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ABSTRACT 

THE BIOGEOCHEMICAL INFLUENCES OF NITRATE, DISSOLVED OXYGEN 

AND DISOLVED ORGANIC CARBON ON STREAM NITRATE UPTAKE 

by 

Joseph A. Thouin 

University of New Hampshire, September, 2008 

Streams are important hotspots for the retention and removal of nitrogen 

(N), an element that contributes to eutrophication and threatens the stability of 

coastal ecosystems. Nitrate (N03") is the most mobile form of N, and 

understanding the causal mechanisms that foster optimal NO3" retention and 

removal in stream systems is critical from both predictive and conservation 

standpoints. Dissolved organic carbon (DOC) is hypothesized to be a major 

control of instream N03" concentrations, but dissolved oxygen (DO) is also an 

important control of NO3" removal processes. Assessing the individual impacts of 

NO3", DO, and DOC concentrations on stream NO3" removal is difficult due to the 

natural interdependencies of these nutrients in the carbon and nitrogen cycles. 

This study took an experimental approach to quantifying the influences of N03", 

DOC, and DO on N03" transport within two headwater streams of the Ipswich and 

Parker River watersheds, MA, with contrasting levels of DOC and DO. In a first 
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set of experiments we added increasing levels of NO3" to address how uptake 

kinetics differed in a low DO/high DOC stream (Cedar Swamp Creek) versus a 

high DO/low DOC stream (Cart Creek). In a second set of experiments, we 

manipulated for the first time at the reach scale both DO and DOC in a factorial 

experiment. DO was added to the low DO stream by injecting oxygen, and 

removed from the high DO stream by adding sodium sulfite. DOC was added 

both alone and in combination with the DO manipulations. Results from the 

NO3" enrichments suggest N03" concentration is an important control of NO3" 

vertical velocity. Results from the DOC and DO manipulations suggest that DO 

determines whether a stream has net nitrate uptake or production, and that DOC 

magnifies these processes. Addition of DOC by itself did not lead to increased 

nitrate uptake, suggesting that inverse relationships between nitrate and DOC 

may arise from complex interactions among DOC, DO and nitrate concentrations 

and how they influence dominant stream processes. In addition to these 

findings, we also observed organic matter "priming effects" (Kuzyakov et al. 

2000) not previously reported in stream systems. 

Keywords: nitrate, nitrate uptake, dissolved oxygen, dissolved organic carbon, 
net nutrient uptake, solute addition, priming effect 
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CHAPTER I 

Introduction 

Nitrogen (N) is a naturally occurring element that is essential to life on 

earth, and often controls productivity in terrestrial (Tamm 1991) and marine 

ecosystems (Vitousek and Howarth 1991). Excessive anthropogenic N inputs 

from sources such as atmospheric deposition, fertilizer use, and septic systems 

are exceeding terrestrial demand over many parts of the world, causing nitrogen 

concentrations to increase in river systems (Aber et al. 1989, Boyer et al. 2002, 

Driscoll et al. 2003). Once in river systems, inland nitrogen pollution has the 

potential to be translocated to coastal zones with deleterious effects (Howarth et 

al. 2002, Rabalais 2002). Currently more than 40% of U.S. coastal waters suffer 

from excess nutrient inputs (Bricker et al. 1999), leading to the outbreak of algal 

blooms (Glasgow and Burkholder 2000). Upon senescence, these blooms 

increase the biological demand for oxygen, decreasing its availability and 

creating areas of anoxia that negatively impact coastal biota (Dodds 2006). 

Nitrate (N03") plays a significant role in coastal eutrophication. Due to its 

mobility, nitrate is the most common form of dissolved inorganic nitrogen 

reaching the coastal zone (Howarth et al. 1996). To mitigate the negative 

impacts of nitrogen entering the coastal zone, it is necessary to understand how 

nitrate is loaded into and then processed and transported within river systems. 
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Although rivers may constitute an important transport route for nutrients 

originating in terrestrial ecosystems, they are hardly passive conduits (Alexander 

et al. 2000, Cole et al. 2007). Streams and rivers may retain or remove 

anthropogenic N inputs through abiotic and biotic in-stream processes, which 

include adsorption to sediments, sediment burial, assimilative uptake by plants 

and algae, immobilization by microbes during the breakdown of organic matter, 

and anaerobic respiratory pathways of bacteria, i.e., denitrification (Bernot and 

Dodds 2005, Seitzinger et al. 2006). Peterson et al. (2001) found that nitrogen 

uptake in headwater streams can reduce up to half of the nitrogen that is 

introduced from the adjoining terrestrial ecosystem. With total river length in 

most watersheds dominated by small streams (Leopold and Maddock 1953), 

headwater systems have the potential to play an integral role in buffering 

nitrogen exports to coastal waters. 

Supported by the stream nutrient spiraling paradigm (Newbold et al. 

1981), a number of studies have quantified N uptake in streams using standard 

solute addition methodology (Stream Solute Workshop 1990). Stream spiraling 

techniques have been used to determine N dynamic metrics such as areal 

uptake (U, mass removal of a nutrient per unit area of the streambed per time) 

and vertical velocity (of, the speed at which a nutrient is removed from the water 

column) (Stream Solute Workshop 1990) during N enriched conditions using 

solute additions (Dodds et al. 2002, Payn et al. 2005) and under ambient 

conditions using isotopically labeled N (Webster et al. 2003, Mulholland et al. 

2004). To determine the effects of variable biotic and abiotic conditions on 

2 



stream nitrogen uptake, significant effort has been invested in quantifying and 

comparing nitrogen retention and removal across sites (Wollheim et al. 2001, 

Mulholland et al. 2002, Webster et al. 2003). Fewer studies have determined the 

influence of hydrologic and biogeochemical factors on nitrogen uptake by 

manipulating physical and chemical conditions in individual stream systems 

(Bernhardt and Likens 2002, Ensign and Doyle 2005). 

Whereas inter-site comparisons enable general relationships to be 

formulated linking watershed characteristics and stream biogeochemistry, short-

term stream reach manipulations offer the opportunity to gain better insight into 

the causal mechanisms responsible for observed variability. This is important 

insofar as streams are prone to variable conditions over both spatial and 

temporal domains, which together significantly influence nitrogen retention and 

removal (Simon et al. 2005). Among the spatially and temporally heterogeneous 

biogeochemical controls that can significantly alter demand for NO3" are NO3" 

concentration (Dodds et al. 2002), dissolved oxygen (DO) concentration (Kemp 

and Dodds 2001), and dissolved organic carbon (DOC) concentration (Webster 

et al. 2000). 

NO3" concentrations are a primary influence on NO3" uptake rates. Dodds 

et al. (2002) suggest that biotic uptake is directly related to N03" concentration, 

and as such NO3" uptake will increase with increasing N03" concentration. 

Recent findings indicate that nitrate removal rates do not increase linearly with 

increasing concentrations across sites (Mulholland et al 2008). Within individual 

streams, N removal rates have been assumed to follow Michaelis-Menten 
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kinetics (Mulholland et al. 2002, Payn et al. 2005). These studies suggest that 

uptake efficiency declines with increasing concentration. 

N03" dynamics in streams may in part be attributed to biotic processes 

that are dependent on DO, such as nitrification and denitrification. Oxygen 

concentrations have been found to be positively correlated with nitrification 

(Kemp and Dodds 2001), and thus can lead to increased N03" in the water 

column. Furthermore, DO provides an electron acceptor for carbon respiration, 

leading to the remineralization of organic nitrogen as ammonium (NH/) via 

ammonification (Scott and Binkley 1997), which can also elevate rates of 

nitrification (Ollinger et al. 2002) and produce higher levels of NO3". Low DO 

concentrations are generally known to decrease N03" concentrations, by 

inhibiting nitrification, and providing conditions instead favorable to denitrification 

(Seitzinger et al. 2006), which removes N03" from streams. 

A recent review article, focusing on data from streams of the northeastern 

U.S., shows that DOC levels are inversely related to N03" concentrations 

(Goodale et al. 2005), suggesting that DOC may increase stream N03" retention. 

DOC is a significant energy source for stream ecosystems (McDowell and Fisher 

1976, Wiegner et al. 2005), and is tied to the nitrogen cycle through its use by 

heterotrophic bacteria (Meyer et al. 1988). Furthermore, strong coupling of 

carbon and nitrogen has been demonstrated in empirical studies of both soils 

(Swerts et al. 1996, Ollinger et al. 2002) and streams (Bernhardt and Likens 

2002, Starry and Valett 2005). The experimental addition of DOC in streams led 

to increased NO3" uptake (and hence loss from the water column) by increasing 
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heterotrophic immobilization (Bernhardt and Likens 2002) and denithfication 

(Inwood et al. 2005). Because heterotrophs can out-compete nitrifiers for N H / , 

DOC is also known to inhibit nitrification (Straus and Lamberti 2000), which 

would have the net effect of reducing N03" in the water column. Through its 

metabolism, DOC can also affect DO levels (Sand-Jensen and Pedersen 2005), 

and thus indirectly exert influence on nitrification and denitrification. 

The overall goal of this study was to better understand how N03" dynamics 

in headwater streams of the Ipswich and Parker River, MA watersheds (Figure 1) 

are controlled by concentrations of N03~, DO, and DOC in the water column. 

These watersheds, which drain to the Plum Island Sound ecosystem, are rapidly 

urbanizing and have elevated nitrogen concentrations and fluxes (Wollheim et al. 

2005) that threaten the coastal ecosystem. Furthermore, these basins have a 

large proportional area of wetlands that contribute high levels of DOC (Raymond 

and Hopkinson 2003), and also lead to relatively low DO in many reaches. 

Consistent with the analysis of Goodale et al. (2005), Figure 2 shows an inverse 

relationship between DOC and N03~ concentrations within streams and rivers of 

the Ipswich and Parker River watersheds. Furthermore, a synoptic survey of 

water chemistry from streams within the Parker and Ipswich River basins (n=41, 

data unpublished) provide an inverse relationship between DOC and NO3" 

(p=0.001). However, these data also show DOC levels are inversely correlated 

to concentrations of DO (p=0.02, n=41), and concentrations of DO are directly 

related to N03" levels (p=.04, n=41). Thus the coupling of N03", DO, and DOC in 

5 



these systems makes it difficult to decipher which factors are truly controlling the 

mechanisms of N03" uptake. 

To address the complex biogeochemical relationships observed within the 

streams of the Ipswich and Parker River watersheds this work employed a multi

factorial, whole-reach, experimental approach. We used short-term 

manipulations to determine the effects of NO3", DO, and DOC on stream NO3" 

dynamics. Two types of experiments were employed: (1) N03" additions in low 

N03" streams of contrasting DO and DOC, and (2) manipulations of DO and DOC 

under ambient N03" in these same streams. Along with the traditional method of 

NO3" enrichment to estimate gross NO3" uptake, this study investigated the 

impact of DO and DOC concentrations on net NO3" uptake, a metric for 

identifying dominant controls of nutrient export (Roberts and Mulholland 2007). 

The manipulations of both DOC and DO employed in this study represent a novel 

experimental approach to stream reach NO3" investigations. Manipulating N03", 

DO, and DOC in low NO3" streams affords perspectives on how these three 

parameters influence the dominant processes that ultimately determine the fate 

of NO3" retention and export. The following 4 hypotheses were tested: 

Hypothesis 1: NO3" vertical velocity will be inversely related to NO3" 

concentration, because increasing concentrations of NO3" will decrease N03" 

limitation. 

Hypothesis 2: DO concentrations will be inversely related to net N03 

uptake (ie. removal of N03" from surface waters), because net NO3" uptake is 
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influenced by rates of nitrification and denitrification, which is dependent on DO 

availability, 

Hypothesis 3: DOC concentrations will be directly related to net NO3" 

uptake, because DOC will increase NO3" immobilization under aerobic conditions 

and fuel denitrification under anoxic conditions. 

Hypothesis 4: DOC concentrations exert greater control over net NO3" 

uptake than DO concentrations; addition of DOC to surface waters will increase 

net NO3" uptake under all DO conditions by inhibiting nitrification and fueling 

immobilization and denitrification. 
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CHAPTER II 

Methods 

Site Description 

Two 1s t order streams, Cedar Swamp Creek and Cart Creek, were 

selected as the study sites for experimentation. These headwater streams are 

located in the Ipswich and Parker River watersheds, which drain to Plum Island 

estuary in northeastern Massachusetts (Figure 1). The Ipswich and Parker 

watersheds are typical of the low gradient, poorly drained, coastal landscapes 

found in much of New England (Baker et al. 1964). Shallow soils overlay the 

sand, gravel, and till of the local surficial geology and the igneous and 

sedimentary Paleozoic and Precambrian formations that comprise the bedrock 

geology (Baker et al. 1964). Average annual precipitation in the region is 115 cm 

(Wollheimetal.2005). 

Cedar Swamp Creek and Cart Creek were selected because they are 

relatively pristine watersheds, but differ in ambient water chemistry (Table 1). 

Due to abundant wetlands in the catchment (49 %), Cedar Swamp Creek has 

relatively high levels of DOC and dissolved organic nitrogen (DON), and low 

levels of N03" and DO. In contrast, Cart Creek with 19 % wetlands has lower 

DOC, higher DO, and moderately higher N03". Experiments at these sites were 

performed in late summer of 2005 and 2006 during low, channelized stream flow 

and under full, deciduous canopy. The study reaches were 180 m and 175 m in 
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Cedar Swamp Creek and Cart Creek, respectively, with 6 to 8 sample 

stations distributed along the reach and one upstream of the addition site. 

Nutrient Enrichments and Manipulations 

Standard solute addition procedures summarized by Webster and Ehrman 

(1996) were followed for all enrichments and manipulations. Continuous 

additions of solutes and gasses were accompanied by a conservative tracer 

(NaCI) to determine dilution via lateral water inputs, hydrologic equilibrium 

(plateau), and transient storage in the study reach (Stream Solute Workshop 

1990, Hart et al. 1995). All solutes were delivered using a peristaltic pump, 

which was monitored to ensure a constant delivery rate. Stationary YSI sondes-

6920 and handheld YSI-85 meters (Yellow Springs Instruments, Yellow Springs, 

OH) were used to track conservative tracer movement and determine the time of 

hydrologic equilibrium for each addition. Discharge was quantified from in situ 

depth measurements using HOBO-U20 water level loggers (Onset Computer 

Corporation, Bourne, MA) in coordination with site-specific rating curves. Stream 

width was computed from measurements taken along the reaches at 10 m 

intervals. 

All water samples were filtered in the field using ashed, 2.5 cm GF/F filters 

(0.7 |am). Samples were stored in acid washed HDPE plastic bottles, and kept 

on ice in the field. Upon returning from the field each day, samples were frozen 

until they could be analyzed. Wet chemistry included DOC (Shimadzu TOC-

5000 with ASI-5000 autosampler), TDN (Antek 720C Chemiluminescent N 

detector coupled to TOC-5000) (Merriam et al. 1996), P04
3" and NH4

+ (Westco 
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Smartchem Robotic Analyzer), and Anions (CI", N03", S04") (Ion 

Chromatograph/HPLC System with autosampler). DON was derived as the 

difference between TDN and the sum of NhV and N03 \ All chemical analyses 

were performed by the Water Quality Analysis Laboratory in the New Hampshire 

Water Resources Research Center at the University of New Hampshire. 

NO3' Enrichments 

In the summer of 2005, multiple solute additions of NaN03 were 

conducted at Cedar Swamp Creek and Cart Creek to determine the influence of 

NO3" concentration on N03" vertical velocity (Df). Both sites received 4 

enrichments of NaN03, and each was successively greater in magnitude. Cedar 

Swamp Creek received additions of 0.02 (2x), 0.06 (5x), 0.3 (20x), and 1.7 (111 x) 

mg N/L. Cart Creek received additions of 0.13 (1.3x), 0.45 (2x), 1.2 (4x), and 5.4 

(13x) mg N/L. For each addition, lognormal N03" concentrations (mg N/L) 

corrected for background concentration and dilution were plotted against 

distance downstream (Mulholland et al. 2002). The negative slope of this linear 

relationship provided the N03" distance specific uptake rate (1/m). The inverse of 

the uptake rate is the N03" uptake length (m). Vertical velocity (m/y) of N03" was 

calculated for each addition according to the following equation: 

where Q is the discharge at the time of the addition (m3/yr), w is average stream 

width (m), and Sw is uptake length (m). Ambient uptake length and vertical 

velocity were also quantified using the method of Payn et al. (2005). 
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DO & DOC Manipulations 

In 2006, experimental manipulations of DOC and DO were conducted at 

Cedar Swamp Creek and Cart Creek. Cedar Swamp Creek received 3 

experimental additions on 2 consecutive days: (1) a labile DOC addition using a 

glucose solution (August 16, 2006), (2) a DO enrichment (August 23, 2006), and 

(3) a simultaneous addition of DO and DOC (August 23, 2006). Cart Creek 

received 3 experimental solute additions on 3 dates: (1) a labile DOC enrichment 

using glucose (August 30, 2006), (2) a sodium sulfite addition to remove 

dissolved oxygen (September 1, 2006) (Gameson et al. 1955), and (3) 

concurrent sodium sulfite and glucose additions to simultaneously remove DO 

and add DOC (September 11, 2006). The concentrated glucose solutions added 

to Cedar Swamp Creek and Cart Creek targeted increases of 7 to 10 mg C/L in 

each stream, representing a carbon increase of 15 to 22 % and 125 to 178 % in 

Cedar Swamp Creek and Cart Creek respectively. Additions were started in the 

morning with plateaus generally reached within 4 hours. 

During the DO additions in Cedar Swamp Creek, pressurized oxygen was 

added continuously through a diffusion stone placed on the stream bed, which 

raised DO levels at the upper most sampling station to 6.25 mg/L. Attaining this 

elevated concentration necessitated construction of a weir to channel the water 

directly over the diffusion stone. To enhance dissolution of DO into the water, a 

trolling motor (Minn Kota Endura) was placed upstream of the diffusion stone to 

aid channel mixing and inhibit the amended oxygen bubbles from quickly 

coalescing, rising, and degassing as they left the diffusion stone. A tarp was 
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used to cover the stream bottom directly beneath and adjacent to the trolling 

motor to prevent sediments from being stirred up. 

Oxygen was purged from Cart Creek using a concentrated solution of 

sodium sulfite, targeting a DO concentration in channel flow of 1-2 mg/L. Sodium 

sulfite was previously used to reduce stream oxygen for re-aeration studies 

(Gameson et al. 1955). The reaction required sodium sulfite concentrations to 

be roughly 8x greater than DO by weight. Due to the oxidizing capacity of this 

solution and its reactivity with atmospheric oxygen the solution of sodium sulfite 

was held in an airtight polyurethane container on the stream bank and sealed 

with petroleum jelly. Tubing from the peristaltic pump, used to deliver the solute, 

was inserted in the top of this container and sealed in place with caulk. To aid 

mixing of the solute with the water column, a weir was constructed at the point of 

solute release. Also, several baffles and an additional weir were installed within 

the first 20 m of the addition point to increase solute residence time and the 

dispersion necessary to allow the sulfite time to sufficiently react with the DO to 

achieve the target reduction prior to entering the study reach. 

Nutrient Uptake 

Analysis of the DOC and DO manipulations focused on the change in net 

N03" uptake rate (mg N m"2 d"1) during plateau of each experiment compared to 

that occurring under ambient conditions just prior to the experimental 

manipulation. The observed change between plateau and ambient conditions is 

referred to here as delta net N03" uptake. Delta net NO3" uptake rate per unit 

area (mg N m"2 d"1) was quantified using the equation: 
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-F 
U = — (2) 

w 

where F is the slope of the difference between experiment and ambient flux 

versus distance (mg m"1 d"1), and w is average stream width (m). Positive U 

represent net nutrient uptake, while negative U represents net nutrient 

production. Slopes and intercepts were determined for ambient and plateau 

NO3" flux, and for the change in flux through the reach. The slope of change in 

flux was used to assess the significance of the experimental manipulation with 

respect to nitrate fluxes. Two-tailed paired t-tests were also performed to identify 

whether the experiments had a significant effect on nitrate chemistry (p<0.05). 

DOC and DO uptake rates and decay deficits per unit distance, k (1/m), during 

the manipulations were calculated using the slope of background corrected, 

lognormal nutrient flux plotted against distance (Webster and Ehrman 1996). 

Positive k values for the oxygen removal experiments represent the decay of the 

oxygen deficit (i.e. re-oxygenation). 
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CHAPTER III 

Results 

NOs" Enrichments and Vertical Velocity 

Uptake lengths increased and vertical velocities decreased with increasing 

NO3" concentrations at both Cedar Swamp Creek and Cart Creek (Table 2). 

Ambient estimates using the Payne et al. (2005) method resulted in Sw and Uf of 

15 m and 3202 m/y, respectively, at Cedar Swamp Creek and 517 m and 126 

m/y, respectively, at Cart Creek. Cedar Swamp Creek had higher Uf than Cart 

Creek, corresponding with lower nitrate concentrations. Combining the data from 

the two sites, uptake velocity declined as a power function of nitrate 

concentration (mg/L) (105.35x07607, p=0.004, R2 = 0.8406). The relationship 

appears to apply across the two sites, despite their different characteristics 

(Figure 3). 

DOC and DO conditions during carbon and oxygen manipulations 

Cedar Swamp Creek and Cart Creek received DOC and DO 

manipulations to identify the independent and synergistic impacts of these 

parameters on NO3" dynamics. The experimentally altered characteristics at 

plateau (change at the first station, and k (1/m) through the reach) during the 3 

manipulations for both Cedar Swamp Creek and Cart Creek are shown in Tables 

3 and 4. At Cedar Swamp Creek the labile DOC (glucose) addition (August 16, 

2006, Q = 2.935 Us) achieved an upstream (site 1, 30m) DOC concentration 19 
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% (8.0 mg/L) higher than ambient values, and average transect concentrations 

rose 7.09 mg C/L. The DO addition at Cedar Swamp Creek (August 23, 2006, Q 

= 2.387 L/s) increased concentrations 90 % (2.74 mg/L) above ambient values at 

the most upstream sampling station resulting in an average transect 

concentration 1.93 mg/L higher than ambient values. The simultaneous DO and 

DOC enrichment (August 23, 2006, Q = 2.387 L/s) increased DO at the upstream 

site 93 % (2.84 mg/L), and the experimental transect experienced an average 

increase of 2.07 mg/L. However, although the target DOC elevation of 9 to10 mg 

C/L was successfully injected, the concentrations 30 m downstream were 35% 

lower than ambient levels, and the average transect concentration dropped 1.61 

mg C/L. 

In Cart Creek the initial glucose addition (August 30, 2006, Q = 2.595 L/s) 

raised the DOC level at the upstream station (25 m) to 11.9 mg C/L (+108 %), 

and average DOC concentrations increased by 3.79 (mg C/L) over the entire 

reach. The second experiment was DO removal (September 1, 2006, Q = 1.615 

L/s) in which DO levels dropped at the upstream station by 88 % (-7.1 mg/L). 

Average transect concentrations in flowing water during this experiment were 5.7 

mg/L below ambient values. The third manipulation at Cart Creek, the DO 

removal and simultaneous glucose addition (September 11, 2006, Q = 1.705 

L/s), decreased DO concentrations at the upstream station from 7.94 to 1.08 

mg/L (-86 %). Average transect DO concentrations during this removal were 

5.42 mg/L below ambient values. The glucose solution of this third manipulation 

raised DOC concentrations at the upstream station 146 % to 11.8 mg/L, and the 
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average reach concentration increased by 6.04 mg/L. Temporal profiles of 

dissolved oxygen from Cedar Swamp Creek and Cart Creek during the combined 

DO and DOC manipulations are shown in Figures 4 and 5, and oxygen transects 

(as concentration, mg/L) for all experiments are shown in Figure 6. 

While the design and focus of all the experiments was the influence of 

DOC and DO concentrations on net N03" dynamics, there was a surprising result 

involving the metabolism of organic matter that we point out here. The 

phenomenon was most prominent during the combined DOC and DO addition at 

Cedar Swamp Creek. As noted above, the plateau concentrations of DOC at the 

first sampling station during the combined DOC and DO addition were actually 

lower than ambient levels (-17.17 mg C/L). Downstream of this sampling station 

we observed DOC concentrations gradually returning to ambient levels with 

distance along the transect (Figure 7A). This suggests that there was immediate 

removal of both ambient and labile DOC between the point of addition and the 

first sampling station, with a DOC uptake velocity equivalent to 1074 m/y. This 

interpretation is corroborated by DON concentrations along the transect, which 

display a very similar pattern (Figure 7B). The concentration of DON removed 

from the water column corresponds to a vertical velocity value of 1809 m/y. 

Further, the decreasing levels of DON in the water column corresponded with 

elevated levels of NH4
+ (Figure 7C). This increase in NH4

+ concentration at the 

first sampling station may account for approximately 25 % of the observed DON 

removal. Over the distance of the entire transect, the rate of net NH4
+ removal 

was 0.0006 (1/m). If completely nitrified, this amount of net NH4
+ loss could 
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result in an increase in N03" of 0.075 mg N/L. Nitrate had a net increase of 0.047 

mg N/L over this transect suggesting that a portion of the N H / removed from the 

water column was converted to N03" via nitrification, and the remaining N 

unaccounted for is assumed to have been removed from the water column via 

biotic or abiotic processes untraceable by our methods. Less intense yet similar 

shifts in concentration of DON, NH4
+, and N03" were observed during the DOC 

addition at Cart Creek when average concentrations of DON in the reach 

dropped 0.013 mg N/L, and concentrations of NH4
+ and N03" rose 0.002 and 

0.019 mg N/L respectively. 

NOg" Response to DOC and DO Manipulations 

The DOC and DO manipulations induced either increases or decreases in 

net N03" uptake. Paired t-tests comparing N03" concentrations at all stations 

along the transects collected during experimental plateau versus their ambient 

counterparts showed that all manipulations significantly altered mean NO3" 

concentrations (p<0.05). 

The addition of DOC had inconsistent effects on NO3" dynamics at Cedar 

Swamp Creek and Cart Creek. Under ambient conditions at Cedar Swamp 

Creek, slopes of N03" flux increased through the study reach. Addition of DOC to 

Cedar Swamp Creek (low DO stream) created a marginally significant change 

(p=0.051) as the slope of N03" flux became less positive (Table 5), and net N03" 

uptake increased (Figure 8A). At Cart Creek (high DO stream), where ambient 

slopes of NO3" flux decreased with distance, the addition of DOC positively 
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increased the slope of NO3" flux and resulted in a positive delta NO3" flux. Thus, 

addition of DOC at Cart Creek decreased net NO3" uptake (Figure 8B). 

The DO manipulations resulted in changes in net N03" uptake through 

each stream reach, but the effects were relatively small. The addition of DO to 

DOC-rich Cedar Swamp Creek caused the slope of N03" flux versus distance to 

increase positively (Table 5), and resulted in a positive delta N03" flux and a 

decline in net N03" uptake (Figure 8A). This result is consistent with Cart Creek's 

DOC addition where high DOC and high DO were paired. The DO removal at 

Cart Creek had little effect on net N03" uptake, indicating a small increase in 

delta NO3" flux and a decrease in net N03" uptake (Figure 8B). Note however 

that nitrate fluxes declined with distance through the reach in this experiment, 

with most of the change having occurred prior to the first sample station 

(negative intercept for delta, Table 5). As stated above, a pool was artificially 

created to ensure sufficient residence time to ensure DO was removed from the 

water column. 

Concurrent manipulations of DOC and DO produced the strongest 

changes in net N03" uptake in Cedar Swamp Creek and Cart Creek (Figures 8A 

and 8B). Furthermore, the changes observed during these manipulations were 

exact opposites. The concurrent addition of DOC and DO in Cedar Swamp 

increased delta N03" flux. This change in flux was marginally significant (p = 

0.052), and resulted in a stronger decline in delta net NO3" uptake than the 

independent DO addition at Cedar Swamp Creek. At Cart Creek the 

simultaneous removal of DO and addition of DOC decreased N03" flux below 
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ambient conditions, and resulted in a marginally significant (p = 0.057), negative 

delta net N03" flux. This concurrent DO removal and DOC addition at Cart Creek 

led to an increase in delta net NO3" uptake (Figure 8B). 
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CHAPTER IV 

Discussion 

NO;f Enrichments 

Compared with N03" vertical velocity values determined from 52 studies in 

other 1s t order streams (Ensign and Doyle 2006) Cedar Swamp Creek and Cart 

Creek were found to be true end-member sites with all experimentally derived Uf 

values falling outside the interquartile range of those data (420 - 2208 m/yr). 

Cedar Swamp Creek demonstrated high uf during the lowest N03" enrichment, 

suggesting Cedar Swamp Creek is severely N03" limited. However, the decline in 

Uf as N03" concentrations increased (20 -110 % above ambient concentration) at 

Cedar Swamp Creek suggests that N03" limitation at this site is removed at 

moderate N03" concentrations, and that uptake efficiency of the bacterial 

community within Cedar Swamp Creek quickly declines with increasing N03" 

concentrations during short-term additions. At Cart Creek, the uf values 

quantified from N03" enrichments and the estimated ambient uf are an order of 

magnitude lower than the mean value (1472 m/yr) found in the literature (Ensign 

and Doyle 2006). However, estimated ambient N03" vertical velocity at Cart 

Creek (126 m/yr) is similar to that estimated during the Lotic Intersite Nitrogen 

Experiment II (LINX II) using tracer 15N additions (172 m/y, Peterson, 

unpublished). While Uf at Cart Creek did decline with increasing N03" 

concentration, the change observed was not as extreme as at Cedar Swamp 
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Creek. These data signify that among study streams Cart Creek has less efficient 

NO3" uptake, but that uptake efficiency within Cart Creek is also less sensitive to 

changes in concentration. 

The results from the multiple enrichments at the two sites show a 

consistent inverse relationship between N03" concentration and N03" Uf. The 

consistent trend both within and across sites in this study suggests NO3" 

concentration is truly a dominant control on N03" dynamics in these streams. 

Furthermore, LINX II results of total NO3" uptake from isotope tracer additions in 

a nationwide study of stream N cycling also exhibit inverse relationships between 

N03" Of and N03" concentration (Mulholland et al.2008) (Figure 9). The Of data 

from this study are elevated compared to the overall results of LINX II. Typically 

15N tracer additions would have higher Uf than a study using short-term increases 

in N03", because isotope data represent ambient N03" metrics in systems with 

naturally higher N03" concentrations where microbial communities should have 

had time to adapt to chronically high N levels (Mulholland et al. 2002). In this 

instance, our study may have higher Uf despite being based on short-term solute 

additions due to other pollutants in the high N LINX II streams that result in less 

effective microbial communities, or perhaps due to other limiting nutrients in the 

LINX streams. Regardless of this discrepancy, NO3" concentrations appear to 

have an inverse relationship with N03" uf in Cedar Swamp Creek and Cart Creek, 

and this trend is consistent with other research. 

The power law relationship of N03" Uf versus NO3" concentration shown in 

Figure 3 has a steeper decline in uptake efficiency than that found by Mulholland 
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et al. (2008) and LINXII. Again this finding may be attributed to our study 

involving short term additions compared to the other studies, which included 

streams with chronically high N03" concentrations and used isotopic tracers. Our 

experimental results are based solely upon N03" availability, while Uf values from 

isotopic studies may reflect the influence of other limiting nutrients and site 

characteristics. Furthermore, the unique site conditions at Cedar Swamp Creek 

(high DOC, low DO, low N03") may have caused the steep slope by exhibiting 

extreme nitrate limitation and uptake during the lowest N03" addition and a 

quickly declining uptake efficiency with the subsequently higher additions. This 

result may be the manifestation of a microbial community that is chronically N03" 

limited and not adapted to receiving higher doses of N03". 

Effect of DO and DOC Concentrations on Dissolved Organic Matter 

DOC was removed from the water column more rapidly under higher DO 

conditions in both streams (Table 4). This result is consistent with the literature, 

which suggests that under aerobic conditions the addition of DOC can increase 

metabolism in streams (Weigner et al. 2005). However, the loss of DON and the 

liberation of NH4
+ which occurred in both Cart Creek and Cedar Swamp Creek 

during DOC additions is inconsistent with other studies (Strauss and Lamberti 

2000, Bernhardt and Likens 2002), which have found the addition of DOC 

increases NH4
+ retention by heterotrophs due to nutrient immobilization 

necessary to meet demand for cellular growth. 

The loss of dissolved organic matter from stream water at Cedar Swamp 

Creek during the concurrent addition of DOC and DO is particularly striking, as 
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the estimated value of DOC Uf within the first 30 meters reached levels 5 times 

higher than average levels recorded in the literature (Weigner et al. 2005). This 

mass removal of organic matter may in part be explained by the flocculation of 

dissolved organic matter into particulate organic matter (POC) (Lush & Hynes 

1973), and by abiotic adsorption of dissolved organic matter to sediments 

(McDowell 1985). However, the concurrent rise in NhU+ during the addition of 

DOC and DO at Cedar Swamp Creek strongly suggests biotic processes, and 

that not only was the added, labile DOC quickly metabolized by the first sampling 

station, but that naturally occurring DON declined in this system due to 

remineralization of ambient organic matter (Scott and Binkley 1997). This 

phenomenon of labile DOC increasing the metabolism of ambient organic matter 

has not previously been reported in stream ecosystems, but is known in 

terrestrial ecosystems as a "priming effect" (Kuzyakov et al. 2000). Priming 

effects are possible in Cedar Swamp Creek because this is a heterotrophic 

system that contains high levels of organic matter compared to other studies 

involving DOC additions (Bernhardt and Likens 2002, Wiegner et al. 2005), and 

because Cedar Swamp Creek was simultaneously supplemented with DO. 

Downstream of the priming effects, we suggest that concentrations of 

DOC and DON were reestablished and maintained near an equilibrium by 

leaching from benthic organic matter. Although the increase in concentration of 

DOC over this 150m reach is large (20 mg/L, or 65% of initial influx), previous 

reports suggest that the source of these concentrations may be attributed to in-

channel leaching of stored benthic organic matter (Meyer et al. 1998, Wiegner et 
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al. 2005). In this instance we believe that downstream of the oxygen addition (> 

60 m) where oxygen concentrations were only modestly elevated and where the 

added, highly labile DOC was absent, the microbial community was unable to 

metabolize the ambient, more recalcitrant organic matter within the benthos. 

Diffusion/exchange of sediment dissolved organic matter reintroduced DOC and 

DON to the water column and maintained equilibrium concentrations (McDowell 

1985) similar to that found under ambient conditions. 

Effect of DO and DOC Concentration on Net NO^' Uptake 

Results from the manipulations of DOC and DO suggest that DOC by itself 

does not lead to increased net nitrate uptake, but magnifies the dominant 

processes as determined by oxygen levels in the stream. Our results indicate 

that low DO/high DOC streams have higher net nitrate uptake than high DO/high 

DOC streams. Although Goodale et al. (2005) indicate that higher DOC 

concentrations aid NO3" retention, our experiments suggest that increased DOC 

concentrations only aid N03" retention under depressed oxygen conditions, and 

that the results of Goodale et al. (2005) may in part be influenced by the 

covariation of DOC and DO in natural systems. From our results (Figure 8) we 

discern that the DO concentrations in these stream ecosystems determined the 

dominant processes that influence net N03" uptake, and that the addition of DOC 

served mainly to enhance the dominant metabolic activity in each stream system. 

High DO systems consistently resulted in decreased net N03" uptake (net 

production), and disproved our hypothesis that DOC would increase net N03" 

under all circumstances. In Cedar Swamp Creek the addition of DO decreased 
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net NO3" uptake. In this DO deficient system, the addition of DO likely spurred 

nitrification (Kemp and Dodds 2001), thus increasing NO3" concentrations while 

at the same time making conditions for denitrification less favorable. Net N03" 

uptake therefore declined. In both Cedar Swamp Creek and Cart Creek the 

addition of DOC under aerated conditions (Cedar Swamp Creek concurrent DOC 

and DO addition, Cart Creek DOC addition) led to a decrease in net N03" uptake. 

The decrease in net NO3* uptake observed during these manipulations is 

inconsistent with the literature, which suggests that addition of DOC should 

increase the immobilization of dissolved inorganic nitrogen by heterotrophs 

(Bernhardt and Likens 2002). However, both Cedar Swamp Creek and Cart 

Creek experienced average plateau levels of N03" and NH4
+ that were higher and 

DON levels that were lower than ambient levels during these experiments, 

suggesting similar mechanisms were at play across these sites. We believe the 

high oxygen levels and aerobic metabolism ultimately determined the fate of 

NO3" in these reaches. The extreme "priming effect" of labile DOC in Cedar 

Swamp is a key example of this potential. In Cedar Swamp the "priming effect" 

was realized when sufficient oxygen was coupled with labile DOC, and it resulted 

in the heterotrophic metabolism of the labile, added DOC as well as the more 

recalcitrant, naturally occurring organic matter in this system (Kuzyakov et al. 

2000). The breakdown of this organic matter led to accelerated rates of 

ammonification, leading to increased NH4
+ in Cedar Swamp Creek (Scott and 

Binkley 1997). Increases in net N03" production were likely the result of 

increased rates of nitrification, as the metabolic rate of nitrifying bacteria 
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increased positively with both ammonification (Ollinger et al. 2002) and levels of 

dissolved oxygen (Kemp and Dodds 2001). Thus, despite obvious signs of DOC 

uptake and intense levels of heterotrophic metabolism, the addition of DOC and 

DO in this system ultimately increased levels of DO and N H / , which favored 

nitrifying bacteria and led to a decrease in net NO3" uptake. This suggests that 

addition of DOC under aerated conditions may in some instances promote net 

NO3" production via remineralization and nitrification. 

Experiments in Cedar Swamp Creek and Cart Creek carried out under low 

oxygen conditions support the hypothesis that DOC increases NO3" uptake 

(Goodale et al. 2005). At Cedar Swamp Creek where oxygen is naturally 

limited, the observed increase in net NO3" uptake during the DOC only addition is 

consistent with increased heterotrophic metabolism of DOC with immobilzation of 

N03" (Bernhardt and Likens 2002), and/or increased rates of denitrification 

(Inwood et al. 2005). Removing DO from Cart Creek created virtually no change 

in net NO3" uptake, and actually the data show net NO3" uptake decreased 

slightly. The literature suggests that the expansion of anoxia is likely to inhibit 

nitrification (Kemp and Dodds 2001) and increase the prevalence of 

denitrification in the benthos (Seitzinger et al. 2006). Therefore, by inhibiting a 

N03" producing process and promoting a NO3" reducing process, low DO levels 

in the water column should have contributed to an increase in net N03" uptake. 

The minute reaction in net NO3" uptake found in the DO removal experiment in 

this study appears to be due to a lack of DOC necessary to fuel denitrification 

and/or the low DO leading to a reduction of coupled nitrification/denitrification 
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(Tomaszek and Czerwieniec 2003). Supporting this idea that reduced 

nitrification limited the response of dentirification, average NhV concentrations 

were higher during the low DO manipulaitons (data not shown). LINX II results 

had undetectable denitrification using tracer additions in Cart Creek (Peterson 

unpublished), and therefore suggest denitrification in this system may be DOC 

limited. In fact, when DOC was added to Cart Creek under reduced DO 

conditions in this study it created an environment favorable for positive net NO3" 

uptake. The increased intensity of net NO3" uptake during the concurrent DO 

removal and DOC addition experiment compared to the independent DO removal 

suggests that the added DOC was fueling benthic denitrification. This is 

consistent with recent findings by Inwood et al. (2005) where water column DOC 

shares a significant positive relationship with rates of denitrification. 

Furthermore, these results are consistent with Goodale et al. (2005) who suggest 

DOC increases NO3" uptake. Thus under low oxygen conditions, when N03" 

production via nitrification is limited and the potential for denitrification is 

optimized, the addition of DOC can greatly increase net NO3" uptake. 

27 



CHAPTER V 

Summary and Conclusions 

Headwater streams have the potential to retain significant amounts 

of N introduced from the landscape (Peterson et al. 2001), and they serve as an 

important transition zone preventing terrestrial N from reaching marine 

ecosystems. A recent review of N03" dynamics in streams (Goodale et al. 2005) 

shows that N03" levels are inversely related to DOC concentrations, suggesting 

that DOC increases stream NO3" retention. Analysis of stream chemistry from 

the watersheds of the Ipswich and Parker Rivers draining to Plum Island Sound 

in northeastern Massachusetts show trends similar to that of Goodale et al 

(2005). However these data from the Ipswich and Parker River watersheds also 

show that concentrations of N03", DO, and DOC are all significantly interrelated 

and the control on net NO3" uptake is a more complex relationship among NO3" 

concentrations, DO, and DOC. 

The results from our manipulations have important implications for the 

biogeochemistry and water quality management of the Ipswich and Parker River 

watersheds. The results of the N03" enrichments suggest that NO3" uptake 

efficiency decreases with increasing concentration in local headwater streams, 

and that it is possible to overwhelm the N03" buffering capacity of these systems, 

Results from the DOC and DO manipulations suggests that within headwater 

streams it is the level of DO that most significantly influences net N03" uptake, 
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but effects are magnified by the level of DOC. The proliferation or absence of 

DO in our study streams determines the dominant respiratory pathway of the 

stream ecosystems and consequently creates an environment that is either (a) a 

predominantly aerobic system that exceeds in organic matter metabolism and net 

N03" production or (b) a predominantly anaerobic system with low DOC uptake 

rates and high net N03~ uptake. Our results also suggest that short-term 

increases in the availability of labile DOC within both low and high DO streams 

appear to increase metabolic activity and accentuate any existing, DO dependent 

processes that determine net N03" uptake and production. Wetland streams with 

characteristically low DO and high DOC are therefore excellent N03" sinks. 

Furthermore, within the Ipswich and Parker River watersheds where wetland 

streams are abundant, these natural NO3" sinks should serve to maintain low 

water column N03" concentrations, thereby promoting high NO3" uptake velocity 

and creating a positive feedback system wherein environmental conditions 

conducive to net NO3" uptake are reinforced. On the other hand, our results 

suggest that stream reaches with accelerated reaeartion rates, such as those 

dominated by riffles, may serve as sources of net NO3" production via 

remineralization and nitrification. Moving beyond the scope of this study, the 

coupling of environments which link net NO3" sources and NO3" sinks, such as 

the natural riffle and pool sequences inherent in stream ecosystems (Dunne and 

Leopold 1978), may serve as a critical component in the longitudinal removal of 

N within streams as DON and NH4
+ are converted to NO3" and then NO3" is 

subsequently transported downstream to an area more optimized for NO3" 
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removal. Quantifying the abundance and linkages of different stream types at 

river network scales is necessary to further understand how river systems 

influence the export of NO3" from basins with high nitrogen inputs. 
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TABLES 

Table 1: Characteristics of Cedar Swamp Creek and Cart Creek. Data represent 
average of all ambient transect values measured prior to each manipulation in 
summer 2006. 
Parameter / Variable 
aBasin characteristics 

Area (Km2) 
- Agriculture (%) 
- Forest (%) 
- Wetland (%) 
- Industrial (%) 
- Residential (%) 

Water chemistry 
N03" (mg N/L) 

DOC (mg C/L) 

DO (mg DO/L) 

DON (mg N/L) 

NH4
+ (mg N/L) 

bP04"3 (mg P/L)* 
Temp (°C) (during summer sampling 2006) 

Channel characteristics and hydrology 
Q (L/s) 
Study reach length (m) 
Width (m) 
As/A, Ratio of storage zone to water column 
Water exchange rate coefficients (1/min) 

Flowing water column to the storage zone 
Storage zone to the flowing water column 

Lateral Inputs (%) 
Oxygen exchange rate coefficient (1/min) 

Cedar S. 

1.4 
6 
36 
49 
0 
9 

0.08! .01 

45.29! 3.83 

3.57!.16 

0.64! .059 

1.61! .05 

1.01!.095 
18.33:0.17 

2.57!0.04 
180 
1.81 
0.18 

2.03*10'3 

1.47*10'2 

4.5 
0.013 

CartC. 

3.96 
8 
57 
19 
5 
11 

0.25!.03 

5.60!. 58 

8.46!. 20 

0.21!.03 

0.019!.007 

0.004!.004 
14.2:1.32 

2.08!0.54 
175 
1.70 
0.17 

2.44*10"3 

1.47*10"2 

16.8 
0.035 

a Land cover data from MassGIS 
b Phosphorus values are from summer 2005. 
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Table 2: Uptake length and vertical velocity from N03" additions at Cedar Swamp 
Creek and Cart Creek. 
Site Addition Added N03" (mg N/L) Uptake length (m) v>f (m/y) 
Cedar Swamp Creek 

aAmbient 
1 
2 
3 
4 

0 
0.02 (2.1 XNAMB) 

0.06 (5.0 x NAMB) 

0.29 (19.6 XNAMB) 

1.74 (110.6 X NAMB) 

15 
12 

c94 
c357 
714 

3202 
3981 
c311 
c132 
66 

Cart Creek 
Ambient 

D1 
2 
3 
4 

0 
0.13 (1.3 x NAMB) 
0.45 (2.0 x NAMB) 

1.24 (3.8 X NAMB) 

5.40 (13.2 X NAMB) 

517 
N/A 

c556 
909 
1429 

126 
N/A 

c117 
72 
46 

aAmbient calculated using Payn et al method. Addition 4 from Cedar Swamp 
Creek was excluded to meet the assumption of linearity 
b The lowest NO3" enrichment at Cart Creek was too dilute to be detected 
c Regression is statistically significant (p < 0.05) 

Table 3: Change in DOC and DO concentrations at plateau at the first sampling 
station relative to ambient concentrations at Cedar Swamp Creek (30 m) and 
Cart Creek (25 m) during each of the three manipulations at these sites. 

Experiment 

DOC Added 
DO Added 
DOC Added, DO Added 

DO Removed 
DOC Added, DO 
Removed 

Cedar Swamp Creek 
DOC 
(mg C/L) 

+8.0 
-

-17.17 
-

-

DO 
(mg/L) 

-

+2.74 

+2.84 
-

-

Cart Creek 
DOC 
(mg C/L) 

+6.2 
-

-

-

+7.0 

DO 
(mg/L) 

-

-

-

-7.1 

-6.9 

36 



Table 4: Distance specific uptake rates (k, 1/m) for dissolved organic carbon 
(DOC) and dissolved oxygen (DO) derived from Ln transformed, background 
corrected fluxes along longitudinal transects in Cedar Swamp Creek and Cart 
Creek. Positive values for DO reflect rates of reoxygentation, and negative 
values reflect rates of uptake. 
Experiment 

DOC Added 
DO Added 
DOC Added, DO 
Added 
DO Removed 
DOC Added, DO 
Removed 

Cedar Swamp Creek 
DOC 
-0.003437 

-
D<30 m, -0.02 

-
-

DO 
-

-0.003197 
a-0.003956 

-
-

Cart Creek 
DOC 
-0.005572 

-
-

-
a-0.001375 

DO 
-
-
-

a0.003078 
a0.003017 

a Slope is statistically significant different from 0 (p < 0.05) 
b Estimated k based on total DOC removed between the point of solute addition 
and the first sampling station at 30 m 

37 



Table 5: Linear slope (m) and intercept (b) values of N03" flux (mg/s) from 
ambient transects, plateau transects, and the delta (determined from the 
difference between experiment and ambient fluxes though the reach). P-values 
for slope and intercepts of delta flux are also shown. 
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FIGURES 
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Figure 1: Stream study sites Cart Creek (northern star) and Cedar Swamp Creek 
(southern star) within the Ipswich and Parker River Watersheds of 
Massachusetts. Map courtesy of Plum Island LTER 
(http://ecosystems.mbl.edu/PIE/PlumlslandBrochure.pdf) 
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Figure 2: Inverse relationship between DOC and NO3" concentrations in monthly 
grab samples at the two main rivers flowing to Plum Island Sound (A, p=0.017 
and B, p=0.0027), among headwater sites in summer 2005 (C, p<.001)), and in 
monthly grab samples at a single headwater site throughout 2005 and 2006 (D, 
p=0.011). 
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Figure 3: Average reach NO3" concentration is inversely related to measurements 
of NO3" vertical velocity at Cedar Swamp Creek and Cart Creek. These data 
show a continuum of uptake efficiency between sites as displayed by the power 
regression through the points at Cedar Swamp Creek and Cart Creek (CS & CC). 
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Cedar Swamp Creek: DO added 
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Figure 4: Time series of DO in Cedar Swamp Creek at 60 m downstream of the 
DO addition site during the DO addition experiments. Oxygen was added from 
9:50 to 15:15 hours. 
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Figure 5: Time series of DO in Cart Creek at 60 m downstream of the DO 
removal site during the combined DOC addition and DO removal experiment. 
Sulfite, used to remove DO, was added between 11:45 and 18:15 hours. 
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Figure 6: DO concentrations along experimental transects during plateau of 
experiments at Cedar Swamp Creek (A) and Cart Creek (B) including average 
ambient concentrations. 
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Figure 7: Ambient and plateau chemistry of (A) DOC, (B) DON, (C) NH4
+, and (D) 

N03_at Cedar Swamp Creek from the concurrent addition of DOC and DO. 
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Figure 8: Change in net N03" uptake during manipulations at Cedar Swamp 
Creek (Figure A) and Cart Creek (Figure B). Positive values reflect net N03" 
uptake while negative values reflect net nitrate production. Error bars refer to the 
standard error of the slope in delta nitrate flux through the reach. 
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15. Figure 9: NO3" vertical velocity versus NO3" concentration determined from NO3" 
additions by LINX II (Mulholland et al. 2008) and from NO3" enrichments to Cedar 
Swamp Creek and Cart Creek during this study. 
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Figure A1: The Fit32 model (Hart et al. 1995) was used to estimate transient 
storage values in Cedar Swamp and Cart Creek. The modeled data, used to 
estimate transient storage, matched up well with the actual data. This is a graph 
of actual versus predicted values of conductivity in Cedar Swamp. 
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Figure A2: The Fit32 model (Hart et al. 1995) was used to estimate transient 
storage values in Cedar Swamp and Cart Creek. The modeled data, used to 
estimate transient storage, matched up well with the actual data. This is a graph 
of actual versus predicted values of conductivity in Cart Creek. 
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y = -0.0095x+5.1736 

R2 = 0.6155 

y=-0.024x + 7.7175 

R2 = 0.8924 

0 50 100 
Time (min) 

150 

O Cedar Swamp • Cart Creek 
Linear (Cedar Swamp) Linear (Cart Creek) 

Figure A3: Natural oxygen reaeration rates were estimated using additions of 
propane. Dilution corrected, Ln transformed propane declined linearly with time 
at Cedar Swamp (p=0.065) and Cart Creek (p=0.0045). The rate of propane loss 
through time was multiplied by 1.39 to simulate natural oxygen reaeration 
(Rathbunetal. 1978). 
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Table A1: Distance specific water 
quality data from the 0.02 mg N L"1 

N03" enrichment at Cedar Swamp 
Cedar Swamp, N03 Addition 1 

Distance 

ZIEEII 
-5 

N03 j Chloride 

Ambient 
6.660 

30[_ 0.000 
6 0 f 0.000 

120) 6.029 

150 

-5 
_ . . . _ 3 Q 

............ _ 

90 
120 

0.041 
_ _ _ _ _ „ 

Plateau 

43.65 
65.71 
_ _ , 

47.57 
45.94 

71.68 

0.000! 49.68 
" 6"j044l 66T88 ... _ _ ... _ _ 

0.018 
Ooi4 

150) 0.017 
180) 0.024 

61.77 
64.02 
71.29 

9lTl2. 

Table A2: Distance specific water 
quality data from the 0.06 mg N L"1 

NO3" enrichment at Cedar Swamp 
Cedar Swamp, N03 Addition 2 

Distance | N03 

(m) I (mgL-1) 
Ambient 

-5T~ 0.000 
... _ _ J ___ 

_ ^ _ 0 0 _ 

I g _ j . - 0 ^_ 5 

120] 0.021 
150) 0.014 

_ _ . _ _ _ . ^ _ _ 

Cond 

(uS cm"1) 

186.80 
179.10 

_ 845*cf 
' 185.10 

185.30 

185.80' 
186.80* 

PJafeau 
-5l 6.666 

_ | _ _ „ „ 3 g 

_ j Q_ 8 . 901 0.075 
120| 0.066 
1501 0.059 
186) 0.055 

175750 

380.20 
368T8CT 
363.00 

"354710 
352.40 
344.00 

Table A3: Distance specific water 
quality data from the 0.29 mg N L"1 

NO3" enrichment at Cedar Swamp 

Cedar Swamp, N03 Addition 3 
Distance 

— ^ j y — _ N ! 0 ? ^ 
(mgl?f 

C o n d _ 

(uS cm"1) 

-51 
30 

"W 
90 r 

120l 

I56T 
'1801* 

"51 
~30[_ 
"60f 

Ambient^ 
~ oTqoo _ _ _ _ o _ . 

*"_ ~ om3r 

6.006"; _____ 

_____ 

181.20 

901 

"I26T 
___|_ 

I80T 

__-°l_ 
Plateau 
"—OTOOO _ _ ^ ^ 

~ """"0:344 
o:293 

6.250 
_ _ 

J 79.10 
^ _ ^ „ 

185L10 

"I85i80 
T86?80" 

J75J50 
J38J120 
368.80 
363T66 

"354/10 
1J5Z40 
144.00 

Table A4: Distance specific water 
quality data from the 1.74 mg N L"1 

NO3" enrichment at Cedar Swamp 

Cedar Swamp, N03 Addition 4 
Distance I N03 

(mj J (mgL"1) 

Cond 

(uS cm"1) 
Ambient 

-5T" 0.000 
30I 67666 
60l 0~603 

90| 6.000 
120J 6.666 
150T "0.014 

.__.___ o p . —5; 015 

186.80 

179.10* 
184.50 

185.10 

185.30 
185.80 
186.80 

Plateau 
-51 6.066 

~ 30 j 2.256" 

90 f 17873" 
120| 1.630 

150]_ 1.413 
180) 1.515 

175.50 
380.20 
368.80 
363.00 

354. id" 
352.40 
344.00 
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Table A5: Distance specific water 
quality data from the 0.13 mg N L" 
NO3" enrichment at Cart Creek. 

100 
150 
200 

Table A6: Distance specific water 
quality data from the 0.45 mg N L"1 

NO3" enrichment at Cart Creek. 
Cart Creek, N03 Addition 2 

Distance 

(m) 

_ 
• 2 _ 

50 
75 

150 
200 

N03 

(mg L-1) 
Ambient 

07340 
0.340 
0.340 
_ ^ „ 

0.340 
r 0.340 

0.340 
Plateau 

-5 
25 
50 
75 

100 
150 
260" 

0.340 
0.912 
0.851 
0.872 
0.851 
0.774 
67696 

Cond 

(uS cm"1) 

676" 
577.0 

'"57776' 
_ _ 
577.0 
57776" 
5?7.0 

577.0 
730.6] 
723.0 
721.0 
719.0 
706.0" 

"""698761 

Table A7: Distance specific water 
quality data from the 1.24 mg N L" 
NO3" enrichment at Cart Creek. 

Cart Creek, N03 Addition 3 
Distance _ _ 

• _ * - . 

25| 
56| 
7 51 

100I 
150l 

_ N 0 3 _ | ^Cond_ 

jn^pPiliyifnii!,) 
Ambient 

0.430J _ 0.0| 
0.430 
0.430 
0.430 
"67430 
0.430 

^200 J 

_ _ _ 

25 
50 
75 

100 
"150? 

0.430) 
Plateau 

J556. 
5567 _ _ 

_ _ 

"5567 

0.4271_ 
i . 7 i 4 r 

" i".640fj 
1.852] 
1.7631 
1.678J 
1.438) 

556. ( 
728.1 
727.( 
721.( 
718.( 
703.I 
693. ( 

0! 

,61 

Table A8: Distance specific water 
quality data from the 5.40 mg N L"1 

NO3" enrichment at Cart Creek. 

Cart Creek, N03 Addition 4 
Distance N 0 3 _ 

"frngL-1) 
Ambient 

Cond 
(uS cm"1) 

J50j 
200f 

^ ^1 

100T 

0.450) 
_jO450J 

Plateau 
67148!"' 

150! 
200! 

4.837) 
^ 2 4 2 p 

_~6.505| 
~_ 1T556J -

-51 
25j 
567 

_ ! _ ... 

100| 

0.450 
0.450 
0450 

0.456~ 
0.450 

541.0 
541 Q1 

541.0 
541.0 
541.6 

541.01 
541.01 

541 
751 

"717. 
738 
732 

T i a 
"707 
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Figure A4: Results from four nitrate additions at Cedar Swamp: (A) 0.02 mg N L"1 

(p=0.129), (B) 0.06 mg N L" 
L1 (p=0.054) 

(0.004), (C) 0.29 mg N L"' (p=0.003), (D) 1.74 mg N 
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Figure A5: Results from four nitrate additions at Cart Creek: (A) 0.13 mg N L*1, 
(B) 0.45 mg N L"1 (p=0.019), (C) 1.24 mg N L"1 (p=0.185), (D) 5.40 mg N L_1 

(p=0.364). Note, Addition 1 at Cart Creek is not represented because the 
addition was undetectable. 
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Table A9: Distance specific water quality data from the DOC addition at Cedar 
Swamp. 

Cedar Swamp, DOC Addition 
Distance 

(m) 

6 
30 

*"" 60 

75 
90 

105 
120 
150 

180 

0 

30 
60 

. ^ _ 

""90 
i 0 5 

180 

NH4 
(mg L-1) 

DOC i TDN DON CI | N03 j S 0 4 DO |Temp 

"(mg L-1)|(mg l}1) (mg L-1)~(mg L - ^ m g P j l f m g L"1) (mg L"1)T ( C ) ' 

6.73 39.57 

6.67! 42.57 
6.67 

0.67 

0.66 
0.66 
6765 

_ _ 

0.67 

0.66 

44.31 

45754 

43757 
46.60 

44.16 

_ _ 

51.33 

52.51 

0.65! 52.10 

0.64 51.69 

0.64 52.10 

0.64 52.52 

0.63 52.03 
0.63 49.22 

1.79 

1.80 

1.87 

_ 

1.90 
1 _ 

_ 

1.93 

,.r _ _ 

2.05 

2.6T 
1.97 

... _ 

1.53 

Ambient 

0.99 

6.95 _ . 

_ 

_ _ _ -

1.17 
-1709 

_ 

1.21 _ 

1.29 

1.34 _ 

1.26 

0.83 

37.90! 0.08 
37.48| 6.06 

37.67| 0.07 

" 3 7 . 7 1 ™5708 
37 67 0.09 

"37753J ' " o709™ 
Plate, 

42.69 

43.30 
42.69 

_ _ _ 

44.16 
4484 
42.52 

au 

6.06 
~ ~67o6 

0.06 

0.06 

0.07 

6.08 
0.08 

1.01 

0.91 

0.82 

3.10 

3.35 

3.68 

0.83 

0.84 

0.83 
~ 6.85 

_ _ 

0.51 
5752" 
0.53 

0.53 

" "6.55 
0.57 

~ 0759 
0.58 

3.90 

3.92 

4.20 
3.74 

, 

3.91 

3.78 

3.67 

3.54 

3.40 

" 3.12" 
3.11 

18.30 

18.40 

18.40 

Cond Q 
(uS cm"1) (Ls-1) 

168.20 

166.60 

166.70 

i 
18.40 

18.50 

18.50 
~18.4¥ 

_ _ 

21.70 
""2T.76" 

21.70 

"21.70 

21.70 

21.70 

"21T76" 
21.80 

166.40 

167.50 

167.70 ... . . _ _ 

Jgg-gQ 

183.00 

183.30 

183.16 

183.95 

184.80 

184.60" 
190.00 

2.94J 
2.94 
2.9? 

2.9? 

2.94 

2.9? 

2.94 
2.94 
2.94 
2.9? 
2.9? 
2.9? 
2.94 
2.9? 
2.94 

Table A10: Distance specific water quality data from the DO addition at Cedar 
Swamp. 

Cedar Swamp, DO Addition 

Distance 

0 

30 
60 
75 

'" 90 
105 
120 

~150 
180 

~ " '" "6 
36 

"" 60 
75 

90 

105 
120 
150 
180 

NH4 

(mg L-1) 

0.69 

0.62 

0.63 

0.64 _ 

~ "0767 
6.62 
0.61 
0.58 

DOC 

(mg L-1) 

46.80 _ _ 

49.81 
47.14 

49.17 
_3 2_ 
46.71 

47.87 

6^69!" 36.23 

"6.64 37.26 

6.61 46.43 
0.61 

o61 
0.79 

"6.60 

36.32 

36.81 

34.96 

46.49 

0.61 40.12 

6.60! 40.14 

TDN 

JmgL^l 

2.05 

1.89 
1.94 

'2.06 

" 1.91 
1.86 
1.91 
1.90 
1.96 

1.73 

1.63 

1.89 

1.59 

1.58 

1.51 

1.88 

1.72 

1.69 

DON | 

iE!9j£!)Ji 

1.27 

1.21 

1.24 

1.22 

1.21 

1.1lT 
1.20! 
1.20! 
1.27 

0.93 

0.92 

1.20 

0.90 

0.88 

0.62 

1.18 

1.01 

0.98! 

CI | N03 

Ambie 

(mg L-1) 

jnt 

33.49 0.09 

34.30 0.07 

34.47 0.07 

34.47 0.08 

34.29 0.08 

38.65 
34.56 
34.60 
34.78 

Plate 

33.39 

43.56 

0.08 
0.09 
"6.09 
0.10 

au 
0.11 

0.07 

40.34 0.08 

40.111 "6"08 

40.17| 0.09 _ _ j „ _ 

4672C 0.10 
40.15 

'40.08 
0.10 

""" 0.11 

S04 

(mg L-1) 

0.52 

0.43 

0.43 

" 0.44 

0.44 

6.55 
0.44 

0.45 
6.47 

0.57 

0.42 

0.44 
_ _ s 

0.45 

0.44 
0.44 
0.45 
0.46 

DO 

(mg L"1) 

Temp 

( C ) 

3.40 

3.06 

18.10 _ _ 

3.50 18.00 

3.35 18.10 

3.40 18.00 
3.62 
3.97 
4.00* 

3.35 

18.00 
18.00 
18.66" 
18.10 

2.77 

5780 

5.65 
"g-;30 

5.60 
5.40 

5.37 

5.25 

19.70 

19.50 

19.50 

19.50 

19.50 

19.50 

19.50 

19.60 
19760 

Cond Q 
(uS cm"1) (L s-1)^ 

160.50; 2.39 

~1'55.50T"72739 
154 W " 2739 
156.10! 2.39 
155Mr2739 

157.20! 2.39 

158.86! 2-39 

155.70! 2.39 

174.40 2.39 

174.10 2.39 
174.30 2.39 

™17?50 2.39" 

173.90 

174.10 
174.40 

174790 

2.39 

2.39" 
2_3g 

" 2.39 
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Table A11: Distance specific water quality data from the concurrent DOC and DO 
addition at Cedar Swamp. 

Cedar Swamp, Concurrent DOC Addition and DO Addition 
Distance 

(m) 

0 
30 

60 _ 

j _ g o 

105 
120 
150 
180 

™ """" "30 

60 
"~ '""" 75 

90 
105 
120 
150 
180" 

NH4 DOC 

_ _ 6 g 

• 6:62 
5;63 

0.61 
0.62 
0.67 
"6762 
0.61 
0.58 

_ 

""""oTaT 
0.79 

0.79 
0.76 
0'80 

—0.74 
5̂774 

46.80 
48.70 
49.81 
47.14 
49.17 
42.32 
46.71 
43.88 
47.87 

46758 
31.53 
34.03 

"" "39.46 
42.40 
47.44 
53.47 
51.67 
51.92 

TDN DON CI N03 S04 

(mg I"1) (mg L"1) (mg L"1") (mg L"1) (mg L"1) 

2.05 
1.89 
1.94 
1.59 
1.9? 
1.86 
1.91 
1790 
196 

1.83 
133 
1.43 
1.57 
1.62 
1.78 
195 
1.93 
191 

Ambient 
1.27 
1.21 

T.24 
1.22 

: _ 
TT? 
120 

1.27 

0.98 
""""6.45 

0.55 

33.49| 0.09 
34.30] 6.07 

34.47! 0.08 

_ 2 _ p . . _ _ 
38.65 
34.56 

0.08 
0.09 

34.60! 6.09 
34.78! 0.10 

DO 

(mg L-1) 

0.52 
0.43 

. — 4 ~ 

0.44 
044 
5755 
0.44 
6.45 
0.47 

3.40 
3.06 

_ _ _ 

3.35 
3.40 

""3762 
3.97" 
4.00 
3.35 

Temp 

(C) 

18.10 
18.00 

— 8 — 

18.10 

"la.oo 
i&oo" 
18.00 
18.10 

Plateau 
36.65 0.07 
46.38 
45.79 

0.70 45.69 
0.74 
0.92 

" '"""X65 

45.93 
45.63 

"45764 

0.07 _ _ 

0.09 
0.09 
6.10 
o.?o _ _ 

0.12 

0.39 
0.40 
Q_4'2 

0.42 
0.42 
0.43 

........ Q ^ „ 

_ „ 4 „ 

"6745 

2.70 
5.90 

_ 5 6 
5.64 
5.82 
5.75 
5.70 

_ 5 _ 

5.20 

20.30 
20.70 

"20.50 
20.50 
20.60 
20.50 
20.50 
20.50 

"720.50 

Cond I Q 

(uScm-1)|0ls-1J 

160.50! 2.39 
155.50! 2.39 

"™" 154561 "2.39 
156.10! 2.39 
155780! ""2739 
i g ^ s o f - 2739 
157720! "2.39 
156.86! 2.39 
158.80! 2.39 

156.00 
194.00 

" 190.80 
""T9Z90 

h 19180 
193.30 

f _ _ 
193.10 

" "192.30 

2.39 
2.394 

2.39 
2.39j 
2.39 
2.39 
2.3SI 
2.391 
2.39 

Table A12: Distance specific water quality data from the DOC addition at Cart 
Creek. 

Cart Creek, DOC Addition 
Distance I NH4 DOC TDN I DON | CI N03 I S04 J DO (Temp I Cond | Q 

(mj l(mg L"1) (mg L-^(mg L-1)|(mg L-1)|(mg L"1)J(mg L"1)l(mg L1)](mg t? ) [ ( C ) J u S cm-1)|(L s \ 

Ambient 
0 13.69 

"25 13.20 
"50 15.16 

~ "75 12.70 
100 16.42 
150 16.31 

6] TT.86 
M " ! 5*749 

75J 16.21 
100J ?97'34 

" T50) 17.00 
175! 14.50 

6.64 
5.73 
6.44 
5.79 
6.39 
5.35 
4.82 j 

4.467' 
11.90f 
12J6?T 
11.021 
10.02 ' 
9.96 
6.74 

0.58 
0.52 
0.55 
0.52 
0.50 
0.41 
0.44J 

6.35f 

0.58J 
0.42| 
0.53| 
0.48 L 
0738f 

0.28[ 81.97 
0.21 
6721 
0.21 
0.19 

81.79 
g472 

80.37 
80.03 

0720' 59.98 
0.22[ 63.55 

Plate 
0.19} 48.13 

"6.25 114.34 
0.28 113.85 
0.12 112.77 
0.23 11188 
0.19 110.58 

" 6 . 1 0 109.29 

0.27J_ 188| 
O.Zrf 1.89) 

__| _ _ p 
0.28J 19?! 
6.25[ 1.931 

0.24£ ?50 [ 
au 

0.15! 0.96] 
0.30! iT ra l " _ j — ̂ 8gp 
6.29| 183[ 
0728i X84J~ 
0.27) 2.34) 

8.10) 15.60[ 370.00J 
8.l6T 15.50] 367.50J 2.6fJ 
8.201 15.601 364. l6 l 2.63 
8.301 15.6~6T 365.561 2.67 
8.40| 15.801 361301 2.70 
8.96) 15.60| 356.30 

. . . _ ^ | ™ _ | _ 3 5 — -

7.73 
... _ 

7.93 
_ 7 _ 

7.81 
7.75 

17.20| 390.10 

17.46J 504.66 
17.30) 454.50 
17.40! 485.10 
17.50( 489.00 

2.77 
„ _ , 

. . . _ 3 

2.67 
2.7CP 
2.77 
2.8? 
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Table A13: Distance specific water quality data from the DO removal at Cart 
Creek. 

Cart Creek, DO Removal 
Distance j NH4 j _ 

[ (m) j(mgL-1}! 

0 
25 
50 
75 

14.19[ 
13.13) 
14.761 
15.781 

100[ 19.17] 

1751 24.60| 

0 
_ _ _ 

25) 22.29' 
50 
75 

1 oo 
150* 

22.69 
22.35 

"18.72 
23.25 
23.70 

DOC j TDN | DON 
mgL-1)|(mgL-1)|(mgL-1) 

6.22] 0.51 

CI I 

(mgL-1")|(n 
Ambient 

0.23J 83.23] 
5.90[_ 0.56T 0.25] 84.661 

••——1 0.551 '0.25 84'798| 

6721! 6.52] 0.221 85.121 
6.14[ 6.50j_ 0.23 
6.14T 0.54 j 0.27 
6.13J 6.501 0.23"" 

84.74J 
85.31 j 

_ _ _ _ 

Plateau 
5.98J 6.51] 6.22 
4.821 0.421 0.13 
3.98! 0.38 
5.43] 6.47 
4757]] 0:39 
57171' ~0~M 
2749} ~~0729 

76.11 
106.88' 

0.10 107.07 
"" 0.21 106.54 

0.14' 106.14 
"0.25 104.90 
0.04 104.44 

N03 | S04 j DO jTemp [_ Cond j Q 

lg L"1)["(mgL-1)f(mg L"1j| ( C ) |(uS cnr1)|(L s"1) 

0.27 1.69 
6.27]" 1.70 

0.28| 1.74 
0.25 . _ 1.72 _ 

1.68 

0.28 
0.26 
0.25 

"0724" 
"6724" 
"6723 
0.23 

1.73 
'~25.9T 

25.58 
25.46 
25.15 

""23.95 

r -8_1Q|~~^4_00| 360.20T 

8.161 14.001 366.101 1.621 

8.20) 14.00] 375.10) i.651 

8.30) 13.901 377.20J" i,69 
8.40) l l .40|~ 375.20) 1.72 

'"" "8T9qp3.9br "380.20f 179 
8.46{j3.96|_ 38^.60[_1.83! 

7.70Tl5.90j 349.501 
0l.99| 16.40) 620.66f 1.62 
1.89] 16.50] 640.00] 1.65 
2.T'2[ 16.60[ 633.00J 1.69 

^ ™ | _ _ 0 | 62o70opi.79 
. _ _ ^ f f ^ 6097o6[ T783 

Table A14: Distance specific water quality data from the concurrent DOC addition 
and DO removal at Cart Creek. 

Distance 

(m) 

0 
25 
50 
75 

100 
150 

, ^ 5 

0 
25 
50 
75 

100 
150 
175 

NH4 
Cart Creek, 

DOC TDN 
Concurrent DOC Addition and DO Removal 
DON | CI I N03 ) S04 S DO (Temp I Cond ) 

(mg L"1) (mg L"1) (mg L"1) (mg L-1)|(mg L"1)l(mg L"1)l(mg L-1)((mg L"1)| ( C ) j(uS cm"1)|( 

Ambient 
17.17 
10.02 
10.97 
19.32 
24.80 
20.98 
22.89 

9.78 
17.17 
21.46 
25.75 
17.17 
22.65 
24.32 

4.53 
4.81 
4.97 
4.98 
4.96 
5.04 
5.11 

5.08 
11.81 
11.50 
11.29 
11.21 
10.46 
9.87 

0.42 
0.46 
0.43 
0.44 
0.43 
0.43 
0.44 

0745l 
0.49? 
0.471 
0.50I 
0.46T 
0746J~ 
0.44! 

0.141 
6726]" 
oTiTT 
67i8"t 
67i7l 
0.19| 
672i | 

0.19 
6.24 
0.25 
0.29 
0.25 
6.29T 
67271 

71.291 
69.971 
69.851 
69.28J 
69.02) 

""69.26[ 
_ _ _ p 

Plateau 
70.76! 

113.09T-

112.75 
111.39 
110.49 

167.08 
103.84 

0.26l 
0.251 

""0.25I 
6.24| 

6._T 
6.22! 
0.211 

0.25! 
6.22T 
0 20 
0 19 
0 20 
0.14 
0.15 

1.841 
1.86! 
1.82| 
1.861 
1.84f 

'-f.83('"" 
1.83! 

1.84! 
31.10! 
30.83! 
30.05) 
30.03! 
28.96! 
27.78! 

6.78) 13.101 
7.94| 12.70[ 

'"" 777C12796J' 
7.22! 12.90) 
7.68[ 13.10) 
775T'|'l3726r 
7.411 13.101 

5.96Tl4.00[ 
1.08f 14.10f 
1.81 f 14.66] 
1.62J~14.Tol 
l'.55t 14.361 

- 2798f f4.70|"" 
3.¥7['14.661' 

252.30) 
248.761 

~24973df 
246.80^ 
250.66T 
249.301 
235.50] 

258.501 
"555.06'f 

542.00) 
551.66[ 
551.66f 

" 53l766f 
516.66J 

Q 

Ls"1) 

1.71 
1.75 
1.80 
1.84 

1793 
1.98 

_ _ 

1.75 
1.80 
1.84 

_ _ 

1.98 
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