population. This fact combined with the degree of connectivity observed between Parker 

River and other marshes may result in the spread of Nelson's alleles further south, and 

may impact pure Saltmarsh Sparrow populations originally believed to be outside of the 

overlap zone. It is likely that the range of overlap between these two species, and 

consequently the degree of introgression, is more dynamic then previously believed. 

Because of the limited habitat range and conservation status of the Saltmarsh 

Sparrow, it is important that we understand the rate of hybridization between Saltmarsh 

and Nelson's Sparrows. More information is required to examine the occurrence of 

Nelson's alleles in Massachusetts and Connecticut, to fill in gaps between our sampling 

locations. If these putative hybrids are more prevalent then previously thought, research 

on hybrid fitness and behavior may also be important. Furthermore, future studies should 
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incorporate maternal and paternal DNA (microsatellites) to fully assess the direction and 

extent of hybridization. We recommend strict adherence to the plumage index created by 

Shriver et al. (2005) and the collection of field data including bill measurements and 

weight. This information will allow for more accurate field identification of hybrids, and 

should be used even if marshes are further south than the hypothesized overlap zone. 

Consideration of hybrid expansion will become increasingly important when 

implementing future management strategies for both species. 
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FIGURE 1: Map of Saltmarsh and Nelson's Sparrow sampling locations. Red boxes represent 
marshes where pure Nelson's (PEN) and Saltmarsh (WNWR) samples were collected. Blue circles 
indicate marshes where putative hybrids were identified: SCAR(n=4), RCF(n=2), CL (n=5), HB 
(n=4), PR (N=18) and JHC (N=l). Shaded area represents the currently hypothesized Nelson's-
Saltmarsh overlap zone. 
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TABLE1: Average measurements and standard deviation for four morphological features compared 
between the three groups. Bold and * represents a significant difference (P<0.0001). 

Field Measurements Nelson's Sparrow saltmarsh sparrow Hybrids 

Culmen 8 . 4 2 ± 0 .30* 9.22± 0.40 9.26± 0.53 

Bill width 4 . 0 2 ± 0 . 2 9 * 4.42± 0.21 4 .31 ± 0.19 

Bill depth 5 . 0 ^ 0 . 2 1 * 5.12± 0.12 5.26± 0.19 

Weight 1 7 . 3 2 ± 1.25* 18.S?^1 1.24 18.96± 1.87 
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