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ABSTRACT

EFFECTS OF SEDIMENTATION AND PERIPHYTON COMMUNITIES ON 
EMBRYONIC RAINBOW SMELT, OSMERUS MORDAX

by

Lauren Helena Wyatt 

University of New Hampshire, May, 2009

The decline o f anadromous rainbow smelt (Osmerus mordax) populations has 

been suspected to be linked to anthropogenic causes. Increased runoff from agriculture 

and urbanization has led to additional sediment inputs and eutrophying compounds in 

rivers. The aim of this study was to assess the survival of embryonic rainbow smelt from 

fertilization through hatching under varying levels of sedimentation (0.00, 0.25, 1.00, and

6.00 g per 45.6 cm^) and with periphyton communities of different biomass and algal 

composition. Additionally, embryo survival was assessed when cultured on periphyton 

in combination with sterilized sediment or eutrophying compounds (nitrates and 

phosphates). Oxygen consumption was monitored from embryos cultured alone, on 

periphyton layers, and under sediment. Survival was significantly reduced under the 

highest sediment treatment and attributed to low oxygen availability to the embryos. 

Embryonic survival was also significantly reduced on the highest periphyton biomass 

(251.5 g/m^ dry weight, 15.7 g/m^ ash free dry weight), and periphyton containing a high 

cyanobacteria content (50%). These results suggest that embryonic survival could be 

reduced in rivers with heavy sedimentation or a high standing biomass of periphyton.

VII
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CHAPTER I 

INTRODUCTION 

Rainbow Smelt
Life History

Rainbow smelt, Osmerus mordax (Mitchell), is a small teleost fish (18-23 cm) 

found in freshwater lakes of northeastern and central United States (Buckley 1989) and in 

coastal waters of the northwest Atlantic Ocean and northeast Pacific Ocean (Klein- 

MacPhee 2002). Anadromous smelt populations residing in estuaries and coastal waters 

(Klein-MacPhee 2002) annually migrate up rivers to spawn when water temperatures 

reach 4-7°C or higher (McKenzie 1964). Spawning typically occurs in late-February in 

Massachusetts’ rivers (McKenzie 1964) and in mid-March farther north (Lawton et al. 

1990).

Smelt become reproductively mature after two years, and males and females 

broadcast spawn gametes into the water column (McKenzie 1964). Some females can 

produce up to 75,000 eggs in a single spawning event (McKenzie 1964). Smelt eggs are 

approximately 1 mm in diameter and are demersal, adhering to the bottom substrate 

(Klein-MacPhee 2002). Their benthic life stage during incubation leaves them 

susceptible to changes occurring in the river. Water temperature, velocity, substrate type, 

and egg density are important factors for embryonic survival (Sutter 1980). Incubation 

lasts 11-29 days, depending on water temperature (McKenzie 1964). When eggs are 

deposited on aquatic vegetation rather than gravel, embryonic survival increased from 1.8

1
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to 10% (Rothschild 1961, McKenzie 1964, Sutter 1980). Density is also important, as 

high mortality, associated with fungal growth, is known to occur in overcrowded egg 

masses (Rothschild 1961, McKenzie 1964).

Following hatch, smelt larvae utilize the yolk-sac for endogenous feeding. Once 

the yolk-sac is absorbed smelt begin exogenous feeding on rotifers and other zooplankton 

in the water column (Gordon 1961, Burbidge 1969, McCullough and Stanley 1981). 

Juvenile and adult smelt consume amphiphods, mysids, shrimps, marine worms, and 

small fish (Klein-MacPhee 2002). As adults, smelt are an important forage species for 

Atlantic salmon (Sayers et al. 1989) and lake trout (Kim and LaBar 1996) in freshwater 

lakes, and striped bass and bluefish (Buckley 1989) in marine waters. Smelt have 

supported both recreational and commercial fisheries on the east coast of the Atlantic 

Ocean for centuries (Kendall 1927).

Smelt fishery and decline

Historical smelt populations were once abundant and supported large winter 

fisheries. In addition to food, smelt were also processed for animal feed and used as 

fertilizer (Fried and Schultz 2006). In recent decades there has been a noticeable decline 

in the smelt population such that they were listed as a species of concern by the National 

Marine Fisheries Service (NCAA 2004). Decline is evident by the reduction in their 

geographical range and landings within this reduced range. On the east coast of North 

America, rainbow smelt historically inhabited a geographic range extending from New 

Jersey, USA to Labrador, Canada (Klein-MacPhee 2002), but current populations are 

estimated to range from Massachusetts to southern Canada (Ross 1991). Population
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decline has also been noted within this compressed range from visual estimates and 

recreational landings (Chase and Childs 2001). In New England landings peaked at 162 

million tons in 1966 and have averaged 0.14 mt/year since 1998 (NOAA 2004).

Smelt population decline is likely the result of many factors in freshwater and 

marine environments. Population decline in freshwater lakes is attributed to ecological 

causes such as stock size, predation, competition, and disease (Schaefer et al. 1981, Kim 

and LaBar 1996), while declines in fully anadromous populations may be more 

associated with anthropogenic causes. Human influences including eutrophication from 

urbanization, obstmctions to favorable spawning grounds by dams, and degraded water 

quality have been implicated as causes for the declining stocks (Crestin 1973, Murawski 

and Cole 1978, Klein-MacPhee 2002). The decline of anadromous smelt may also be 

linked to spawning habitat degradation from increases in sedimentation and nutrients 

from runoff.

Environmental influences

Sediment

Sediment deposition may have a negative effect on teleost embryonic survival 

(Shelton and Pollock 1966, Messieh et al. 1981). For example, sediment infiltration into 

the gravel bed of salmon eggs may reduce survival by limiting or preventing respiration 

(Shelton and Pollock 1966). Egg and fry survival increased in cases where there was less 

siltation or when sediment was manually removed (Shelton and Pollock 1966). Oxygen 

concentrations also increased when sediment was removed from gravel beds (Wickett
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1954). Sedimentation in rivers may act to smother rainbow smelt eggs by reducing 

oxygen levels and limiting respiration.

Fine sediment (<500 pm) in rivers is likely increased by runoff from agriculture 

and urbanization (Mayo 1975, Muncy et al. 1979). Every year, 1.9 billion tons of 

sediment is discharged into lakes and streams in North America (Syvitski et al. 2005). 

Sediment deposition has been documented in an active smelt spawning tributary of Great 

Bay, NFt (Fuda et al. 2007) and in some Massachusetts rivers (Chase 2006). A 

preliminary study by Fuda et al. (2007) found high levels of silt deposition and some 

fungal growth on the rainbow smelt eggs that prevented an assessment of embryonic 

viability. Chase (2006) examined smelt spawning habitats, and found that some level of 

sedimentation was present in all rivers studied. Many o f the rivers were characterized by 

moderate or substantial substrate degradation (Chase 2006). A sediment layer may 

impact embryos by forming a physical barrier that blocks oxygen transfer (Greig et al. 

2005). The lowered permeability of oxygen in sediment reduces the diffusion of oxygen 

and limits its availability to developing embryos (Greig et al. 2005). A thin sediment 

layer (1 mm) decreased the oxygen consumption in salmon eggs by 41-98% (Greig et al. 

2005).

Sediment can also adhere to the chorion o f aquatic eggs (Iwamoto 1978), and 

fine sediment (Bell et al. 1969) can physically obstruct embryonic pores and lead to 

limited oxygen transport across the egg membrane. Sediment and other organic matter 

may also consume oxygen and further depress oxygen availability to the egg.

Ventlingschwank and Livingstone (1994) recorded a substantial decrease of oxygen from
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>6 to 4 mg/L 1.5-2.5 mm above the sediment-water interface; a zone large enough to 

encompass smelt eggs.

Anthropogenic nitrate and phosphate

In addition to reduced oxygen from sediment, nutrients such as phosphate and 

nitrate can also be transferred in runoff water and may impact smelt survival. Runoff 

from fertilizers and agricultural crops has increased the transfer of phosphate and nitrate 

into watersheds (Schindler 1977, Vitousek et al. 1997, Manahan 2000). Nitrate is 

generally regarded as nontoxic to aquatic organisms (Tomasso 1994) and does not 

directly influence smelt survival. High embryonic survival (over 95%) has been 

observed in rainbow smelt exposed to high concentrations of both nitrate and phosphate 

until hatch (Fuda et al. 2007). While nitrate and phosphate do not directly influence 

smelt embryos, the increased nutrient concentrations likely promote algal and periphyton 

growth which may negatively impact smelt egg survival.

Periphyton

Periphyton is loosely defined as the assemblage o f organisms which colonize and 

grow on submersed objects, including algal and bacteria components (Young 1945, 

Karlstrom 1978). Periphyton and some algal communities may constitute a substrate that 

is unsuitable for smelt eggs (Lapierre et al. 1999). Various algal species may secrete 

mucilage or toxic chemicals that may have a negative impact on embryonic development. 

The mucilage secreted by some diatom species can trap detritus and sediment particles 

(Karlstrom 1978, Hoagland et al. 1982, Roemer et al. 1984), which leads to egg
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smothering. The smothering event would most likely be similar to the negative impacts 

of sediment deposition. Toxins produced by particular genera may also negatively 

impact egg incubation. In some freshwater lakes, eutrophic conditions favored growth of 

cyanobacteria that can produce hepatotoxins that may be lethal to adult fish (Chellappa et 

al. 2008, Wu et al. 2008). Embryonic smelt may also be susceptible to these toxins as 

concentrated extracts of these toxins were shown to affect embryonic development and 

hatch in trout (Oberemm et al. 1999) and zebrafish (Keil et al. 2002, Berry et al. 2007). 

Conversely, toxins had no effect on the embryonic development of other teleost species, 

such as roach, bream, chub, and stone loach (Oberemm et al. 1999). The chorion may 

serve as a barrier to these toxins, and the protection the chorion provides may differ 

among species (Cazenave et al. 2006). Factors that control the toxin content of 

cyanobacterial strains are still unknown and the effect cyanobacteria could have on smelt 

egg survival needs to be further investigated.

The combined influence of photosynthesis and respiration can make the micro

environment in periphyton different compared to the surrounding benthic community. 

Algal cells can alter the oxygen environment surrounding the egg by acting as a source 

and a sink for oxygen. During daylight hours, photosynthesis increases oxygen 

concentrations to hyperoxic levels, while in the dark, net respiration can reduce oxygen 

concentrations to near anoxia (Carlton and Wetzel 1987). The prolonged low oxygen 

environment during night respiration may negatively impact embryonic survival by 

limiting the oxygen necessary for metabolic processes.

Periphyton influences on smelt eggs may differ among rivers, and likely depends 

on geographical variation in light, substrate type, nutrients, and invertebrate grazers all of
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which can affect the distribution and biomass of periphyton (Trainor 1978). High 

periphyton growth during the smelt spawning season has been noted in many 

Massachusetts rivers (Chase 2006). Several o f the rivers studied by Chase (2006) were 

characterized by substantial substrate degradation, from excessive periphyton growth, 

with increases in periphyton biomass in April and May. When high periphyton growth 

occurred simultaneously with smelt egg deposition, increased egg mortality resulted 

(Chase and Childs 2001, Chase 2006). Reduced survival may be related to substances 

secreted by certain periphyton genera or from an altered oxygen micro-environment.

Dissolved oxygen

Oxygen is critical for embryonic survival and hatch, and oxygen deficiency 

during the embryonic period may impact later life stages (Rombough 1988). Reduced 

survival in salmon embryos has been documented at low oxygen concentrations (Oseid 

and Smith 1971a, b, Louhi et al. 2008), and larvae hatched from low oxygen 

environments are frequently smaller and have more defects than larvae hatched from 

more oxygen-rich water (Oseid and Smith 1971a, b, Kaur and Toor 1978, Brooke and 

Colby 1980, Sawada et al. 2006). The oxygen concentration gradient between the egg 

membrane and the surrounding boundary layer facilitates oxygen diffusion across the egg 

membrane, and the amount o f oxygen an egg receives depends on this oxygen gradient. 

High concentrations o f oxygen are critical to creating a gradient that moves available 

oxygen inside an embryo (Daykin 1965, O’Brien et al. 1978, Rombough 1988). When 

oxygen concentrations are low in the surrounding environment, the reduced availability 

impacts respiration and metabolism (Hamor and Garside 1979, Rombough 1988).
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In addition to sediment deposition, low oxygen conditions may also result from 

accumulating detritus. Detritus and particulate organic carbon consume oxygen and can 

place benthic organisms in a lowered oxygen environment (Ventling-Schwank and 

Livingstone 1994). Unlike some other coldwater species (Araiijo et al. 2000, Pientka and 

Parrish 2002), rainbow smelt are not as sensitive to changes in the concentration of 

dissolved oxygen. In the laboratory, there was no reduction in embryonic smelt survival 

from exposure to low oxygen conditions (20% saturation) from 8 days post-fertilization 

to hatch (Fuda et al. 2007). Complete mortality resulted from lower oxygen conditions 

(10% saturation) for the same time span, however (Fuda et al. 2007). These results 

suggest that smelt survival could be lower in rivers where precipitating sediment or 

detritus creates extremely low oxygen concentrations in the environment.
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CHAPTER II

EFFECTS OF SEDIMENTATION AND PERIPHYTON COMMUNITIES ON 
EMBRYONIC RAINBOW SMELT, OSMERUS MORDAX

Introduction

The rainbow smelt, Osmerus mordax (Mitchill), is a small anadromous fish found 

along the Northwest Atlantic and Northeast Pacific coasts that is enjoyed as a food fish, 

and has supported important commercial and recreational fisheries (Klein-MacPhee 

2002). Smelt also serve as an important prey item for many important carnivorous fish 

and bird species. On the Atlantic coast, the southern-most portion of its range has 

contracted, such that spawning populations are only found in rivers north of Cape Cod, 

and significant population declines have also been reported in specific rivers within their 

extant range (Chase and Childs 2001, Klein-MacPhee 2002). In response to declining 

Atlantic populations, rainbow smelt were listed as a “species of concern” by the US 

National Marine Fisheries Service in 2004 (NOAA 2004).

The reasons for these population declines are not entirely clear, but human 

activities in the coastal zone have been implicated in the decline of many anadromous 

species, including smelt (Murawski and Cole 1978). Declines in smelt abundance in 

Massachusetts have been linked to declining water quality from industrial pollution, loss 

of eelgrass beds and obstructions in rivers that may prevent upstream migrations (Klein- 

MacPhee 2002). As smelt are unable to traverse fish ladders, dam construction may also 

be detrimental to smelt populations, as they prevent spawning smelt fi-om reaching
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desirable spawning habitats, and may expose embryos and larvae to saline environments 

prematurely (Crestin 1973, Chase and Childs 2001). Additionally, as smelt spawn in the 

spring months, the demersal eggs are exposed to runoff from snow melt and spring 

storms, that may be acidic and/or contain silt and contaminants from anthropogenic 

activities, such as urbanization (Geffen 1990, Walling 1995, Lapierre et al. 1999).

The developing embryos and larval stages of the teleost life cycle are considered 

to be the most sensitive to environmental stressors (Geffen 1990, Swanson 1996) and 

concern has been raised about the possible effects that degraded water quality has had on 

rainbow smelt populations. In a previous study, Fuda et al. (2007) demonstrated that 

smelt are tolerant of a wide range of abiotic environmental factors including salinity, 

ultraviolet radiation, dissolved oxygen (DO), nitrates, phosphates, and pH during their 

early developmental stages. In that study, however, smelt embryos incubated in natural 

spawning rivers became covered with silt, debris, and fungi that impacted hatching 

success. The purpose of the present study was to investigate the effects of silt and 

periphyton communities on oxygen availability and embryonic smelt survival in 

controlled laboratory conditions.

Materials and methods 

Egg collection

During the 2007 and 2008 annual spawning migrations (March -  May) adult 

rainbow smelt were captured by fyke nets in rivers in Massachusetts (MA), New 

Hampshire (NH), and Maine (ME; Table 1). The smelt were transported to the 

University of New Hampshire (UNH), Durham, NH, anesthetized with tricaine

10
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methanesulfonate (100 mg/L Tricaine-S; Western Chemicals, Femdale, WA) and 

manually spawned (Ayer et al. 2005) using multiple males and females (>6). While no 

agents were used to remove egg adhesiveness, the degree of egg adhesion was variable 

among spawning events. In all studies except Experiments 1 and 4, the eggs were less 

adhesive and were incubated in 3 L polyethylene hatching jars, with vigorous aeration at 

temperature of 5 or 10°C (± 1°C) and 0 ppt salinity for 2-4 d, prior to assessing 

fertilization success. Only viable embryos were used in these studies. Embryonic 

development can be observed using a dissecting microscope, as viable embryos are 

translucent while non-viable embryos are opaque. In Experiment 1, the eggs were very 

adhesive, and were transferred directly to slate tiles after manual spawning. Fertilized 

and unfertilized eggs on each tile were enumerated 8 days post fertilization (DPF). In 

Experiment 4, the adhesive eggs were directly transferred to clay bricks and fertilization 

was assessed 2 DPF.

Sediment collection

Sediment was collected from the intertidal zone of the Oyster River, Durham,

NH, at low tide, and sieved though a 300 pm nylon mesh. Sediment was dried at 70°C 

overnight, sieved again, and sterilized by autoclaving at 123°C for 15 min. Sediment was 

then sieved though additional sieves (211 and 110 pm) to determine the relative 

proportions of sediment at a corresponding grain size (211<X<300,110<X<211, and 

X<100pm).

Experiment 1. The effect of sedimentation on embryo survival

11
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Following fertilization, 129-640 embryos per tile were transferred to 16 slate tiles 

(-104 cm^) with polyethylene transfer pipettes, and held in 40 L aquaria (10°C ± 1°C, 0 

ppt salinity), with supplemental aeration. After determining fertilization success (8 DPF), 

the embryos were covered with low, medium, and high sediment levels (0.25,1.00 and

6.00 g dry weight; DW, n=4 replicates/treatment). A piece of polyvinyl chloride (PVC) 

pipe (diameter =7.6 cm) was used to direct a  slurry o f sediment over the eggs (area =

45.6 cm^). Water alone was added to the control treatment (n=4). Sediment was allowed 

to settle for one hour before the pipe was removed. Embryos were distinguishable in the 

low and medium treatments (<1 mm cover) but not in the high (-1 mm cover).

Following sediment settlement, water was circulated over the covered embryos with 

small aquarium pumps (-250 L/hr), that were placed -26.7 cm vertically and -22.3 cm 

horizontally away from the embryos. Prior to hatching (14 DPF), a stream of freshwater 

was used to gently remove the sediment, and live and dead embiyos were enumerated. 

Survival was assessed as the number of live embryos remaining from the initial number 

of live plated.

Experiment 2. The effect of sedimentation on embryonic respiration

Oxygen consumption by sediment-covered embryos was measured using a 

Unisense Clark-type 0X50 glass micro-oxygen electrodes with guard cathode (50 pm 

diameter. Unisense, Aarhus, Denmark), connected to a Unisense PA2000 picoammeter 

(Unisense, Denmark). The electrodes (stirring sensitivity <2%; response time, tgo <5 s) 

were calibrated linearly at experimental temperature and salinity using air-saturated water 

(atmospheric O2 ) and oxygen-free water (created using gaseous N2 ).

12
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Ten embryos were transferred to each of two 5 mL borosilicate glass, aluminum 

foil-covered beakers, with a transfer pipette and maintained at 10°C ± 1°C. The oxygen 

probe and a slurry o f sediment were introduced through two holes (~3 mm diameter) 

made in the foil. The micro-oxygen electrodes were then lowered to the bottom of the 

beakers, and positioned <1 mm from the embryos. Sterilized sediment (0.45 g, 

equivalent to the 6.00 g treatment described above for Exp. 1) that was aerated for 24 hrs 

to remove a portion o f the chemical oxygen demand, was added to one beaker using a 

pasture pipette. Well water was then added to fill both beakers.

Oxygen concentration profiles were recorded (Unisense Profix 3.10; Unisense, 

Denmark) for 15-26 hr periods, after which embryos, water, and aerated sediment were 

replaced. Following each experiment (21-36 hrs) the embryos were rinsed and examined 

to confirm viability. Electrodes were re-calibrated prior to each profile. Concentrations 

were measured every 8.31 sec, and oxygen measurements were averages of 100 

consecutive readings. Over a range of high dissolved oxygen concentrations, the oxygen 

consumption rate was determined to be linear (Torrans 2007). The linear portion of the 

regression was estimated visually from each profile and the slope of this line was used to 

calculate the routine metabolic rate (Cech 1990; Fig. 1, Appendix B). The linear portion 

of the control and sediment treatment regressions were compared using an analysis of co- 

variance for each day tested (Fig. 1, Appendix C).

To determine the oxygen demand of the sterilized sediment alone, oxygen profiles 

were recorded in beakers containing sediment but no embryos (n=2). Oxygen 

measurements were taken 72 hrs after the addition of the sediment (n=2) at various 

depths above and below the sediment to generate vertical oxygen profiles. Measurements

13
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in increments of 0.05 mm were used from ~2 mm below the sediment to 5.50 mm above 

the sediment, and increments of 1.00 mm were made from 5.50-19.07 mm above the 

sediment.

Conditions for periphyton experiments

Embryos were transferred to terracotta clay bricks (n=4/treatment) using 

polypropylene transfer pipettes 2-4 DPF. The treatment (periphyton cover) and control 

(no periphyton) bricks were held in 9.5, 18.9 L glass aquaria, or 9.5 L polypropylene 

plastic bins (Stérilité, Townsend, MA), submerged under 5 cm of well water held at 10°C 

± r c ,  0 ppt, with supplemental aeration, and a 12 Light: 12 Dark photoperiod (-1200 

Lux light, Milwaukee Instruments, SM700). Periphyton biomass and composition were 

determined as described below. Viability was assessed 10-12 DPF by enumerating the 

live and dead embryos and hatching success was determined 18-20 DPF.

Experiment 3. The effect of periphyton communities on embryonic survival

Embryos (77-190/treatment; 4 DPF) were distributed to control or periphyton- 

covered bricks. Control bricks were collected from the Squamscott River prior to the 

start of the experiment and air dried for 41 days. Periphyton-covered bricks were 

collected from the Squamscott River and either used within 9 days (“natural”; 

representative of the standing community) or “cultured” in nutrient rich water (1000- 

3000 ppm f/2 media, Guillard and Ryther 1962) under constant high light intensity (800- 

1150 Lux) for approximately 30 d prior to the start of the experiment. Viability was 

assessed at 10 DPF.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Experiment 4. The effects of periphyton and sedimentation on embryo survival

Embryos (36-89/treatment, -80%  fertilization; 2 DPF) were distributed to bricks 

without periphyton, or to bricks with natural periphyton from the Squamscott and Crane 

(Danvers, MA) Rivers. Additionally, the embryos on periphyton-covered bricks 

collected from the Squamscott River were covered with sediment (0.00, 0.25, and 1.00 g 

DW) as described above. Viability was assessed at 12 DPF, successful hatching at 20 

DPF.

Experiment 5. The effects of periphyton and eutrophying compounds on embryo 

survival

Embiyos (64-126/treatment; 2 DPF) were plated on periphyton-covered bricks 

collected from the Crane River with either (1) background levels of nitrates (0.4 mg/L 

NOs', sodium nitrate, Fisher Scientific, Fair Lawn, NJ, USA) and phosphates (0.04 mg/L, 

Sigma-Aldrich, St. Louis, MO, USA), (2) elevated nitrates (10.0 mg/L and background 

phosphate), (3) elevated phosphates (0.10 mg/L; background nitrate), and (4) elevated 

nitrate and phosphate. Embiyos plated on bricks with no periphyton and background 

levels o f nitrates and phosphates, served as controls. Daily water changes (2/3 volume) 

with the target nutrient levels began 6 DPF. Viability was assessed at 10 DPF and 

hatching success at 18 DPF.

Experiment 6. Oxygen concentrations in the embryo micro-environment
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Embryos (-20) were plated on bricks (area=~0.0206 m^) with “cultured” or 

“natural” periphyton (Squamscott River) as described in Experiments 3 and 4 above, and 

on control bricks without periphyton (9.5 L glass aquaria, 10°C ± 1°C, 0 ppt salinity). 

Slight aeration was added to the system to simulate an oxygenated river. Oxygen 

concentrations were recorded continuously in the micro-environment of a single embryo 

(<1 mm) from 4 DPF until hatch was observed (10-12 DPF) using the same micro

oxygen probes and recording device described above. Readings were made -20 cm away 

from aeration source (Tetra/ec A PI00). A reading was taken every 8.31 sec and recorded 

oxygen measurements were averages of 100 consecutive readings. Electrodes were 

calibrated before each profile as described above.

In the trial on the “natural” periphyton, drifting values of oxygen concentration 

were suspected towards the end of the profile, as negative values were recorded during 

the last 6 hrs o f profiling, nine days after measuring began. The drifting may have been 

due to electrical noise, slight temperature change, a change in the sensitivity of the probes 

after standardization, and/or a drift in the calibration. Recalibration is recommended 

more often than feasible for the continuous DO monitoring in this study. The occurrence 

o f hatch was noted for all treatments.

Sediment and periphyton organic content

The dry weight, ash dry weight (ADW), and ash free dry weight (AFDW) of 

sediment and periphyton samples from each experiment (n=4) were determined using the 

methods of the American Public Health Association, APHA (1992). Periphyton samples 

were also collected from rocks or bricks from 12 rivers in MA, NH, and ME between
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March and May 2008 and processed to estimate the standing periphyton biomass in 

smelt-spawning rivers (Table 5). DW represents both inorganic and organic material, 

while ADW represents only inorganic material. To determine the DW, scraped 

periphyton samples (0.006-0.013 m^) were transferred to pre-weighed aluminum weigh 

boats (g/m^), dried at 105°C, cooled in a desiccator, and then weighed to the nearest 

0.0001 g (Mettler Toledo AB54-S) multiple days (3-4 days) in succession until the 

weights differed by no more than 0.0008 g. Samples were then ignited for 1 hr in a 

muffle furnace at 500°C, re-hydrated (~5 mL) and re-dried at 105°C, cooled in a 

desiccator, and again weighed to determine the ADW (g/m^). The AFDW (DW - ADW) 

represents the organic portion and is also expressed as g/m^. Relative organic 

(AFDW/DW X 100) and inorganic (ADW/DW x  100) matter content were also calculated 

(Thomas et al. 2006).

Periphyton Taxonomic Composition

A measured area of periphyton from each experiment (0.006-0.011 m^) was 

scraped and preserved in 2% “M^” fixative (5 g potassium iodide, 10 g iodine, 50 mL 

glacial acetic acid, 250 mL formalin in 1 L distilled water) to determine taxonomic 

composition to the genus level (APHA 1992). Using a light microscope (40X, lOOX, and 

400X magnification) at least 300 algal cells were counted in triplicate from a preserved 

sample to determine a relative abundance estimate, where each algal or diatom filament 

was counted as a single cell (Smith 1950, Prescott 1978, Weitzel et al. 1979, Wehr and 

Sheath 2003).
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Statistical analysis

Percent data were arcsine transformed. ANOVA at a significance level o f p<0.05 

was performed using SYSTAT 10 (Systat Software, Inc., San Jose, California USA). A 

Tukey-Kramer test was used to determine differences between treatments when there 

were significant effects. Regressions o f oxygen consumption were compared with an 

analysis of co-variance (Zar, 1999) using SigmaPlot 11 and SYSTAT 10 (Systat 

Software, Inc., San Jose, California USA).

Results

Experiment 1. The effect of sedimentation on embryo survival

There were no significant differences in survival among the control (83%) and 

0.25 and 1.00 g sediment treatments (75-76%, p>0.67S; Table 2). The highest sediment 

treatment (6.00 g) had a significantly lower survival (53%, p=0.018; Table 2) than the 

control. The sediment was primarily composed of inorganic material (96, 96, and 97% 

for the 0.25,1.00, and 6.00 g treatments, respectively). The average DWs, ADWs, and 

AFDWs, for the sediment treatments are presented (Table 2). The relative proportion of 

sediment at a corresponding grain size index is indicated in Appendix A.

Experiment 2. The effect of sedimentation on embryonic respiration

A linear function described the oxygen consumption by control embryos and 

those under sediment (Fig. 1, Appendix B) on each of the occasions (DPP) when the 

measurements were made. An analysis of co-variance on oxygen consumption indicated 

that embryos under the sediment treatment consumed oxygen at a significantly faster rate
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than the controls (p<0.001 for all days; Fig. 1, Appendix C). Consumption under the 

sediment treatment increased with age (Fig. 2, Appendix B) and oxygen concentrations 

fell below 5 pmol O2 in 12.1, 4.7, 3.5, and 2.1 hrs for embryos 22, 25, 27, and 29 DPF, 

respectively. All embryos removed from the sediment and examined after the completion 

of the experiment were all found to be alive.

Oxygen levels below the sediment without embryos fell below 5 pmol O2 in 34.9 

hrs. The vertical profile indieated levels of unchanging oxygen concentration (45 gmol 

O2), 3-7 mm above the sediment-water interface (Fig. 3). Ahove this area the oxygen 

concentrations rapidly increased, while below the sediment-water interface the oxygen 

concentration decreased to near anoxia (Fig. 3).

Experiment 3. The effect of periphyton communities on embryonic survival

Embryos incubated without periphyton had significantly higher survival (99%, 

p<0.004) than embryos incubated on either “natural” (95%) or “cultured” (85%) 

periphyton from the Squamscott River (Table 3). Embryos incubated on the “cultured” 

periphyton had a significantly lower survival (p=0.005) than those incubated on “natural” 

substratum (Table 3). One cultured sample was calculated to be an outlier and was 

excluded from further analysis. Both periphyton communities were primarily comprised 

of inorganic material (ADW >78%) but the “cultured” periphyton had a significantly 

higher organic (AFDW) component (p=0.004; Table 3). “Natural” periphyton was 

primarily comprised of diatom genera (77%), the genus Navicula comprised 58% of the 

total (Table 4). “Cultured” periphyton was primarily comprised of cyanobacteria (50%) 

and dominated by Oscillatoria (33%) anà Anabaena (17%). Diatoms comprised (46%)
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of the total composition (Table 4). Diatoms were observed adhering to the chorions of 

live embryos from all periphyton treatments.

Experiment 4. The effects of periphyton and sedimentation on embryo survival

Embryos incubated on periphyton, with or without additional sediment, from the 

Squamscott River had survival (49-55%) that was not different from the control (61%, 

p>0.306; Table 3), while those incubated on periphyton from the Crane River had 

significantly lower survival (17%, p<0.001; Table 3). Hatching success did not differ 

among treatments (p=0.117; Table 3). The periphyton from both rivers was primarily 

composed of inorganic material (>91%) but the periphyton from the Crane River had a 

significantly higher (p<0.001) biomass (DW, ADW) than that from all other sources 

(Table 3). Periphyton from both rivers were primarily comprised of diatom genera 

(96%). The genus Synedra comprised over 67% of the total (Table 4). Diatoms were 

observed adhering to the chorions of live embryos from all periphyton treatments. This 

was especially true of those from the Crane River, some of which were completely 

surrounded by diatoms, predominately Cymbella sp.

Experiment 5. The effects of periphyton and eutrophying compounds on embryo 

survival

No significant differences were found in survival (p=0.967) or hatch (p=0.909) 

among treatments containing periphyton or eutrophying compounds compared to controls 

(Table 3). Periphyton was primarily composed of inorganic material (>82%) and had a 

biomass (DW, ADW) that was significantly lower (p<0.001) than the sample from the
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Crane River collected a week earlier (Experiment 4). Periphyton was primarily 

comprised of diatoms (93%), especially Synedra (57%; Table 4). As in Experiment 4, 

diatoms, predominately Cymbella sp., were found adhering to the embryos from the 

Crane River treatments.

Experiment 6. Oxygen concentrations in the micro-environment of embryos

Embryos incubated on both “cultured” and “natural” periphyton experienced 

oxygen concentrations that cycled during the periods of light and darkness (Figs. 4 and 

5). Oxygen levels dropped below saturation (251 pmol 0%) during dark hours but rose 

considerably during simulated daylight (Figs. 4 and 5). Control embryos remained at or 

above saturation throughout the light cycle (Figs. 4 and 5). In the “cultured” periphyton 

the highest average oxygen concentrations o f  each day ranged 257-304 pmol O2 in the 

light and the lowest ranged 204-232 pmol O2 in the dark (Fig. 4). On the “natural” 

periphyton the highest average o f each day ranged 393-556 pmol O2  in the light and the 

lowest ranged 0-243 pmol O2 in the dark (Fig. 5). Periphyton composition is shown in 

Table 3. A portion of the embryos were noted to have hatched following culture on both 

periphyton communities.

Standing periphyton biomass

Periphyton biomass (DW, ADW, and AFDW) was variable among rivers in the 

three states and within rivers sampled temporally (Table 5). The highest periphyton 

biomass was recorded from the Crane River (MA), while low levels were present in Mast 

Landing (ME) and Deer Meadow Brook (ME) Rivers (Table 5).
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Discussion

The importance of sufficient oxygen levels for normal development and 

embryonic survival has been demonstrated for a number of fish species including 

Walleye {Stizostedion vitreum; Oseid and Smith 19716), lake herring (Coregonus artedii; 

Brooke and Colhy 1980), and steelhead trout (Salmo gairdneri; Rombough 1988). The 

effects of low DO levels are often most evident during the more advanced stages of 

embryonic development, when oxygen demands are highest (Rombough 1988, Louhi et 

al. 2008). The developing embryo acts as an “oxygen sink” so that even at relatively high 

water velocities, the partial pressure of oxygen at the embryo surface may be much less 

than that o f the surrounding water (Daykin 1965). In pristine settings, the cold, fast 

moving river water in which smelt spawn would be fully oxygen-saturated and should not 

hinder hatching success. The presence of dams or other obstructions to water flow, as 

well as sediment, periphyton, and detritus accumulation, may limit oxygen availability, 

however. The effects of reduced oxygen availability on embryo survival have not been 

investigated in natural settings but long-term exposure to poorly oxygenated water was 

shown to reduce smelt hatching in laboratory studies (Fuda et al. 2007).

In the present study, a covering of sediment (~1 mm) over a 6-day period, 

significantly reduced embryo survival. Sedimentation has also been shown to negatively 

impact other teleost species, particularly salmonids, which have been studied extensively 

(Shelton and Pollock 1966, Olsson and Persson 1988, Meyer 2003, Lapointe et al. 2004). 

For instance, in laboratory and field studies, large amounts of fine sediment were shown 

to significantly reduce embryo survival of Atlantic salmon {Salmo salar; Peterson and
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Metcalf 1981), fall-chinook {Oncorhynchus tshawytscha; Shelton and Pollock 1966), and 

Coho salmon {Oncorhynchus kisutch; Meyer 2003). Fine sediment has been shown to be 

detrimental to survival in these species because it reduees gravel permeability and oxygen 

delivery to the eggs (Louhi et al. 2008). Furthermore, fine sediment adheres to the 

chorion (Stuart 1953, Iwamoto et al. 1978) and physically obstructs micro-pores thereby 

restricting oxygen exchange.

In a study by Grieg et al. (2005), oxygen consumption by embryonic Atlantic 

salmon {Salmo salar) was reduced under a thin layer (<1 mm) of combusted sediment 

and reduced further with greater amounts of sediment. The decrease in oxygen 

consumption was due to the sediment creating a zone o f reduced oxygen availability 

which reduced the exchange of oxygen Ixom the macro-environment to the embryo 

(Greig et al. 2005). In whitefish {Coregonus sp.), eutrophication is a major factor 

influencing egg mortality in lakes, and survival is lowest when eggs are in contact with 

fine, muddy sediments (Lahti et al. 1979). Winter storms and bottom currents bury the 

eggs in sediment, which restricts oxygen transfer to the developing embryo (Venting- 

Schwank and Livingstone 1994). Significant mortality o f Atlantic herring (C/npea 

harengus) embiyos was also observed following a precipitating phytoplankton bloom 

(Morrison et al. 1991).

In addition to restricting oxygen deliveiy through advection, respiration and 

oxygen uptake by particulate organic carbon (POC) and sediment can deplete DO in 

riverine systems and generate near anoxic levels at the substrate water interface 

(Jorgensen and Revsbech 1985). Reduced embryonic survival may result if developing 

embryos are deposited on, or covered by a layer of this respiring material, as oxygen
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transport to the embryo will be diminished by the low DO concentration gradient in the 

microenvironment. Both advection and sediment respiration are believed to be 

responsible for low oxygen conditions experienced by whitefish (Lahti et al. 1979, 

Wilkonska and Zuromska 1981, Venting-Schwank and Livingstone 1994) embryos in 

eutrophic lakes. The sediment used in the present study, although dried, sterilized, and 

aerated, depleted oxygen in the micro-environment directly above the sediment. In 

natural settings, smelt embryo survival may be impacted under thinner sediment layers 

than found in the present studies because un-sterilized sediment would likely harbor 

respiring microbes that would further deplete oxygen availability.

Periphyton communities can also affect the DO concentration in an embryo’s 

micro-environment, as the assemblage of microorganisms that comprise the periphyton 

(algae, protozoans, and bacteria) can act as both a source and sink for oxygen (Mclntire 

1966, Carlton and Wetzel 1987). Due to photosynthesis, water can be supersaturated 

with oxygen during the daylight hours, but approach anoxia in the dark from net 

respiration (Mclntire 1966, Carlton and Wetzel 1987). Diumal DO fluctuations were 

found in the present study, but the extent o f the fluctuation depended on the periphyton’s 

algal composition. The DO concentration in the proximity of the “cultured” community, 

which was comprised approximately equally of cyanobacteria and diatoms ranged from 

80-120% saturation, while that near the “natural” community, which was comprised 

almost entirely of diatoms, ranged from near anoxia to 240% saturation. Although 

greater oxygen depletion was associated with the “natural” periphyton, <36 hr periods of 

anoxia were not shown to affect embryonic smelt survival in this study.
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Toxins produced from cyanobacteria have been shown to adversely affect teleost 

embryonic development, hatching and larval survival, although the severity of the effects 

appear to be species dependent. For instance, in one study, the effects of exposure to 

purified cyanobacterial toxins and cyanobacterial extracts were more pronounced in 

rainbow trout {Oncorhynchus mykiss; Oberemm et al. 1999) and zebrafish {Danio rerio\ 

Keil et al. 2002, Beny et al. 2007), than in indigenous species such as roach {Rutilus 

rutilus), bream {Abramis brama), chub {Leuciscus cephalus), and stone loach (Cobitis 

taenia; Oberemm et al. 1999). The protective capacity of the chorion to toxins differs 

among species (Cazenave et al. 2006) and adaptive resistance to some toxins has also 

been demonstrated (Wirgin and Waldman 2004, Yuan et al. 2006). The effects of 

cyanobacteria toxicity resulting from harmful algae blooms has been most widely studied 

on adult fish and other aquatic organisms but fewer studies have focused on short-range, 

benthic interactions with teleost embryos. In the present study, significantly lower 

survival was found with smelt embryos cultured in the presence of periphyton containing 

higher proportions of cyanobacteria, compared to eontrols (85 vs. 95%). It is unclear, 

however, if  smelt would encounter periphyton with such high cyanobacteria content in 

the wild, as the algae species composition changed significantly during culture.

The standing biomass of periphyton among and within smelt-spawning rivers in 

New England appears to be highly variable and temporally unstable. Periphyton 

distribution can be affected by light intensity, substrate type, temperature, nutrient levels, 

and grazing invertebrates (Trainor 1978). Although no organized sampling protocol was 

followed in the present study, periphyton samples collected 7 days apart from the same 

general location in the Crane River differed greatly in terms of biomass. The high
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biomass from the Crane River samples was comprised primarily of inorganic matter but it 

is not known if this was from silica comprising the diatom walls or sediment and detrital 

matter trapped by mucilage and mucilaginous stalks secreted by the diatoms (Karlstrom 

1978, Hoagland et al. 1982, Roemer et al. 1984). Embryo survival was significantly 

lower only when incubated on periphyton with the highest biomass but was unaffected by 

the presence of lower amounts of similar periphyton, or samples to which sediment or 

eutrophying compounds (nitrates, phosphate) were added. The reasons for the increased 

embryo mortality are unknown, and representative periphyton availability prohibited 

direct comparisons among these samples. Additional studies are required to examine the 

quantity and composition of periphyton communities in smelt spawning rivers and to 

determine their possible impacts on smelt survival.

In summary, survival of rainbow smelt embryos was lower when cultured under a 

sediment layer, periphyton o f high biomass, or periphyton containing significant 

cyanobacteria populations. Reduced survival may have been due to prolonged exposure 

to low oxygen conditions resulting from compromised advection and substrate 

respiration.
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Table 1 Adult rainbow smelt Osmerus mordax collection sites in Massachusetts, New 
Hampshire, and Maine, from the 2007 and 2008 spawning seasons 

Year______________ River (City, State)____________
2007 Oyster River (Durham, NH)

Bellamy River (Dover, NH)
Fore River (Braintree, MA)

2008 Squamscott River (Exeter, NH)
Winnicut River (Greenland, NH)
Salmon Falls River (Dover, NH)
Lamprey River (Newmarket, NH)

____________ Damariscotta River (Damariscotta, ME)

Table 2 Experiment 1. Mean (±SE) survival (%) rainbow smelt embryos under different 
levels o f sediment and dry weight (DW), ash dry weight (ADW), and ash free dry weight 
(AFDW) of sediment treatments, expressed as g/m^ and %. Different letters indicate

Treatment % Survival DW ADW 
(% inorganic)

AFDW 
(% organic)

Control 82.4 ± 5.9= - - -

0.25 g 76.2 ± 4.6= " 54.3 ± 0.2 51.9 ±0.3 
(97.5)

2.4 ± 0.0 
(4.3)

1.00 9 75.5 ± 5.8= " 216.4 ±0.4 208.1 ±0.7 
(96.2)

8.3 ±0.3 
(3.8)

6.00 g 53.6 ±4.1" 1296.5 ±3.7 1261.2 ±5.4 
(97.3)

35.3 ±2.7 
(2.7)
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Table 4 Relative abundance (%) estimate o f  periphyton cell types by genera from 
Experiments 3-5. Bottom division combines genera into more inclusive groupings, 
cyanobacteria, diatoms, green algae, and red algae. Data are from triplicate cell counts of 
at least 300 cells. ' indicates periphyton from the “natural” standing community, ^

Genus

Experiment
3 3 4 4 5

Sguamscott’ Squamscott^ Squamscott^ Crane’ Crane’
Anabaena 0 17.71 0 0 0

Lyngbia 0 0 0.17 0.09 0.30
Oscillatoria 2.25 33.27 1.00 2.94 5.14
Cymbella 0 0 0 1.84 13.65
Eunotia 0 0.59 0.92 4.88 2.57

Fragllaria 0 0 0 0 0
Gomphonema 0 0 0 0.74 2.57

Gyrosigma 0 0 0 0.37 0.10
Melosira 0 0.68 0 0 0
Meridian 0 0 3.34 9.29 6.23
Navicula 58.69 14.97 4.50 6.07 5.24
Surirella 0 0 0 6.16 ' 5.54
Synedra 10.74 2.05 86.99 67.16 57.76

Tabellarla 0.39 2.64 0.50 0.00 0
Asymmetric diatom 2.25 0.29 0 0 0

Pennate diatom 5.47 24.85 0 0 0
Mougeotia 0 2.94 0 0 0

Ulothrix 19.92 0 2.59 0 0
Batrachospermum 0 0 0 0 0.30

Rhodochorton 0 0 0 0.46 0.59
Cyanobacteria 2.25 50.98 1.17 3.04 5.44

Diatoms 77.83 46.09 96.25 96.50 93.67
Green Algae 19.92 2.94 2.59 0 0
Red Algae 0 0 0 0.46 0.89
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Table 5 Mean (±SE) dry weight (DW), ash dry weight (ADW), and ash free dry weight 
(AFDW) of standing periphyton biomass from Massachusetts (MA), New Flampshire 
(NH), and Maine (ME) expressed as g W . Samples were taken during the smelt

State River Date DW
ADW 

(% inorganic)
AFDW 

(% organic)
41.0 ±8.7 17.7 ±7.2

ME Tannery Brook 6-May-08 58.8 ± 14.8 (72.5) (27.5)
0.4 ± 0.4 0.1 ±0.1

ME Mast Landing* 9-Apr-08 0.5 ±0.4 (85.7) (14.3)
0.1 ±0.0 0.1 ±0.0

ME Deer Meadow Brook* 9-Apr-08 0.2 ±0.0 (44.4) (55.6)

13.9 ±3.3 1.4 ±0.2
NH Squamscott 24-Mar-08 15.3 ±3.4 (90.3) (9.7)

32.3 ±5.0 2.9 ±0.3
NH Squamscott 5-Apr-08 35.3 ±4.8 (91 .1) (8 .9)

4.3 ±2.4 2.7 ±2.3
NH Winnicut* 5-May-08 7.0 ±4.8 (73.3) (26.7)

1.5± 1.1 0.3 ±0.1
NH Lampery 5-May-08 1.8±1.2 (68.5) (31.5)

7.1 ±3.8 1.1 ±0.6
NH Bellamy 6-May-08 8.2 ±4.0 (86.3) (13.7)

54.3 ± 13.9 7.6 ± 1.6
NH Oyster 6-May-08 72.0 ±14.8 (89.2) (10.8)

69.4 ± 22.5 6.3 ±0.7
NH Squamscott 7-May-08 75.7 ±21.9 (88.4) (11.6)

114.2 ±50.9 65.2 ±61.3
NH Salmon Falls 7-May-08 179.5±111.2 (83.3) (16.7)

235.8 ± 18.2 15.8 ±5.0
MA Crane 5-Apr-08 251.5 ±22.5 (94.1) (5.9)

103.5 ± 17.5 21.1 ± 1.8
, MA Crane 18-Apr-08 124.6 ±17.5 (82.1) (17.9)

163.2 ±33.8 6.5 ±0.7
MA Saugus 11 -May-08 169.7 ±34.3 (96.5) (3.5)

107.3 ±25.7 12.9 ±3.0
MA Crane 11-May-08 120.2 ±60.1 (89.1) (10.9)

86.5 ± 37.0 15.0 ±3.9
MA Mill 11-May-08 101.5 ±40.2 (79.8) (20.2)

24.5 ±9.1 2.6 ±0.7
MA Parker 11 -May-08 27.1 ±9.8 (89.1) (10.9)

158.9 ±56.1 6.5 ± 1.4
MA Little 11 -May-08 165.4 ±57.5 (95 .2 ) (4.8)
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Fig. 1 Regressions of decreasing mean (±SE, n=100) oxygen concentration (gmol O2) 
over time from 10 rainbow smelt embryos with no sediment (open circles, control) and 
covered with 0.45 g sediment (filled circles, treatment), 22, 25, 27, and 29 days post 
fertilization (DPF). Linear portions of the regressions were estimated visually and 
regression equations are indicated. Asterisks indicate statistical differences between the 
controls and treatments, determined by analysis of co-variance
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Fig. 2 Regressions of decreasing oxygen concentration (gmol O2) of 10 rainbow smelt 
embryos covered with 0.45 g sediment, 20, 22, 25, 27, and 29 (DPF). Each point 
represents a mean reading (±SE, n=100)
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Fig. 3 Vertical oxygen profile (pmol O2) above and below a sediment layer (0.45 g 
sediment) with no embiyos present (±SE, n=2). Shaded area indicates sediment layer
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Fig. 4 Mean (±SE, n=100) dissolved oxygen (DO) concentrations (|xmol 0%) measured 
from embiyos with (filled circles) and without (open circles) “cultured” periphyton 
(Experiment 6) during a 12 light (L):12 dark (D) light cycle. Time during L (900 Lux) 
and D (0 Lux) phases represented by unshaded and shaded backgrounds, respectively. 
Dashed line indicates 100% saturation, 251 pmol O2
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Fig. 5 Mean (±SE, n=100) dissolved oxygen (PO) concentrations ()amoI 0%) measured 
from embryos with (filled circles) and without (open circles) “natural” periphyton 
(Experiment 6) during a 12 light (L):12 dark (D) light cycle. Time during L (900 Lux) 
and D (0 Lux) phases represented by unshaded and shaded backgrounds, respectively. 
Dashed line indicates 100% saturation, 251 pmol O2
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APPENDICES

■o) distribution estimate
Grain Size (um) %
211 < X < 300 29.6
110 <X<211 29.3

X< 110 41.0

Appendix B Linear regression analysis of oxygen consumption as a function of change 
in oxygen concentration (y, pmol O2 ) per unit time (x, hr), in a 5 mL beaker containing 
10 rainbow smelt embryos. The control received no sediment; the sediment treatment 
received 0.45 g sediment. Experiments were conducted for multiple days post

DPF I  reatment Equation n R: P ...
20 Control y = -15.008x + 248.511 18 0.998 < 0.001
20 Sediment y = -34.961x + 238.639 18 0.975 < 0.001

22 Control y = -5.753X + 240.305 35 0.994 < 0.001
22 Sediment y = -24.888x + 223.892 35 0.980 < 0.001

25 Control y = -9.700x + 241.156 19 0.997 <0.001
25 Sediment y = -37.546x + 158.874 19 0.931 <0.001

27 Control y = -8.882X + 227.342 14 0.954 < 0.001
27 Sediment y = -57.681x+ 180.322 14 0.952 < 0.001

29 Control y = -9.149x + 233.017 8 0.989 <0.001
29 Sediment y =-91.447X+ 177.928 8 0.976 < 0.001

Appendix C Analysis of co-variance comparing the oxygen consumption of 10 embryos 
(control) and 10 embryos that received a sediment treatment (0.45 g). Oxygen 
consumption is expressed as a function of change in oxygen concentration (y, pmol O2) 
per unit time (x, hr), multiple days post fertilization (DPF)

DPF
20 y = 24.984X -  243.575 666.7 3, 10 < 0.001
22 y = 15.320X-232.098 497.5 3, 22 < 0.001
25 y = 23.623x-200.015 741.4 3, 32 < 0.001
27 y = 33.282X -203.832 1729.0 3,64 < 0.001
29 v = 50.298X -205.473 393.2 3, 30 < 0.001
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