
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Fall 2009

APCO project 25 wireless data services over land
mobile radio channel for smaller law enforcement
agencies
Ivan Elhart
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Elhart, Ivan, "APCO project 25 wireless data services over land mobile radio channel for smaller law enforcement agencies" (2009).
Master's Theses and Capstones. 474.
https://scholars.unh.edu/thesis/474

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNH Scholars' Repository

https://core.ac.uk/display/215515739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/474?utm_source=scholars.unh.edu%2Fthesis%2F474&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

APCO PROJECT 25 WIRELESS DATA SERVICES OVER LAND
MOBILE RADIO CHANNEL FOR SMALLER LAW

ENFORCEMENT AGENCIES

BY

IVAN ELHART

B.S., University of Novi Sad, 2006

THESIS

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Electrical Engineering

September, 2009

UMI Number: 1472059

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1472059

Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis has been examined and approved.

Lsf A u £

Thesis Director, Dr. W. Thomas Miller, III
Professor of Electrical Engineering

Dr. Andrew L. Kun
Associate Professor of Electrical Engineering

. Dr. Michael J.^Cartey
Associate Professor of Electrical Engineering

£-Aeo f

Date

ACKNOWLEDGMENTS

First of all, I would like to thank my thesis adviser Dr. Thomas W. Miller, III for

his constant guidance, patience, and support throughout the course of this work.

I would also like to thank my academic adviser Dr. Andrew L. Kun for giving me

the opportunity to obtain my Master's degree at the University of New Hampshire and for

his constant support throughout the course of my research.

I would like to thank Dr. Michael J. Carter for his help during my graduate studies

and for serving on my thesis committee.

I would like to thank my loving wife, Isidora, and my parents for their love and

support during many years of my education.

Last, but by no means least, I would like to thank all Project54 colleagues for

helping me throughout the course of my research.

This work was supported by the U.S. Department of Justice under grants

2005CKWX0426 and 2006DDBXK099.

in

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ACRONYMS xi

ABSTRACT xii

CHAPTER I INTRODUCTION 1

Problem Description 2

Goal of the Thesis 5

Approach 6

Thesis Overview 6

CHAPTER II BACKGROUND 9

Invisible Communication 10

Intra-Vehicular Systems 11

Vehicle to Infrastructure Networks 13

Land Mobile Radio Communication for Law Enforcement 18

Project 25 18

iv

Project 25 Data Communication '.'. 21

CHAPTER III SOFTWARE DEFINED APCO PROJECT 25 DATA BASE

STATION 24

System overview 24

Reception and Decoding of Digital Data Packets 28

Status Symbols 30

Frame Synchronization Word. . 31

Network Identifier.... : 32

Inverse Interleaving 35

Data Error Correction Decoding .'. 36

Data Header Block Format 41
< . • • •

Unconfirmed Packet Data Block Format 49

Confirmed Packet Data Block Format 51

Response Block Format 54

The Data Base Station Application 55

The Base Station Main Thread 56

The Main CAI Packet Input Thread _ 59

The Main IP Packet Input Thread 63

CHAPTER IV TESTING 67

v

Tests with a Single Mobile Data Client 69

Tests with Multiple Mobile Data Clients 79

Voice Priority Assurance 84

Project 25 Vocoder 84

Tests with Parallel Voice and Data Communication 90

Tests with Simultaneous Voice and Data Transmissions from a Single Client 94

CHAPTER V CONCLUSION 96

REFERENCES.. 100

APPENDIX A CUSTOM KENWOOD RADIO INTERFACE CABLE 104

APPENDIX B KENWOOD TX 7180 CODE PLUG 105

VI

LIST OF TABLES

Table 1 - C4FM Frequency Deviations 28

Table 2 - Status Symbol Codes 31

Table 3 - Frame Synchronization Word sequence 32

Table 4 - Network Identifier 32

Table 5 - Data Unit Identifier Values 33

Table 6 - BCH Code Generation Matrix 34

Table 7 - Interleave Table 35

Table 8 - Rate 1/2 Trellis State Transition Table 38

Table 9 - Rate 3/4 Trellis State Transition Table 38

Table 10 - Constellation to Dibit Pair Mapping .- 39

Table 11 - SAP Identifier Values 43

Table 12 - Response Packet Class, Type, and Status Specification 47

VII

LIST OF FIGURES

Figure 1 - Current state of communication in local NH departments 4

Figure 2 - A typical voice communication system 25

Figure 3 - Project 25 Data Base Station designed in this thesis 26

Figure 4 - The Data Base Station Architecture 27

Figure 5 - CAI to IP packet Conversion 29

Figure 6 - Trellis Encoder Overview 37

Figure 7 - Trellis Encoder Block Diagram 38

Figure 8 - Unconfirmed Data Packet Header Block 41

Figure 9 - Confirmed Data Packet Header Block 42

Figure 10 - Acknowledgment Data Packet Header Block 42

Figure 11 - Unconfirmed Last Data Block 49

Figure 12 - Confirmed Data Packet Data Block 51

Figure 13 - Confirmed Data Packet Last Data Block 53

Figure 14 - Response Packet Data Block 55

Figure 15 - Flow Diagram of the Base Station Main Thread 56

Figure 16 - The IP Reflector Architecture 58

Figure 17 - Flow Diagram of the Main CAI Packet Input Thread 59

Figure 18 - Client Table 60

Figure 19 - Flow Diagram of the Client Threads 61

Figure 20 - Flow Diagram of the Client CAI Packet Input Thread 62

Figure 21 - Flow Diagram of the Main IP Packet Input Thread 64

viii

Figure 22 - Flow Diagram of the Client IP Packet Input Thread 65

Figure 23 - End-to-end Initial Testing Setup 69

Figure 24 - A segment of a Client Log File 72

Figure 25 - A segment of a Server Log File 73

Figure 26 - A segment of a Data Radio Log File 74

Figure 27 - A segment of a Data Radio Receiver Log File 75

Figure 28 - A segment of a Data Radio Transmitter Log File 77

Figure 29 - An Example of a P25 CAI Waveform 78

Figure 30 - An example of Data Radio In/Out Log File 82

Figure 31 - Block Diagram of the Project 25 Vocoder 85

Figure 32 - Project 25 Voice Recording Setup 86

Figure 33 - Comparison of Played and Recorded Signals ("Troop B Boston") in the Time

and Frequency Domains 88

Figure 34 - Comparison of Played and Recorded 300 Hz Sine Wave in the Time and

Frequency Domains 89

Figure 35 - Parallel Voice and Data Communication over the same Radio Channel 90

Figure 36 - An Example of a Recorded Signal, an Amplitude Analysis, and a Cross-

correlation 92

Figure 37 - The Final Testing Setup with a Single Mobile Client 95

Figure 38 - Custom Kenwood Radio Interface Cable 104

Figure 39 - Test Channel Frequency Settings 105

Figure 40 - Radio COM Port Settings 106

ix

Figure 41 - Radio Modulation Line Settings 106

x

LIST OF ACRONYMS

APCO

P25

CAI

IP

VHF

FM

WiFi

LMR

NHDS

VPN

GPS

TIA

IMBE

FCC

FDMA

TDMA

C4FM

CQPSK

Association of Public Safety Communication Officials

APCO Project 25

Common Air Interface

Internet Protocol

Very High Frequency (radio frequency range from 30 to 300 MHz)

Frequency Modulation

Wireless Local Area Networks based on IEEE 802.11

Land Mobile Radio

New Hampshire Department of Safety

Virtual Private Network

Global Positioning System

Telecommunications Industry Association

Improved Multi-Band Excitation

Federal Communications Commission

Frequency Division Multiple Access

Time Division Multiple Access

Constant Envelope 4-Level FM

Compatible Differential Offset Quadrature Phase Shift Keying

XI

ABSTRACT

APCO PROJECT 25 WIRELESS DATA SERVICES OVER LAND
MOBILE RADIO CHANNEL FOR SMALLER LAW

ENFORCEMENT AGENCIES

by

Ivan Elhart
University of New Hampshire, September, 2009

Digital data messages are very important in modern communication systems and

advanced mobile data technologies have opened the door to a wide range of applications

and services in the public safety environment. Still, the availability of mobile data

services among public safety agencies is hampered by two issues of the implementation

of data communication: the reliability of commercial data services and the high cost of

the equipment needed to support mixed voice and data transmissions over private land

mobile radio channels.

This thesis describes the design and development of an inexpensive Software

Defined APCO Project 25 Data Base Station that allows smaller law enforcement

agencies to enable data services in their cruisers in a cost effective way. The data base

station is comprised of a standard PC interfaced to a commercial analog VHF FM

transceiver via a commercial PC sound card. The base station is compliant with

commercial P25 digital mobile radios and operates in parallel to commercial P25 digital

voice communications equipment.

xii

CHAPTER I

INTRODUCTION

The traditional way of communicating in a mobile environment is to use voice

messages. For example, in applications such as fleet management, the driver uses a

mobile radio or cellular phone to provide the vehicle's current position to a command

center. Based on the current position of the vehicle the command center may modify the

driver's assigned tasks. However, operating a manual radio interface and using voice

messages for communication require the driver's attention and time which can degrade

driving performance [1]. On the other side, some communication can be automated, so

the driver only needs to pay attention to the result. For example, the vehicle can

automatically update the current position every few seconds to the command center and

an in-vehicle system can inform the driver only if there are updated or new tasks. The

most important part in supporting automated communication is the utilization of digital

data messages.

Today, many modern communications systems support the access, storage, and

manipulation of desired information utilizing digital data messages. Those systems allow

for a wide range of data services along with traditional voice communication. A well

known example of such a system is a cellular phone network that supports both a Short

Message Service and a Multimedia Messaging Service. In addition, advanced cellular

1

data technologies (e.g. General Packet Radio Service) that use Internet Protocol (IP) for

the routing and exchanging of data packets have opened the door to broad IP based

applications and services such as WWW, email, navigation, and even TV for a mobile

environment [2].

There are several other wireless communication technologies which are often

used for sending and receiving data messages in mobile settings. These technologies are:

Wi-Fi and Land Mobile Radio (LMR). More often, the combination of commercial

wireless and wired networks has been used for various public services ranging from fleet

management and telemetry to providing additional information to users.

Problem Description

Commercial public data services can be of benefit to public safety agencies in

supporting, organizing and tracking their personnel on patrol. However, these services are

not widespread in the law enforcement community. The availability of mobile data

services among public safety agencies is hampered by two issues of the implementation

of data communications: the reliability of commercial data services and the high cost of

the equipment necessary to support mixed voice and data transmissions over private

LMR channels.

First, mission critical operations cannot rely on commercial data services unless

they meet strict requirements of availability, survivability, security, and quality of

service. Even with a vision that commercial systems can augment and may completely

2

replace public safety networks in the future, natural disasters (floods, hurricanes, and

earthquakes) or terrorist attacks can compromise the commercial systems' ability to

operate. This is not acceptable for mission critical operations [3].

Second, first responders primarily depend on secure, agency operated LMR

communication and the spectrum reserved by the Federal Communication Commission

for public safety use. LMR systems were initially designed to operate in analog mode and

to provide only voice communication. Later, the analog systems were replaced with

digital ones by implementing standards for digital communication. A set of common

technical standards for digital communication, known as the Association of Public-Safety

Communication Officials (APCO) Project 25 (P25), added data transmissions to public

safety LMR channels [4]. This new data functionality introduced a new piece of

equipment to the LMR system called a Data Base Station. The commercially available

P25 data base stations are usually designed to support a large number of mobile radios

and operate on multiple channels in either conventional or trunking configurations. This

complexity raises the cost of such equipment and its installation. This complexity is not

needed by smaller public safety agencies which require only a single conventional data

radio channel.

For example, the New Hampshire Department of Safety (NHDS) was among the

first agencies to implement a statewide P25 radio infrastructure that supports mixed voice

and data communication. The NHDS directly benefits from the system by supporting

multiple state agencies and processing approximately 20,000 data queries per month over

3

the same LMR channels used for voice communication. Systems like the one used by the

NHDS may cost hundreds of thousands of dollars, which is not affordable for smaller

local agencies due to their limited budgets.

Presently, nearly all local police departments in NH are equipped with P25-

compliant mobile radios capable of data communication. However, the local departments

do not utilize the data portion of the standard because they lack the expensive data

capable base stations. Therefore, the departments use only voice communication to

provide their cruisers with information on patrol (e.g. vehicle and driver record

information). This current state of communication in local police departments is

illustrated in Figure 1.

**** "*
--' Server " -^

Database

Figure 1 - Current state of communication in local NH departments

4

Goal of the Thesis

The goal of this work was to develop a system that would allow smaller law

enforcement agencies to enable wireless data services in their cruisers in a cost effective

way and with a high level of reliability. This goal was achieved by designing and

implementing an inexpensive software defined APCO P25 data base station.

The software defined data base station is comprised of a standard PC, with a

standard network interface, interfaced to a commercial analog VHF FM transceiver via a

commercial PC sound card. The base station logic and the digital baseband modulation

and demodulation are implemented in software on the PC. The analog radio performs the

PvF modulation and demodulation. The data base station is capable of operating in parallel

to preexisting P25 digital voice communication lines involving no additional

communication equipment at headquarters. The compliance with commercial P25 digital

mobile radios, which can be found in almost all local departments in New Hampshire,

further reduces the cost of providing data services to vehicles. The existing digital mobile

radios can be used for both voice and data signaling without requiring additional in-

vehicle wireless communication devices.

The base station developed in this thesis can be used in local police departments

with several cruisers for data communication between headquarters and mobile units on

patrol. The officers would use the data channel in combination with the Project54 system

to query remote vehicle and driver record databases [5]. In combination with the

Project54 speech user interface, the textual record queries should provide a safer way to

5

obtain information while driving [1] [6]. Furthermore, the system could be extended to

support data services such as fleet management and vehicle telematics [7] [8].

Approach

In order to accomplish the goal of this thesis and provide vehicular wireless data

services to smaller law enforcement agencies, a series of four steps were proposed. The

first step was to extend the software defined APCO P25 Data Transmitter, developed by

Eric Ramsey [9], to support the confirmed type of transmission. The second step was to

implement a software defined APCO P25 Data Receiver capable of handling both

confirmed and unconfirmed types of communication. The third step was to incorporate

the data transmitter with the data receiver and implement APCO P25 data base station

logic with collision avoidance and retransmission mechanisms. The fourth and final step

was to test the APCO P25 Data Base Station according to various stages of P25

compliance, to test its interoperability with commercial P25 compliant digital radios, and

to ensure voice priority over data messages.

Thesis Overview

This thesis is organized into five chapters and two appendices.

6

Chapter I, Introduction, gives an introduction to the topic of information sharing

urajnobile environment utilizing digital data messages. First, the chapter introduces data

communications and discusses its potential benefits. Second, it provides an overview of

the current problems of the implementation of data communications for smaller public

safety departments. Finally, it states the goal and presents the approach taken in this

work.

Chapter II, Background, gives an overview of the commercial and research

projects in the field of vehicle to infrastructure communications. The chapter starts with
j

Weiser's vision of ubiquitous computing and invisible communication. Then, it discusses

projects of intra-vehicular and vehicle to infrastructure networks. Lastly, it gives an

overview of a set of digital standards for Land Mobile Radio communications, called

APCO Project 25.

Chapter III, Software Defined APCO Project 25 Data Base Station, describes the

design and implementation of a software defined P25 data base station. The first part

gives an overview of a typical P25 system and presents the architecture of the base

station. The second part talks about the reception and decoding of P25 Common Air

Interface packets. The last part of the chapter presents the software application and

describes the data base station logic.

Chapter IV, Testing, describes the precise and methodological testing procedure

performed in the laboratory. The testing procedure has been divided into three parts: tests

7

with a single mobile client, tests with multiple mobile clients, and tests that assure the

priority of voice communication.

Chapter V, Conclusion, gives the conclusion drawn after the testing procedure

was completed and provides an insight to the future work and potential deployment of the

base station in a real world scenario.

Appendix A, Custom Kenwood Radio Interface Cable, provides a schematic of a

radio interface cable used to connect the radio transceiver to the PC's serial (RS 232) port

and sound card.

Appendix B, Kenwood TX 7180 Code Plug, shows the steps needed to set the

analog transceiver to operate on a desired frequency, to enable the radio's data

communication port, and to enable data messages to control the radio's PTT signal.

8

CHAPTER II

BACKGROUND

The ability to access and manipulate information and services anytime and

anywhere are the most important features of today's mobile communication technologies.

Information can be accessed through numerous wireless networks using various

communication devices such as personal digital assistants, cell phones, and digital radios.

These communication devices, capable of transmitting and receiving messages, are used

to bring information to a mobile environment. Hence, they are usually combined with

intra-vehicular systems to support communication and share information with

infrastructure systems. Furthermore, most of the communication between vehicles and

infrastructure has been automated by utilizing digital data messages. This automation has

resulted in the development of numerous vehicular data services. Today, commercial

infrastructure systems offer a wide collection of data services ranging from entertainment

to safety. However, use of commercial data services in not widespread among law

enforcement agencies because of reliability, high safety requirements, and expensive

equipment.

First, this chapter will introduce Weiser's vision of invisible communication and

digital data messages that connect various elements of the mobile environment. Then,

several intra-vehicular systems and their user interfaces will be mentioned. The intra-

9

vehicular systems are usually combined with infrastructure systems which offer different

vehicular data services. Since the vehicular data services are the main interest of this

thesis, various commercial wireless data technologies and data services in mobile

environments will be reviewed. Finally, we will look at current communication standards

and requirements used by law enforcement and mention several projects which deliver

secure and reliable data services over LMR channels.

Invisible Communication

The transparent integration and disappearance of computers and communication

technologies into people's everyday lives was first introduced by Weiser [10]. In his

vision, different components of the ubiquitous environment are capable of sensing

information and sharing the data. For example, a ubiquitous scanning pen can detect a

quote from a newspaper and send it to a distant location, or a car can help in avoiding

traffic congestion and finding a parking spot. The communication between elements of

the mobile environment is completely in the background, providing an invisible

connectivity. Furthermore, the invisible connectivity is increased by the constant

reduction in size and weight of hardware, improvements in wireless networking, and

development of user interfaces [11]. In Weiser's world, people are surrounded with

numerous components of the ubiquitous environment, but they are not engaged in the

interaction all the time. People perceive the events through different user interfaces which

bring information from the periphery to the center of their attention [12].

10

Intra-Vehicular Systems

Today, cars are equipped with tens or even hundreds of embedded computers that

control almost everything from satisfying emission-control standards to automatically

adjusting the volume of a car audio system. This subsection will look at several projects

that integrate different components into intra-vehicular systems.

Vehicular systems are designed to provide assistance to the driver by integrating

vehicular devices, processing inputs from multiple sensors such as cameras and radars,

and representing sensed data through user interfaces. For instance, a driver assistance

system which uses vehicular radar can perceive the surroundings of the vehicle through

near and far distance radar sensors and can be used in applications such as adaptive cruise

control, pre-crash sensing, blind spot detection, parking assistance, lane change

assistance, collision warning, and urban collision avoidance [13]. In addition to driver

assistance systems that just warn the users of the safety issues, some systems can assist in

driving by performing adaptive cruise control or by taking full control of driving [14].

The introduction of intra-vehicular systems into law enforcement vehicles has

increased the efficiency of the officers on patrol and has given them the ability to perform

usual tasks more easily. Although the installation of computers may allow officers to

receive safety-critical information in a timely manner, it also may increase the driver's

workload, especially in mission-critical operations. According to [6], a typical computer

mouse-keyboard interface used in police vehicles to perform a usual task could increase

the driver's workload by more than seven hundred percent compared with performing the

11

same task using a manual user interface. Also, by conducting studies in the field they

showed that a speech user interface reduces the workload even for the task of performing

a license plate query. This was measured by the number of glances necessary to complete

the task. Another study also showed that performing a task of changing the radio channel

using a speech user interface reduces the driver's distraction compared to a manual user

interface [1]. One of the systems which provide a speech user interface and the system

used in previously mentioned studies is Project54 [5].

Project54 is a research and development effort between the University of New

Hampshire and the New Hampshire Department of Safety [15]. The system is a highly

integrated in-vehicle hardware/software system whose main goal is to improve the safety

and functionality of NH State Police and local police cruisers. It is a completely computer

based system that simplifies the interaction with in-vehicle electronic devices and allows

officers to control them using a speech user interface. Through a physical network and

the use of open hardware and software standards, the system communicates with all

common police devices such as the lights, siren, and radio. One of the features of the

system is the ability to support data communications. This is possible by using digital

radio equipment or connecting to a Wi-Fi network [16].

Project54's ability to support data communication and the data communication

channel developed in this thesis can be combined to enable the task of performing license

plate and driver queries over a mobile radio channel. Similarly as in [6], the combination

12

of a speech user interface and data communications should allow the officers to perform

the queries without taking their eyes off of the road or hands off of the wheel.

Vehicle to Infrastructure Networks

This subsection will give an overview of commercial systems and technologies

which are commonly used for communication between vehicles and infrastructure

systems.

The automotive and public transportation industries have been the focus of many

research projects. Advanced wireless networks have allowed for information sharing

between vehicles and transmitting data to fixed infrastructure systems. The most used

wireless communication systems in commercial automotive applications are cell phone

and Wi-Fi networks.

In traffic information sharing systems, vehicular sensors and cell phone networks

have been used to update information about the traveling speed of vehicles on every road

segment to the server [17]. The server manages real-time measured velocities from the

vehicles and sends back the traveling speed information of approaching road segments on

the route. The vehicles receiving the speed information of the approaching segments from

the server can avoid traffic congestion, calculate travel time, and find minimal-time route

to the destination. The accuracy of the systems depends on continuous updating of the

traffic information from mobile nodes to the server. The communication between the

nodes and server can generate a lot of data traffic and create delays in the communication

13

channel. However, reducing the amount of communication lowers the accuracy of the

system. To maintain a trade-off between the amount of wireless data and accuracy of the

system a randomized update policy with a transmission probability strictly smaller than 1

has been used.

A project by Skordylis and Trigoni delivers sensed data from vehicles to fixed

infrastructure nodes in urban settings using Wi-Fi ad-hoc networks [18]. The information

propagates hop-by-hop, from vehicle to vehicle, to roadside access points connected to

the fixed network. In this approach, the information about traffic congestion, road faults,

and accidents is delivered to a traffic monitoring center that can call for assistance from

public safety departments. They propose different algorithms that intend to deliver

messages from vehicles to an access point with limited delay by minimizing the number

of multi-hop transmissions between the vehicles. Also, message priorities are important

in systems like this one, where information about serious accidents must be delivered to

the monitoring center much faster than information about road faults or traffic

congestion.

Numerous research projects from the public transportation field allow users to

access mobile databases and get information about schedule, events, and available

services. The users of a passenger support system can make their travel plans by

accessing several databases using mobile terminals and gathering information about

route, fare, area map, station map, and real-time operation schedule [19]. The mobile

terminals, connected to the system using Wi-Fi connections, can serve as travel agents

14

which inform passengers of current railway conditions, make travel plans according to

the users' requests, purchase tickets, and guide the passengers during their entire travel

experience. The user interface of the terminals can be personalized to support many

passengers with special needs such as visually disabled persons, aged persons, foreign

tourists, and people who are not familiar with public transportation services. Visually

disabled passengers are guided to the destination by a voice navigation user interface.

Furthermore, mobility agents connected to the cell phone network can deliver highly

personalized instructions to people with limited ability to perceive, recognize,

understand, interpret, and respond to information [20]. Based on the data about the

travelers' specific needs, the agents can track, guide, provide memory prompts and cues

for what to do and where to go, call for help, and send emergency messages when it is

necessary.

The users of transportation systems usually spend long periods of time on board

while traveling. That provides a very good environment to provide entertainment and

various mobile data services. An on-board data service platform, called BlueBus,

provides localized Wi-Fi and Bluetooth data services to the passengers [21]. The local

database on BlueBus is updated at the bus terminals along the route through WiFi access

points. The bus leaves the bus terminal with the latest content and provides travelers with

fresh news and information on the way. The travelers can obtain the information using a

Bluetooth mobile device, access multi-user services such as chat and multi-player games,

and share information through mobile blogs. In addition to information access and

entertainment, wireless access to the internet in a mobile environment can be used for

15

educational purposes. An online knowledge testing tool allows students to take multiple-

choice tests on mobile devices while on their way to school [22].

The development of wireless data applications and services has been driven by

convenience and safety. Therefore, in some situations users have to access data services

with the information of their physical location. However, revealing user position raises

serious privacy and security concerns [23]. For example, unwanted persons can access

the information to track the location of the service users. The simplest solution to these

problems is to use a fake identity. However, the simple usage of fake identity is not very

suitable for location-based services because the location can reveal the true identity of the

user. The true identity of a home owner can be revealed by asking for the nearest

restaurant to the house, even if the owner is using a fake identity. To address this

problem, Mokbel et al developed a framework, called Casper, in which users can use

location-based services without revealing private location information [24]. Casper blurs

the exact location of the users into cloaked spatial areas based on specific privacy

profiles. Besides the location, automotive telematics applications may include personal

and sensitive information that can threaten the driver's privacy. A data protection

framework, proposed by Duri et al enables data aggregation before data is released to a

service provider [25]. The framework provides flexible privacy policies that minimize the

disclosure of private information.

One of the systems that provides additional information to police officers on patrol

and increases their awareness of incident location is a location-based notification system

16

called Attentive Service [26]. The system was designed to provide auditory signals and

pop-up messages and proactively notify police officers with the location of incidents,

other colleagues, and crime hotspots in their current vicinity. With the system, the

officers are able to handle incidents faster, rely less on communication with the

dispatcher, and increase their awareness of incidents because they are notified about

relevant information on location. However, the system's complexity and its dependence

on Bluetooth, Wi-Fi, VPN, and GPS connections result in a lack of robustness and

occasional system malfunctions. Also, the field evaluation showed that potential

distraction and interruption by irrelevant notifications have to be addressed in the design

of innovative location-based notification services for police officers.

Most of the wireless data services currently available would be beneficial for law

enforcement agencies in tracking and organizing their personnel. However, even with the

numerous benefits that the data services can offer, they are not widely used among first

responders because of concerns about the security, survivability and redundancy of

commercially available networks. Public safety and mission-critical operations cannot

count on public networks unless they satisfy high requirements of security, reliability,

priority in traffic, traffic behavior, load conditions, and quality of service [2] [3]. For

example, certain events may compromise a commercial system's ability to operate.

Natural disasters can damage the public infrastructure, extreme crowds that might occur

during riots and attacks can overload the communication bandwidth, or simple adding of

a new data service can cause unpredictable traffic behavior. For these reasons, law

17

enforcement agencies often rely on agency operated LMR communication for mission

critical applications.

Land Mobile Radio Communication for Law Enforcement

This subsection will focus on standards for digital radio communication as well as

several commercial and research projects that allow for data communication over land

mobile radio channels.

Law enforcement communication primarily depends on secure, agency operated

Land Mobile Radio (LMR) channels and the spectrum reserved by the Federal

Communication Commission (FCC) for public safety use. Standards for digital

communication, called APCO Project 25, have introduced and added data signaling to

conventional LMR systems. However, only a few currently deployed LMR systems have

the very expensive but necessary equipment to support the data portion of the standards.

Project 25

The Association of Public-Safety Communication Officials (APCO) established

Project 25 (P25) to address the radio interoperability problem and to make the usage of

scarce radio frequencies more efficient. P25 represents a set of common technical

standards, developed by the Mobile and Personal Private Radio Standards Committee

18

(TIA TR-8) of the Telecommunications Industry Association (TIA), that outline digital

two-way land mobile radio communications [27] [28].

The P25 suite of digital radio standards is designed to meet radio interoperability

requirements among local, state, and national public safety agencies. The suite specifies a

definition and description of P25 system elements, interfaces, and system's architecture,

allowing different manufacturers to develop interoperable equipment. A typical P25 radio

system consists of radio units, base station(s), and other fixed radio equipment. Radio

devices are often called subscriber units, which include mobile radios for use inside

vehicles and portable radios for handheld operation. A typical base station consists of a

central unit, a receiver module, a transmitter module, and supported interfaces. Other

fixed radio equipment is used for console and wide-area operations, as well as for data

communications with the fixed network (computer equipment) [4].

A set of open intra- and inter- system interfaces allows for interoperable digital

communication between all system elements. The interfaces defined by the standard are:

Common Air Interface (CAI), Subscriber Data Peripheral Interface, Fixed/Base Station

Subsystem Interface (FSSI), Console Subsystem Interface (CSSI), Network Management

Interface, Data Network Interface, Telephone Interconnect Interface, and Inter-RF

Subsystem Interface (IS SI) [27]. The most important interface and a key for digital

communications is CAI. It enables digital wireless communication, both data and voice,

among multiple subscriber units, base stations, and other fixed equipment with a

maximum bit rate of 9600 bps [4]. Data communication is further described in an

19

additional four P25 documents: Data Overview [29], Packet Data Specification [30],

Circuit Data Specification [30], and Radio Control Protocol [31]. Analog voice signals, at

the input of the system, are converted into digital signals using an analog-to-digital

converter and a voice coder. The voice coder is often called the vocoder and it is based on

the Improved Multi-Band Excitation (IMBE) voice coding algorithm. Once the digitally

represented voice is transmitted over the channel using CAI, it is decoded back to analog

by passing through the vocoder and a digital-to-analog converter [32].

The standard specifies two modes of operation: conventional [33] and trunked

[34]. While conventional systems have no centralized management and the channel

access is manually controlled by the users, trunked systems provide automatic control of

all parts of radio system operation, including call routing and channel access. However,

all P25 systems and equipment, designed according to the standard, should support both

conventional and trunked operation. The only difference between these two types of

operation is in the supported feature set and the channel access method [28].

P25 endeavors to achieve FCC spectrum efficiency requirements by moving to

narrowband channel spacing through a two-phase plan. The goal of Phase 1 is to provide

a channel spacing reduction from 25 kHz to 12.5 kHz using a Frequency Division

Multiple Access (FDMA) scheme and employing a 4 level frequency modulation

(C4FM). Phase 2 provides a further reduction in channel spacing to 6.25 kHz utilizing a

Time Division Multiple Access (TDMA) technique with a differential offset quadrature

20

phase shift keying (CQPSK), a digital modulation which creates two slots of 6.25 kHz in

a 12.5 kHz channel [27] [35].

Project 25 Data Communication

The implementation of data communication over an LMR channel requires the

necessary equipment, mobile units and base station, which supports both voice and data

signaling. Nearly all public safety agencies in New Hampshire already have digital

mobile radios capable of data communication. In contrast, commercially available base

stations which support the data part of P25 are still very expensive and they are not

affordable by small local departments.

Many third party companies have worked on the implementation and

development of P25 Base Stations. Those companies, such as Tyco Electronics [36] and

Etherstack [37], provide a comprehensive range of software-defined P25 voice and data

solutions. Tyco Electronics developed the VIDA communication network that supports a

line of communication systems including P25IP. This system enhances the P25 standards

with the advantages of an IP-based infrastructure. Etherstack offers several variants of

APCO P25 compliant base stations. These variants are written in highly portable ANSI

C/C++ with a layered architecture abstracted from the underlying hardware platform and

operating system. Because these solutions are software-based, they are highly flexible, so

the reconfiguration or updating of the system can be easily achieved. Still, these systems

keep a high level of complexity by integrating voice and data signaling, by supporting

21

transparent hand-off across multiple repeaters and trunked channels, and so forth. Such

complexity is not necessary for small public agencies that already have fully operational

voice networks and operate on a single conventional channel. They only need an

inexpensive, stand alone data capable base station.

Work on a single, stand alone P25 data base station started at the University of

New Hampshire with the overall design and development of the software based P25 data

packet transmitter [9]. This work demonstrated how data packets can be broadcast over

the air using a desktop computer and an analog radio. The desktop computer ran digital

signal processing software that received IP packets through a standard Ethernet interface.

When IP packets were received by the application, they were encoded into CAI data

packets which were then passed to an analog radio as analog waveforms through the

computer's sound card. The waveforms were broadcast using the analog FM transmitter

on a predefined channel. A mobile digital radio tuned to the same frequency captured the

waveforms and decoded the sent IP packets. Although this work was not directly useful

to public safety agencies because it provided only one-way communication, it represents

a successful step toward a software defined Project 25 data base station.

The complete software defined data base station described in this thesis, which

consists of a transmitter, receiver, and base station logic, enables small departments to

deliver additional information to the cruisers in a cost effective way. Also, the usage of a

single digital radio for both voice and data traffic reduces the cost of providing data

services to the vehicles without involving additional wireless devices. In this work, the

22

design and development of the software defined receiver and Project 25 data base station

will be presented.

CHAPTER III

SOFTWARE DEFINED APCO PROJECT 25 DATA BASE STATION

APCO Project 25 represents a set of technical standards that defines digital two-

way communication between mobile, portable, and base station radios over a LMR

channel. The communication between the radios is described through an open interface

called the Common Air Interface (CAI). The CAI allows for both voice and data

transmission over a single LMR channel. This chapter focuses on the overview of the

base station architecture, the reception and decoding of CAI data packets, and the design

of the base station software application.

System overview

Nearly all local NH police departments have implemented phase 1 Project 25

digital LMR communication and have P25 compliant digital mobile radios. A typical

voice system that can be found in local police departments consists of a dispatch console

and a voice base station. The system provides only voice communication, between the

dispatch and mobile units on patrol, over a single conventional radio channel. This is

illustrated in Figure 2.

24

Despatch
Console Quantar Station

CAI Voice Packets y | • • • • • • • • • • • , 13
ffiJSfW

C«tn)

Figure 2 - A typical voice communication system

In this setup, a mobile unit obtains information by operating a microphone of a

P25 compliant digital radio and listening to the radio speaker. The input to the radio is the

officer's voice, which is digitized, encoded, frequency modulated, and transmitted over a

LMR channel in the form of voice CAI packets. At headquarters, the voice base station

receives the signals, performs demodulation, and decodes the voice CAI packets.

Decoded voice CAI packets are then played over a speaker at the dispatch console as

analog voice waveforms. As a response, the dispatcher voice is passed through the

system in the reverse direction and it is played to the officers on patrol over the radio

speaker.

In addition to the voice communication, the CAI also describes wireless data

communication among subscriber units, data base stations, and other fixed end computer

equipment [4]. Following the standard, both voice and data can be transmitted and

received on the same radio channel using a Time Division Multiple Access (TDMA)

technique [35]. Using this technique, voice messages are given priority and data

messages can be transmitted only when there is no voice signaling on the channel.

25

In this thesis we implemented a software defined P25 data base station that

implements the data portion of CAI. The designed base station is compliant with

commercial P25 digital radios and operates on the same conventional radio channel and

in parallel to the P25 voice system shown in Figure 2. The base station is comprised of a

desktop computer with a standard network interface and an analog FM radio. This is

illustrated in Figure 3.

Figure 3 - Project 25 Data Base Station designed in this thesis

With the data base station, mobile units on patrol can access information stored on

the remote servers without contacting dispatch personnel using voice communication.

When a mobile unit needs information, it can generate and transmit a data query over a

LMR channel in the form of a data CAI packet using a P25 digital radio. At headquarters,

the analog radio receives the data CAI packets and performs frequency demodulation.

The analog version of the digital data packet on the output of the analog radio is passed to

the computer through a sound card input. At the computer, the analog signal is digitized

and decoded into an IP query which is then placed on the IP data network through the

computer network card. The response to the IP query, received through the IP data

network, is passed through the base station in the reverse direction. The block diagram of

the base station architecture is shown in Figure 4.

26

IP
p«*t«»H

IP
Packet

Desktop Computer

Base
Station
Logic

• • :• > Encedinc Filters H Sound
Card

Output

Decoding
M

Fillers 6#-

Sound
Card
Input

Analog FM Radio

Tx Amplifier
Mod
ulator

V.C H%
Demod
ulator

V

• yuplescr

Rx Amplifier

P25
CAI

Figure 4 - The Data Base Station Architecture

The flow of data packets between the analog radio and network interface is

managed by a software application which runs on the computer. The application is

comprised of a transmitter, a receiver, and a base station logic component. The

transmitter is used to transform IP packets into digital versions of data CAI packets and

pass them to the analog radio through a sound card output. The transmission process

involves encoding and baseband filtering, which were described and implemented by

Ramsey [9].

The receiver takes the digitally sampled version of CAI packets from the input of

the audio card. The receiver decodes IP packets which are then passed to the network

interface. The synchronization between transmission and reception of both CAI and IP

data packets is managed by the base station logic. Also, the logic component controls

push to talk signaling (PTT), detects collisions between packets, and retransmits collided

27

packets. The next two subchapters focus on the reception and decoding of CAI data

packets and the base station control logic.

Reception and Decoding of Digital Data Packets

The CAI uses a packet technique to transfer digital data messages over a radio

channel. The data message is split into fragments which are formed into packets. Then,

the packets are split into a sequence of information blocks. Each information block is

protected by a trellis code, for error correction, and a check sum which is used to verify

the reception and possible error correction. The information block structure differs based

on the type of delivery. Data can be delivered with either confirmed or unconfirmed type.

The type of delivery depends on whether the sender of the packet requires an

acknowledgment of receipt or not.

The data packets are modulated using the 4-frequency modulation called C4FM.

The C4FM specifies four different frequency deviations which correspond to a set of two

bits, also called a dibit. Each dibit is usually represented by a symbol. The frequency

deviations and their corresponding bits and symbols are listed in Table 1.

Table 1 - C4FM Frequency Deviations

01
00
10
11

+3
+1
-1
-3

1.8 kHz
0.6 kHz
-0.6 kHz
-1.8 kHz

28

Next, we will look in detail at how the CAI data packets are decoded for both

confirmed and unconfirmed types of transmissions. The block diagram of the decoding

process is shown in Figure 5. Complete technical specification for the CAI can be found

in [4].

Header Block.
12 bvfe*; i

TrellisCoded ' . ' • '*'•'
Header Block.' ; * n : -l-
:. 98 dibits1:: N* •':

Head Block i > ; v , <!, J

\ -v

1 .• i - • . . : • ! . , I

U.MH-.-.1,
>t» K'u< I .

I 'Ml . _.'

n'l-i-it I,I

I T - > "V

; -PS IN ID Interleaves! i -u -u .. . I r-M
i m | 32 Header BloJ- U- : . ;<, ,.1 P i . ! W I
:dibit 1 dibit 98dibits -> i i . ••(• 4* . - i ! ' i-

stgtus symbols as required -1 dibit every 35 dibits

i u i. -..v.

CAI Data Packet - 4800 dibit symbols per second

CAI Data Packet - 4800 frequency deviations per second

CAI Data Packet - 16-bK audio samples

Figure 5 - CAI to IP packet Conversion

The input to the receiver is a clock synchronization preamble followed by a CAI

data packet, in the form of a 16-bit digital signal sampled at the rate of 48000 samples per

29

second. This is illustrated at the bottom of Figure 5. The clock preamble is used to

synchronize the receiver clock to the proper phase shift for each modulated symbol. The

preamble signal is a repeated sequence of bits: 01 01 11 11 (frequency deviations of:

1800 1800 -1800 -1800 Hz). The resulting frequency deviation waveform during the

preamble is a 1200 Hz sine wave with a peak amplitude (peak FM frequency deviation)

of 2880 Hz. The sinusoidal preamble signal is used as a reference for implementing

baseline offset adjustment and automatic gain control (AGC), and for synchronizing the

symbol extraction clock. When the receiver clock is synchronized with the input signal,

the 16-bit sample stream is downsampled to 4800 symbols per second. The symbol

samples are converted into the four ideal frequency deviations and their corresponding

bits (Table 1). Among the bits are status symbols which indicate the status of the radio

channel.

Status Symbols

A typical operation on a radio channel uses a radio frequency pair. One frequency

is used to transmit outbound messages while another frequency is used to receive

inbound messages. With the radio frequency pair, it is possible to simultaneously transmit

and receive messages. During the transmission of a message, the information about the

status of the inbound channel (idle or busy) is sent to all the listening subscriber units. A

subscriber unit can transmit data messages only when the inbound channel is idle.

Information about the status of the inbound channel is interleaved throughout the

data information blocks such that there are two status bits (one status symbol) after every

30

70 bits (35 symbols) of data information. Status symbol codes are given in Table 2, and

their position in the data stream is graphically illustrated in the middle of Figure 5.

In this work, a single frequency is used for the transmission of outbound and the

reception of the inbound messages. Therefore, the status code 10 is used to denote that

the inbound channel can be used for both transmission and reception of the messages.

Table 2 - Status Symbol Codes

01
00

I 1 0

r___ ii

Inbound Channel is Busy
Unknown, use for talk-around
Unknown, use for inbound or outbound
Inbound Channel is Idle

The very first bits that follow the clock synchronization preamble are used to

mark the beginning of the data packet. These bits are called a frame synchronization

word.

Frame Synchronization Word

The frame synchronization word is a special sequence of bits, known to both the

transmitter and receiver, used to mark the location of the first bit of the message data. It is

required at the beginning of every voice and data packet, immediately after the clock

synchronization preamble and immediately before the first information bits. The

synchronization word consists of 48 bits (24 symbols) which are specified by the

standard. These bits are listed in Table 3.

31

Table 3 - Frame Synchronization Word sequence

f0x5 0x5 0x7 0x5 Oxf 0x5 Oxf Oxf 0x7 0x7 Oxf Oxf

The frame synchronization word is followed by a network identifier.

Network Identifier

The network identifier is used to address radio networks or specific repeaters

depending on the radio system configuration and to identify the type of message. The

identifier is placed at the beginning of each information block sequence. The subscriber

units use the network identifier to receive the data packets addressed to their network and

reject the traffic from other radio networks. Also, the identifier contains information

about the type of message (e.g., voice or data) and allows the receiver to perform the

correct decoding and error correction. Therefore the network identifier has two fields,

network access code and data unit id, which are encoded in 16 bits of information. These

are listed in Table 4. These 16 bits of information are protected with a BCH code

(described below), which results in a total of 64 bits of the network identifier that are

placed at the beginning of each data unit.

Table 4 - Network Identifier

g Ni l N1U N9 NS N7 N6 'N5 *N4 N3 N2^ _N_1 NO , B3 D2 "bl_D0 j
[15 14 13 12 11 10 9 8 7 ~6~ " 5 " 4 f l 2 T 0 "|

32

The Network Access Code carries 12 bits of information. This information is not

specified by the standard and can be any arbitrary code that uniquely identifies the radio

network. For the testing procedures in this work we chose the network access code to be

0x54.

The Data Unit ID contains 4 bits of information. The unit id specifies the type of

the message that follows the network identifier and can take any of the values listed in

Table 5.

Table 5 - Data Unit Identifier Values

0000
0001 and 0010

loon""""
0100
0101
0110
0111
1001 and 1001
1010
1011
1100
1101 and 1110
1111

0
1
0
0
1
1
0
1
1
0
0
1
0

Header Data Unit
Reserved
Terminator without subsequent Link Control
Reserved
Logical Link Data Unit 1
Reserved
Trunking Signaling Data Unit
Reserved
Logical Link Data Unit 2
Reserved
Packet Data Unit
Reserved
Terminator with subsequent Link Control

The value 1100 denotes the packet data unit and it is used by the data base station

to prepare data messages for transmission. All incoming messages that are not marked

with the packet data code are disregarded.

The information contained in the network identifier is protected with a (63, 16,

23) BCH code. The code is generated using the extension Galois Field which uses a

33

generator polynomial of the 47 degree with 27 non-zero terms. The polynomial written

in octal notation is:

g(x) = 63311413 6723 5453.

This coding process produces a sequence of 63 bits which is appended with a

single parity bit given in Table 5 for each data unit identifier. The final generator matrix

for the full code of 64 bits is shown in Table 6. The matrix is given in octal notation,

where the left 16 bits form an identity matrix and the right 48 bits form a parity check

matrix.

Table 6 - BCH Code Generation Matrix

rj

PLT~
3
4

! _ _ _ _ -

6
7

p__
9
10
11
12
13
14
15
16

10
r04

02
! _ _ _

00
00
00
00
00
00
, _ _

00
00
00
00
00

0000 1 6331

0000 i 5265

0000 | 4603

0000 { 2301

4000 | 7271

2000 j 5605

1000 | 2702

0400

0200

0100

0040

f 1341

0560

6141

3060

0020 1 1430

0010 i 0614

0004 | 6037

0002 ' 5326

0001 t 4662

1413

5216

7714

7446

6230

6507

7243
3521

5650

3337

5557

2667

1333

1146

5070

3027

6723

1472

6116

3047

7300

5263

6531
7254

7526

5170

6474

7236

7517
1164

6351

5647

5452

3276

4164

2072

^^04663j
5660

6730
7354

3566

4220

2110

1044

0422

1642

5373

3127

Upon the reception of 64 bits that encode the network identifier, the receiver first

extracts the network access code. If the code matches the real network code, the data unit

34

id is extracted. Only the packet data unit value is accepted, while all other messages are

disregarded. Once the proper NAC and DUID are extracted, the parity check is calculated

using the BCH code generation matrix. The generated parity check is compared to the

parity check received as the last 48 bits of the network identifier. If the parity checks

match, the following data blocks are passed to the inverse interleaving block.

Inverse Interleaving

The data blocks, received after the network identifier, contain the data payload

that has been interleaved. Interleaving is used to spread burst errors due to Rayleigh

fading over each 98 dibit block. The error burst length is minimized by rearranging the

dibit sequence to form another dibit sequence according to the interleave index pairs

shown in Table 7.

Table 7 - Interleave Table

Index

0
1
2
3
4
5
18
19
29
21
22
23
24

Index

0
1
8
9
16
17
72
73
80
81
88
89
96

Index

26
27
28
29
30
31
44
45
46
47
48
49
25

Index

2
3
10
11
18
19
74

' 75 J
82
83
90

_jH__j

97

Index

51

r^52^~
53

r 54
55

_ 6 g

_ _ 6 9 _ _

70
71
72
73

Index

4
5

12
13
20
21
76
77
84
85
92
93

Index

74
75
76
77
78
79
92
93
94

L_95__
96
97

Index

6
7 ,

14
15
22 ""
23 j

78
79
86
87
94
95

35

Since the data information blocks have been interleaved at the transmitter, the

receiver has to perform inverse interleaving to reconstruct the original dibit sequences.

The inverse operation is performed by switching input and output indexes given in Table

7. After the inverse interleave operation is completed, the data information blocks are

passed through the error correction decoding block.

Data Error Correction Decoding

All data information blocks are encoded with a trellis code. The trellis code is

used to protect the payload and make it more robust to the errors that may happen during

the transmission. All header and unconfirmed data blocks are always encoded with a rate

Vi trellis code while all confirmed data blocks use a rate 3A trellis code. Before explaining

how to decode the data information blocks, we will look at how they are encoded.

The encoding process for both rate lA and 3A trellis codes is similar. This is

illustrated in Figure 6. The input to the rate lA encoder is 96 bits (n = 12 octets) and to the

rate % encoder is 144 bits (n = 18 octets). The data octets are serialized in the same way,

but they are separated into 48 dibits (k = 2) for the rate Vi encoder and 48 tribits (k = 3)

for the rate % encoder. The dibits or tribits are appended with a flushing dibit (00) or

tribit (000), to round the number of dibits or tribits to the final m = 49, and then passed

through a trellis finite state machine. The output of the trellis fine state machine is a

sequence of 49 constellation points or 98 dibits (196 bits), where each constellation point

represents a pair of dibits.

36

Pate Block (n octets)

Add
lushin
k bits

Flushing

Separate into m blocks
of k bits

*

locks

JM-4

1
Octet n-1

i i
M-3 " *
- J . - —

1 r

fl-l

To laterleaver

Figure 6 - Trellis Encoder Overview

The trellis encoder is implemented as a 4-state finite state machine for the rate Vi

code and an 8-state finite state machine for the rate % code. Both machines have 00 (000)

for the initial and final states and use the current input as the next state. This is

diagrammed in Figure 7.

37

Input k bits

Dibits (k=2), Rate'/i
Tribits(k"-3),Rate3/i

1
J'iniic Slate

Machine
I runsiriun l:iblc

Constellation
Point

i — ; » .

Dibit Pair

Figure 7 - Trellis Encoder Block Diagram

The four state machine uses the transition states listed in Table 8, and the eight

state machine uses the transition states listed in Table 9. For each dibit or tribit input, the

output of the state machine is one of the 16 constellation points. Each constellation point

represents a dibit pair as listed in Table 10.

Table 8 - Rate 1/2 Trellis State Transition Table

00
01
10
11

00
0
4
13
9

01
15
11
2
6

10
12
8
1
5

11
3
7
14
10

Table 9 - Rate 3/4 Trellis State Transition Table

000

001
010
011
100
101
110
111

000
0
4
1
5
3
7
2
6

001
8
12
9
13
11
15
10
14

010
4
2
5
3
7
1
6
0

011
12
10
13
11
15
9
14
8

100
2
6
3
7
1
5
0
4

101
10
14
11
15
9
13
8
12

110
6
0
7
1
5
3
4
2

111
14
8
15
9
13
11
12
10

38

Table 10 - Constellation to Dibit Pair Mapping

nmi
0
1

. :..- 2:
3

'-: 4 :
5
6
7

' 00
10
01
11
11
01
10
00

10
10
11
11
10
10
11
11

8
9
10
11
12
13
14
15

11
01
10
00
00
10
01
11

01
01
00
00
01
01
00
00

The decoding is a reverse process of the encoding. The input to the decoder is a

sequence of 98 dibits (196 bits) received from the inverse interleaving block. The dibits

are grouped into 49 pairs and for each pair the constellation point is obtained using Table

10.

The constellation points are then fed to the input of the inverse trellis finite state

machine. Each constellation point is matched with the output and the state of the inverse

finite state machine using tables Table 8 and Table 9. Note that in the decoding process

the input and the FSM state shown in Table 8 and Table 9 become the output and the

FSM state of the inverse finite state machine, respectively. The inverse FSM performs

error correction differently for the rate Vi and the rate % decoders. The initial state at

which the decoding starts is 00 or 000 depending on the rate.

For the rate Vi decoding, any inconsistency between the state of the machine and

current constellation input point marks an error in transmission. The error correction

39

algorithm calculates the errors associated with the difference between all the points that

match the current state of the machine and the received input point. The point that

matches the machine state and has the smallest error associated with it is taken as a

correct constellation point. If the following input point matches the next state of the

machine, the corrupted bits are successfully corrected. If they do not match, the signal

was distorted during transmission and cannot be corrected by using this rate decoder. A

maximum of two consecutive bits can be corrected using the rate Vi decoder.

For the rate % decoding, the errors associated with the difference between the

points matching the current state and received point are calculated for every state. The

point that has the smallest error is taken as a correct one. The errors are summed across

all states and the path which has the smallest error is used to generate the FSM output

sequence.

The FSM output sequence is a series of m=49 blocks of k bits (k=2 for the rate Vi

and k=3 for the rate %). The 49th block is a flushing block which is disregarded. The first

48 blocks are rearranged into octets to form a data information block. The header and

unconfirmed data blocks are of n=12 octets duration, while confirmed data blocks

consists of n=18 octets. The arrangement and meaning of bits contained in the octets are

given in the next subsections.

40

Data Header Block Format

The first information block of each data message is a header block. The header

block contains 10 octets of address and control information and 2 octets of a header CRC

error detection code. The CAI specifies three data header formats: unconfirmed,

confirmed, and acknowledgment. These formats are shown in Figure 8, Figure 9, and

Figure 10, respectively. The meaning of each field in the formats is discussed below.

octet Unconfirmed Header Block
0 ' 0

1 1

A

1

so i T ' 6"~ 1 o i
SAP Identifier

2
3
4
5
6
7
8
9
10
11

Manufacturer's ID

Logical Link ID

1

0 0

Slock to Follow

0 j Pad Octet Count

reserved octet

0 0 I Data Header Offset

Header CRC

7 '" Q '" 5 "4 ' 3 " " 2 " " 1 0 "bit

Figure 8 - Unconfirmed Data Packet Header Block

41

octet Confirmed Header Block

0
1
2

3
4

5
6
7
8

9
10
11

0
1

A

1

10 1 O f 1 0
SAP identifier

Manufacturer's 10

Logical Link ID

F

0
S
0

0

Block to Follow

0 Pad Octet Count
N(S|

0

FSNF
Data Header Off set

Header CRC

7 6 5 4 3 2 1 0 bit

Figure 9 - Confirmed Data Packet Header Block

ctet

0
1
2

3
4

5
6
7

8

9
10
11

IT 0
Glass

X

j 10 ; 0 0 0 i i"~
1 Status

Manufacturers ID

Logical Link ID

Block IQ Follow

7 6

Source
Logical Link ID

(wnen X - Q)

Haador CRC

5 4 3 2 1 0

Figure 10 - Acknowledgment Data Packet Header Block

Field A (octet 0, bit 6) is used to indicate if confirmation for the packet is

required. This field is set to 0 for unconfirmed and acknowledgment packets and to 1 for

confirmed packets. Field IO (octet 0, bit 5) defines whether the packet is an inbound or

outbound message. The value 0 is used to denote a message from a mobile client

42

addressed to the base station (inbound), while 1 is used at the transmitter to prepare an

outbound message for transmission. The Format field (octet 0, bits 4 - 0) identifies the

message as a data packet with confirmed delivery (10110), a data packet with

unconfirmed delivery (10101), or an acknowledgement packet (00011). The SAP

Identifier (octet 1, bits 5 -0) describes the final network Service Access Point to which

the message is directed. The identifier can take one of the twenty values listed in Table

11. Since the base station provides only data transmissions, the value 0x04 (Packed Data)

is always used.

Table 11 - SAP Identifier Values

0x00
0x01
0x02
0x03
0x04
0x05
0x06
OxlF
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x3D
0x3F

Unencrypted User Data
Encrypted Data
Circuit Data
Circuit Data Control
Packet Data
Address Resolution Protocol (ARP)
SNDCP Packet Data Control
Extended Address
Registration and Authorization
Channel Re-assignment
System Configuration
MR Loopback
MR Statistics
MR Out-of-Service
MR Paging
MR Configuration
Unencrypted Key Management Message
Encrypted Key Management Message
Non-Protected Trunking Control
Protected Trunking Control

43

The Manufacturer's ID (octet 2) contains information referring to the

manufacturer of the radio that is used for the message transmission. This id has a standard

value of 0x00. However, every manufacturer can use a different value. The value 0x00 is

used in this work. The Logical Link ID (octets 3 -5) identifies the subscriber unit which

originates the packet for an inbound message or the subscriber unit to which the packet is

directed for an outbound message. This is equivalent to the Ethernet Media Access

Control address and the base station uses it to designate the specific radio client who

requested the information. When a new radio client sends a data message for the first

time, the radio logical link id is paired with the client's IP address at the base station. In

this way the base station can respond to any incoming IP packet that is addressed to the

specific client by addressing the outbound message with the corresponding radio logical

link id. The logical link id is specified for each digital radio on the radio network and has

a unique value. The Block to Follow field (octet 6, bits 6 - 0) specifies the number of

data blocks that follow the header block. It varies depending on the size of a contained IP

packet. It is used at the receiver for proper receiving of all data blocks in the packet. The

Pad Octet Count (octet 7, bits 4 -0) specifies the number of pad octets (0x00) appended

to the data octets to form an integer number of blocks. This value is used at the receiver

to discard the pad octets before assembling the IP packet. The actual number of data

octets N can be calculated using the following formula:

N = M * Block to Follow - 4 - Pad Octet Count,

where M = 12 for unconfirmed and M = 16 for confirmed delivery. The Data Header

Offset (octet 9, bits 5 - 0) is a pointer that divides the data block into a data header and

44

data information. This field is used only in specific applications which need more address

and control information than can be contained in a regular header block. The extra

information is placed at the beginning of the following data block in a format specified

by the application. As the data base station uses the regular header formats, the value

0x00 is always used for the data header offset.

The confirmed delivery format specifies several extra fields which are not used in

unconfirmed delivery. The F field (octet 6, bit 7) represents the full message flag. It is

used to distinguish the first message from its retries. If the complete message is

transmitted for the first time this bit is set to 1 and for any subsequent retry it is set to 0.

This bit is set to 1 for all unconfirmed messages since they do not require a response and

cannot be automatically retransmitted. For the acknowledgment (response) format, this

field is marked with X. It is set to 1 if a response packet is sent in response to the

confirmed delivery and to 0 in response to enhanced confirmed delivery. The enhanced

confirmed delivery is not supported by the base station designed in this thesis.

The reserved octet (octet 8) in the unconfirmed delivery is set to 0x00 and it is

not used to carry any particular information. However, this octet is used in the confirmed

format to specify a synchronization flag, a sequence number, and a fragment sequence

number. The S field (octet 8, bit 7) is a synchronization flag used to re-synchronize the

physical sub-layer sequence numbers. This flag disables the rejection of duplicate

messages when it is set to 1. It is used in specially defined registration messages. In the

normal operation of transmitting user data messages, it is set to 0. The N(S) field (octet 8,

bits 6 - 4) is the sequence number of the packet. The sequence number identifies each

45

request packet and serves at the receiver for correct ordering of the received message

fragments and eliminating any copies. The receiver keeps the sequence number of the last

valid received packet V(R). If the next packet has N(S) = V(R), the packet is a copy, and

if N(S) = V(R) + 1, the packet is the next one in the sequence. The FSNF field (octet 8,

bits 3 - 0), the fragment sequence number, is used to number the consecutive message

fragments that together make up a longer data message. The most significant bit is used

to mark the last fragment in the message. The other three bits (FSN) correspond to the

fragment number, initially set to 000 for the first fragment, and it is incremented for each

subsequent fragment. When the increment reaches the maximum value, 111, the next

increment is 001 instead of logical 000. For example, the FSNF for a single physical

message is 1000.

The response header block has an additional four specific fields: class, type,

status, and a source logical link identifier. The Class (octet 1, bits 7 and 6), Type (octet 1,

bits 5 - 3), and Status (octet 1, bits 2 - 0) specify the meaning of the response message.

The possible values and meaning of these fields are listed in Table 12. For the normal

confirmed delivery, N(R) is the sequence number of the packet N(S). The Source

Logical Link ID (octets 7 - 9) is set to zeros when the packet is a response for the normal

confirmed delivery, X = 1. When the packet is a response to the enhanced address

confirmed delivery, X = 0, this identifier is set with the address of the responding

subscriber unit or base station.

46

Table 12 - Response Packet Class, Type, and Status Specification

00 001 N(R)
01 000 N(R)
01 001 N(R)
01 010 N(R)
01 Oil FSN
01 100 N(R)
01 101 V(R)
01 110 N(R)
10 000 N(R)

The last two octets (octets 10 and 11) of all three header block formats contain

cyclic redundancy check (CRC) bits. The CRC is used for detecting errors caused by

noise in the transmission channel. It is calculated from the first 10 octets (80 bits) of the

header block using the cyclical redundant coding procedure, called CRC-CCITT, which

produces outputs of 2 octets (16 bits). This procedure is defined by four polynomials:

M(x), GH(x), IH(X), and FH(x). Polynomial M(x) is of degree 79 and takes the first 80

bits of the header block as its coefficients:

M(x) = x79 + x78 + x77 + ••• + x1 + x° ,

where the most significant bit of the zero-th header octet (octet 0, bit 7) matches x79 and

the last significant bit of the ninth header octet (octet 9, bit 0) matches x°. The second

polynomial GH(x) is the generator polynomial defied as:

GH(x) = x16 + x12 +x5 + 1.

The third polynomial IH(x) is the inversion polynomial defined as:

IH(x) = x15 + x14 + x13 + ... + x2 + x + 1.

ft- 4— «*̂ i^'^—!™vi*^&^i^^^P^;s^^¥¥1*^

ACK - All blocks successfully received
NACK - Illegal Format
NACK - Packet Error, Data CRC check failure
NACK - Memory Full
NACK - Out of logical sequence FSN
NACK - Undeliverable
NACK - Out of sequence
NACK - Invalid User disallowed by the system
ACK - Selective Retry for some blocks

47

The fourth polynomial FH(pc) is the header CRC polynomial computed using the

following equation:

FH(x) = [x16 M(x) mod GH(x)] + IH(x),

where mod stands for the modulus operator (the remainder following binary division).

After computation, the header CRC polynomial can be written in the following form:

FH(x) = x15 + x14 + x13 + ... + x1 + x°.

The 16 coefficients of the final FH(x) are the result of the CRC procedure. At the

transmitter, these bits are placed at the last two octets (octet 10 and 11) of a header block.

The most significant bit of the eleventh octet of the header block (octet 11, bit 7)

matches x15, and the last significant bit of the eleventh octet (octet 11, bit 0) matches x°.

At the receiver, when the header data block is received, the CRC code is

calculated over the address and control bits, the first 10 octets. When the CRC is

computed it is compared with the last two octets, the CRC calculated at the transmitter, of

the received header block. If they match, the header block is received with no errors. The

address and control bits are extracted as was described above. The information from the

data header block is used for proper reception and assembling of the following user data

blocks. The formats of the following data blocks are explained in the next subsections for

each type of delivery. If the CRCs do not match, the header is received with an error and

the following blocks are disregarded with the possible indication for the retransmission of

the entire data packet.

48

Unconfirmed Packet Data Block Format

The information of the type of delivery is contained in the data header block. If

the message is sent with unconfirmed delivery the blocks which follow the header block

consists of 12 octets of user data. The user data in this work is the IP packet. With the

unconfirmed delivery, the data blocks are not protected separately and they do not

contain any serial number. The total number of data blocks and the number of pad octets

in the last block are extracted from the header block. The last data block contains user

data followed by pad octets and a 32 bit CRC, calculated over all data octets. The CRC is

placed in the last four octets of the last data block (octets 8-11). The format of the last

unconfirmed data block is shown in Figure 11.

octet T h s L a s t Unconfirmed Block
o
1
2 User Data

3
•oilc-iVfcd bv

4

5 PRCI Octets
6
7

8
9

Messaqe CRC
10
11

~1 6 5 4 3 2. 1 0 bit

Figure 11 - Unconfirmed Last Data Block

The message CRC is a 4 octet (32 bits) cyclic redundancy check coded over the

entire user data octets included in the intermediate blocks and the data octets and pad

octets of the last data block. The CRC procedure is defined by four polynomials: M(x),

49

GM(x), lM(x), and FM(x). Polynomial M(x) is of degree k — 1, where k is the total

number of user information and pad bits over which the message CRC is calculated.

M(x) takes the k bits of the data as polynomial coefficients:

MO) = xfe_1 + xk~2 + xk~3 + - + x1 + x°,

where the most significant bit of the zero-th message octet corresponds to xk~1 and the

last significant bit of the last message octet corresponds to x°. The second polynomial

GM(x) is the generator polynomial defined as:

GM(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + xs +

x4 + x2 + x + 1.

The third polynomial IM(x) is the inversion polynomial defined as:

/M(x) = x3 1 + x30 + x29 + ... + x2 + x + 1.

The fourth polynomial FM(x) is the message CRC polynomial computed using the

following equation:

FM(x) = [x32 M(x) mod GM(x)] + IM(x),

where mod stands for the modulus operator (the remainder following binary division).

Once computed, the message CRC polynomial can be written in the following form:

FM(x) = x31 + x30 + x29 + ... + x1 + x°.

The 32 coefficients of the final FM(x) are the result of the CRC procedure. At the

transmitter, these bits are placed at the last four octets of the last unconfirmed message

block. The most significant bit of the eight octet of the last block (octet 8, bit 7)

matches x31, and the last significant bit of the eleventh octet (octet 11, bit 0) matches x°.

50

When all unconfirmed data blocks are received, the 32 bit CRC code is calculated

and matched with the last four data octets of the last data block. If the CRC codes match,

it is assumed that all data block have been received with no errors and they are assembled

into the original IP packet. The IP packet is analyzed and placed on the IP network. If the

codes do not match the message is disregarded.

Confirmed Packet Data Block Format

The data blocks that follow a confirmed header block contain 18 octets of

information. The first 2 octets contain 7 bits of a serial number and 9 bits of a CRC code.

Each data block is protected with a CRC-9 code and if an error occurs the data block can

be retransmitted separately by specifying its serial number. The remaining 16 octets

contain user data. The intermediate confirmed data block is diagrammed in Figure 12.

octet Confirmed Data Block

0 Data Block Serial Number
1 CRC-i (bits 7-0)
2

3
4

User Data

14
15
16
17

7 6 5 4 3 2 1 0 bit

Figure 12 - Confirmed Data Packet Data Block

51

Serial Number (octet 0, bits 7 - 1) is the number of the block within the entire

message. The numbers start at 0 and increment up to L-l, where L is the number of the

blocks that follow the header block. The CRC-9 field (octet 0, bit 0 and octet 1) contains

a 9 bit cyclic redundancy check code of the data block. The CRC-9 is calculated by the

following procedure. The seven bits of the serial number and the 16 octets of user data

are arranged into a 135 bit sequence. The serial number bits are the first seven bits in the

sequence. The sequence bits are then taken to be coefficients of a 134 degree message

polynomial M(x):

M(x) = x1 3 4 + x133 + ••• + x128 + x127 + ••• + x1 + x° ,

where bit 6 of the serial number corresponds to a coefficient of the x134 term, bit 0 of the

serial number corresponds to the x128 term, bit 7 of octet 2 (user data) corresponds to the

x127 term, and bit 0 of octet 17 corresponds to the x° term. The generator polynomial

G9(x), and the inversion polynomial /9(x) are defined as:

G90c) = x9 + x6 + x4 + x3 + 1

/ 9 00 = x8 + x7 + xe + - + x + 1.

The CRC-9 polynomial F9(x) is computed using the following equation:

^900 = [x9 M(x) mod G9(x)] + I9(x),

where mod stands for the modulus operator (the remainder following binary division).

The final CRC-9 polynomial can be written in the following form:

F9(x) = x8 + x7 + x6 + ... + x1 + x°.

52

The resulting 9 coefficients are CRC-9 bits that protect each confirmed data block. At the

transmitter, these bits are placed in the CRC-9 field with the most significant bit

corresponding to bit 0 of octet 0, the next most significant bit corresponding to bit 7 of

octet 1, and the least significant bit corresponding bit 0 of octet 1.

The last confirmed data block contains up to 12 octets of user data and pad octets

and 4 octets of 32 bit CRC code. If the number of pad octets is larger than 12, then the

additional pad octets are included in the second to the last data block. The last four octets

consist of the message CRC calculated over all used data octets. The 32 bit CRC is

generated in the same way as for unconfirmed data packet (section Unconfirmed Packet

Data Block Format). The last confirmed data block is shown in Figure 13.

octet Last Confirmed Data Block

0
1
2

3

4

14

15
16
17

Data Slock Stria! Number bS

CRC-9 (bite 7- 0)

User Data

followed fay-'

Pad Octets

Message
CRC

6 5 4 1 0 bit

Figure 13 - Confirmed Data Packet Last Data Block

At the receiver, when the confirmed data block is received, the CRC-9 bits are

calculated using the serial number and user data octets. If the CRC-9 codes do not match

53

the block is received with errors and the retransmission of the block is indicated. When

the last data block is received, the 32 bit CRC code is calculated over all used data and

pad octets. If the 32 bit codes do not match, the entire message is disregarded and the

retransmission of all data blocks is indicated. If they match, the data octets are assembled

into the original IP packet which is then delivered to the IP data network.

Response Block Format

A response packet is used to confirm delivery for a data packet and to request the

retransmission of packets received with errors. In normal operation to confirm delivery,

the response packet consists of only the header block. However, in particular applications

and to request retransmission, the response packet may have data blocks following the

acknowledgment header block. The response data block consists of flag bits and a CRC

code. The response data block format is shown in Figure 14.

The flag bits are used to confirm the receipt of the corresponding blocks, when set

to 1, and to indicate that the particular block should be retransmitted, when set to 0. The

flags can indicate selective retries for up to 64 data blocks. If more flags are necessary,

additional response blocks should be used. The CRC is the 32 bit cyclic redundancy

check, the same as is used for unconfirmed and confirmed delivery.

54

Response Data Block
n fg
f15

m
m

15 f4 • Q J2

* , * ,,, '

f" fO

18
fie;
124 l

ml

' CKC

7 6 5 4 3 2 1 0 bit

Figure 14 - Response Packet Data Block

The Data Base Station Application

The data base station is implemented as a software application that runs on the

desktop computer. The application is comprised of the transmitter, receiver, and control

logic. The control logic is the main part of the base station application. The logic creates

and initializes the receiver, transmitter, and client threads, synchronizes both receiver and

transmitter, listens to the radio channel to determine when the channel is idle and ready

for transmissions, controls the computer audio card, operates the push-to-talk signal of

the analog radio, detects possible collisions between transmitted packets, and provides

retransmission of the collided packets. The application starts from the main thread which

initializes the main IP and CAI input threads.

55

The Base Station Main Thread

The main thread of the base station starts the Main CAI and IP input threads and

initializes the IP network interface, PTT control, and computer audio card. The flow

diagram of the main thread is shown in Figure 15.

The Main CAI packet input thread listens to the audio card input and detects any

activity on the radio channel. If there is a signal at the audio card input, the CAI thread

sets a busy flag and prepares the receiver for proper reception of the incoming CAI

packet. The CAI thread will be explained in more detail in section The Main CAI Packet

Input Thread.

Application . initialization
Main Thread and Swrt cf the

Main if- and CAS
Input'Threads

-Shyttojwn- .
1 . Rpd'o'' -•'

s

T

f u:urc
Rad;o

Maiaccncnt
r-i^tttior.b

^

"' Cos
S-u

\
i

1
i
1

l

*

::ro.l6rf
. rds%n

Figure 15 - Flow Diagram of the Base Station Main Thread

56

The Main IP packet input thread receives IP packets from the network interface

and sets the transmitter for proper conversion of IP to CAI packets and transmission of

the CAI packets over the radio channel. The IP thread will be further explained in section

The Main IP Packet Input Thread.

The standard IP network interface is implemented as an IP Reflector. The IP

Reflector creates a virtual subnet on the application computer and captures all IP traffic

addressed to that subnet by the application running on the same computer. This provides

a consistent method for implementing IP data communication over specialized devices

(radio modems; in this work, radio modem is the P25 Data Base Station) for which

standard Windows network adapter drivers are not available. The IP Reflector consists of

two components: a Windows 2000/XP network miniport driver which runs at the kernel

level, and a companion Windows service which runs at the OS application level. This is

illustrated in Figure 16.

On one side, the IP Reflector communicates with a remote server application

which provides the data information through the standard IP network. On the other side,

the IP Reflector exchanges UDP packets with the Base Station application on a specific

IP Address and Port. The Base Station main thread initializes the UDP/IP communication

with the IP Reflector Service through the IP Address and Port.

57

IP Network
Application

IP Network
Application

IP Reflector
Service

IP in UPP/M=V

« IP in UDP1

APCO P25
Data Base

Station

Windows XP Process Layer

Windows XP Kernel Layer

"IP Reflector"
Network

Mirttport Driver

IP Subnet
10.1.x.yz
255,0.0.0

Figure 16 - The IP Reflector Architecture

The analog versions of CAI digital data packets can be transmitted over the radio

channel only when the push-to-talk (PTT) signal is active on the analog radio. The

application controls the PTT signal on the analog radio by sending digital messages (PTT

ON, and PTT OFF) over a serial RS-232 connection. The main thread opens a COM port

and initializes the RS-232 communication between the application and the analog radio

over a custom radio interface cable (Appendix A).

The CAI waveforms are played and received over the computer sound card. The

sound card is controlled using a standard Windows winmrn.lib multimedia library. Using

the API functions from the multimedia library, the main thread opens the sound card with

a sampling rate of 48 kHz and initializes input and output buffers.

58

The Main CAI Packet Input Thread

The CAI packets at the input of the computer audio card are detected and captured

by the main CAI input thread. The CAI packets are then passed to the receiver which

performs decoding and assembles the received IP packets. The receiver extracts the

address of the physical client radio from the Logical Link ID field of the header block.

This address will be referred to as a CAI address. The CAI address is used to identify the

client in a client table. If the client is found in the table, the incoming CAI packet is

placed into a client specific CAI packet queue. If the CAI address is not found among the

client table entries, a new client is added to the client table and a new client thread is

created. The flow diagram of the main CAI input thread is shown in Figure 17.

Main CAS Pocket
Input Thread

ik CAf Packet From Radio

Fi r.tyi Iflpi.t
Synnol

[siL-ceivci'i

.dm niy Clitni- IFF.-xktt ''-.
;
 NBy CAI AMf " t ^ t V * P ^ K C I ? s No

. - Found "••

I Found

FaFixke tO. ' t
Clici.! CAI QUL-LII:

I Yes

Grants Nov,
C w i t table
Emiy AhJ

Cl.o-t Th.-..-jiG

Figure 17 - Flow Diagram of the Main CAI Packet Input Thread

59

The client table has only two fields for each client. It is used to match the CAI

address (Logical Link ID) and the client IP address extracted from the IP packet payload.

The table is initially empty and a new entry is made when the first message from a new

client is received. The client table is illustrated in Figure 18.

C . i l l i.

L v.* I F - I

L,-U. If-J

' • r in
i

Figure 18 - Client Table

For each new client in the table, a new pair of client threads is created. These two

additional threads handle client input CAI packets (client to IP network) and client input

IP packets (IP network to client). The flow diagram of the client threads are shown in

Figure 19.

60

CBmttlP
Paekmt

Input Thread Set Next Pietel

•QUSOft

I <r

/
OutfjJJilg.Sg-.;.'.;

•~Stf.ni
Sp! C *IC

O',: Next PpcKci
Fr.-i-n Clinrt CA

CiJsnt GAf

lflp«f Thread

<}
Process

inrtiming CAI
Packet

CMJoBatM IP To IP R«tects<r
'Cffe«f 1 "Thmails

C0en?271mHMte

CS<mtt)"Thsm&$

Figure 19 - Flow Diagram of the Client Threads

The client CAI packet input thread takes CAI packets from the client specific CAI

packet queue and processes them. The processing involves the proper action based on the

type of the packet and the type of delivery. The flow diagram of the processing of the

incoming CAI packet is shown in Figure 20. The incoming CAI packet can be a response

to a previous confirmed packet delivery or can carry a new incoming IP packet from a

radio client. If the packet is the response, it can carry information of a successful or

unsuccessful delivery. In both response cases, the packet sequence number is checked

and a positive or a negative acknowledgment signal is sent to the transmitter. If the

acknowledgement is negative, the transmitter resends the packet a maximum of four

times. Otherwise, the transmitter sends the next IP packet from the client specific IP

packet queue.

61

http://�~Stf.ni

G«3t fcsnt Pac(mt
P'orn Client CA.'

Figure 20 - Flow Diagram of the Client CAI Packet Input Thread

If a new incoming packet is received with an error, due to the noise in the

transmission channel, a negative response CAI packet is transmitted to the source client.

For the case of unconfirmed data reception, a new IP packet is forwarded to the IP

62

Reflector. Finally, if a new packet is received with the confirmed delivery and new

sequence number, the packet is forwarded to the IP Reflector and the acknowledgement

of successful reception is sent to the source client. If the packet is received with an old

sequence number, it is a copy which is disregarded, but the response to its reception is

sent to the client.

The client IP packet input thread will be explained in the next subsection.

The Main IP Packet Input Thread

The main IP Packet input thread receives IP packets from the IP Reflector service

through the specific IP address and Port. For each received IP packet, the thread extracts

the destination IP address and tries to identify the client in the client table, shown in

Figure 18. If the IP destination address is a valid client table entry, the IP packet is placed

on the client specific IP packet queue together with the client CAI address. However, if

the IP destination address in not in the client table the IP packet is disregarded. The flow

diagram of the main IP packet input thread is shown in Figure 21.

63

j j J P From IP Reflector

Main IP PacM
Input Thread'

Prom !P Rfif'eefor
Service

"• By IP iavr, , . ^ NoS
v , " Feurw!

Found

Figure 21 - Flow Diagram of the Main IP Packet Input Thread

The IP packets are taken from the client specific IP packet queue by the client IP

packet input thread, shown on left hand side in Figure 19. The client thread processes and

prepares IP packets for transmission over the air to the destination radio client. The IP

packets are transformed into CAI packets which can be sent with either unconfirmed or

confirmed delivery. The flow diagram of the client IP packet input thread is shown in

Figure 22.

64

Get N ~*f F.irA' *

Nto Nurrarr

Yes

Send

CA. Bala Pacret
Itefy

C^ir.CKt

CAiTo
Radio

Confirm sc
GAITa •' ! C A ! Data PacLijl

Radio v'-1

ACKCr ; 1».
Timeout . . ' NAK or

. ' ' Timeout

Rstnss '>

Figure 22 - Flow Diagram of the Client IP Packet Input Thread

For unconfirmed delivery, the IP packet is transformed into a CAI data packet and

directly sent to the radio. While unconfirmed delivery does not provide any feedback

information about successful transmission of the packets, confirmed packets require a

response from the client about the status of the packet transmission. Thus, for a new

confirmed packet the sequence number is updated and a retry counter is reset. Then, the

CAI packet is sent and the thread waits for the acknowledgement of the reception which

is received from a client radio through the client CAI packet input thread. If the negative

65

acknowledgement packet is received or the timeout event is set, the transmitter retries

transmission of the packet. The maximum number of retries is usually set to four.

The transmitter can transmit packets only when the busy signal at the receiver is

not set. The busy signal is generated by the receiver when there is any activity on the

radio channel. The busy signal indicates when the channel is idle and when the

transmitter can use the radio channel to broadcast data packets. Otherwise, the packets

will collide with the signals already present on the channel.

The negative acknowledgement response is generated due to either noise in the

transmission channel or the collision between multiple packets. Data packets can collide

when a client and the base station attempt to transmit packets at approximately the same

time. When the transmission of the data packet is started, the packet is transmitted

entirely. This is the only time when the packets can collide since the transmitter can

broadcast the packets only when the busy signal is not active. Collisions distort the

contents of the packets, which is possible to detect, for data packets, at the receiver by

performing the cyclic redundancy checks. If any of the checks fail, the negative response

packet is broadcasted to indicate the retransmission of the packet.

Voice packets contain a digital representation of 20 ms of an actual voice signal.

The distorted voice packets are ignored at the vocoder [32]. This could introduce a noise

to the actual voice signals. The influence of packet collisions on both voice and data

transmission will be discussed in the next chapter.

66

CHAPTER IV

TESTING

The most important part of the completion of this work was the testing process.

Multiple tests were designed to show data base station compliance with commercially

available P25 digital mobile radios, to assure proper functioning of the transmitter,

receiver, and base station logic, and to demonstrate integration with a preexisting P25

voice system.

All tests were performed in laboratory conditions with equipment that mimics a

setup that can be found in a local police department. The test messages were exchanged

between the newly designed data base station and a laboratory setup that mimicked the

radio system found in a local police cruiser, called the "mobile client". Each mobile client

consisted of a laptop computer and a commercial Project 25 compliant digital radio

(Motorola Astro Spectra or Motorola Astro XTL-5000). The mobile client used in data

only tests was called the "data mobile client".

Each test consisted of 10000 queries which resulted in 20000 messages for

unconfirmed and 40000 messages for confirmed delivery. While for unconfirmed

delivery there were two physical messages for each request, a request and a requested

data packet, for confirmed delivery there were two more response messages to confirm

67

the reception of the request and the requested data. All queries and data messages were

sent through the system in the form of IP packets.

The size of the data packets varied between 12 bytes for the acknowledgment

packet and 84 bytes for the requested data packet. The duration of voice test signals

varied between 2 and 15 seconds. The change in the rates at which the packets were

transmitted resulted in the change of the channel usage from 4% to 35% for data only

tests and the channel usage increased from 24% to 50.1% for mixed voice and data

signaling. As a reference, the maximum channel usage observed was 22% when

monitoring the activity on three separate NH police radio channels for a time period

longer than a year. The channel usage during testing was high enough to simulate the

utilization of a radio channel used by local NH police departments.

During the testing process, black-box and white-box testing methods were used

[38]. The black-box technique was used for initial end-to-end tests. Later, white-box tests

were performed to track missing and collided messages. All phases and events on the

base station were logged and later analyzed to reveal any unpredicted behavior.

The tests were divided into three stages: initial end-to-end tests with a single

mobile client, tests with multiple mobile clients, and tests that show the priority of voice

communication.

68

Tests with a Single Mobile Data Client

Tests with a single mobile data client were used for initial end-to-end

communication between the base station and a mobile data client. These initial tests were

performed as black box tests by passing IP request packets from a data client to the base

station and transmitting requested data from the base station to the client. The initial

testing setup is shown in Figure 23.

Server Application M ^ Client Application
N W ^ ' ^ ~i - IP Request | , „ ^ .^..,,

IP Requested Data

Desktop Analog Digital Laptop
Computer FM Radio Radio Computer

Figure 23 - End-to-end Initial Testing Setup

For testing purposes two test applications were developed: Server and Client.

These applications mimicked real world applications that support IP data services, such

as the Project54 records application. The client application was used to generate IP

request packets and pass them to the digital radio. Each request packet was marked with a

request serial number. The request serial numbers were consecutive numbers from 1 to

10000.

69

The server upon the reception of the request packet performed the search of a data

test file based on the requested number and transmitted back the requested data. Each

entry of the data test file consisted of a request number and a randomly generated

sequence of numbers with a maximum length of 20 bytes, called the requested data.

At the client, the received requested data were saved into a client test file together

with the matching request number. However, if the requested data packets were not

received in a predefined time interval, the client went on to the next request packet. At

the end of the test the server and client test files were compared to indicate any

unsuccessful transmission.

For the tests in laboratory conditions, we expected to see no failed transmissions

between the base station and the client. However, comparing the data test files, 0.37% of

the messages were missing in the client file. These lost messages could be lost request

packets, which the server never received, or lost requested data packets, which never

reached the client. Therefore, we applied a white-box testing approach to track down the

missing packets.

The white-box testing initially involved five log files. The first log file was used

to record the events and actions performed by the client application. The other four were

used to track packets at the server and record actions by receiver, transmitter, and the

base station logic. In addition we recorded digital versions of the packets at the input and

the output buffers of the sound card and looked at the analog PTT signal for each

transmission on an oscilloscope.

70

A segment of a log file used to track actions performed by the client application is

shown Figure 24. The log file started with six initial lines: a title line, starting date and

time, the client (sender) IP address, the server (receiver) IP address, the maximal waiting

time for data to be retrieved in milliseconds, and the total number of request packets in

the test. The initial lines were followed by two lines for each transmitted request. The

first line indicated the number of the request sent by the client and a number of seconds

the client was waiting before the transmission. The waiting time was used to change the

rate of transmissions and to simulate different channel usage conditions. The second line

showed the requested data received from the server preceded by the request number and

the client id. Later, the request number and the client id were used in tests with multiple

clients to reveal any possible interference between the clients and their packets.

When analyzing the client log file it was easy to identify missing requested data

packets, since the second line dedicated to the request would be empty. For each missing

packet we looked into a server log file to see if the request packet was received by the

server or not.

71

1 P25 C l i e n t O l Log F i l e !
2
3 s_t in ie 0 4 / 1 5 / 0 9 1 2 : 0 2 : 2 1 . 5 6 2
4 s _ i p 1 0 . 1 . 0 . 1 : 3 3
5 r _ i p 1 0 . 1 . 0 . 2 : 3 6
6 time_out = 15000
7 n_requests = 10000
8
9 1,3

10 c O l , 1 , 8 1 4 7 2 3 6 8 6 3 9 3 . 3 6 4 2 6 0 ,
11 2 , 5
12 c 0 1 , 2 , 9 0 5 7 9 1 9 3 7 0 7 5 . 7 1 3 3 8 0 ,
13 3 , 1 0
14 c O l , 3 , 1 2 6986816294 .379070 ,
15 4 , 7
16 c O l , 4 , 9 1 3 3 7 5 8 5 6 1 3 9 . 1 0 5 9 6 0 ,
17 5 ,12
18 c O l , 5 , 6 3 2 3 5 9 2 4 6 2 2 5 . 7 7 7 1 0 0 ,
19 6 ,5
20 c O l , 6 , 9 7 5 4 0 4 0 5 0 0 0 . 3 1 1 9 8 1 ,
21 7 , 1 1
22 C O l , 7 , 2 7 8 4 9 8 2 1 8 8 6 7 . 7 6 9 9 0 0 ,
23 8, 6
24 c O l , 8 , 5 4 6 8 8 1 5 1 9 2 0 5 . 4 3 6 9 5 0 ,

Figure 24 - A segment of a Client Log File

A segment of a server log file is shown in Figure 25. After the initial title line

which indicated the start date and time of the test, each following line corresponded to a

request received from the client. The first part of a line indicates the time of reception, the

client (sender) IP address, the client id, and the serial number of the request. The second

part of the line represents the server response to the received request packet. It consists of

the response time, the client IP address, the client id, the request number, and the

requested data. If there was an error in transmission from the client, the request packet

would not be received by the server and an entire line in the log file would be missing.

72

1 P25 Server Log File 04/15/09 12:23:39.203!
2
3 1 2 : 2 3 : 5 7 . 9 8 4 , 1 0 . 1 . 0 . 2 : 3 6 , C 0 1 , l , 1 2 : 2 3 : 5 7 . 9 8 4 , 1 0 . 1 . 0 . 2 : 3 6 , C 0 1 , 1 , 8 1 4 7 2 3 6 8 6 3 9 3 . 3 6 4 2 6 0 ,
4 1 2 : 2 4 : 0 4 . 7 1 8 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 2 , 1 2 : 2 4 : 0 4 . 7 1 8 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 2 , 9 0 5 7 9 1 9 3 7 0 7 5 . 7 1 3 3 8 0 ,
5 1 2 : 2 4 : 1 6 . 1 2 5 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 3 , 1 2 : 2 4 : 1 6 . 1 2 5 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 3 , 1 2 6 9 8 6 8 1 6 2 9 4 . 3 7 9 0 7 0 ,
6 1 2 : 2 4 : 2 4 . 7 6 5 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 4 , 1 2 : 2 4 : 2 4 . 7 8 1 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 4 , 9 1 3 3 7 5 8 5 6 1 3 9 . 1 0 5 9 6 0 ,
7 1 2 : 2 4 : 3 9 . 3 1 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 5 , 1 2 : 2 4 : 3 9 . 3 1 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 5 , 6 3 2 3 5 9 2 4 6 2 2 5 . 7 7 7 1 0 0 ,
8 1 2 : 2 4 : 4 5 . 4 2 1 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 6 , 1 2 : 2 4 : 4 5 . 4 2 1 , 1 0 . 1 . 0 . 2 : 3 6 , ^ 0 1 , 6 , 9 7 5 4 0 4 0 5 0 0 0 . 3 1 1 9 8 1 ,
9 1 2 : 2 4 : 5 8 . 3 2 8 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 7 , 1 2 : 2 4 : 5 8 . 3 2 8 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 7 , 2 7 8 4 9 8 2 1 8 8 6 7 . 7 6 9 9 0 0 ,

10 1 2 : 2 5 : 0 6 . 2 9 6 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 8 , 1 2 : 2 5 : 0 6 . 2 9 6 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 8 , 5 4 6 8 8 1 5 1 9 2 0 5 . 4 3 6 9 5 0 ,
1 1 1 2 : 2 5 : 1 1 . 7 5 0 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 9 , 1 2 : 2 5 : 1 1 . 7 5 0 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 9 , 9 5 7 5 0 6 8 3 5 4 3 4 . 3 4 0 0 9 0 ,
12 1 2 : 2 5 : 1 7 . 8 5 9 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 1 0 , 1 2 : 2 5 : 1 7 . 8 5 9 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 0 , 9 6 4 8 8 8 5 3 5 1 9 9 . 3 1 1 6 5 0 ,
13 1 2 : 2 5 : 3 4 . 6 2 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 1 , 1 2 : 2 5 : 3 4 . 6 2 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 1 , 1 5 7 6 1 3 0 8 1 6 7 8 . 3 9 0 6 6 0 ,
14 1 2 : 2 5 : 3 9 . 8 5 9 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 1 2 , 1 2 : 2 5 : 3 9 . 8 5 9 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 2 , 9 7 0 5 9 2 7 8 1 7 6 0 . 6 4 5 1 4 0 ,
15 1 2 : 2 5 : 4 4 . 3 5 9 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 1 3 , 1 2 : 2 5 : 4 4 . 3 5 9 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 3 , 9 5 7 1 6 6 9 4 8 2 4 2 . 9 8 8 4 0 0 ,
16 1 2 : 2 5 : 5 5 . 4 6 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 1 4 , 1 2 : 2 5 : 5 5 . 4 6 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 4 , 4 8 5 3 7 5 6 4 8 7 2 3 . 3 5 5 8 3 0 ,
17 1 2 : 2 6 : 0 6 . 6 4 0 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 1 5 , 1 2 : 2 6 : 0 6 . 6 4 0 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 5 , 8 0 0 2 8 0 4 6 8 8 8 8 . 9 9 9 8 8 0 ,
18 1 2 : 2 6 : 1 2 . 9 2 1 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 1 6 , 1 2 : 2 6 : 1 2 . 9 2 1 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 6 , 1 4 1 8 8 6 3 3 8 6 2 8 . 0 7 3 4 6 0 ,
19 1 2 : 2 6 : 2 2 . 7 5 0 , 1 0 . 1 . 0 . 2 : 3 6 , C 0 1 , 1 7 , 1 2 : 2 6 : 2 2 . 7 5 0 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 7 , 4 2 1 7 6 1 2 8 2 6 2 6 . 8 5 3 2 1 0 ,
20 1 2 : 2 6 : 2 7 . 7 5 0 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 8 , 1 2 : 2 6 : 2 7 . 7 5 0 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 8 , 9 1 5 7 3 5 5 2 5 1 8 9 . 1 5 1 3 7 0 ,
2 1 1 2 : 2 6 : 4 1 . 3 9 0 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 1 9 , 1 2 : 2 6 : 4 1 . 3 9 0 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 1 9 , 7 9 2 2 0 7 3 2 9 S 5 9 . 7 6 2 2 1 0 ,
22 1 2 : 2 6 : 5 1 . 9 6 8 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 2 0 , 1 2 : 2 6 : 5 1 . 9 6 8 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 2 0 , 9 5 9 4 9 2 4 2 6 3 9 2 . 9 4 3 4 8 0 ,
23 1 2 : 2 7 : 0 6 . 8 5 9 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 2 1 , 1 2 : 2 7 : 0 6 . 8 5 9 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 2 1 , 6 5 5 7 4 0 6 9 9 1 5 6 . 9 3 1 1 5 0 ,
24 1 2 : 2 7 : 2 2 . 6 7 1 , 1 0 . 1 . 0 . 2 : 3 6 , c 0 1 , 2 2 , 1 2 : 2 7 : 2 2 • 6 7 1 , 1 0 . 1 . 0 . 2 : 3 6 , c O l , 2 2 , 3 5 7 1 1 6 7 8 5 7 5 . 1 5 3 8 3 9 ,

Figure 25 - A segment of a Server Log File

Analyzing the server log files, it was observed that for approximately 35% of the

lost messages their request packets were not received by the server. For the rest of the

lost messages, the request packets were successfully received by the server and the

requested data were sent to the base station but never received by the client. In both cases

we looked at a data radio log file used to record the actions performed by the base station.

For each lost packet in the system, it was possible to find the time, or at least an

approximate time, of the transmission by looking at the previous and the next received

packets in the server log file. When the time of transmission was found, we searched the

data radio log file for more details about sent and received packets at the data base

station. A segment of a data radio log file is shown in Figure 26. Each line in the data

radio log file started with the time of the transmission followed by type (received or sent),

73

type of delivery (confirmed, unconfirmed, or response), and additional information about

sequence number and retry counter.

1 12:23:31.234, P25 Data Radio Log File 04/15/09!
2
3 12
4 12
S 12
6 12
7 12
8 12
9 12
10 12
11 12
1Z 12:
13 12;
14 12;
IS 12;
16 12;
17 12;
18 12;
19 12;
20 12;
21 12;
22 12;
23 12;
24 12;

:23;
:23;
:23;
:23;
:24;
:24;
:24;
:24;
:24;
:24;
:24;
:24;
:24:
:24:
:24;
:24;
:24;
:24:
:24:
:24;
:24;
:24:

:57.
:57,
:58,
:58,
:04,
:04,
:05.
:05.
:15.
: 16.
;16.
:17.
:24.
:24,
;25.
;25.
;38.
:39,
:39,
;39.
;45.
:45.

.296,

.984,

.750,

.953,

.468,
,718,
.484,
.656,
.859,
.125,
.890,
.78 ,
,484,
,765,
,546,
,671,
,765,
,31 ,
,859,
,968,
,171,
,421,

r,
s.
s.
r,
r,
3,

s,
r,
r,
3,

3,

r,
r,
s,
3,

r,
r.
3,

s,
r.
r,
s,

C O ,

cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,
cO,

confirmed, sequenceNumber
confirmed ack,
confirmed, retry = 0,
response ack.
confirmed, sequenceNumber
confirmed ack,
confirmed, retry = 0,
response ack,
confirmed, sequenceNumber
confirmed ack.
confirmed, retry = 0,
response ack.
confirmed, sequenceNumber
confirmed ack.
confirmed, retry = 0,
response ack.
confirmed, sequenceNumber
confirmed ack.
confirmed, retry = 0,
response ack,
confirmed, sequenceNumber
confirmed ack.

3,

4,

5,

6,

7,

7 = 0,

Figure 26 - A segment of a Data Radio Log File

For example, the first four data lines in the data radio log file shown above were

four messages that corresponded to one request with confirmed delivery. When a request

packet was received with a new sequence number (3), different than the previous one

(initially -1), the base station generated the response packet (ack) to confirm the

successful reception of the request packet. When the requested data were retrieved from

the server, the base station transmitted the data and set the retry counter to 0, indicating

the first transmission. The response packet (ack) from the client concluded the successful

delivery of the requested data. If the response packet from the client was not received in a

predefined time (usually 15 seconds), the base station would have transmitted the data

again and have incremented the retry counter.

74

Analyzing the data radio log file, it was found that the missing request packets at

the server were never received by the base station. Also, the requested data packets not

received by the client were transmitted by the base station. An additional two log files

were used to provide more information about actions performed by the receiver and

transmitter.

In the cases when the request packets were not received by the base station, the

actions performed by the receiver were logged into a data radio receiver log file. A

segment of a data radio receiver log file is shown in Figure 27. The receiver log file

contained information about the reception process explained in CHAPTER III.

1 12:23:31.234, P25 Data Radio Receiver Log File 04/15/09!
2
3 12:23:57.156, sync_detected,
4 12:23:57.171, fs_detected,
5 12:23:57.171, nid_detected, duid = 12,
6 12:23:57.2 65, header_confirined,
7 12:23:57.296, confirrned_packet,
8 12:23:57.296, sync_lost ,
9 12:23:58.875, sync_detected,
10 12:23:58.875, fs_detected,
1112:23:58.875, nid_detected, duid = 12,
12 12:23:58.953, header_response,
13 12:23:58.953, response_packet,
14 12:23:58.953, sync_lost,
15 12:24:04.2 65, sync_detected,
IS 12:24:04.343, fs_detected,
17 12:24:04.359, nid_detected, duid = 12,
18 12:24:04.359, header_confirmed,
19 12:24:04.468, conf ir:med_packet,
20 12:24:04.468, sync_lost,
2112:24:05.578, sync_detected,
22 12:24:05.656, fs_detected,
23 12:24:05.656, nid_detected, duid = 12,
24 12:24:05.656, header response.

Figure 27 - A segment of a Data Radio Receiver Log File

75

The first six lines, after the title, in the receiver log file shown above were the

steps that the receiver performed to properly receive a request packet. Before the packet

was received, the receiver had to get in synchronization with the incoming clock

synchronization word. When the receiver was synchronized, the frame synchronization

and network identifier were received. The network identifier was used to separate voice

and data messages. Only data messages, messages with data unit id equal to 12, were

received while other messages were discarded. When the entire packet was received, the

receiver lost synchronization and went to the initial state to wait for the next incoming

packet.

Tracing down the lost request packets, it was observed that the receiver never

synchronized with the clock synchronization word. The reason for that was a short clock

synch word, with initial length set to 40 milliseconds. The short synch word didn't

provide enough samples for the receiver to reliably get in synchronization before the rest

of the packet was received. Changing the duration to 60 milliseconds improved the

reception to the maximum rate (100%).

In the case when the base station sent the data packets, but they were not received

by the client, we looked at the data radio transmitter log file. A segment of a data radio

transmitter log file is shown in Figure 28. It showed all actions performed by the

transmitter.

76

1 12:23:31.234, P25 Data Radio Transmitter Log Tile 04/15/09!
z
3 12:23:57.296, start sending. Hid = 54, sn = 3,
4 12i23:57.796, si, prepare ack packet,
5 12:23:57.812, pi, start transmiting message,
6 12:23:57.812, pi, activate output,
7 12:23:57.812, pi, activate PTT,
8 12:23:57.812, pi, play soud buffer,
9 12:23:57.812, pi, wait for sound to be played,
10 12:23:57.953, pi, deactivate output,
1112:23:57.953, pi, release PTT,
12 12:23:57.968, pi, end transmiting message,
13 12:23:57.984, end sending. Hid = 54, sn = 3
14 12:23:57.984, start sending. Hid = 54, sn = 1,
15 12:23:58.484, si, prepare confirmed packet,
16 12:23:58.500, pi, start transmiting message,
17 12:23:58.500, pi, activate output,
18 12:23:58.500, pi, activate PTT,
19 12:23:58.515, pi, play soud buffer,
20 12:23:58.515, pi, wait for sound to be played,
2112:23:58.734, pi, deactivate output,
22 12:23:58.734, pi, release PTT,
23 12:23:58.734, pi, end transmiting message,
24 12:23:58.750, end sending. Hid = 54, sn = 1
25 12:24:04.468, start sending. Hid = 54, sn = 4,
26 12:24:04.468, os, wait while input or output is busy,
27 12:24:04.531, si, prepare ack packet,
28 12:24:04.546, pi, start transmiting message,

Figure 28 - A segment of a Data Radio Transmitter Log File

Before the data packets were played through sound card, the data base station had

to activate the PTT signal on the analog radio. The PTT signal was set through a serial

computer port and it was kept active until the entire packet was played. The transmitter

log file showed that the base station responded to all received requests and properly

transmitted all data packets.

Analyzing the packets at the output of the sound card and analog PTT signal on

an oscilloscope, it was observed that the client radio was not receiving some of the

packets due to the time when the PTT signal was set and released. The PTT signal was

not set in advance enough before the sound card buffer was played, which resulted in

77

cutting off the first part of the packet. Also, for some packets the PTT signal was not held

long enough after the buffer was played and the client received uncompleted packets

which were discarded. To resolve this, the PTT was set in advance, 20 milliseconds

before the packet was passed through the audio card, and it was held for an additional 50

milliseconds after the signal was transmitted. An example of a data packet is shown in

Figure 29.

0 20 40 60 80 100 120 140 160 130 200
milliseconds

Figure 29 - An Example of a P25 CAI Waveform

In his thesis, Ramsey [9] reported that during the testing of the transmitter a small

number of transmitted messages were not received by the client. He argued that those

messages, 0.0099% of all test messages, were not received because the software

occasionally did not get the CPU time needed to handshake with the client radio. After

the testing procedure that we performed with a single radio client, it is more likely that

those messages were not received by the client because the PTT signal was not held long

enough.

78

When the PTT signal was properly adjusted to enable the reception of the entire

packet at the receiver, a set often additional tests, each consisting of 10000 requests,

showed successful reception and transmission of all data packets. The successful data

signaling with one radio client led to the next testing stage which introduced an additional

radio client to the system.

Tests with Multiple Mobile Data Clients

When the tests with a single data client were successfully completed, an

additional data client was added to the testing system. The additional client consisted of

the same hardware components as well as the same client application as used in previous

tests with a single client. During this testing stage, 21 data tests were performed with both

clients communicating with the server simultaneously. Each test consisted of 20000

request packets, 10000 requests per client, which resulted in 40000 messages for

unconfirmed and 80000 messages for confirmed type of delivery.

The rate at which data messages were transmitted was varied by introducing a

pause between requests at each client. The changing rates of data transmissions resulted

in changes of channel utilization. Also, an addition of a new radio client into the system

resulted in an increase of channel utilization. Channel utilization was varied between 4%

and 35% during the data tests with two radio clients.

79

Since the clients can transmit messages simultaneously, we expected to see a

small number of messages collided with each other. Collision happened when the clients

or the base station attempted to transmit at approximately the same time. The signals

interfered with each other and the content of the packets was distorted. The distortion of

the packet resulted in unsuccessful reception of data packets. However, it was possible to

detect collisions and use them to test the repetition mechanism at the data base station.

There were two distinguishable types of collisions. The first one occurred when

messages were transmitted by mobile clients at the same time. The interfered message

signals received by the base station were, most of the time, so badly distorted that the

base station couldn't decode any information from the received signal. Since the base

station had no information about the sender of the messages, it could not send negative

acknowledgement response packets. The base station disregarded the received signal and

waited for repeated or new data packets. At the client, if response to the request packet

was not received in a predefined time, the request packet was retransmitted.

Analyzing the log files as it was explained in the section Tests with a Single

Mobile Data Client, it was found that collided messages which were not received by the

base station were transmitted from the clients in a 40 milliseconds interval. This interval

represented the time necessary for a client to recognize activity on the channel. When

activity was detected prior to starting transmission, the client did not attempt to transmit

until the channel was available again. Therefore, the collisions happened only when both

80

clients started the transmission of messages within an approximately 40 millisecond

interval.

The second type of collision happened when the base station and one of the

clients were transmitting at the same time. In this case, the interval at which collisions

happened was slightly longer, a maximum of 60 milliseconds. This indicated that the

base station needed a longer time to recognize activity on the channel. The data radio was

waiting to get in synchronization (to receive a clock synchronization word) with the

received signal to detect activity on the channel. This took a slightly longer time, but it

was more accurate than setting up a simple threshold and checking the amplitude of the

received samples, which could be triggered by any noise signal larger than the threshold.

When the base station started a transmission, it transmitted the entire packet even when a

collision happened, due to the blocking state of the winmm.lib system library function

used to play data packets.

In order to find the most likely time and place when the second type of collision

was occurring, an additional collision log file was created. The collision log file was used

to record input activities on the receiver and output activities on the transmitter. A

segment of a collision log file is shown in Figure 30. The states of both the receiver and

transmitter were logged in the same file to reveal any overlap between the receiving and

transmitting signals. From the log file, it was observed that there was no output activity

on the transmitter after the receiver detected the presence of the input signal. In other

words, the base station transmitter did not interrupt any incoming signals after they were

81

detected by the receiver. The collisions happened when the base station and client

attempted to transmit in the same approximately 60 millisecond interval. The interval

represents the time necessary for receiver to get in synchronization with an incoming

signal.

i 11
2
3 11
4 11
5 IX
« 11
7 11
9 11
9 11
10 11
11 11
12 11
13 11
14 11
15 11
16 11
1? 11

m n
19 11
20 11
21 11
22 11
23 11
24 11
ZS, 11
2« 11

:40:07.921, P2S Data Radio In/Out Log File, 03/27/09*

:4Q
:40
:40
:40
:40
:40
:40
:40
:40
: 4 0
:40
:40
:40
:40
:40
:40
:40
:40
:40
:40
:40
:4D
:40
;40

2 2 .
2 3 -
2 3 .
2 3 .
2 4 .
2 4 .
2 4 .
2 4 .
2 5 .
2 5 .
2 6 .
2 6 .
2 6 .
2 6 .
2 7 .
2 7 .
2 8 .
2 8 ,
2 8 .
2 8 .
2 9 .
2 9 .
2 9 .
2 9 .

.953,

.078,

.593,

.750,

.296,

.546,

.656,

.750,

.750,

.953,

.015,

.171,

.718,

.953,

. 453,
• 5 §2 /

.156,

.359,

.437,

.593,
140,

.375,

.468,

.546,

in ©a Request 1

out on
out off

Aek

out on
out off

Data

in on
in off

Ack

in on
in off

Request 2

out on
out off

Ack

out. on
out off

Data

in on
in off

Ack

in oa.
in off Request 3

owe on
out off

Ack

out on
out off

Data

in off Ack

Figure 30 - An example of Data Radio In/Out Log File

The number of collisions depended on channel utilization and varied between

0.015% for the channel usage of 4% and 1.61% for the channel usage of 35%. To prevent

the loss of data messages, the collided packets were retransmitted. With the confirmed

type of delivery, collisions were detected by waiting for the response packet. If the

response to the successful delivery was not received in a predefined time, the base station

or mobile client assumed that the packet was lost and performed the retransmission. The

packets were retransmitted a maximum of 4 times in a 15 second interval. During the

82

tests, it was observed that using a constant time of 15 seconds on all clients produced

successive collisions. When a collision happened, both clients waited the same time and

retransmitted the packet again at approximately the same time. To avoid consecutive

collisions we introduced randomly selected waiting times at the clients and the base

station. The waiting times at the clients were set through the radios' code plug settings.

The unconfirmed type of delivery does not provide any possible way to detect lost

packets in the radio channel. However, it was possible to implement the similar repetition

mechanism at the application level for unconfirmed messages. With a repetition

mechanism all collided messages were repeated and delivered successfully. The last ten

tests showed that all data messages were delivered for both confirmed and unconfirmed

types of delivery.

Increasing the rate of transmissions or adding a new radio to the system increases

the radio channel usage which results in a higher number of collisions. Collisions cannot

be avoided in systems with multiple clients and collision handling involves waiting times

and retransmitted messages. This decreases the speed and performance of a

communication channel. A similar effect could be seen with mixed voice and data

signaling. While collided data messages can be retransmitted, the voice packet cannot be

repeated and information contained in voice packets would be lost. Therefore, collided

voice packets can degrade the quality of voice communication. Since voice

communication has priority on the radio channel, any interruption of voice packets by

data signaling cannot be accepted. These effects will be examined in the next subsection.

83

Voice Priority Assurance

When the tests with multiple data clients were successfully completed, the next

testing stage was designed to assure the voice priority. The voice priority was tested by

mixing voice and data signaling in a radio channel. Initially, voice messages were

exchanged between two voice clients and data messages were exchanged between the

base station and a single data client. Later, a voice and a data client were merged together

into a single voice-data client that supports both voice and data communication. The

voice-data client was used to mimic an actual communication system found in a police

cruiser.

Hence, voice assurance tests were divided into two groups: tests with parallel

voice and data radio communication and tests with a voice-data client used for

simultaneous voice and data transmissions.

Potential collisions between voice and data messages could degrade the quality of

voice communication. However, before we examine the potential influence of data

messages to the voice communication, we will examine how voice is handled and

transmitted over a radio channel.

Project 25 Vocoder

The Project 25 standard uses a voice coder, so called vocoder, for voice encoding

and decoding. The vocoder is based on the Improved Multi-Band Excitation (IMBE)

84

voice coding algorithm [32]. Through speech analysis, the IMBE encoder estimates three

speech model parameters: the pitch (fundamental frequency), the voiced/unvoiced

periods of speech, and the spectral amplitudes that characterize a spectral envelope.

These parameters are then quantized, encrypted, encoded, and formed into a bit stream.

At the decoder, the speech parameters are decoded, decrypted, reconstructed, and used

for speech synthesis. Following the standard, if the decoder cannot decode the speech

model parameters, the speech synthesis block will mute its output. The block diagram of

the Project 25 vocoder is shown in Figure 31.

IMBE Encoder

i i
! 1

Digital /""","''. , ~\ / "'"•. ' / ' \ i .•" "• ,.' ' ~\ Bit Stream
Speech I D»Sifal kP"* ' 1 L ' QuniHi- ' I • Encnp- FfcC at7.2 kbps

\nalvsis . »*" /atinn i ti««: ~**; hncoci:n«i **
* i * i i

-I iliptlT
! Cain

(f
% i
i «

Speech » Ream- ' Drenp- VIC at 7.2 kbps Speech ' Digital
•< ; Output

! Ciaift
Svnfiiesis < : structimi i tion ' I k a u r n "

i , , i , . . .
. ' i • / i

— •""- ' j • — - i ~ ~ -

i t

MBE Model Prioritized
IMBE Decoder P a r a m e t o BIl Vectors

Figure 31 - Block Diagram of the Project 25 Vocoder

For testing purposes, we were interested in any distortion of audio signals

introduced by the vocoder, which could be mistaken with a possible influence of data

signaling. Therefore, five different test signals were passed through the Project 25

85

file:///nalvsis

vocoder (both encoder and decoder) a thousand times. Signals at the output of the

decoder were recorded and compared with an originally played test signal.

First, four different utterances of approximate length between 2 and 15 seconds

were recorded and used as input audio signals. They were passed through a laboratory

setup which consisted of two Project 25 mobile radios, each connected to a computer.

The setup is illustrated in Figure 32. The utterances were played at the first computer and

passed to the first digital radio through an audio card. The first radio encoded (performed

speech analysis) the speech signals and transmitted them to the second radio over a radio

channel. The second radio decoded (performed speech synthesis) the received signals and

passed them to the second computer. Finally, received signals were recorded at the

second computer.

Laptop Digital Voice Digital Voice Laptop
Computer 1 Radiol Radio 2 Computer 2

Figure 32 - Project 25 Voice Recording Setup

The original and recorded voice signals were compared in both the time and

frequency domains. This is shown in Figure 33. By comparing signals in the time

domain, it was obvious that vocoder distorted the amplitude of the signal. The difference

between signals was much larger in the frequency domain. Those differences were

86

caused by the vocoder speech analysis and synthesis algorithms. The analysis algorithm

was estimating speech model parameters for every 20 milliseconds of the signal. After

estimation, the parameters were refined, enhanced, and smoothed. Such operations

defined by the standard caused the speech model parameters used for speech synthesis to

differ from the estimated ones. In addition, the estimation of the parameters was not

consistent and each recorded signal was more or less different than any previous one.

Those inconsistent differences could easily mask any influence of data messages.

Usually, the minimum algorithmic delay between input and output of the vocoder

is 80 milliseconds. In practice this delay is longer due to the additional delays at each

digital radio. However, in Figure 33 the signals are aligned for easier comparison. The

1024 point FFTs shown in the figure are averaged over the whole signal excluding the

silence before and after the signal.

87

Originally Played Voice Signal FFT (1024) of the Played Voice Signal

seconds

Recorded Voice Signal

E 0.5

0

I I I I I I I

li i i i i i i
i i i i i i

^UXUJ^LAJJ*—W1._A.VI ..A—

2.5

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4
frequency [kHz]

FFT (1024) of the Recorded Voice Signal

- -

A*

I I I I I I I

ft
J

0

l l i l l l l

1 l

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4
frequency [kHz]

Figure 33 - Comparison of Played and Recorded Signals ("Troop B Boston") in the Time

and Frequency Domains

To simplify comparison of the input and output signals, we decided to use sine

wave signals of a single frequency. We experimented with frequencies in the range from

100 Hz to 3 kHz. For all sine wave test signals the differences between original and

recorded signals were observed. The differences were greater for signals of a higher

frequency. An example of a played and recorded sine wave of 0.3 kHz is shown in Figure

34. As it can be seen in the figure, the vocoder introduced side frequency components

around the originally played signal.

88

http://w1._a.vi

Originally Played 300 Hz Sine Wave x 105 FFT (1024) of the Played Sine Wave

1

0.5

0

-0.5

-1

s — •

• • ?

•-.i %
• ' : . i l l

•V ' -

- ,- „ - . . - -

.,
.'.-

• • • \ :

l.i- LV-

H
'%'
n

--rr -.
: i '
-. !,..

i1: i . •

_ • • !

0.5 1 1.5 2

seconds

Recorded Sine Wave

1 1.5 2
seconds

2.5

0.4

0.2

0

-0.2

-0.4

(,

) '

1 . ' i
1 ;

(f-

'J-
• •

. . • .

,:

• , -

V
1

[
1

!-:•'•

••¥

-

• i

"i :

'

'

>•. 1

./

1

t ,

2.5

1.5

0.5

T 1 " 1 •• ' l \ 1 '

L I 1 I I I

r r 1 1 1 i

1

0.8

0.6

0.4

0.2

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4
frequency [kHz]

FFT (1024) of the Recorded Sine Wave

1 1- 1 —

m .••^^i.hj^jJi^.JLiv/'A 'hkLUk^M
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

frequency [kHz]

Figure 34 - Comparison of Played and Recorded 300 Hz Sine Wave in the Time and

Frequency Domains

In tests with mixed voice and data signaling, five audio test signals were used.

The first three test signals were utterances: "Kittery", "Troop Up", and "Troop B Boston"

(Figure 33). The fourth test signal was a 15 second segment of a larger audio file. Lastly,

the fifth test signal was a sine wave of 300 Hz as shown in Figure 34. The test files were

passed through the laboratory setup, shown in Figure 32, a thousand times. The recorded

signals were used as a reference and were compared with the audio test signals passed

through the system in parallel with data packets. Since the frequency components of the

audio signals were distorted by the vocoder, the test signals were analyzed in the time

domain by comparing amplitudes and calculating cross-correlation with the referent test

signals.

89

Tests with Parallel Voice and Data Communication

The laboratory setup used in the tests with mixed voice and data transmissions is

illustrated in Figure 35. Voice signals were played at the first voice client, passed through

a radio channel, and recorded at the second voice client. The voice part of the setup is the

same as shown in Figure 32. A data client was used for initiating data requests which

were transmitted to the base station and server application over the same radio channel.

The data part of the setup is the same as the setup used for initial end-to-end tests (Figure

23). These tests were designed to reveal any potential influence of data signaling or

collisions of the voice and data messages on the quality of voice communication. Each

test consisted of a thousand data requests and a thousand retransmissions of one of the

five voice test signals. For each voice test signal two tests were performed.

Voice Client 1 Voice Client 2

Server App Data Client

Desktop Analog Digital Data Laptop
Computer F8fl Radio Radio Computer

Figure 35 - Parallel Voice and Data Communication over the same Radio Channel

90

In the tests with mixed voice and data communication, the channel utilization was

varied by introducing a pause between data requests at the data client and a pause

between transmissions of the voice test signal at the first voice client. The channel

utilization for data signaling was between 6.1% and 13.8%, and for voice signaling was

between 20.2% and 35.9%. Therefore, the total channel utilization for parallel voice and

data communication was varied between 26.3% and 49.7%.

During the tests all data messages were successfully transmitted and received.

Analyzing the data log file, as it was explained in the section Tests with a Single Mobile

Data Client, the number of collided data messages on average (over 10 tests) was around

1%. However, those collisions were properly handled by the base station and they were

successfully retransmitted.

All transmitted voice signals were successfully recorded on the second voice

client radio. An example of a recorded 300 Hz sine wave is shown in the top part of

Figure 36. The recorded voice signals were analyzed after the test in the time domain.

First, the amplitude of each recorded signal was compared to the amplitude of a reference

signal (middle of Figure 36). The envelope of the reference signal was calculated and

minimum and maximum values of the envelope were used as reference points (green

lines). The envelope of the recorded signals should lie in-between the reference points

(red signal). Any recorded signal for which the envelope crossed the reference points

would be marked as a signal with unexpected distortion.

91

Second, the cross-correlation of each recorded signal was calculated. The cross-

correlation was computed using the reference signals recorded without data signaling on

the channel. An example of a cross-correlation is shown in the bottom part of Figure 36.

For both amplitude and cross-correlation analysis a combination of three reference

signals were used: originally played signal, any of the recorded signals described in the

section Project 25 Vocoder, and an average of a thousand recorded signals as described

in section Project 25 Vocoder.

Recorded 300 Hz Sine Wave

0.4

I"
cu -0.2

1.5
seconds

Amplitude analysis

1.5
seconds

Cross-Correlation

K--
•

i
\ V

\ i ' '

f "

. . - ;!
t » • 1 1 .

t r

\ .1 -

. A

1 '
• '

•a *

i ' " '
1

I

i

i

m

1

'•t

iiiiisiiiiiiiiiiiiiilliliiB illllUiii

I I _ I L
2

seconds

Figure 36 - An Example of a Recorded Signal, an Amplitude Analysis, and a Cross-

correlation

92

Analysis of the amplitude and cross-correlation did not reveal any undesired and

unexpected distortion of the audio test signals. Here we were looking for missing parts of

the recorded signals caused by the collisions with data messages. The payload of collided

voice packets would be lost and the vocoder should disregard those packets. Without

speech model parameters, the vocoder would mute its output until the next voice packet

with the parameters was received. The envelopes of the recorded signals were in the

range of the reference points and the cross-correlation did not have any distortions.

Since we knew that approximately 1% of the data messages were collided, we

extracted more information about collisions from the data log files. Tracking the collided

data messages, it was possible to find the recorded voice signal with which the data

messages were collided. Analyzing those recorded voice signals in particular did not

reveal any overlooked distortions. Playing those signals on a computer speaker did not

reveal any noticeable distortion of the audio signals as well.

The explanation of no influence of collisions on the test audio signals is twofold.

First, by analyzing the data collision log file, section Tests with Multiple Mobile Data

Clients - Figure 30, it was observed that there were no data transmissions when voice

activity was detected on the channel. This means that collisions could happen only when

voice and data message were transmitted at approximately the same time. Therefore, the

collisions could influence only the first part of the voice signals. Second, the first part of

the voice test signals, 500 milliseconds, was a silence and the maximum duration of the

data packets used in the tests was 250 milliseconds. Thus, the collisions which only

93

occurred at the beginning of the voice transmission caused the vocoder to disregard voice

packets and produced no signal at the output which matched the initial silence of the

original signal. A half second of silence before and after the voice signal was used to

simulate real voice communication on the radio channel, simulating pauses between

operating a PTT button and actual speech.

Tests with Simultaneous Voice and Data Transmissions from a Single Client

When the tests with parallel voice and data signaling over the same radio channel

were successfully completed, the final tests with a single voice-data client were

performed. In these tests a single mobile radio client was used for both voice and data

transmissions. A single mobile radio was used to mimic an actual radio setup found in

local police cruisers. The laboratory setup used for these tests is illustrated in Figure 37.

These tests were performed two times with the same test signals described in the

section Tests with Parallel Voice and Data Communication. Firstly, the voice signals

were played at the first voice client and recorded at the mobile client. Secondly, the voice

signals were transmitted in opposite direction from the mobile client to the first voice

client. In both scenarios, data messages were transmitted back and forth between the base

station and the mobile client.

94

Desktop Analog
, Computer FM Radio

Figure 37 - The Final Testing Setup with a Single Mobile Client

After the tests, the similar results were observed as in the tests with parallel voice

and data signaling (section Tests with Parallel Voice and Data Communication). Since

the same testing application, the same test signals, and similar test parameters were used,

the channel utilization was in the similar range between 24% and 50.1% (data channel

utilization was between 3.8% and 14.2%, and voice channel utilization was between

20.2% and 35.9%). During the tests with a single mobile client, all data and voice

messages were successfully transmitted and approximately the same number of collisions

was found. The number of collisions was between 0.11% for the channel usage of 24%

and 2.64% for the channel usage of 50.1%. Applying the same approach to analyze voice

signals, no influence of collisions was detected.

95

CHAPTER V

CONCLUSION

Today, many modern public data services can be of benefit to public safety

agencies in providing their personnel with additional information while on patrol. Digital

data messages can enhance information flow and provide easier ways to access

information in mobile settings. However, first responders and mission-critical operations

still cannot completely rely on the survivability and redundancy of publicly available data

services. The implementation of private APCO Project 25 data services requires an

additional piece of equipment called a data base station. The high cost of the

commercially-available Project 25 data base radios hinders the implementation of private

data services for small departments due to their limited budgets.

The goal of this work, to design and develop a cost effective software defined

APCO Project 25 data base station, has been achieved. The data base station is comprised

of a standard desktop computer, a commercial analog radio, and a software application.

Data packets are transmitted in parallel with voice signaling over a single conventional

radio channel using a time division multiple access communication technique. Mixed

voice and data signaling over a radio channel can be accessed using a single P25

compliant digital mobile radio. This lowers the cost of providing data services by

involving no additional wireless devices in the police cruisers, and increases security and

96

reliability of data services since the radio infrastructure is owned and operated by the

agency. Also, the system relies on the preexisting P25 digital radio network which is

standardized in the state of New Hampshire, and which provides a secure and reliable

communication infrastructure for first responders. This work represents a good basis for

small police departments to enable data services in their cruisers on patrol.

Testing was a crucial part to the completion of the data base station. A precise and

methodological laboratory testing procedure has been designed and presented in this

work. The testing procedure was divided into three stages: tests with a single data client,

tests with multiple data clients, and the assurance of voice priority. The stages were

designed to test different aspects of data and mixed voice and data communication over a

land mobile radio channel. All three stages were successfully completed and they

demonstrated proper transmission and reception of all data messages. Also, the last

testing stage showed the proper channel multiplexing between voice and data packets and

showed no influence of data messages on the quality of voice communication. The results

of the testing procedure are very promising prior to real world deployment.

Each data tests consisted of 10000 request packets while each test with mixed

voice and data signaling consisted of 1000 data requests and 1000 retransmissions of one

of the five voice tests signals. The size of the data packets was between 12 bytes for

acknowledgment packet and 84 bytes for the requested data packet. The duration of voice

tests signals was between 2 and 15 seconds. The tests were performed in both

unconfirmed and confirmed types of operation and with different channel usage

97

conditions. The channel usage was varied between 4% and 35% for data only tests and

between 24% and 50% for mixed voice and data communication tests. During the tests

the channel utilization was kept high to produce a higher number of collisions which

were used to reveal any potential influence of data signaling on the quality of voice

communication.

The base station will be deployed in a local New Hampshire police department

with several cruisers equipped with the Project54 system. Initially, the developed data

channel will be used for textual records queries initiated by the Project54 records

application. The combination of the data channel and the Project54 speech user interface

should provide a safer way to obtain vehicle and driver information on patrol. Also, the

data channel can be used to share information from cruisers to headquarters in

applications such as remote fleet management, diagnostics, and telematics.

Since the data messages are of a shorter duration and can carry more information

than voice messages, we believe that data packets will result in a reduction of the channel

utilization. However, the channel utilization can be impacted by collisions and the

retransmission of data messages. Also, the channel utilization can be affected by adding

new clients to the system or by increasing the amount of radio traffic in an emergency

situation. The increase of radio traffic can cause unwanted traffic behavior which can

reduce the speed of the channel and cause delays in communication. The data that we

gathered during the testing stages should give a good insight to develop a complete model

98

of a police radio channel that can be used to simulate and predict undesired effects in the

radio channel, especially in emergency situations.

REFERENCES

[1] Z. Medenica and A. L. Run, "Comparing the influence of two user interfaces for
mobile radios on driving performance," Driving Assessment 2007, Stevenson, WA,
2007.

[2] D. Staehle, K. Leibnitz, and K. Tsipotis, "QoS of internet access with GPRS,"
Wireless Networks, vol. 9, no. 3, pp. 213-222, 2003.

[3] N. Jesuale, "Spectrum policy issues for state and local government," International
Journal of Network Management, vol. 16, no. 2, pp. 89-101, 2006.

[4] Project 25 FDMA Common Air Interface New Technology Standards Project
Digital Radio Technical Standards, Telecommunications Industry Association
TIA\EIA-102.BAAA, 1998.

[5] A. L. Kun, W. T. Miller, III, and W. H. Lenharth, "Computers in police cruisers,"
Pervasive Computing, IEEE, vol. 3, no. 4, pp. 34-41, 2004.

[6] C. Maria and Z. Lorna, "Usability on patrol," in CHI '07 extended abstracts on
Human factors in computing systems San Jose, CA, USA: ACM, 2007, pp. 1709-
1714.

[7] S. Y. Kim, K. Wilson-Remmer, A. L. Kun, and W. T. Miller, III, "Remote Fleet
Management for Police Cruisers," IEEE Intelligent Vehicular Symposium, Las
Vegas, NV, 2005.

[8] I. Cassias, "Project54 Vehicle Telematics for Remote Diagnostics, Fleet
Management and Traffic Monitoring." M.S. thesis, University of New Hampshire,
2008.

[9] E. Ramsey, "A Software Based APCO Project 25 Data Transmission Base Station
for Local Police Headquarters." M.S. thesis, University of New Hampshire, 2007.

[10] M. Weiser, "The computer for the 21st century," SIGMOBILE Mobile Computing
and Communications Review, vol. 3, no. 3, pp. 3-11, 1999.

[11] R. Want, G. Bordello, T. Pering, and K. I. Farkas, "Disappearing Hardware," IEEE
Pervasive Computing, vol. 1, no. 1, pp. 36-47, 2002.

[12] M. Weiser and S. J. Brown, The coming age of calm technology, Copernicus, 1997,
pp.75-85.

100

[13] R. Penazzi, P. Capozio, M. Duncan, A. Scuderi, M. Siti, and E. Merli, "Cooperative
safety: a combination of multiple technologies," in Proceedings of the conference
on Design, automation and test in Europe Munich, Germany: ACM, 2008, pp. 959-
961.

[14] J. Navarro, F. Mars, and J. Hoc, "Lateral control support for car drivers: a human-
machine cooperation approach," in Proceedings of the 14th European conference
on Cognitive ergonomics: invent! explore! London, United Kingdom: ACM, 2007,
pp. 249-252.

[15] W. T. Miller, III, A. L. Kun, and W. H. Lenharth, "Consolidated Advanced
Technologies for Law Enforcement Program," IEEE Intelligent Transportation
Systems Conference, Washington, DC, 2004.

[16] J. LeBlanc, T. Hurton, W. T. Miller, III, and A. L. Kun, "Design and evaluation of a
vehicle data distribution and collection system," Fifth International Conference on
Pervasive Computing (Adjunct Proceedings), Toronto, Canada, May 13-16, 2007.

[17] M. Tanizaki and O. Wolfson, "Randomization in traffic information sharing
systems," in Proceedings of the 15th annual ACM international symposium on
Advances in geographic information systems Seattle, Washington: ACM, 2007, pp.
1-8.

[18] A. Skordylis and N. Trigoni, "Delay-bounded Routing in Vehicular Ad-hoc
Networks," in Proceedings of the 9th ACM international symposium on Mobile ad
hoc networking and computing Hong Kong, Hong Kong, China: ACM, 2008, pp.
341-350.

[19] K. Goto and Y. Kambayashi, "A new passenger support system for public transport
using mobile database access," in Proceedings of the 28th international conference
on Very Large Data Bases Hong Kong, China: VLDB Endowment, 2002, pp. 908-
919.

[20] A. Repenning and A. Ioannidou, "Mobility agents: guiding and tracking public
transportation users," in Proceedings of the working conference on Advanced visual
interfaces Venezia, Italy: ACM, 2006, pp. 127-134.

[21] Y. Kin Choong, C. Lin, and L. Xiaoyu, "BlueBus: a scalable solution for localized
mobile service in a public bus," in Proceedings of the 4th international conference
on mobile technology, applications, and systems and the 1st international
symposium on Computer human interaction in mobile technology Singapore: ACM,
2007, pp.712-715.

[22] C. Wuthrich, G. Kalbfleisch, T. Griffin, and N. Passos, "On-line instructional
testing in a mobile environment," J. Comput. Small Coll., vol. 18, no. 4, pp. 23-29,
2003.

101

[23] M.Hazas, J.Scott, and J.Krumm, "Location-Aware Computing Comes of Age,"
IEEE Computer, vol. 37, no. 2, pp. 95-97, 2004.

[24] M. F.Mokbel , C.-Y. Chow, and W. G.Aref, "The new Casper: query processing
for location services without compromising privacy," in Proceedings of the 32nd
international conference on Very large data bases Seoul, Korea: VLDB
Endowment, 2006, pp. 163-11 A.

[25] S. Duri, J. Elliott, M. Gruteser, X. Liu, P. Moskowitz, R. Perez, M. Singh, and J. M.
Tang, "Data protection and data sharing in telematics," Mob. Netw. Appl, vol. 9,
no. 6, pp. 693-701,2004.

[26] J. W.Streefkerk, M. P. van Esch-Bussemakers, and M. A. Neerincx, "Field
evaluation of a mobile location-based notification system for police officers," in
Proceedings of the 10th international conference on Human computer interaction
with mobile devices and services Amsterdam, The Netherlands: ACM, 2008, pp.
101-108.

[27] Project 25 Document Suite Reference, Institute for Telecommunication Sciences,
2008.

[28] APCO Project 25 System and Standards Definition, Telecommunications Industry
Association TSB102-A, 1995.

[29] Project 25 Data Overview - New Technology Standards Project - Digital Radio
Technical Standards, Telecommunications Industry Association TIA/EIA-
102.BAEA,2000.

[30] Project 25 Circuit Data Specification New Technology Standards Project Digital
Radio Technical Standards, Telecommunications Industry Association TIA/EIA-
102.BAEC, 2000.

[31] Project 25 Radio Control Protocol (RCP) - New Technology Standards Project -
Digital Radio Technical Standards, Telecommunications Industry Association
TIA/EIA-102.BAEE, 2000.

[32] Project 25 Vocoder Description, Telecommunications Industry Association
TIA/EIA-102.BABA, 1998.

[33] APCO Project 25 Common Air Interface Operational Description for Conventional
Channels, Telecommunications Industry Association TIA/EIA TSB102.BAAD,
1994.

[34] APCO Project 25 Trunking Overview, Telecommunications Industry Association
TIA/EIA TSB102. AAB A, 1995.

[35] W. Stallings, Data and Computer Communication. Upper Saddle River, NJ: Parson
Prentice Hall, 2007.

102

[36] Tyco Electronics. Expanding Digital Communication, P25 VIDA Network System.
Massachusetts, USA : Tyco Electronics M/A-COM.

[37] Etherstack, "APCO P25 Base Station," Amsterdam, Etherstack, Inc.

[38] J. Z. Gao, H. S. J. Tsao, and Y. Wu, Testing and Quality Assurance for Component-
Based Software. Norwood, MA: ARTECH HOUSE, INC, 2003.

103

APPENDIX A

CUSTOM KENWOOD RADIO INTERFACE CABLE

Since the data base station designed in this work was comprised of a PC and an

analog radio, a custom radio interface cable was used to connect the Kenwood TK 7180

radio to a COM port of the PC. The cable was used to control the PTT signal (through a

serial data connection) and to provide an audio interface between the radio and the PC

audio card. The schematic of the radio cable is shown in Figure 38.

DB25 Male

Kenwood
•*t

DB9 Ferrate

Figure 38 - Custom Kenwood Radio Interface Cable

104

APPENDIX B

KENWOOD TX 7180 CODE PLUG

The Kenwood radio code plug settings needed for proper functioning of the data

base station were edited using the programming software provided by Kenwood. First,

appropriate test radio channel frequencies were set. In this work, the same frequency

155.37 MHz was used for both transmission and reception of CAI data packets. The

channel settings are shown in Figure 39.

iEffl'jfnjp^Fff

Zone M - f j

Zof*eType I rZone flame-
I

] Conventional Group j j ; Free Area - 28224 bytes

RX Frequency TXfrgjiiencyJIaivDOTPa; [QTiDQTEncl "aStnefiimi | Power' WM | Scan Add | QptStepwl
185.37000 1SS.37E05! NoneiP25Seryer No None

ZofieUp

Figure 39 - Test Channel Frequency Settings

Second, in order to control the PTT signal over a serial data line, a radio COM

port had to be enabled and set to accept data messages. The settings for a radio COM port

are shown in Figure 40. Finally, in the radio modulation settings, the external data PTT

105

signal had to be set to connect the data signal input (DI) line to the modulator avoiding

the audio processor, as it is shown in Figure 41.

Common-Page 1.1 Common-Page 2 Ccmmon-Pacfe 5 1 Conventional Trunking J VGS-11

Battery

Battery Saver

Battery Warning

™ ' ':•
. .V , , : i5 :-V,, : , . „ . , : , . : , , , .

PIT ID Type.

Beginning of Transmit

End cfTransmit

DTMF

COM port No.

COM port 0

COM port 1

COM pert 2

Function j Polarity

Hone

Data '> Norrra!

Hens

• H i

Figure 40 - Radio COM Port Settings

Optional Beard I AUX I Remote Zor.e-CHK3D Modulation Lir.e

PIT

MIC PIT
External PIT (Voice.

Externa! PIT (Data*
' Daia FIT

Connect to f̂ osuistiort Line

U\c Line
Connect

Disconnect

j MSLbe |

Disconnect

Disconnect

DiLine
Disconnect

Connect

w/GX'DQT

v e s

w/STE
Yes

ves

| f^cdylation Line by External PIT (Oats)

| Disconnect

I Disconnect

Ml? / " \ ^

HI' O
VJ

P

P

Audio Processor
^ k r ^c-auistiDn Circuit

ANT

^ 7

A

Figure 41 - Radio Modulation Line Settings

106

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Fall 2009

	APCO project 25 wireless data services over land mobile radio channel for smaller law enforcement agencies
	Ivan Elhart
	Recommended Citation

	ProQuest Dissertations

