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ABSTRACT 
Controlled Transitions Between Orbits in Nonlinear Systems 

by 
ERICA G. JOHNSON 

University of New Hampshire, September, 2008 

In recent years, several methods of controlling chaotic systems have been developed 

and implemented. The main idea in each method is to stabilize on an orbit around a 

chaotic attractor, which generally has a dense set of unstable periodic orbits. One such 

control scheme repeatedly applies a sequence of controls to a double scroll oscillator. 

Most control sequences result in the stabilization of an approximate unstable periodic 

orbit regardless of initial condition. These stabilized periodic orbits are called chaotic 

unstable periodic orbit-lets (cupolets). Due to the nature of cupolets, it is possible 

to switch between cupolets, and thus periodic orbits, by changing from one control 

sequence to another. Switching between orbits is a continuous and smooth transition, 

but may involve significant chaotic transients. 

We will present three methods of transitioning between cupolets and suggest some 

applications of this procedure. The first method involves applying the second control 

sequence at a location on the first orbit. The second method is a zero-length tran

sition which can be used if two cupolets intersect. The third method is applicable 

when transitioning between non-intersecting cupolets. This method switches between 

intermediate cupolets in an efficient controlled manner in getting from one cupolet to 

the next. 

x 



CHAPTER 1 

BACKGROUND 

1.1 Introduction 

In tracking controlled transitions between orbits derived from nonlinear systems, 

it is first imperative to understand how these orbits are created. In this chapter we 

will provide the necessary background information about chaotic nonlinear systems. 

We will also discuss various methods of controlling chaotic systems which ultimately 

lead to the creation of chaotic unstable periodic orbit-lets, which are described in full 

in Chapter 2. 

We are concerned with systems of nonlinear differential equations of the form 

'x = F(x) 

where x is a finite vector and F(x) is a vector of functions which depend on x. A 

system is considered nonlinear if there exists any non-linear terms. The system of 

differential equations 

x=Fi(x,y) = x2+y 

y=F2(x,y)=x + xy 

is considered nonlinear due to the term x2 in Fi(x,y) and the term xy in F2(x,y). In 

working with systems of differential equations which are nonlinear, it is often possible 

1 
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to determine characteristics about the system such as the location of fixed points, 

where 

xo = 0, 

stable orbits, and unstable orbits. Unfortunately, it is often not possible to determine 

the exact solution x. 

Although the exact solution of a nonlinear system of equations cannot always be 

determined, an approximation of the solution can be found using numerical integra

tion. Numerical integration uses known values of the solution to estimate subsequent 

values. One method of numerical integration is fourth-order Runge-Kutta defined as 

xn+i =xn + -(ki + 2k2 + 2k3 + fc4), o 

where k\ =F(xn)At 

k2 =F(xn + -h)At 

h =F(xn + i ^ ) A t 

kL=F(Sn + k3)At. 

Runga-Kutta results in an accurate approximation to the solution which does not 

require an extremely small time step At. 

The approximation of the solution to the nonlinear system of equations allows one 

to examine long term behavior of the system. With the advancement of technology in 

the early 1990's, it was finally possible to plot the trajectories of the nonlinear systems 

from a variety of initial conditions in a reasonable time frame. Researchers were able 

to analyze nonlinear systems of differential equations whose long-term effects were 

not known otherwise. 



In examining these nonlinear systems of differential equations, it became clear 

that for some systems, it is not possible to predict long term behavior independent 

of initial condition since trajectories from initial conditions which are very close can 

vary immensely as time goes on. These systems are said to be chaotic where the chaos 

is defined as "aperiodic long-term behavior in a deterministic system that exhibits 

sensitive dependence on initial conditions" [10]. This means the trajectories of the 

nonlinear system are governed heavily by the initial condition and nearby trajectories 

separate exponentially fast. These trajectories also do not settle down to fixed points 

or stable periodic orbits as t —> oo. 

There are some chaotic systems which which have a strange attractor. This is 

an attractor for which any trajectory starting in the closed set around the attractor, 

stays there for all time but never stabilizes onto a periodic orbit. In examining the 

Lorenz system 
dx 
Tt=a{y~x) 

dy . . 
-lt=x{P-z)-y 

dz 
- =xy - (5z 

it is clear there is a strange attractor. Around each attractor in the Lorenz system 

there is a dense set of unstable period orbits. The general shape of the Lorenz system 

is a butterfly and can be seen in Figure 1-1. 

1.2 M e t h o d s of controll ing chaos 

In working with systems which are naturally chaotic, it is often desirable to sta

bilize the system. Some systems which have been stabilized using chaotic controls 

include turbulent fluids, chemical reactions, and cardiac tissues. The first method of 
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(a) (b) 

5 10 15 20 

(c) (d) 

10 20 30 

Figure 1-1. (a) The butterfly effect of the Lorenz system and its projections on to 
(b) x — y plane, (c) x — z plane and (d) y — z plane. 
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controlling chaos we would like to discuss is the OGY method [7]. To control chaotic 

behavior in a nonlinear system, the OGY method applied small perturbations to an 

available parameter in a nonlinear system with a chaotic attractor. Since there is a 

dense set of unstable periodic orbits around the attractor, OGY did not believe that 

making small perturbations to the system would create new orbits whose properties 

would be very different from existing orbits. 

In implementing the OGY method, it is first necessary to determine the low-period 

unstable periodic orbits and choose one which results in a desired performance of the 

system. In controlling chaos using this method, small perturbations are made at each 

time step to direct the trajectory so that it remains on the desired periodic orbit. 

If the perturbations are continually applied it is possible to remain on the periodic 

orbit, and thus the unstable periodic orbit becomes a stable periodic orbit. 

The next method of controlling chaos, developed by Troy Shinbrot, uses small 

perturbations on an available parameter to direct the trajectory from an arbitrary 

initial state to a desired periodic orbit[8]. Shinbrot demonstrated this method by 

successfully reaching a targeted orbit in a one-dimensional map. The section of the 

trajectory from the initial condition to where the system stabilizes onto the desired 

orbit is called a transient. 

The trajectory of a chaotic system is complicated and unpredictable. It is possible 

to exploit the unpredictable behavior of chaotic system to practical applications such 

as secure communication. In 1992, Kevin Cuomo and Alan Oppenheim used the 

idea of synchronized chaos to transmit secret messages [2]. To do so, they masked 

the message with chaos on the sending end and informed the person receiving the 
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message how to subtract the chaos and listen to the secret message. In this way, the 

code can only be decoded only if the exact initial condition which governs the chaos 

in the message is known. A person would not be able to guess an initial condition 

which would match the chaos and thus would not be able to subtract off the noise 

and determine the underlying message. 

Another method of communicating using chaos was developed by Hayes, Grebogi, 

and Ott called the HGO method. This method utilizes chaotic controls which steer 

the trajectory of the system to follow a desired path and encode the message in the 

path by using the associated symbolic dynamics. Each character in the symbolic 

dynamics represents an attractor for which the trajectory loops around. 

The HGO method first examines a free-running oscillator of the nonlinear system 

and records the value of the coordinates through a set of Poincare surfaces. From 

each point on the Poincare surface, the system is allowed to run free and the first N 

bits of the associated symbolic dynamics are recorded in a coding function r(x). 

To use the HGO communication scheme it is necessary to determine the grammar 

of the system. For each nonlinear system, only certain symbolic combinations are 

possible and thus to encode a message, the grammar must be known. The desired 

code is then constructed using the grammar of the system. 

To encode a message, HGO developed an algorithm in which they would start at 

a point x = xa on a Poincare surface and store the corresponding r(xa) in a code 

register to some chosen length N. The system is then set free and continues until it 

intersects with the next Poincare surface at x = x^. At this point the code register 

is shifted left one bit, leaving the right most bit in the register empty. The right 
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most bit of the code register is then filled with the first bit in the desired message. 

This code registry is then compared with the symbolic dynamics associated with the 

current location of the trajectory, x = Xb- If the code register and r(xb) are the same, 

the trajectory continues though Xb with no change. If the last bit in the code register 

is different than that of r(xb), the trajectory is shifted to the closest point on the 

Poincare surface, x = x'b such that r(x'b) is equal to the code register. For each 

successive pass through a Poincare surface, the code register is shifted, the desired 

bit from the message is inserted, and the trajectory is adjusted accordingly. 

The adjustments made to the system, which correspond to shifting the desired 

code through the code register, are the controls made to the nonlinear system. By 

implementing the controls as described above, HGO ensured that "after a small tran

sient, the dynamics of the oscillator are locked to the information source and the 

symbolic dynamics of the oscillator is always iV bits behind the information source." 

UNH Professor Kevin Short, along with Dr. Andrew Parker, adapted a method 

in which they use a control scheme similar to that of HGO. They periodically ap

plied short control sequences to a double scroll oscillator with two Poincare surfaces. 

They discovered that the trajectories in the chaotic system eventually closed in on 

themselves, creating periodic orbits. These periodic orbits are called chaotic unstable 

periodic orbit-lets (cupolets) are are described in full in Chapter 2. 

In this thesis we will describe another way of controlling chaotic systems which 

will utilize our knowledge of cupolets and will result in a way to transition between 

cupolets in a controlled and efficient manner. We will develop a way in which we 

can steer the trajectory of a system from one chaotic unstable periodic orbit-let to 



8 

another by applying minimal controls to the system. In Chapter 2, we describe the 

method of creating cupolets and describe their properties. In Chapter 3, we propose 

several methods of control schemes which result in the switch from one cupolet to 

another. In Chapter 4, we describe a control scheme which results in controlled 

transitions between any two chaotic unstable periodic orbit-lets. These results may 

eventually have applications in the control of nonlinear systems, such as those which 

occur in chemical reactions, fluid flow, weather events, and maneuvering objects in 

outer space. 



CHAPTER 2 

CUPOLETS 

2.1 Introduction 

In this chapter, we will describe a control scheme which results in chaotic stabi

lization of (appxorimate) controlled unstable periodic orbit-lets (cupolets). We will 

then suggest some applications of cupolets and discuss some important properties. 

The method of stabilizing the cupolets is adapted from the communication scheme 

developed by Hayes, Gerbogi, and Ott, (HGO) [4], described in Chapter 1. The HGO 

method was generated from a circuit, see Figure 2-1 (a), whose governing differential 

equations result in a double scroll oscillator. The governing equations are linear ex

cept for the internal function g(v) which is explicitly shown in Figure 2-1 (b). The 

result of the non-linear term in the double scroll oscillator is a system which is highly 

sensitive to initial conditions and exhibits aperiodic long-term behavior. A system of 

this nature is called a chaotic system. 

2.2 Generating Stabilized Periodic Orbits 

The differential equations governing the double-scroll oscillator are 

Civci = G(vc2 -vCl)-g{vCl)i 

C2vC2 = G(vCl - vc2) + h, C2-1) 

LiL = -vc2, 

9 
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V, c2 

w-

(a) 

Figure 2-1. Double scroll oscillator, 
resistance g. 

~~-\2Jo 

A AR= 

^ B 

-B P 

g(vR) 

(b) 

(a) Electrical schematic and (b) Nonlinear 

where 

miv, if — Bp < v < Bp, 

9{v) = I m0(v + Bp) - rmBp, if v < -Bp, (2.2) 

m0 (v — Bp) + miBp, if v > Bp, 

where C\ = | , C2 = 1, L — j , G = 0.7, m0 = —0.5, mi = —0.8, and Bp = 1. 

The attractor associated with the double scroll equations is composed of two loops 

connected by a transition region. A typical trajectory of the system can be seen in 

Figure 2-2. 

The first step in creating cupolets is to define a Poincare surface through each 

loop of the attractor. The Poincare surface is a control half-plane starting at the 

center of the loop and defined by 

iL = GF,\vCl\<F, 
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Figure 2-2. A typical trajectory of the double scroll oscillator projected on the x-y 
plane 

where F = p ^ ? ~ • For record keeping purposes, the two planes are labeled 0 and 

1, and can be seen in Figure 2-3 (a). 

The chaotic system is allowed to run freely and the locations at which the trajec

tories of the system intersect the half-planes are recorded. The result is a series of 

points which can be approximated, using a least squares fit, to a line, see Figure 2-3 

(b). 

Each line is then partitioned into 2000 sections and the area between each partition 

is called a bin. The chaotic system is then run from the center of each bin without any 

controls. The sequence of lobes through which each trajectory passes is recorded using 

0's and l's. This sequence is stored in a coding function, r(x), where x is the initial 

condition from which the sequence began. For each x, the associated binary sequence 

al ,a2, a3,.. . is mapped to the binary decimal 0.ala2a3..., where each a represents 

either a 1 or a 0, and is defined by 
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5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 

(a) (b) 

Figure 2-3. Poincare Surface, (a) Passing through the center of each attractor and 
(b) Least square approximation of points through control surface 

n = l 

The coding function can be seen in Figure 2-4 . 

In generating the cupolets, the coding function is truncated to a length N and 

defined by 
N 

n = l 

Given any point xQ on the line passing through the Poincare surface, there exists a 

neighborhood Ns(x0), 5 > 0 around x0 such that for every point x E NS(XQ), X and XQ 

have the same symbolic sequence for N times around the attractor. Therefore, since 

all x E Ns(x0) share the same symbolic sequence, they also have the same value of 

the coding function r(x) for some length N. 

Since there is a neighborhood around every x0 on the Poincare surface with the 

same rjv(x), there is also a set outside the neighborhood which differs from rN(x). 
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0.7 

Figure 2-4. Coding function r(x) 

Therefore, there exists a point #i, such that XQ and x\ pass through the same lobes 

N — 1 times around the attractor and differ only at the N**1 lobe. This means that 

VM(XO) and TN(XI) are the same except for the last digit. The point Xi can be 

explicitly found for any x0 along the line passing through the Poincare surface by 

^JV(^O)
 _rwOci) = 2~N. This procedure is done for every bin on each Poincare surface. 

Each time, the center of the bin is denoted by XQ and the point x\ is found such that 

it is the center of the closest bin on the same lobe whose TN(X0) — TN(XI) = 2~N. 

This information is stored in a matrix called Muns. 

The scheme adapted by Parker and Short requires a control sequence, composed 

of 0's and l's, to be sent into the system. A simulation is run and is able to progress 

freely until it passes through a Poincare surface. At this point, a microcontrol is 

applied and the trajectory of the system is shifted to the center of the bin through 

which it passed. Once the trajectory is in the center of the bin, the first control in 

the control sequence is applied. If the control is a 0, the trajectory is free to continue 



14 

without any additional controls. If the control is a 1, the trajectory of the system is 

shifted to the nearest bin, which results in a trajectory which will be on a different 

lobe after N loops around the attractor. The procedure of applying a microcontrol, 

which shifts the trajectory to the center of the bin, and then implementing the next 

control in the control sequence is applied repeatedly to the system. A 16 bit control 

sequence is continually repeated and in almost all cases, the trajectory closed up on 

itself. In some cases, the 16 bit control sequence, if applied from a different initial 

condition, did not produce the same orbit. These sequences were discarded. The 

remaining 16 bit control sequences stabilize onto unique chaotic unstable periodic 

orbit-lets regardless of initial condition. 

2.3 Application and Properties of Cupolets 

The technique of creating cupolets, described in Section 2.2, is applied using 

16 bit control sequences, the result of which is approximately 8,800 cupolets. It 

has been shown that cupolets are useful for several applications including secure 

communications, data and music compression, and image processing. These are the 

applications which have been investigated thus far, but someday the understanding of 

cupolets could be used to develop control methods for other nonlinear systems such 

as fluid flow, weather events, and maneuvering objects in outer space. 

There are several properties about cupolets which need to be described to ensure 

it is indeed possible to transition between cupolets. The first property is that every 

initializing cupolet is generated independently of initial condition. This means it is 

possible to transition from one cupolet to the next by simply changing the control 
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sequence. Since cupolets are generated independent of initial condition, it is possible 

to begin sending in the controls for the second cupolet at any location on the first 

orbit and the dynamical evolution will stabilize onto the second orbit. 

The second important property is that every cupolet has microcontrols applied to 

it. The microcontrols shift the trajectory to the center of every bin through which it 

passes. The microcontrols not only minimize the accumulation of round off error, but 

also suggest that some cupolets will intersect. This intersection will occur exactly in 

the center of a bin. If we are transitioning between two cupolets which pass through 

the same bin, it is possible to switch from one cupolet to the next at their intersection 

by sending in the second control sequence. 



CHAPTER 3 

SWITCHING BETWEEN INTERSECTING CUPOLETS 

3.1 Introduction 

In this Chapter, we will discuss different methods of transitioning between cupo-

lets. The first transitioning technique, described in Section 3.2, is a method which 

will allow for a transition between two cupolets which do not intersect. We then 

define a metric which allows us to measure the length of the blind transitions. In 

Section 3.3 we describe a method for transitioning between cupolets which intersect. 

3.2 Blind Transition 

In this section we will describe a method which can be implemented to transition 

between any two cupolets. The blind transition utilizes the property, described in 

Section 2.3, that cupolet creation is independent of initial condition. In developing 

the blind transition between two cupolets, a library of cupolets is used. This library 

contains all 8,800 cupolets in separate files, each containing the x, y, and z coordinates. 

The algorithm for switching from any cupolet A to a cupolet B is as follows. First, 

the control sequence for cupolet A is sent into the dynamical system which creates 

the cupolet as described in Section 2.3. When cupolet A has completed at least one 

period, the control sequence governing cupolet B, is sent into the system. We begin 

with our original blind transition which sends the control sequence for cupolet B into 

16 
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Figure 3-1. Continuous switch from the solid line, cupolet 'COO', to the dotted line 
of the transient 

the system at the point on cupolet A which is closest to the attractor on the first 

lobe. This location is chosen for our convenience. The original blind transition leaves 

the first cupolet in a continuous manner as seen in Figure 3-1. The control sequence 

for cupolet B is then periodically repeated until the transition stabilizes onto cupolet 

B (see Figure 3-2) and completes one entire period. We define the original blind 

transition to be the section of the transition between the point it leaves the cupolet 

A to the point it stabilizes onto cupolet B. 

The original blind transition works in transitioning between every pair of cupolets. 

Unfortunately, since the original blind transition is set free in the non-linear system, 

there is no way of predicting how long the transition will be. In an effort to predict the 

length of a blind transition, we began experiments in which we left the first cupolet 

from different locations around the orbit. To do this, it was first necessary to find 

the exact bins through which each cupolet passes. Due to the way the cupolets are 

created, where each cupolet passes through the center of each bin, this is easily done 
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(a) (b) 

Figure 3-2. Blind Transition (a) the blue orbit is cupolet '00' and the red orbit is 
cupolet '01' (b) the green line is the transition 

by tracing the route of each cupolet. When a cupolet passes through a control plane, 

the data recorded includes control implemented, the bin number, and corresponding 

lobe. Once this is done for every cupolet, we initiated our blind transition from each 

bin (which has a corresponding lobe) on the first orbit. Our initial guess was that 

transitions initiated from bins which were close to the second orbit would be shorter, 

but we could not detect a correlation between the two variables. 

It is important to note the cyclic nature of the control sequence. To remain 

stabilized onto a cupolet, the control sequence is periodically repeated. For our second 

experiment we sent in every cyclic permutation of the second control sequence into 

the system beginning from every bin on the first orbit. Again, we were unsuccessful 

in trying to predict a blind transition which would be shorter than the rest. What 

we did discover however was that in some cases, the length of the transition between 

two cupolets was zero. This occurred when the correct cyclic permutation of the 
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second cupolet was sent in from a bin through which the first and second cupolet 

both passed. We describe these transitions in more detail in Section 3.3. 

It is necessary to determine a method of measuring the transitions so they can be 

compared. We have chosen to measure the length of the transition by the number of 

loops around the attractor the transition must make in getting from one cupolet to 

the next. We begin counting the loops after leaving the first cupolet and include the 

final loop where the transition stabilizes onto the second cupolet. It is important to 

note that there is more than one length for each pair of cupolets since it is possible to 

initiate the transition from anywhere on the first orbit with any cyclic permutation 

of the second control code. 

The length, Csimd, of the blind transition between any two cupolets, is a map 

£<Blind '• L X B X C —> K 

where L is the lobe from the initial point on the first orbit, B is the bin from the initial 

point on the first orbit, C is the cyclic permutation of the second control sequence 

sent into the system, and E is the set of all real numbers. The length, CBUndj will n ° t 

necessarily be the same for different bins on the first cupolet and for different cyclic 

permutations of the second control sequence. We did several experiments where we 

compared the length of original blind transition, the blind transitions from different 

bins with different cyclic permutations of the second control sequences, and the con

trolled transition described in Section 4.2. The comparison of these transitions can 

be seen in Chapter 5. 
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3.3 Switchable Cupolets 

The next transitioning scheme is implemented if two cupolets intersect. As stated 

in Section 2.3, it is possible for two cupolets to intersect if they pass through the 

same bin. As mentioned in the Section 3.2, if a blind transition is initiated in the 

bin through which two cupolets intersect and the correct cyclic permutation of the 

second control sequence is implemented, the length of the blind transition is zero. We 

think of this special blind transition as a simple switch between the two cupolets and 

say the cupolets are "switchable." 

To determine if two cupolets are switchable, it is first necessary to examine the 

exact bins through which each cupolet passes. A quick comparison between the two 

sets of bins is done to see if any are the same. If the two cupolets pass through at 

least one bin which is the same, the next step in switching between two cupolets, let's 

say cupolet A and cupolet B, is to determine which cyclic permutation of the control 

sequence for cupolet B should be sent into the system. To do so, the bin, lobe, and 

control information about cupolet B is analyzed. It is important to remember the 

cyclic nature of the control sequence. To remain stabilized onto a cupolet, the control 

sequence is periodically repeated. At every point where the cupolet passes a control 

plane, the same control is implemented. Thus, to switch from cupolet A to cupolet 

B, in a specific bin, the correct cyclic permutation of the control sequence must be 

implemented to ensure the trajectory stabilizes onto cupolet B. 

Let us assume that the bin, lobe, and control information for some cupolet A and 

cupolet B is shown in Table 3.1. In this case, the control sequence for cupolet A is 

'100100' and the control sequence for cupolet B is '101100'. 



Cupolet A Cupolet B 
Bin 
133 

832 

245 

45 

1522 

1943 

133 

Lobe 

1 

1 

0 

0 

1 

0 

1 

Control 

1 

0 

0 

1 

0 

0 

1 

Bin 
1023 

1684 

1987 

579 

133 

34 

1023 

Lobe 

1 

0 

1 

1 

1 

1 

1 

Control 

1 

0 

1 

1 

0 

0 

1 

(a) (b) 

Table 3.1. The information about bins, lobes, and controls (a) for cupolet A control 
sequence '100' and (b) for cupolet B with control sequence '101100' 
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A quick scan of the bin and lobe information between cupolet A and cupolet B 

reveals that the two cupolets are in fact switchable, since they both pass through 

bin 133 on lobe 1. Thus, the location which will result in a zero-length transition 

between cupolet A and cupolet B is bin 133 on lobe 1. To switch between the two 

cuoplets, the correct cyclic permutation of the second control sequence should be 

sent while in bin 133 on lobe 1. Referring to Table 3.1, we can see that cupolet B 

requires a "0" control in bin 133, and it corresponds to the underlined control in the 

control sequence for B: '101100'. There is only one cyclic permutation of the control 

sequence which will result in instantaneous stabilization onto cupolet B. That cyclic 

permutation begins with the underlined control in the sequence and continues the 

control sequence. The correct permutation of the control sequence is '001011' and 

the length of this transition £.g/jnd(l, 133,001011) = 0. 

The reason only one permutation of the control sequence will work is due to 

the fact that cupolets are derived from a chaotic system and if a wrong control is 

implemented in a bin, the trajectory will be perturbed and will undergo transient 

chaos until it re-stabilizes onto the cupolet. When the correct control sequence is 

implemented in the bin shared by two cupolets, the blind transition from the first 

cupolet instantly stabilizes onto the second cupolet and thus, is no longer a chaotic 

and unpredictable transition. The length of the blind transition between switchable 

cupolets is always zero. 



CHAPTER 4 

SWITCHING BETWEEN NON-INTERSECTNG 
CUPOLETS 

4.1 Introduction 

In this chapter will describe several ways to transition between cupolets which do 

not intersect using simple switches between intersecting cupolets, called controlled 

transitions. We begin by describing controlled transitions in Section 4.2. We then 

describe several approaches of determining the controlled transition which has the 

smallest length, where the length of the transition is defined in Section 4.3. 

4.2 Controlled Transitions 

In Section 3.3, we described a way in which it is possible to switch between 

cupolets which pass through the same bin on the same lobe. The blind transition when 

switching between intersecting cupolets is of zero-length and only requires the change 

from one control sequence to another. Using this idea, it is possible to transition 

from any cupolet to any other cupolet, regardless of whether they intersect. This 

is done by starting at the initial cupolet and making a finite number of switches 

between intersecting cupolets until the terminal cupolet is reached. We will refer to 

this type of transition as a controlled transition, since we know the exact trajectory 

the transition will take in getting from one cupolet to the next. 

23 
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The controlled transition will be denned by a transition function, T. The transition 

function, T, takes as inputs a cupolet Ci, the initial cupolet in the transition, and a 

cupolet CM, the terminating cupolet in the transition. The transition function then 

returns a sequence of cupolets beginning with C\ and ending with CM- An example 

of this is 

T(Ci, CM) = {Ci, C 2 , . . . , CN}-

Since the transition function defines a controlled transition, adjacent elements in 

the sequence are switchable. For example, C\ is switchable with C2 and CM-\ is 

switchable with CM- If C\ and CM are switchable, there are no intermediate cupolets 

and thus T{CUCN) = {ClyCN}. 

Let us say we want to get from some cupolet A to a different cupolet C. As these 

cupolets evolve around the attractor, they visit a sequence of bins and are subject 

to controls from the control sequence. We have constructed a hypothetical example 

where the bin, lobe, and control information for four cupolets A, B, C, and D is shown 

in Figure 4-1. 

A quick scan of the bin and lobe information for cupolet A and cupolet C reveals 

that they do not intersect, thus are not switchable. Fortunately, there exists another 

cupolet, B, which intersects both cupolet A, at bin 133 on lobe 1, and cupolet C, at 

bin 1987 on lobe 1. Thus, to transition from cupolet A to cupolet C, one possible 

controlled transition is T(A, B) = {A, B, C}. 

The first step in the transition from cupolet A to cupolet C is to follow cupolet 

A until it reaches bin 133 on lobe 1. At this point, a permutation of the control 

sequence for cupolet B is applied. The permutation of the control sequence resulting 
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Cupolet A Cupolet B 
Bin 
133 

832 

245 

45 

1522 

1943 

133 

Lobe 

1 

1 

0 

0 

1 

0 

1 

Control 

1 

0 

0 

1 

0 

0 

1 

Bin 
1023 

1684 

1987 

579 

133 

34 

1023 

Lobe 

1 

0 

1 

1 

1 

1 

1 

Control 

1 

0 

1 

1 

0 

0 

1 

(a) (b) 

Cupolet C Cupolet D 
Bin 
1462 

1734 

3 

1798 

1987 

749 

1462 

Lobe 

1 

1 

0 

0 

1 

1 

1 

Control 

1 

0 

1 

1 

0 

1 

1 

Bin 
1552 

177 

513 

1005 

142 

3 

1552 

Lobe 

1 

0 

0 

0 

1 

0 

1 

Control 

0 

1 

0 

1 

0 

1 

0 

(c) (d) 

Figure 4-1. The information about bins, lobes, and controls (a) for cupolet A control 
sequence '100', (b) for cupolet B with control sequence M01100' , (c) for cupolet C 
with control sequence '101', and (d) for cupolet D with control sequence '01' 
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in immediate stabilization with cupolet B is '001011'. The controlled transition will 

follow the trajectory of cupolet B through bin 34 on lobe 1, through bin 1023 on 

lobe 1, and then will reach bin 1987 on lobe 1. It is in this bin that cupolet B and 

cupolet C intersect. To stabilize immediately onto cupolet C, the permutation of the 

control sequence for cupolet C, namely 'Oil,' is sent into the system. It is clear that 

the controlled transition from cupolet A to cupolet C is not zero length since the 

transition follows the trajectory of cupolet B in getting from bin 133 on lobe 1 to 

bin 1987 on lobe 1. It is necessary to develop a way of measuring the length of a 

controlled transition. 

4.3 Measuring Transitions 

It is necessary to construct a way of measuring the length of a controlled transition 

so different transitions can be compared, since we are ultimately searching for the 

shortest transition. The length, Controlled, will be similar to the length, Cchaotic, 

as described in 3.2, since it will measure the length of the controlled transition by 

accounting for the number of loops around the attractor the transition must make in 

getting from one cupolet to the next. The length of a controlled transition, Ccontroiied, 

between any two cupolets, is a map 

^Controlled '• C —» E 

where C is a sequence of two or more cupolets and K is the set of all real numbers. 

The number of elements in the sequence of cupolets sent into (^controlled can vary: 

A sequence containing two elements occurs when T(Ci, C2) — {Ci, C2}, meaning the 
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two cupolets are switchable. In this case 

£>C<mtrolled({Ci, C2}) = £>Controlled{{C2, C l } ) = 0, 

since the transition is instantaneous and does not have to make any loops around the 

attractor. 

If a sequence containing three elements {Ci, C2, C3} is being measured, it is impor

tant to note that adjacent cupolets are switchable (i.e. C\ and C2 are switchable, C2 

and C3 are switchable). The only time the controlled transition will loop around the 

attractor will be while riding C2 in getting from the switching point between C\ and 

the switching point between C3. We begin counting the loops around the attractor 

after the switch with C\ and include the final loop where C2 switches with C3. Due 

to the construction of the bins, it is possible to count the loops around the attractor 

by instead counting the bins which are visited while on C2. 

Prom the example described Section 4.2, the length the controlled transition 

T(A,C) = {A, B,C} will be £c<mtroiied({A, B, C}) = 4. This is because we sim

ply count the bins which must be visited while riding cupolet B. In this case, the 

initial switch from cupolet A occurs in bin 133 on lobe 1 so we begin our count after 

this point. We follow the trajectory of cupolet B through bin 34 on lobe 1 (one), bin 

1023 on lobe 1 (two), bin 1684 on lobe 0 (three), and finally we reach bin 1987 on 

lobe 1 (four). At this point we are able switch to cupolet C and the count is over. 

It is also possible to transition from C to A through B but the length of the 

controlled transition will not be the same. In this case, £c<mtroiied({C, B, A}) = 2 

since the controlled transition switches to cupolet B in bin 1987 on lobe 1 then passes 
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through two bins and reaches the switching point with cupolet A. From this simple 

example it is clear that 

£c<mtrolled({A, B, C}) ^ £controlled({C, B, A}). 

In the case where there are more than three elements in the sequence of the 

controlled transition being measured, it is possible to split the sequences into smaller 

three element sequences. Let us say we want to know the length of the controlled 

transition 

T(Ci, CN) = {Ci, C2, C 3 , . . . , Cjv-i, CN}. 

To determine the length of this transition, we must determine the number of loops 

around the attractor which must be visited by the intermediate C^C^.. .,CM-I-

Since the number of bins which must be visited by any intermediate cupolet relies 

only on the location of the switch between the two adjacent cupolets, we can split 

the length of large sequence into the sum of the lengths of the three adjacent element 

sequences. In this case, we can split the length of the sequence as follows 

£controlled({Cl, C2, C3, . . . , C J V _ I , C;v}) =£controlled\\C\, C2, C3}) 

+£controlled({C2, C3, C4}) 

+ ... 

+£controlled({CN-2, C jV-1 , CM})-

Now, to measure the length of a sequence with four or more elements, we need only 

to determine the length of the three element sequences as described previously. 
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There are often several different controlled transitions between two non-intersecting 

cupolets. For example, let us say we want to transition between cupolet A and cupo-

let C, but this time we wish to transition through cupolet D, as shown in Table 

4-1. The length of this transition will be £-controiied({A, D,C}) = 5. If we compare 

this transition to the one which instead uses cupolet B as it's intermediate cupolet, 

with £controiied({A, B, C}) = 4, we see that the transition with the smaller length is 

T(A, C) = {A, B, C}. In the following sections we will describe methods of determin

ing all the different controlled transition between two cupolets so the transition with 

the shortest length can be found. 

4.4 Basis for Cupolets 

In this section, we will describe a method to determine the controlled transition 

with the shortest length between any two cupolets. This method involves determining 

a set of connected cupolets which span, or visits, every bin. The motivation for this 

method came from the idea that if there existed one super cupolet which passed 

through every bin, this cupolet could be used as the intermediate cupolet in the 

controlled transition between any two cupolets. Unfortunately, no super cupolet 

exists. 

It is first necessary to determine a set of cupolets which are connected and span 

every bin. We will refer to this set of cupolets as a quasi-basis for the cupolets. We 

use the term quasi-basis because the construction of this set is analogous to a basis 

in n-dimensional space where the set of vectors in the basis can reach every point in 

the n-dimensional space. In our case, the quasi-basis will be a set of cupolets which 
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Cupolet A Cupolet B Cupolet C Cupolet D Cupolet E 

Bin 

i—
i 

Bin 
1 

2 

3 

Bin 
1 

2 

Bin 
3 

Bin 
1 

3 

Figure 4-2. The bin information for five cupolets in a bin space with three bins 

can reach every one of the 4,000 bins. We will refer to this set of bins as a bin space, 

which is simply a set containing all the bins which must reached by the quasi-basis. 

The set of cupolets which will be used as a quasi-basis for the bin space must be 

connected, meaning every cupolet is switchable with at least one other cupolet. This 

is due to the fact that if one of the cupolets in the quasi-basis is not connected it does 

not intersect with any of the other cupolets in the quasi-basis and it is impossible to 

switch between the non-connected cupolet and the rest of the quasi-basis. Thus, this 

non-connected cupolet does not add anything to the quasi-basis. 

To demonstrate the idea of a basis, let us use an example where there are three 

bins in the bin space and five cupolets, as shown in Figure 4-2. Using this scenario, 

one may want to chose the set {C,D} as the quasi-basis for the bin space since the two 

cupolets pass through bin 1,2, and 3. It is clear that bin 1 and bin 2 are connected 

through cupolet C. Unfortunately, cupolet C and D are not connected since they do 

not share any of the same bins and thus, it is impossible to switch between them. 

Therefore, this choice does not work as a quasi-basis. 
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Another guess for the quasi-basis of the bin space using the example from Figure 

4-2 is the set containing {B}. This cupolet connects the three bins and reaches all 

bins in the bin space. Using {B} it is possible to make controlled transitions between 

any two cupolets. One such transitions is T(A, D) = {A, B, D}. First, the switch 

is made from cupolet A and B in bin 1. The transition then travels along cupolet 

B through bin 2 then reaches bin 3 where the switch is made from cupolet B to the 

terminating cupolet, D. In this case, Ccontroiied{{A, B, D}) = 2. On the other hand, it 

is also possible to make a controlled transition between cupolet A and D by switching 

through cupolet E, where CControUed({A, E, £>}) = 1. 

Clearly, finding a quasi-basis for the bin space is possible in some cases. Unfortu

nately, the distance between two cupolets is not necessarily minimized by restricting 

all switches to be through the elements in the quasi-basis. In the example described 

above, the length of the controlled transition between cupolet A and D using the 

quasi-basis {B} is two, and the length of the transition using cupolet E, not in the 

quasi-basis, is one. As a result, determining a quasi-basis for the cupolets may not be 

the most useful tool in determining the controlled transition with the shortest length 

between any two cupolets. 

4.5 Modeling Cupolets using Graph Theory 

The next method we used in trying to determine the controlled transition with 

the shortest length between any two cupolets utilizes graph theory. We first chose 

a model which designated the bins as vertices and the cupolets as edges. There are 

several types of graphs which can be constructed using this model. The two types of 
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Figure 4-3. Undirected graph of the cupolets A,B,C, D and E in the three bin space. 
The vertices represent bins and the edges represent the cupolets which connect those 
bins. 

graphs we chose are an undirected graph and a weighted directed graph (digraph). 

The undirected graph of the cupolets described in Figure 4-2 is shown in Figure 4-3. 

In modeling the cupolets using an undirected graph, we are trying to determine 

the controlled transition with the smallest length between any two cupolets. To do 

so, we can determine the controlled transition leaving from any bin from the first 

cupolet and arriving at any bin on the second cupolet. In this way, we construct a 

number of bin pairs. The first bin in the pair corresponds to a bin on the first cupolet 

and the second bin in the pair corresponds to a bin on the second cupolet. If, for 

example, we wanted to get from cupolet B to cupolet C we would have the bin pairs 

listed in Table 4.1 (this is a trivial example since we know cupolet B and cupolet C 

are switchable). We then determine if there is a path in the graph which allows us to 

get from the first bin in the pair to the second. 

In this undirected graph, the edges represent a cupolet which pass through two 

bins, or vertices. As you can see from the undirected graph, the bins are all connected, 
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Cupolet B 
1 
1 
2 
2 
3 
3 

Cupolet C 
1 
2 
1 
2 
1 
2 

Table 4 .1 . The set of bin pairs for which the shortest path must be determined or 
order to find the controlled transition with the smallest length from cupolet B and 
cupolet C 

thus, it is possible to switch between any two bins. Since it is possible to switch 

between any two bins, it is also possible to get from any cupolet to another. It is 

important to note that singleton loops are not allowed in this graph. The reason they 

are excluded is due to the fact that they do not provide any additional information 

about the connectedness of the bins. If singleton loops were allowed, they would 

represent a cupolet which passed through the bin, and thus, connected the bin to 

itself. 

One important characteristic in the undirected graph, as shown in Figure 4-3, is 

that in this case, all of the vertices are adjacent. Two vertices are said to be adjacent 

if there exists an edge between them. This information can be demonstrated in an 

adjacency matrix, A, where the element, A+j, is denoted by 1 one if there exists an 

edge between vertex i and j and a 0 if there does not exist an edge between vertex i 

and j . The adjacency matrix is always symmetric since the graph is undirected. For 

our three bin space, the adjacency matrix is 
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A 

Bin 1 —> Bin 1 Bin 1 —• Bin 2 Bin 1 —• S m 3 

Bin 2 -> 5 in 1 Bin 2 -> Bin 2 Bin 2 -> Sin 3 

Bin 3 —>• Bin 1 Bin 3 —* Bin 2 Bin 3 —* Sin 3 

0 1 1 

1 0 1 

1 1 0 

where the diagonal elements of A are zero because singleton loops are not allowed in 

our graph. If singleton loops were allowed, the result would be ones along the diagonal 

because for every bin which can be reached by a cupolet is therefore connected to 

itself. 

Although the adjacency matrix is informative about the connectedness of the 

graph, it does not reveal any information about which cupolet gets us from one bin 

to the next. If instead we filled the adjacency matrix with name of the edge between 

the two vertices, we would end up with the following 

A 

Bin 1 —> Bin 1 Bin 1 —> Bin 2 Bin 1 —> Bin 3 

Bin 2-* Bin I Bin 2 -»• Bin 2 Bin 2 -»• Bin 3 

Bin 3 —> Bin 1 Bin 3 —> Bin 2 Bin 3 —»• Bin 3 

0 CupB CupB 

CupB 0 CupS 

CupB CupB 0 

The problem with this adjacency matrix is that there exists a different adjacency 

matrix 

0 CupC CupE 

A= CupC 0 CupB 

CupE CupB 0 

and thus, the adjacency matrix is not unique. Another problem with this adjacency 

matrix is that it does not contain any information about the length of the transition 

between the two bins. For example, it is possible to use either cupolet B or cupolet 

E in getting from bin 1 to bin 3. In this case, however, the number of bins which 

must be visited in going from bin 1 to bin 3 is two if traveling on cupolet B, while 
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Figure 4-4. Weighted multi-digraph of the cupolets A,B,C, D, and E in the three bin 
space. The vertices represent bins and the directed edges represent cupolets where 
the subscript is the name of the cupolet and the number represents number of bins 
visited if going from one bin to the next on that cupolet. 

the number of bins is one if traveling on cupolet E. This information is imperative 

and as such we will next use a weighted digraph to represent the bins and cupolets. 

A weighted digraph is a graph where each edge is replaced with a directed edge 

that carries a weight. In a weighted digraph, it is only possible to have one directed 

edge from one vertex to another. As such, if there are two cupolets which connect two 

bins, as shown in the multi-digraph in Figure 4-4, we choose the cupolet which has 

the smallest weight. In Figure 4-5, a weighted digraph is used to model the cupolets 

in the space containing three bins as described in Figure 4-2. 

Again we do not allow singleton loops in the weighted digraph because they do 

not provide any additional information. It is now possible to construct an adjacency 

matrix from the weighted digraph. This adjacency matrix again has zeros along the 

diagonal, but will not be symmetric. The entries of the adjacency matrix, A^, for 
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Figure 4-5. Weighted digraph of the cupolets A, B, C, D, and E in the three bin 
space. The vertices represent bins and the directed edges represent cupolets and how 
many bins must be visited to get from one bin to the next. 

the weighted digraph will contain the weight between vertex i to vertex j . 

A = 

Bin 1 —> Bin 1 Bin 1 —> Bin 2 Bin 1 —> Bin 3 

Bin 2 -» Bin 1 Bin 2-^ Bin 2 Bin 2 - • Bin 3 

Bin 3 —» £?m 1 Bin 3 —> Bin 2 Bin 3 —> 5 in 3 

0 1 1 

1 0 2 

1 1 0 

Since it is possible to model the connected bins as a weighted digraph, we could 

use Dijkstra's algorithm to determine the path with the smallest weight between any 

two bins. Once this path is found for every bin pair between the two cupolets, the 

path with the smallest weight is chosen and that becomes the length of the controlled 

transition. 

With the simple example of five cupolets in a three bin space, the maximum 

number of bin pairs which need to be checked is six, which occurs in the transition 

between cupolet B and cupolet C. In the set of over 8,800 cupolets with 4,000 bins, 
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the number of bin pairs can be very large. Some cupolets pass through as many as 

50 bins and as such, would have to compare all 50 bins with those bins of the target 

cupolet. The number of pairs to be check is m * n where m is the number of bins 

which the first cupolet pass through and n is the number of bins the second cupolet 

passes through. Therefore, the number of bin pairs for which the transition must be 

calculated can be as high as 2500 for some cupolets. 

To speed up calculations, it is possible to first determine the transition of shortest 

length between every possible bin pair. The information about the length of the 

transition and the cupolets which must travelled between each bin pair can be stored 

in a table. Then, when searching for the shortest controlled transition between any 

two cupolets, one can look in the table at the information for each bin pair between 

the two cupolets, compare the lengths, and find the shortest transition. 

4.6 Dijkstra's Shortest Path Algorithm 

To determine the path with the smallest weight between any two vertices we 

could use Dijkstra's shortest path algorithm [1]. The path with the smallest weight 

between any two vertices corresponds to the controlled transition with the smallest 

length between two bins. To determine this path we will use a directed graph, as 

described in Section 4.5, where the vertices represent bins and an edge represents 

the cupolet which connects the two bins (vertices) while passing through the least 

number of intermediate bins. We will use the number of bins the cupolet must pass 

through in getting from one bin to another as the weight of the edge, and store the 

name of the cupolet in a separate table. 
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It is important to note that if there is a cupolet which connects some bin A to 

another bin B, then that same cupolet also connects bin B to bin A. Therefore, every 

directed edge has a corresponding edge in the opposite direction. The weight of 

these corresponding edges are not necessarily the same since we only traverse along a 

cupolet in one direction. Also, there may not exist an edge between a set of vertices. 

This occurs if no one cupolet passes through both of the bins. 

To implement Dijkstra's shortest path algorithm, it is necessary to have a starting 

vertex. In this case, the vertices represent bins and, as such, the starting vertex will 

be the first bin in the bin pair which corresponds to a bin through which the first 

cupolet passes. Using Dijkstra's algorithm, we will be able to determine the weight of 

the path corresponding to every bin pair with the starting vertex as the first element 

in the bin pair. 

To demonstrate Dijkstra's algorithm we will use the graph shown in Figure 4-6 

and set our first starting vertex to be vertex one. Using vertex one as our starting 

vertex, will be able to determine the weight of the path for the bin pairs (1,1), (1,2), 

(1,3), (1,4), and (1,5). Dijkstra's algorithm begins at the starting vertex and visits 

all the other vertices in the graph. It repeatedly checks the closest, but still unvisited 

vertices, and determines if the new vertex results in a smaller weighted path than the 

already known path. 

The first step in Dijkstra's algorithm is to construct a weight matrix. The weight 

matrix corresponding to the weighted digraph in Figure 4-6 is 
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Figure 4-6. An example weighted digraph for which we will determine the shortest 
path from vertex 1 to every other vertex using Dijkstra's algorithm. 
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13 

oo 

0 

where each element Mij is the weight of the directed line from vertex i to vertex j . 

The elements of M along the diagonal are zero since the weight is zero to get from 

a vertex to itself. Other elements in M are set to oo because there is not a directed 

line between the two vertices. 

The next step is to construct a vector for the weights. Since our starting vertex 

is vertex one, the first row of the adjacency matrix M, w = [0 7 1 1 16], will be our 

weight vector. At this point we imagine we are sitting on vertex one and will set this 

to be our current vertex, so CV = {1}. We then split the remaining vertices into two 

sets, those which have been visited and those which are unvisited. Since we are still 
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sitting on the first vertex, we have only visited one vertex and thus, V — {1}, and 

the rest are unvisited U = {2,3,4,5}. The goal in the remainder of the algorithm is 

to determine the shortest path from the starting vertex to every other vertex. This 

path will either be the single edge with the initial vertex, or it will be a multi-step 

path through one or more vertices. The algorithm is as follows: 

1. Set CV = < j\wj = min I wk \ \ 

2. Set V = V U CV and U = U \ CV 

3. If U = 0, done. 

4. \/k G U, wk — min{wk, wCv + MCv,k} 

5. Go to step 1. 

The weight vector does not change the first pass through the algorithm. For the 

second pass through the algorithm, the first step is to set CV = {3}. This means we 

have now moved from the starting vertex to the closest unvisited vertex. According 

to the algorithm, we then set V — {1, 3} and U = {2,4,5}. We are now checking to 

see if the weight of the path between the starting vertex and every other unvisited 

vertex is smaller if the path is directly from vertex one, or if a smaller path exists by 

passing instead through vertex three. 

The first weight we will check is w<i which is currently seven. We compare this 

weight with the weight of first passing through vertex three, W2 + M2)3 = 7+ 00 = 00. 

We find that this weight is 00 since no edge exists between vertices two and three. 

Therefore, element two in the weight vector remains a seven. Next, we examine w± 

which is currently set to one. Again, there is no edge between vertices three and four 
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and the weight remains the same. Finally, we check u;5 which is currently sixteen. 

We compare w$ — 16 with w^ + M^ = 1 + 13 = 14 and determine that it is shorter 

to pass through vertex three in getting from vertex one to vertex five. The table 

containing the cupolets which must be traveled in getting from vertex one to vertex 

five is updated to include the information necessary in traveling instead through 

vertex three. 

Dijkstra's shortest path algorithm is continued in a similar fashion and the result 

is w = [0 5 1 1 12]. A careful inspection of the graph in Figure 4-6 confirms that 

Dijkstra's shortest path algorithm is correct. If we compare the original weight vector 

and the new weight vector we see that the second and last entries have changed. This 

is due to the fact that it is shorter to get from vertex one to vertex two through 

vertex four and also from vertex one to vertex five through vertex two. For the graph 

in Figure 4-6, where there are only five bins, Dijkstra's algorithm would need to be 

executed four more times, each time using a different initial vertex, to determine the 

smallest weighted path for every possible bin pair. 

Dijkstra's algorithm could be used to determine the controlled transition with 

the smallest length between every bin pair for the cupolets where there are 4,000 

bins. Then, to determine the shortest transition between any two cupolets, one could 

compare the possible bin pairs between the two cupolets and determine which pair 

corresponded to the shortest transition. We instead chose to use a different method 

which is sub-optimal to Dijkstra's algorithm but is more simple to construct. This 

method is described in the following section. 



42 

Cupolet A Cupolet B Cupolet C Cupolet D 

Bin 
1 

Bin 
1 

2 

Bin 
2 

3 

Bin 
3 

Figure 4-7. The bin information for four cupolets A,B,C and D in a bin space with 
three bins 

4.7 Decomposing Adjacency Matrices 

In this section we will describe a way to use adjacency matrices and their proper

ties to determine the shortest length controlled transition with the smallest number 

of intermediate cupolets between any two cupolets. These adjacency matrices are 

different from previous matrices in that they do not contain the weight associated 

with an edge between two vertices, but instead contain a 1 if there exists an edge 

between the vertices and a zero otherwise. To demonstrate adjacency matrices, we 

will use an example where there are only four cupolets and three bins, as shown in 

Figure 4-7. 

In creating the adjacency matrix for the system, it is first necessary to construct 

a graph describing the cupolet and bin information. A simple graph will be used, 

which is different from the previously described directed graphs, since the vertices 

will represent cupolets instead of bins. There will be an edge between two cupolets if 

they pass through at least one of the same bins. The graph for set of four cupolets, 

described in Figure 4-7, can be seen in Figure 4-8. 

It is important to note that while it is possible to have a singleton loop around 

every vertex, we have chosen not to allow loops since they do not provide any addi-
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(cup A y •( CupB J 

l CupC )• •( CupD ) 

Figure 4-8. Cupolets A,B,C, and D from the three bin space. The vertices represent 
cupolets and the edges mean that both cupolets pass through the same bin. 

tional information since we know every cupolet shares at least one bin with itself. We 

have also chosen not to specify the bin(s) corresponding to each edge. This was done 

because a simple comparison of the bin information between both cupolets is enough 

to determine all the bins through which they intersect. 

The adjacency matrix can now be constructed using the entries 0 and 1. If an 

entry in the adjacency matrix A^ is a zero, there is no edge between vertex i and j , 

which means cupolet i does not have a common bin with cupolet j . If the entry in 

the adjacency matrix A^ is a one, there is an edge between vertex i and j meaning 

the cupolets have at least one bin in common. The adjacency matrix for the graph 

in Figure 4-8 is as follows where Cup A is represented by the first row and column, 

Cup B is represented by the second row and column, and so on. 
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0 1 0 0 

1 0 1 0 
A 

0 1 0 1 

0 0 1 0 

One special property about this type of adjacency matrix, as described in [5], is 

that if we multiply A by itself r times, the element in (Ar)ij stands for the number 

of r-step paths between vertex i and vertex j , where "r-step" means the number of 

edges in the path. In other words, (Ar)ij is the number of ways one can get from 

cupolet i to cupolet j visiting r intermediate cupolets. Using the graph from Figure 

4-8, we can compute A2 and A3 which are as follows 

A3 = AAA = 

1 0 1 0 

0 2 0 1 
A2 = AA = 

1 0 2 0 

0 1 0 1 

0 2 0 1' 

2 0 3 0 

0 3 0 2 

1 0 2 0 

Let us assume we are trying to transition from cupolet B to cupolet C. Since 

^2,3 = 1 we see that we can switch between the two cupolet since the entry is a one. 

If we were trying to find another path between cupolet B and cupolet C we could 

examine (A3)23 — 3 where r = 3. This entry means there are three, 3-step paths 

between cupolet B and cupolet C and the three paths are shown in Figure 4-9. 
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Figure 4-9. Three different three step paths between Cup B and vertex Cup C. The 
directed edge with a 1 is the first step in the path, the directed edge with a 2 is the 
second step in the path, the directed edge with a 3 is the third step in the path. 

Determining the number of paths which require the smallest number of interme

diate cupolets between any two vertices is the first step in determining the transition 

between any two cupolets. This is done for every cupolet pair (i,j) by finding the 

smallest r such that (Ar)ij ^ 0. Once this is done, it is possible to determine the 

exact paths between the two cupolets. The method we chose involves decomposing 

the matrix Ar to expose the reason why (Ar)ij ^ 0. 

To determine the exact path between any two cupolets we must first examine 

the structure inherent in powers of symmetric matrices. First, we will denote the 

row of a matrix by the symbol representing the matrix, subscripted with an index. 

For example, the third row in matrix C will be C3, and the fourth row in the matrix 

DD = D2 will be {D2)±. As such, we can define any matrix using only the rows. Since 

the adjacency matrix is symmetric, A = AT, we can also define the matrix A using 

only the columns which equal the transpose of the rows. The two ways of denoting 

any adjacency matrix A are as follows where we assume A € M^xN 
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A = 

Ai 

A2 

AN 

= {A,)T (A2)
T 

{AN)T 

One characteristic of symmetric matrices is that any power of a symmetric matrix 

is still symmetric. Thus, A2 will be symmetric and is denoted as follows 

A2 

A, 

A, 
{Aif (A2? {ANf 

AN 

A1{Al)
T AMif ••• AxiAMf 

A2(Alf A2(A2)
T ... A2(AN)T 

AN{AX)T AN(A2)
T ... AN(AN)T 

where every element {A2)ij = Ai(Aj)T which is equal to the dot product Ai • Aj. 

Therefore, (A2)ij = A{ • Aj — Aj • Ai = (A2)ji. Since A2 is symmetric and we can 

denote A2 using only its rows or columns as 

(A2h 

A 2 -
{A% 

(A2) N 

((42)i)T i(A2)2)
T . . . ((A2)N) 

where each (A2)j = AjA. 
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We will now show that for any AK, each element (AK)ij = Ai(A*f~1)T and each 

row of (AK)j — AjAK~l. We now prove these properties hold V K > 2 using induction. 

These properties hold for K = 2 since 

(A2)ij = Ai{Aj)T and {A2)j = A5A. 

Next we assume that these properties hold for some K — M where 

(AM)y - AiiAf-y and (AM)j = AjAM-\ 

As such, 

j^M+l _ j^j±M _ 

Sll 

A2 

A N 

M\ \T ((AM)i) 

4P M ) i f MWhV 
AXAM 

AoAM 

ANAM 

{{AM)2)
T ... ((AM)N) 

A^A^f A1((A
M)2f ... A1{{AM)N)T 

A2((A
M)1)

T A2((A
M)2)

T ... A2((A
M)N)T 

AN((AM)Ny 

Thus the two properties hold true V K > 2. A third property which can be derived 

from the second property is (AM+1)y = ((AM + 1),)T - (AdA
M)T = (AM)T(Aj)T -
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AM(Aj)T due to the fact that AM and AM+1 are symmetric. The three properties are 

l.(AM+1)j = AjAM 

UA^h = AM(Ajr 

3.(AM+% = A{{Af)T. 

Using these three properties we can determine the controlled transition between 

any two cupolets, or vertices, which require r — 1 intermediate cupolets in the tran

sition, or an r-step path in the graph. Recall that for the two vertices i and j , 

we searched for the smallest r such that {Ar)ij ^ 0. Now, we can rewrite (^4r)ij = 

Ai{(Ar-l)j)
T where {Ar-X)j = AjAr~2 resulting in 

(Ar)ij = MAjAr-*)T = MiA^fiAjf) = AiA^iAjf. 

Prom here it is possible to dissect the operations Ai(Ar~2)(Aj)T', and determine the 

exact route of each path of length r from vertex i to vertex j . 

We have devised a way to determine all r-step paths between any vertex % and 

vertex j . In determining the set of possible vertices for each step in the path, it is 

first necessary to dissect (Ar)ij as follows using the properties of adjacency matrices 

(A%- =Ai{Ar-2){Aj)
T 

In determining all paths between vertex i and j we will construct a series of sets which 

will be at a certain distance, or level, from vertex i. The first set will be S(0) — {i} 
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which represents the initial vertex in the path. This set is said to be at level zero, 

since it is it zero steps from the first vertex. 

Next, we are trying to determine sets which contain vertices one level from the 

initial vertex. The vertices one level from the initial vertex must also be r — 1 levels 

from the terminal vertex to ensure they will reach the terminal vertex in r steps as 

expected. We determine the set of level one vertices by comparing the vectors A4, the 

ith row in the matrix A, and (Ar~1)j, the j t h row in the matrix Ar~l. The elements 

which are non-zero in both vectors are put into a new set 5^(1). The elements in this 

new set 5^(1) are guaranteed to be one level from vertex i since they are non-zero 

in the vector A\ and r — 1 steps from vertex j since they are non-zero in the vector 

The sets for each level are constructed as follows 

where L is represents the level from the initial vertex and {i>i,t>2, • • • ,VL} is the 

sequence of vertices required to reach the set. The last element in the sequence, VL, 

is an element from the set for a previous level. The set SVltV2t_tVL(L) is determined 

by comparing the vectors AVL and (Ar~L)j and choosing the components which are 

non-zero in both vectors. 

The algorithm for this procedure is as follows where i is the initial vertex and j 

is the terminating vertex: 
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1. Determine r such that {Ar)ij ^ 0 

2. Set S(0) = {i} 

3. For 1 < L < r — 1, set 5,
l)0)t;2i...)UL_1(L) to the elements which are non — zero in both 

AVL_X and {Ar-L)j Vve SVOjV2,...tVL__2{L - 1) 

We will now demonstrate this method using the graph shown in Figure 4-10 where 

we want to determine all paths between vertex one and vertex eight. The adjacency 

matrix, A, and its first four powers are as follows 

0 1. 

1 0 
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The first r for which the element (Ar)ij ^ 0 occurs when r = 4, and the element 
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Figure 4-10. A simple graph with eight vertices 

(^•r)i8 = 5 literally means there are five, four-step paths between vertex one and 

eight. To determine all paths between vertex one and vertex eight, we will use the 

algorithm described previously. 

We already have r = 4, so our next step is to set 5(0) = {1}. We then set L = 1, 

meaning we are going to determine all the sets of vertices which are one level from the 

initial vertex. Since we only have one element in the set where L = 0, we will only have 

one set of level one vertices. We determine £i(l) by comparing Ai = [0 1 1 0 0 0 0 0] 

and (A3) 8 = [0 2 3 0 0 4 5 0] and choose the elements which are non-zero in both 

vectors. The elements which are non-zero in both vectors are the second and third 

entries. Remember, the second entry corresponds to the second vertex and the third 

entry corresponds to the third vertex. Thus, we set £i(l) = {2,3}. These two vertices 

are said to be in the first level of the path since they have L = 1. 

We now increment L and are looking for the sets £1,2(2) and 61,3(2) since {2,3} G 

£i(l). Both of these sets will contain vertices which are two levels from the initial 

vertex. The difference between the sets is that the first set has vertex two as its level 

one vertex, and the second set will have vertex 3 as its level two vertex. We will 

first determine the set £1,2(2) by comparing Ai and (A2)s. These vectors can be seen 
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Level 
0 
1 
2 
2 
3 
3 
3 

Set 
5(0) 
5i(l) 

5i,2(2) 
5i,3(2) 

5i,2,4(3) 

51,3,4(3) 

51,3,5(3) 

First Vector 

Ai = [0 1 1 0 0 0 0 0] 
A2 = [1 0 0 1 0 0 0 0] 
A3 = [1 0 0 1 1 0 0 0] 
Ai = [0 1 1 0 0 1 1 0 ] 
AA = [0 0 1 0 0 0 1 0] 
A5 = [0 0 1 0 0 0 1 0] 

Second Vector 

(A3)8 = [0 2 3 0 0 4 5 0] 
(A2)8 = [ 0 0 0 2 1 0 0 2 ] 
(A2)a = [0 0 0 2 1 0 0 2] 

A8 = [0 0 0 0 0 1 1 0] 
A8 = [0 0 0 0 0 1 1 0] 
A8 = [0 0 0 0 0 1 1 0] 

Non — Zero Elements 

{1} 
{2,3} 
{4} 

{4,5} 
{6,7} 
{6,7} 
{7} 

Figure 4-11. Calculations for determining all paths between vertex one and vertex 
six as shown in Figure 4-10. 

in Figure 4-11, and the non-zero element in both is the fourth entry. Thus, we set 

51,2(2) = {4}. We then determine the set 5*1,3(2) = {4,5} and continue this process 

until L = r — 1. The result of this procedure can be seen in Figure 4-11. 

The final step is to determine the exact paths. We have found the sets up to 

the third level and we know the fourth level is the terminal vertex. As such, we can 

use the information about the third level sets and obtain our paths. From the set 

5i,2,4(3) = {6, 7}, we now have two paths from vertex one to vertex eight which are 

{1,2,4,6,8} and {1,2,4,7,8}. 

From the next set £1,3,4(3) = {6,7}, we obtain two more paths which are 

{1,3,4,6,8} and {1,3,4,7,8}. 

We obtain the fifth and final path from the last set 5*1,3,5(3) = {7}, which is 

{1,3,5,7,8}. 
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At this point it is important to remember that the goal in representing the cupolets 

in a graph in such a way that the vertices represent cupolets and the edges represent 

a shared bin between two vertices, is to determine the controlled transition with the 

smallest length from any cupolet to another. We have described above a method which 

allows one to determine the paths between any two vertices. These paths corresponds 

to the controlled transitions between any two cupolets and can be written as 

T(l ,8 

T(l ,8 

T(l ,8 

T(l ,8 

T(l ,8 

={1.2,4,6,8} 

={1,2,4,7,8} 

={1,3,4,6,8} 

={1,3,4,7,8} 

={1,3,5,7,8}. 

The last step in this procedure is to determine the length of each controlled transition 

as described in 4.3 where the length corresponds to the number of times around 

the attractor necessary to transition between the two cupolets. At this point the 

controlled transition which is the shortest length is chosen and the entire process is 

complete. 



CHAPTER 5 

RESULTS AND CONCLUSION 

5.1 Results 

We have developed a control scheme which results in a controlled transition be

tween any two chaotic unstable periodic orbit-lets. Several experiments have been 

conducted to test this method and the results confirm that controlled transitions be

tween cupolets exist and can be much shorter in length than blind transitions. These 

experiments were conducted using a set of 100 cupolets from the entire set of over 

8,800. We found that was that it was possible to transition from one unstable peri

odic orbit to any other in the set by applying a small number of controls at smart 

locations throughout the system. 

The first result we would like to present is the transition between the cupolet with 

the control sequence '0101011' and cupolet with the control sequence '001111.' The 

bin, lobe, and control data for cupolet '01010111' can be seen in Table 5.1 and the 

same information corresponding to cupolet '001111' can be seen in Table 5.2. As you 

can see, the two cupolets do not pass through any of the same lobes in the same bins. 

As such, the cupolets are not switchable and the length of the transition between the 

two cupolets will be greater than zero. 

We began our experiment using the original blind transition method. Using this 

method we departed cupolet '0101011' on lobe 1 in bin 1176 and began with the orig-
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Lobe 
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1 

Bin 

1176 

1824 

1145 

1794 

610 

1049 

1680 

1176 

1824 

1145 

1794 

610 

1049 

1680 

Control 

0 

1 

0 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

Table 5.1. Bin, lobe, and control information corresponding to cupolet '0101011.' 

Lobe 

1 

1 

1 

1 

1 

1 

1 

Bin 

1559 

1686 

1143 

1790 

520 

959 

1559 

Control 

0 

0 

1 

1 

1 

1 

0 

Table 5.2. Bin, lobe, and control information corresponding to cupolet '001111.' 
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inal permutation of the second control sequence '00111.' The length of this transition 

is £c/iaotic(l) 1176,001111) = 17. The next transition scheme we imposed was the 

blind transition. For this method we begin from each of the 14 different bins around 

the first cupolet and implemented each of the 6 permutations of the second control 

sequence in each bin. The result was a set of 14 x 6 = 84 blind transitions whose 

lengths varied from one to twenty, with an average length of 10.238. It is important 

to note that the original blind transition is included in the set of blind transitions. 

The next method we used was the controlled transition. To use this method we 

took a subset of one hundred cupolets from the original set of over 8,800 cupolets. 

Again we were transitioning from the initial cupolet '0101011' to the terminal cupolet 

'001111.' We found that there existed a cupolet, '0001011011' which allowed for a 

controlled transition of length one. To do this, we departed the initial cupolet on 

lobe 1 in bin 1145, as can be seen in Table 5.1, and switched to the intermediate 

cupolet '0001011011,' which also passes through this bin as can be seen in Table 5.3. 

At this point we rode the intermediate cupolet until it reached the next bin, 1790 on 

lobe 1, which intersects with the terminal cupolet in the transition, as seen in Table 

5.2. Thus, with our small subset containing only 100 cupolets we were able to find a 

controlled transition with £controMed(0101011,001111) = 1. 

Since the different methods of transitioning between cupolets measure the length 

of the transition by counting the number of loops around an attractor, we were able 

to compare the methods using a histogram as shown in Figure 5-1. The lengths of 

the transitions range from one to twenty. The original controlled transition fell in the 
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Lobe 
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Bin 

1790 

499 

887 

1455 

1868 

1043 

1676 

1212 

1854 
1145 

1790 

Control 

0 

0 
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1 
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1 
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1 
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Table 5.3. Bin, lobe, and control information corresponding to cupolet 0001011011.' 

82.10 percentile of the lengths of all the transitions and the controlled transition fell 

in the 0 percentile. 

In this example where we are transitioning between cupolet '0101011' and '001111,' 

we found that using the blind transition it is possible to get a transition whose length 

is the same as the controlled transition. Unfortunately, there is no way of predicting 

which combination of location and control sequence will result in this transition. 

The only way to determine if there is a blind transition of comparable length to the 

controlled transition is to test each of the 84 blind transitions to determine which 

is the shortest. If instead we use on the controlled transition, we know the exact 

trajectory of the transition and how long it will be. 
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Histogram of transitions from '0101011'to '001111' 

• Original Blind Transition 

B Controlled Transition 

• Btind Transition 

Length of Transition 

Figure 5-1. Comparison of different transitioning techniques between cupolet 
0101011 and cupolet 001111. 

We conducted several other examples, the first of which is the transition between 

cupolet '0010110101' and '01.' Using the different transitioning techniques between 

these cupolets we found that the controlled transition was in fact the shortest with a 

length of one. The distribution of the transitions can be seen in Figure 5-2. For this 

example, there were twenty blind transitions whose lengths range from 3 to 21 with 

an average length of 12.1. The original blind transition fell in the 10.0 percentile of 

the lengths of all the transitions and the controlled transition was in the 0 percentile. 

This example again shows that it is shorter to use the controlled transition. 

Another example is the transition between cupolet '0000001111' and '00001.' This 

controlled transition had a length in the highest percentile of all the simulations we 

ran. There were 100 blind transitions ranging from a length of 3 to 42 with an average 

length of 23.07. In this case the controlled transition had a length of 11 which can be 
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Histogram of transitions from '0010110101' to '01 

• Original Blind Transition 

• Controlled Transition 

D Blind Transition 

0-4 5-9 10-14 15-19 20-24 25-29 

Length of Transition 

Figure 5-2. Comparison of different transitioning techniques between cupolet 
'0010110101' and cupolet '01'. 

seen in Figure 5-3. Although this controlled transition was not the shortest transition 

we found, it is important to remember a few key points. 

First, although there are a hand-full of blind transitions which are shorter than 

the controlled transition, there is no way to predict ahead of time which transitions 

will be the shortest. With the controlled transition, we know the exact trajectory 

of the transition and how long it will be without running any simulations. The only 

way to find a short blind transition is by testing every possible initial location and 

permutation of the second control sequence and then choosing the transition with the 

smallest length. 

Second, the blind transitions are allowed to use the full dynamics of the controlled 

system. The controlled transitions are only restricted to a set of 100 cupolets. If we 
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were to add more cupolets to our set, we could potentially find a shorter controlled 

transition. 

Third, we are only considering the controlled transitions with the smallest number 

of intermediate cupolets. This algorithm does not pick the optimal path in the graph, 

it instead chooses the path with the smallest number of intermediate cupolets. This 

is due to the fact that we only looked at r-step paths, where r is the smallest number 

such that (Ar)ij ^ 0. Thus, we only found transitions with r — 1 intermediate cupolets. 

Since it may be possible for a transition with more intermediate cupolets to have a 

shorter length, we need to check the higher values of r. 

To do this, we could set an upper bound, Q, to be the length of the shortest 

controlled transition found for the smallest r such that (Ar)ij ^ 0. We assume that 

each intermediate cupolet contributes at least a length of one to the total length of 

the controlled transition. Therefore, we only need to search higher values of r, each 

time setting Q to be the length of the shortest transition, while r <Q. If we allow r 

to be greater than Q, the length of the new transitions will be greater than or equal 

to the length of the shortest transition where the length is Q. 

The final example we would like to present is between cupolet '0010110011' and 

'000000011.' There are 108 blind transitions whose lengths range from 64 to 108 with 

an average length of 79.52. As you can see in Figure 5-4, the controlled transition 

required only one intermediate cupolet and the length of the transition is one. This 

shows how powerful controlled transitions can be in systems where blind transitions 

can be very long. 
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Histogram of transitions from '0000001111' to '00001' 
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Figure 5-3. Comparison of different transitioning techniques between cupolet 
'0000001111' and cupolet '00001'. 

Histogram of transitions from '0010110011' to '000000011' 

60 

50 

I 30 
53" 

a> 
£20 

10 

0 —T—™—i —r- —- r " - • 

• Original Blind Transition 

• Controlled Transition 

D Blind Transition 

0-14 15-29 30-44 45-59 60-64 75-89 90-104 105-119 

Length of Transition 

Figure 5-4. Comparison of different transitioning techniques between cupolet 
'0010110011' and cupolet '000000011'. 



62 

5.2 Conclusion 

We believe controlled transitions can be applied to several areas where it is de

sirable to have short transitions between orbits. One such area of interest is guiding 

space shuttles, satellites, meteors, and other objects through space. Objects in space 

are attracted to larger bodies, such as planets and stars, and orbit around them. If 

we could match the orbit of a space shuttle in space to a cupolet, it is then possible 

to apply a low-energy control sequence to the shuttle, switch between intermediate 

cupolets, and shift to an orbit modeled by another cupolet. This would be useful 

if the initial orbit of the space shuttle was disastrous, for example an orbit which 

traveled too close to the sun. If the shuttle did not have enough fuel to move to a 

more safe orbit, we could instruct the passengers of the shuttle to apply a sequence 

of controls to the shuttle at precisely the right moment. In this way, the passengers 

could conserve their fuel until needed and continue their mission safely on the desired 

periodic orbit. 

It is unclear at this point if the set of dense unstable periodic orbits around the 

attractors of the double scroll oscillator would actually be a good model for orbits 

which occur naturally. An interesting study would be to compare orbits which actually 

exist in outer space and determine if cupolets would be a good match for those orbits. 

If the cupolets were not a good match for those orbits, it is possible to repeat the 

process of creating cupolets cupolets using different chaotic system. 

In summary, cupolets have once again proven to be a valuable tool in exploring 

chaotic systems and appear to be promising for future applications. 
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