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ABSTRACT 

DUAL MICROCAPSULE SYSTEM FOR AUTONOMOUS 

SELF-HEALING COATINGS 

by 

Jonathan K. Nguyen 

University of New Hampshire, September 2008 

Polymer coatings are vulnerable to external and internal damage. Formation of 

microcracks can occur because of an impact event or through oscillatory stresses such as 

thermal expansion and contraction. Self-healing offers a solution to respond to internal 

damage and repair the polymeric structure. 

This work utilizes a dual microcapsule system as the autonomous self-healing 

mechanism for use in an epoxy coating. The system is comprised of an epoxy resin 

microcapsule and an amine adduct capsule embedded in an epoxy matrix. Encapsulation 

of the epoxy resin was achieved, however encapsulation of the amine adduct is very 

challenging, and was the main focus of this work. The amine adduct has been 

successfully encapsulated, resulting in a satisfactory microcapsule payload and size, but 

reproducibility has proven to be difficult. Though reproducibility is an issue, the adhesive 

properties of amine adduct and epoxy capsules have been successful by adhering two 

pieces of epoxy together. 



CHAPTER I 

INTRODUCTION 

Polymers along with other materials are vulnerable to external and internal 

damage1"4. Internal growths of microcracks occur within the material because of an 

external act such as an impact event1. External force typically damages the material on 

the surface and can be seen visually and be repaired accordingly. Internal damage is often 

very difficult to detect. Internal damages can be formed through oscillatory stresses such 

as vibrations or thermal expansion and contraction within the material. Techniques such 

as ultrasonics and radiography are used as non-destructive tests to detect internal damage, 

but leave a lot of the damage undetected1. Self-healing offers a solution to internal 

damage by autonomously responding and repairing damage within the polymeric 

structure1. 

Self-healing systems are able to detect the signs of internal failure and react to 

repair the material. The term smart (stimuli responsive) material comes from the system's 

ability to react on its own without any external input. The use of self-healing systems 

may prolong the life of many polymeric structures. 

For many self-healing polymers, the mechanism of self-healing is initiated when 

damage occurs. Sources of damage can originate from fatigue or impact. Fatigue cracks 

form by oscillatory stresses within the material. The event of impact can form cracks 

within or on the surface of the material. Crazing leads to microcrack formation, and this 

1 



in turn grows into a macrocrack. A self-healing system within the material would react to 

the damage at the microscale and accordingly results in healing of the crack prior to 

macrocrack formation. Ideally, the self-healing mechanism would recover the material's 

original mechanical properties (i.e. fracture toughness, modulus, etc.). Current systems 

only recover a fraction of their original strength5. The best system to date has shown a 

sample with a healing efficiency up to 90% of the original virgin material fracture 

strength (6"9). 

2 



Background on Self-Healing 

Thermal self-healing materials and autonomous self-healing materials are 

investigated mechanisms for self-healing research. Thermally self-healing polymers 

require a source of heat to initiate repair ' " . Autonomous self-healing systems require 

no external input to initiate the healing process3. In the following sections, examples of 

thermally healing and autonomous self-healing systems will be discussed. 

Thermally Self-Healing Materials 

Frank Wudl et al. have developed a thermally self-healing material, in which the 

material mechanical properties equal properties of other commercial resins . The system 

utilizes the thermally reversible Diels-Alder reaction (DA), for crosslinking linear 

polymers. 

Monomer 1 (multi furan, 4F) Monomer 2 (multi-maleimide, 3M) Polymer 3M4F 

^ ^ (<tC / 3 

Figure 1-1: Diels-Alder reaction to make prepare polymeric material10. 

Two monomers, multifuran (4F) and multi-maleimide (3M) are synthesized to produce 

the bulk copolymer (3M4F). The 3M4F polymeric material is tough and solid at room 

temperature. At a temperature of around 120°C, 30% of covalent intermolecular linkages 

are detached and upon cooling the detached linkages are reconnected11. Reconnecting 

broken crosslinks, under thermo cycling allows healing of the material across the fracture 



region. In addition, the 3M4F polymer material heals without additional ingredients such 

as catalyst, additional monomer, or surface treatment ". 

Figure 1-2: Fracture toughness specimens of 3M4F. Sample (A) is cracked. Sample (B) is thermally 
healed n . 

Figure 1-2 is a fracture toughness sample of 3M4F polymer broken under tensile 

stress and thermally healed at 150 °C. Load vs. displacement curves have shown a 57% 

recovery of the original fracture load as shown in Figure 1-3. During the test, the samples 

were broken into two separate pieces making it difficult to place them together perfectly 

for healing10. The lower healing efficiencies are partially due to the fact the two pieces 

are not assembled perfectly together10. 

150 

100 

z 
TO 

a 

3 

Healed 

Original 

0,0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Displacement (mm) 

Figure 1-3: Load vs. Displacement curve for virgin and healed samples of 3M4F 
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The critical fracture load or force in which the sample would break, for a third 

consecutive crack has been shown to be 80% of the previous critical fracture load, which 

suggests that the polymeric material can be healed multiple times10. 

An advantage of auto-mending material is that it does not have any long-term 

problems such as a critical shelf life. The healing system uses existing material in the 

sample, and can heal multiple times without the use of additional material10'11. A 

disadvantage though, is that auto-mending material requires an external source of energy 

to promote healing12. The external source of energy essentially makes the thermally self-

healing material not "self healing. 
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Autonomous Self-Healing 

Approaches to autonomous self-healing have ranged from the use of 

microvascular networks, hollow glass fibers, or incorporating microcapsules to the 

material3~9'12"14. Autonomous systems do not require any external input to repair15. Many 

approaches to autonomous self-healing use liquid reactants embedded in the material, 

eliminating the need of additional material to repair the damage. Autonomous systems 

require a means of responding to any mechanical damage and heal the corresponding 

region. 

Microvascular Networks 

Microvascular networks are designed to mimic the architecture of human skin . 

The outer epidermal layer is composed of multiple sub layers that work in conjunction to 

rebuild the surface of the skin. As can be seen Figure 1 -4, the dermal layer underneath 

supplies the nutrients required in repairing the above epidermal layer12. Microvascular 

networks have been designed to deliver necessary components to "heal" the area of 

damage12'16. This allows the healing fluid to reach all crack sites that occur throughout 

the material. A network of channels is fabricated into the material and filled with a 

healing agent. After damage occurs the healing agent flows from the microchannels to the 

microcrack through capillary action12. 

6 



Figure 1-4: Diagrams of microvascular networks. Human Skin (left), Epoxy coating (right) ,2. 

The microvascular system consists of an epoxy coating that is deposited on a 

ductile structure that contains a three-dimensional network12. Networks are made using a 

direct-write assembly made from 16-layer structures and microchannels that are inter­

connected17. The direct-write assembly would produce a three-dimensional scaffold with 

1 7 

a fugitive ink, which is solid at room temperature and can liquefy around 60°C . Once 

the scaffolding is produced the structure is impregnated with resin and hardened to form a 

complete matrix. The matrix is then warmed to liquefy the fugitive ink and is removed 

leaving a matrix with an intricate network within . An epoxy coating with Bis-

tricylohexylphosphine benzylidene ruthenium (IV) dichloride, also known as Grubb's 

catalyst is deposited on top of the matrix and the microchannels are filled with 

dicyclopentadiene (DCPD) monomer as the healing agent12. The reaction mechanism 

used to polymerize the DCPD monomer is ring-opening metathesis polymerization 

(ROMP)7. 
19 

White et al. tested microvasular specimens under a four point bending test. In 

Figure 1-5, the excess monomer flowing out of the cracks after a four point bend test is 

evident. The sample was cracked and healed numerous times with an average healing 

efficiency of 50%. Results of further testing revealed healing halted after a seventh 
19 

loading test, due to loss of catalyst in the cracked area . 
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Figure 1-5: Cracked and healed structure with 2.5% catalyst loading12. 

The microvascular system has a lot of potential in some structural systems, but 

implementing vascular networks in coatings is difficult to achieve. The system uses a 

1 9 

700/mi coating but requires a 16-layer system of 200jUm diameter channels to operate , 

where coating thicknesses are generally in the hundreds of microns. 

Hollow Fibers 

It has been found that advanced composite materials are susceptible to impact 

loading, cracks or delaminations that form within the structure ' ' . Hollow fibers have 

been used as another type of self-healing system. Hollow fibers can detect by breaking 

the hollow fiber and deliver the necessary materials to a damaged area. Various 

composites with hollow fibers have been filled with healing agent(s)1"4' 13' 14. Flexural 

strength results have indicated a 16% reduction in strength when incorporating hollow 

fibers, but has been shown to have an 87% recovery after the sample was broken and 

healed14. 
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Like any autonomous system, a means of responding to any mechanical damage 

is required. In the case of the hollow fibers the cracking of the material will break the 

hollow fibers and release the healing agent to the damaged region1. 

Upon cracking, the hollow fibers are broken releasing its contents into the crack that has 

broken the hollow fibers initially. In Figure 1-6, hollowed fibers can be used in various 

configurations. An example system uses two types of hollow fibers utilizing a two part 

healing system where one fiber is filled with a reactive resin while the other is filled with 

a reactive hardener. When a crack occurs the two reactive materials flow into the crack 

plane, diffuse, and react to heal the damaged area. 

Figure 1-6: Various Systems using hollow fibers u. 

Bond et al.2 have implemented a "bleeding" system where one part would be the 

autonomous healing system and the other is to use a fluorescent dye that can reveal areas 

that underwent some catastrophic mechanical load and healed overtime . Eighteen piles 

of hollow fibers (stacked to a height of 2mm) were manufactured using a hand lay-up 

9 



process. Four point bending flexural tests of this system have shown a healing efficiency 

of 97% using an epoxy matrix embedded with resin and hardener filled hollow fibers2. 

The use of hollow fibers has shown excellent healing efficiencies, but requires a 

substantial amount of labor to produce the composites . For the use in coatings, hollow 

fibers cannot be plausible due to the amount of fibers stacked to a height of 

approximately 2mm to achieve a 97% efficiency2. The large thickness, can be 

problematic in a coating that is 250-500/xm. 

Microcapsules 

Another example of an autonomous self-healing material uses microcapsules and 

catalyst embedded in an epoxy matrix. The system is an epoxy resin matrix that has 

microcapsules of a monomer along with catalyst dispersed within the material5'6'8'9'18. The 

system uses encapsulated DCPD and embedded Grubbs catalyst, as the self-healing 

materials6. 

Figure 1-7: Crack propagation in a self healing composite5 

10 



As shown in Figure 1 -7, as a microcrack propagates through a matrix material, the 

microcapsules break releasing their contents. The liquid monomer is released into the 

crack plane by capillary action, filling the crack volume5"7'18. During the filling process 

the monomer flows and makes contact with the catalyst, dissolving the catalyst. The 

dissolved catalyst polymerizes the monomer repairing the crack by bonding the crack 

faces together7. The crack becomes filled with a cured monomer and a large fraction (e.g. 

90%5) of the virgin mechanical strength is reported to be recovered 5"7'18 

Figure 1-8: SEM picture of DCPD capsules manufactured using Urea formaldehyde process . 

The microcapsules in Figure 1-8 have been made using an in-situ polymerization 

process as an oil in water emulsion 19. The microcapsules were made of a DCPD core 

with a urea formaldehyde shell, with sizes ranging from 10-1000/zm19. The microcapsules 

had sufficient strength to remain intact during polymerization and subsequent recovery 

and drying, but rupture within the epoxy matrix when microcracks form. 

The system performed well with a large (2.5wt%) catalyst loading but, attempts to 

i x 

reduce the catalyst loading resulted in very low healing efficiencies . The Grubbs 
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catalyst did not disperse well as a powder within the epoxy matrix and the amine 

hardener used to make the epoxy matrix can deactivate the Grubbs catalyst significantly 

reducing its activity18. A method of first encapsulating the catalyst with wax was 

performed to protect the catalyst from the amine hardener as a solution to the deactivation 

of the catalyst. Results have shown that the wax protection saved 69% of the catalysts 

activity prior to healing; with no protection the activity was zero18. 

The microcapsule approach is the most viable system to use for self healing of 

composite coatings. Documented healing efficiencies of 90% were demonstrated using 

DCPD and wax coated Grubbs catalyst system9'10. With a high healing efficiency, 

prolonging the life of the coating may be realized. It is important to note that this is not a 

perfect solution. The method only can be used once in the same location, due to the 

limited chemical resources in a specific area, however the small capsule sizes may allow 

application to coatings of certain thicknesses. The Grubbs catalyst automatically makes 

this process quite expensive, but it can be used as a model system to provide comparisons 

to other systems under investigation. 
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Background on Microencapsulation 

Microencapsulation is a process of enclosing micron sized material, either a solid 

or liquid, with an inert shell20. Microencapsulation technology is used for various 

purposes, to have controlled release, protection from the environment, or allow for 

mixing between incompatible material . The product of a microencapsulation process is 

a particle known as the microcapsule. Microcapsules are usually made up of two parts, 

the core and the shell as depicted in Figure 1-9. 

Figure 1-9: Cross section of a microcapsule 

Core material can be encapsulated in the form of a liquid, solid or gas. Efficiency of 

microencapsulation depends on the compatibility of the core and shell material. A variety 

of materials such as monomers, fragrances, dyes, and catalysts have been encapsulated. A 

wide variety (and combinations) of polymers can be used for a shell that can be 

engineered to be permeable, semi-permeable, or impermeable20. 

Separation of the reactive components via microencapsulation is an important 

characteristic for use in a smart self-healing coating. The chemical reaction can then be 

initiated by crushing the microcapsules, releasing their contents and exposing each 

reactant to each other21. Importantly microcapsules can be obtained as a free flowing 

powder and be applied to a coating formulation21. 
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Encapsulation Techniques 

There are numerous techniques that can be used to encapsulate core materials. 

The techniques can be categorized into two groups, chemical and physical methods. 

Chemical processes such as in-situ polymerization, complex coacervation, along with 

interfacial polycondensation are commonly used. Examples of physical methods include 

spray drying, fluid bed coating and extrusion. The following are examples of common 

encapsulation methods used or discussed throughout this thesis ' . 

Encapsulation techniques can be performed in an aqueous or organic medium 

depending on the polarity of the encapsulate. Complex coacervation is a technique that 

utilizes phase separation from an aqueous solution. The technique uses two oppositely 

charged colloids that are mixed together and then a phase separation occurs from an 

electrostatic interaction. The core material is first dispersed into a cationic polymer 

aqueous solution. Then an anionic polymer solution is added. Formation of the shell 

results when the two polymers form a complex. The complex can be triggered by adding 

salts, changing pH or diluting the whole system. Gelatin and Gum Arabic are common 

ingredients used for complex coacervation. They form a complex when a drop in pH is 

induced. Gelatin needs to be crosslinked with an aldehyde in order to form a rigid shell 

wall20'21. 

Interfacial polymerization creates polymer at the interface of a droplet or particle. 

Interfacial polymerization allows one to encapsulate hydrophobic or hydrophilic 

materials. Encapsulation with this method is obtained using a hydrophobic monomer 

within the dispersed phase and a hydrophilic monomer within the continuous phase, or 

vice versa. In the microencapsulation process, the dispersed phase and the continuous 
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phase both supply reactive material at the interface to be created. Interfacial 

polymerization can encapsulate solid or liquid particles; in the case of liquid particles a 

core-shell morphology is dominant. Amines can be encapsulated with nylon or 

polyurethane shells using the interfacial polymerization method. Nylon shells can be 

made with sebacoyl chloride in an organic solvent and then adding 10% aqueous solution 

of an amine into the continuous phase. Urethane shells are like the nylon shell but by 

replacing the sebacoyl chloride with a diisocyanate. The issue here is that the capsules 

tend to stick together during polymerization and often are made too large to be useful in 

coatings21. 

In-situ polymerization, unlike interfacial polymerization, has the reactive 

ingredients fed from within the dispersed droplet or within the aqueous phase. This 

technique utilizes the solubility of monomers and insolubility of their polymers in either 

an aqueous or organic medium. During an encapsulation reaction, the monomer(s) used 

to encapsulate are polymerized and migrate to the particle interface. At the interface 

further polymerization occurs and slowly overwhelms the particle and finally 

encapsulates it ' . 

As described earlier, urea formaldehyde shells are commonly used as an 

encapsulating material for self-healing systems5"9. Urea formaldehyde (UF) shells are 

primarily made via in-situ polymerization in an aqueous medium. During aqueous UF 

polymerization the precipitates of UF are produced and migrate to the surface and slowly 

engulf the whole droplet to make a capsule. A detailed description of the procedure will 

be discussed in later sections of this thesis. 
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Mechanically controlled processes are also widely used in industry to produce 

microcapsules. Co-extrusion and spray drying are among common procedures used today. 

Co-extrusion uses a dual fluid stream in which the liquid core and shell materials are 

pumped through concentric tubes. At the end of the extruder a vibrational force is used to 

form the droplets. Spray drying is another method and is mainly used for encapsulating 

fragrances and oils. The core particles are dispersed in a polymer solution and then 

sprayed into a hot chamber. The hot environment will flash off the solvent leaving a solid 

shell around the core. Water soluble polymers are typically used as shell material because 

of potential hazards solvents can be at high temperatures and concentration21. 
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Background on Fracture Toughness 

Throughout this thesis the measure of fracture toughness of a brittle material is 

commonly used to describe healing efficiencies of a system. Fracture toughness, Kc (units 

of Pa-m1/2), is a property that is material and geometry dependent. Kc is usually 

designated as Klc when the sample size is sufficiently large. With a large sample Kic 

becomes the lower limit of the fracture toughness. K\c is known as the plain strain 

fracture toughness in Mode I fracture22 (see below). 

A specimen can be tested under three different fracture modes. Mode I is known 

as an opening mode where stresses are applied perpendicular to the crack plane. Mode II 

is a forward shear or sliding mode, where the stresses are applied parallel to the crack 

plane, in opposite directions. Mode III is a transverse shearing or tearing mode. Mode I 

is commonly used for fracture toughness measurements of brittle materials . 

Beres et al. has designed a tapered double cantilever beam testing sample to keep 

Kic constant along the crack plane, as shown in Figure 1-1024. 

25.4 [J 35 sdL.O 

- *K-

f 45° 
t j 76.2 

h = 6.25 

Figure 1-10: TCBD geometry. Dimensions in mm. 
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With Kic constant throughout the sample crack plane the fracture toughness is only 

dependent on the material. 

K*-2P.f (1.1) 

The parameter Pc is the critical fracture load which can be measured directly. The 

parameters m and /3 are based on geometry of the sample (see Figure 1-10 for a, b, bn, and 

h)5. 

J3 = b06ibn
039 (1.2) 

m=Maf + W) ( ' 
From equation (3), one can see that there is a dependence on crack length, but that has 

been designed to be constant throughout the crack plane. One can find K\c by measuring 

the critical fracture load of a sample. This tapered double Cantilever beam (TDCB) 

geometry has been utilized to calculate healing efficiencies of this DCPD and Grubbs 

catalyst system5. 

Pc 
_ healed / j ^ \ 

Pc . . 
virgin 

Critical fracture loads are measured according to ASTM 638 D for tensile properties of 

plastics. ASTM 638 D requires use of a tensile testing machine, such as an Instron to 

measure samples under a constant displacement rate while measuring the load on the 

sample. The results of such a test are shown in Figure 1-11. 
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Figure 1-11: Load vs. displacement curve of an in-situ sample . 

Virgin samples are broken and are realigned and allowed to heal. It is important to note 

that the samples often break to failure resulting in two separate pieces. The two pieces are 

typically realigned by hand and allowed to heal. When placing such pieces together it is 

difficult to join the two crack surfaces perfectly. Ideally one would like to fracture a 

specimen a small amount and allow the elastic properties of the sample to realign the 

crack faces. The healed sample would then be broken again using the same parameters 

used to break the virgin sample. The ratio of the two fracture loads, equation (1.4), will 

yield the healing efficiency value n. 
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CHAPTER TWO 

ONE PART AUTONOMOUS SELF HEALING SYSTEM 

White et al.5 has demonstrated the use of microcapsules and catalyst as an 

approach to a self-healing system. The system consists of dicyclopentadiene (DCPD) 

microcapsules and Grubb's catalyst embedded in the epoxy matrix. As a crack propagates 

through a microcapsule, it releases the DCPD into the crack plane. The DCPD then 

contacts the embedded Grubb's catalyst, triggering polymerization of DCPD resulting in 

healing the crack shown in Figure 2-1. 

Microcapsules Grubbs Catalyst DCPD Core 

Figure 2-1: Epoxy matrix with DCPD microcapsules and Grubb's catalyst with a crack filled with 
healing agent. 

This system is sufficient to model other systems but there are many potential problems 

with the high cost of the catalyst including the lifetime of the system, and that the 

Grubb's catalyst contains a heavy metal that may be harmful to the environment. 

However, this system will be used as a model in order to develop an understanding of the 

self healing mechanisms and then applied as a system for anti-corrosion. 
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Feasibility of Self-Healing System 

In order for the self-healing system to work, analysis of the hydrodynamic flow 

properties of the fluid and kinetics of the polymerization need to be assessed. For the 

DCPD and Grubb's Catalyst system the DCPD is required to have the ability to fill the 

crack completely prior to becoming fully polymerized. Intuitively premature curing can 

lead to inadequate healing of the crack, potentially making the matrix susceptible to 

further damage. 

After microcapsules are broken, the liquid core material fills the crack via 

capillary action. The filling of the microcrack is modeled by capillary flow in a horizontal 

tube using the equation below25: 

r 
V = - 7 r * 

2 'AP^ 
(2.1) 

V / J 

where r is the radius of the crack, (j, is the viscosity of the liquid, AP is the pressure drop 

within the tube, 1 is the crack length, and v is velocity. Laminar flow is assumed to occur 

within the crack, making the pressure drop of the crack, AP, equal to the pressure in the 

capillary tube, pc, by : 

AP = pc=^*cos8 (2.2) 

r 

where y is the surface tension of the fluid core material, and 9 is the wetting angle of the 

core material on the matrix polymer surface. Combining equations (1) and (2) becomes: 

v = _ZL*Z.*cos6> (2.3) 

The negative sign (found in equation (2.1)) has been removed because the value of AP is 

negative. One can calculate the time required to fill a crack, t, with the following equation: 
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/ 
(2.4) 

Figure 2-2, is a graph of time required to fill a crack with varying crack radii and crack 

length, while keeping the contact angle, viscosity and surface tension values constant. 

Time to fill crack length varing crack radii with a 
contact angle of 30° 
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Figure 2-2: Plot of time required to fill various crack lengths and crack radii with a contact angle of 
30° 

The surface tension and viscosity values are taken as 28.8 dynes/cm (Naphtalene, as a 

substitute for DCPD as it has a similar structure)26 and 0.01 poise (the viscosity of DCPD 

is similar to water),27 respectively. The value of 30° for the contact angle has been 

chosen to produce Figure 2-2. The figure above illustrates the filling of the crack by 

capillary action occurring in the magnitude of milliseconds. Figure 2-3 (below), shows 

the sensitivity of the time required to fill a finite crack length of lOum while varying 

contact angles. It is difficult to determine the contact angle of the DCPD due to the fact 

that it solidifies in the pipette used to produce the droplet. This indicates that the surface 

used to place the DCPD droplet on requires constant temperature control above its 

22 



melting point. Therefore a variety of contact angles have been used to calculate various 

crack fill times. Additional figures regarding crack fill times can be found in Appendix A. 

Time Required to fill a 10um Crack vs. Contact 
Angle Varying Crack Radius 
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Figure 2-3: Plot of time required to fill a lOum crack varying crack radii and contact angles. 

Polydicyclopentadiene (PDCPD) is a highly crosslinked polymer that is produced 

when DCPD monomer contacts and polmerizes with Grubb's catalyst. The reaction step 

involves ring opening metathesis polymerization shown in Figure 2-4. 

C\, 
PCy3 

vPh 

cr^ 
:RU: 

pcy3 

DCPD 
Monomer 

Crosslinked Polymer 
Network Grubbs' Catalyst 

Figure 2-4: ROMP of DCPD and Grubb's catalyst28. 

28 White et al. have examined and modeled the kinetics of D C P D with various 

concentrations of Grubb's catalyst. Results have shown that the rate of curing is 

dependent on the catalyst concentration, as expected, and as shown in Figure 2-5. 
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Figure 2-5: Predictions for degree of curing at isothermal conditions (30°C) at low, medium and high 
catalyst concentrations28. 

In Figure 2-5, with 60% curing (o<=.6) of the DCPD takes place in a matter of minutes at 

various catalyst concentrations. Low, medium and high concentrations are designated to 

be 1.33xl0"3 g/ml DCPD, 2.00xl0"3 g/ml DCPD, and 2.67 xlO"3 g/ml DCPD respectively. 

One can see that the self-healing system using DCPD and Grubb's catalyst is 

feasible. The time needed to fill the crack is a small fraction of the time required to 

polymerize the DCPD to PDCPD. This result makes the system a good model system to 

gain further understanding of how it works. 

Encapsulation of DCPD 

Microencapsulation with urea formaldehyde (UF) resins as the shell material has 

been demonstrated to encapsulate DCPD19. The UF shell has adequate strength, sufficient 

adhesion to the host matrix and can be ruptured when a crack propagates through it. This 

makes it useful in a self healing system. Urea and formaldehyde polymerize under a 

polycondensation mechanism yielding a highly cross linked polymer25. The overall 
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reaction sequence for UF polymerization is depicted in Figure 2-6, where the catalytic 

cross-linking of the resin is performed by the addition of heat and acid. The UF 

polymerization is performed in water. 

o 0 H o o 
II HCI I - Urea ^ II - Water ^ | | 

• A Cl • / \ > l + HCI • 
H H H H OH NH NH2 N NH; 

-y25-«- A ^ A -5sfiSSl* X X A X - r " " "> Hea' X X C ? X V 
0 0 N-̂  

Figure 2-6: Polymerization mechanism for urea-formaldehyde resin 

UF polymerization usually takes place in aqueous media where both urea and 

formaldehyde are soluble. During polymerization the molecular weight (MW) of the 

polymer increases and becomes insoluble and precipitates out of the aqueous phase. 

Figure 2-7 shows potential pathways that precipitated UF polymer can follow. The 

precipitated polymer can 1) precipitate as a microparticle or 2) migrate onto the oil 

droplet (DCPD). The precipitated microparticles can either continue to become larger and 

separate microparticles or coagulate with a droplet producing a rough shelled capsule. 

The droplets with UF precipitated on them can ideally continue on to produce smooth 

shelled capsules or coagulate with microparticle producing rough shelled microcapsules. 
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Urea-Formaldehyde Polymerization in Aqueous Phase 

1. Precipitation as 
microparticles Precipitation 

Coagulation 

2. Precipitation 
onto oil droplets 

Separate Microparticle 

O 

Rough shelled 
microcapsule 

o 
Smooth shelled 
microcapsule 

29 Figure 2-7: Proposed mechanism for UF shell formation 

The microencapsulation recipe that has been used in the present work follows 

similarly to what has been presented by White et al . In a one liter jacketed reactor, 

approximately 480 grams of deionized water and 133 grams of 2.5wt% poly(ethylene-

maleic anhydride) (PEMA) aqueous solution are mixed, followed by 50g of 2.0wt% 

polyvinyl alcohol (PVOH) aqueous solution, 13.6 grams of urea, 1.3 grams ammonium 

chloride, and 1.3grams of resorcinol. To the solution, approximately 160 grams of DCPD 

is added and dispersed as droplets. The solution is mixed using a Lightnin TS2010 mixer, 

with a six-blade paddle impeller attachment with a 5 cm diameter, at a rate of 500 rpm. 
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Figure 2-8: Experimental set up for encapsulation of DCPD. 

The pH of the dispersion is adjusted to 3.5 using sodium hydroxide and/or hydrochloric 

acid as required. The reactor content is heated to 55°C, and once the reactor reaches that 

temperature, 33 grams of 37wt% formaldehyde is added. The dispersion is allowed to 

react at 55°C for four hours. 

PEMA is added to the reactor as a polymeric surfactant to improve the dispersion 

of the DCPD droplets by reducing the amount of agglomeration ' . It has been shown by 

H.Yoshizawa et al32,that PEMA is also essential to the formation of the UF shell around 

the DCPD droplets. The PEMA adsorbs (like a surfactant) to the DCPD/Water interface 

and works as a reactive anchor for the UF to adhere to during the condensation reaction . 

Polyvinyl alcohol was used as a polymeric stabilizer for the droplets, while the 

ammonium chloride acts as an acidic-cure catalyst much like HC1 for the urea-

formaldehyde chemistry. Resorcinol is also a catalyst but aids the UF polymerization 

differently by providing an already active site for polymerization. 
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The dispersion is allowed to cool and is placed under vacuum filtration to separate 

the capsules from the aqueous solution. During the vacuum filtration process the separate 

microparticles will fall through the filter paper along with the aqueous solution. The 

capsules are then washed with acetone during filtration process to remove excess 

surfactant and unencapsulated material. The washed capsules are dried overnight at room 

temperature, resulting in a free flowing powder. In Figure 2-9, one can see that the 

particles are approximately 80-120/mi which is confirmed with the use of light scattering 

measurements (Microtrac S3000 dry mode). 
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Figure 2-9: Light Microscope (left) and SEM (right) images of DCPD microcapsules 

Differential Scanning Calorimeter (DSC) analysis has determined that there is an 

80% payload of DCPD in the microcapsules. DSC data and analysis can be found in 

Appendix B. Microcapsule payload is defined as the weight ratio of core material to the 

overall capsule weight. It is important to note that the dried capsules have thin, hard, and 

brittle shells that can withstand breaking during handling of the material but rupture when 

needed. Another important characteristic is that the shells have a rough surface which 

increases the surface area of the capsule, and can lead to better adhesion to the epoxy 

matrix. 
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Fracture Testing 

In the present work, fracture testing is used to assess self healing of the DCPD 

and Grubb's catalyst system. The degree of healing can be evaluated by measuring the 

fracture load of both a virgin and a healed sample. The ratio of those two loads will yield 

the healing efficiency. Fracture testing similarly follows ASTM 638D which is tensile 

testing of brittle material. An Instron machine is used to analyze and apply force on the 

testing specimen at a constant displacement rate and to measure the load over time. 

The fracture specimen has a unique design which allows for constant fracture 

toughness (see chapter one) along the crack plane of the sample (see Figure 1-10). 

Measuring the crack length of samples optically is a difficult task; therefore the design of 

the fracture specimen is important. The tapered double cantilever beam (TDCB) 

specimen allows accurate measurement of fracture toughness without the worry of where 

the crack ended. 

In order to mold samples for testing, a master TDCB template was fabricated out 

of aluminum. This piece was used to make molds out of silicon rubber. The mold consists 

of two separated pieces, which are clamped together by two steel plates and four c-

clamps. The epoxy mixture was then injected into the mold with a syringe as seen in 

Figure 2-10. The epoxy mixture was made out of West System Brand Epoxy®, more 

specifically the West System 105 resin and 206 slow hardener, with various weight 

percentages (up to 20wt%) of DCPD microcapsules. The molds were then overfilled into 

two reservoirs that occupy the holes used for injection, to avoid shrinkage during the 

curing process. 
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Figure 2-10: Molding process used to make epoxy TDCB specimens. 

After twenty-four hours at room temperature, the samples were demolded and 

allowed to sit at room temperature for additional curing time; approximately six to seven 

more days. The long cure time allows for complete curing and eliminates any 

discrepancies in fracture toughness measurements. 

The fracture specimens were loaded into an Instron machine and a load applied 

perpendicular to the crack plane. The displacement was set at a constant rate of crack 

mouth opening displacement until fracture occurred (e.g. 5.0 um/sec). Figure 2-11 shows 

a typical load vs. displacement data for the TDCB epoxy specimen where in this case, the 

sample exhibited two crack propagations. The crack propagation steps are observed as 

sudden drops in load. The second drop in load resulted in failure of the specimen (broken 

into two separate pieces). Typical observed fracture toughness values (K) range from 0.5 

to 0.9 MPa m1/2, where handbook values are about 0.6 MPa m1/2 22. 
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25 Figure 2-11: Load vs. displacement data for fracture of a microcapsule filled epoxy TDCB specimen 

There are challenges in fracture testing of the TDCB specimens. Prior to sample 

testing, each specimen needs to be pre-cracked; this leads to the first challenge during 

testing. Pre-cracking of the samples is performed by tapping a razor blade into a starter 

notch in the sample, as seen in Figure 2-12. 
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Matrix 
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Figure 2-12: Close-up image of pre-cracked region in TDCB specimen. 

This pre-crack method most often results in breaking the samples entirely through. A 

second challenge occurs during testing: samples are often broken to complete failure, 
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resulting in two halves. In order to evaluate self healing the two halves need to be 

brought back together and allowed to heal. The physical act of putting them back together 

by hand does not allow for the crack faces to align perfectly, resulting in inadequate 

healing. Ideally the sample will only partially crack before the load is released. This 

allows the sample to naturally come back into perfect contact after removing the load 

from the sample. 

A number of fracture specimens without Grubb's catalyst but with DCPD 

microcapsules embedded in them have been analyzed. Examination of the fracture 

surface was made possible by using scanning electron microscopy (SEM). Figure 2-13 

shows the fracture surface and numerous cavities are evident. These are from broken 

capsules which have released their contents. As one can see, there are no protruding 

microcapsules in the crack plane. Signs of protruding capsules would demonstrate that 

the cracks propagate around the capsules instead of directly through them. As can be seen 

in the left hand photo of Figure 2-13, all capsules have been broken completely through. 

The right hand photo shows the fracture surface for an epoxy matrix without any DCPD 

microcapsules. The contrast between these photos offers clear evidence for the clean 

fracture of the DCPD microcapsules. 
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Figure 2-13: SEM picture of a fracture surfaces from an epoxy matrix filled with DCPD 
microcapsules25 (left) and fracture surface of neat epoxy (right) 

Evaluation of self healing was performed with DCPD capsules embedded in 

epoxy without any Grubb's catalyst. The Grubb's catalyst was omitted from being 

embedded in the sample due possible deactivation by the amine component. After 

fracture of an encapsulated DCPD/Epoxy matrix TCBD specimen, a drop of 2wt% 

solution of Grubbs catalyst in toluene was dispersed along the crack plane and the two 

specimen halves were put back together and held with c-clamps for a period of 24 hours. 

Since the specimens typically break into two separate pieces, joining the two crack faces 

together isn't perfect. In these tests the no additional DCPD was added to the crack plane; 

the only DCPD present came from broken microcapsules. 

As shown in Figure 2-14, the fracture behavior is different from the virgin 

fracture sample shown in Figure 2-11. The healed sample shows signs of yielding prior to 

failure. The yielding occurred approximately at a third of the fracture load where the 

virgin samples break. Using equation (1.4) the healing efficiency, n, is found to be 34.1% 

for the specific test shown in Figure 2-14. 

33 



20% MCs healed with Grubbs/toluene 

0.025 

0 0.2 0.4 0.6 0.8 1 1.2 

displacement (mm) 

Figure 2-14: Load vs. Displacement curve of a healed sample. 

There might be some speculation that the toluene for the Grubb's toluene solution 

can heal the sample by solvating the epoxy matrix chains, allowing them to inter-diffuse. 

Various neat epoxy samples have been tested without any DCPD microcapsules 

embedded within them. A drop of toluene was introduced to the fracture surfaces and the 

pieces placed together similarly to the DCPD/Grubb's healed samples. Out of ten 

samples tested, one was able to hold together after removing the clamps. This single 

sample was unable to hold its own weight and resulted in a break. These results show that 

the toluene did not heal or contribute to the healing process. Further investigation of this 

system was halted after reproducing the DCPD/Grubb's catalyst work of Scott White. 

The understanding of microencapsulation, fracture testing and self-healing was achieved. 

The optimization of the DCPD/Grubbs process did not become a main focus of the 

present work because we were much more interested in a two part self healing system 

that did not contain a catalyst. 
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CHAPTER III 

A TWO MICROCAPSULE AUTONOMOUS SELF-HEALING SYSTEM 

A system comprised of two different microcapsules has been devised to be a 

solution to the problems that exist with the White's DCPD Grubbs catalyst system5. This 

new approach uses components of a two part epoxy to be used as healing agents. The two 

capsules used in the epoxy system are a resin microcapsule (usually diglycidal ether of 

bisphenol A (DGEBA)), and a diamine microcapsule as the hardener. Figure 3-1 shows 

an epoxy matrix filled with microcapsules and a crack filled with the healing agents. 

Figure 3-1: Epoxy matrix filled with resin and amine capsules, showing a crack filled with each 
healing agent. 

This system is similar to the DCPD Grubbs' catalyst system, but replaces the 

Grubb's catalyst and DCPD with epoxy resin and an amine hardener capsules. By 

replacing the Grubbs catalyst, issues with catalyst shelf life, cost and environmental 

safety are removed. The new system does require microencapsulation of two different 
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components in order to preserve them from the outside matrix. The components are 

ingredients similar to the ones used to make the matrix. Having the healing agents to be 

the same as the matrix allows for proper adhesion to walls of the crack and similar 

mechanical strength of the newly formed polymer 

Self-healing occurs via a microcrack formed within the matrix that breaks 

microcapsules as it propagates through the matrix. The crack will break each of the 

different capsules releasing their contents into the crack plane and filling it by capillary 

action. This system requires adequate mixing within the crack before it cures. The 

additional mixing step is performed via molecular diffusion. The filling and mixing steps 

must be faster than the curing step in order to make a feasible self-healing system. 
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Feasibility of Self Healing System 

For the two capsule epoxy system to become feasible the liquid core materials 

need to flow into the crack, mix with one another via diffusion and then react and cure 

after adequate mixing . Analysis of the hydrodynamic flow properties, diffusion rates 

and kinetics of the system can determine if the two capsule system is feasible. 

Capillary Flow 

Within an epoxy matrix the capsules are assumed to be evenly distributed, with 

equal distances between capsules (shown in Figure 3-2). A calculated distance between 

microcapsules, h, is approximately lOOum (based upon a capsules size of 100/mi and a 

capsule loading of 5 wt% in the epoxy matrix). 

Distance between microcapsules 

Crack Diameter 

Figure 3-2: Fracture of microcapsules within a matrix. 

As a crack propagates through a matrix, capsules within the matrix are ruptured and the 

contents are released into the crack. Filling of the crack begins when the encapsulated 

material flows outwards from each capsule occupying all the vacancies within the crack. 

The filling of the crack can be observed by focusing on a pair of microcapsules and the 
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distance between them, h. Since the filling process is simultaneously occurring between 

each pair of capsules one can calculate the time to fill the crack using a distance of h. 

The filling of the microcrack can be modeled by capillary flow in a horizontal 

tube using equation (2.3). The following figures show the time required to fill a crack 

with resin (Figure 3-3) and amine hardener (Figure 3-5). 

Time to fill crack length varing crack radii with a contact 
angle of 48° 
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Figure 3-3: Time required to a fill crack with epoxy resin, varying crack lengths and crack radii with 
a contact angle of 48° 

The surface tension and viscosity values in Figure 3-3 are taken as 47 dynes/cm and 6.4 

poise, respectively (EPON®815C, found experimentally using a cone and plate rheometer 

(model AR 2000) at 25°C). The contact angle for EPON 815C has been found to be 

approximately 48° on an epoxy surface made from West System Epoxy at room 

temperature (25°C), shown in Figure 3-4. 
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Figure 3-4: Contact angle of EPON 815C on an epoxy surface. 
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Figure 3-5: Time required to fill a crack with amine hardener, varying crack lengths and crack radii 
with a contact angle of 43° 

In Figure 3-5, the surface tension value for the amine hardener is taken as 44 dynes/cm25 

and the viscosity is observed to be approximately 220.4 poise (IDEO adduct found 

experimentally using a cone and plate rheometer (model advanced Rheometer AR2000) 

at 25°C). The contact angle for the amine hardener has been found to be approximately 

43° on an epoxy surface made form West System Epoxy at room temperature (25°C), 

shown in Figure 3-6. 
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Figure 3-6: Contact angle of amine hardener (IDEO adduct) on an epoxy surface 

In the above figures (Figure 3-3 and Figure 3-5), one can see that the time required to fill 

a crack increases as the crack radius increases. The changes in crack radii have no 

significant impact or magnitude of change to the time required to fill a designated crack 

volume. The figures above also illustrate that the filling of the crack by capillary action is 

likely to occur within a matter of seconds. Additional figures regarding crack fill times 

can be found within Appendix C. 

Diffusional Mixing 

Once the crack has been filled, shown in Figure 3-7, it is necessary for the epoxy 

resin and hardener to mix thoroughly before curing can occur. Mixing in the crack can 

only be achieved by diffusion. 
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Length of Crack Plane 

Figure 3-7: Diffusion model of resin and hardener between microcapsules. The colored regions 
indicate areas that the liquid core materials occupy the crack plane. The circles are the embedded 

microcapsules. 

Diffusion occurs in two directions and this is known as counter-diffusion. This event is 

occurring throughout the crack plane simultaneously. The diffusion rate can be 

calculated by observing a set of capsules also shown in Figure 3-7. Although counter 

diffusion occurs, one can determine the counter-diffusion rate by using the component 

having the limiting diffusion coefficient. 

Diffusional mixing times are approximated using Fick's law of diffusionz 

8C 

,25 ,33. 

dt 
= D 

Kdx2 j 
(3.1) 

where t is time, x is distance, C is the concentration and D is the diffusion coefficient. By 

simply using the inverse relationship between viscosity and diffusion coefficient from the 

Stokes-Einstein relation, one can estimate the diffusion coefficients for the amine 

hardener and epoxy resin. 

K-T 
D = 

6n -T] -r 
(3.2) 
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Assuming that the constants other than diffusion (d) and the viscosity (n) are constant, 

than one can estimate the diffusion coefficients with the following equation: 

D ^ ^ - (3.3) 

One can use a simple fluid like water (viscosity of 0.0089 poise and diffusion coefficient 

of 10"4 (simple liquid)) along with the viscosities of the epoxy and amine components to 

estimate the diffusion coefficients. The viscosities for each of the components, discussed 

earlier in the chapter are 220.4 poise for the amine hardener (IDEO adduct) and 6.4 poise 

for the resin. Based on the calculations the diffusion coefficients are likely to be between 

10"7andl0"9 cm /sec for the resin and hardener respectively. By applying the following 

boundary conditions to equation (3.1) calculations of mixing times can be achieved. 

t = 0 0 < x < h C = 0 (3.4) 

t >0 x = 0,x = h C = Coo (3.5) 

The solution to equation (3.1) for finding concentration in a distance between 

microcapsules h, at time t, and distance x, is calculated below25'33: 

C 4 
— = 1 exp 

( D.ni \ r„.~\ 

h 2 •t • s i n 
71 -X 

\ n j 
(3.6) 

The distance between microcapsules, h, is taken to be 100 urn. Figure 3-7 shows the 

concentration profile of a lOOum length (distance between capsules) using 10" cm /sec 

for the diffusion coefficient and 0.95 g/cm3 (DETA) for the concentration of the 

hardener25. 
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Concentration Profile of Hardener in a 100um Crack 
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Figure 3-7: Concentration profile of hardener in a lOOum length. 

This model is only used to achieve an order of magnitude of time needed to fully 

mix the self-healing components. The following figure shows the percentage of mixing in 

the crack defined by comparing the concentration at distance h, to the initial 

concentration at h=0. Assuming equal volume ratios, Figure 3-8 is produced below, 

Degree of Mixing vs. Time 

2000 4000 6000 8000 10000 12000 14000 16000 18000 

Time (seconds) 

Figure 3-8: Degree of mixing in a crack vs. time. 
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According to Figure 3-8, the diffusional mixing requires a time of about thirty 5 hours to 

reach 80% mixing. Now in order to determine if the system is feasible one must estimate 

the kinetics of the epoxy curing reaction. 

Epoxy Curing Kinetics 

The epoxy cure reaction typically involves an epoxy resin and a diamine. Both 

primary and secondary amines can be used where the primary amines are more reactive 

than the secondary amine. A single nitrogen-hydrogen bond is required to open the 

epoxide ring and polymerize, thus making primary amine difunctional and secondary 

amines monofunctional34. The curing reaction leads to a crosslinked three-dimensional 

network that is shown in Figure 3-9. 

OH 
I 

OH CH2-CH-CH->./v 
i I 

ps ^ C H 2 - C H - C H 2 - N 
( 'HiCH-OV" 1 + H2N-R-NH-, *- R OH 

I I 
N-CH2-CH-CH2^v-

•~-CH2-CH-CH, 

OH 

Figure 3-9: Epoxy reaction sequence34. 

Epoxy curing times, at room temperature (25°C), are usually of the magnitude of days to 

fully cure, but the reacting mixture becomes solid within hours. Typical commercial 

amine based epoxy gel times are within 40-50 minutes (at 25°C)25. Gel times are 

windows of time required for the reacting material to become a solid or semisolid . 

Before the gel time, the viscosity of the epoxy mixture increases indicating that the 

diffusion rates will decrease as time passes. It is important to mix the components 

thoroughly before the gel time is reached in order to have a feasible self healing system. 
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The time needed to fill the crack is of the order of seconds and the time for 

adequate mixing and in the order of hours. The gel time is in the order of minutes. 

Though the gel time and diffusion times are far from one another, there is concern that 

the diffusion of material within the crack will not reach 80% mixing within 40-50 

minutes of the curing time of typical epoxies. However, the amine reaction time for the 

amine adduct, used in this work with EPON 815C has proven to be significantly slower, 

this will be discussed later in the thesis with a 70% extent of reaction after 12 hours. 

Therefore this result makes the system a feasible alternative to White's DCPD5 and 

Grubb's catalyst system. 
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Encapsulation of Resin Capsules 

Encapsulation of epoxy resin has been demonstrated using two different routes. 

The first approach models a 3M patent for a water-based mechanical fastener35, where the 

encapsulate, EPON® 815C (from Miller-Stephenson) resin is mixed with an aqueous 

solution of amine hardener. The encapsulation process involves making a pre-polymer 

known as a urea-formaldehyde-melamine concentrate to make the polymer shell. The 

second approach uses the same urea-formaldehyde encapsulation process demonstrated in 

previous work in the encapsulation of DCPD (from Alfa Aesar), which was described in 

chapter two of this thesis30. 

Encapsulation of Epoxy Resin Using the Concentrate Route 

The concentrate route reported in the June 30th 2005 ONR Annual Report30 

provides the procedure and recipe used to encapsulate the epoxy resin. The shell material 

that results from using the concentrate route consists of urea, formaldehyde (both from 

Alfa Aesar), and melamine (UFM) (obtained from Alfa Aesar). The melamine 

supposedly helps with branching of the polymer therefore increasing crosslinking density 

within the polymer shell, resulting in a hard and brittle shell material. Prior to 

encapsulation a pre-polymer concentrate needs to be made. 

The concentrate is made as follows: In a 250ml reactor, add 90g of formaldehyde 

(37% aqueous solution), followed by 23.6g urea, 10.37g melamine and 0.8g 

triethanolamine (obtained from Alfa Aesar). Triethanolamine is added because it acts as a 

buffer or control the pH of the solution used to form the UF shell. The solution is heated 

to 70°C for two hours and than allowed to cool to room temperature and then is diluted 
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by adding 200ml of de-ionized water. It is important to note that this procedure can be 

easily scaled up to produce the desired amount of concentrate for encapsulation. 

For the encapsulation process, the set up starts with the same apparatus as with 

the DCPD encapsulation shown in Figure 2-8. Addition of 615g of pre-polymer 

concentrate into a one liter jacketed reactor is followed by 6.15 grams of sodium sulfate 

(used as a catalyst for the formation of the UF polymer), and 141.3 g of a 2.5wt% 

poly(ethylene-maleic-anhydride) (PEMA)(from Polysciences Inc.) solution. The pH of 

the system is adjusted to 7 with use of hydrochloric acid and/or sodium hydroxide. 200g 

of EPON® 815C is added to the reactor and is emulsified for 30 minutes at 500rpm using 

a Lightnin TS2010 mixer with a six-blade (5 cm diameter) paddle impeller attachment. 

The pH is then adjusted again to 2.5 by slowly adding hydrochloric acid to the reactor. 

Emulsify the contents for an additional hour and then begin heating the reactor contents 

to 60°C. After 30 minutes, adjust the pH to 1.9 and continue heating for an additional 3.5 

hours. 

The dispersion is allowed to cool to room temperature and is placed under 

vacuum filtration to separate the capsules from the aqueous solution. During the vacuum 

filtration process the encapsulated material is separated from the microparticles (shown in 

Figure 2.7). The microparticles pass through the filter paper with the aqueous solution 

while the larger microcapsules remain on the filter paper. The capsules are then washed 

with acetone during the filtration process to remove excess surfactant and unencapsulated 

material. The washed capsules are air dried overnight (ca. 16 hours) in a fume hood at 

room temperature. 
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A number of experiments have been performed using the concentrate route but 

sizes measured by light microscopy and light scattering yield capsules as large as 300/mi. 

Various efforts in changing the surfactant and/or agitation did not yield any decrease in 

capsule size. The microcapsules have a tendency to agglomerate and adhere to the reactor 

wall, reducing the overall yield. Another route that can be used is the recipe and 

procedure used for encapsulating DCPD. This procedure has proven to be very successful, 

and will be used as another means to encapsulate the EPON® 815C. 

Encapsulation of Epoxy Resin Using the Urea Formaldehyde 

Encapsulation of the epoxy resin without the use of the concentrate has been 

performed in parallel with the UFM concentrate route. The procedure and recipe that has 

been used in the present work follows that of the DCPD encapsulation process. In a one 

liter jacketed reactor, approximately 384 grams of deionized water and 133 grams of 

2.5wt% poly(ethylene-maleic anhydride) (EMA) aqueous solution are mixed, followed 

by 149g of 2.0wt% polyvinyl alcohol (PVOH)(from Sigma-Aldrich) aqueous solution, 

13.6 grams of urea, 1.3 grams ammonium chloride, and 1.3grams of resorcinol. To the 

solution, approximately 160 grams of EPON® 815C resin is added and dispersed as 

droplets. The solution is emulsified using a Lightnin TS2010 mixer, with a 5cm diameter, 

six-blade paddle impeller attachment at a rate of 500 rpm for one hour. The pH of the 

dispersion is adjusted to 3.5 using sodium hydroxide and/or hydrochloric acid as required. 

The reactor contents are heated to 55°C; once the reactor reaches temperature, 33 grams 

of 37wt% solution formaldehyde is added. The dispersion is allowed to react at 55°C for 

four hours. 
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The dispersion is allowed to cool to room temperature before it is placed under 

vacuum filtration to separate the capsules from the aqueous solution. The capsules are 

washed and dried in the same fashion as the microcapsules produced by the concentrate 

route. The dried capsules can be seen in Figure 3-10. 

Figure 3-10: Light microscope (left) and SEM (right) photos of Epon® 815C Resin capsules using UF 
process (YD3-56). 

The capsules in Figure 3-10 have very thin shell walls that are hard enough to 

withstand forces required to mix the capsules into epoxy but are brittle enough to rupture 

by a propagating microcrack. Sizes for the micrcapsules are within the 100-150 um range. 

The resin capsules have a high payload up to 83% determined by extraction of the core 

material. The process starts by weighing the capsule, extracting the core material with a 

solvent and allowing the shell material to dry. By comparing the starting and end material, 

one can determine the payload. The microcapsules are recovered to a free-flowing 

powder that can be easily dispersed into an epoxy coating. 
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Amine Adduct 

Diamines such as diethylenetriamine (DETA), are commonly used as hardening 

agents for epoxy systems. Other compounds can be used to cure epoxy resins such as 

polythiols and phenolic prepolymers, but are not as efficient, requiring accelerants to in 

order to cure34. Other compounds such as anhydrides can be used to cure epoxies with 

low epoxide group concentrations34. Due to the great reactivity and crosslinking, amines 

are generally used as the curing agent for self-healing. 

Encapsulation of amines is a much more difficult task than encapsulating the 

epoxy resin. Unlike the epoxy resins, amines tend to be soluble in water, but they are also 

soluble in organic solvents. The amine being soluble in both aqueous and organic phases 

limits the number of possible processes that can be used to encapsulate it. A majority of 

encapsulation processes require the core material to be either completely hydrophobic or 

completely hydrophilic, in order to make droplets in aqueous or organic media 

respectively. In the current work, modifications of simple amines to amine adducts have 

been made to produce hydrophobic amines that allow the production of droplets during 

aqueous based emulsification. 

Desired Properties of the Amine Adduct 

There are numerous desired properties for the amine adduct in addition to 

hydrophobicity. The viscosities of the resin and amine adduct need to reasonably match 

one another in order to allow for the similar hydrodynamic flow and diffusion rates to 

allow for adequate mixing within the crack plane. The reactivity of the amine adduct 

needs to be slow enough to allow for flow and adequate mixing, otherwise a barrier has 
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the potential to form at the resin and amine adduct interface. The ability to sufficiently 

heal a crack by using a 1:1 (resin capsule: amine adduct capsule) ratio is ideal due to the 

probability of cracking an off ratio number of capsules being unfavorable. When off ratio 

amounts are introduced into the crack plane the resultant polymer may not be properly 

cured, but it will be favorable for the capsule contents to have some degree of curing at 

off ratio amounts. Crystallization of the adduct would be deleterious and prevent 

capillary flow out of a fractured microcapsule. Producing an adduct that doesn't 

crystallize has been a priority and a challenge in this research project 

Amine Adduct Synthesis 

Adducts can be made by adding linear epoxides to various diamines resulting in 

more hydrophobic amines. The alkyl group of the epoxide makes the amine substantially 

more hydrophobic than the starting amines. The epoxide will react with the primary 

amines making them secondary amines, while leaving adequate amounts N-H bonds for 

use in self-healing. There is a possibility that the secondary amine can react with the 

epoxide turning it into a tertiary amine. With primary amines being more reactive than 

secondary amines, a small percentage of tertiary amines would be only present if such a 

reaction occurs. 

The process used to make these adducts required the use of a 250ml jacketed 

reactor, water bath, and a stir plate. One mole of a diamine such as DETA (from Sigma 

Aldrich) and two moles of a mono-functionalized epoxide, such as 1,2-epoxyhexane 

(from Alfa Aesar),were mixed in a reactor, heated to 65°C and allowed to react over 

night (ca. 18 hours) resulting in the structure seen in Figure 3-11. This method produces a 
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much more viscous material compared to the viscosity of each component prior to 

reaction. 

Figure 3-11: one mole DETA plus two moles of 1, 2-epoxyhexane 

Numerous types of epoxides for adduct synthesis were used, varying the alkyl 

chain length from six carbons (1,2-epoxyhexane) to twelve carbons (1,2-

epoxydodecane)(all obtained from Alfa Aesar). The resulting compounds are indeed 

more hydrophobic than the starting amines. The extent of the adducts' hydrophobic 

nature increases as the length of the alkyl chain on the epoxide increases. Unfortunately, 

it has been found by experimentation that anything beyond eight carbons (1,2-

epoxyoctane) typically results in solidification of the adduct in the reactor or after the 

adduct has cooled down outside of the reactor. For the adduct shown in Figure 3-11, the 

adduct will slowly crystallize at room temperature; this is a major problem for use in self-

healing. However by, changing the diamine into a more bulky structure (i.e phenol 

groups or cyclic groups), one has a chance of removing the crystallinity. Figure 3-12, 

shows 4, 4-diaminodicyclohexylmethane plus two moles of 1,2-epoxyhexane as the 

components for the adduct. 

Figure 3-12: One mole 4,4-diaminodicyclohexylmethane plus two moles of 1,2-poxyhexane 
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Unfortunately this adduct also crystallized at room temperature. A series of other adducts 

have been produced and are described in Appendix D. 

Addition of Inert Component 

With various adducts found in Appendix D having issues with crystallinity, one 

must find a means to avoid this phenomena. One way to remove the crystallinity might be 

to introduce an inert or essentially un-reactive component into the system. The inert 

component concept theoretically shows a lot of potential for solving the problems of 

crystallization. The inert component can act as a plasticizer and reduce the melting point 

suitable for application. Mineral Oil (obtained from Brooks Pharmacy) was used initially 

due to its solubility in the components, its insolubility in water, and it is easy to obtain. 

Various compositions of mineral oil and amine adduct have been made to observe its 

effects on crystallization. Unfortunately it was found that the mineral oil only hinders the 

crystallization for a couple of days. When resin, adduct, and mineral oil are mixed 

together and allowed to cure, results show that the mineral oil phase separated from the 

epoxy matrix. 

The idea of using dibutylphthalate (from Alfa Aesar), a common industrial 

plasticizer, was considered as another option. Crystallization tests were performed with 

various compositions of DETA/l,2-Epoxyoctane adduct and dibutylphthalate and were 

observed over time. The crystallization was retarded up to six days before significant 

signs of crystallization occurred. Dibutylpthalate and the amine adduct undergo phase 

separation upon reaction, and did not completely stop crystallization. Though 

unsuccessful in removing the crystallinity there are some characteristics that inert 

component can improve. An advantage was to use the dibutylphthalate or mineral oil to 
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dilute and change the viscosity of the adduct to closely match that of the resin to acquire 

adequate mixing. Another advantage was that the inert component can also be used as a 

filler to closely match the required ratios of capsules (i.e 1:1) in an epoxy matrix for use 

in self-healing. 

Addition of a Reactive Component 

Due to the phase separation phenomenon that occurred between the inert 

component and the DETA/Epoxyoctane adduct, one can use a reactive component similar 

to the amine adduct to stop or hinder the crystallization process. Two types of adducts 

designed to break the crystallinity seen in the figures below, (Figure 3-13 and Figure 3-14) 

are to be mixed with the DETA/Epoxyoctane adduct. 

Figure 3-13: one mole DETA plus two moles Benzaldehyde 

Figure 3-14: one mole Ethylene Diamine plus two moles of Benzaldehyde 

The adduct in Figure 3-13, when compared to the one in Figure 3-14, has a better 

chance of success because the adducts have a similar backbone molecule (DETA). 

Another reason is that there is a single reactive group (N-H bond) left on the backbone, 

having the single reactive group might allow reaction with the resin and prevent phase 
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separation from the epoxy matrix during curing. An adduct blend of DETA/Epoxyoctane 

(Figure 3-11) adduct and DETA/Benzaldehyde (Figure 3-13) adduct did not crystallize 

for weeks on its own but addition of a crystalline seed allowed it to crystallize. These 

findings did not yield great results, but the finding of a new amine, Isophorone diamine 

has the potential to stop crystallinity. Isophorone diamine and its adduct has become a 

large focus in the research project. 

Analysis of Various Adducts 

A characteristic that has been heavily viewed is the octanol-water partition 

coefficient. The partition coefficient (P) is a measure of the differential solubility of a 

particular compound in two immiscible solvents, such as octanol and water. This can be 

defined by the following equation: 

\c] 
l 10c tan ol p /"j i \ 

\c\ 
\y Water 

where [C], is the concentration of the soluble material in octanol or in water. The 

partition coefficient is typically expressed in log form (i.e. log P). Partition coefficients 

were used to determine how water soluble or oil soluble a specific material (i.e amine 

adduct) is compared to other materials. In order to obtain partition coefficient, values 

were either found in the Polymer Handbook36 or using prediction software37. Various 

adducts have been characterized by their respective log P's to determine which adduct is 

best to use for microencapsulating. Appendix D has all the adducts listed with their 

respective log P values. Useful values of log P are 2.0 or higher. 

As noted above, crystallization has been a major issue when producing various 

amine adducts. Many solidify or crystallize during synthesis while others crystallize 
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slowly at room temperature. Crystallization begins by having various nucleation sites of 

small crystalline domains, formed thermodynamically or kinetically. Nuclei become sites 

for crystal growth leading to a fully crystalline material. The adducts that crystallize do 

so because of the linear molecular structure. The degree of crystallization is dependent on 

how favorable packing is for a particular structure. Linear molecules are best at 

crystallization due to having no restrictions to where each segment of a molecule needs to 

line up to have close packing. When adding long alkyl chains to a diamine, it often tends 

to allow for the non-crystalline diamine to form a crystalline adduct over time. Addition 

of large rigid constituents such as phenyl groups and cyclic groups make it difficult to 

crystallize. One can stop crystallinity by having a mixture of different isomers of the 

adduct, interrupting the packing of the molecules in an orderly fashion. The 

crystallization times do vary and are often long, therefore a small sample of already 

crystalline adduct can be added to the non-crystalline sample to act as a seed to accelerate 

the crystallization process. The seed is an already thermodynamically stable nucleus to 

which crystal growth can occur34. 

Reactivity of the adducts also measured to see if on and off ratio mixtures allow 

for adequate curing to be used in self-healing. Various molar ratios of the adduct have 

been mixed with DGEBA and allowed to cure in an oven at 60°C. The cured samples 

were observed to see if they were highly crosslinked (hard/glassy), crosslinked 

(soft/elastic) or non-crosslinked(soft/flowing) material. 

Reaction kinetics of the amine adduct and resin are observed to determine if the 

curing rate can interfere with the time required to diffuse and mix properly. The time 

required for adequate mixing in the crack plane for self-healing is on the order of minutes 
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(ca. ten minutes), therefore the gel time between the amine adduct and resin must be 

much longer then the diffusion time. During observations of the curing of these adducts it 

was noted that the actual gel times of the adducts were longer than that of the starting 

amine with the same resin. 

Isophorone Diamine Adduct 

The isophorone diamine (from Sigma Aldrich) was found to have potential for 

producing a hydrophobic adduct. Isophorone diamine, as shown below Figure 3-15 has a 

bulkier structure when compared to DETA and thus was hypothesized to have less 

tendency to crystallize when formed into an adduct. The amine itself has a log P value of 

no 

0.96 and one less amine functional group, when compared to DETA . 

Figure 3-15: Structure of Isophorone Diamine 

With further investigation, the isophorone diamine was able to crosslink well with 

epoxy resin (DGEBA) at closer weight ratios. Weight ratios of 2:1 through 6:1 were 

found to produce a glassy and hard mixture upon curing. Sufficient curing can take place 

over a wide range of ratios and can potentially satisfy the objective of employing equal 

T O 

number of epoxy capsules as hardener capsules in the epoxy matrix . This makes 

isophorone diamine a good candidate to produce an adduct from. 
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Isophorone Diamine/ Epoxyoctane (IDEO) Adduct Synthesis 

As with most adducts, synthesis is performed simply as a batch reaction with the 

amine and epoxides. Particularly interesting in this study were, 1,2-epoxyhexane or 1,2-

epoxyoctane. When mixing the Isophorone diamine and 1,2-epoxyhexane together, it was 

discovered that they were not miscible. Therefore a common solvent was used to 

synthesize the adduct. Initially acetone was used, but attempts to remove the acetone via 

rotary evaporator have proved unsuccessful. Performing a simple mass balance shows a 

large amount of acetone was still present in the mixture. FTIR has also shown in Figure 

3-16 that the acetone has reacted with the components making a different substance we 

have hoped to have. 

Acetone 

gaoM&jsane 

/Acetone 
(T=0H) 

ERQMiejSSije., 
/Acetone 
(T=72H) 

jj Acetone 
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(T=QH) 

QlamlnVAceton*, 
(T=72H)*« •• 

Figure 3-16: FTIR Spectra of Acetone Mixed with 1,2-Epoxyhexane (left) and Isophorone Diamine 
(right)38. 

In Figure 3-16, the spectra on the left do not show any interaction of the acetone 

with 1,2-Epoxyhexane, however the spectra on the right clearly shows interaction 

between the acetone and Isophorone diamine thus explaining the difficulty of removing 

the acetone by rotary evaporation. A suggestion by naval research personnel Dr. Arthur 

Webb, stated that acetone and isophorone diamine can produce a ketamine. Primary 
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amines and secondary amines can be used in a reductive animation reaction yielding 

secondary and tertiary amines respectively39.Tetrahydrofuran (THF) and toluene were 

also tested as potential solvents, both of which were also found not to be suitable. Based 

on FTIR results we had some concerns about possible reaction between the THF and the 

amine therefore abandoned the use of the solvent. Toluene has not shown any signs of 

chemical interaction but was found not be able to solvate both components. Ethanol 

however was found to be a suitable solvent as shown in Figure 3-17, as there were no 

reactive interactions between the components observed by FTIR. Ethanol is easily 

removed by using a rotary evaporator at full vacuum (ca. 5 torr). 

Ethanol 
Ethanol 

Isophorone 
Diamine 

isophorone 
Diamine/Ethanol 
(T=0H) 

Epoxyhexane 

Epoxyhexane/ 
etna not (T=0H) 

Epoxyhexane/ 
ethanol 

Isophorone ' • * . If (T=48H) 
Diamine/Ethanol ' t\ 
(T=48H) i i j 

Figure 3-17: FTIR Spectra of Ethanol Mixed with Isophorone Diamine (left) and 1,2-Epoxyhexane 

(right)38. 

After finding a suitable solvent, adduct synthesis was performed in the following 

fashion: Adduct synthesis was carried out in a 250ml jacketed reactor fitted with a 

condenser and stir plate. First 30.06g of isophorone diamine (obtained from Sigma 

Aldrich) was mixed with 9.20 g of ethanol in a beaker. In a second beaker 45.05 g of 1,2-

epoxyoctane (obtained from Alfa Aesar) along with 9.20g of ethanol were also mixed. 

The contents of both beakers were slowly placed into the reactor and are allowed to mix 

and react at 65°C overnight (ca. 18 hours). The contents were then cooled and removed 
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from the reactor. The chemical steps to produce the amine adduct can be seen in Figure 

3-18 below. 

NH, 

*o in ethanol+ 

I Heat Overnight at 
65° C I 

in ethanol 

in ethanol 

Figure 3-18: Diagram of Isophoronediamine and 1,2-epoxyoctane. 

Approximately half of the reactor contents (ca.46.7g) were added to a 250ml round 

bottom flask and placed into a rotary evaporator (Model Yamato RE 400, and Yamato 

BM200 Water bath) under full vacuum (ca. 5 torr) at 70°C to remove the ethanol present 

and unreacted epoxides. The solvent evaporation process leaves a transparent viscous 

liquid which can be used for encapsulation. 
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IDEO Adduct Characterization 

A series of different characterizations for the IDEO adduct was performed in 

order to understand the properties and formulate encapsulation experiments accordingly. 

The resulting adduct had an increased viscosity relative to isophorone diamine and 1, 2-

epoxyoctane alone. The viscosity of the adduct surpasses that of common epoxy resins. 

The experimental viscosity, measured using cone and plate rheometer at 25°C (model 

Advanced Rheometer AR2000), of the adduct was 220.4 poise compared to that of 

DGEBA (DER332) at 42.7 poise and EPON® 815C at 6.4 poise. The viscosity 

differences between the IDEO adduct and the EPON® 815C resin is very significant. 

The solubility of IDEO adduct in water was low enough to allow droplet 

formation in aqueous media. Using prediction software37, the log P of a di-substituted 

IDEO adduct is 3.11 which predicted that the amine adduct is approximately 1,200 times 

more likely to be in an organic solvent than a water phase. The log P of a mono-

substituted IDEO adducts ranges from 2.4-2.62, depending on which primary amine the 

epoxide reacted to. The software also predicted the amine adduct water solubility to be 

approximately 0.6 grams per liter and the pKa values to be around 8.72 and 10.75. 

When various ratios of adduct and DGEBA were mixed and allowed to cure at 

60°C for 24 hours, a 1:1 mole ratio (resin: adduct) was found to produce a highly 

crosslinked sample that fractured upon cooling. The 2:1 ratio produced a pliable but 

crosslinked sample. The 3:1 ratio material become viscous, but was not crosslinked. 

There is some concern that these samples were cured at elevated temperatures (60°C), the 

self healing system will most likely only be in room temperature conditions, therefore 

determining the appropriate kinetic rates and actual hardness of the material at room 
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temperature (25°C) is important. A series of room temperature studies were performed 

using 3:1, 2:1, 1:1, 1:2, 1:3 molar ratios of DGEBA resin and amine adduct. The samples 

were made and then left over the weekend to cure (ca. 65 hours). The results showed that 

the optimum reactivity is achieved at 1:1 ratio, while still able to react at slightly off ratio 

as far as 2:1 and 1:2 molar ratios. By observation, all of them reacted, but only a few (2:1, 

1:1, and 1:2 ratio) have seemed to have crosslinked due to their tough and glassy 

properties. The amine adduct/DGEBA curing reaction is much slower than that of 

commercial resins with gel times in the matter of hours. With the slower gel times, the 

time required to fill and diffuse the two self-healing components is very fast by 

comparison. 

Crystallinity of the adduct was a major concern considering the tendency of the 

prior prepared adducts described earlier in the thesis. In order to probe this new adduct 

for its propensity to crystallize, several tests were performed. A small sample was stored 

at room temperature (25°C), a sample was placed into a freezer (0°F), a third was mixed 

with a seed crystal from a different crystallization prone adduct and left at room 

temperature (25°C), and a similar sample with a crystal seed was put in the freezer (0°F). 

From the first preparation of this adduct to the ones presently made, none of the samples 

showed any signs of crystallization. With the success of producing an adduct that met the 

desired adduct properties described earlier, and that is not prone to crystallization, the 

project moved again toward testing encapsulation of the new adduct. 

Proton and carbon NMR analyses was chosen to determine the chemical structure 

of the adduct after synthesis. The starting material used to produce the adduct is a mixture 

of two moles of the epoxyoctane to one mole of isophorone diamine, therefore one would 
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expect the amine adduct to be mono substituted or di-substituted or a mixture of the two. 

Figure 3-20 shows the possible configurations of the IDEO adduct. 

Figure 3-20: Various Configurations of the IDEO Adduct 

NMR analysis was performed on the starting material and the final amine adduct. 

Proton and Carbon NMR of 1,2-epoxyoctane is shown in Figure 3-21 and Figure 3-22 

respectively. 
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Figure 3-21: Proton NMR of 1,2-epoxyoctane. Prediction (Top), actual spectra (Bottom) 
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Figure 3-22: Carbon NMR of 1,2-epoxyoctane. Prediction (Top), actual spectra (Bottom) 

As one can see in the above two figures, the prediction match the actual spectrum 

making it possible to identify the 1,2-epoxyoctane peaks in the amine adduct spectra. On 

the other hand, the spectra for the isophorone diamine are difficult to interpret. Proton 

and carbon NMR of isophorone diamine are shown in Figure 3-23 and Figure 3-24 

respectively. 
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Figure 3-23: Proton NMR of Isophorone Diamine. Prediction (Top), actual spectra (Bottom) 
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Figure 3-24: Carbon NMR of Isophorone Diamine. Prediction (Top), Actual Spectra (Bottom) 

The spectra in Figure 3-23 and Figure 3-24 are more difficult to interpret compared to the 

1,2-epoxyoctane spectra. The isophorone diamine was purchased as a mixture of cis and 

trans isomers, which results in a doubling of proton and carbon peaks in the NMR spectra. 

Unfortunately, the NMR prediction software46'47 does not recognize the difference 

between cis and trans, therefore making it difficult to interpret the peaks. This in itself is 
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a major problem in using this technique. Thus the amine adduct is likely produced in 

various configurations which would make the interpretation for the amine adduct much 

more difficult to do. NMR results have been inconclusive in determining the mole 

fraction of 1,2-epoxyoctane that have attached to the isophorone diamine. NMR spectra 

for the each component and IDEO amine adduct can be found in Appendix E. 

The reaction kinetics between the IDEO adduct EPON 815C have been observed 

through DSC analysis. Equal weight ratios of the resin and adduct have been mixed 

together and placed into the DSC. The structure(s) of the amine adduct are still 

inconclusive but molecular weight was estimated to be 382g/mole based on an average of 

1.5 moles of 1,2-epoxyoctane reacting with isophorone diamine. EPON 815C is a 

mixture of various resins and solvent(s) whose molecular weight is stated to be less than 

or equal to 700g/mole. Diglycidyl Ether of Bisphenol A (DGEB A) is a main component 

of the EPON which has a molecular weight of 340g/mole. Therefore it is safe to assume 

that a one to one weight ratio is sufficient. 

DSC analysis was performed isothermally monitoring heat flow over time. 

Experiments monitoring kinetics were performed at 25°C (Figure 3-25) to obtain a 

conversion vs. time plot for this experiment. See Appendix F for the calculation and 

production of the conversion vs. time plot in Figure 3-25. 
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Figure 3-25: Extent of reaction vs. Time for EPON 815C/IDEO adduct curing at 25°C 

It is evident from the two figures above that the EPON 815C/IDEO adduct epoxy curing 

time is substantially longer than the time required to for adequate diffusional mixing to 

occur (80% mixing after 5 hours as shown in Figure 3-8). At 5 hours the curing of the 

EPON 815C/IDEO adduct is approximately 15% (at 25°C) This slow curing time would 

allow sufficient time for the IDEO adduct and EPON resin to fill a microcrack crack and 

fully mix. 
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Encapsulation of Amines 

After overcoming the challenge of being able to disperse the amine adduct in 

aqueous media, there has been a concern about the encapsulation process. Amines 

typically have pKa's between 8 and 10. Many aqueous encapsulation routes require 

lowering the pH such as for the urea-formaldehyde (UF) process used for DCPD and 

epoxy resin. With the pKa being so high there is a concern about water solubility when 

the pH of the system is brought below the pKa's. When the pH drops below the pKa the 

amine becomes ionized and more hydrophilic. Various encapsulation attempts have been 

performed using various techniques that do not require a drop in pH. 

Interfacial Polymerization 

Prior to the discovery of the isophorone diamine/epoxyoctane (IDEO) adduct, 

interfacial polymerization was a route used to produce amine capsules. Interfacial 
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polymerization is known to work and it allows the use of pure amines (i.e. DETA). This 

technique requires a substance in the dispersion to partially react with the core material at 

the interface to form the polymer shell. The shell thickness is determined by the diffusive 

properties of the reactive components through the forming polymer shell, providing a 

constant shell thickness regardless of droplet size. Kondo's book shows that an aqueous 

solution of an amine can be encapsulated by introducing an amine (drop-wise) into a 

sebacoyl chloride (from Sigma Aldrich) and xylene solution. The reaction between 

sebacoyl chloride and a diamine amine makes a nylon shell. This particular method 

requires a small percentage of water to be mixed with the amine in order to make 

spherical capsules. The same idea can be applied to the use of amines and toluene 
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diisocyanate (TDI). Experiments were performed using 5% toluenediisocyanate 

(TDI)(from Sigma Aldrich) in a toluene solution with SPAN 83® as the surfactant. 

Droplets of amine are introduced to the solution and instantaneously encapsulated amines 

are made but often agglomerate and are fairly large in the millimeter size range. 
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Figure 3-26: Drop-wise interfacial polymerization process. 

Using the TDI and DETA chemistry, a new approach has been used to achieve 

smaller microcapsule size. Different sized orifices were used to achieve smaller droplet 

sizes. Homogenization was used to achieve a small and uniform size distribution of 

capsules. A homogenizer (IKE® ultra-turrax T-25) was used to homogenize the amine 

and 5%TDI solution before it reacts. Figure 3-27 is a diagram of the apparatus. The 

apparatus has an attachment consisting of a cell, where the high shear field is located, and 

ports to continuously flow of material across the shear field. The TDI and toluene 
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solutions are fed in one inlet and the diamine (DETA) was feed in another inlet. The two 

feed streams meet at the high shear field and react upon contact within the chamber. 

Product 
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Feed 
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(DETA) 

Figure 3-27: Experimental set-up of the ultra-turrax homogenizer 

There was a problem with clogging of the chamber where the shear field is located. 

Another problem was that it is possible that the microcapsules were passed through the 

shear field multiple times before exiting the chamber. The capsules would break and a 

majority of the core material would react with the TDI, if passed through the shear field 

again. 

Various attempts of interfacial polymerization have proven unsuccessful. Thus a 

lot of emphasis was placed on the newly discovered isophorone diamine adduct. The 

isophorone diamine adduct shows a lot of promise due to its reactivity and resistance to 

crystallinity. Encapsulating the amine adduct using a variety of different methods seemed 

to be the only option available. 
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Complex Coacervation 

A proposed approach was to produce a polymer layer around the amine, 

regardless of its mechanical properties, in order to protect it from ionizing in the acidic 

environment of the UF process. A UF shell could then be applied as a second step atop 

the protective layer. Many different types of encapsulation processes have been explored 

in order to achieve this task. 

Complex coacervation uses an aqueous solution of a positively charged colloid 

and negatively charged colloid. When these two are mixed, a phase separation results due 

to electrostatic interactions. Typically gelatin is used along with gum arabic or a 

polyphosphate as the components for coacervation. This process has been successfully 

performed by a previous student, Charles Beck. The recipe was based on his work40 using 

a type A gelatin (obtained from Sigma Aldrich) and a CALGON® (polyphosphate) 

solution. The polyphosphate has a net negative charge while the gelatin has a net positive 

charge at low pH and negative charge at high pH. Type A gelatin is widely used for 

complex coacervation due to its isoelectric point which ranges from 7-9 depending on its 

preparation. Complex coacervation does require lowering th pH below the pKa's of the 

amine adduct, however it has been considered that the formation of the initial shell could 

form before a significant amount of the amine becomes ionized. 

Complex Coacervation process is performed as followed. In a 250ml jacketed 

reactor, 5 grams of gelatin (type A) is mixed with 60ml of deionized water. The 

dispersion of gelatin is held at 50°C, which is above the gel point of gelatin. 20ml of the 

core material to be encapsulated is introduced to the dispersion. Soon thereafter 10ml of a 

polyphosphate solution, (made from mixing 5 g of CALGON® Conditioner (a 
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polyphosphate) in 100ml of water) is added to the system. An additional 60ml of water is 

charged to the system after the polyphosphate solution is allowed to mix. While 

maintaining the temperature at 50°C the pH is dropped slowly to a pH of 5 by drop-wise 

addition of acetic acid. Once at a pH of 5, the pH is reduced at a slower rate until the 

gelatin phase separates onto the droplets of the core material. Encapsulation occurs 

around a pH range of 4.2-4.6. The temperature is then dropped to 10°C to harden the 

gelatin and allow the capsules to either settle or float. Removal of the remaining 

continuous phase is required and is then replaced with chilled deionized water. 40ml of 

37wt% formaldehyde is added soon after to crosslink the capsule walls. Crosslinking is 

needed due to the fact that the encapsulation process is completely reversible if the pH is 

ever brought back up, the gelatin will go right back into the continuous phase making it 

unstable without crosslinking. Crosslinking with formaldehyde takes 12 hours. 

To prove capability with the process, a control experiment was performed by 

encapsulating toluene. The encapsulation of toluene was successful and found to be 

easy to reproduce. The resultant capsules were quite large, as seen in the figure 

below, but this was inconsequential as the adduct encapsulation would certainly have a 

different droplet size. 
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Figure 3-28: Complex Coacervation of Toluene as a Model System (JN3-59)38 

Once substituting the toluene core material in the process to the amine adduct, 

the encapsulation experiments encountered difficulties. When attempting to lower the pH 

to 4.2, a considerable amount of acid was required. This quickly suggests there is 

competition between titration of the amine and the precipitation of the gelatinous shell. 

For this reason, complex coacervation was abandoned and a different method of 

encapsulating the amine was sought. 

In-situ Polymerization 

The focus towards encapsulating the isophorone diamine adduct has changed 

from using complex coacervation to using an in-situ polymerization process. Previous 

encapsulation techniques clearly indicated that the amine adduct is sensitive to aqueous 

based encapsulations that involve the reduction of pH. The main focus is protection of the 

adduct droplet from the acidic environments by placing a polymer shell around the 

droplet. 

An in-situ polymerization process used to protect the amine droplets can be 

described as a free radical solution like polymerization, where droplets are dispersed in 
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aqueous media containing the amine adduct (IDEH or IDEO), monomer(s), initiator and 

co-stabilizer. Due to the hydrophobicity of the amine adduct, a co-monomer mixture of 

methyl methacrylate (MMA) and methyl acrylate (MA) was proposed, where the 

resulting polymer is more hydrophilic than the adduct and has a tendency to phase 

separate during formation and move towards the outer surface of the water/droplet 

interface. PMMA has a high glass transition temperature (119°C) and PMA has a low 

glass transition temperature (9°C), the co-monomer mixture was used to produce a 

copolymer of a Tg relative to the reaction temperature. Since the reaction temperature was 

chosen to be 70°C, the ratio of MMA to MA was chosen to be 70:30 (by weight) such 

that the copolymer Tg would also be close to 70°C (P(MMA-MA) shell with a dry Tg of 

78°C and a wet Tg of 65°C). With the reaction temperature lying between the wet and dry 

Tg, the polymer formed would phase separate to the outer surface of the adduct droplet 

and should have enough mobility at the reaction temperature to coalesce with 

neighboring polymer domains and form a continuous shell. Numerous experiments have 

been performed using a variety of initiators (shown in Figure 3-29) to determine which 

one best encapsulates the amine adduct. 
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Figure 3-29: Initiators used for in-sit polymerization encapsulation process41'42 

First attempts to encapsulate the amine used BPO (obtained from Sigma Aldrich) 

as the initiator. A mass ratio of the polymer to the adduct was first chosen to be 2:1 in 

order to produce a sufficiently thick shell to be observed in the optical microscope. At 

this stage ratio, the payload would be quite low (around 33%), but the point was to test 

the efficacy of this technique in encapsulating the amine adduct. As seen in Figure 3-23, 

a successful encapsulation was observed, however the shell thickness was considerably 

thinner than predicted, although the success of forming a shell around the amine adduct 

was promising. 
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Figure 3-30 First Attempt at Free-Radical Polymerization Based Encapsulation of the IDEH adduct 
by a p(MMA-MA) Shell (JN3-80)38. 

Although the shell was thinner than expected, the photos at the right side of Figure 3-30 

clearly shows a broken capsule retaining its shape under the microscope. The capsule was 

broken by placing a glass cover slip over the material. Clearly a droplet would not retain 

its shape, so this was a simple proof that a shell has formed. However, the monomer 

conversion of this polymerization was found to be low, which helps to explain the thinner 

polymer shell. A second attempt (JN3-81) of encapsulation at a higher stage ratio (5:1) 

also showed a significantly thinner than expected shell and a noticeably low monomer 

conversion. 

In the portion of the procedure where the droplet size is established, the amine 

adduct (mixed with the monomers and the benzoyl peroxide initiator, BPO) is agitated in 

the reactor at room temperature for over one hour. It turned out that the benzoyl peroxide 

initiator actually forms a redox couple with the amine adduct43 and was decomposing 

during this pre-mixing period at room temperature. The high radical decomposition rate 
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of the redox system may produce a high radical flux initially and polymerization quickly 

consumed the initiator, resulting in forming only a thin shell. This explains why later, as 

the reactor was brought to temperature no further polymerization occurred. 

To salvage the low conversion of a particular run (JN3-82), azobizbutyronitrile 

(AIBN), (obtained from Alfa Aesar) was fed to the reactor in an aqueous solution with a 

small fraction of acetone to aid its solubility and dispersibilty. AIBN was chosen as a 

potentially more appropriate initiator. The monomer conversion was found to easily 

increase and form a much more pronounced shell on the capsules. Although the resulting 

capsules were much too large (1-2 millimeters), Figure 3-31 and Figure 3-32 shows the 

promise and success of this system. 

Figure 3-31: Clusters of JN3-82 Amine Adduct Capsules Encapsulated by P(MMA/MA) (left), 
Capsules after Being Crushed and Amine Adduct Liquid Content Released (right) 

79 



Figure 3-32: Close-up optical microscope image of broken JN3-82 capsule releasing IDEH amine 
adduct liquid 

Figure 3-31 uses a paper wetting test to determine the amount of encapsulated material 

present after being crushed between a folded paper towels. One can see that there is some 

indication of liquid core material inside the capsules, though the capsules were large and 

agglomerated. Figure 3-30 shows a single microcapsule releasing a large amount of 

IDEH liquid, indicating that encapsulation was successful. 

In order not to consume any of the amine adduct which was observed with the 

BPO and amine redox coupling, the same recipe was reattempted (JN3- 84) utilizing only 

the AIBN initiator feed. The experiment consisted of a stage ratio of 2 using a 70:30 

MMA:MA monomer composition. 2 wt% of AIBN (compared to monomer) was mixed 

with a 50:50 water and acetone solution (20ml) and for two hours. Optical microscopy 

images of those capsules are shown in Figure 3-33. 
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Figure 3-33 Optical microscopy of JN3-84 capsules from free-radical polymerization based 
encapsulation of the IDEH adduct by a P(MMA-MA) shell with AIBN initiator 

However, when those capsules were subjected to the isolation and crushing test to prove 

release of the amine adduct hardener, only a small payload of amine was released as 

shown in Figure 3-34 below. 

Figure 3-34: Clusters of JN3-84 IDEH amine adduct capsules encapsulated by P(MMA-MA) (left), 
capsules after being crushed and amine adduct liquid content released (right) 

The low yield in the release of these capsules could potentially be due to a variety of 

issues. It was suspected that there was a poor degree of phase separation between the 

adduct core and the polymer resulting in a highly occluded morphology which might be 
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more difficult to crash. When compared to previous runs (JN4-80, JN4-81), the 

difference is found to be the very fast polymerization of an initial shell when the 

BPO/amine redox was occurring. To test this concept, a different amine adduct was made 

which would be slightly more hydrophobic than the IDEH adduct, the only difference 

being the addition of four more carbon units via two epoxyoctane units versus 

epoxyhexane units , as shown in Figure 3-35. 

Figure 3-35: Adduct of Isophorone Diamine and 1,2 Epoxyhexane (top), Adduct of Isophorone 
Diamine and 1,2 Epoxyoctane (bottom) 

Now with a more hydrophobic core (IDEO adduct) the phase separation of the 

p(MMA/MA) polymer to the outer surface of the droplets should occur more easily. The 

resulting optical microscopy images and crush test of those capsules are shown in Figure 

3-36 and Figure 3-37 respectively. 
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Figure 3-36: Optical microscopy of JN3-85 capsules from free-radical polymerization based 
encapsulation of the IDEO Adduct by a p(MMA-MA) shell with AIBN initiator 

Figure 3-37: Clusters of JN3-85 amine adduct capsules encapsulated by pMMA/MA (left), capsules 
after being crushed and IDEO amine adduct liquid content released (right) 

Clearly from the two figures above, this encapsulation technique shows significant 

promise as spherical capsules were obtained which on crushing released a considerable 

amount of amine hardener liquid. This result was a significant achievement for this 

project. The capsules were far from optimized for application with the resin capsules, but 

the amine component has some promise for encapsulation. 

83 



Many attempts to lower the stage ratio of the encapsulation process below 1.5 

have been unsuccessful and focus changed towards water-soluble initiators. Such 

initiators experimented with were potassium persulfate (KPS) (obtained from Alfa Aesar) 

and VA-086 (obtained From WAKO Chemicals) an azo-initiator. The water soluble 

initiators were fed into a reactor containing dispersed monomer and adduct droplets. KPS 

was used to test if feeding water-soluble initiators could improve the capsule properties. 

The results of the KPS run were not successful due to a large amount of unencapsulated 

adduct floating on top. 

VA-086 is a water soluble azo-initiator which produces carbon centered radicals 

compared to KPS that produces oxygen centered radicals. Feeding of VA-086 compared 

to feeding AIBN resulted in smaller sized capsules and produced a larger yield of 

microcapsules compared to BPO. The stability was much better than any other 

encapsulation attempted on the IDEO adduct so far. The capsules can be seen in the light 

microscope shown in Figure 3-38. 

Figure 3-38: Light microscope images of JN4-11 wet (left) and dried (right, polarized lens) 

As one can see from Figure 3-38, the polymer shell seems thinner than calculated; but 

there are signs that a definite shell is formed around the droplets. Attempts to lower the 

stage ratio below 1.5 have been unsuccessful due to large amounts of unencapsulated 

adduct that floats. 
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It is important to note that there is formation of a second crop of polymer 

particulates in the aqueous dispersion. It was suspected that the second crop is made up of 

smaller sized polymer particles (nanoparticles) due to the dispersion having limited 

stability. It was also noted that the second crop would affect the actual stage ratio of the 

encapsulation due to the loss of polymer from adduct droplets to the dispersion. This 

might explain why the shells were significantly thin in the majority of experiments and 

why one cannot further decrease the effective stage ratio. Before moving on, a step 

towards determining the effects of a second crop to the encapsulation process was 

assessed. 

Second cropping 

With many encapsulation attempts so far, a second crop of polymer has formed in 

the aqueous phase. This is possibly due to nucleation of polymer particles in the aqueous 

phase. Nucleation of polymer particles can be caused by the partial solubility of the 

monomers in water and the partial or complete solubility of the initiators. MMA 

monomer has a 1.5% solubility (25°C)36 in water and MA has a 5% solubility (25°C)37 in 

water which is very high compared to many vinyl monomers. With much of the monomer 

residing in the aqueous phase, one would believe the effective amount of monomer used 

for encapsulation is less than what was put in the reactor initially. As an example, a stage 

ratio of 1.5 used in most experiments could actually be a stage ratio lower than 1.5 due to 

loss of polymer used to form the shell material, therefore reducing the stage ratio that was 

put in the reactor at the start of polymerization. Therefore the amine adduct and monomer 

droplets experience a different stage ratio or "effective" stage ratio. One must either 
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determine what the new "effective" stage ratio is to compare to theoretical values or 

introduce the use of an aqueous free radical scavenger such as Fremy's salt (potassium 

nitrosodisulfonate) or sodium nitrite44, to reduce or eliminate the second cropping of 

polymer formation in the aqueous phase. 

Aqueous Radical Scavenger 

Aqueous radical scavengers such as Fremy's salt and Sodium Nitrite (NaNCh) are 

used to deactivate free radicals in the aqueous phase and therefore potentially stop a 

second crop of polymer from forming. The aqueous radical scavenger primarily attacks 

carbon based radicals found in the aqueous phase44. Before attempting the addition of the 

radical scavengers, a few experiments were performed in order to obtain a better 

understanding of how the polymerization behaves with radical scavengers present. 

Separate batch emulsion polymerizations of MMA(JN4-26) (Figure 3-39) and 

Styrene(JN4-27) (Figure 3-40) have shown decrease in conversion after charging an 

equal molar amount (compared to the KPS initiator used) of the radical scavenger, 

Sodium Nitrite (from Sigma Aldrich), after 30 minutes of reacting. 
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Figure 3-39: Conversion curve of MMA batch emulsion polymerization with AIBN. A charge of 
radical scavenger was place at t=30Min 
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Conversion vs. Time 
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Figure 3-40: Conversion curve of Styrene batch polymerization with AIBN. A charge of radical 
scavenger was place at t=30Min 

As one can see in the above figures the decrease in polymerization rate is more obvious 

in the styrene batch reaction rather than the methyl methacrylate batch reaction. The 

reason that the scavenger did not perform will with the MMA batch reaction is that the 

polymerization was effectively complete before the addition of the radical scavenger. For 

the styrene reaction (Figure 3-40) the addition of the radical scavenger caused the 

monomers polymerize slowly as the scavenger becomes consumed. 

When using the radical scavenger, one can no longer use water soluble initiators 

or feed initiators into the system. Feeding of the initiator across the aqueous phase will 

cause deactivation of free radicals with sodium nitrite present. Experiments involving 

radical scavengers have been performed as batch reactions using azo-initiators. Azo-

initiators such as AIBN have been performed with the radical scavenger but have resulted 

in producing a second crop. A new type of azo-initiator, 2,2'-Azobis(2.4-dimethyl 

valeronitrile) known as V-65 from Wako Chemicals, is similar to AIBN but is 

predominantly oil soluble. The transition to V-65 was justified by reducing the amount of 
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second cropping from forming. The combination of the radical scavenger and V-65 has 

shown significant reduction or elimination of second cropping. 

Amine Capsule Properties 

With the numerous experiments performed thus far, various characterizations of 

the encapsulated amines were performed to determine properties and information which 

can be used in preparation for the next experiment to further optimize the encapsulation 

process. Properties such as amine capsule payload, capsule size, stability, and the ability 

to protect itself from ionization, have been used as guides on how to carry on a new set of 

experiments. 

Microcapsule Payload 

The microcapsule payload is important data to determine how well the 

encapsulation process was performed. Many encapsulation attempts have shown various 

shell thickness and payloads by observation. To differentiate which of the attempts are 

better, one must be able to analyze microcapsule payloads in a quantitative manner. 

Typically, payload data can be achieved by using a Differential Scanning 

Calorimeter (DSC), measuring heat flow vs. temperature. A first order transition was 

observed and integration of the peak will result the heat required to soften the material in 

the units of J/g. The results for pure core material and the microcapsules are compared to 

determine the capsule payload by simply dividing the value received for the capsules 

divided by the value of the pure core material, (eg. 5.766 J/g for pure DCPD and 4.615 
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J/g (JN1-27 DCPD microcapsules) divide values to get payload. (4.615/5.766)* 100 = 

80% payload by weight) 

For the case of the IDEO amine adduct, a first order transition was not present but 

a second order transition was. A second order transition is characteristic of a Tg rather 

than the melting point, therefore determining the payload is difficult to achieve but can be 

calculated using the heat capacities of the resulting capsules and the heat capacities of the 

IDEO adduct and polymer shell. There is a possibility that the amine adduct can still 

leave residue on the outside of the capsules, which would make the DSC analysis to be 

invalid. Another method to determine payload requires adequate washing of the capsule 

without rupturing and removing the core material. Once cleaned, capsules were weighed 

then crushed. The crushed capsules were washed again to remove the core material as 

much as possible and then allowed to dry. The dried sample was weighed again and then 

compared to its initial weight. The ratio determines the payload of the capsules. This 

process has a lot of potential in producing a large error. The process requires no loss of 

material between steps which is difficult to achieve when working with a small amount of 

material. 

Since the first set of experiments, reduction of the stage ratio (grams of polymer: 

grams of amine adduct) was important to achieve a practical system. Below is a graph 

(Figure 3-41) of theoretical payload and shell thickness of a 100/an particle with various 

stage ratios. 
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Figure 3-41: Graph of theoretical payload and shell thickness of a lOOum diameter microcapsule. 

A payload of approximately 80% (by weight) is desired to match that of the resin 

microcapsules, which would mean a stage ratio of 0.2 is required. The most successful 

encapsulation attempts had a stage ratio of 1.5, which would theoretically give a payload 

of 40% and a shell thickness of 13jum. After observing the capsules from the numerous 

experiments using light microscopy techniques, we have seen that the capsules actually 

have a larger payload than 40% and the actual shell thickness is thinner than the 

theoretical 13/mi shell thickness. With this knowledge one can suspect that second 

cropping can be the cause of this phenomenon. 

IDEO amine adduct density 

With many successful encapsulations, the typical result was capsules that tend to 

float on top of the liquid dispersion while the second crop polymer particles sank to the 

bottom. Since the capsules float, one would suspect that the density of the amine adduct 

was less than that of water and polymer. Assuming the density of the P(MMA/MA) 

polymer to be 1.147g/ml45 and the density of IDEO adduct is 0.74g/ml (JN4-19, found 
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experimentally at 25°C), it has been calculated that a stage ratio of 2:1 is required to have 

the capsules sink in the dispersion. The recipes thus far have only successfully 

encapsulated with a stage ratio of 1.5, therefore the microcapsules produced will always 

float to the top. With the density being less than that of water, separation of the capsules 

from the dispersion becomes an easier process by simply removing the top layer of 

capsules and placing them in a container of water and allowing that to separate again. But 

the floating of microcapsules proves to be an issue later when adding these capsules to an 

epoxy matrix. Upon curing of the epoxy matrix the capsules have a tendency to float and 

congregate at the top. This phenomenon can cause problems with preparing samples to 

test self-healing and in end-use applications. 

Sonication and Homogenization 

Initially magnetic stirrers were used to make and maintain droplet sizes in the 

reactor, but resulted in large microcapsule sizes in the range of 500um to 1500um. The 

use of a magnetic stirrer was not sufficient to make small droplet sizes. Investigations for 

obtaining smaller droplet sizes and stable particles have been performed using a 

homogenizer and sonicator. The use of the sonicator or homogenizer could produce 

smaller droplet sizes in the desired range of 50-80/mi. Producing smaller droplets can 

improve the stability of the monomer/adduct droplets from coalescing therefore improve 

droplet stability. 

Investigation of sonication and homogenization methods have been applied to a 

beaker of water, polyvinylpyrrolidone (PVP), hexadecane and mineral oil to observe if 

each of the processes can produce droplets that are in the 50-80jttm range. Mineral oil was 
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used as a substitute for the amine adduct since it has a similar viscosity to the amine 

adduct/monomer droplets, and to explore how the equipment worked and how to 

optimize settings for the appropriate droplet sizes. 

Droplet sizes with both the sonicator and homogenizer ranged from 10-80/mi. The 

droplets were shown to be stable for at least 90 min after introduced to 

sonication/homogenization without the use of a co-stabilizer. The homogenizer was 

chosen over the sonicator due to having the ability to produce a narrower size distribution 

of mineral oil, in the range of 20-100um with the majority of the droplets being 50um 

(JN4-46) determined by light microscopy. Experiments then led to the use of the adduct 

instead of mineral oil. Using the same setting on the homogenizer and same reactor set up, 

smaller droplet sizes were achieved and the dispersion turned white very quickly. After 5-

10 minutes of homogenization the dispersion was very white in color with sizes around 

10-20um. Clearly one obtains much smaller droplet sizes with the use of the adduct than 

with mineral oil likely due to the more polar nature of the adduct and the reduction of the 

interfacial tension. 

Polymer Shell Properties 

Microcapsules obtained during and after polymerization often have a tendency to 

agglomerate to one another. This phenomenon is also observed after having the capsules 

vacuum filtered washed, and dried. The agglomeration can be caused by numerous things 

such as a low Tg polymer (polymer drift during polymerization), plasticized shell, or that 

the washing method was not adequate therefore there is residue that remains on the 

capsule walls. During the polymerization reaction agglomeration between droplets can 
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occur especially in a "sticky" period around 50-70% conversion. In the 50%-70% 

conversion range polymer is produced while having the unreacted monomers reside 

within the polymer, plasticizing the polymer and make them sticky. The sticky droplets 

can collide with one another and end up agglomerated together. 

A simple experiment (JN3-87) was performed to determine if the IDEO adduct 

could plasticize the p(MMA-MA) copolymer. A solution polymerization containing 

MMA, MA, IDEO adduct (1.5 stage ratio), and AIBN was performed. The 

polymerization yielded an opaque solid with large occlusions contained inside. The 

occlusions were found to be filled with a viscous liquid of IDEO amine adduct. Along 

with the opaqueness of composite this proves that the P(MMA/MA)/adduct system 

sufficiently phase separates. The polymer chunk is solid and glassy at room temperature 

which would indicate that the copolymer is not significantly plasticized by the amine 

adduct. 

One might think that the agglomeration is a result of adduct being on the outside 

of the capsules and making them stick together. Attempts to wash them have been 

performed but capsules still have a tendency to stick to one another. It is important to use 

a washing solvent that doesn't plasticize or swell the shell material and potentially affect 

the core material. Current washing methods use a mixture of 50% methanol in water to 

wash the capsules. During the vacuum filtration process, the methanol mixture is poured 

over the capsules. This procedure is done two to three times to ensure proper cleaning. 

After performing this procedure many capsules still continue to stick to one another. With 

this information one must suspect the stability of the droplets during polymerization is 

insufficient. 
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Amine Capsule Titration 

The reason that the in situ-polymerization process was used was to have a 

protective layer that encapsulates the amine, while ignoring other desired properties of 

the shell. The reason for the protective layer was to prevent ionization of the amine which 

is a concern when using many other types of encapsulation techniques. If the amine 

adduct was successfully protected, then one can try to place a urea-formaldehyde shell 

around it, to match the mechanical properties of the resin microcapsules. To determine if 

protective polymer shells are adequate, titration experiments were performed to 

determine how the adduct capsules behave, during the titration of the amine adduct with 

acid in the aqueous dispersion. Using a pH probe and pH meter (Venier Lab Pro System), 

the pH was monitored and plotted over time. Figure 3-42 (below) contains separate 

titration curves for 2wt% JN4-11 capsules (VA-086 capsules) in water, DI Water alone, 

and 2wt% IDEO adduct dispersed directly in water. 

Titration Curves 

—Adduct 4.5M HCI 
— Microcapsules 1M HCI 
— Water 1M HCI 

4 6 8 
Volume of HCI added (ml) 

10 12 

Figure 3-42: Titration curves of adduct, water, and JN4-11 microcapsules with the specified acid fed 
at a rate of 5ml per hour 
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One can see in Figure 3-42, that the IDEO adduct (dark blue curve) has two pKa's 

approximately around nine and seven (designated by arrow 1 and 2 respectively), while 

the pure water and the microcapsule curves have no signs of a pKa. The microcapsule 

titration curve (green curve) lies in between the adduct curve and water curve. The fact 

that the microcapsule curve lies in between the pure water curve and the adduct in water 

curve (red curve), makes one suspect that there is some trace of amine adduct on outside 

of the capsule walls or that the adduct could be slowly leaching through the shell wall. 

With the JN4-11 capsules (polymerized with VA-086), attempts to optimize the 

washing was performed with no further improvement. In addition, the capsules that have 

been titrated were saved and were exposed to acidic conditions (pH=2) over a week's 

time. Unfortunately, the capsules no longer floated, which would make one believe that 

the capsules have ruptured or leached their contents within that period. Figure 3-41 shows 

a light microscope image of JN4-11 microcapsules in acidic conditions for one week. 

Figure 3-43: Light microscope images of JN4-11 in pH 2 after seven days Light microscope(left), 
Light microscope with polarized lens (right). 

In Figure 3-43, one can clearly see that there are broken capsules present. This 

information is very discouraging, but encapsulation of the amine adduct has been 

achieved. Our focus thus shifted to produce a thicker shell around the capsules by means 

of increasing the stage ratio or eliminating the second crop. The actual payload of the 
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JN4-11 capsules was unknown due the challenges in determining the actual capsule 

payload. 

Encapsulations Using V-65 Initiator 

Although AIBN generated in some successful encapsulations, it unfortunately still 

partitions into the water phase. Having the free radicals in the aqueous phase often results 

in the formation of a second crop, therefore a new azo-initiator that is predominantly oil 

soluble might be suitable. An oil soluble azo-initiator, VA-65 is very similar to AIBN but 

is predominantly oil soluble. Below in Figure 3-44, one can see that the initiators have 

similar structures with the double bonded nitrogen groups in the center. Dissociation of 

the both initiators results in carbon centered radicals that are highly reactive with 

monomer. 

CH3 CH3 N 

H3CHCH2G—C— N=N-C— CH2CHCH3 ^ ^ ' N 

w 
H 3 C CN CN C H3 / \ ^"fsj 

2,2'-Azobis(2.4-dimethyl valeronitrile), V-65 Azobisisobutyronitrile 

Figure 3-44: Chemical structures of V-65(left) and AIBN (right)40'41 

In the figure above, one can see that the V-65 has a longer alkyl chains in the molecule 

compared to the structure in AIBN, making V-65 a much more hydrophobic initiator. 

VA-65 has a 10 hour half life at 51°C40. Reduction of the polymerization 

temperature to 65°C was used to have a reasonable half-life during the polymerization 

process (1.53 hours). A series of batch reactions were performed with V-65 and radical 

scavenger. Results were much better than any previous encapsulation attempts with the 

amine adduct, with higher yield and the amount of polymer formed as a second crop has 
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decreased significantly. The dispersion was opaque rather then milky white. However the 

capsules were still large (eg. 300-800um) and most of them still agglomerated to one 

another. 

The issue of second crop formation seems to have been eliminated with the use of 

an aqueous radical scavenger in conjunction with V-65. Unfortunately, experiments 

trying to drive the stage ratio lower than 1.0 have been unsuccessful. Stability is still a 

key issue with encapsulation. 

Agglomeration during polymerization has been a common result when trying to 

encapsulate the IDEO adduct using MMA/MA co-polymer. An experiment has been 

performed (JN4-50) which has the IDEO adduct omitted from the recipe to see if the 

adduct has anything to do with the system being sticky and cause the capsules to 

agglomerate. After running an experiment (JN4-51) without the adduct conversions have 

been calculated to be approximately 49%. The low conversion of the polymer is a 

puzzling result. A possible reason for the low conversion is the radical scavenger present 

during polymerization. Even though the scavenger is dominant in the aqueous phase, it 

can cause the resulting low conversion. However an experiment (JN4-52) without adduct 

and without scavenger still resulted in a low conversion, approximately 45%. 

In order to determine what is going on with the low conversion a series of small 

scale experiments (20ml vials) have been performed. A series of bulk polymerizations 

were performed to answer a few questions about the system that was currently employed. 

Investigation of temperature, monomers, and initiator concentrations has been a priority. 

The relationship between conversion and temperature has been observed in the following 

series of bulk polymerizations found in Table 3-1 below: 
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Table 3-1: Bulk polymerization experiments JN4-53 

Vial# 

1 

2 

MMA,g 

4.8 

4.8 

MA,g 

3.2 

3.2 

V-65, g 

0.137 

0.137 

Reaction 
Temperature, C 
65 

80 

Properties 

Polymerized but sticky 

Polymerized but sticky 

The polymer Tg's should be around 80°C(Dry Tg) and 63°C (Wet Tg); it clearly shows 

that the Tg of the experiments in Table 3-1 is below that. Investigation of the 

polymerizations of the individual homomonomers has been performed using BPO and V-

65 as initiators to determine if there are any anomalies that occur during polymerization. 

Table 3-2: Bulk polymerization experiments JN4-54 

Vial# 

1 

2 

3 

4 

5 

6 

MMA,g 

8 

8 

4.8 

4.8 

MA,g 

8 

8 

3.2 

3.2 

Initiator, g 

0.137 V-65 

0.137 V-65 

0.137 V-65 

0.137 V-65 

0.137 BPO 

0.137 BPO 

Reaction 
Temperature, C 
65 

80 

65 

80 

65 

80 

Properties 

Polymerized, soft 

Polymerized, soft 

Polymerized, hard 

Polymerized, hard 

Polymerized, hard 

Polymerized, hard 

With the data from Table 3-1 and Table 3-2, one can see that V-65 used to polymerize a 

copolymer of MM A an MA was soft and therefore unsuccessful (Table 3-1) but when 

using BPO, polymerization is easily achieved resulting in a hard material (Table 3-2). 

This result is very puzzling since MMA and MA should be easily copolymerized. 

With this puzzling result, a substitution of MA with BMA has been made. The use 

of BMA lowers the polarity of the copolymer but still it remains higher than the adduct. 

98 



Bulk experiments (JN4-53) with V-65 and MMA/BMA have shown that these monomers 

polymerize properly. With the success of BMA polymerizing, phase separation and 

plasticization between the co-polymers and the adduct needed to be investigated. At 1 

wt% V-65 initiator based on the monomer, the BMA/MMA co-polymer clearly phase 

separated from the IDEO adduct yielding a cloudy solid piece of polymer as shown in 

the Figure 3-43 below. 

Figure 3-45: Solution polymerization of MMA/BMA/IDEO adduct. 20ml vial (left), broken halves 

(right) 

A sample of the polymer was analyzed in the DSC to achieve a Tg, to determine if the 

sample is plasticized by the adduct. Prior to placing it into the DSC the sample was 

crushed into small pieces with a hammer and then placed in the oven to evaporate any 

residual monomer, while leaving any amine adduct within the copolymer (IDEO adduct 

does not evaporate at 60°C over a two hour period). The results of the DSC gave a Tg of 

about 54°C. The MMA/BMA monomer mixture was tailored to have a dry Tg close to 

80°C and wet Tg of 63°C. The apparent decrease in Tg indicates that there may be some 

plasticization of the MMA/BMA copolymer, by the adduct, or that we did not remove all 

of the residual monomer from the sample. See Appendix G for further details. 
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An encapsulation attempt was performed using a 1.5 stage ratio with MMA/BMA 

as the co-monomers. Reaction was subjected to homogenization during the entire 

polymerization process. The experiment yielded 50-150|j,m microcapsules that float to 

the top of the dispersion and removed to be dried and washed with a 50% methanol 

solution. The resulting dried capsules can be seen in Figure 3-46 and Figure 3-47 below. 

Figure 3-46: Light microscope images of washed and dried JN4-64 microcapsules. Whole capsules 
(left) and crushed capsules (right) 

Figure 3-47: Paper test of dried and washed JN4-64 microcapsules. Whole Capsules (left) and 
crushed capsules (right) 

Under the light microscope (Figure 3-46), one can see some liquid on the glass 

slide after applying pressure onto the capsules. With the paper test (Figure 3-47), one can 

not see the liquid core material. A titration experiment on the capsules has been 

performed to see if the shell walls are sufficient in the protection of the core material 

from ionization. Figure 3-48 shows the data obtained from the titration experiment JN4-

65. 
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Titration curves 

— IDEO Adduct 4.5M HCI 
—Water 1M HCI 

JN4-64 Capsules 1M HCI 

2 3 4 

Volume of HCI Added (ml) 

Figure 3-48: Titration curve of JN4-64 capsules, water, and IDEO adduct in water. 

The JN4-64 microcapsule curve lies between the water and adduct titration curves, 

similar to the JN4-11 microcapsules made with VA-086. This can indicate that the 

washing process was still not sufficient or that the adduct continues to leach out of the 

shell wall. Interestingly after a day, the JN4-64 capsules sank in an acidic solution with a 

pH of 2. This is also a characteristic of the JN4-11 microcapsules previously mentioned. 

Though the protection of the core material from being ionized was not completely 

successful, the IDEO adduct was indeed encapsulated. 

A series of tests have been performed trying to drive down the stage ratio closer 

to 0.2 to achieve an 80% payload. There was success at a stage ratio of 1:1, but lead to 

the formation of a "crust" near the homogenizer shaft after an hour of reaction. The 

capsules tend to be agglomerated into large (ca. 1mm) particles. 

Typically the homogenizer has been run for 3-4 hours, during the whole reaction, 

to maintain the same droplet size throughout the free radical polymerization. But in one 

specific experiment JN4-72, the homogenizer started to make some odd grinding noises 

around the motor. Immediately homogenization was halted in the early part of the 
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reaction. It was approximately 45-50 minutes when homogenization was stopped . The 

first 15 minutes was used for dispersing the liquid droplets at room temperature and the 

remaining 30-35 minutes was the time for the water bath to be heated from room 

temperature to 65°C. With the reactor contents already at temperature, it was best to let 

the reaction proceed for the rest of its time, without using the homogenizer. This incident 

yielded capsules that floated in the dispersion and were 70-150um in size according to 

light microscopy and multi angle light scattering techniques (Microtrac, wet setting). The 

microcapsules were much more dispersed and a higher yield of capsules was produced 

but did agglomerate slightly after washing and drying. Light microscope images in Figure 

3-49, and paper towel test Figure 3-50 show a lot of promise compared to other previous 

attempts. 

Figure 3-49: JN4-72 capsules in dispersion (left) and dried crushed capsules (right) 

As one can see from Figure 3-49, the capsule sizes are smaller than achieved with any 

other attempt so far. On the right side of Figure 3-49, there is a significant amount of 

liquid core material released form the ruptured capsules 
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Figure 3-50: Paper test of JN4-72 capsules. Whole capsules (left) and crushed capsules (right) 

Figure 3-50 shows that there is a significant amount of liquid amine adduct that was 

released by wetting the paper towel. 

The following is a detailed procedure and recipe used to make the capsules from 

JN4-72 with a stage ratio of 1 to 1. In a beaker, 128ml of deionized water, 5.12g 

polyvinylpyrrolidone) and 0.0892g sodium nitrite are added and well mixed. In a second 

beaker, 6.4g of MMA, 4.26g BMA, 0.106g hexadecane 0.106g V-65 are well mixed. 

Once mixed 10.66g of IDEO adduct is added to the monomer mixture until dissolved. 

The contents are then placed into a 250 ml jacket reactor at room temperature. Attached 

to the reactor are a condenser, homogenizer, and a nitrogen gas feed line. The 

homogenizer is not sealed, therefore parafilm® is used to produce a gas tight seal. The 

contents are dispersed using the homogenizer (IKE® Ultra-turrax T-25) with a setting of 

9500 RPM in conjunction with a magnetic stir plate and oval shaped (30mm in length) 

stir bar at a setting of 11 (Barnstead/Thermolyne Cimaric) for 15 minutes. In Figure 3-51, 

the experimental set-up is shown below. 
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Figure 3-51: Experimental set-up of encapsulation process used in JN4-72. 

Once the 15 minutes for homogenization has expired, the water bath (Fisher Scientific 

Isotemp 3016HD) is turned on to heat up to 65°C while homogenization and magnetic 

stirring continues. Once the bath reaches 65°C, homogenization is stopped and the 

homogenizer is removed from the reactor. At this time the stir plate is set at a lower rate, 

a setting of 7. The contents are allowed to react for an additional four hours. 

Characterization of JN4-72 Microcapsules 

Characterization and drying of the capsules has now become a priority. Sizes of 

the microcapsules range from 70-150/mi based on multi-angle light scattering (Microtrac 

S3500) analysis of the dispersion found in Figure 3-52. 

Figure 3-52: Dynamic light scattering data (Microtrac S3500) of JN4-72 dispersion. 
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By observation one can see that there is a second crop in the dispersion shown as 

by a bi-modal distribution in sizes. Isolation of the particles is typically done by using 

vacuum filtration but the second crop (at about l^trn) would typically clog the filter paper 

making it difficult to isolate and dry. To get around this, the capsules were allowed to 

float. The microcapsule were then removed from the top and placed into the vacuum 

filtration apparatus to be washed with a 50% methanol in water solution two times. 

Capsules were then placed in the hood to dry overnight (ca. 16 hours) at room 

temperature. 

Scanning Electron Microscopy 

The microcapsules were analyzed using Scanning Electron Microscopy (SEM) 

(AMRAY 3300FE) to determine the characteristics of the shell when intact or crushed. 

The images shown in Figure 3-53, show a fairly smooth shell material (compared to 

Urea-formaldehyde), and that the capsules did not break when crushed. 

Figure 3-53: SEM Images of JJN4-72 capsules. Whole capsules (left). Crushed capsules (right). 

The SEM images showed an interesting microcapsule shown on the left of Figure 3-51. 

This capsule shows some substance pouring out of the capsule while keeping a majority 
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of the capsule intact. A more interesting piece of information is the thickness of the shell 

wall, which is shown in the right image of Figure 3-54. 

Figure 3-54: SEM Images of JN4-72 capsule (left) and a section of its shell (right). 

The shell thickness is predicted to be 10/rni thick based on a 1.0 stage ratio used to 

produce the capsules (see Figure 3-41) but images show a l^m thick shell. This discovery 

would suggest that the second cropping that is present can be the cause of this 

phenomenon by lowering the effective stage ratio. 

Fourier Transform Infrared Spectroscopy (FTIR) 

The dried capsules were analyzed by FTIR (with attenuated total reflectance 

(ATR)), to ensure that core material is indeed IDEO adduct inside of the capsules. By 

using basic peak comparison of IDEO adduct, MMA/BMA copolymer, and JN4-72 

capsules, one can confirm that the adduct was successfully encapsulated with the 

following FTIR-ATR spectra found in Figure 3-55. 
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Figure 3-55: FTIR Spectra of IDEO Adduct, MMA/BMA copolymer, and JN4-72 microcapsules. 

In the above figure one can do a peak comparison between the IDEO adduct, 

MMA/BMA copolymer, and JN4-72 capsules. By looking at the regions pointed out in 

Figure 3-55 one can see that the IDEO adduct is present upon crushing of the JN4-72 

amine capsules. One would like to see the difference of an uncrushed and crushed 

microcapsules but it was difficult to perform FTIR-ATR on the uncrushed microcapsules 

since it required applying some pressure onto the sample. Applying any pressure on the 

microcapsules could result in rupturing the microcapsules. 

Encapsulated Adduct Reactivity 

To crudely test if the capsules have useful adhesive properties, the dried capsules 

were then mixed (not crushed) with JN2-37 epoxy resin microcapsules at a 1:1 molar 

(amine to resin) ratio. Based on the approximate payloads, the calculated the ratio is 

0.58g resin capsules to 1 gram of adduct capsules. The calculation is shown below: 

IDEO Adduct 

MMA/BMA Polymer 

•JN4-72 Capsules; 
• Crushed 

• . * 

4000 3500 3000 2500 2000 1800 
Wavenumber cm-1 
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Mwx 

Ratio = ̂ ^ = 0.58 (3.5) 

Payload2 

where Mwi is the molecular weight of the epoxy resin (340g/mole), Mw2 is the molecular 

weight of the adduct (362 g/mole assuming 1.5 moles of epoxide reacted). Payloadi is the 

payload of the resin capsules JN2-32 (80%) and Payload2 is the payload of the amine 

adduct capsules JN4-72 (50%). The blend of capsules was placed between two glass 

slides and then the slides crushed together. After being clamped together over night (ca. 

16 hours), the contents were found to strongly bond the two glass slides together as 

shown in Figure 3-53. 

Figure 3-56: Image of crushed JN2-32 Resin Capsules and JN4-72 IDEO adduct capsules between 
two glass slides. 

As a control experiment adduct capsules and resin capsules were placed between 

glass slides and they revealed no adhesive properties by themselves, as expected. This 

result is very promising since it confirms that the adduct is encapsulated within the 

acrylate shell and that a 1:1 molar ratio can adhere the two glass slides together. Another 

test, similar to the adhesion of the glass slides, was performed trying to adhere to two 
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sheets of epoxy. The sample was allowed to cure for 24 hours and resulted in successful 

bonding of the two sheets. It is important to note that the molecular weight of the resin is 

approximately 340.41 g/mole and the adduct (assuming 1.5 moles of epoxyoctane groups 

react with the amine) is 362.6 g/mol. If an 80% payload (similar to the resin) can be 

achieved with the adduct capsules, one can produce a blend that requires 1 resin capsule 

to 1 adduct capsule in order to cure properly. 

Microcapsule Payload 

Obtaining payload data through DSC analysis is difficult, since the adduct does 

not have a melting temperature, unlike DCPD. Without a melting point, obtaining the 

microcapsule payload of the amine capsules requires data obtained from the DSC in the 

form of heat capacities. The heat capacities of the adduct (Figure 3-57), shell material 

(Figure 3-58), and the overall microcapsules (Figure 3-59) are found in the figures below. 

p. 

Temperature f C ) 

Figure 3-57: DSC trace of JN4-63 IDEO adduct 
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Figure 3-58: DSC trace of JN4-68 MMA/BMA polymer 
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Figure 3-59: DSC trace of JN4-72 IDEO amine adduct capsules. 

From the figures above, the ACp values of the amine adduct and the polymer shell along 

with the integrated peak areas of the amine microcapsules were calculated from the DSC 

trace observing the reversible heat capacity and derivative of the heat capacity vs. 

temperature. With the appropriate data, one can now calculate the payload with the 

following equation: 

^ - P polymer ^ adduct 
Payload = 

^•^P polymer ^adduct ^P adduct polymer 

(3.6) 
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where ACppoiymer is the change in heat capacity for the shell polymer, ACpadduct is the 

change in heat capacity for the amine adduct, Abduct is the integrated area of the 

derivative reversible heat capacity for the amine adduct, and Apoiymer is the integrated area 

of the derivative of reversible heat capacity for the polymer shell. The resulting payload 

is: 

Payload = 0-3757*0.1055 #lQQ = g 5 ^ % 

0.3757 * 0.1055 + .6976 * 0.009279 

The resulting payload is approximately 86%, which is significantly higher than the 

predicted 60% payload. 

However, a payload can also be calculated based on the amount of polymer in the 

second crop. With the second crop present, the effective payload is higher (stage ratio is 

lower) than what was put in the reactor. By this technique (as determined from the 

measurement of the second crop for experiment JN4-72) the maximum payload that these 

capsules can achieve is 78%, making the actual payload fall in between the range of 60%-

78% for the 1.0 stage ratio experiment. With the SEM images found in Figure 3-52, one 

can also estimate the payload by back calculating from the size of the capsule and the 

apparent shell thickness. A shell thickness of 1 /-im (from SEM) and a capsule size of 150 

/xm were used to calculate a payload of 95% or a stage ratio equivalent of 0.075. This 

result is very surprising, but one can not determine the average payload with this method. 

This method only utilizes a few microcapsules and the shell would most likely to rupture 

at the weakest point of the polymeric shell, therefore skewing the data. The three methods 

used to determine the microcapsule payload resulted in three different answers. It is still 

uncertain which of the payload values are correct. 
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Reproduction of JN4-72 Microcapsules 

With the limited success of encapsulating the IDEO adduct, one can move on and 

employ them into an epoxy matrix for self-healing testing. In order to do self-healing 

tests, producing a large amount of capsules is needed. Attempts to replicate the 

experiment JN4-72 have been very difficult to achieve. Subsequent attempts have 

encapsulated the amine adduct but often led to large microcapsules and/or agglomerate 

during the encapsulation process. A series of experiments has been performed to try to 

produce more IDEO adduct capsules to be used in self-healing testing. 

The first set of tests was attempted to replicate the experiment JN4-72. The 

recipes to produce the capsules are identical but the magnetic stir rate was adjusted to 

obtain a similar vortex in the reactor between runs. Results have shown that the capsules 

float and often agglomerate into large particulates in the millimeter size range. A second 

crop of polymer particle was present in all of the experiments. A table of experiments for 

repeating JN4-72 can be found in Appendix H, Table H-l. 

A next set of experiments used mechanical stirring (paddle stirrer attached to a 

mixer) instead of magnetic stirring (magnetic stir plate with 30mm oval stir bar). 

Magnetic stirring has shown to be unreliable in maintaining the same speed (RPM) 

throughout and between experiments. Therefore, mechanical stirring might resolve the 

uncertainty in using magnetic stirring. A list of experiments performed are found in Table 

F-2 in Appendix F. Numerous variables have been changed, such as surfactant 

concentration, solid content, stirring speed, and homogenization speed, but always 

resulted in undesirable results. A majority of the experiments often led to capsules that 

are very large 300-800um with yields varying from very low to moderate. 

112 



With numerous attempts to encapsulate the amine adduct only one experiment, 

JN4-72, has been successful in producing a high yield of capsules in the correct size 

range and payload. Based on the information from the experiments trying to reproduce 

JN4-72, it is clear that the conditions for a successful encapsulation are very sensitive to 

changes in the reactor conditions and the recipe. To date we have not been able to 

reproduce the results of JN4-72. 
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The work in this thesis has shown that the concept of self-healing can be achieved. 

Work with the dicylopentadiene microcapsule and Grubb's catalyst system has furthered 

our understanding on how to test and produce a previously demonstrated self-healing 

system. A new system involving a dual microcapsules system became the main focus of 

the thesis. 

Computational results have suggested that the epoxy resin and amine 

microcapsule system is feasible for self-healing. Modeling results have revealed that a set 

of microcapsules, once broken, may release their contents, fill a microcrack by capillary 

flow, and sufficiently mix by diffusion prior to significant reaction of the healing agents. 

Providing that sufficient adhesion between the new polymer and the walls of the crack is 

achieved, this appears to lead to successful self-healing. 

Encapsulation of the epoxy resin was easily achieved. Encapsulation with urea 

formaldehyde resulted with capsules in the 80-120jUm range and has an 80% payload. 

The capsules can be dried into a free flowing powder and can be easily dispersed in an 

epoxy coating. Adhesion between epoxy resin capsules and the host epoxy matrix was 

sufficient to allow a crack to properly cleave the microcapsules. 
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With amines being soluble in aqueous and organic media, traditional 

encapsulation methods are difficult to perform. Various amine adducts were produced to 

be hydrophobic but often crystallized over time. However, an isophorone diamine and 

1,2-epoxyoctane (IDEO) adduct was made and has been shown to have a low water 

solubility, achieve good reactivity with the epoxy resin, and does not crystallize. It has 

been discovered that the amine adduct does become ionized at lower pH, therefore 

making the adduct more water soluble. This result limits the number of possible 

encapsulation techniques that can be used to encapsulate the amine adduct, however free 

radical in-situ polymerization was successful in encapsulating the amine adduct when 

using an acrylic polymer as the shell. The microcapsules range in sizes from 70-150jttm 

and have a reasonable payload. The capsules are able to be dried into a free flowing 

powder and can be dispersed into an epoxy coating. However, reproducing the 

encapsulation process has proven to be very difficult. 

Though reproducibility is an issue, the adhesive properties with a mixture of 

amine adduct capsules and epoxy resin capsules have proven to be successful by binding 

two pieces of epoxy strongly together. This result shows the great potential of the dual 

microcapsule self-healing system. 

Recommendations 

There are still multiple issues that must be addressed with the chemical analysis, 

and encapsulation of the amine hardener. The chemical properties of the IDEO adduct, 

the reproduction of amine encapsulation, and the self-healing two part microcapsule 
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system requires further investigation. Analysis of the amine adduct via NMR has proven 

difficult because the isophorone diamine is obtained as a mixture of cis and trans 

configurations. The two configurations make it difficult to identify peaks in carbon and 

proton NMR. The time to identify each peak requires extensive knowledge about NMR 

analysis of amines. If possible, one can purchase or purify the isophorone diamine to 

have one specific configuration and then perform NMR studies. Other techniques such as 

Carbon Hydrogen Nitrogen (CHN) analysis, Gel Permeation Chromatography (GPC), 

Liquid Chromatography (LC), and Mass Spectrometry (MS) should be performed to 

determine the number of epoxide groups that have reacted with the isophorone diamine to 

produce the IDEO amine adduct. 

Epoxy resin microcapsules were easily produced but, encapsulation of the adduct 

has been very difficult. The current investigation has shown that this encapsulation 

process is very sensitive to the reaction conditions. Though encapsulation of the amine 

adduct is achieved, the microcapsules tend to be very large and agglomerate together. 

Further investigation of the free radical in-situ polymerization process is needed. More 

specifically, studies on how the second crop is formed and what kind of influences the 

second crop has on the production and properties of the IDEO microcapsules are needed. 

Other variables such as solid content, surfactant concentration, and mixing should be 

thoroughly addressed. Production of large quantities of microcapsules is important to 

have ability to perform tests on self-healing. Encapsulation by other means should be 

studied in conjunction with in-situ polymerization. Methods such as spray drying and co-

extrusion could be used to encapsulate an amine or the amine adduct. 
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Proving the concept of self-healing with the two-part microcapsules system is 

important to this project. After producing a significant amount of amine capsules, fracture 

testing with the tapered double cantilever beam specimens should be performed to 

compare healing efficiencies with the ones published by Scott White5 and the ones 

achieved with DCPD capsules and Grubb's catalyst system mentioned in this thesis. A 

second mechanical testing method suggested by Dr. Michal Kaperski to monitor the time 

evolution of self-healing process with the Dynamic Mechanical Analyzer (DMA) is 

suggested. In the present literature, there is no test proposed or proven to monitor the 

dynamics of self-healing, where most methods perform tests before and after healing. 

This test has the potential to supply unique data, such as the rate of the self-healing 

system and also to determine if self-healing can be achieved with the continuous 

variation of stress in the healing sample held in the DMA instrument. 
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The surface tension and viscosity values of Dicyclopentadiene are taken as 28.8 
dynes/cm and 0.01 poise respectively. 
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Figure A-l: Plot of time required to fill various crack lengths and crack radii with a 
contact angle of 3 0° 
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Figure A-2: Plot of time required to fill various crack lengths and crack radii with a 
contact angle of 45° 
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Figure A-5: Plot of time required to fill various crack lengths and crack radii with a 
contact angle of 85° 
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Figure A-6: Plot of time required to fill a lOum crack varying crack radii and contact 
angles. 
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Figure A-7! Plot of time required to fill a 50um crack varying crack radii and contact 
angles. 
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Figure A-8! Plot of time required to fill a lOOum crack varying crack radii and contact 
angles. 
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Figure A-91 Plot of time required to fill a 150um crack varying crack radii and contact 
angles. 
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Figure A-101 Plot of time required to fill a 200um crack varying crack radii and contact 
angles. 
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Sample: DCPD acros 
Size: 15.4000 mg 
Method: standard two ramp 

DSC 
Pile: C:,.ADSC\Jon\DCPD standard acros.001 
Operator: Jon 
Run Date: 2005-07-08 11:47 
Instrument: DSC Q100 V8.2 Build 288 
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Figure B-l: DSC Trace of pure DCPD 

Sample: JN1-27 
Size: 13.1000 mg 
Method: standard two ramp 

DSC 
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Figure B-2: DSC Trace of JN1-27 Microcapsules. Payload =(4.615/5.766) x 100 = 80% 

Sample; JN1-27(redone) 
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Method: standard two ramp 
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Figure B-3: A second DSC Trace of JN1-27 Microcapsules. Payload =(4.617/5.766) x 
100 = 80% 
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Sample: JN1-29(2nd) 
Size: 17.1000 mg 
Method: standard two ramp 

DSC File:MTA\DataVDSCUonUN1-29(2nd).002 
Operator: 
Run Date: 2005-07.18 10:18 
Instrument; DSC Q100 V8.2 Build 268 
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Figure B-4: DSC Trace of JN1-29 Microcapsules. Payload =(4.307/5.766) x 100 = 74.6% 
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Epoxy Resin: 

The surface tension and viscosity values of epoxy resin are taken as 47 dynes/cm and 6.4 
poise respectively. 
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Figure C-l: Plot of time required to fill various crack lengths and crack radii with a 
contact angle of 30° 
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Figure C-2: Plot of time required to fill various crack lengths and crack radii with a 
contact angle of 45° 
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Figure C-3: Plot of time required to fill various crack lengths and crack radii with a 
contact angle of 60° 
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Figure C-4: Plot of time required to fill various crack lengths and crack radii with a 
contact angle of 75° 
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Figure C-5: Plot of time required to fill various crack lengths and crack radii with a 
contact angle of 85° 
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Time Required to fill a 10um Crack vs. Contact 
Angle Varying Crack Radius 
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Figure C-6I Plot of time required to fill a lOum crack varying crack radii and contact 
angles. 
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Figure C-7I Plot of time required to fill a 50um crack varying crack radii and contact 
angles. 
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Figure C-8! Plot of time required to fill a lOOum crack varying crack radii and contact 
angles. 
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Figure C-9: Plot of time required to fill a 150um crack varying crack radii and contact 
angles. 
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Amine Adduct: 

The surface tension and viscosity values of amine adduct are taken as 44 dynes/cm25 and 
220.4 poise respectively. 
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Figure C-12: Plot of time required to fill various crack lengths and crack radii with a 
contact angle of 30° 
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Adduct 1: 
1 mol DETA + 2 mol 1,2-Epoxyoctane 

*note shown as DETA with epoxyhexane 
Log P =-1.4 
Log P (without OH) = 0.18 
Log P (without OH and middle N) = 2.1 

Adduct 2: 
1 mol 4,4 Diaminodicyclohexylmethane + 2 mol 1,2 Epoxyh 

Log P= 1.02 

Adduct 3: 
1 mol 1, 6 Diaminohexane + 2 mol 1,2 Epoxyhexane 

Log P = -0.26 (with OH) 
Log P = 1.82 (without OH) 



Adduct 4: 
1 mol TETA + 2mol Benzaldehyde 

\ \ /) = N ^ " ^ ^ ^ ^ \ / ^ \ ^ / N — K / 

L/ N ^ \=/ 
Log P = 0.04 
Log P (if nitrogen changed to carbon) = 4.56 
Log P (if added a methyl group to each benzene ring) =1.68 
Log P (if added a ethyl group to each benzene ring) =1.9 

Adduct 5: 
MDI + H20 and alkylation of amines (with methyl/ethyl bromide) 

And (mixture) 

Log P = unknown 

Adduct 6: 
1, 6 diaminohexane + benzaldehyde +catalyst 

Log P = -0.07 
Log P (with nitrogen changed to C) = 5.47 
Log P (with nitrogen changed to C-OH) = 3.14 
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Figure E-l: Predicted Proton NMR Spectra of 1,2-Epoxyoctane. 
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IDEO Adduct: 

Figure E-9: Predicted Proton NMR Spectra of Di-functionalized Isophorone Diamine 
Adduct 
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Figure E-13: Predicted Carbon NMR Spectra of a Di-functionalized Isophorone Diamine 
Adduct 
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Figure E-14: Predicted Carbon NMR Spectra of a Mono-functionalized (top) Isophorone 
Diamine Adduct 
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Figure E-15: Predicted Carbon NMR Spectra of a Mono-functionalized (bottom) 
Isophorone Diamine Adduct 
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APPENDIX F 

Calculation of the Extent of Reaction vs. Time from DSC Analysis 
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To determine extent of reaction vs. time for the EPON815C and the IDEO 

Adduct, an isothermal experiment with the DSC was performed at 25°C for 12 hours, and 

then isothermal at 90°C for two hours. The first part of the analysis (25°C for 12 hours) 

was performed to obtain data used to determine the kinetics of the IDEO adduct and 

EPON resin reaction (plot of extent of reaction vs. time). The second part of the analysis 

(90°C for two hours) is raised to a much higher temperature to ensure full cure and obtain 

data on the total energy to calculate the extent of reaction. Figure F-l is plot of Heat 

Flow vs. Time obtained fro the DSC equipment. 

OH 
c 

ExoUp 

o 
p> 

60 | 

I 
E 

400 

Time (min) Umversal V4.5A TA Instiunwtrts 

Figure F-l: DSC trace of Heat Flow vs. Time of a run reacting at 25°C for 12 hours then heated to 
90°C for 2 hours 

The plot in Figure F-l must be split into two different plots and have the baselines 

adjusted accordingly in order to integrate the overall curing energy and determine the 

extent of reaction. Figures H-2 and H-3 are separated, where one was performed 

isothermally at 25°C ( 0-720 minutes) and the other at 90°C (721-840 minutes). 
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eo | 

720 

Unlvsrest V4.5A TA Instruments 

Figure F-2: Heat Flow vs. Time curve from 0 to 720 minutes Isothermal at 25°C 

The above plot has a base line above zero on the y axis. Readjusting the baseline to zero 

is required prior to integrating under the curve to obtain the overall energy (J/g) of the 

curing reaction between 0 to 720 minutes. Integration for this particular experiment 

yielded a value of 6.57x106 J/g. 

Time (min) 

900 

Unlvetsal V4.5A T4 litsirumsnt* 

Figure F-3: Heat Flow vs. Time curve from 720 to 840 minutes Isothermal at 90°C 



Similar to Figure F-2, the base line must be shifted prior to integration in Figure H-3. 

Integration of the curve yielded a value of 2.99x106 J/g. With the two plots individually 

integrated the two energy values are summed together to obtain the total energy required 

to fully cure the EPON 815C/IDEO adduct epoxy. The total energy of reaction is 

9.55xl06J/g. 

To obtain the extent of reaction at time t, one must integrate from 0 to t and then 

divide that value by the total energy (obtained from fully integrating Figure F-2-and F-3). 

With the extent of reaction calculated, one can generate a plot of Extent of reaction vs. 

Time shown in Figure F-4 below. 

100 MO 300 400 500 

Time (min) 
600 700 800 

Figure F-4: Extent of Reaction vs. Time plot for EPON 815C and IDEO adduct at 25°C 



APPENDIX G 

Characterization of PMMA/PBMA Copolymer from IDEO Amine Adduct 
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DSC Analysis: 

The DSC was perfomred to determine if a PMMA/PBMA copolymer would be 

plasticized by the IDEO adduct and if so to what extent. Figure G-l is a plot of reversible 

heat capacity vs. temperature and the derivative of reversible heat capacity vs. 

temperature. 
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-40 •20 
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-i 1—r -0-025 
120 
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100 

Univoisa! V4.5A TA InsttumoiH* 

Figure G-l: DSC Trace of JN5-29 MMA/BMA/IDEO adduct solution polymerization. 

Integration of the peak between the temperatures of 40°C and 60°C (typical polymer Tg's 

span across 20°) on the derivative of reversible heat capacity curve, resulted in a Tg of 

approximately 54°C. This is lower then the calculated Tg by the Fox-Flory equation 

shown below for a copolymer composed of 60% MMA and 40% BMA. 
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-L-.5. + J5. (G.1) 

where Wi is the weight fraction of homopolymer 1 (0.6 MMA), W2 is the weight fraction 

of homopolymer 2 (0.4 BMA). Tgi and Tg2 are the glass transition temperatures for the 

corresponding homopolymers (119°C and 35°C, respectively). A sample calculation of 

the Tg is written out below. 

Tg 393.15^ 308.15/: 

Tg = 354.08£ = 80.9°C (G.3) 

With the Tg of the PMMA/PBMA/IDEO adduct mixture lower than that of the calculated 

Tg, there may be some plasticization of the polymer. Plasticization can either be caused 

by the IDEO adduct or from the residual monomer, even though there was an attempt to 

remove it. 
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IDEO Amine Adduct Encapsulation Experiments 
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