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ABSTRACT

EVALUATING SCALE TO ACHIEVE OPTIMAL IMAGE CLASSIFICATION

ACCURACY IN NEW HAMPSHIRE FORESTS
By

Brianna L. Heath

University of New Hampshire, December, 2008

New England forest complexity creates obstacles for land cover
classification using satellite imagery. New methodologies such as object-
oriented image analysis exhibit potential to improve classification. Although
these methods have proven more accurate than traditional methods, it has been
unclear what resolution yields the most accurate classification. As high
resolution imagery increases classification difficulty and lower resolutions may
not provide sufficiently detailed maps, this study explored the use of object-
oriented classification to classify several resolutions of satellite imagery (Landsat
TM, SPOT, IKONOS) at various spatial scales.

Although Landéat TM imagery yielded the highest accuracy, all
classification results were unacceptable for practical use. While classification
was inaccurate, segmentation successfully delineated forest stands. A

comparison of 1-foot resolution aerial photography and 4-meter resolution

ix



IKONOS imagery demonstrated little agreement between segmentation of
individual tree canopies. This study indicates that finer resolution imagery is

needed for segmentation and classification of individual trees.



INTRODUCTION

Meaningful scientific research is dependent on accurate data collection
and analysis. 'Historically, forest classification and data collection have been
accomplished through site visits and increasingly using.remote sensing, in the
forms of aerial photography and satellite imagery. Both are more efficient than
~ sampling via site visits, which is costly and lacks total enumeration. In addition to
an increased extent, remote sensing is capable of detecting more information
than a hﬁman observer. Improved technology has led to an increase in both
spectral and spatial resolution. Gommercially available satellite imagery from
Satellite Pour I'Observation de la Terre (SPOT) can achieve spatial resolutions
as high as 5 meters (SPOT 2007) and GeoEye and Digital Globe data at 4
meters multi-spectral and 1-meter panchromatic (GeoEye 2007). This increase
in spatial resolution brings forest classification via satellite imagery from a stand
level (e.g. mixed forést) to a tree species level (e.g. hemlock). The ability to
sense the environment at larger spatial scales begs the questions: what is the
most appropriate scale for a particular analysis? At what spatial resolution is the
highest degree of accuracy achieved?

New England forests are very complex and composed of a variety of
species often within a single stand (Martin et al. 1998). These stands are often
classified as “mixed forest” using a classification scheme for mapping from

remotely sensed data. Mixed forest classification discounts any species



differences, which makes it difficult, if not impossible, to determine species
composition, which would be valuable information for a forester. Fine-resolution
satellite imagery increases the amount of information available by allowing the -
identification of individual trees. While this increase improves the quantity of
information available, it can create quality issues in ferms of classification.
Tfaditionally, land-cover classification has been approached with a single pixel
method. Digital satellite imagery is essentially an equal area grid of squares

| (pixels), where each pixel is given a single value that symbolizes an averaging of
everything on the ground “within” thAat square. Land-cover classification has
treated these pixels as independent of neighboring pixels. The object-eriented
approach to land-cover classification groups relates pixels based on
predetermined parameters and characteristics. By considering neighboring
pixels, this analysis can potentially identify objects at various scales (i.e.,
grasslands or individual trees) (Benz et al. 2004).

Although more accurate than single pixel classification (Lennartz 2004),
lar_ge‘-scale, object-oriented analysis presents several problems relating to
accuracy. Resolution is currently such that a single tree and its shadow may fall
within two distinct pixels, each with vastly different spectral properties. An object-
oriented analysis would not consider these pixels as similar, even though they
belong to the same tree. Therefore, a question arises not only as to what scale
should be considered (e.g., stand or individual tree), but what spatial resolution
should be used? The smallest measurement made on a map, the pixel size

(spatial resolution) could be realistically small enough to detect an individual tree,



or large enough so only landscape features are mapped. In the previous
example, the use of a small pixel at a large scale (e.g., individual tree) would lead
to the misclassification of the tree and its shadow. A study of optimal pixel sizle in
land-cover classification using spectrometry data found that the smallest pixel did
not necessarily yield the most accurate results (Rahman et al. 2003).

This study focused on identifying the most appropriate scales and spatial
resolutions for land cover classification of Pawtuckaway State Park in
southeastern New Hampshire, using high-resolution satellite imagery and object-
oriented classification. The ultimate goal of this study was to aid satellite imagery
users in achieving the most accurate land-cover mapping by allowing them to
select the most effective combination of image scale and spatial resolution. The
objectives for this research were to:

e create reference maps at three scales (i.e. large stand/2-acres, small
stand/30-meters x 30-meters and individual tree).

e generate object-oriented maps from Landsat, SPOT and IKONOS imagery
to test the effect of spatial resolution.

e compare the reference maps with the object-oriented maps to 1) assess
the accuracy of each scale and 2) develop guidelines regarding the
appropriate selection of imagery based on desired level of detail and

accuracy.

More accurate data translates into more accurate planning and, often,

better decision making. The results of this research could have wide reaching,



interdisciplinary ramifications from natural resources (e.g., forestry or wildlife
‘management) to engineering (e.g., development or land-use plans) and possibly

beyond.



CHAPTER |

LITERATURE REVIEW

Background ‘
From the first photograph taken by balloon to the multi-million dollar

satellites that now orbit the planet, rerhote sensing has vastly improved our ability
to record our environment. Remote sensing, or gathering information about
something without touching it, has its roots in aerial photography. Chemically
sensitive film types allow users to look into the infrared spectrum beyond what
human eyes can remotely sense, allowing for data collection that would
otherwise be impossible. |

With the launch of the first commercial US satellite, Landsat 1, in July of
1972, remote sensing made a tremendous leap from privately flown, expensive
photography to widely available satellite imagery. Although Landsat 1 was
relatively short lived, it represented a new era, where multispectral sensors
became the priméry medium for the data collection frenzy that would follow in the
next decades.

After a year in operation, Landsat 1 was replaced by Landsat 2, and then
replaced by Landsat 4 and, subsequently Landsat 5, with the USGS and NASA
sponsored program placing the most recent satellite, Landsat 7, into orbit in 1999.

Although the Landsat program répresents the longest continuously operated



satellite remote sensing program in the world (USGS and NASA 2008), it is only
one of many remote sensing piatforms providing imagery to commercial and
private entities. Built and launched by countries around the world, these
-satellites represent a range of resolutions and image scene siées. For example;
Landsat 1 was capable of acquiring imagery with an 80-meter spatial resolution
in its multispectral bands. The} IKONOS satellite, launched in 1999, is capable of
capturing panchromatic imagery with 1-meter resolution (GeoEye 2067). The
French SPOT 5 satellite imagery can be pan-sharpened to create 2.5-meter
resolution images (SPOT Image 2007).

Satellite imagery is corhposed of bands, each able to sense in a different
region of the electromagnetic spectrum. A more modern satellite, Landsat |
Thematic Mapper (Landsat TM) captures data in 7 bands: blue, green, red, near
infréred, middle infrared, thermal infrared and another middle infrared,
respectively. SPOT 5 imagery is characterized by 4 bands: green, red, near
infrared and middle infrared. The IKONOS instrument also senses in 4 bands:
blue, green, red and near infrared.

Despite the range in satellite imagery resolutions, demand continues to
exist for improved technology and more data acquisition. High demand has led
to a steady increase in both spatial and spectral resolution, incIuding the
development of sub-meter sensors and hyperspectral imagery. Digital
processing methods, aimed at achieving the most accurate information extraction,
have similarly developed to accommodate newer iméging techniques. However,

many of these methodologies are still rooted in techniques of photointerpretation



substituting the traditional term of minimum mapping unit for terms such as
“spatial resolution.”
Demand for improved resolution is intensified by the considerable scope

of professions and applications that employ the use of satellite imagery. While
| many professions can benefit from remote sensing, much of its use has
traditionally focused in military applications and the agriculture and natural
resource disciplines (e.g., McCabe and Wood 2006). Other applications can
include crop health assessment, timber management and water resource
management, all of which include a land cover mapping component achieved

through digital image processing. -

Digital Image Processing

Advances in computer hardware, software and overall processing speed
have facilitated the transition from analog images to digital ortho-imagery, a more
flexible and useful data format widely ‘used in land-cover classification. The
optimal use of digital ortho-images for land cover classification purposes |
depends upon appropriate acquisition, correct processihg and successful data
exploration. |

Acq'uisition of satellite image acquisition is dependent upon project goals
and weather conditions. Ideally, images would be collected on a cloudless day to
prevent shadows and/or missing data due to impenetrable cloud cover. Inthe
hardwood forests of the northéast, season of image acquisition (e.qg., leaf-on or

leaf-off) can considerably affect the land cover classification results (Schriever



1992). An image acquired during leaf-off would render hardwood species
classification challenging, if not impossible, but may still be useful for delineating
coniferous species. Animage acquired during senescence, on the other hand,
may depict stark differences in hardwood species canopies.

Selection of spectral and spatial resolution for an image to be used in
land- cover classification is largely dependent upon desired scale, and is the

focus of this thesis.

Pre-processing — After acqui‘rihg the appropriate satellite images, each image
"must be geometrically rectified to account for setellite/sensor movement,
curvature of the earth and terrain variations on the ground. As nearly all ground
metrics (e.g., shape and distance) are sensitive to geometric distortions, the
integrity of a map depends upon successful rectification to correct these
distortions. Several rectification methods exist, although orthorectification has
proven the most complete, as it accounts for terrain variation. Rocchini and
DiRita (2005) found that although other rectification techniques performed well on
unvarying terrain, only orthorectification performed well, regardless of terrain.

In addition to geometric corrections, rectification assigns a coordinate
system (x,y) to the image, an important step for future image to image or image
to map registration (Plourde 2000, Leica Geosystems 2005). Image registration
is often accomplished through the use of ground control points (GCPs). GCPs
are known points that can be identified in the imagery and on an existing map or

via Global Positioning System (GPS) on the ground (Jensen 2005). Correct



image registration; or the proper alignment of two images to a like coordinate
system, is of paramount importance to the accuracy of land cover classification.
Misalignment of the land cover classification map and the reference data could
underestimate classification accuracy. Verbyla and Boles (2000) found that
misregistration by introduced positional error caused up to a 33% change in
classification of a Landsat TM image, when compared to the original
classification. Studying the effect of misregistration on change detection, Dai and
Khorram (1998) calculated that a registration accuracy of 1/5 of a pixel is needed

to obtain less than a 10% error.

Data exploration —Data exploration, often referred to as the heart of Geographic
Information Systems (GIS) (Plourde 2000), involves gaining an understanding of
the imagery in terms of spectral pattern response to land cover. The purpose is
to become familiar with thé imagery, for a better understanding and interpretation
of results.

Data exploration at its most rudimentary level involves visual inspection of
the image (Plourde 2000). Generally, this includes color composite creations
and variations to find band combinations that best distinguish between cover

| types or minimize atmospheric effects. Often the most useful composites contain
some combination of visible light, middle infrared (MIR) or near infrared (NIR)
bands.

Histogram analysis (plotting color response) and spectral profiles (plotting

brightness response) can aid in the understanding of the spectral properties of



the bands and the image as a whole (Jensen 2005). Unlike an ideal world where
all objects would reflect large amounts of varying energy, the landscape objects
often reflect relatively similar amounts of energy, resulting in a low-contrast
image. Contrast enhancement allows for the entire range of brightness to be
used (Jensen 2005) and can be simply accomplished in image processing
software, such as ERDAS IMAGINE.

The derivation of additional bands from existing bands can provide useful
indices, commonly based on the properties of vege’;ation; which draw from the
knowledge of leaf physiology to provide “...dimensionless, radiometric measures
that indicate relative abundance and activity of green vegetation...” (Jensen
2005). These derived bands (aka vegetation indices) can provide insights into
biology (such as vegetation health) and aid in the automated, or software-based,
classification of land cover. The Normalized Vegetation Index (NDVI) is a band
ratio derived from the difference between the NIR band and the red band, divided
by the sum of both (Jensen 2005)». NDVI has been used as a seasonal gauge of
vegetation activity and as is can reduce noise and spectral variation across an
image (Jensen 2005).

With a multitude of potential combinations of bands and indices, a means
of determining the most useful bands can be key to a successful classification.
One such means is a separability, or divergence, analysis which plots each
bahd’s spectral response by class or cover type (Figure 1). This analysis can
measure the class separability exhibited by each band. In the example below,

the greatest separability exists within the NIR band. The separability indicates

10



that the NIR band is an important band to use when distinguishing between
species. Selecting the most suitable bands for classification reduces the
processing time and dimensionality (Jensen 2005), preventing excessive

complication for the researcher.

Mean Spectral Response of New England Forest Species

900 -
800 -

700 -

—e—beech
—=— non-forest
oak
——other
—w—red maple
—e— white pine

600 -

500 -
400 -

Spectral Response

300 -

200 -

100 -

Mean NIR Mean blue Mean green Mean red

Figure 1. Sample mean spectral response (nm) based on an IKONOS
image of six cover type classes.

Bi-spectral plots are also helpful to distinguish class spectral differences at
a finer level. A bi-spectral plot (Figure 2) consists of two axes, each representing
the spectral reflectance of a given band. The bi-spectral plot allows the
researcher to determine which band is most useful for distinguishing differences
between land cover types or species. Pixels are plotted based on their spectral
reflectance properties, allowing a researcher to identify the “feature” space that a
particular land cover class occupies (Jensen 2005). More advanced feature
space analysis involves plotting spectral properties in the n’“ dimension,

representing n number of bands (Jensen 2005).
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Figure 2. Sample bi-spectral plot of land cover types based on Landsat TM
data.

Land Cover Mapping

Thematic land cover mapping is one of the most common uses of
remotely sensed data (Foody 2002). Its atiractiveness for land cover mapping
manifests itself in the data’s spatially continuous and map-like nature. Remotely
sensed maps provide us with “bird’s eye views,” which are not only visually |
attractive, but allow for easier understanding of spatial relationships (Congalton
and Green 1999). 'Land-cover mapping using remote sensing is possibly the only
feasible way to track change at the global scale. In the past, it has been
immensely valuable for tracking the land cover changes associated with the

effects of global warming (Vitousek 1994).

12




In addition to global scales, remote sensing can also be useful for local-

- scale land cover mapping, such as forest cover estimation (Boyd et al. 2002) or
land and water resource monitoring (Sawaya et al. 2002). These applications are
of special interest to many natural resources managers, because they can
provide informaﬁon on available habitat for wildlife, water resources for hydro-
management and forest composition. For example, Martin et al. (1998) used
remotely sensed imagery to classify individual tree species in Harvard Forest,
Massachusetts. Difficult to‘acquire thArough field mapping, these data would
provide a forester with information on not only a species’ presence or absehce,‘
but also their spatial distribution. Since land cover mapping via remote sensing
can be more efficient than field sampling (depending on the research question),
which lacks total enumeration, methodology is continually improving. The basic
components of land cover classification by remote sensing can be loosely
grouped into three stages: trai'ning stage, classification stage and the testing

stage (Foody 1999).

Training Stage — The success of any remotely sensed mapping effort is largely

dependent on the quality of data acquired during the training stage. Training
data forms the basis for the land-cover classification. A software program will
use training data, often acquired by ground visits or photo-interpretation, as
standards for classification during the allocation stage. Itis vitally important to

select training data sites that are representative of the desired class, as the

13



accuracy of the thematic map is dependent upon the quality of training data

(Congalton and Green 1999, Foody 1999).

Classification Stage — The classifiéation stage is guided by the training stage.
Classification is the process of extracting information from remotely sensed data,
comparing each pixel’s spectral signatures to training data and cIasSifying each
pixel toa catégory with which it shares the greatest class membership (Jensen
2005). More simply stated, it is the statistical grouping vof pixels into a class with
the most closely related pixel properties, as determined by the training data.
Classification consists of two parts: 1) labeling, which is guided by 2) a set of

rules.

Testing Stage — This stage is most appropriately described by the term “accuracy
assessment,” aé the value of any land cover map is a function of its accuracy,
which is determined during the testing stage. Accuracy of a land cover map can
more easily be thought of as “the degree of correctness” (Foody 2002:186). The |
testing stage is partially dependent upon the quality of the training data and the
classification scheme (Congalton and Green 1999). However, this stage is also
dependent on the quality and consistency of reference data, or what is believed
to be on the vground: Land cover maps generated via remote sensing are tested
against reference data (usually ground visited or photointerpreted) for

classification correctness and consistency, often expressed as a percentage of

14



agreement or using a Kappa coefficient of agreement (Story and Congalton 1986,

Foody 1999,‘ Lui et al. 2007).

Classification

The highest functionality of an image is achieved through information
extraction. Although it is data, imagery must be translated into meaningful
information (Jensen 2005), often thematic in nature. Land-cover classification, or
using pattern recognition of speciral response to allocate portions of an image
ihto pre-defined, discrete categories, is thematic information. Classification
techniques can be‘grou'ped into three broad categories: unéupervised

classification, supervised classification and hybrid classification.

Unsupervised Classification — Unsupérvised classification initially requires less
input from the researcher than supervised classification. Sométimes referred to
as clustering, unsupervised classification is the grouping of homogenous areas of
pixels into classes (Jensen 2005). Initially the researcher has only to define the
number of classes (categories) into which an image will be divided. Division
occurs based on specified parameters (usually spectral band properties of each
pixel). Algorithms then merge pixels into like groups (clusters), which are to
become classes. Once the clustering is complete, the researcher must become
engaged, and assign each cluéter a class, essentially labeling the clusters. A |
priori knowledge and appropriate interpretation is necessary for successful

unsupervised classification (Leica Geosystems 2005).

15



Supervised Classification — Closely guided by the resear;:her, supervised
classification is less computer-automated than unsupervised classification (Leica
Geosystems 200‘5). Successful supervised classification begins with training
data that must be collected based on a classification scheme with well defined
categories that are mutually exclusive, totally exhaustive and hi'erarchicél
(Congalton and Green 1999). Training sites, best if located in homogenous
areas, should be representative of the desired class. These sites are used for
statistics extraction V(Jensen 2005), which provides base information for each
class (e.g., pixel spectral responses) and also to acquaint the researcher with the
land cover. Guided by training statistics (the spectral and spatial properties
derived from training data) and knowledge of ground conditions, the researcher
identifies pixels representing recognized land cover classes (Leica Geosystems
2005). This identification “teaches” the computer the properties of land cover
classes, which can then be used in algorithms that effectively compare
unclassified pixels with the “known” pixels to allocate class labels.

Three commonly used supervised classification algorithms include the
parallepiped, minimum distance and maximum-likelihood algorithms (Jensen
2005). The barallepiped algorithm incorporates the variation of training pixels
when assigning values to unknown pixels, but may sometimes result in
unclassified values. The minimum distance algorithm, which does not produce

unclassified values, matches unknown pixels with the closest training data.
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Perhaps the most commonly used, the maximum-likelihood algorithm accounts

for both training pixel variation and similarity to training pixels.

Hybrid Classification — Hybrid classification is a combined
unsupervised/supervised approach to pattern recognition. Various hybrid
methodologies exist. Chuvieco and Congalton (1988) used a hybrid approach to
develop training statistics through the clustering of unsupervised and supervised
classification training fields (areas of known land cover), preserving the
advantages of both techniques while minimizing disadvantages. Bauer et al.
(1994) successfully applied the clustering technique to forest cover mapping in
Minnesota. Hybrid classification provides the power to locate and label training
areas using statistical clustering (unclassified) and then use those areas to
classify.the remaining unlabeled pixels (supervised). Hybrid classification’s
flexibility and higher accuracies than traditional classification (Chuvieco and
Congalton 1988, Bauer et al. 1994, Lo and Choi 2004) have resulted in its

widespread favor.

With all classification methodologies a common problem exists: mixed
pixels. Mixed pixels are the result of landscape heterogeneity (e.g., structural,
age, health and species differences). Regardless of pixel resolution, some
heterogeneity will exist within a pixel. This creates a fundamental classification
problem: the minority land cover within a pixel is not accounted for in the labeling.

Often, mixed pixels are more prevalent in an image than “pure” pixels, making
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traditional “hard” classification approaches inappropriate (Foody 1999). Fuzzy
set theory allows a pixel to have partial membe'rship to more than one class
(Jensen 2005). A user may set threshold values for class memberships, allowing
fpzzy methodology to mimic environmental imprecision and human logic.
ERDAS Imagine provides a fuzzy convolution tool that will “...assigh the center
pixel in the class with the largest total inverse distance summed over the entire
set of fuzzy classification layers” (Leica Geosystems 2005). For example, a
single pixel could be assigned partial membership to two or more classes (e.g.,
85% hemlock and 15% wetland). This partial value assignment provides more
insight into the make-up of mixed pixels. This fuzzy classification can then
reduce the “salt and pepper” effect (Leica Geosystems 2005) found in more rigid
classification schemes and also can allow for consideration pf the natural
variation within pixels by providing a more flexible interpretation of the
classification results. However, fuzzy classification will not necessarily improve

overall accuracy.

Error and Accuracy Assessment

The value of remote sensing data, particularly for land cover mapping,
was quickly realized by the scientific community. However, the first few decades
following the advent of satellite imaging were heavily focused on data collection,
with less regard for data quality. In fact, accuracy was often ignored if maps
looked or seemed accurate (Congalton and Green 1993). Although this mindset

resulted in a plethora of data, it set a poor standard for data accuracy, with the
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testing stage only recently becoming a standard inclusion in land cover mapping
procedure. Recently, much attention has focused on creating and meeting
accuracy standards, understanding and measuring accuracy (Sader et al. 1995,
Edwards et al. 1998, Congalton and Green 1999, Foody 2002) and developing
optimal accuracy methods of land cover mapping (Foody 2002, Lennartz 2004).
The importance of accuracy cannot be overstated; incorrect data can lead to
misinformed management decisions, which in turn could have prolonged and
widespread environmental ramifications.

There are many sources of error that have the potential to influence
accuracy. These contributing sources can be reduced into two categories they
affect: positional accuracy ahd thematic accuracy. Positional error refers to the
spatial location or coordinates of any given object or pixel. In other words: does
the map correctly idehtify the object’s ground location? Thematic accuracy refers
to the correctness of an object’s or pixel’s classification (Foody 2002) (e.qg. is the
tree the map classifies as a pine tree actually a pine tree). Positional error
affects the ability to correctly locate an object, but if an object is misrepresented
spatially, the likelihood of thematic error increases.

Sources of positional error vary widely, but are most commonly
considered when GPS is part of a project effort (e.g., training data collection and
ground referencing). When using a GPS, positional error affects the signal read
by the GPS’ antenna,.thereby éffecting the positional recording. Until 2000, the
primary éource of positional error was the U.S. military’s Selective Availability

(SA) system. Intentionally designed to corrupt satellite signals, the SA system’s
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aim was improved national security. As a result, GPS users were left with mUch
poorer accuracies.

Although the SA system is no longer active, satellite signal can still be
degraded. Signal bounce, the result of environmental factors, contributes to a
higher Position Dilution of Precision (PDOP). PDOP accounts for the
constellation of satellites, and is effectively a measure of signal reliability. Higher
PDOP numbers are indicative of decreased positional accuracy. Atmospheric
interference or delay (which can alter signal travel time), inaccurate clocks and
incorrect satellite orbit path can prove contributing factors in increased PDOP.
Although PDOP is affected by satellite condition and position, environmental
factors ére a primary source of positional error. Research has shown that
canopy cover and terrain both decrease positional accuracy (Deckert and
Bolstad 1996, Rubens et al. 2002). Canopy and terrain can both obscure a user
from satellite signal.

Data collection protocol also affects positional accuracy. Points can be
collected instantaneously or the GPS can be set to average the point location
‘over a specified period of time. Piedallu énd Gégout (2005) found that the longer
the averaging period (10 seconds compared to 1 second), the more accurate the
acquired point’s position, as it represents an average of multiple points.
Therefore, a trade-off between speed and accuracy is established.

Dependent upon positional accuracy, thematic error relates to the quantity
of cells in a map that are correctly classified when compared to the

corresponding reference data (Pontius 2000). Sources of positional and thematic
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error éan be found in all three component stages of land cover classification, with
some sources of error common to all three stages. A vast body of literature has
been generated in an attempt to recognize or eliminate these contributing
sourcés of error (Lunetta et al. 1991, Congalton 1991, Congalton and Green
1993, 1999). Although each land cover mapping effort has unique challenges
relative to Iandscapé and data availability, many sourcés of inaccuracy are
common regardless of budget, scale or landscape.

Training stage accuracy is adversely. affected by a number of factors.
First, data collection inconsistency can result in skewed or incorrect training data.
An inappropriate sampling scheme can result in data gaps or missing trends,
more commonly desbribed as samplé bias (Congalton and Green 1999). For
example, choosing to only gather reference data in easily accessible area during |
a ground visit will likely miss trends only found on rougher or steeper terrain,
which may be equally important for training purposes. Instead, the training data
samples would be biased towards flat groUnd.

Second, training stage error can also be affected by observer error.
Observer error is often as simple as collecting data in the wrong place, improper
labeling (e.g. incorrect tree identification during a ground visit) or the incorrect
photointerbretation of land cover features. It can also result from a
misunderstanding of the classification scheme, especially when dealing with
| complex classification schemes (Congalton and Green 1999).

Since training stage error can negatively affect classification accuracy, it is

important to minimize its impact with well designed sampling and classification
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schemes. Proper classification protocols can reduce some sources of error in
data collection, which may lessen confusion during the classification stage. To
minimize uncertainty and interpretation errors during data collection and
processing, classification should begin with well-defined categories. These
categories should be totally exhaustive, meaning no object is unable to be
classified. Often, the inclusion of an “other” category resolves this problem.
Categories should also be mutually exclusive: an object can only belong to one
category. Finally, these categories should be hierarchical in nature (Congalton
1991). Thus, a hemlock tree and a pine tree should both be within the coniferous
- tree category. |
Even using a well-defined classification scheme, some errors may be

inherent. Further, classification success may be invérsely related to data
| complexity. In mostly homogenous landscapes, large, simple land cover types
will likely be mo’re accurately classified than a highly complex forest with
heterogeneous stands (Congalton and Green 1999). This classification pattern
can be a function of resolution and averaging of features within a pixel. For
example, a 3-meter pixel in an open field is easier to classify than a 3-meter pixel
in a tropical forest, which is likely to contain the canopy branches of several
different species. In the latter case, the pixel would be classified based on
majority rule, resulting in underestimation of any other species within that pixel.
Without corrective algorithms, shadows can also have a negative effect upon

land cover classification.
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Other sources of error in the classification stage are misregistration
between the training data, image or reference data, inadequate or inappropriate
resolution (Foody 2002) and changes in land cover. If land cover changes (e.g.,
fire, flood or timber harvest) occur between training data collection and image
acquisition, the resulting classification will be incorrect (Congalton and Green

‘1993, 1999).

Inherently, training stage and classification stage error contributes to error
during the accuracy assessment stage. Most importantly, however, reference
data must be as representative of ground conditions as possible as it forms the

basis for the accuracy assessment stage.

The Error Matrix

Although no one method of accuracy assessment is agreed upon (Foody
2002), Liu et al. (2007) maintain that the overall, user’s and producer’s
accuracies should be reported as a minimum accuracy assessment requirement
for any study. These accuracies are generated using an error matrix (Story and
Congalton 1986), which compares reference data with the classified image data
in a tabular form (Table 1). This coupling results in both a visual and a statistical
measure (Plourde 2000). The error matrix is unique in that it provides not only
the overall accuracy, but also the distribution of that accuracy amongst the land

cover categories (Story and Congalton 1986).
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Table 1. Sample error matrix. Rows represent classified data and columns represent reference

data.
Reference Data
Developed | Vegetation Water Other Row Total
Map Data Developed 10 18 13 19 60
Vegetation 19 15 3 10 47
Water 11 15 4 1 31
Other 9 13 15 36 73
Column Total 49 61 35 66 211

Overall Accuracy: 10+15+4+36/211 = .31 or 31%

Producer's Accuracy User's Accuracy
Developed 10/49 = .20 or 20% 10/60 = .17 or 17%
Vegetation 15/61 = .25 or 25% 15/47 = .32 or 32%
Water 4/35=.110r 11% 4/31 = .13 or 13%
Other 36/66 = .54 or 54% 36/73 = .49 or 49%

Relatively low in the sample error matrix (Table 1), the overall accuracy
(31%) indicates that 31% of the map agreed with the reference data. The
producer’s and user’s accuracies reveal how accuracies are distributed amongst
the classes, from two perspectives: the producers and users. Both
measurements are an indicétion of omission érrors (i.e., an area is excluded from
its correct category) and commission errors (i.e., an area is included in the
incorrect category). The producer’s and user’s accuracies can identify in which
categories these omissions and commissions most occur. For example, perhaps
the usér wishes to know how many times “Developed” was correctly classified as
developed, and not, for example, “Vegetation.” To calculate this error, the
number of times developed was correctly classified, 10, (see Table 1), is divided

by the number of times developed occurs in the reference data, 49. The
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resulting number, 0.20, indicates that developed was correctly identified as
developed 20% of the time. Alternatively, the user’s accuracy is calculated by
dividing the number of times developed was correctly classified, 10, by the
number of times it was classified on the map, 60. The resulting number of 0.1 7
indicates that there is only a 17% chance of visiting an area labeled as
developed on the map and actually having it be developed.

Congalton and Green (1999) surmised that any incorrect classification
within the error matrix was a result of four possible sources: error in the reference
data, observer interpretation of classification scheme, inappropriate source of

‘remote sensing technology or mapping error. However, data entry could also
contribute to inaccuracies in any of these categories. Additionally, some
reference data sampling schémes (e.g., systematic or random sampling) have
been found to overestimate accuracies, as has sampling in homogenous areas
(Plourde 2000) compared to other types of sampling in heterogeneous areas.

Accuracies reported through an error matrix are often accompanied by a
Kappa statistic which calculates a K-hat value (Cohen 1960). Originally used in
psychological statistics, Congalton and Mead (1983) found application for its use
in reducing the effects of chance in representation of accuracies and allowing for

the vcomparison of agreement to reference data between error matrices. The

calculation for the K-hat value is as follows:
K-hat = (po-pc)/(1-pc)
Where p, is the actual agreement or number of correctly mapped samples (sum

of the major diagonal) and p. is the random agreement calculated by summing all
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of the proportions of safnples in each map category multiplied by the proportions
- of samples in each reference category. The Kappa analysis normalizes the
values of error rﬁatrices, by reducing the effects of chance. This normalization
allows for accuracy comparisons between maps and error matrices derived from

differing reference data (Foody 2002).

Sampling Design

A well-designed sampling scheme can Ieé.sen error in both the training
and accuracy assessment stages. However, the many components of sampling
design must meet statistical goals and project goals. Sample design must also
be logistically possible and tailored to meet needs and challenges of an individual
project.

Regardless of sample design, an important distinction between training
samples and reference samp[es must be made. Although often similarly
collected in the field, training samples and reference samples serve two
purposes. The former serves to guide the classification stage of the land cover
analysis, while the latter determines the correctness of the image produced.

Both samples must be independent. That is, the sample units used to train the
data can not be the same sample units used to assess the accuracy of the
classification. Clearly, this would result in an inflated estimation of success.

Sample design begins with determining the appropriate sample unit, which
may be a point or an area (i.e., pixel, polygon or fixed plots). Point sample units

have no extent, while areas have some size associated with them. Pixel and
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- polygon samples are closely linked to land cover, with pixels being uniform in
size and shape and dependent upon an image resolution. Polygon samples may
be based upon a specific land cover characteristic, such as a forest stand, but
are bound, in some processing software, to the specific map on which they are
made (Stehman and Czaplewski 1998); meaning that a polygon may not look
correctly delineated when overlayed upon other imagery than the ofiginal. The
}ability of a researcher to locate a specific sample unit should be considered when
determining sample unit size. For example, if a sample location is recorded
using a GPS device, the sample unit should be large enough to account for any
inaccuracy in the GPS position. Consider a handheld GPS, which may have an
error of more than 15 feet and the effect that would have upon a 3-foot square
pixel (polygon) sample. It would be possible for a GPS point to be 12 feet away
~from the pixel sample.

Sample size is often determined by project specific and statistical power
requirements. For training stage data collection, several training sample units
per class may be required to adequately represent the variability within a certain
cover type (Joyce 1978). When collecting reference data samples, an adequate
number must be selected to represent landscape variability across the study site
(Stehman and Czaplewéki 1998) and also to achieve sufficient statistical power.
Although practicality and expense affects sample size, a “general rule of thumb”
for accuracy assessment sample size when using an error matrix is a minimum
of 50 samples per land cover categories (Congalton 1991, Congalton and Green

1999).
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Sample placement should be considered in acknowledgement of spatial
autocorrelation, which is the effect that one unit may have upon another sample
in the same neighborhood. For example, if a point is collected in a hemlock
stand, it is more likely that a nearby point would be hemlock than another species.
This likelihood violates the assumption of sample independence (Congalton and
Green 1999). Two sampling schemes that avoid placement bias, thereby
increasing the likelihood of adequate sampling, are simple random sampling and
systematic samp'ling (Plourde and Congalton 2003). However, some
combination between the two may be necessary in light of field obstacles (e.g.,
gated roads, steep terrain, and access) and funding for field work (Congalton and
Green 1999). Land cover heterogeneity should also bé considered. While past
accepted methods have favored placing samples in contiguous, homogenous
cover types to reduce error, recent research has found such practices may
overestimate overall map accuracy (Plourde 2000).

Sampling protocol (e.g., what attributes.will be measured and how they

~will be measured) is of paramount importance to data consistency. For example,
ih a Iahd cover sampling system, éonsider what the basis for measurement is.
Will the observer use transects within a unit? Will the observer base
claésification on a majority rule? Will basal area, canopy enclosure or another
“hard” measurement determine spe'cies dominance or will visual estimation
suffice in determining cover type?

Realistic sample design often varies from the ideal. Stehman and

Czaplewski (1998:342) best stated: “A practical accuracy assessment sampling
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strategy often represents a compromise, with the overall design goal being

adequacy for all critical objectives, not optimally for any single objective.”

Reference Data Collection

Reference data collection can be similar to training data’collection, but
should never be one in the sahe. In some cases, new refverence data collection
may not be neceséary if suitable data already exists. However, if pre-existing
data does not follow an appropriate classification scheme, is outdated, incorrect
or otherwise inappropriate for use (Congalton and Green 1999), the user must
collect reference data either by photointerpretation or field visits.

Congalton and Green (1999) found photointerpretation to be an effective
method of referehce data classification in situations with a few, simple categories.
However, at some scales, photointerpretation was found to be an inappropriate
method. Photointerpretation ideally should include field visits to ensure
~ interpretation accuracy. Brogaard and Olafsdattir (1 997) found
photointerpretation costly and time' consuming as it required camera calibrations
and field work.

Sampling design and protocol must be considered when collecting
reference data. Ideally, reference data collection should follow the same design

and protocol as training data collection.
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Per-pixel Image Processing v.

Object-Oriented (Segmented) Image Processing

Traditional satellite digital image processing techniques have focused on a
single pixel approach, in which each pixel is classified independent of
neighboring pixels. The advent of high spatial resolution (for the purposes of this
study; less than or equal to 10-meter) satellite imagery such as IKONOS has
created a demand for new processing techniques, capable of extracting new
levels of information (Jensen 2005). This demand resulted in the development of
the segmented or object-oriented image processing approach: a hybrid approach.

The object-oriented image classification approach more closely mimics the

“human process of object delineation and classification. Humans naturally
delineate common objects on the basis-of not only color, but texture and context,
noton a per-piXeI basis (Warner et al. 1998, Definiens.AG 2006). Object-
oriented software classifies by segmenting pixels into “zoned partial areas of
differing characteristigs” called image objects (Definiens AG 2006:3). Image
objects are created based on the properties of spectral response, texture
(smoothness and compactness) and context (relation to neighboring pixels), all of
which are subjective. Some o}bject-oriented image software, such as Definiens
Professional, is capable of creating nested objects at various scales, allowing for
classification at landscape and individual tree scales.

In addition to providing increased information, the inclusion of texture in a
segmentation analysis can increase overall classification accuracy (Franklin et al.

2001, Lennartz 2004, Addink et al. 2007). Franklin et al. (2001) found that
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combining spectral and texture data increased accuracy to 75%, compared to
54% for isolated spectral data and 70% for isolated texture data when classifying
forest structure and species. The use of contextual information (or spatial
autocorrelation in segmentation), formerly achieved by a moving window filtering
approach, may reconcile the physical differences detected by a computer and the
human eye (Stuckens et al. 2000), resulting in a map that appears more visually

correct (Figure 3).

Figure 3. A sample segmented or object-oriented (left) and unsegmented or per-pixel (right)
image classification. :

Role of Scale and Pixel Size in Object-Oriented Segmentation

Object-oriented image analysis promises increased accuracies. However;
it also provides increased complexities due to increasing spatial resolution of
imagery. New England forest classification requires use of various scales, as
species composition, stand density, stand size, individual crown size and shape
varies (Warﬁer et al. 1998). A common problem with thematic classification,
regardless of resolution, is the averaging process that occurs within an individual
pixel. For example, a 10-meter pixel classified as oak, may contain other species

in addition to oak which are disregarded because oak comprises the majority of
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the pixel. At finer resolutions, a pixel may contain the branches of multiple
species rather than an individual tree. Essentially, the pixel “covers” the space
between two trees, creating a question as to how this should be properly
classified. This resulting “mixel” problem is parti'cularlylcommon in continuous
landscapes (e.g., a forest canopy) and can result in under- or over-represented
‘land cover categories.

Selecting the appropriate remote sensing technology source is of
paramount importance to achieving desirable accuracies and is responsible for
minimizing the mixel affect. Besides logistical limitations, the type of remote
sensing is largely dependent upon project goals, landscape and mapping scale.
Spatial resolution should be selected to match desired scale, while type of data
(e.g. image data or Light Detection and Ranging (LIDAR) data) should not only
support project goals, but also be appropriate to landscape. For example, a
project with an objective to classify a heterogeneous forested area using spectral
responsé could incorporate an image acquired during leaf-on with a fine enough
spatial resolution to detect the mixed nature of the forest.

While lower spatial resolution images (30-meter +) provide a decent
representation of forest stands, higher spatial resolution imagery may be needed
to identify individual tree species. However, the accuracy of high spatial
resolution image classifications is not always superior to lower resolution
classiffcations (frons et al. 1985, Migeul-Ayanz and Biging 1997). Although a
tendency exists to obtain the highest spatial and spectral resolution imagery that

technology and funding allows, this may not always be the most appropriate
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solution (Jacquin et al. 2007) for achieving higher accuracies. Rahman et al.
(2003) found that a pixel size of 6m was most suitable, compared to 4m to 2.0m
pixels, to study the ecosystem function of plants in the grasslands and chaparral
of southern California. Despite a decrease of mixed pixels with increased spatial
resolution, there is increased spectral, within-class variations (Hay et al. 1996), |
potentially making classification difficult.

The increase in spectral variation inherent within classes must be
considered when attempting to use imagery with increased spectral resolution to
distinguish between spectrally similar species. Although the vast majority of
satellites currently employ multispectral remote sensing systems, thére is a wide
range of spectral variation available. Spectral resolution is a measure of the
number and size of wavelengths collected by sensors (Jensen 2005), often
referred to as bands. Both the number and the width of available bands vary with
imagery. For instance, hyperspe&:tral imagery often features hundreds of narrow-
widtH bands, while broad-width band images (such as IKONOS, SPOT or
Landsat TM) have fewer than 10 bands.

At higher spatial resolutions, varying forest stem densities and crown sizes
may create different texture patterns, even within the same species (Franklih et
al. 2001). Cohsider two oak stands, one regenerating and one mature. Basal
area and stem density will be vastly different between the two stands, despite the
fact that they are composed of the same species. Therefore, texture-based
segmentation, even with the inclusion of spectral data, may mistake thesé stands

as two separate forest classes, rather than both as oak, which might be good if
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the goal. is to detect two different age structures. The segmentation at the
individual tree scale also has particular problems. Generally, the tops of trees
are the brightest because they are sunlit (Warner et al. 1998),

Selection of spatial resolution and spectral resolution can have a profound
impact upon the resulting classification accuracy (McCloy and Bocher 2007). ltis
also important to consider scale of segmentation, or what spatial scale (e.g., a
stand vs. an individual tree), when selecting imagery as it can affect overall
classification accuracy (Addink et al. 2007). This selection should be appropriate
to the scale of the classification (McCloy and Bocher 2007, Jacquin et al. 2007).
For example, a 30-meter resolution image would not be suitable for the
identification and classificatiqn of individual trees, as it is likely that multiple tree
canopies would be averaged within the pixel, which would defeat the purpose of
attempting to classify an individual tree. However, the 30-meter resolution
imagery may be suitable for a stand scale classification. It would then follow that
higher spatial resoluti‘on is needed for finer classification scales.

In selecting imagery to use in an automated classification, it is also
important to remember that automated land cover classificatioh is heavily
dependent up on spectral response of the land. Toll (1985) found that spectral
and radiometric resolution (a measure of the satellite sensor digital capability)
was more important than spatial resolution. Therefore, it may be more beneficial
to sacrifice spatial resolution for improved spectral resolution. Understanding the
trade-offs between spatial and spectral resolution in terms of achieving the most

accurate classification at the desired scale is the essence of my research.
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CHAPTERII
METHODS

Study Area

This research focused on the classification accuracies achieved at various
scales and resolutions. Since classification accuracies tend to be higher, often
artificially, in homogenous Iandséapes (Plourde and Congalton 2003), the study
area was chosen for its diversified, heterogeneous nature. Representative of the
complex structure of New England forest, the study area (Figure 4) is completely
contained in Rockingham County in southeéstern New Hampshire within the
towns of Deerfield and Nottingham. Approximately half of the study area (4,146
" acres) is publicly held land within the Pawtuckaway State Park. The remaining
northern half of the site (4,621 acres) is privately held land, the majority of which
can bé characterized as a wooded upland (>25% of the landscape is forested)

(Sperduto and Nichols 1994).
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Created by volcanic interaction in the late Devonian period, the Iaﬁdscape of

Pawtuckaway features three apparent peaks: North Mt. (1,011 feet.), Middle Mt.
(800 feet) and South Mt. (908 feet). Each peak’s summit is characterized by
exposed rock, while the majority of the area contains sedimentary rocks with
plutonic rocks imposed. Shale, sandstone, dolomic limestone, phyllite, quartz-
mica schist, quartzite, lime-silicate and shaly sandstone are the dominant rocks
present throughout the study area (Freedman 1949). The summits and some
lower elevation areas also have circumneutral cliffs, which occur when parent
bedrock and fractured groundwater transport cations to the rock face (Sperduto
and Nichols 1994). Study area base elevation begins at 250 feet above mean
sea level, with the highest elevations located in the southern park portion of the
study area.

Soil type varies throughout the study area with the Chatfield-Hollis-Canton
complex accounting for approximately 45% of study area soil type. Canton
gravelly fine sandy loam, greenwood, water and Montauk fine sandy loam
comprise 23.22%, 7.11%, 6.22% and 4.70% of the study area soil cbverage,
respectively. The remaining study area is covered by thirteen soil types, each
comprising less than 4% of the study area (USDA 2006).

The climate of the Pawtuckaway State Park is characterized by the typical
seasonal changes of the region, including leaf senescence in autumn and
persistent snow cover throughout the winter months. Average temperatures
range from a mean of 70.2 degrees Fahrenheit in July to a mean of 23.5 degrees

Fahrenheit in January. Annual precipitation averages 50.41 inches, with snowfall
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éccounting for approximately 22 inches (New Hampshire State Climate Office
2008).

As evidenced by remaining stone walls, the greater Pawtuckaway area
experienced an agricultural history similar to that of the rest of New Hampshire.
Affected by European settlers and their descendents, the majority of the state
was cleared for farm land by 1850 leaving only 45% of forests remaining
statewide. H_owever, demographic and lifestyle changes resulted in a resurgence
of forested land to 87% statewide coverage ’in 1983 (NH DRED 1996).

A small portion of the study area contains residential .housing, abutting the
interior border of some study area boundaries. Pawtuckaway State Parkis
pﬁmarily used for recreation with various multiple-use trails throughout the park.
The study area was clipped to exclude the campsites and camping facilities that
are associated with the eastern edge of the park, as their impact is significant
and detectable on satellite imagery. However, hikers and bikers do frequent the
interior of the study area. Peak use occurs during summer weekends (Manning
and Cornier 1980), with significantly less recreational impact occurring during the
winter season. However, impact is confined to trails and ground-level plant
growth as woody shrubs and trees are far more resistant to trampling (Cole
1995). As these larger tree species are the targets of the study, recreation is
unlikely to affect results of this study.

As evidenced by visual field inspections of the Pawtuckaway State Park
and discussions with personnel from the Department of Resources and |

Economic Development, the park’s managing state agency, some small-scale

38



forest harvesting occurs within the park. However, it is infrequent and covers
little area (<100 total acres from‘1998 to 2005). As was evidenced by recent
paint markings and an accompanying sign, a small (<10 acres) portion of the
park is slated for a future selective cut as part of the State of Néw Hampshire’s
park management plan. However, little literature is available regarding the
frequency or extent of past or future forest management plans, with all of the

~ state’s lands subject to one statewide plan. Regardless, much of the forested
land in the park is situated on steep inclines, with the lower terrain dotted by or
completely comprised of wetland areas. Both the inclines and the wetland make
forest harvesting for a vast area of the park unfeasible.

Unlike the southern portion of the study area, the adjacent private land
contains some scattered houses. Although residential areas exist, the vast
manrity of the privately owned area is forested, of which a 25% portion in the
northern area is actively harvest_ed (Lennartz 2004) by its owner, a sm‘éll scale
lumber company. In total, over 4,400 acres of the study area are designated
conservation lands (Society For the Protection of New Hampshire Forests 2007).

Current forest species cbmbinations have been consistent for the past
2,000 years (NH DRED 1996), including a mix of coniferous, deciduous and
integrated coniferous/deciduous. This type of species composition is
characteristic of the Central Hardwoods-Hemlock-White Pine Forest Region of
New England in which the study area is situated. Within this region, average
date of last frost is May 1, with the average date of first frost falling on October 15,

averaging 150 to 180 frost-free days (DeGraaf and Yamasaki 2001). Principally
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deciduous, the majority of trees in this region lose their leaves in the autumn
(roughly September to November).

The Pawtuckaway area has sevéral forested and non-forested natural
cbmmunity systems found in New Hampshire, including the aforementioned
circumneutral cliffs as well as hemlock, hemlock-hardwood-pine and Appalachian
oak (Quercus spp.) rocky woods forests, all of which are rich mesics (Sperduto
1995). Pawtuckaway’s forests are indicative of well-drained, nutrient poor,'acidic,
glacio-fluvial soils. Pawtuckaway is also host to the rich red-oak (Quercus rubra),
rocky woods system, which includes red maple (Acer rubrum) swamps. These
forests are all defined as having greater than 25% tree cover and are best
described as belonging to a group of mid-elevation community systems of New
Hampshire, as opposed to the high-elevation spruce-f'ir systems (Picea spp.)
(SperdLito and Nichols 1994). | |

Stand age varies from early successional species to mature forests.
Wetlands, red maple swamps and small ponds are scattered Ithroughout the
landscape, although the majority of the area' is forested. Dominant tree species
in the greater Pawtuckaway State Park include- eastern white pine, oak (Quercus
spp.), eastern hemlock, maple (Acer spp.) and American beech (Fagus
grandifolia).

These forests, particularly those with hemlock, provide excellent cover for
wildiife, including white-tailed deer (Odocoileus virginianus). Their dense
structure provides ample cover and decreased snow depth, allowing for eas'ier

wildlife movement. In addition to forested lands, the Pawtuckaway area has
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natural community systems such as vernal woodland pools and marsh habitats
(Sperduto and Nichols 1994) which are often host to a variety of herptofauna,

avian species and beaver in deeper water areas.

Pre-existing Data

Previous research within Pawtuckaway State Park (Pugh and Congalton
2001, Plourde and Congalton 2003, Lennartz 2004) has established a
classification scheme meeting Congalton’s (1991) criterion. This classification
(APPENDIX A) is a quantitative interpretation of the Society of American
Foresters (Eyre 1980) guide to forest stand type. As pre-existing reference data
are crucial to this study, it was impor;[a'ht to ensure that classification schemes
were compatible. In addition to pre-existing, downloadable datasets from New
Hampshire Geographically Referenced Analysis and Information Transfer
System (NH GRANIT), two field-based' datasets from prior research within the
study aréa were used. Pugh (1997) created a 2-acre minimum mapping unit
(MMU) vegetative reference map through field validation and photointerpretation.
During her thesis research, C. Czarnecki (2006) collected 213 reference data
points of stands in the summers of 2005 and 2006. Each point was taken in the
center of a 30-meter x 30-meter area stand of uniform composition (not

necessarily homogeneous) (Figure 5).
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Data Classification ‘

As this study measured the accuracy of classifications, a well constructed
classification scheme was crucial. Congalton (1 991) stressed that classification
schemes should have categories that are well defined, hierarchical, mutually
exclusive and totally exhaustive. It is essential that the classification scheme be
applicable to the overall species content, but also sufficiently simple for collecting
field data. As pre-existing datasets were classified based on the Society of
American Foresters classification scheme (Eyre 1980), field data collected and
subsequent classification maps shared identical cover type categories and
definitions to allow for comparison of classifications and their accuracies.
Preliminary cover type investigations confirmed that class categpries matched
the predominant stand/land cover types (Figure 6). A total of nine cover classes
were used in the large stand (2-acre) and small stand (30-meter x 30-meter
scale) : White Pine, White Pine/Hemlock, Hemlock, Oak, Red Maple, Beech,
Other Forest, Mi*ed Forest and Non-Forest. As they represent mixed species,

Mixed Forest and White Pine/Hemlock were not used at the individual tree scale.

Figure 6. Classification hierarchy for labeling of study area landscape, based on the
definitions of the Society of American Foresters and previous research in
Pawtuckaway State Park. For definitions, see APPENDIX A.
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Collection of Field Data

Field data was needed to test the accuracy of automated classification at
thrée scales: 2-acre landscape areas, 30-meter x 30-meter stands and individual
trees. Reference data for the 2-acre level were previously obtaiﬁed (Pugh 1997),
as was a partial dataset for 30-meter x 30-meter stands by Christina Czarnecki
(2006). However, to achieve a minimum of 50 points per class (Congalton 1991,
Congalton and Green 1999), more reference point samples of 30m X 30m
uniformly comprised stands were needed.

Field work was conducted from September to early November 2007.
Uniform 30m x 30m stands were Iocéted using 2005 1-foot resolution color aerial
photography and the stand centers reporded using a handheld Garmin 12XL
GPS unit. All points were averaged on-site for a minimum of two minutes (to
minimize positional error) and then uploaded to a computer using a GPS to
Geographic Information System (GIS) transfer software program called GPS
DNRGarmin, developed by the University of Minnesota (2008) to transfer Garmin
data into shapefiles. Once GPS positions were recorded, the stand composition
was evaluated by visual estimation of canopy cover, as this represented the area
most likely to be captured by satellite imagery. The visual estimate of the canopy
cover was recdrded, essentially capturing the observed percentage of each
species (e.g.,v50% oak, 30% maple, 20% pine). Class type was determined
based on composition and the classification scheme and then recorded.
Between 10 and 15 (dependent upon abundance) additional pointé were

collected in the same manner to serve as training data.
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The spatial distribution of the pre-existing 30-meter x 30-meter reference
data points was considered when developing a sampling scheme for the
supplemental collection of points. A visual analysis of the pre-existing point data
overlayed upon a roéds layer in a GIS indicated that all the data were collected
on or immediately adjacent to the recreation roads and trails. As the majority of
the roads and trails within the study area have a heavy forest canopy, it was
concluded that there would be little to no bias as a result of the collection location.
However, the collection of additional points was more carefully executed:
Although no formal sampling scheme was implemented given the amount of data
already existing, every effort was made to distribute the collection of additional
points off-road/trail to capture as much landscape variation as possible. Care
was taken to avoid collecting data in areas that had been obviously harvested
within the past 10 years.

No pre-existing referehce data were available at the individual tree scale.
A total of 50 reference points per category were collected in November of 2007
using the same Garmin 12XL GPS unit. The positional accuracy of points, also
collected using the automatic Garmin averaging function, was visually verified
(again, to minimize positional error) by uploading and overlaying April 2005 full
color aerial photography at a 1-foot resdlution provided by NH GRANIT. The
aerial photos were captured during leaf-off, allowing for the discrimination of
individual trees and the verification of GPS reference points (reference trees). To
insure integrity of reference data, reference trees adhered to several criteria as

part of the sampling:
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1. tree was tall enough for all of its canopy to be visible in satellite
imagery
2. tree canopy diameter (at its widest) was >3 meters
3. reference tree canopy did not touch another reference tree’s
canopy
4, reference tree was not located immediatefy adjacent to a road or
path |
The canopy diameter for each referehce tree was paced out at its widest
point and recorded, as was tree species and classification. Additional points
were collected in the same manner to serve as training data. Again, care was
taken to avoid collecting data in areas that had been obviously harvested within

the past 10 years.

Image Acquisition

To facilitate a match between desired classification scale and image
resolution, three images were acquired (Figure 7-9). An 8 bit Landsat 5 TM
image (Figure 7) of the study area was obtained on September 7, 2007.
Although a newer satellite, Landsat 7 imagery was not used due to sensor
miscalibrations and resulting image striping. The image has seven bands: blue
(0.45-0.52um), green (0.52-0.60um), red (0.63-0.69um), near infrared (NIR)
(0.76-0.90pm), middle infrared (MIR) (1.55-1.75um), thermal (10.4-12.5um) and
middle infrared (MIR 11)(2.08-2.35um) portions of the electromagnetic spectrum

with all but the thermal band (spatial resolution of 120 meters) having a spatial
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resolution of 30m. A SPOT 5 image (Figure 8) was acquired on August 16, 2007
with a 10 meter spatial resolution and NIR (0.78-0.89um), red (0.61-0.68um),
green (0.50-0.59um) and MIR (1.58-1.75um) bands. Band order varies from
traditional order as it was reérranged prior to purchase to display automatically
as a Color Infrared (CIR) image. An IKONOS imagé (Figure 9) acquired on
Septefnber 5, 2001 was also used in the study. The 16 bit radiometric resolution
image had four bands covering the blue (0.45-0.52um), green (O.51-O.60pm), red
(0.63-0.70pm) and NIR (O.76-O.v85um) portions of the electromagnetic spectrum
with a spatial resolution of 4m for each band. All images were nearly cloud free,
except several small areas within the IKONOS imagery. The study area
boundaries were adjusted to exclude cloud obscured land cover.

| Although the radiometric resolutions and dates of acquisition vary for each
of the images, there was no need to perform an atmospheric correction as
training data would be derived from each image to classify each image
individually (Jensen 2005). By calibrating training data to each image’s spectral
responses, the radiometric variations within the images are captured for the
classification stage. Additionally, there was no aspect of change detection in
this study making any spectral variation due to changed atmospheric conditions a

non-issue.

47



Figure 7. The Landsat TM imagery (displayed as NIR, Red and Green through R,G,B
channels) acquired for the research project (Landsat Scene ID#: LT50120302007250EDCO00),
overlaid with the study area boundary of the greater Pawtuckaway State Park area.
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Figure 8. The SPOT imagery (displayed as NIR, Red and Green through R,G,B channels)
acquired for the research project, overlaid with the study area boundary of the greater
Pawtuckaway State Park area.
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Figure 9. The IKONOS imagery (displayed as NIR, Red and Green through R,G,B channels)
acquired for the research project, overlaid with the study area boundary of the greater
Pawtuckaway State Park area.
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Both the IKONOS and SPOT images were received already registered to -
NAD 1983 New Hampshire State Plane Feet (FIPS zone 2800). The Landsat TM
image was reprojected from UTM meters (zone 19, WGS 84) into NAD 1983
New Hampshire State Plane Feet using ERDAS IMAGINE 9.1 software.
Registration accuracy was high as it wés visually verified using control points.
The published registration accufacy for the IKONOS imagéry was 11.8 meter
Root Mean Square Error (RMSE). Locational accuracy for SPOT 5 data is
published as better than ‘30} meters (SPOT 2007). Landsat TM accuracy is

published at <20 meters 90% (USGS and NASA 20086).

Data Exploration

Data exploration includes any steps taken to better understand the
variation of your data and how it relates to the variation on the ground. Initial
data exploration requires an understanding of the dynamic ranges of all bahds of
data (APPENDIX B). To better understand this variation for this study, several
additional bands were created for each image. Derivative bands created
included NDVI, Tassel-Cap Transformation and Principal Components analysis,
as well as simple ratio bands including infrared/red (IR/R), infrared - red (IR-R)
and MIR/Red (MIR/R) (only available with SPOT and Landsat data). All
derivative bands were re-scaled to the appropriate dynamic ranges of the original
component bands, to facilitate an equal match between derived bands and

original bands. Each image was restacked to include the newly-created bands.
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Although the extra bands may provide insight, they may not be useful or
may be redundant for classification purposes. Such extra bands may actually
decrease classification accuracy. To avoid degrading the classification, the
“best” bands were identified on a per image basis using a divergence analysis
based on training data. Ten to fifteen field visited training points per class were
digitally located on each of the three images using the “seed tool” (Leica
Geosystems 2005). The seed tool grows areas of interest from a user-defined
location based on the spectral similarity of neighboring pixels (Leica Geosystems
2005). By plotting the} spectral properties of these training areas the user can
visualize the separability or usefulness of each band. In addition to a visual
examination of the bands, a statistical analysis was performed using the Jéffries-
Matusita Divergence Analysis (Leica Geosystems 2005, Bruzzone et al. 1995).
This analysis determines the best bands to use based on the user’s input of
desi'red bands (e.g., the user can parameterize the analysis to output the five
most importént bands) and which bands depict the most spectral variation.
Based on both the statistical and visual inspection, the least useful bands were

removed from the images.

Destriping
Launched in 1984, Landsat 5 TM is the longest running satellite imagery
program currently in existence (USGS and NASA 2006). However, Landsat TM
imagery appears increasingly striped due to satellite sensor miscalibrations.

Readily apparent in bands 2 (green) and 3 (red) of the Landsat TM image
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acquired for this study, the periodic noise has the potential to affect classification
accuracies. To minimize the striping, the Landsat TM image was processed
within the Spectral Workstation in IMAGINE, traditionally used with hyperspectral
data. Within the Workstation, a Maximum Noise Fraction Analysis (MNF) tool
allows for the identification and rectification of striped layers, either automatically
or manually. Filters or averaging substitutions can then be applied to the striped
areas (Leica Geosystems 2005). Using the MNF tool, striped bands were

- identified and noise values replaced with the mean of all data. The destriped

layers replaced the original bands of the image (Figure 10).

Figure 10. A “swipe” of a portion of the striped Landsat TM image (right) compared with the
destriped Landsat TM image (left). The area of contrast between the images is indicated by
the white circle. Both images are displayed as NIR, Red and Green through R,G,B channels.
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Segmentation

Segmentation and classification analysis were performed using Definiens
Professional (v.5) software. Each image was segmented separately and, due to
the varying resolution of the images, segmentation parameters were unrelated
between images. Definiens Professional uses color and shape parameters
(Figure 11) to control the boundaries of segments, also known as image objects
(Definiens AG 2005). The weighting of color and shape in the segmentation
analysis is based on a sliding scale of 0 to 10 (e.g., 9/10 of the segmentation is
based on pixel color and 1/10 is based on resulting segment shape). The shape
parameter is further partitioned into smoothness and compactness, also on a
sliding scale of 0 to 10. For exam_ple, segmehtation may be 90% based on color,
but 90% of the shape parameter is based on smoothness (Definiens AG 2005).

The Definiens scale number is arguably the most important segmentation
parameter as it determines the mean size of the image objects. An arbitrary
number, Definiens scale settings are dependent upon the imagery resolution.
Thus; a Definiens scale of 9 in 4-meter data will result in different mean image
| object sizes than a Definiens scale of 9 in 30-meter data. Image object size is
roughly equivalent to the desired level of classification (e.g., landscape scale
versus individual tree scale).

Since this research focused heavily on determining which scales yielded
" the most accurate classification results, a variety of Definiens scale parameters
were experimented with for each image. As part of the trial and error basis, all

results were visually inspected for appropriateness before beginning the
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classification stage of the analysis. That is, various Definiens scales were
examined to determine what resulted in the best segmentation size and
placement for study scale (e.g., 30-meter stands). For instance, over 30
separate segmentations were run, each using a different scale parameter, on the
IKONOS imagery. Those that resulted in image objects close to the size of 30-
metér stands, 2-acre stands or individual tree scales were selected for further
classificatibn. The same process occurred for each image. Essentially,
segmentation is an iterative process that requires a variety of trials to obtain
satisfactory delineation of the image objects that would be similar to how a

manual photointerpretation would delineate those objects.

Figure 11. Dialogue box illustrating segmentation parameters in the Definiens software.
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Classification
Classification was completed using the sample editor and nearest
- neighbor sampling application within the Definiens Professional software. Image
object samples were selected based on segment size and spatial agreement with
the Areas of Interest training data generated in the ERDAS IMAGINE software.
Recall that these samples for each class are based on field verified training areas.
Both the mean spectral values and the standard deviation between the
class image object samples were used in the classification of unknown image
objects. Following the selection of image objects as samples, the classification
was set to run with class related
features, meaning hierarchical

relationships of classes were

accounted for during the
classification. To better facilitate
this feature, coniferous, deciduous,
mixed and non-forest species
classes training data were grouped
and used to classify the image first.
Then, a more specific classification
was completed to filter the general

classes into the study classes

(Figure 12).

Figure 12. Dialogue box indicating classes used
in filtering step of classification in Definiens
software.
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Number of cycles (iterations) was altered between image classifications to test
the effect of iterations upon classification accuracy (Figure 13). Classification

results were exported to shapefiles to better facilitate accuracy assessment.

Classification Setti

Figure 13. Dialogue box indicating classification parameters in Definiens software.

Accuracy Assessment

An error matrix accuracy assessment was completed for each map, |
allowing for identification of commissions and omissions. The field-sampled
reference points for each class were used to generate the error matrix

 comparison for IKONOS and SPOT classifications. Randomly generatéd sample
points (50 per class) were extracted from t.he pre-existing 2-acre scale soverage
to test maps created with the Landsat TM imagery. The overall, user’s and
producer’s accuracies were reported (Story and Congalton 1986) for each error
matrix. In addition to an error matrix, the K-hat value was calculated and
reported to account for chance agreement between the map and reference data

(Congalton and Mead 1983). A K-hat value ranges from 0 to'1, with 0 indicating
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a random assignment of classes and 1 indicating total agreement of classes. A
Z-score, calculated along with a K-hat value, allows for between-matrix
~comparisons. A Z-score of greater than 1.96 (at a 95% confidence interval)
indicates significance between two matrices (Congalton 1991, Lennartz 2004).
See Figure 14 for a flow chart detailing the classification and accuracy

assessment process.
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Identification of training

and reference points at

3 scales in the field and
upload in ArcMap

Registration and data
exploration of all satellite
images in IMAGINE -

\/

T 4

in all imagery in
IMAGINE

‘Generation of seed
Areas of Interest (AOls)

Divergence analysis and
restacking of each image (in
IMAGINE) to incorporate “best”

bands
Identification of sample image Segmentation of all
objects (training areas) from the field imagery in Definiens at
data (at the appropriate scale) various scales
in Definiens

/

&

Classification of image objects at
various scales in Definiens

Export classified images
into ArcMap shapefile

Accuracy assessment of all
scales/images comparing reference
points with classified imagery

Figure 14. Flowchart illustrating the steps and software platforms incorporated into this

classification study.
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CHAPTER Ill

RESULTS

This section. was written to provide the reader with an understanding of the .
overall results and to evaluate the success of the method’s components.
Understanding what components worked well and what components need to be
altered, replaced or omitted is key in advancing the improvement of

- methodologies.

Classification Scheme Complications

Preliminary field work revealed a need to include two other stand types in
the classification definitions. Although not prevalent enough to merit unique
categories, the few stands composed primarily of sugar maple and other conifer
species were integrated with the red maple and white pine classes, respectively.
The decision was made not to create an “other” category to incorporate these
species, as there were grossly inadequate numbers of each stand type to

achieve the recommended 50 samples per class.
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Field Data

A total of 438 reference points at the 30-meter scale were collected using
a handheld Garmin GPS unit (Figure 15). An overlay of the uploaded GPS
points onto 2005 1-foot aerial photography combined with ground knowledge
confirmed the positional accuracy of the GPS points to homogenously compri_sed
30-meter x 30-meter sample area.

Each class had between 25 and 68 reference points, with the majority of
the classes (except beech and other forest) having between 47 and 68 reference
points. The numbers of reference points in the two classes with the lowest
amount of points were limited by the scarcity of class type as well as limited
accessibility.

A total of 450 reference points at the 2-acre scale were generated from
the field vérified, pre-existing, 2-acre referehce map (Figure 16).

A total of 350 individuél tree reference points were collkected for the
individual tree scale, resulting in exactly 50‘individua| tree samples per category.
As individual trees can only be single species,‘ several categories (e.g. White

Pine/Hemlock ) utilized in other reference scale datasets were excluded.
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Figure 15. Overlay of 30-meter GPS-located field reference points within the study area
overlaid on the SPOT image (displayed as NIR, Red and Green through R,G,B channels).
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Figure 16. Overlay of 2-acre reference points selected with stratified random sampling of pre-
existing reference data overlaid on the Landsat TM image (displayed as NIR, Red and Green
through R,G,B channels).
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Divergence Analysis

A visual inspection of each images’ divergence analysis indicated which
bands contained the most spectral variation (Figures 17-19). The divergence
analyses were generated by Area of Interest (AQls) training areas. Both a
consideration of the Jefferies-Matusita analyses and the divergence analyses
resulted in a reduction of each images’ bands (including some derived bands).
Based on where there was agreement between the two analyses, the best bands
were retained, and thé remainder discarded. The best bands (see Figures 17-19)
to use in land cover classification with Landsat TM imagery were: blue, green,
red, NIR, MIR, MIR I, IR/R and Tasselcap 1. The best bands for use with SPOT
imagery were: green, red, NIR, MIR and IR/R.

The best bands for use with IKONOS imagery were: blue, green, red,
NIR, IR/R and Tasselcap 1. In each case, redundancy existed between NDVI
and IR/R bands. To reduce confusion, IR/R (not NDV'I) was selected for use in
all imagéry. It is important to explain the variation between the numbers of bands
selected. Further, in an effort to maintain consistency and the intrinsic value of
the imagery, original bands were maintained and derivative bands common to all
images were selected, with the exception of SPOT. SPOT data had the least
number of bands, as it did not have the required wavelengths to generate a

: TasseI-Ca'p band.
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Figure 19. Spectral Pattern/Divergence Analysis of selected bands for IKONOS imagery using field verified training points in ERDAS

IMAGINE software. Bands 1-6 are: blue, green, red, NIR, IR/R and Tasselcap 1.
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In the Landsat TM image, the greatest spectral variation among species
was apparent in the NIR and Tasselcap bands; Bands 4 and 8, respectively
(Figure 17). The greatest spectral variation for the SPOT imagery was shown in
the NIR and MIR bands; bands 3 and 4, respectively (Figure 18). The NIR and
Tassel-Cap bands, bands 4 and 6, respectively, exhibited the greatest spectral
variation for the IKONOS imagery (Figure 19). These bands showing the
greatest spectral variation are most important in distinguishing between the

majority of species.

Segmentation Parameters

A variety of Definiens segmentation parameter combinations were
investigated with very little difference between object delineations, exéluding the
scale parameter. Based on observed iterations, since color and shape
parameter change had little effect upon segmentation, a single set of color and
shape parameters was selected for use between imagery. This standardization
seryed to reduce the variation contributing to results (caused by testing multiple
parameters), making it easier to identify the optimal imagery, and also
streamlined the process. The segmentation parameters for each image were set
at those that consistently produced the best results: color = 0.9 and smoothness
= 0.5. Shape was set at 0.1 and compactness was set at 0.5.

The average segment area and actual object delineation, however, was
dependent upon imagery type and scale input. At the best classification

accuracy and therefore, the best scale parameter for use, the Landsat TM
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imagery yielded an overall average segment area of 6.03 acres at a Definiens
barameter scale of 5. Atthe same Definiens parameter scale, the SPOT imagery
had an average overall segment area of 0.74 acres. At Definiens parameter
scales of both 10 and 15, the SPOT imagery yielded a segment area of 8.76
acres. At a Definiens parameter scale of 10, the IKONOS imagery segment
areas averaged 0.04 acres. As the Definiens scale parameter is very dependent
upon imagery resolution, the same scale parameter used to segment SPOT and
Landsat TM imagery resulted in different segment areas.

While the above segmentation results appeared to be correct following a
visual inspection, the segmentation parameters on the finest resolution imagery
(IKONOS) were clearly unable to accurately segment individual trees (Figure 20).
No scale parameter was able to accurately delineate the individual trees’
canopies, as shadowed a'reas and overlapping tree branches created a large
- amount of spectral confusion. Howevér, canopy delineation through
segmentation was satisfactorily achieved using the 2005, full color 1-fQQt, digital
aerial photography and can be seen as the white lines on Figuré 20. A
preliminary statistical analysis using Student’s t-test demonstrated a significant
statistical difference between the segmented IKONOS image an\d the segmented
aerial photography areas (p <0.0001). This p-value confirmed the visual
inspection, in which the segmented IKONOS imagery neither matched canopy
boundary nor individual tree location. Given there was no apparent correlation
between individual trees and the segmented IKONOS imagery, an attempt at

classifying the segments seemed imprudent and was therefore abandoned.
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Classification Results -

The best accuracy results of all classification trials are presented for the
IKONOS, SPOT and Landsat TM data in both summary matrix (Table 2) and
error matrix forms (Tables 3-8). Results of two reference scales (3- meter and 2-
acre stands) and at least one classification per image are reported here. Overall
five classification trials were chosen to represent the best classification accuracy
results based on segmentation and classification parameters. The error matrix
and Kappa analysis results (Table 2) indicate that the Landsat TM imagery, with
a reference size of 2 acres, yielded the highest overall accuracy (34.2%) and
highest K-hat value (0.26) and was also the only imagery with better than random
results. Although the Landsat TM results are not considered high, they are
higher than the “next best” results: SPOT imagery with a reference size of 30 m
with an overall accuracy of 21.8% and a K-hat value of 0.12. The best
classification trial of the IKONOS imagery had the lowest overall accuracy
(21.1%) and the lowest K-hat value (.11).

The Z-score results indicate that the IKONOS and SPOT classifications
are not significantly different (Table 2), nor are any of the trials of the SPOT
classifications. In fact, two SPOT imagery trials with differing scale parameters,
yielded identical results (Tables 6 and 7). However, the Landsat TM imagery
classification is significantly different when compared to both the SPOT and
IKONOS classifications. As is indicated by “unclass” in some error matrices
(Tablés 3-7), the software was often unable to assign a class to a segmented

object, resulting in unclassified image objects. Non-forest stands consistently

71



yielded higher producer’s accuracies than most other stands. The corresponding
classification maps for the error matrices are also presented (Figures 21-24). No
pattern was observed in the distribution of the classification schemes that would

indicate spatial autocorrelation.
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CHAPTER IV
DISCUSSION AND CONCLUSIONS

Although the maps generated by this research are ultimately unreliable for
use in the field due to the low overall accuracies, some distinct conclusions can

be reached as a result of this research.

Segmentation and Classification

This study provides insight into the two aspects of object-oriented image
classification: segmentation and classification. Visual inspections of the
ségmentation results verified that the Definiens software pérformed accurate
segment generation, regardless of scale orimagery used (excepting the instance
of individual tree classification). That is to say that the actual delineation of
image-objects (such as a stand) was perform'ed satisfactorily: object boundaries
were placed similarly to how they would be placed by a manual
photointerpretation. |

Although the first part of the classification process, segmentation, was
well-executed, accuracies were low for all images’ classification results. These
low accuracies would indicate that error lies in the second aspect of object-

oriented image classification or when the actual labeling of segmented object
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occurs. As high segmentation accuracy but low overall classification accuracy
occurred with all imagery, it can be assumed the Definiens Professional software
sufficiently segments an image, but may not be effective to classify the created
segments. More sophisticated algorithms, better suited imagery and/or a
different methodology may be required to adequately classify segmented

imagery.

Spectral Resolution versus Spatial Resolution

The difficulty of species classification is supported by low accuracies of
previous research (both object-oriented and pixel-based) within the same study
area (Pugh 1997, Lennartz 2004) and is likely attributed to the level of species
detail desired and, in some cases, the increased spectral variation inherent in
higher resolution imagery. Increased spatial resolution leads to the detection of
shadows and minute shading variations, which increases the apparent stand
complexity and makes classification more difficult, as between class spectral
confusion is increased. Compounded with the intrinsic structural complexity of
New England forests, the increase in spectral variation makes species level
classification challenging with br:oadband satellite sensor data, like that used in

this study.

That being said, it is still important to remember the trade-off that exists
between spectral resolution and spatial resolution. As the imagery with the
lowest spatial resolution, but the highest spectral resolution yielded the best

classification accuracies and was the only classification to be significantly better
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than random, this research would suggest that spectral resolution is more
important than spatial resolution when employing object-oriented image
classificatioh of forest stands, as it better captures the natural spedtral variation
within those stands.

| A promising source of higher spectral reéoluti,on lies with the
implementation of hyperspectral imagery in object-oriented classifications.
Research from those using higher spectral resolution imagery supports this
conclusion. For example, Cochrane (2000) used spectrometer data comprised of
512 wavelength bands between 350 and 1050nm and automated classification to
correctly discriminate 11 target tree species 94% of the time. These resulted
validate Cochrane’s (2000) conclusions that the NIR spectrum captures the most
spectral variation. Although Cochrane’s (2000) research utilized remote sensing
at the leaf scale, it substantiates the hypothesis that hyperspectral vegetative
reflectance can accurately be applied to species classification.

Similarly, Clark et al. (2005) were able to use spectrometry to accurately
(100%) classify leaves of seven species of trees. Additionally, they achieved,
when classifying 1.6-meter, 30 band hyperspectral imagery, a 92% overall
accuracy classifying the same seven species. Clark et al.’s (2005) research
further indicates that the integration of hyperspectral imagery with object-oriented
classification could improve overall accuracy. Interestingly, NIR again proved to
be the most valuable wavelength spectrum (Clark et al. 2605).

HoWever, it is important to note that, although the seven separate species

_ stands were classified accurately, individual trees were not. The use of
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hyperspectral data tq delineate and classify individual canopies has been less
successful. Delineation of canopy crowns using 1m spatial resolution
hyperspectral aerial imagery in Definiens, however, achieved 70% classification
accuracies (which varied based on canopy density) in an Australian mixed
species forest (Bunting and Lucas 2005). As this thesis suggests, Bunting and
Lucas’ (2005) research supports the hypothesis that, although hyperspectral data
performs well in stand scale classifications, higher spatial resolution imagery is
needed to identify individual trees.

This study utilized some of the highest spatial resolution satellite imagery -
available (IKONOS). Given that the segmentation in this study did not reliably
delineate individual tree canopies and manual delineation of canopies using
IKONOS data resulted in a 65% overestimation of canopy coverage in the
Amazon (Asner et al. 2002), it is likely that currently available satellite imagery
resolutions are spatially inadequate to delineate individual trees. Larsen 2007
has also suggested that satellite imagery lacks the spatial resolution necessary
to accurately perform detailed land cover classification .

As the Qurrently available satellite imagery spatial resolutions are
repeatedly too coarse for individual canopy delineation and the use of higher
spectral resolution imagery improves imagery classification, a need for increased
spatial and spectral resolution onboard satellite sensors is apparent for the

classification of individual trees.
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Accuracy Assessment

In addition to improving the methodology necessary to attain higher
accuracies using object-oriented classification, it is necessary to also improve
upon the techniques to correctly assess segmentation accuracy. Object-oriented
classification réquires an understanding of not only pixel registration, but also an
understanding of segment registration, specifically where reference and training
points are located within individual segments. Further development is needed to
effectively determine the accuracy of segment placement and points within those
segments. Currently, it is often necessary to study accuracy on a per-object
basis to thoroughly understand the relation between the imagery and the
software segment delineation (Yu et al. 2008).

As was the case with this research, field survey plots and.referenlce points
rarely match the segmented image objects (Yu et al. 2008). Generating the
segments before collecting field data is a possible improvement to the
methodology, allowing field observers to locate the center of segments to gather
reference and training data. Having segment locations before field work would
improve sample quality (i.e., they would be more representative of the segment)
and eliminate the possibility of multiple reference points per segment. However,
there is no methodology currently in place to determine the accuracy of segment
placement (e.g., stand or canopy delineation).

It is also important to note that some of the accuracies in this study appear
to be artificially inflated. A comparison between field knowledge and a visual

examination of the two SPOT land cover maps (scales 10 and 15, both using 2-
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acre reference data) revealed little agreement with actual stand and landscape
patterns observed on the ground in the field (i.e., image classification yielded far
tob much other forest). Although the accuracy analysis was completed in
accordance with standard error matrix practices, including stratified random
sampling of points, it is likely that the assessment is biased toward abundant
areas. The correct classification of the other forest and the non-forest categories

likely boosted the overall accuracy assessment.

Sources of Additional Error

In addition to improper assessment technique, low accuracies can also be
the result of error accumulated throughout part or the ent}irety of the land cover
classification process. For the purposes of registration between ground data and
imagery, continuous and homogénous samples (30-meter x 30-meter) were
collected to serve as reference and training data. However, consistently
sampling within homogenous areas can result in biased results (Plourde and
Congalton 2003). Image pixels may cover several classes, which is not
represented by homogenous sampling schemes.

Previously compiled reference data (30-meter and 2-acre) were deemed
éppropriate for use in this study, to supplement the field data collected, as it
provided unequalled wall-to-wall study area coverage. However, the reference
data were collected roughly ten years previous to the commencement of this
study. While some landscape change likely occurred, much of the study area is

within a state park, used primarily for recreation with little to no active forest
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management. Although development in the area is not prevalent, it could have
affected the accuracy of the reference data. Natural succession change (e.g.,
regeneration of a field into forested area) undoubtedly occurred throughout the
study area, but it is questionable as to what magnitude of change is necessary to
elicit detection in an accuracy analysis.

Observer bias is a probable source of error in any research situation.
However, the use of both existing and newly created reference and training data
likely compounded this bias. Although the categories within the classification
scheme were identical between the various datasets, there Was room for
6bserver opinion to iinfluence category assignment. For example, observer
estimations of canopy cover are likely to vary (e.g. 20% oak or 30% oak)
between individuals. Although this may not always result in differing
classificafions, a better defined classification scheme would eliminate much of
the ambiguity associated with observations. A suggested modification might be
to determine stand composition based upon measured basal area or DBH values.
However, as the previously existing data did not specify theée classification
parameters, including this protocol in the future would not increase similarity

between historical data, but rather would increase future consistency.

Advantages of Object-Oriented Image Processing

Although the methodology of object-oriented analysis needs improvement,
object-oriented analysis provides a good solution to the frequent problem of

classifying objects that is associated with high resolution imagery. Consider a
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high resolution image of a forested landscape. Individual trees may span
multiple'pixels, and, although these pixels all repfesent the same tree, there is
inherent variation among them. Segmentation before classification allows pixels
to be grouped into an object (i.e., the tree) and allows the analysis and
classification of a continuous group of pixels, rather than individual pixels (Yu et
al. 2008). This grouping produces more visually pleasing maps, as the process
mimics the delineation process made by the human's brain. Given its
advantages, future research in image segmentation could promise for forest

classification.

Future Research

As object-oriented image analysis has demonstrated an ability to map
vegetation, although not as accurately as traditional photo-interpretation (Mathieu
et al. 2007), it is worth investigating means of improvement using the data and
technologies currently available. This is especially true considering that the
automated methodology provides total enumeration and is less expensive while
simultaneously more efficient than manual photo-interpretation. As this study
produced low accuracies, regardless of imagery used, standard methodological
imprbvements should be fine-tuned to a higher quality on one image, before
attempting to distinguish what imagery is the best. Based on the results of this
research and the available literature, some suggested methodologies are

presenied here.
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Classification and Regression Tree (CART) Analysis: This research utilized the

sample editor function of Definiens Professional for segment classification, as
opposed to the rule-based cIassification method. Further incorporation of
statistical methods into the classification process using the rule-based approach
could be accomplished through preliminary analysis of training data us-ing a
classification and regression tree (CART) approach.. A rule-based segment
classification at the stand scale, using Landsat 7 data comparable to that used in
this study, resulted in an 83% overall accuracy (Lucas et al. 2007).

A CART analysis statistically determines the most importanf parameters
or attributes to be used in classification, based on training point attributes. For
example, a CART analysis would allow the researcher to determine which bands
of imagery are most important to the classification process.. CART can also
provide rule-based classification guidelines, which, once incorporated intd the
rule-based classification of Definiens, have been shown to be more effective than
the sample-based classification method (Gao et al. 2007). CART also has the
power to determine the usefulness of ancillary data in classification, which has
the pofential to elimihate excess data, reducing overall classification cost and

processing time.

Ancillary Data: Although this project incorporated three different image data

sources, classification was based solely on the properties associated with these
respective images. That is, properties associated with bands and derived bands

were used. Research has suggested that incorporating ancillary data, such as
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LIDAR, wetlands or soils data, can improve classification accuracies (Lu et al.
2008). Inclusion of additional data would allow for a better understanding of each
clasé’ properties beyond spectral and textural infdrmation and integrate the
power of ‘GIS modeling. Modeling of individual canopy shapes in three
dimensions has also been suggeéted as a means of distinguishing between
individual trees and guiding their classification (Larsen 2007). However, while
this methodology may improve classification it may be impractical because of

added cost and time.

Classification Simplification: Research indicates that the accuracy of image-

object classification could possibly be improved through the modification of the
classification scheme (although this may detract frdm the original intent of a
classification). Simplification of the classes (e.g., coniferous vs. deciduous rather
than species level classification) could yield an improvement in overall
classification accuracy. Yu et al. (2006) achieved accuracies of 58%, a
substantial increase over their original results, by simplifying an individual
species classification to a iandscape level, non-species specific class scheme.

Simplification also showed a noted improvement with the 1992 National
Land Cover Data set that used Landsat TM data to classify the land cover of the
United States. Two classification scnemes were developed: Level | and Level Il.
Level | contained nine categoriesland distinguished major land cover types (e.g.,
water from forest from agriculture). Level Il used 21 categories to furtner

distinguish between cover types (e.g., open water from ice snow from deciduous
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forest from coniferous forest). Using 1573 reference points, Level | achieved an
overall accuracy of 80%, while Level Il achieved only 47% overall accuracy

(Environmental Protection Agency 1992). Although this project utilized ancillary
| data, the more detailed classification scheme did not achieve usable accuracies,
meaning that thé map would be unreliable fdr field use. However, the simplified

classification scheme produced an impressive 80% accuracy.

Although this research demonstrated that object-oriented image analysis
is not reliable for discriminating tree species, regardless of scale, with the
currently available satellite image resolutions, it did provide some insight
regarding procedural improvement‘s. Still, past and current research (Lennartz
2004, Gao et al. 2007) have demonstrated that object-oriented clasSification is
superior to the traditional per-pixel classification method, especially using high
spatial resolution satellite imagery. As spatial and spectral imagery resolution
cont’inues to improve both spatially and spectrally, further development and
perfection of object-oriented image analysis is a necessary step to understanding

and translating data into a useful form.

Conclusions
Although this study provided no conclusive evidence as to which of the
three satellite images used was “best” for mapping tree species in New

Hampshire, the results did provide several insights and conclusions.
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1. Segmentation works well in Definiens software, while classification does not.
Better methodology, be it software, algorithms or data, is needed.

2._ As the highest spectral resolution, but lowest spatial resolution imagery was
best for classifying stands, spectral resolution may be more important than
spatial resolution for stand and landscape scale classification.

3. Higher spatial resolution is needed to delineate individual tree canopies, but it

is likely that high spectral resolutions will be needed to classify them.

The research presented in thi’slthesis was focused on identifying fhe best
imagery for use at three given scales, based upon the accuracies of the resulting
classifications. As IKONOS, SPOT and Landsat TM data yielded similarly poor
accuracies at the desired levels of detail, perhaps the research focus should shift
to identifying to optimal methodology, in lieu of both spectrally and spatially high
resolution imagery. It is also important to recognize that many of the methods
utilized in this study are beyond the finaﬁcial and technical grasp of an
"everyday" forester. -The usefulness of these processes, as they now are, is also
fairly limited due to the time required to perform them. However, this research |
points to possible ways to improve results to an accurate, "useful” level. Once
this level is attained, the process of automated species classification at the stand
individual tree scale could be fine-tuned, with software parameters standardized
to obtain optimal results with the push of a single button. This would allow
foresters to. quickly, easily and consistently‘classify their stands, not only

providing data about species absence/presence, but also their spatial
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distribution. This type of data could be the cornerstone for timber management
plans and timber inventories and would be more efficient than the current
practices of timber cruising. Thereforé, attention sh‘ould be paid to developing
efficient and cost effective methods to allow for the use of these methodologies
beyond the research arena into the areas of professional forestry. In the future,
the usefulness of the most éccurate classification methods may be limited by the
cost to those that need them. From a forest management perspective, this
research is promising but needs either technology o‘r methodology improvements

before a useable product can be attained.
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APPENDIX A: Classification System Guidelines and Forest Type Definition

Beech (B)
o Description: A stand primarily or completely comprised of American
beech (Fagus grandifolia) '
o Classify as B when beech is at least 70% of the stand.
Oak (O)
o Description: A stand primarily or completely comprised of northern red

oak (Quercus rubra) or white oak (Quercus alba)
o Classify as O when either red or white oak is at least 70% of the stand.
Red Maple (RM)
o Description: A stand primarily or completely comprised of maple species
(Acer spp.) most likely red maple (Acer rubrum) or sugar maple (Acer
saccharum). - Although labeled Red Maple, either species is acceptable.

o Classify as RM when either red or sugar maple is at least 70% of the
stand. |
Other Forest (OF)
o Description: A stand primarily comprised of deciduous species, but not
dominated by beech, oak or maple. This stand may be comprised of any
combination of beeéh, oak or maple, but may also be comprised dr

dominated by birch (Betula spp.), shagbark hickory (Carya ovata) or hop
hornbeam (Oystra virginiana).
o Classify as OF when:
1. the stand is at least 70% deciduous species
2. the stand.is not at least 70% of single species B, O or RM
* Hemlock (H) ‘
o Description: A stand primarily or completely comprised of eastern
hemlock (Tsuga Canadensis)
o Classify as H when hemilock is at least 70% of the stand
*  White Pine (WP)
o Description: A stand primarily or completely comprised of eastern white
pine (Pinus strobus), red pine (Pinus resinosa), pitch pine (Pinus rigida)
or eastern red cedar (Juniperus virginiana)
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o Classify as WP when white pine or above species is at least 70% of the
stand
¢ White Pine/Hemlock (WPH)
o Description: A stand primarily or completely comprised of a mixture of
eastern hemlock ( Tsuga canadensis) or eastern white pine (Pinus strobus)
o Classify as WPH when:
1. The stand is coniferous
2. The stand is not at least 70% of single species H or WPH
3. The stand is at least 30% of hemlock and 30% of white pine
4. When combined, hemlock and pine comprise at least 70% of
the stand
* Mixed Forest (MF) _
o Description: A stand comprised of a mixture of deciduous and coniferous
species
o Classify as MF when:
1. The stand is less than 70% of deciduous species
2. The stand is less than 70% of coniferous species or is not
classifiable as H, WP or WPH
3. The stand is comprised of tree species
¢ Non-forest (NF) |
o Description: A “stand area” that is not forested (e.g. marsh, wetland,
open field, rock, regeneration)
o Classify as NF when less than 30% of the area is forested.
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APPENDIX B: Histograms for IKONOS, SPOT and Landsat TM image bands

IKONOS Band:
1. blue

& Imapeinfo {pawivckaway_ iknonos_stack?.img)
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5. IR/R (4/3)

s Imageinfo {pawtuckaway _iknonos_stack?.img)}

6. TC1
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110



SPOT Band:
1. green

ke Imagelnfo {pawtuckaway spot_stackZreprej.img)
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3. NIR
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4. MIR
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5. IR/R

% Imagelnfo {pawtuckaway spoi_stack2reprej.img)

113



Landsat 5 TM Band:
1. blue

. Imagelnfo [pawluckaway tm_slackZreproj.img)

2. green
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5. MIR
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6. MIR

@ Imagelnfn (pawtuckaway_tm_stackZreproj.img)

116



7. IR/R (4/3)
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