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ABSTRACT 

SATELLITE-BASED AURORAL TOMOGRAPHY AND TIME-VARYING VOLUME 
RECONSTRUCTION 

by 

Hyojin Kim 

University of New Hampshire, September, 2008 

Tomography, originally developed to observe the internal structure of a human 

body in medical applications, can also be applied to research in Space Science 

applications. An upcoming satellite mission incorporates two imagers for auroral 

observation in the upper atmosphere. For this mission, development of auroral volume 

reconstruction using tomographic imaging is useful for understanding the internal 

structure of auroras. We have shown that beam-pixel clipping in image reconstruction 

improves the quality of reconstructed images, compared to previous techniques. The goal 

is to develop a suitable algorithm for auroral volume reconstruction using auroral images 

measured from satellite-borne optical instruments. We have demonstrated that weighting 

factor approximation in algebraic methods plays a crucial role in the quality of volume 

reconstruction. We also have evaluated the effectiveness of this algorithm with measured 

images of known volumes using perspective projections. In addition, a time-varying 

volume reconstruction scheme is discussed where auroras move over time. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and research goal 

Tomography (i.e., Computerized Tomography; CT) or cross-sectional imaging is 

a useful technique for observing the internal structure of a source of unknown 

composition. Tomographic imaging techniques which were originally developed for 

medical applications can also be applied to research on the upper atmosphere of the earth 

using ground-based observatories and satellite instruments. The upcoming Canadian 

Enhanced Polar Outflow Probe (e-POP), a scientific multi-purpose satellite mission, 

incorporates two auroral imagers for the observation of auroral arc emission in the 

ionosphere. For this particular mission, development of an auroral volume reconstruction 

based on tomographic imaging methods is useful for understanding the internal structure 

of the auroral arc which is not yet clearly known. 

The main goal of this research is to develop a suitable algorithm to reconstruct 3D 

auroral volumes using sequences of auroral images from the e-POP imagers. Volume 

reconstruction using optical imaging instruments provides some challenges and 

opportunities that differ from those of traditional medical applications based on X-ray 

parallel projection. We discuss geometric calculations of parameters for algebraic 

reconstruction methods such as perspective projection (fan beam geometry), field of view 
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(FOV), and image resolution; our algorithm utilizes these optical characteristics to 

improve the reconstruction process. Our scheme can also be applied to various volume 

reconstruction application using images measured from ground-based observatories or 

other optical measurements. In addition, where there is a case that aurora arcs are drifting 

during the image acquisition, a time-varying volume reconstruction scheme can also be 

used. 

1.2 Satellite observation of auroral emission 

Auroral emission results from the excitation and ionization of atmospheric 

constituents with precipitating energetic particles. Atoms and molecules in the upper 

atmosphere of the earth collide with the incoming auroral particles from outer space (i.e., 

solar wind). The kinetic energy of the collision gives rise to the change of the chemical 

state of those atoms and molecules from the original state into an excited state. When 

they are transited into the original state (ground state), the energy releases photons of 

particular wavelengths and it causes the auroral emission [19]. 

Generally an aurora contains a number of spectral lines and bands in the optical 

spectrum. It varies from ultraviolet to infrared wavelengths [19]. The spectrum depends 

on the type of the primary constituents in the upper atmosphere and the energy level of 

precipitating particles. For example, green emissions at 557.7 nm wavelength and red 

emissions at 630.0 nm are related to oxygen atoms and their excited state [7]. The green 

oxygen line is a dominant wavelength in the region, which is the most sensitive to the 

human eye [19]. The following Figure 1 is an example of auroral emission mostly with 

green colors. 
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Figure 1: Auroral emission (mostly 557.7 nm), photo by Hyojin Kim, at the Poker Flat 
Research Range in Fairbanks, Alaska, US 

The importance of auroral emission observation is that it is closely related to solar 

activity. During periods known as magnetic storms, a large number of electrically 

charged particles from the sun (i.e., solar wind) enter the upper atmosphere of the earth 

(e.g., ionosphere, magnetosphere), which makes auroras widespread [7]. In addition, 

these solar activities cause a lot of other events that occur in the upper atmosphere around 

the earth such as substorms and MHD waves. In general, we study aurora because it is 

one way of understanding low energy in the solar wind transferred to our upper 

atmosphere. 

One of characteristics of aurora is that it moves and changes form at various 

speeds and rates. Mostly, warping of the precipitating energetic particle streams by the 

magnetic and electric fields causes the auroral motions and changes [7]. According to the 

scale of the motion, it can be classified as global-scale motions, large-scale motions and 

small-scale motions. The speed of the global-scale auroral motions is somewhat less than 

a kilometer per second, but most actual motions are much faster. In small-scale auroral 

motions such as the motion of rays along auroral forms, the speed is generally faster 
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(approximately tens of kilometers per second) than those of global-scale and large-scale 

motions [7]. If auroral arcs drift and change fast, a set of auroral images taken from a 

remote measurement (such as e-POP image output) cannot be used for an accurate 

auroral volume reconstruction. In order to perform a reconstruction, auroral arcs should 

be stationary or move very slowly. Otherwise, a time-varying reconstruction algorithm 

can be considered. 

1.3 Satellite measurement specification 

The e-POP payload has eight scientific instruments including an imaging ion 

mass spectrometer, a suprathermal electron imager, a GPS attitude & profiling 

experiment and a fast auroral imager. These instruments will collect various data on 

space storms and associated plasma outflows in the upper atmosphere. Among these 

instruments, the Fast Auroral Imager (FAI) will be used to acquire images of auroral arc 

emission [27]. 

FAI is a dual CCD/single controller camera that will image the topside aurora in 

the region of the spacecraft's magnetic footprint. The two optical imaging channels 

provide a narrowband image (630.0 nm) with 128x128 pixels (FAI-SV), and a broadband 

image from 650-1100 nm (infrared) with 256x256 pixels (FAI-SI). The image rate is 10 

images per second in the NIR band and 1 image per minute at 630 nm. The two imager 

channels have identical optics, with FOV of 20°x27°, but use different filters. Since the 

orbit of e-POP will have a nominal perigee of 315 km and an apogee of 1500 km, the 

imager will have an effective spatial resolution of 2.6 km at apogee. The FAI-SV will 

provide coverage of 380x380 km at 1000 km altitude, while the FAI-SI will provide 
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coverage of 430x430 km [27]. The following Table 1 summarizes the specification of the 

two imagers. 

FAI-SV FAI-SI ~ 

Bandwidth 630.0 nm 650 -1100 nm 
FOV 27° 27° 
Coverage (at 1000km) 380 x 380 km 430 x 430 km 
Resolution 128 x 128 256 x 256 
Framerate 2 frames/min 1 frame/sec 
1-path frame rate 4 -30 frames 120 - 900 frames 

Table 1: FAI two imagers of e-POP satellite [27] 

As mentioned previously, even "stationary" auroral arcs can change at a speed of 

a few kilometers per second. But in some cases, changes and fluctuations at a rate may 

also take place very rapidly. Therefore in order to reconstruct an auroral volume (or a set 

of volumes) in a certain time period, images only in a single orbital path will be available. 

It will take approximately from 2 to 15 minutes to take a set of images in one path in the 

orbit of the e-POP satellite, depending on the precise altitude of the satellite. Table 1 also 

shows the 1-path frame rate for both imagers. Because the two imagers in FAI have a 

different resolution and frame rate, the resolutions of possible reconstructed volumes vary. 

This is discussed on the chapter on "Time-varying volume reconstruction." 

To reconstruct the volume of auroral arcs, a set of images, all of which point to a 

fixed or limited focal target of an auroral zone, is needed. FAI imagers will be set to a 

target acquisition mode as shown in Figure 2. In the target acquisition mode in each 

orbital path, the imagers will point to a limited auroral zone to take a set of auroral 

images. Since the focal point of the imagers can vary within the auroral zone, each 

acquired image will include its target position, instrument position, and instrument roll 

information usually determined by the attitude control system or star-sensor of the 

satellite. 



Figure 2: FAI target acquisition mode (fixed focal point) for auroral volume 
reconstruction 
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CHAPTER 2 

TOMOGRAPHY OVERVIEW 

2.1 Basic tomography using parallel projection 

Tomography (i.e., Computerized Tomography) was originally developed for 

medical applications to obtain a set of images of internal structures of a human body. 

Because the reconstructed images show unknown internal structures of a body or organs 

in a particular plane, this technique is referred to as cross-sectional imaging. In medical 

applications, those cross-sectional images are generated from a set of X-ray images in a 

wide angle of projections [18]. 

The source distributions are generally represented as 2D images or 3D volumes, 

depending on the number of dimensions of the observed data. In principle, a set of (n-1)-

dimensional remote measurements is needed in order to reconstruct an unknown n-

dimensional source [12]. 

We present a simple case of an image reconstruction (2D) of an unknown source 

using a set of projections (ID) as shown in Figure 3. This is a simplification (one volume 

slice reconstruction) of medical CT scanning using X-ray projections. In each projection, 

a number of rays are sent from a transmitter on a side and are detected by a receiver on 

the other side. There is an assumption that each ray path is parallel, just as X-ray 

projection, and there is no refraction and diffraction effect [18]. Once a projection is 
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completed, which consists of a number of ray-sums (i.e., ray-intensity along a path), 

another projection with a different angle is performed. 

The unknown source area is uniformly divided into small cells in a 2D image 

plane. Each cell value (X,) represents the ray intensity of the cell. In this example, the 

unknown image has 5x5 pixels and there are 4 rays in a projection. The goal of 

tomography is to solve for the unknown values of the 5x5 cells using mathematical 

methods. Various tomographic techniques have been proposed and developed. These can 

be classified into 5 groups [12, 18, 25]: 

• image-Fourier space methods (Fourier transform methods) 

• image-projection space methods (algebraic methods) 

• deconvolution-restoration approaches 

• reflection tomography 

• statistical methods 

Among these methods, image-projection space methods (i.e., algebraic methods) 

are the most appropriate where: 1) it is difficult to measure a large number of projections, 

2) the projections are not uniformly distributed, 3) or the angle of the projections is 

narrow (limited-view) [18]. For example, in medical diagnostics, some patients cannot be 

exposed to the amount of radiation normally used for a complete scan; these techniques 

are applicable where it is necessary to limit the radiation dosage [26]. In our case, also, 

the projection angle is much less than 180°. Even if the projection angle can be around 

180°, some images taken near or on the horizon will probably not be good quality auroral 

pictures and may contain other external noise. 
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For such cases, many studies have shown that several algebraic methods produce 

better results than other techniques including Fourier transform methods [15, 18]. We 

now present a brief overview of algebraic methods for reconstructing 2D images using 

ID parallel projections. This is a simplified version (i.e., one image-slice reconstruction) 

of a real 3D volume reconstruction using 2D images generated by parallel projections. 

Figure 3: 2D to ID parallel projection representation and algebraic approaches 

In Figure 3, the source area is divided into N cells where each cell has the same 

size; X; represents an unknown variable to be calculated as mentioned above. Each ray-

sum (Ri to R4) is projected onto a pixel on the projected image. In algebraic methods, 

each projected ray can be represented as the sum of some cells as a linear equation where 

the weighting factor, Wi, indicates the contribution ratio of the cell to the ray (0 -1 ) . This 

is represented as a set of linear equations: 

Wi(Ri)Xi + W2(R1)X2 + ... + W25(R1)X25 = Rl 

Wi(R2)Xi + W2(R2)X2 + ... + W25(R2)X25 = R2 

Wi(R3)Xi + W2(R3)X2 + ... + W25(R3)X25 = R3 (1) 
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Since the number of cells is 25 in this example, at least 25 different linear 

equations are needed. In its matrix form, direct matrix inversions such as Gauss-Jordan 

elimination and LU decomposition can be employed to solve the unknown cell values 

[24]. However, it is computationally expensive because the number of cells is generally 

large. In practice, it is at least 4,096 (64x64), 16,384 (128x128), or 65,500 (256x256) 

[18]. In 3D volume reconstruction, the complexity of matrix inversion exponentially 

increases. There are more reasons why direct matrix inversions are not appropriate; it is 

also possible that 1) the set of the linear equations is sparse (too many 0's in the 

weighting factors), 2) the matrix is singular, or 3) the matrix is not square. Especially, 

there are many situations in which the number of ray-sums is not the same as the number 

of cell values (X's). In these cases, direct matrix inversion is impossible. If the number of 

ray-sums is exactly the same as the number of unknown cells, there is a possibility of 

direct matrix inversion. But the issue regarding computational complexity still remains. 

Other problems occur because a set of ray-sums contain some noise and typical 

weighting factors are not very accurate; we discuss these issues in more detail below. 

There are iterative approximation methods that offer an approximate solution as the 

iterative procedure continues. Since these methods solve all possible cases mentioned 

above, they are much more appropriate than direct matrix inversion methods. 

2.2 Algebraic Reconstruction Methods 

"Algebraic Reconstruction Techniques" (ART) are based on "Method of 

Projections" by Kaczmarz and Tanabe [18] and "Back-Projection" by Budinger and 

Gullberg [12]. In these methods, the iteration is started with a set of initial cell values 

[18]. As the iteration continues, the cells are updated and converge to an approximate 
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solution for the cell values. According to [15], there are several advantages of this 

approach over the Fourier transform methods: 

• algebraic methods work properly for totally asymmetric objects; 

• they produce detailed and better results with only 5 - 1 0 views; 

• tilting techniques may be used since the views may be taken over a small range 

of angles (±30°); 

• small computers with a small amount of storage and resources can be used. 

In this sense, the algebraic approach is the most appropriate solution for the 

auroral tomography and volume reconstruction. 

The basic idea of ART is to use convergence by projections where the linear 

system is represented as a hyperplane (i.e., n - 1 dimensional subspace in an n-

dimensional vector space) [18]. Solving a unique solution of two linear equations is a 

simple example as shown in Figure 4 (a). The two linear equations are: 

Wi(Ri) Xi + W2(Ri) X2 = Ri 

Wi(R2) Xi + W2(R2) X2 = R2 (2) 

And those equations can also be represented as the following vectors: 

W (R1)-X = Ri (3) 

W(R1)-X = R2 (4) 

The method is started with an initial guess of X, denoted by X(0). In this case, a set 

of initial values for X(0) is (0, 0). On the first iteration, the initial vector X(0) is projected 

onto the line of the first equation (3). The projected vector, denoted by X(1), should be 

perpendicular to the equation. X(1) becomes a new vector of X updated by the first 

iteration. On the next iteration, the new vector X(1) is projected onto the second equation 
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(4). The vector is then updated to a new vector X(2) on the second line. These iterations 

are repeated until the set of values (vector X) converges to a unique solution as shown in 

the figure. 

Figure 4 (b) illustrates solving an approximate solution of three linear equations. 

In this case, since there is not a unique solution, we need to settle for an approximate 

solution. Similar to Figure 4 (a), the method makes the set of values oscillate in the 

neighborhood of an approximate solution [18]. It is useful where the number of equations 

is greater than the number of cell values. 

(aj (b; Equatior 3 
Equatior 2 Equatior 2 

Equatior • Equatior 

Figure 4: Solving a linear system on a hyperplane (a) Solving a solution of two linear 
equations using an iterative method of projections (b) Solving an approximate solution 

of three linear equations 

The basic ART can be mathematically written as follows [18]: 

X ( ; ) =X ( M , + 
(0 Y('-D W(«> R u , -X wl 

W (0 

Z W(02 
W (5) 

where X is a vector of unknown cell values, W is a vector of weighting factors, R 

is a measured ray-sum, and i is an iteration number from 1. X(0) is a vector of initial 

values, (0, 0, ... , 0) in most cases. The initial values are updated by adding the next 
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perpendicular vector to the current values and the values are updated in the following 

iterations. It is an additive method, and therefore it is also called Additive ART. 

Figure 5 shows a 2x2 unknown source where the values are represented as the 

vector (1, 2, 3, 4). There are also four observed ray-sums (R(1), R(2), R(3) and R(4)) by two 

projections. Since all rays are horizontal or vertical, weighting factors are exactly equal to 

0 or 1. For example, in R(1), the weighting factor of Xi and X2 are 1 while the weighting 

factor of X3 and X4 are 0. Table 2 shows that the ART method updates a set of values and 

these values converge to a solution which is the same as the original source. 

Unknown source image Observed image 

1 

3 

2 

A 

? ( • ) 

J(2) 

cn 0£ 

4 6 

Observed image 

Figure 5: An example of a unknown source image with four observed ray-sums by two 
projections 

Iteration 
Number 
0 
1 
2 
3 
4 

R 

3 
7 
4 
6 

W 

(1,1,0,0) 
(0, 0, 1, 1) 
(1,0,1,0) 
(0,1,0,1) 

X 

(0.0, 0.0, 0.0, 0.0): Initial Values 
(1.5, 1.5, 0.0, 0.0) 
(1.5,1.5,3.5,3.5) 
(1.0,1.5,3.0,3.5) 
(1.0, 2.0, 3.0, 4.0) 

Table 2: Solving a set of unknown pixels using ART 

The above example is a simple case to solve a solution using ART. But if the 

weighting factors, W, are poorly calculated, ART reconstructions cause "salt and pepper 

noise" [18]. In most cases, the weighting factors are usually inaccurate approximations 
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and the ray-sums may also be poorly measured. These problems lead to various 

modifications such as the Multiplicative ART (MART), the Simultaneous Iterative 

Reconstructive Technique (SIRT), and the Simultaneous Algebraic Reconstruction 

Technique (SART). The basic MART is described as [21]: 

( RC) ^W <" v ( 0 _ v ( H ) *• 
A. — J\. ' T7-TT ~ 

l A w ) (6) 

Usually, (e"1, e"1, ... , e"1) is chosen for the initial vector X(0). MART is likely to 

produce less noise than ART since once a cell value is set to 0, it cannot be updated. 

While both ART and MART update the cell values iteratively on a ray-by-ray basis, 

SART updates the cell values after a whole image projection is completed. For more 

details about the characteristics of these methods, see [6]. 

2.3 Overall reconstruction process 

As mentioned before, a set of observed ID images is needed to reconstruct an 

unknown 2D image in this example. Solving for the unknown pixels of the 2D image 

using linear equations from the ID images in iterative algebraic methods is the main goal 

of this tomography. The size of the reconstructed image depends on the number of linear 

equations provided. Thus, the number of equations should be at least the number of pixels 

of the reconstructed image. The number of equations depends on the number of 

projections and the size of each ID image. In short, once the size and the number of the 

ID projected images are determined, the number of pixels (the size of the reconstructed 

image) is determined. 

Each linear equation needs a set of weighting factors, coefficients of the equation, 

determined by one of rays of the ID projected images. Each cell's weighting factor is the 

ratio of the ray's contribution to the cell. Conceptually, in a geometric sense, the 
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weighting factor is the ray-intersected area divided by the entire area of each cell as 

shown in Figure 6. In this example, X2's weighting factor is 0 because the ray doesn't 

contribute to the cell. The weighting factor varies between 0 and 1, but most factors are 0 

and the linear equations are sparse. 

Intersected area (rfed boundary) 
Weighting factor of X; * "'"•..i ••• •/ 

Celt ares 

Figure 6: Weighting factors as coefficients 

In real applications, where the reconstructed 2D image is 64x64 and it is assumed 

that there are enough linear equations for the reconstruction, the number of weighting 

factors for each equation becomes 64x64. If the number of equations is 100, the total 

number of weighting factors to be calculated becomes 64x64x100, which needs a huge 

computation time and resources (memory or storage). For this reason, some 

approximations to calculate the weighting factors are recommended. Many application 

use binary approximation, in which the factors are simply replaced by l's and 0's, which 

makes the implementation easier and reduce computation time and resources [18]. 

Here is an overall description for the simple reconstruction application above. 

First, a set of ID images are acquired. Depending on the number of the images and each 

image's size (i.e., the number of rays), the size of a 2D image to be reconstructed is 

determined. Then the initial values are assigned to all cells. If the basic additive ART is 

being used, the initial cell values are 0 and the iterations are started with the values. Next, 

the first ID image is chosen and the first pixel of the image is used for the first ray. Using 
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the current projection information (e.g., angle, position) and the ray, a set of weighting 

factors is calculated. Once a set of factors is determined, a linear equation is prepared and 

it is applied to the iterations. Then the next pixel of the image is used for the second ray 

and a set of weighting factors for the ray is calculated. This same process is repeated until 

all observed ID images are used. As the iteration goes on, the cell values converge to an 

approximate solution and a reconstructed 2D image is completed. 

16 



CHAPTER 3 

IMPLEMENTATION OF IMAGE RECONSTRUCTION 

3.1 Overview 

In this chapter, we describe an implementation of image reconstruction that 

motivates and helps describe our volume reconstruction described in the next section. 

The implementation is based on tomographic imaging methods using several Algebraic 

Reconstruction Techniques. For 2D image reconstruction, ID measured images with 

multiple projections are used. This implementation includes ID observed image 

generation by an arbitrary projection, several approximations of weighting factors 

including a clipping algorithm, two different ART methods (Additive ART and 

Multiplicative ART), and an interactive environment so that users can perform various 

projections and reconstructions with different options. 

3.2 Beam-pixel clipping for weighting factor 

As mentioned before, in most cases, fast but poor approximations of weighting 

factors are used to reduce computational time and resources. In some applications, each 

weighting factor is approximated by a function of the perpendicular distance between the 

center of each ray and the center of each cell and these factors are replaced with O's and 

l's [18]. For instance, if the distance is smaller than the half size of the cell, the 

weighting factor becomes 1. Another approximation, suggested by [26], uses the length 
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of the intercept of the center of each ray with each cell. If there is an intersection, the 

weighting factor of the cell is 1, otherwise it is 0. This approximation is slightly different 

from the approach taken by [18] where the ray is tilted and it intersects slightly the 

outline of a cell, and the weighting factor of the cell becomes 1. Such fast but poor binary 

sampling approximations are easy to implement, but may result in low quality 

reconstructed images with significant noise called "salt and pepper noise". There have 

been various mathematical attempts using modified ARTs to suppress such noise and to 

improve the quality of reconstructed results with smoothness. Some cases use a 

relaxation parameter to prevent faster convergence in ART reconstructions. Although this 

approach offers noise reduction, it increases the number of iterations. Other approaches 

put more emphasis on mathematical methods to modify ART, such as MART and SART 

[18]. 

Instead of such mathematical approaches, in this paper we focus on the geometric 

nature of ray projections to more accurately compute weighting factors. We propose a 

better approximation, called beam-pixel clipping that produces higher quality 

reconstructed images and volumes. Conceptually, if the ray in 2-D is modeled as an area 

(instead of a line), the weighting factor can be represented as the ray-intersected area 

divided by the entire area of the cell. In image reconstruction, our approach uses a classic 

polygon clipping algorithm, Sutherland-Hodgman clipping, in order to calculate the 

clipped ray-polygon area accurately. Thus this approximation is the same as the 

conceptual weighting factor calculation. Since this clipping algorithm is fast and efficient 

in 2D graphics [3], it is not computationally expensive. In each ray projection, the ray is 

represented as a long rectangular area, "beam", which is clipped against each rectangular 
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cell. In volume reconstruction described in Section 4, each ray is represented as a long 

pyramidal beam, which is clipped against each voxel. 

Figure 7 shows several different approximations. Figure 7 (a) are the two binary 

approximations mentioned above. The left-top of Figure 7 (a) shows the approach taken 

by [26] and the left-bottom of Figure 7 (a) shows that of [18]. In the left-top figure, since 

the center line of the ray intersects X3 and X4, the weighting factors of X3 and X4 are 1 

even though both of them are not truly 1. On the other hand, since the center line of the 

ray doesn't intersect either Xi or X2, both factors are 0 even though the factor of Xi is not 

truly 0 as shown in the figure. Such approximations are computationally cheap and fast, 

but they may cause poor results with some error and noise. 

Figure 7 (b) describes our beam-pixel clipping method. The actual beam polygon 

of the ray is used for clipping with each rectangular cell. In each cell, the clipping with 

the beam is processed and a clipped beam polygon of the ray is generated. The weighting 

factor of each cell is the ratio of the beam's clipped area to the cell's area. We 

demonstrate that this approach provides more accurate weighting factors and better 

reconstructed images than the binary approximations. 
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Figure 7: Different weighting factor approximations (a) Binary sampling approximations 
using ray-cell intersection (top) and using ray-cell distance (bottom) (b) Our beam-pixel 

clipping 

As mentioned before, Sutherland-Hodgman Polygon Clipping is used for 

computing more accurate weighting factors. See [3] for detailed discussion of this 

clipping algorithm. Once a clipped polygon of the ray is generated, the area of the 

polygon is calculated using the following equation: 

«-i 

Area = £(X^.+1-^.Xm) 
i=0 (7) 

Where the clipped polygon has points (X0, Y0)... (Xn, Yn) [2]. 
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3.3 Algorithm description 

The implementation of 2D image reconstruction basically consists of two steps: 

• The program reads an original 2D image. Using the image, a projected ID image 

with an arbitrary angle is generated. 

• The program prepares an empty 2D image for the reconstruction with initial 

pixel values. Using the projected ID image, the program starts iteration of ART and the 

initial 2D image is updated. 

Once the two steps are completed, the next ID image projection and its iteration 

are repeated until the program processes enough projections and iterations. In real 

applications, the first step is not necessary since a set of projected ID images should 

already be prepared. In this case, the ID images should have some associated metadata 

information, including the angle of the projection and the number of pixels (rays). Once 

an image reconstruction is completed, the reconstructed image can be compared with the 

original image in order to verify our reconstruction algorithm. 
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The following is the pseudo code of the main reconstruction process: 

Create an empty 2D image 

Initialize the image with initial pixel values 

FOR each ID image projection 

Load camera information of this projection (angle, position, etc) 

Get the number of rays for this projection 

FOR each ray of this projection 

Get the ray-sum 

Create a ray polygon 

FOR each pixel (x, y) of the 2D image 

(the number of 2D image pixels) 

Compute the weighting factor 

(using beam-pixel clipping, binary sampling, etc) 

ENDFOR of each pixel 

Set a linear equation 

Update the pixel values of the 2D image using ART, MART, etc 

ENDFOR of each ray 

ENDFOR of each ID image projection 
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3.4 Results 

Figure 8 shows several reconstructed results according to different 

approximations. The original and reconstructed images are 128x128 8-bit grayscale 

bitmaps. All these image reconstructions were processed using the basic additive ART 

method. All reconstruction tests used 140 ray projections, each with 160 rays. The 

angular range of the projections is 140° (0° to 140°). We created several artificial images 

with easily identifiable characteristics; the original images are shown in column (a) of 

Figure 8. Row (1) is intended to represent simplified auroral arcs; row (2) adds some 

Gaussian blurring; row (3) and (4) are intended to represent more complex visual 

phenomenon. The images in column (b) were reconstructed using binary sampling 

approximation with a line intercept method while the images in column (c) were 

generated using binary sampling approximation with a line-cell distance method. Column 

(d) shows our beam-pixel clipping. 

A quantitative method to compare the original image with the reconstructed 

image is useful to evaluate the performance of these approximations. We used a 

similarity function, taken by [10], to measure the differences (error) between each 

original value and its corresponding reconstructed value. The function can 

mathematically be written as: 

Similarity = 1 

^ V°2 (8) 

where VR and Vo are pixel values of the original and the reconstructed image. If 

the similarity is equal to 1, two images are identical. Otherwise, the similarity is always 

less than 1. Images in column (d) are smooth and look somewhat more like the original 
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images while the other reconstructed images seem to contain more noise. The results 

show that our beam-voxel clipping improves the quality of reconstruction and reduces 

noise. In this result, All reconstructed images somewhat slant to the left. It seems related 

to the direction of the projection. The shape of reconstructed images can vary depending 

on which direction the projection rotates and when the images are mainly converged, 

(a) (b) (c) (d) 

(1) 

(2) 

(3) 

Similarity: 0.60 Similarity: 0.65 Similarity: 0.70 

Similarity: 0.62 Similarity: 0.64 Similarity: 0.70 

(4) 

Similarity: 0.80 Similarity: 0.74 Similarity: 0.81 
Figure 8: Image (volume slice) reconstruction results with parallel projection (a) original 

images (b) reconstructed images using binary sampling approximation (ray-cell 
intersection) (c) reconstructed images using binary sampling approximation (ray-cell 

distance) (d) reconstructed images using beam-pixel clipping 
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Figure 9 compares ART and MART with several projection angles. The format of 

the original image is 64x64 8-bit grayscale bitmap and our beam-pixel clipping was used 

for both reconstructions. Reconstructed images by MART are more likely to contain less 

noise than images by ART. Also, the MART method seems to converge sooner than the 

ART method. On the other hand, images by ART look more like the original. The MART 

seems to maximize the entropy while the additive ART seems to minimize the variance 

of the gray levels [15]. 

x x „ j 6 Q O 9 Q O 1 2 Q O 1 5 Q O 1 8 Q O 

angle 
Iterations 64 64 64 64 64 

Iterations 64 64 64 64 64 
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ART 

MART 

Figure 9: Image reconstruction results using ART and MART method with different 
projections 
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CHAPTER 4 

SATELLITE-BASED 3D VOLUME RECONSTRUCTION 

Satellite-borne and ground-based tomography and volume reconstruction using 

general optical instruments have more things to be taken into consideration than the 

previous image reconstruction with parallel projection. First of all, the projection is not 

parallel but perspective within the FOV of the optical instrument (i.e., fan beam 

projection). Second, due to perspective projection, weighting factor approximation of 

voxels is computationally more expensive. In this chapter, we discuss several different 

types of weighting factor approximations including beam tracing approximations as well 

as coordinate transformations between the satellite and the volume. 

4.1 Constraints 

In volume reconstruction using satellite-based measurement, several constraints 

need to be satisfied. These include the number of measured images, the resolution of the 

images, the focal point, and the projection angle in each orbital path. These factors play a 

crucial role in determining the resolution of the volume and the reconstruction 

performance. Most of all, a constraint that the target (aurora) is stationary during 

measurement should be assumed for volume reconstruction. 

The resolution of reconstructed volumes depends on the number and the 

resolution of measured images. The maximum possible resolution can be calculated using 
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the product of the number of images, the image width and the image height. In real 

applications, images may contain some useless pixels that do not contribute to the volume 

region as shown in Figure 10. Those pixels (as ray-sums) cannot be used for any linear 

equation in algebraic reconstruction methods. There is also the so-called "stabilization 

regions" inside the volume region as shown in Figure 10. These regions lead to detail 

suppression since null or negative values occur in the iteration of algebraic methods [1]. 

Suppose the ratio of "real" pixels on average is R. The maximum volume resolution can 

be computed as follows: 

VxVyVz<NW-HR ( 9 ) 

where N is the number of images, W is the width of the image, H is the height of 

the image, and Vx, Vy and Vz are the volume resolution on the x, y and z-axis. The ratio R 

is determined by FOV, focal point and distance between the instrument and the target 

zone. The satellite needs to keep an adequate distance from the target so that the ratio R is 

close to 1. If the satellite is too close to the target, it may fail to cover every area of the 

target zone. If it is too far from the target, the ratio decreases. As we show later, the best 

results occur where the satellite instrument is set to a target acquisition mode to fix a 

focal point to the center of the target. 
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Figure 10: Unnecessary pixels during image measurement of auroral zone 

To determine the quality of reconstructed volumes, the angular range of 

measurement is fairly important. According to [21], a minimum angle to achieve 

satisfactory results should be at least 50 - 70°. Although the wider angular range offers 

better reconstruction results in theory, there is a possibility that the target zone (aurora 

arcs and emission) is not stationary during measurement in a wider angular projection. In 

this case, a smaller projection angle may be better; it may produce more spatial noise, but 

will be subject to less temporal noise caused by the dynamic nature of the data. In this 

context, determining an appropriate angular range requires a complicated interaction 

between the degree of the target motion and the measuring time. 

In optical tomography, the characteristics of the optical instrument affect the 

linear system in algebraic reconstruction methods. These include several parameters of 

camera lens, filter and CCD. In addition, atmospheric attenuation should be considered. 

The matrix form of equation (1) is modified into: 

•"« ~ *^ 2-1 ™W ™(n) 
(10) 
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The constant attenuation is added via parameter C [11]. 

4.2 Coordinate transformations between optical instrument and volume 

There are several major coordinate systems in use for positioning on the Earth. 

Geodetic Coordinate System with latitude (|> and longitude X is widely used for vehicles 

and any other equipment using Global Positioning System (GPS). In Space Physics and 

related studies, Geographic Coordinate System (GEO) and Geomagnetic Coordinate 

System (MAG) are in common use. GEO is based on the axis of the earth rotation while 

MAG is based on the earth's geomagnetic dipole axis. Some coordinate systems use 

spherical coordinates in terms of latitude, longitude and altitude while others use 

Cartesian coordinates in (x, y, z). In order to reconstruct a volume, it is convenient to use 

its own coordinate system based on the origin of the volume in Cartesian coordinates. 

Therefore, no matter what kind of coordinate system is being used in satellites and 

ground-based observatories, coordinate system transformations are required between 

image projections measured from satellite instruments and ground-based observatories 

and volumes to be reconstructed. For detailed information regarding coordinate 

transformations, see [16]. 

In auroral volume tomography and volume reconstruction, all auroral images 

measured from a satellite optical instrument (auroral imager) include their coordinate 

information. These coordinates are acquired by an attitude control system or a star-sensor 

on the satellite. All coordinate systems of the measured images including GEO and 

Geodetic Coordinate System need to be converted into one of the Geocentric Coordinates 

in the Cartesian format as shown in Figure 11 (a). Once all coordinates are represented in 

Cartesian components in (x, y, z), we need to define the position of a volume to be 
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reconstructed in GEO as shown in Figure 11 (b). The volume positioning and its own 

volume coordinate system (VOL) can be defined depending on the auroral mission. The 

conversion matrix from GEO to its own VOL, which is based on the volume's origin, can 

simply be obtained as shown in Figure 11 (c). Now all the coordinates of the images are 

represented in VOL, from which the volume can be reconstructed. 

The volume's coordinates can then be transformed into another coordinate system 

such as GEO and MAG. For example, in most cases, the coordinates of reconstructed 

auroral volumes need to be transformed into MAG in order to look into the vertical 

profile of the auroral arcs and emissions. The diagram in Figure 12 shows the main 

process of the coordinate transformations in auroral volume reconstruction. 

(a) Satellite measurement (b) Target volume (c) Coordinate transformation 
of auroral zone and positioning in GEO from GEO to VOL and volume 

coordinate information in reconstruction in VOL 
GEO 

vxx vx, vxz o 
VYX VYy VYZ 0 

\ZX YZY VZZ 0 

0 0 0 1 

-\ox 
-VOy 

-voz 
0 

(11) 

Figure 11: Coordinate transformation for satellite-based auroral volume reconstruction 
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4.3 Beam tracing weighting factor approximations 

Weighting factor approximation for volume reconstruction approximates the 

contribution ratio of each ray beam to each voxel. Conceptually it can be represented as 

the beam-clipped volume divided by the entire volume of each voxel. In order to obtain a 

more accurate weighting factor, which is close to the theoretical value, we discuss several 

beam tracing approximations. Conventional ray tracing approximations using each ray 

and each voxel's center can also be considered. These methods are relatively cheap, but 

there are several issues encountered (e.g., sampling) in terms of accuracy. Also, these 

methods are not appropriate when the projection is perspective, the resolution of the 

acquired images is relatively small, or each voxel of the volume is large. 

Based on the previous image reconstruction with parallel projection, we suggest 

that the weighting factor approximation also plays a crucial role in volume reconstruction. 

We need to verify this hypothesis by developing and evaluating more accurate 

approximation techniques. Therefore we focus on different beam tracing approximations 

using beam-voxel clipping and beam-voxel sampling. 

Figure 13: Beam tracing approximations in perspective projection 

In beam tracing methods, each beam corresponding to each pixel of the projected 

image is represented as a long pyramidal volume. In a single projection, the beam 

volume's contribution ratio to each voxel of the volume is the weighting factor (for 
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perspective projection) as shown in Figure 13. Figure 14 (a) uses beam-voxel clipping. 

Every voxel is examined to see if there is an intersection or inclusion with the beam. If 

there is, then clipping between the beam and the voxel is performed and the clipped 

volume is calculated for its weighting factor. Although this method provides a more 

accurate weighting factor, it is somewhat more computationally complex. Figure 14 (b) 

shows a sampling approximation to the beam clipped ratio. We distribute sampling points 

in each voxel. The weighting factor of a voxel becomes the ratio of the number of 

samples included in the beam to the total number of samples in the voxel. When a rough 

volume reconstruction is good enough, such as in a preliminary analysis stage, we can 

use a binary sampling approximation (one sampling point) where the weighting factor is 

either 0 or 1. We can increase the number of samples when more accurate weighting 

factors are required. 

(a) (b) 

Entire volume ol voxe * of total sample points 

Figure 14: Two beam tracing approximations (a) Beam-voxel clipping (b) Beam-voxel 
sampling 

We introduced two major ideas to compute weighting factors, each of which is 

applicable to some cases in terms of performance. When a more accurate volume 

reconstruction is required, we use beam-voxel clipping or beam-voxel sampling with 

many samples. On the other hand, beam-voxel sampling with a small number of samples 

requires less computation time. This trade-off raises a question of how accurate the 

weighting factor should be. Table 3 shows weighting factor results between two methods 
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using several random beam volumes. Beam-voxel sampling with one sample point has 

weighting factors that are either 0 or 1 (binary sampling); this is the most commonly used 

previous approach, but it may cause inaccurate volume reconstruction. The 

approximation results with 103 samples appears to be almost the same as the beam-voxel 

clipping results. But Table 3 doesn't explain how much the weighting factor affects the 

volume reconstruction result. We suggest that beam-voxel clipping has the best 

reconstruction performance and that there is an appropriate sample number in the 

sampling approximation in most cases, which is discussed with several volume results in 

Chapter 5. 

rr ., Beam-voxel Beam-voxel sampling 
Test beam . . . iU , l 3 . , . N „3 ,3 1rt3 

clipping method 1 (binary) 2 4J 10 

ffml 

0.15798 

0.14955 

0.80775 

0.85448 

0.26988 

1.0 

1.0 

1.0 

1.0 

1.0 

0.125 0.21875 0.159 

0.0 0.21875 0.152 

1.0 0.84375 0.844 

1.0 1.0 0.875 

0.25 0.296875 0.27 

Relative 
computation 
time 
on average 

0.07 0.09 0.23 2.51 

Table 3: Several weighting factor results between two methods 
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4.4 Optimizing approximations 

The weighting factor approximations described above require costly computation 

in most cases. For instance, when the resolution of a volume to be reconstructed is 643, 

each beam of the projection needs to be intersected with 64 voxels. In beam-voxel 

clipping, computation time to perform clipping increases as the number of intersected 

voxels increases. Even though such computation time is not a big issue in this volume 

reconstruction, it is better to optimize the approximation for better performance. In this 

sense, a tree-based voxel structure such as octree can be applied to the approximation. In 

the octree structure, the internal nodes have eight child nodes which are subdivided from 

the parent 3D box. For more detailed information, see [20]. 

In the implementation of optimizing the approximation described in this paper, 

such an octree structure is not used physically. Instead, we assume every voxel becomes 

one of the leaf nodes of an octree conceptually. In each projection to compute weighting 

factors, the beam is examined with the entire volume box to see if there is an intersection 

or inclusion. If the beam includes the volume box, all the weighting factors are equal to 1. 

If the beam has no intersection and no inclusion to the volume, all the factors are 0. 

Otherwise, the beam is examined with eight boxes subdivided from the volume box and 

the process is performed recursively. When this process goes down to one voxel, its 

weighting factor is determined by beam-voxel clipping or beam-voxel sampling. 

4.5 Algorithm description 

We now describe our algorithm for volume reconstruction using a set of images 

measured from an optical instrument. The optical instrument (e.g., auroral imager) has its 

own optical characteristics such as FOV and image resolution. The optics can have 
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distortion depending on the characteristics. For example, all-sky cameras with fish eye 

lens have extreme distortion. We don't discuss such cases but assume that the optics has 

no distortion. 

The volume reconstruction process using algebraic reconstruction methods starts 

with an empty volume where all voxels have an initial value. Then the first image with its 

camera information is used for reconstruction. It produces a new perspective projection 

and each pixel of the image produces its own beam tracing projection. A set of weighting 

factors for the linear equation is computed through the beam tracing approximation. The 

approximation can use either beam-voxel clipping or beam-voxel sampling. The iteration 

of the reconstruction updates all voxels of the volume using the set of weighting factors. 

Then the iteration steps onto the next pixel of the image. Once the first image is 

completely used, a new perspective projection using the second image is performed. The 

entire process ends with the last image frame and all voxels of the volume are finalized. 

As mentioned before, every pixel corresponds to a single iteration with the beam 

tracing approximation in order to compute weighting factors. Under the above 

assumption that there is no distortion in optics, each pixel's FOV is determined 

depending on the optical FOV and the resolution. 

Our implementation consists of two functions as shown in Figure 15. The first 

function is volume rendering with a known volume in order to verify our algorithm. This 

volume rendering is also based on the beam tracing using perspective projection 

generated by a set of virtual cameras. The generated images in different projections are 

used for volume reconstruction using measured images. The measured images can be 

either images generated from volume rendering or images measured from satellite 
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instruments. Volume rendering is the exact reverse process of volume reconstruction; 

therefore we evaluate the effectiveness of our reconstruction algorithm using the known 

volume and the reconstructed volume. 

-Volume Rendering- Measured Images. 
(Perspective Projection) -Volume Reconstruction H 

Figure 15: Verification of our algorithm using volume rendering and volume 
reconstruction 

Since computing a set of weighting factors can be used for both volume rendering 

and volume reconstruction, the two functions are concurrently processed in our test 

application. In the test application, a volume with arbitrary voxel values and a set of 

virtual camera paths are generated. Using the camera paths, both volume rendering and 

volume reconstruction are performed. But the volume rendering process is omitted in real 

applications since measured images should exist in advance. The following is the pseudo 

code of the volume reconstruction process: 
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Create an empty volume 

Initialize the volume with initial voxels (mostly O's) 

FOR each measured image 

Load camera information of this projection (angle, position, FOV, etc) 

Get the number of rays (pixels) of this projection 

FOR each pixel of this projection 

Get this ray-sum from pixel value 

Create a beam 

Compute all voxels' weighting factors 

(using beam-voxel clipping or sampling) 

Set a linear equation 

Update the voxel values of the volume using one of algebraic methods 

(ART, MART, etc) 

ENDFOR of each pixel 

ENDFOR of each measured image 
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4.6 Results 

Our application as shown in Figure 16 is built on Java and OpenGL with JOGL 

(Java OpenGL). This implementation includes volume rendering along with volume 

reconstruction in order to verify our reconstruction algorithm. Both processes use the 

beam tracing projection to obtain more accuracy. This application starts with a known 

volume and the same sized empty volume with initial voxels. Once a set of virtual camera 

paths is specified, it is able to measure the known volume observed from a particular 

camera position, which generates a new camera view (camera projection). Each camera 

has its position information including camera, reference and up vector, along with the 

FOV and the resolution. The program then starts volume reconstruction using the known 

volume and the camera paths. A new measured image at a certain position is loaded 

according to the order of the camera paths. The measured image is used for volume 

reconstruction and then voxels of the empty volume are updated by the iteration. For 

weighting factor computation, the beam tracing will use, either beam-voxel clipping or 

beam-voxel sampling. 

Figure 16: Our volume rendering and volume reconstruction application 

Figure 17 shows 323 reconstructed volumes with a representative volume slice 

obtained using different weighting factor approximations. All cameras have 27° FOV 

with 64x64 image resolution. The number of projections is 80 and the angular range is 
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120°. The original column shaped volume represents simple auroral arcs. Columns (a), 

(b), and (c) are reconstructed volumes using beam-voxel sampling with different 

sampling points (1, 23 and 43). Row (1) uses a basic additive ART, row (2) uses SART, 

and row (3) uses MART. 

Figure 18 shows a representative volume slice from reconstructed volumes in 

Figure 17 (1). Pixel (ray intensity) distributions on y=10, 11 and 12 are also given. As 

more sampling points are applied to beam-voxel sampling, the smoothness of volume 

slices increases, and it approaches that of volume slices using beam-voxel clipping. 

Figure 19 is the same test as Figure 17 except for the resolution of the volumes 

(643). Figure 20 is the same test as Figure 17 except the original volumes have gradient 

columns which is intended to represent simplified auroral arcs. Table 4 summarizes 

several volume reconstructions with different approximations, resolutions and volumes. 

Similarity of normalized voxels between the original volume and its reconstructed 

volume is given. The second similarity is a somewhat different figure-of-merit (FOM) 

function [13] defined as: 

Similarity! = I--
Y v 
^ ° (12) 

where VR and VQ are voxel values of the original and the reconstructed volume. 

40 



Original Volume 

(1) 

(2) 

(3) 

Figure 17: Different weighting factor approximation results of 32 volume (a) Beam-
voxel sampling (binary) (b) Beam-voxel sampling (23) (c) Beam-voxel sampling (43) 

(d) Beam-voxel clipping 
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(a) (b) (c) (d) (e) 

rtCV fk: 
0 10 20. 30 40 10 20 50 40 0 10 20 30 40 0 10 20 30 40 

Figure 18: Representative volume slices (z=16) and pixel distributions (y=10, 11, 12) of 
Figure 17 (1) (a) Original volume (b) Beam-voxel sampling (binary) (c) Beam-voxel 

sampling (23) (d) Beam-voxel sampling (43) (e) Beam-voxel clipping 

(a) (b) (c) (d) (e) 

Figure 19: Different weighting factor approximation results and representative slices of 
643 volume (a) Original volume (b) Beam-voxel sampling (binary) (c) Beam-voxel 

sampling (23) (d) Beam-voxel sampling (43) (e) Beam-voxel clipping 
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(a) (b) (c) (d) (e) 

Figure 20: Different weighting factor approximation results and representative slices of 
gradient 323 and 643 volumes (a) Original volume (b) Beam-voxel sampling (binary) 
(c) Beam-voxel sampling (23) (d) Beam-voxel sampling (43) (e) Beam-voxel clipping 
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323 volume #1 

323 volume #2 
(gradient) 

643 volume #1 

643 volume #2 

643 volume #3 
(gradient) 

ART 

MART 

SART 

ART 

ART 

MART 

ART 

MART 

ART 

Beam-voxel 
sampling 
(binary) 
0.36 
0.26 
0.28 
0.30 
0.36 
0.26 
0.40 
0.30 
0.30 
0.26 
0.18 
0.20 
0.53 
0.47 
0.25 
0.28 
0.60 
0.55 

Beam-voxel 
sampling 
(23) 
0.56 
0.51 
0.40 
0.46 
0.59 
0.53 
0.59 
0.56 
0.40 
0.36 
0.21 
0.25 
0.61 
0.58 
0.30 
0.34 
0.62 
0.58 

Beam-voxel 
sampling 
(43) 
0.58 
0.53 
0.41 
0.47 
0.60 
0.55 
0.59 
0.55 
0.40 
0.37 
0.22 
0.26 
0.62 
0.60 
0.30 
0.35 
0.62 
0.59 

Beam-voxel 
Clipping 

0.58 
0.54 
0.42 
0.49 
0.60 
0.55 
0.58 
0.55 
0.40 
0.37 
0.22 
0.26 
0.62 
0.59 
0.32 
0.37 
0.62 
0.59 

Table 4: Similarity and similarity2 of the original volume and the reconstructed volume 
using different approximations 

The results as shown in Figure 17 through Figure 20 indicate that beam-voxel 

clipping produces more accurate volumes than beam-voxel sampling with a small number 

of sampling points. With a large number of sampling points (more than 4 ), the result 

approaches that of beam-voxel clipping. Two different beam tracing approximations 

provide a trade-off between the accuracy of reconstruction and computational complexity. 

In addition, the results show that ART and SART produce better looking data while 

MART produces less noise as discussed before by [15, 22]. 

In beam-voxel sampling, reconstruction of N3 volume with 43 sampling points can 

be the same as reconstruction of (4N)3 with 1 (binary) sampling point. But since 

reconstruction of a higher resolution volume requires more measured images (rays) for 

the linear system of algebraic reconstruction methods, a lower resolution volume 
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reconstruction with more sampling points is more proper when acquired images are not 

sufficient. We can also use beam-voxel clipping for accuracy in any case. 

Similarity: 0.49 Similarity: 0.53 Similarity: 0.56 
Similarity2: 0.23 Similarity2: 0.33 Similarity2: 0.44 

Similarity: 0.38 Similarity: 0.58 Similarity: 0.59 
Similarity2:0.18 Similarity2:0.44 Similarity2:0.46 

Figure 21: Reconstructed volumes and the similarity results using different focal points 
(a) Original volume (b) Reconstructed volumes with a focal point outer of the volume (-

0.5) (c) Reconstructed volumes with a focal point near bottom (0.0) (d) Reconstructed 
volumes with a focal point in the volume center (0.5) 

Since e-POP allows changing the focal point, we need to understand the effect on 

our algorithm. Although, there are many conditions to be considered such as the direction 

of the orbit, the position of the target zone, and the distance between the target and the 

instrument, we simply performed three experiments with a different focal point. 

Figure 21 shows several reconstructed volumes to evaluate different focal points, 

along with two similarity results. Figure 21 (a) are the original volumes, and Figure 21 

(b), (c) and (d) are the reconstructed volume with different focal points. Suppose the 

volume coordinates are (0, 0, 0) and (1, 1, 1). Figure 21 (b) shows the reconstructed 

volume using a focal point below the volume (0.5, -0.5, 0.5). Figure 21 (c) uses a focal 

point at the bottom center of the volume (0.5, 0, 0.5) and Figure 21 (d) has a focal point 

of the center of the volume (0.5, 0.5, 0.5). Figure 21 (1) and Figure 21 (2) have different 
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orbital paths. Although these results use extreme orbital paths, it indicates why satellite 

instruments need to fix a focal point in or near the center of the target volume under the 

target acquisition mode, as described in chapter 4.1. In the case of Figure 21 (b), the 

satellite fails to cover every area of the target zone, which can cause incomplete solutions 

of algebraic reconstruction methods. 

4.7 Conclusion 

We have developed a tomographic volume reconstruction algorithm designed to 

use measured images from satellite-borne optical instruments. Our scheme can be used 

for reconstructing auroral volumes to observe the internal structure (e.g., vertical profile 

of intensity) of auroral arcs, which is not yet clearly known. On-board auroral imaging 

instruments (auroral imager) of the e-POP satellite will take a set of auroral pictures, 

which are used for auroral volume reconstruction. Auroral measurement will be 

performed under a target acquisition mode in which the instrument will have a fixed focal 

point in or near the target auroral zone. Depending on the number and the resolution of 

images taken in each orbital path, the resolution of reconstructed volumes is determined. 

Our volume reconstruction is based on algebraic reconstruction methods, which 

are iterative methods that converge to a solution as the iteration proceeds. Algebraic 

methods such as ART and MART have advantages where the angular range of projection 

is small and there are not enough computation resources, which satisfies our constraint 

that the angle of satellite-based auroral measurement is usually much less than 180°. In 

each ray-projection of algebraic reconstruction methods, a set of weighting factors as 

coefficients of the linear equation is required. We have shown that weighting factor 

approximation plays a crucial role in the quality of reconstructed results. Our 
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approximation employs beam tracing techniques in which each ray is regarded as a long 

pyramidal beam. Our beam-voxel clipping makes it possible to obtain more accurate 

weighting factors, which improves the quality of reconstructed results. In some cases 

where we do not need high quality of reconstructed volumes, beam-voxel sampling with 

fewer sampling points can be applied to the reconstruction solution in order to achieve 

faster performance. 

The volume reconstruction process starts with a set of initial voxel values and 

continues until all images acquired in a single orbital path are used. Beam tracing 

projection to compute a set of weighting factors is performed for each pixel of every 

measured image. For this projection, the image's coordinate information, including its 

target position, instrument position, and instrument roll information, is used along with 

the optical characteristics of the satellite instrument such as FOV and image resolution. 

Whenever a set of weighting factors is computed, the iterative method updates the voxel 

values using the factors and the sum of ray intensity (measured pixel value). Once all 

images are used for reconstructing the volume, the iteration ends with a set of voxel 

values that converge to the solution of its linear system. 

We have performed reconstruction tests to evaluate our algorithm. Simultaneously, 

we have also implemented volume rendering which is the reverse process of volume 

reconstruction to verify our algorithm. Beam-voxel clipping produces more accurate 

results than beam-voxel sampling with a small number of samplings. Beam-voxel 

sampling with a large number of samplings performs nearly as well as beam-voxel 

clipping. Both methods can cause costly computational time and resources. Depending on 
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the purpose of the reconstruction, different beam-tracing based approximations can be 

used. 
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CHAPTER 5 

ADAPTIVE TIME-VARYING VOLUME 
RECONSTRUCTION 

5.1 Motivation 

In the previous chapter, we have developed a 3D auroral volume reconstruction 

algorithm using tomographic imaging techniques based on algebraic methods. This 

scheme assumes that the source object (aurora) is stationary or moving extremely slowly 

during image projection in order to maximize the quality of reconstructed volumes. 

Unfortunately, in most cases, auroral arcs drift at various rates and auroral emissions 

change in shape. Even stationary aurora can change shape over time. In this chapter, we 

focus on a suitable scheme to reconstruct time-varying auroral volumes using a set of 

sequential auroral images measured from satellite-borne imaging instruments. This is 

similar to the multi auroral volume reconstruction using previous results discussed by 

[11], Unlike their method, our scheme produces a time-series of auroral volumes using 

sequential auroral images from a single satellite instrument, adapting the auroral motion 

in a period. We also evaluate our algorithm on non-stationary auroral volumes to validate 

the effects of motion on the simulation. 

According to [7], auroral motions can be classified as global-scale motions, large-

scale motions and small-scale motions. In some cases, motions and changes such as 
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fluctuations may also take place very rapidly. The speed of the global-scale auroral 

motions is less than a kilometer per second. Small-scale motions such as the motion of 

rays along auroral forms are somewhat faster (approximately tens of kilometers per 

second). More generally, the speed can vary from being nearly stationary to several 10's 

of km/s, depending on the type of aurora. 

The orbit of the e-POP satellite will be at several hundred kilometers altitude on 

average (a nominal perigee of 315 km and an apogee of 1500 km) and the optical 

instrument (FAI imager) will have an effective spatial resolution of several kilometers. 

The FAI-SV will provide coverage of 380 x 380 km at 1000 km altitude, while the FAI-

SI will provide coverage of 430 x 430 km [27]. Therefore the auroral motions usually 

seem to have little influence on the measurement of a single auroral image. However, 

multiple auroral images measured over a long period cannot be used for reconstruction if 

the speed is fast. 

5.2 Auroral measurement 

For time-varying auroral volume reconstruction, we need a set of sequential 

auroral images, all of which point to a fixed or limited focal target of an auroral zone as 

shown in Figure 22. In satellite missions for auroral measurement, the auroral imaging 

instrument will be set to a target acquisition mode. In the target acquisition mode in each 

orbital path, the instrument will point to a limited auroral zone. The volume area to be 

reconstructed should cover all auroral arcs and their motions as shown in Figure 22. In e-

POP mission, it will take approximately from 2 to 15 minutes to acquire a set of images 

in a single path, depending on the precise altitude of the satellite [27]. 
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Figure 22: Time-varying auroral motion and satellite measurement 

As mentioned before, in auroral measurement using satellite imaging instruments, 

several constraints must be satisfied including the number and resolution of measured 

images, and the focal point and angular range of measurements in the orbital path. These 

factors determine the resolution and the quality of reconstructed volumes. Each 

reconstructed volume is generated using a sequence of images from a single orbital path. 

After auroral image acquisition, we need to define an auroral zone (auroral volume) in 

the satellite's coordinate system. The volume zone should cover all auroral emissions and 

their motions, which means there is no significant light intensity outside the volume. 

Rectangular shaped volume is usual, but not necessary. Variable voxel size is also 

possible depending on the distribution of the target. For instance, we can apply higher 

resolution to the vicinity of the auroral arcs. 

5.3 Method 

Our previous volume reconstruction assumes auroras are stationary or slow-

moving, and auroral emissions have little fluctuation during measurement. When aurora 

arcs drift or change rapidly, the previous scheme is not appropriate. We introduce a time-
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varying volume reconstruction algorithm using time-varying consecutive auroral images 

from a single orbital path. When enough images for single volume reconstruction are 

acquired, a proper minimum projection angle is the only constraint to be considered for 

volume reconstruction. This sequence defines a minimum projection angle as shown in 

Figure 23. This angle represents a compromise. In theory, a wide angular range offers 

better reconstruction results. But there is a possibility that the target zone (aurora arcs and 

emission) is not stationary during measurement in such wide projections. In this case, a 

lower projection angle would be more appropriate. This trade-off raises a question of how 

much an appropriate angular range is. According to [21], it is possible to obtain a 

reasonable result where the angular ranges of the projections are 50 - 70° through 

algebraic reconstruction methods. In our application, there is no absolute answer since the 

reconstruction performance varies depending on the auroral motion and the measuring 

time. We explore a minimum projection angle to achieve acceptable auroral volumes 

reconstruction. 

Figure 23: Minimum projection (measurement) angle 

As shown in Figure 24, the scheme starts to reconstruct a volume using some 

consecutive images where auroras are regarded as "almost stationary". The image set 

used for each reconstruction should satisfy the minimum angular range of projection. 
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Once the first volume reconstruction is completed, the next volume is reconstructed using 

the next sequential images. These images are overlapped between two sequential volumes. 

For example, as shown in Figure 24, the first volume reconstruction uses the images from 

frame 1 to frame 7, the second volume reconstruction from frame 2 to frame 8, and so on. 

The time stamp of each volume is equal to the average time of measured images used for 

reconstructing the volume in order to represent the middle of the actual motion of the 

volume. 

Figure 24: Time-varying multi-volume reconstruction in a single orbital path 

The number of volumes available for reconstruction is determined by the number 

of acquired images and the projection angle. As the angular range decreases, more 

reconstructed volumes can be obtained. Since reconstructed volumes are low in quality 

using such small projection angles, it offers another trade-off. Therefore we need to 

consider the number of time-varying volumes as well as the projection angle, along with 

the motion of the source. Because sufficient images from FAI-SI will be acquired in each 

orbital path, a large number of volumes can be generated from a limited range of 

projections. In some cases, almost hundreds of 643 time-series volumes are expected to 

be generated using this scheme. 

In this volume reconstruction with algebraic reconstruction methods start with a 

set of initial guesses for unknown voxel values. 
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A prior knowledge for the voxel values can be incorporated into the 

reconstruction methods [21, 25]. A better guess can make the reconstruction converge to 

the solution faster, which may affect the quality or the characteristics (e.g., contrast) of 

reconstructed volumes. Such a method to make use of a prior knowledge for the 

reconstruction method was attempted by [11]. Auroral images measured from several 

ground-based cameras were regarded as a time-sequence of a moving object. The shifted 

values of the first result were used as a first estimate for all other reconstruction. 

Therefore in the reconstruction procedure, a volume's initial values can be set to the 

previous volume's final values for fast convergence as shown in Figure 25. If such a 

motion (shifting) knowledge is not available, the reconstructed result can be worse. 

[: :VQIuirie1y' Re^rgtfuptipfi :)|—, 

, ^et-voxels as initial values 

l - » f ; Volume 1*2 ̂ epnsfructlpfi;; -|—, 

, SetvoxetS'as initial values 

'-»») Volume I* 3 Reconstruction | 

Figure 25: The voxels of the previous reconstructed volume as initial guesses for the next 
reconstruction 

For this method, the motion of auroras should be defined through the prior 

analysis and other measurements. The degree of auroral motion determines the number of 

images available and the angular range. Since the number of images determines the 

number of iterations of algebraic methods, it affects the maximum resolution of 

reconstructed volumes. If the angle is less than the minimum required angle (e.g., 60°), it 

is not appropriate to proceed on the reconstruction process. Otherwise, the resolution of 

volumes to be reconstructed is determined. Depending on the number of available images 

and angle, time-varying volume reconstruction is performed. Figure 26 describes the 

major steps of this scheme. 
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Defining auroral motion 
Determining 

max angular range 
Determining 

volume resblutior 
Time-varying volume 

reconstruotlor 

If less than mm. required angle (e.g., 6<J °) 

No valid volume reconstructior 

Figure 26: Preprocess of time-varying auroral volume reconstruction 

5.4 Results 

Figure 27 shows 643 reconstructed volumes using different projection angles with 

the basic additive ART. All cameras have 27° FOV with 64x64 image resolution. The 

number of iterations is 100. Table 5 summarizes the similarity between the original and 

the reconstructed volumes. The similarity increases as the angular range increase. 

Although it doesn't offer a firm answer about what the suitable angle for projection 

should be, the quality of reconstructed volumes fairly improves when the projection angle 

becomes around 100-120°. However 60° projection still produces a reasonable result. 

Original Volume #1 

(a) (b) 

Original Volume #2 

(c) (d) (e) (f) 

Figure 27: Original and reconstructed 64 volumes using ART with different projection 
angles (a) 60° (b) 80° (c) 100° (d) 120° (e) 140° (f) 160° 
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Volume #1 
Volume #2 

60° 
0.51 
0.20 

80° 
0.56 
0.26 

100° 
0.57 
0.31 

120° 
0.62 
0.37 

140° 
0.62 
0.40 

160° 
0.62 
0.43 

Table 5: Similarity between the original and reconstructed volumes above 

In order to test our time-varying volume reconstruction, we simulated the motion 

of auroral arcs that move at the speed of approximately 0.1 km/s as shown in Figure 28. 

We assume that the satellite instrument for the auroral measurement takes sufficient 

auroral images for 15 minutes (maximum apogee) in an orbital path. The angular range of 

projection (measurement) is 180°, similar to Figure 22. The size of the volume to be 

reconstructed is 300 km x 300 km x 300 km and the resolution of the volume is 643. The 

only constraints to be considered are the motion of the auroras and the projection angle. 

Figure 29 shows several reconstructed volumes with different projection angles (180°, 

120°, 100°, 80° and 60°) at different time stamps (300, 350, 400, 450, 500 and 550 sec). 

Since there is only a single volume available using 180° projection angle, any volume at 

other time stamps is not applicable as shown in Figure 29 (2). On the other hand, in the 

case of volume reconstructions with 120° projection angle, reconstructed volumes 

available are from 300 sec to 600 sec. For the same reason, reconstructed volumes 

available with 60° projection angle are from 150 sec to 750 sec. 

Table 6 summarizes the similarity between the original and the reconstructed 

volumes at a certain time. Generally, reconstructed volumes with a small projection angle 

tend to be more similar to the original volumes at the corresponding time. This result 

shows that our time-varying volume reconstruction scheme enables the reconstruction 

method to be adaptive to the motion of the original volume. Reconstruction experiments 

when auroral motion opposite to satellite motion produced similar results. 
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Original Volume at Original Volume at 
00:00:00 (0 sec) 00:15:00 (900 sec) 

Figure 28: Time-varying volume reconstruction test 

(a) (b) (c) (d) (e) (f) 

Figure 29: Time-varying reconstructed volumes using ART (a) 00:05:00 (300 sec) (b) 
00:05:50 (350 sec) (c) 00:06:40 (400 sec) (d) 00:07:30 (450 sec) (e) 00:08:20 (500 sec) 

(f) 00:09:10 (550 sec) (1) Original volumes (2) A reconstructed volume with 180° 
projection angle (3) Reconstructed volumes with 120° projection angle (4) 

Reconstructed volumes with 100° projection angle (5) Reconstructed volumes with 80° 
projection angle (6) Reconstructed volumes with 60° projection angle 
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Time 

Osec 
50 sec 
100 sec 
150 sec 
200 sec 
250 sec 
300 sec 
350 sec 
400 sec 
450 sec 
500 sec 
550 sec 
600 sec 
650 sec 
700 sec 
750 sec 
800 sec 
850 sec 
900 sec 

Position 

0° 
10° 
20° 
30° 
40° 
50° 
60° 
70° 
80° 
90° 
100° 
110° 
120° 
130° 
140° 
150° 
160° 
170° 
180° 

Projection Angle 
180° 
-0.30 
-0.30 
-0.25 
-0.17 
-0.08 
0.01 
0.10 
0.20 
0.29 
0.39 
0.47 
0.41 
0.26 
0.13 
0.03 
-0.07 
-0.15 
-0.22 
-0.28 

120° 

0.32 

0.25 (0.25) 

100° 

0.24 

0.44(0.19) 

0.48 (0.32) 

80° 
• 

0.19 

0.34 (0.26) 
• 

0.55 (0.37) 

0.34 (0.27) 

• 

60° 
• 

0.08 

0.26 (0.25) 

0.45 (0.40) 

0.52 (0.48) 
• 

0.28 (0.28) 

• 

Table 6: Similarity changes between time-varying original and reconstructed volumes 
using ART 

Figure 30 shows different time-varying volume reconstruction results, along with 

a representative volume slice (z=2). While the motion of the source moves slowly in the 

previous reconstruction, the speed of this source is much faster. In addition, the direction 

of the motion is perpendicular to the orbital plane of the measurement (image projection). 

The measurement takes 3 minutes (around perigee) to acquire a sequence of images with 

an angular range of 180°. The resolution of the reconstructed volumes is 323. We also 

assume that the number of measured images is sufficient for each reconstruction 

procedure. Therefore the only constraints to be considered are the motion of the auroras 

and the projection angle. Table 7 summarizes the similarity between the original and the 

reconstructed volumes at a certain time. Similar to the previous result, it also indicates 
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that reconstructed volumes with a small projection angle (60°, 80°) adapt to the motion of 

the original volume. 

(a) (b) (c) 

(1) 

(2) N/A N/A 

(3) 

(4) 

(5) 

JF**** 

\S) 
Figure 30: Original and reconstructed volumes with a representative volume slice (z=2) 

(a) Volumes at 50 sec (b) Volumes at 90 sec (c) Volumes at 130 sec (1) Original 
volumes (2) A reconstructed volume with 180° projection angle (3) Reconstructed 

volumes with 100° projection angle (4) Reconstructed volumes with 80° projection angle 
(5) Reconstructed volumes with 60° projection angle 

Time 

50 sec 
90 sec 
130 sec 

Position 

50° 
90° 
130° 

Projection Angle 
180° 
-0.41 
-0.50 
-0.51 

100° 
-0.18 
-0.07 
-0.15 

80° 
-0.05 
0.07 
0.00 

60° 
0.12 
0.20 
-0.03 

Table 7: Similarity changes between time-varying original and reconstructed volumes 
using ART 
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5.5 Conclusion and future work 

In satellite-based auroral measurement, the optical imaging instrument will have a 

fixed focal point relative to the target auroral zone to take a set of sequential images. It 

will take approximately from 2 to 15 minutes to take a set of images in a single orbital 

path of the e-POP satellite. During that time, auroras can move far enough during the 

image acquisition that regular volume reconstruction methods may not be satisfactory. 

Our time-varying volume reconstruction scheme addresses this case, reconstructing time-

varying volumes that adapt to the motion of auroras. This scheme performs multi volume 

reconstruction processes using some sequential images measured within a small 

projection angle where auroras are considered "almost stationary". The images used for 

each volume reconstruction are overlapped. The time of each reconstructed volume 

becomes the average time of images used for the reconstruction procedure. 

As shown in Figure 27, the angular range of projection (measurement) has 

influence on the quality of reconstruction. Although a wider projection angle (100-120°) 

achieves more accurate results, a small projection angle (60°) still offers acceptable 

results and is less sensitive to motion. We have implemented the time-varying 

reconstruction scheme to evaluate our algorithm using measured images of known 

volumes that move over time. From the results, reconstructed volumes with a small 

projection angle are more likely to be similar to the original volumes at the corresponding 

time. However, an adequate projection angle varies, depending on conditions that include 

the number of measured images, the target motion, and the precise orbital direction of the 

satellite. 
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We need to perform more experimentation with different speeds, directions, and 

shape changing to better identify conditions for which our algorithm is useful. When 

auroras move too fast during measuring within such a small projection angle, this 

reconstruction scheme is not appropriate. If the motion of the volume is predictable, we 

can shift or resize the volume so that each voxel (ray intensity) adapts to the motion, a 

suggestion made by [11] in the context of ground-based auroral tomography. Figure 31 

describes the idea of time-varying reconstruction along with adaptive volume positioning. 

Auroral Volume 

fUllH —> wHV—' m^n 

X X 

1=2 1=3 1=4 

Time 

Figure 31: Time-varying adaptive volume positioning 

In addition, we can apply parallel computing to this time-varying reconstruction 

method since volume reconstruction requires costly computational time and system 

resources. This solution can reconstruct multiple volumes simultaneously as shown in 

Figure 32. Each process performs sequential volume reconstructions where some image 

projections are overlapped. Weighting factor computation of the overlapped measured 

image can be cached for better performance. 
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Volume I- • Reconstructior | *\ Voluima t=2 Reconstructior | »^ Volume 1=3 Reconstructior 

Volume 1=11 Reconstructior | *\ Volume t* 12 Reconstructior ) H Volume 1° 13 Reconstructior 

Volume!'2" Reconstructior [ ») Volume 1=22 Reconstructior | *\ Volume 1=23 Reconstructior 

v ; 
Y 

Weighting Factors Caching 

Figure 32: Parallel time-varying volume reconstruction 
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