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ABSTRACT 

STUDY OF GAS DIFFUSION LAYERS IN DIRECT 

METHANOL FUEL CELLS (DMFC) 

By 

Jason Morgan 

University of New Hampshire, May 2008 

An automated single-cell fuel cell system has been designed and 

fabricated in this work. The apparatus is capable of operating on both hydrogen 

and methanol fuels, and can control the mass flow rates and humidity of the inlet 

gases, and temperature and pressure of the cell with a LabVIEW program. A 

series of experiments are conducted to determine the optimum cell operating 

temperature (75°C), methanol concentration (4 molar), methanol flow rate (3 

mL/min) and catalyst loading on Gas Diffusion Layers (GDLs) (-2.5 mg/cm2). A 

new anode GDL is fabricated by optimizing the hydrophobicity in the substrate 

and microporous layer (MPL), as well as the MPL loading. The key factors for 

improved cathode performance are found to be thickness and basis weight. One 

of the end results of this work is a new GDL system, which is manufactured 

continuously at low cost, providing improved cell performance compared to a 

commercial standard. 
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CHAPTER I 

INTRODUCTION 

1.1 -Background Information 

Today's society is highly dependent on fossil fuels for transportation, 

electricity generation and heat during the long winter months. Currently, burning 

or combusting these fuels produces the necessary energy in the form of heat. 

This heat produces steam to use in turbines to produce the electricity that powers 

our homes. Burning of fossil fuels is an effective way to produce energy; 

however, there are some major drawbacks with this process. Combustion is 

usually at high temperatures, is an inefficient process, tends to be noisy and 

produces pollutants such as SOx (sulfur oxides), NOx (nitrogen oxides) and COx 

(carbon oxides). These chemical compounds are polluting our atmosphere, 

contributing to global warming and producing acid rain, which adversely affects 

our environment. It is imperative, therefore, that we find a better way to produce 

the energy on which our society has become so dependent. 

There are currently many different possible solutions to this energy 

problem. Solar or wind power is a clean renewable energy source that would be 

an excellent possibility for future considerations. However, to generate the 
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amount of energy required the cost is simply too high, both economically and 

spatially. In addition, the peak power demands tend to be in the evening, when 

there is no sun for solar power, and wind power is unpredictable. Nuclear power, 

although promising, is viewed as a scary proposition on which to depend. 

Hydroelectric power is useful where available, but is simply not abundant enough 

to meet all of our power requirements and it is not portable. The most promising 

alternative to combusting fossil fuels is currently a fuel cell system. 

A fuel cell is an electrochemical device that directly produces electricity 

through an electrochemical reaction of hydrogen and oxygen combining to form 

water. The operation of the device is similar in principle to a battery, but it never 

needs to be recharged. The cell will operate as long as both reactants (H2/02) 

are present. Fuel cells allow us to generate electricity directly and cleanly with 

the most prominent by-product being pure water. 

Fuel cells are sometimes thought of as a new technology, although Sir 

William Grove invented them almost 170 years ago. In 1839, Grove developed 

what he called a "gaseous voltaic battery". He knew that when you passed a 

current through water you were able to generate hydrogen and oxygen gas. He 

set up an experiment to see if the reaction could be reversed as well. He placed 

platinum strips into tubes that were filled with hydrogen and oxygen gas. He then 

submerged the tubes into a dilute sulfuric acid solution and observed that he 

could in fact generate a current. Unfortunately, he was unable to generate large 

amounts of power. He did realize that there was an important three-phase 

boundary (hydrogen/oxygen (gas), sulfuric acid electrolyte (liquid) and platinum 
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electrode (solid)) and that using hydrogen, instead of coal or wood, may greatly 

improve the potential of energy production [1 ]. 

1.2 - Types of Fuel Cells 

Today there are numerous types of fuel cells, which are classified by the 

type of electrolyte that is used in the cell. The cell proposed by Grove is most 

closely related to the Phosphoric Acid Fuel Cell (PAFC). In addition there is also 

the Molten Carbonate Fuel Cell (MCFC), Solid Oxide Fuel Cell (SOFC), Alkaline 

Fuel Cell (AFC), Polymer Electrolyte Membrane Fuel Cell (PEMFC) and the 

Direct Methanol Fuel Cell (DMFC). 

MCFCs and SOFCs are high temperature (600-1000°C) fuel cells, which 

are most promising as stationary power generation systems. They use molten 

carbonate melts (Li2C03/K2C03) and Yttrium Stabilized Zirconia (YSZ), 

respectively, as their electrolytes [2]. The greatest advantage of these fuel cells 

is that they are not damaged by the presence of carbon monoxide (CO). The 

catalyst in other fuel cell systems are poisoned by the presence of small amounts 

of CO, but MCFCs and SOFCs can use the CO (as well as natural gas or other 

hydrocarbons) directly as fuel without any reforming. These cells are very useful 

as industrial or stationary power sources because the need for reforming stations 

or gas purifiers is eliminated. The exceedingly high operating temperatures and 

start-up times make them unsuitable for portable power applications, such as 

automobiles. 
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The development of the AFC was pursued by FT. Bacon in the late 1940s 

and was later chosen by NASA as the power supply for space missions in the 

1960s. In modern systems, they operate at fairly low temperature and pressure 

(90°C, 4 bars) and use potassium hydroxide (KOH) as the liquid electrolyte. The 

most difficult problem with an AFC is that its electrolyte reacts with carbon 

dioxide (CO2) to form potassium carbonate (K2CO3), which greatly reduces 

performance and therefore requires an ultra-clean supply of hydrogen for 

optimum operation. This need for a clean supply of hydrogen makes it 

unsuitable for portable power applications as the storage and transportation of 

hydrogen is a problem. 

PEMFCs and DMFCs are very similar in that they both use a solid polymer 

electrolyte, rather than bulky liquid electrolytes as used in PAFCs or AFCs. They 

also operate at low temperatures and pressures unlike the MCFCs and SOFCs. 

This makes them most suitable for use in small portable appliances, such as 

laptops, personal digital assistants (PDAs) or cell phones. The difference 

between the PEMFC and the DMFC is the nature of the fuel that is fed to the cell. 

PEMFCs require the direct feed of hydrogen and oxygen/air to react generating 

the current. The DMFCs require a direct feed of methanol (MeOH) and 

oxygen/air. The PEMFCs produce only clean water, as a by-product, but they 

have to deal with the commercial problems of storage and transportation of 

hydrogen. The DMFCs use liquid methanol, which is much more convenient 

(higher energy density) for storage and transportation. However, it is also toxic 

even in very small doses and extremely flammable, which raises many issues for 
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its use in commercial products. The ability to easily transport and store 

methanol, as well as manufacture it from numerous sources cheaply, is why the 

DMFC looks more promising than the PEMFC for small portable applications. 

Unfortunately, the performance of the DMFC does not currently compare 

to that of the PEMFC. Several authors [1, 2] have presented detailed analysis for 

all of these different types of fuel cells and their operating conditions. This study 

is primarily concerned with DMFCs, although a fundamental understanding of 

PEMFCs and how they operate is helpful. A brief history of the development of 

DMFCs, as well as a look at the major pitfalls associated with methanol fuel is 

also discussed. 

1.3- Direct Fuel Cells 

As early as 1894 researchers realized the importance of finding a direct 

fuel to improve the practicality of fuel cells. Many researchers tried to use coal 

directly in a fuel cell system as a way to reduce the amount of energy lost from 

normal combustion of coal. Researchers such as Jacques, Ostwald, Haber and 

Bruner [1] investigated the possibility of using coal directly to produce an 

electrochemical reaction. Jacques was actually successful in creating such an 

apparatus and speculated that improvements to his method would run trains with 

higher speeds, less polluted air in cities, quieter engines and cheaper electricity 

[1]. Although his method could not be vastly improved upon, the concept and 

benefits for the direct methanol fuel cell system are very optimistic. 

In the late 1950s and early 1960s the desire to have a direct fuel cell 

system was enhanced. Researchers from Shell and ESSO experimented with 
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aqueous acidic electrolytes. Alkaline electrolytes were examined around the 

same time by researchers from Allis-Chalmers. Unfortunately, they were unable 

to make much progress and the development work was dropped again. In 1992, 

however, scientists at the Jet Propulsion Laboratory made a major breakthrough. 

They discovered that methanol could be used directly with the solid polymer 

electrolyte membrane fuel cell, which is now known as a DMFC. They were able 

to feed the methanol directly to the anode as opposed to having to feed it through 

the electrolyte as they did with the acidic/alkaline electrolytes. They used the 

Nafion® membrane manufactured by Dupont along with Pt-Ru catalysts and 

were able to generate an adequate current output. The major problem with this 

system was, and still is, methanol crossover, which is the passing of methanol 

through the membrane directly from the anode to the cathode without reacting 

and producing power. 

Another major problem with the DMFC is the use of methanol as a fuel 

itself. It is a liquid, is easily manufactured, and can be transported and stored 

easily. However, it is also highly combustible, toxic and burns clear. Particularly 

the inhalation of methanol is very dangerous, which worries many people who 

dream of having cars that run off of methanol. Exposure of just 200 ppm for 8 

hours or more can be fatal for people. Also ingestion of methanol, even as little 

as 25 mL can be fatal [2]. In addition to these health risks, methanol burns 

completely clear, so if a fire starts there is no visible evidence of it. Therefore it is 

very important that every safety precaution is taken if we are to pursue using 

methanol as a fuel for the general public. Vapor barriers and other safety 
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mechanisms need to be applied to all commercial products to prevent any 

accidental or intentional hazards associated with methanol. 

Many scientists suggest the possible use of ethanol as the feed for a 

direct fuel cell system. Ethanol is not nearly as toxic as methanol, is a liquid at 

room temperature, is easily manufactured and it is similar to methanol 

molecularly, with an adequate amount of hydrogen. However, it is difficult to 

oxidize ethanol completely and the power output from fuel cells using ethanol as 

a fuel has been minimal. Thus, the fuel efficiency is much lower, it is much more 

expensive per kW and with poor kinetics the reaction proceeds too slowly for 

good cell performance. Overall, it is not considered to be a good choice as a fuel 

for direct fuel cells. 

1.4 - Major Problems and Scientific Remediation Methods 

Currently the major problems with the DMFC are fuel crossover, slow 

anode kinetics, and 2-phase flow in the anode diffusion layer. Many groups [3-6] 

are currently examining new membranes that can prevent methanol crossover 

when the cell is operated under a wide array of temperatures. Others [7-9] are 

researching cheaper and more effective catalysts to improve the slow anode 

kinetics. The work is important, but there has been very little progress achieved 

towards developing easily produced and inexpensive membranes or catalysts 

that perform as well as or better than the market available materials (Nation®, 

Pt/Pt-Ru). It is also important to work on an often-overlooked cell component, 

the gas diffusion layer or GDL. 
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The GDL is typically a carbon paper or cloth that needs to control the flow 

of reactants to the catalyst, remove excess water produced by the cell and 

conduct the produced electricity to the current collectors. Wang et al. [10-13] 

have suggested methods for improving the anode/cathode GDLs for DMFCs, 

helping to limit methanol crossover, allowing the use of highly concentrated 

methanol and managing the CO2 gas in the anode flow channels. This work is 

perhaps the most important, because it allows the use of well-understood 

materials (Nation®, Pt-Ru/C), which are already commercially produced, rather 

than relying on the future development of efficient, new polymeric materials or 

catalysts that then need to be mass-produced at a reasonable cost. 

At the University of New Hampshire (UNH) there is currently a program in 

operation to examine both PEMFCs with hydrogen and oxygen/air feed as well 

as DMFCs with methanol and oxygen/air feeds. There are two experimental 

systems that are designed and built in-house for the purpose of evaluation and 

optimization of cell materials, particularly GDLs. Both systems consist of a 5 

cm2, single cell, typically using Nation® membranes, with Pt or Pt-Ru catalyst. 

The DMFC apparatus also has computerized data acquisition software and 

computer controlled mass flow controllers and temperature/pressure monitoring. 

The work under this thesis includes the design and construction of the 2nd 

generation DMFC/PEMFC system at UNH and the optimization of operating 

parameters for this system. In addition, new anode and cathode GDL materials 

are developed for improved performance in DMFC applications. The GDLs are 

improved by the addition of an optimized microporous layer (MPL), which can 
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more effectively control the flow of methanol to the catalyst layer. One of the end 

results of this work is a GDL system that can be used with commercially available 

membranes with high methanol concentrations, with limited methanol crossover. 

This can help with the development of cheaper and more cost effective fuel cell 

systems, which will lower the overall cost and make DMFCs more viable. This 

project is primarily funded privately by the fuel cell industry. 
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CHAPTER II 

LITERATURE REVIEW 

This chapter is divided into three sections for the convenience of the 

readers. The first section discusses the basics of the operation of a fuel cell 

primarily focusing on the DMFC. The second section deals with the various 

components of a PEMFC/DMFC such as the membrane, gas diffusion layer, 

catalysts and bipolar plates. The final section examines the mass transport in 

these fuel cells, including water management and methanol crossover effects. 

2.1 - Operation of the Fuel Cell 

A PEMFC or DMFC operates in a manner similar to a battery. A 

schematic of the basic fuel cell structure is provided in Figure 2.1. There are 

aluminum alloy end plates, shown in black in Figure 2.1, which serve as the outer 

casings of the fuel cell. Just inside of the end plates are plastic or Teflon 

insulating layers (shown in light blue) and copper current collectors (shown in 

red). Against the current collectors are poco graphite blocks (shown in gray), 

which typically have serpentine flow fields machined into them. These blocks 

serve as gas flow channels as well as electron conductors. 
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There are two sides, the anode (fuel) and the cathode (oxidant), of a fuel 

cell and there is a gas diffusion layer on each side. Between each GDL, shown 

in dark blue, there is a catalyst layer, shown in green, and a polymer electrolyte 

membrane (PEM), shown in purple, is sandwiched by the two catalyst layers, as 

shown in Figure 2.1. The fuel, either hydrogen or methanol, is fed to the anode 

side, while the cathode side is supplied with an oxidant, either oxygen or air. At 

the anode the fuel, say hydrogen, reacts with the catalyst present to disassociate 

the hydrogen into protons and electrons. In the case of methanol, the fuel is first 

split into hydrogen and C02 and then the hydrogen proceeds to disassociate into 

electrons and protons. The protons then pass through the ion conducting 

membrane (polymer electrolyte) and react with the oxygen/air at the cathode to 

form water. The electrons travel through the external circuit, generating a 

current, which is used to power whatever load is connected to the fuel cell. 

In the case of a PEM cell, the half-cell reactions are given as follows: 

Anode: 

H2 ^ 2 H+ + 2 e" 

Cathode: 

1/2 0 2 + 2 H+ + 2 e- -» H20 

The overall reaction: 

H2 +
 1/2 0 2 -* H20 
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Figure 2.1 - Schematic of a PEM Fuel Cell 

This is a simple reaction, which can generate about 1.23V under 

theoretical (perfect) conditions with no waste product, other than pure water. 

There have been many technological advances since the inception of a modern 

fuel cell in the 1960s [14-16]. Although the fuel cell is an effective method for 

power production, the voltage produced is so low that you need very large cells 

or multiple cells in series (known as a "stack") to produce a significant amount of 

power. 

The major problems with the hydrogen-powered fuel cell are the 

transportation and storage of hydrogen and its relatively low energy density 

(68,000 Btu per ft3). Hydrogen is a gas at room temperature and therefore must 

be either compressed in a tank, or cryogenically stored in liquid form, to operate 
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a fuel cell. Compressed hydrogen is relatively dangerous to keep as a fuel for 

non-commercial applications due to explosion and fire risks, as was seen with 

the Hindenburg disaster. For these reasons, it is more practical to examine the 

Direct Methanol Fuel Cell (DMFC) for portable power applications. 

For a DMFC the appropriate half-cell equations are given as follows: 

Anode: 

CH3OH + H20 -» 6H+ + 6e" + C02 

Cathode: 

11/202 + 6H+ + 6e " ^ 3 H 2 0 

The overall reaction: 

CH3OH + 11/2 0 2 -» 2H20 + C02 

As one can see from these reactions, methanol is a very attractive fuel 

choice because it generates six electrons for every mole of methanol, giving it a 

relatively high energy density of 488,000 Btu per ft3. Comparing the six electrons 

that are generated from methanol with the two from hydrogen and considering 

that methanol is a liquid fuel at ambient conditions, it is clearly a better choice for 

portable power applications. One downside to using methanol for a fuel is the 

production of C02 as a waste. However, only one mole of C02 is produced for 

every 6 electrons generated, so the amount is still minor when compared to the 

amount of C02 generated from the combustion of fossil fuels. Small amounts of 

CO may also be formed due to incomplete oxidation of carbon, which may act as 

a catalyst poison and as a pollutant. This can also be considered minor and, with 
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proper catalysts, it should be possible to selectively oxidize the CO to CO2 to 

minimize this problem. 

Currently, fuel cells are being developed for use in cellular telephones, 

PDAs, laptops, and other portable devices using both hydrogen and methanol, as 

well as formic acid [17]. These micro-fuel cells could create a better, cleaner 

world. We would no longer need batteries, and the amount of hazardous waste 

they generate, but rather a cartridge of fuel that can be easily replaced or refilled. 

We would not need to transport huge amounts of electricity to our homes, just to 

recharge our batteries every few days. Although they are very promising, there 

are still some major obstacles to overcome, particularly with DMFCs. Problems 

such as methanol crossover, poor catalysts, catalyst poisoning, water 

management and others that will be discussed later in this chapter need to be 

resolved. 

A single cell PEM or DM fuel cell, as shown in Figure 2.1, is basically comprised 

of the following: 

- A membrane electrode assembly (MEA), which consists of two gas 

diffusion layers, two catalyst layers, and an electrolyte membrane. Gas 

diffusion layers are placed on either side of a membrane and between 

them is a catalyst layer coated either on the GDL or the membrane itself. 

- On either side of the MEA there is a graphite block attached to a copper 

plate, known as a current collector. These graphite blocks have flow 
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patterns (or fields) carved into them to allow the fuel / oxygen maximum 

exposure time to the catalyst coated GDL or membrane for the reactions. 

For all of the experiments done at UNH a serpentine flow pattern is used, 

as shown in Figure 4.2. 

- Auxiliary equipment is used to monitor temperature, pressure, flow rates, 

gas humidification and other process variables. 

The following sections will discuss the literature review for these basic 

components of a single cell DMFC and their effect on the cell performance. 

2.2 - Components and Materials 

2.2.1 - Membrane Electrode Assembly (MEA) 

The MEA is the heart of the fuel cell operation. It can be broken into its 

three main components, which are: the polymer electrolyte membrane, the gas 

diffusion layers (GDLs) and the catalyst coatings. Each of these parts is 

examined individually as they are the most important components of the 

PEM/DM fuel cell. Generally, the MEA is made by sandwiching the membrane 

between two catalyst layers and two GDLs, as shown in Figure 2.1. The 

catalysts are either placed on each side of the membrane [7] or coated onto the 

GDLs themselves. The catalyst, typically Pt on carbon, is usually combined with 

water, ionomer solution and an alcohol to form an ink solution, which is either 

painted or sprayed onto these surfaces. It has been reported that the spraying 

method is more uniform and therefore more effective. However, many facilities 
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continue to paint the catalyst onto the GDL for cost and process simplification 

[18]. For methanol, a new technique for preparing MEAs has been proposed by 

Frey et al. [19] by a layer-upon-layer fabrication process, which may further 

improve uniformity and performance. 

2.2.2 - Polymer Electrolyte Membrane (PEM): 

The membrane is often considered to be the heart of the PEM or DM fuel 

cell. It needs to allow protons to move freely, while preventing electrons from 

passing through. It must not allow the fuel or oxidant to crossover and must also 

act as an insulator between the electrodes. This is particularly important in 

DMFCs, where methanol crossover is currently the biggest factor associated with 

low performance. To be useful the membrane must be chemically and thermally 

stable, not breaking down during use and be mechanically durable to resist any 

structural damage or deformation. 

Prior to the 1970s, the most common membrane used in PEMFC 

applications was the polystyrene sulfonic acid (PSSA) membranes [14]. 

Although these membranes were inexpensive and had relatively high ionic 

conductivities, they had a low tensile modulus and were easily degraded in the 

oxidizing environment of the fuel cell. The performance of these membranes 

was also limited due to fuel crossover, reducing the external flow of electrons 

during the cell operation. 

In the early 1970s there was a significant advance in membrane 

technology when DuPont invented Nation®. Nation® is a perfluorosulfonic acid 

membrane which offers nearly twice the ionic conductivity of previous 
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membranes with more thermal and mechanical durability. This membrane is 

used in current fuel cells, although its high cost and environmental disposal 

hazards keep researchers looking for other alternatives. Other companies have 

followed in DuPont's footsteps and produced their own perflorinated polymer 

electrolyte membranes that are commercially available, such as: Asahi 

Chemicals Co. (Aciplex), Asahi Glass Co. (Flemin), Dow [6] and W.L. Gore and 

Associates, Inc. (PRIMEA) [20]. 

All of these membranes are structurally based on polyethylene. When this 

base structure is changed such that the C-H bonds are broken and hydrogen 

atoms replaced with F atoms, we are left with a polytetrafloroethylene (PTFE), 

which is given the trade name Teflon®. Teflon® is useful because it is highly 

resistant to chemical attacks because of the strong C-F bonds. It is also 

considered one of the most stable substances in the world and prevents most 

anything from binding to it, including water. To make this material conductive to 

protons, a sulphonic acid group is attached by the process of sulphonation. 

These groups are also highly hydrophilic (attract water) and with the hydrophobic 

(repels water) Teflon® base, pockets of water are created inside the membrane. 

The methods by which these sulphonic acid groups are added differ with the 

base membrane structure, but regardless of the technique used, the S03" group 

is strongly attached while the FT ion is weakly attached to the membrane. These 

H+ ions (protons) are able to easily move from one location to another, thus 

conducting protons through an otherwise electrically resistant material [1]. 
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Problems with these types of membranes are generally cost and 

environmental disposal. Nation® currently retails for approximately $500 [21] per 

square meter, making it one of the most expensive parts of the fuel cell. In 

methanol systems these membranes also allow a significant portion of the 

methanol to crossover, leading to poor efficiencies [22]. Commonly when a 

membrane separates two solutions of different concentrations, there is some flow 

of a component from the higher concentration to the low concentration side. In 

methanol systems there is a small concentration (typically -3%) of methanol at 

the anode, but no methanol present at the cathode, thus there is diffusional flow. 

In addition to this, methanol is pulled through the membrane by the water 

molecules by electro-osmotic drag. This means that as water moves through the 

membrane, it drags methanol with it across the membrane to the cathode side 

unreacted. It is necessary to eliminate this crossover flow because the methanol 

that passes through the membrane does not produce electrons at the anode and 

thereby decreases the overall cell performance. 

Currently either thicker or structurally enhanced membranes are used to 

decrease the amount of methanol crossover. Gamburzev et. al. [15] examined 

the performance of Nation® membranes with respect to thickness and equivalent 

weight (EW). It was reported that thinner membranes had much better proton 

conductivities; however, membranes that were too thin often led to thermal or 

mechanical degradation and system failure. It was also found that membranes 

with a lower EW performed better than those with a higher EW, even if the 

membrane itself was thicker [15]. Nation® membranes are characterized relative 
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to their equivalent weights and thickness. For example Nation 115 is a 

membrane of EW of 1100 and a thickness of .005 inches [1]. For current DMFC 

systems it is important to have a relatively thicker membrane with a lower EW, 

such as Nation® 117, to get the best performance. 

There are other less common membranes, which are also being used as 

low cost and environmentally friendly alternatives. Some of these alternatives 

include: polyether ether ketone (PEEK) [3], polyvinyl alcohol (PVA) [4], acid 

doped polybenzimidazole (PBI) [5] and polyphosphazene [23]. The benefits of 

these alternatives are low-cost, environmental friendliness, chemical stability and 

reduced methanol crossover. The major disadvantage is the relatively low proton 

conductivity compared to Nation®, decreasing the overall performance of the cell. 

Chen et al. have experimented with a resin/polystyrene sulfonate (PSS) 

composite membrane [24]. The resin is a cross-linked polystyrene sulfonate ion 

exchange resin, which is easily blended with the PSS to create a composite 

membrane that is highly conductive and has relatively low cost. It is also more 

environmentally friendly, structurally and chemically stable. This membrane may 

also prove to be highly successful in decreasing methanol crossover because of 

the cross-linked network. 

One way to improve cell performance is raising the cell temperature. 

However, most of the membranes, especially Nation®, break down at relatively 

low temperatures (less than 1009C). Park et al. [25] examined nanocomposite 

membranes based on 3-glycidoxyproplytrimethoxysilane (GPTS), silicotungstic 

acid and a-zirconium phosphate hydrate for proton conductivity. They found that 
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the proton conductivity was sufficiently high and the membranes were stable at 

temperatures above 1006C. Jalani et al. [26] examined nanocomposite 

membranes, using Nation® as a base, for performance in the 909C -120QC 

temperature range. They found that all the nanocomposites had higher water 

sorption than normal Nation® in their specified temperature range. Adjemian et 

al. [27] examined modified perflouorsulfonic acid silicon oxide composite 

membranes in the temperature range of 80QC-140QC. They found that the 

modified membranes performed better than conventional membranes at these 

high temperatures and that they were physically more robust and not subject to 

degradation. Hogarth et al. [28] developed solid acid membranes, which 

performed well in the 1009C-130QC range. All of these advances indicate that 

higher temperature operation may be possible, leading to better overall 

efficiency. 

The ionic conductivity of different proton exchange membranes was 

determined using AC impedance spectroscopy, as reported by Beattie et al. [29]. 

They found that EW and water content alone were not good indicators of proton 

conductivity, but rather a mixture of those plus the H2O/SO3" ratio gave the best 

indication of how well a membrane conducted ions. Okada et al. [30] studied 

ionic and water transport characteristics for Nation® membranes. The open-

ended coaxial probe method was used by Anantaraman et al. [31] to study the 

membrane conductivities. Barragan et al. [22] examined the methanol crossover 

rate for Nation® membranes with and without the presence of an electrolyte (KCI) 
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in the solution. Fransesco et al. [32] developed an analytical way to calculate the 

membrane resistance. 

Although the focus of this study is not on the polymer electrolyte 

membrane, it is essential that we fully understand the advantages and 

disadvantages of each of the membranes. It is important to understand that 

thinner membranes with lower EWs will lead to higher proton conductivity, at the 

expense of methanol crossover. Proper water management must be maintained 

for the cell to function properly. Further advances in membrane must be made to 

minimize the amount of methanol crossover, while keeping proton conductivity 

high, and to lower the cost and make them more environmentally friendly. 

2.2.3 - Gas Diffusion Layer (GPL): 

The gas diffusion layer (GDL) is one of the most important parts of the 

membrane electrode assembly. Every MEA is composed of a membrane 

sandwiched between two gas diffusion layers. Between the membrane and each 

of the gas diffusion layers is a thin catalyst layer. The catalyst layer can be 

applied either on the gas diffusion layer or directly on either side of the 

membrane. We will first focus on the gas diffusion layers and then will turn our 

focus to the catalyst layers. 

Gas diffusion layers are generally made of porous carbon paper or 

cloth/fabric. The carbon base gives it relatively good electrical conductivity 

between the catalyst layer and the current collecting plates. In general, the gas 

diffusion layers are roughly 100-400um thick and highly porous to allow the gas 
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to diffuse through to the catalyst. Thinner diffusion layers are generally better as 

they have minimal electrical resistance and allow the fuel and oxidants 

(CH3OH/H2, 02/Air) to easily pass through [2]. 

The gas diffusion layers are often wet-proofed with a hydrophobic material 

such as Teflon® (PTFE). The hydrophobic material allows excess water to be 

rejected from the cell, preventing the cell from flooding. Flooding occurs when an 

excess of water is present at the GDL surface, which prevents the gas from 

successfully reaching the catalyst layer. When flooding occurs, the cell 

performance drops drastically. Park et al. [33] studied the effect of PTFE 

contents in the gas diffusion layer and found that the incorporation of a micro 

layer was crucial to proper water management. They were able to conclude that 

reduced thickness and larger pore diameter in the GDL are the best for water 

management and consequently cell performance. Giorgi et al. [34] also 

investigated the effect of PTFE contents in the diffusion layer and came to the 

conclusion that minimizing the content was best, but not limiting it to zero as then 

the GDL floods, yielding no performance. Water management is one of the most 

important functions of the gas diffusion layer, as too little water causes poor 

proton conductivity of the membrane and excess water causes the cell to flood. 

Often times the gas diffusion layer is coated with a thin layer of Nation® 

solution. This solution affects the gas permeability, catalytic activity and ionic 

resistance of the GDL. Sasikumar et al. [35] reported that as the platinum 

loading decreased the optimum Nation® loading increased, showing an inverse 

relationship. Lee et al. [36] also studied the effects of Nation® impregnation and 
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concluded that there was a sharp increase of catalyst activity with a moderate 

Nation® loading (1.3mg/cm2) and then a gradual increase as the loading was 

raised to a maximum of 1.9 mg/cm2. 

Some of the major physical properties that affect the performance of the 

gas diffusion layers in the cell are the gas permeability and the pore size 

diameter. Prasanna et al. [37] reported the optimum pore size diameter to be 

roughly 25-40um, anything larger than that led to excessive flooding of the cell. 

Kong et al. [38] used mercury intrusion porosimetry and AC impedance analyses 

to show that an increase in pore size distribution led to a reduction in cell 

performance loss due to mass-transport limitations. It was also confirmed that if 

the pore size was too large, the cell was easily flooded and performance dropped 

drastically. Chu et al. [39] also studied the effects of porosity change on 

performance and developed a theoretical mathematical model, which showed 

that as the porosity increased, the current density also increased. However, the 

GDL would be more prone to flooding, leading to lower power generation. The 

thickness and Teflon® content of the GDL have a larger impact on GDL 

performance than just the porosity. 

There are numerous types of commercially available GDLs that have been 

studied and compared for PEM fuel cell performance. The different GDLs are 

characterized by their thickness, gas permeability and electrical conductivity. As 

previously mentioned, thinner GDLs tend to have higher gas permeability and 

electrical conductivity, which make them preferable. However, very thin GDLs 

cannot adequately provide good electrical contact between the current collecting 
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plates and the catalyst layer. There is an optimum thickness for a GDL and it is 

dependent on the type of material used. Researchers [40, 41] have compared 

different types of carbon fiber and carbon paper GDLs in PEMFCs. One of the 

most common types of fabric GDL is the ELAT (E-TEK), which has been studied 

and results reported by Qi et al. [42]. The study of paper GDLs such as Toray 

and Kureha was conducted and results were reported by Giorgi et al. [34] and 

Passalacqua et al. [43], respectively. Toray paper remains one of the most 

commonly used GDL because of its high performance. Moreira et al. [44] studied 

the paper and cloth GDLs and found that the paper performance was better at 

low current densities, but fabric GDLs performed better at high current densities 

because of improved water management. 

Single layered GDLs were originally used in PEM fuel cells. These were 

wet proofed with PTFE or some other similar coating and worked relatively well. 

Later these GDLs have been modified to include another separate hydrophobic 

layer, which helps manage the water in the cell more effectively. Song et al. [45] 

used a layer of PTFE and carbon film cast on the surface of the GDL using an 

alcoholic suspension. Glora et al. [46] used carbon aero gels to form a porous 

substrate layer. Both these methods worked to decrease the contact resistance 

between the electrode and the membrane/plates. The aero gel method only 

produced a minimal amount of power, however. The problem is believed to lie 

with poor catalyst layer preparation, although that was not confirmed. Both of 

these methods confirm that an additional layer applied to the GDLs helps to 

minimize resistance and thereby improves performance. 
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Another concept approach to forming a multi-layer GDL is through the use 

of a microporous sublayer (MPL). This has been tested by Qi and Kaufman [47] 

and has shown promising results. When this MPL is present, the paper appears 

to act only as a mechanical support to the sublayer. Different sublayers of 

varying thicknesses which contained anywhere from 25-45% PTFE were 

examined. It was found that the presence of the sublayer seems to reduce mass 

transport problems and give better performance. They were able to operate a 

four-cell stack at a current density of 145 mA/cm2 with un-humidified gases. 

Wang et al. [12, 13] have attempted to use MPLs with the gas diffusion layer to 

control C02 gas management and methanol crossover effects. They have 

models that show that thick GDLs may act as a barrier to methanol transport and 

allow the use of highly concentrated methanol solutions, even with thin 

membranes with high ionic conductivity. The results of these studies of multi-

layered GDLs are promising and may lead to further advances in the near future. 

For the DMFC, the problem of flooding within the cell is a major factor 

because the fuel is a methanol/water mixture. The concept of a multi-layered 

GDL to prevent flooding and use of a cross-linked polymer membrane to prevent 

methanol crossover could go a long way in improving the cell technology. 

Understanding how small changes in the electrodes (GDL and catalyst layer) will 

affect the cell performance is critical. Water management is of vital importance 

to keep the membrane hydrated enough for proton conduction, but limit flooding. 

This is a very delicate balance, which must be controlled properly by the GDLs. 
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2.2.4 -Catalyst Layer: 

The catalyst layer is located between the gas diffusion layer and the 

membrane as shown in Figure 2.1. It is often called the active layer and it must 

remain close to the membrane, as the reactions only take place on the catalysts. 

The catalyst slurry, called ink, is composed of a metal catalyst on mostly carbon 

support suspended in H20, alcohol (typically propanol) and Nafion® solution. 

This catalytic ink is then spread on either the gas diffusion layer or on the 

membrane itself. Shin et al. [48] examined the effect of using the ink either as a 

solution or as a colloid. They found the colloidal method led to larger reaction 

area and therefore an increase in cell performance. 

Typically the catalyst is Pt or Pt-Ru on some type of support, usually 

carbon. Liu et al. [49] studied the effect of the carbon support for the catalyst and 

found that the supported catalyst had much higher activity and generally 

performed well. However, it seemed to lead to higher methanol crossover effects 

in DMFC applications possibly because of carbon corrosion and Pt dissolution 

damaging the membrane. Tian et al. [50] studied the effect of Pt catalyst 

preparation conditions and found that cell performance was enhanced when the 

Pt was deposited on heat-treated carbon black. Maruyama and Abe [51] did a 

similar study and found that performance was increased as much as 6 times by 

using activated carbon rather than just carbon black. 

If CO is present, in the fuel (if there is a reformer) or formed as a product 

during methanol breakdown, it can poison the catalyst, decreasing reaction rates 

and therefore the performance of the cell. Toad et al. [8] tried to improve 
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performance by creating Pt alloys with Fe, Ni and Co and found that there was a 

slight increase in performance. Gupta et al. [9] developed heat-treated iron 

based catalysts, which showed no performance degradation when exposed to 

methanol for over 24 hours. Generally in the case of DMFCs the catalyst used 

on the anode is Pt-Ru on carbon in a 50:50 atomic ratio. There are several 

studies underway for the development of CO-tolerant catalysts. 

The catalyst loading can have a great impact on the overall performance 

of a cell. It may seem that an increase in catalyst amount would lead to an 

increase in reaction rate and therefore an increase in performance. In general 

this is true, as the catalyst amount increases, the cell performance increases. 

However, when the loading gets too high the pores of the gas diffusion layer clog 

and the fuel/oxidant can no longer reach all of the catalyst sites. This decrease 

in mass transfer rates leads to a much lower cell performance. Gasteiger et al. 

[52] studied the effect of catalyst loading and found that PEM fuel cells performed 

even with anode Pt loadings as low as 0.05 mg/cm2 on the anode. On the 

cathode side the performance was greatly reduced if the Pt loadings dropped 

below 0.2 mg/cm2. Antoine et al. [53] studied the effect of particle size and 

distribution on reaction rates in PEM fuel cells. They found that on the cathode 

side the slow kinetics had a larger impact than diffusion resistance, while on the 

anode side both kinetics and diffusion rates were hindered with increased particle 

size. 

Several authors have attempted to study and model the kinetics that take 

place in a fuel cell [54, 55, 56]. Generally it is understood that the kinetics on the 
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anode side of a PEM cell (hydrogen oxidation on Pt) occurs very rapidly, while at 

the cathode (oxygen reduction on Pt) the kinetics are very poor and thus 

efficiency limiting. In DM fuel cells the anode kinetics are very slow as methanol 

must break into hydrogen and CO2 and then the hydrogen must react with 

platinum to form a proton and an electron to drive the reaction. Grgur et al. [57] 

studied the effect of methanol oxidation rates on Pt-Ru catalysts by itself and in 

the presence of CO. It was found that the CO would bond to the Ru sites and 

deactivate the catalysts leading to very poor performance with a potential as low 

as 0.15V. 

Pozio et al. [58] derived a semi-empirical equation to model the hydrogen 

oxidation rates on Pt, Pt-Ru and Pt-Mo catalysts on carbon support. It was found 

that there was a strong kinetic limitation on the Pt-Ru and Pt-Mo catalysts as 

opposed to the rates provided by the Pt alone. This indicates that even with the 

improved conversion of methanol to hydrogen with bi-metallic catalysts, the 

overall kinetics will decrease and thus the performance of the cell will be lower 

than that of hydrogen alone. Ye et al. [59] made an interesting discovery when 

they found that by interrupting the oxygen supply to a DM fuel cell there was an 

accumulation of hydrogen at the anode, which led to an increase in power when 

the oxygen feed, was resumed. This allowed the DMFC to behave like a 

hydrogen cell because of the accumulation of hydrogen feed at the anode [59]. 

Several authors have developed a model to optimize the catalyst layer in a 

fuel cell [60, 61]. Generally, it is found that the cell is most dependent on the 

layer thickness and the Pt loading. The optimal results occur when the layer is 
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as thin as possible with a maximum Pt loading. This supports the conclusion that 

when applying catalyst ink it is ideal to spray the catalyst as opposed to painting 

it. Also many authors have tried to further decrease the catalyst layer thickness 

by using electrochemical deposition [62, 63, 64]. Usually these methods improve 

the overall performance by increasing the amount of Pt in a very thin catalyst 

layer. 

2.2.5 - Bipolar Plates and Flow Fields 

Bipolar plates are currently another very expensive part of a fuel cell 

system. Their primary function is to allow one side to act as a cathode and the 

other side as an anode simultaneously. That allows multiple cells to be 

connected in a stack, while limiting the number of plates that are needed. The 

plates must be made of a good conductive, both thermal and electrical, material 

such as graphite or stainless steel [2]. The reason why these plates are so 

expensive is because they are currently machined carefully for gas flow and you 

need multiple pieces for a cell stack. Zhang et al. [65] studied the effect of 

graphite particles and particle size on bipolar plate performance. They found that 

flake graphite particles outperform spherical graphite particles and that in both 

cases as the particle size decreased, electrical and thermal conductivity were 

reduced, although strength was enhanced. 

Arico et al. [66] have examined the effect of flow field design on DMFC 

performance and concluded that serpentine flow patterns show lower methanol 

crossover and fuel utilization than interdigitated flow patterns. Yang and Zhao 
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[67] did a similar study comparing serpentine flow fields to parallel flow fields and 

also concluded that parallel flow fields tend to be blocked by CO2 gas bubbles, 

while serpentine flow fields did not. Jung et al. [68] also examined various 

combinations of flow field designs and concluded that a parallel flow on the 

anode combined with a serpentine flow on the cathode led to the best 

performance in their system. They concluded that the serpentine flow path was 

too long to adequately remove C02 bubbles on the anode side, while on the 

cathode side the high pressure drop from the serpentine channels help to 

exclude water and improve mass transfer. 

Along the same lines Yang et al. [69] examined the formation of CO2 gas 

bubbles in flow fields and determined that higher methanol flow rates reduced the 

size and number of bubbles in the flow channels and that cell orientation had a 

large effect on performance, especially at low temperatures. They also 

examined the pressure drop in the anode flow field [70] and found that it always 

increased with increased methanol flow rate, however the performance 

deteriorated at very high or very low flow rates. Also they concluded that the 

pressure drop was almost independent of current density at sufficiently high 

methanol flow rates and that temperature and methanol concentration had little to 

no effect on pressure drop. 

2.3 - Mass Transport and Water Management 

Water management, as we have seen in the membrane and GDL 

sections, plays a crucial role in the operation of a fuel cell. There must be a 
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proper balance between keeping the membrane hydrated, for protons to flow, 

and keeping the GDL from flooding, leading to mass transport limitations. This 

section examines the mathematical models and in-situ studies that have been 

reported on water management and transport phenomena and their impact on 

the design and operation of a fuel cell. 

There have been numerous mathematical models [71-75] to describe the 

effects of flooding in a PEM fuel cell system. Yan et al. [76] took these base 

models and developed a model that describes both heat transfer and water 

management in a PEM system. Others, such as Tuber et al. [77], developed 

transparent PEM cells to visualize the cathode flooding and determine how to 

stop it. Satija et al. [78] designed an in situ neutron imaging technique, which 

allows researchers to determine exactly where water is building up in the cell and 

under what conditions. Nguyen et al. [79] suggest a water management strategy, 

using inderdigitated flow field system on fuel cell stacks, which led to twice the 

power density of conventional stack systems. 

The system design for a DMFC is similar to that of a PEMFC. However, in 

a PEMFC water management is primarily focused on the cathode side, where 

flooding occurs. In a DMFC, water management is important on both the anode 

and cathode because of the issue of methanol crossover as well as the formation 

of CO2 on the anode side. Jiang and Menheng [80] developed a two-phase one-

dimensional flow model for both heat and water management in a DMFC. Wang 

[10] examined two-phase flow and mass transport in a DMFC in depth, while 

developing a comprehensive three-dimensional model [81]. Others [69] 
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developed a transparent DMFC system to study the formation and transportation 

of CO2 in the anode of a DMFC. 

Water transport and mass transfer limitations present a significant barrier 

to improving DMFC performance. Improvements in C02 management on the 

anode side will greatly improve performance by allowing MeOH to reach the 

catalyst site quickly. Water transport through the membrane leads to higher 

MeOH crossover rates because of electro-osmotic drag effects. Lu et al. [11] 

proposed a method of using an MPL on the cathode side of the DMFC to build up 

hydraulic pressure and limit the water transport through a Nation® membrane. 

This method greatly reduced MeOH crossover and improved performance. It 

also showed that new membranes were not required for DMFCs if the water/gas 

management was designed properly. Work towards improving the anode GDL 

will play a crucial role in the development and eventual implementation of DMFC 

as a power source. 
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CHAPTER III 

THEORY OF FUEL CELL OPERATION 

This chapter is divided into three sub-sections. The first section discusses 

the theoretical fuel cell potential and efficiency. The second section deals with 

different overpotentials of the cell and their causes. The final section examines 

different parameters that affect the overpotentials and ways for possible cell 

performance improvement. 

3.1 - Theoretical Potential of a Fuel Cell 

As has been previously discussed in Chapter 2, a fuel cell operates on the 

basis of two simultaneous electrochemical reactions occurring at the anode and 

cathode electrodes. The basic reactions for hydrogen fuel are: 

At the Anode.• 

H 2 ^ 2 H + + 2e- (1) 

At the Cathode: 

1/2 0 2 + 2 H+ + 2 e" •* H20 (2) 

Overall: 

H2 + y2 0 2 ^ H20 (3) 
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Although these reactions may have some intermediate steps and/or have some 

unwanted products, it is essentially an accurate description of the internal 

operation of the fuel cell. 

It is clear that the overall reaction is simply the combustion of hydrogen. 

This means that the energy released from the combustion of hydrogen must be 

the same as the theoretical potential energy that can be generated in the cell. 

Since the fuel cell operates because of chemical reactions, not all of the energy 

can be directly converted into electricity, because a portion must involve a 

change in entropy. The amount of energy that can possibly be produced is given 

by the change in enthalpy minus the change in entropy, which is the same as the 

Gibbs free energy governed by the following equation: 

AG = AH - T • AS 
(4) 

where AG is the change in Gibbs free energy, AH is the change in enthalpy, T is 

the temperature in Kelvin and AS is the change in entropy. 

If we assume the cell operates at 25°C, then the AH for hydrogen is -286 kJ per 

mole and the TAS is -48.68 kJ per mole, which means that the Gibbs free energy 

(or total amount of energy that can be converted to electricity) is -237 kJ per mole 

[1]-

The standard potential (or open circuit voltage) can be determined with the 

following equation: 

(5) 
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where n is the number of electrons present (with H2, n=2 because there are two 

electrons present for every one mole) and F is Faraday's constant (96,485 

Coulombs per electron-mol). Since all the values are known in this case, we can 

find the theoretical fuel cell potential (using hydrogen and oxygen) to be: 

E = (237,340 J-mol"1) / (2 * 96,485 C-mol"1) = 1.23 V (6) 

This shows that at 25°C the theoretical hydrogen fuel cell potential is 1.23 V. 

The same analysis can be applied to a direct methanol fuel cell (DMFC), which 

undergoes the following reactions: 

At the Anode: 

CH3OH + H20 ^ C 0 2 + 6H + + 6e- (7) 

At the Cathode: 

11/2 0 2 + 6 H+ + 6 e" -» 3 H20 (8) 

Overall: 

CH3OH + 1 Vfe 0 2 -» 2 H20 + C02 (9) 

From these reactions the change in Gibbs free energy is found to be 698.2 kJ per 

mol and since there are 6 electrons per mole of CH3OH, the theoretical fuel cell 

potential for the DMFC is found to be 1.21 V. 

Although understanding and computing the maximum theoretical potential 

is a useful tool, it is perhaps more advantageous to look towards the maximum 

theoretical efficiency of a fuel cell. There are 2 different ways to examine the 

theoretical efficiency [1]. The first method is to simply compare the ratio of 

maximum electrical energy produced to the amount of energy input. We know 
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the maximum electrical energy output is the Gibbs free energy and the amount of 

energy input is the heating value (enthalpy) of the fuel. Therefore, the theoretical 

efficiency of a hydrogen fuel cell can be calculated from: 

AG 

" = a H do) 

This shows that when AG and AH are -237 and -286, respectively, the 

maximum possible efficiency of a PEMFC is only 83%. 

The other method of determining the efficiency of the fuel cell is to take 

the ratio of the potentials. By dividing AG and AH each by nF we can find the 

maximum potential for both the actual and the perfect cell, if we were to ignore 

change in entropy. We find that based on AG, the maximum potential is 1.23 V 

and based on AH, it is 1.482 V. Therefore, the maximum efficiency of the cell 

would be equal to the ratio of these two potentials or: 

AG 
n • F 

11 =
 "A7T~ 

n • F 
(11) 

As previously shown, the theoretical efficiency of a hydrogen fuel cell is found to 

be 83%. Similarly for a DMFC system, the theoretical maximum efficiency is 

again AG/AH as given by equation 10. Since AG for the oxidation of methanol is 

known to be -698 kJ per mole and AH is -727 kJ per mole, the theoretical 

efficiency for DMFC system is 96%. 
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3.2 - OverpotentSals and Their Causes 

In the operation of a hydrogen fuel cell there are 3 major types of 

overpotentials that decrease the theoretical voltage of a cell. The first 

overpotential is known as activation overpotential and it typically occurs at very 

low current densities of 0-0.1 A/cm2. The second major overpotential is known 

as ohmic losses and it usually occurs over a wide range of medium current 

densities from 0.1-1 A/cm2. Another major overpotential is known as mass 

transport or concentration losses and it causes a major voltage drop-off in the 

high current density range above 1 A/cm2. Each of these overpotentials is 

illustrated in Figure 3.1 and their causes are discussed in detail in the following 

pages. 

Typical Performance Curve 
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Figure 3.1 - Illustration of the Three Major Overpotentials 
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When the cell is initially put into operation, a certain amount of potential is 

required to start the electrochemical reactions. This portion of the potential is 

"lost" and is commonly known as activation potential, shown with the red circle in 

Figure 3.1. This overpotential represents the size of the activation energy that is 

required when the reactions proceed at the rate necessary for the desired 

current. It is important to note that at higher current densities the activation 

losses are much lower than at low current densities. The losses occur at both 

the anode and cathode and the expressions for these can be derived from the 

Butler-Volmer equation. For the cathode the activation overpotential is given by: 

R • T f i " 
E,c - Ec = • In - — 

« c - F [.ocj ( 1 2 ) 

where, E r iC- Ec is the overpotential (the difference between the reference and 

the cell), R is the universal gas constant, T is the temperature in Kelvin, occ is the 

cathodic transfer coefficient, F is Faraday's constant, i is the current density and 

ioc is the exchange current density on the cathode side. 

For the anode the activation overpotential is given by: 

R 
— — • In - — 

• F InA I 

(13) 

where, Ec - ErA is the overpotential (the difference between the reference and 

the cell), R is the universal gas constant, T is the temperature in Kelvin, OCAJS the 

anodic transfer coefficient, F is Faraday's constant, i is the current density and i0A 

is the exchange current density on the anode side. 

Ec - ErA = — • In 
OCA ' F 
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These equations can be represented by the Tafel [2] equation by using the 

properties of the natural log function as follows: 

AVact = A + B • In ( i ) 

where 

(14) 

-R • T 
A = — • In ( t 0 ) 

a • F 
B = 

R • T 

a (15) 

and AVact is the difference between the cell voltage and the reference as given in 

Equations 12 and 13 for the cathode and anode, respectively. 

Since the reversible potential of the hydrogen oxidation (Eri3) is zero by 

definition [1], the overall cell potential (only accounting for activation polarization 

losses) would be: 

:cell = Er -
R 

In 
ac 'oc 

R 
In 

OCA >0A 
(16) 

where, Er is the theoretical cell potential, the second term is the activation loss 

from the cathode side and the final term is the activation loss from the anode side 

as given in Equations 12 and 13, respectively. 

Since the anode reaction proceeds much more rapidly, the exchange current 

density for the anode is significantly larger than that of the cathode and therefore 

its activation polarization can be neglected. Therefore, the last term drops out 

and the cell potential is given by: 

:cell = Er - In 
ac 'oc (17) 
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Thus, the cathode exchange current density, i0c, is the single largest factor in 

determining the activation overpotential. As i0 increases, the overpotential 

decreases, thus improving the performance of the cell. The transfer coefficient 

(a) is typically around 1 for oxygen reduction on Pt [1]. 

Ohmic losses are caused by any resistance to the flow of ions or electrons 

through the fuel cell system. These losses typically cause the linear voltage drop 

that is seen at the middle current density range. It is governed by Ohm's law, 

which states: 

A V - ' ' • * » (18) 

where, i is the current density and Rj is the total internal resistance of the cell. 

The Ri value for a typical fuel cell is usually somewhere in the range of 0.1-0.2 Q. 

cm2. Usually the largest resistance is found in the electrolyte, although 

resistance in the bipolar plates may also be important [1]. 

Mass transport or concentration losses (polarization) are caused by rapid 

consumption of a reactant at the electrodes, which leads to concentration 

gradients. This usually occurs in the high current density range, as there is not 

enough reactant present on the catalyst surface for the current demands. This 

overpotential is governed by the Nernst equation: 

R • T 
AV = — • In 

( 1 9 ) 

where, Ceand Cs are the concentrations of the reactants in the bulk and at the 

surface, respectively. By using Fick's law and manipulating it by knowing that at 
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steady state the rate at which the reactants are consumed is equal to the 

diffusion flux [2], one is able to find the relationship between Cs and i as follows: 

n • F • D • ( C B - C s ) 
i _ 

5 (20) 

where, D is the diffusion coefficient of the reacting species and 5 is the diffusion 

distance. When the reactant is consumed faster than it can diffuse to the catalyst 

surface, the cell can no longer perform and the current density is known as the 

limiting current density (ii_) and can be represented by the following equation: 

n • F • D • C B iL = r 
5 (21) 

By manipulating Equations 19, 20 and 21 one can find that the relationship 

between the overpotential and the limiting current density as: 

R ' T r 'L ~| 
AV = • In j T 

n • F L L i J ( 2 2 ) 

This equation shows that as the current density, i, approaches the limiting current 

density there will be a large drop in cell potential. In actuality we rarely reach the 

limiting current density because of non-uniform surface conditions [2]. 

Internal losses or crossover losses, although minor in hydrogen fuel cells, 

can play a major role in DMFCs. Internal losses are caused when electrons 

manage to cross from the anode to the cathode without going through the 

external load. This is not typically found in Nation® membranes (typically used in 

hydrogen cells), but can be common in some specialty membranes, which are 

designed to reduce methanol crossover. This has the effect of lowering the 
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overall efficiency of the fuel cell, as some of the electrons formed are not 

contributing to the current flow. Fuel crossover has a similar effect to internal 

losses; however, it results from reactants passing through the membrane. This 

not only means that some of the reactant is being wasted, but also it 

"depolarizes" the cathode, thus reducing the cell's potential. This is a major 

concern as methanol crossover is reported as high as 30-40% when using 

Nation® membranes [82]. 

3.3 - Improving Performance 

Many parameters affect these overpotentials in a cell and can be 

controlled to improve the overall efficiency. It appears from Equation 12 that as 

the temperature increases, the activation overpotential will also increase. In 

practice this is not the case because as the temperature increases the exchange 

current density also increases by a large amount, which offsets any adverse 

effect of temperature. Ohmic losses are independent of temperature. Methanol 

crossover may increase with higher temperatures as gaseous methanol can 

more easily pass through the membrane due to dilation of pores. Internal losses, 

however, are not affected by temperature. Concentration polarization increases 

slightly with an increase in temperature. The effect is minimal, however, 

compared to the relative concentration of reactants. Overall, there is an 

improvement with an increase in temperature as the kinetics improve and 

activation losses are decreased more than the relative increase in methanol 

crossover or concentration polarization [2]. 
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Pressurizing the system, on the cathode side, tends to decrease the 

concentration polarization by increasing the concentration at the surface. When 

pressurizing the anode side, there may be a slight increase in fuel crossover, 

which may adversely affect the system. Overall, it is found that increasing the 

pressure moderately (20-50 psi) on the cathode side improves the cell 

performance by reducing the concentration polarization and increasing the 

current exchange density [2]. 

Improving the effectiveness of the gas diffusion layer will greatly improve 

the performance of the system and help to decrease voltage losses. Improving 

the porosity and the gas permeability can help to decrease the concentration 

polarization drastically. Increasing the electrical conductivity can greatly reduce 

the internal losses of the cell. Increasing the roughness of the GDL will also 

improve exchange current density by increasing the real area while holding the 

nominal area constant. 

Finally, improving the electrolyte and catalyst will greatly reduce losses 

and increase efficiency. Ideally the electrolyte should be as thin as possible to 

help reduce internal losses. Currently, this is not possible as there is more 

methanol crossover with very thin membranes and thus worse performance. As 

new membranes are developed to reduce the amount of crossover, it will be 

possible to have thinner membranes, which will also decrease the internal 

resistance and improve the efficiency of the cell. The catalyst could be improved 

by increasing the surface area or improving the effectiveness, which would help 

to reduce concentration polarization at high current densities. 
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Other major ways to improve the performance of a fuel cell would be to 

prevent water from building up or flooding the cell. Also find a way to prevent the 

nitrogen present in air from blocking oxygen from reaching the catalyst. Both of 

these may lead to large diffusion problems and greatly reduce cell performance, 

especially in the high current density region. 
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CHAPTER IV 

APPARATUS AND EXPERIMENTAL PROCEDURE 

This chapter is presented in three sections. The first section describes the 

apparatus that has been used for all the experiments done in this study, including 

all materials, such as membranes, GDLs and catalysts. The second section 

deals with all of the computer programs, electrical diagrams and data acquisition 

components. The final section pertains to the experimental procedure used to 

prepare and evaluate MEAs and the operation of the fuel cell system. 

4.1 - Apparatus and Materials 

The PEM fuel cell system used in this study is an in-house design and is 

made to handle both hydrogen and methanol feed to the anode and air or oxygen 

to the cathode [59]. The system is composed of a single cell (5 cm2), 3 

thermocouples, 2 mass flow controllers, 11 solenoid valves, 2 pressure 

transducers, 2 pressure gauges, a humidification system, a DC electronic load, a 

power supply and data acquisition software and hardware. A magnetic stirrer, 

vacuum drier, heating plates and a hot press are used in the pre-treatment of 

membranes and MEA preparation. 
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4.1.1 - Fuel Cell System: 

The fuel cell hardware consists of a single cell made of a pair of Poco 

Graphite grade AXF-5Q blocks (see item B in Figure 4.1). Each block is 3" by 3", 

made of poco graphite and machined with serpentine flow pattern for the 

methanol and air feed to the cell. They form a part of the 5 cm2 cell and function 

as both electron conductors and liquid/gas diffusion channels. The assembled 

cell is shown in Figure 4.1. The carbon blocks with their serpentine flow 

channels are shown separated in Figure 4.2. 

A) Aluminum alloy end plate 
B) Poco graphite blocks 
C) Thermocouple 
D) Gold plated copper current collectors with wire to electronic load 
E) Cartridge heaters 
F) Liquid/Gas outlet (quick connects, inlet are similar and located on 

the other side) 

Figure 4.1 - Assembled Single Cell System 
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A) Poco graphite block 
B) Serpentine flow pattern 
C) Aluminum alloy end plate 
D) Gold plated copper current collector 

Figure 4.2 - Single Cell System Components 

The aluminum alloy end plates, A and C as shown in Figures 4.1 and 4.2 

respectively, are fitted with Swagelok® quick connect fittings and help to hold the 

assembly together. A thin layer of Teflon® tape is placed on the inside of the 

aluminum alloy plates to insulate them from the gold plated copper current 

collecting plates, shown as D in both Figures 4.1 and 4.2. These plates collect 

the current from the cell and transport it to the electronic load. The whole system 

is bolted together with 8 bolts in an octagonal pattern (tightened in a star pattern 
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for uniform pressure distribution). Cartridge heaters (shown as E in Figure 4.1) 

are used in conjunction with a thermocouple (shown as C in Figure 4.1) to 

monitor and maintain cell temperature. Liquid/gas input and output lines are 

connected to the end plates with Swagelok® quick connect fittings, shown as F in 

Figure 4.1. 

4.1.2 - Humidification System 

There are two humidification systems in the apparatus, one for hydrogen 

and the other for oxygen/air, consisting of one (12" tall, 2" diameter) stainless 

steel bottle with two (4" tall, 2" diameter) refilling bottles, used for PEMFC 

application. Inlet gas is fed to the anode or cathode through the bottom of the 

larger humidification bottle and bubbles through the water, becoming saturated. 

There is a thermocouple in each of the large bottles and a heating tape wrapped 

around the outside to heat the bottles to the desired temperature. Each of the 

two smaller bottles is set up in parallel and ensures that the water level remains 

constant at all times. A switch at the front of the testing apparatus opens two 

solenoid valves simultaneously to refill the bottles. When these valves are 

opened, the sight glass tubes allow the user to check the liquid level in the 

bottles. The main advantage of this system is that it allows the user to check the 

liquid level or refill the bottles while the system is operating, allowing for long-

term cell operation. 
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4.1.3 - Cell Temperature Control 

The cell temperature is carefully controlled with two cartridge heaters and 

a type J thermocouple. The thermocouple feeds the temperature information into 

a LabVIEW® program and controls it with a PID loop. The desired cell 

temperature information is fed to the program and the PID loop automatically 

turns the cell heaters on and off as necessary, maintaining the temperature 

within 2°C at all times. 

4.1.4 - Mass Flow Controllers 

For the system to be operated as a PEMFC, two Omega FMA5400/5500 

mass flow controllers are used to monitor the feed rate of the gases. The 

hydrogen controller is factory-calibrated for flow rates up to 1000 mL/min while 

the air/oxygen flow controller is calibrated for flow rates up to 2000 mL/min. The 

desired flow rates are input into the LabVIEW® program and the computer sets 

the mass flow controllers to the right settings automatically. 

4.1.5 - Pressure Gauges 

Two Tescom pressure gauges (0-100 psi) are installed in the outlet of the 

system, allowing the application of backpressure to the system. Each of the 

gauges is manually controlled; however, there are also 2 pressure transducers 

that allow the computer to monitor the pressure of the system at all times. This is 

useful in case of a leak or other malfunction during unsupervised operation. This 

design allows the system to operate without supervision for lifetime testing of 

MEAs. 
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4.1.6 - Syringe Pump 

In the case of DMFC operation, a Sage Instruments model 355-

syringe pump is used to feed methanol to the system. It allows flow rates 

ranging from 0.0080 mL/min to 80 mL/min to the system. All the flow rates are 

controlled manually and the syringe needs to be removed and refilled as 

necessary. This is the only portion of the fuel cell system that cannot be 

conducted automatically, as of now. 

As discussed above, the fuel cell system is equipped with temperature, 

mass flow, humidity and pressure controls. A schematic of the fuel cell 

apparatus is provided in Figure 4.3. Nitrogen gas is used to purge the system 

and all of the solenoid valves are fail-safe to automatically shut off reactant flow 

gases in case of system failure. Hydrogen, oxygen and air are all fed to the 

system from pressurized gas cylinders. The solenoid valves are controlled 

through switches on the LabVIEW® front panel, allowing the user to turn on and 

off gas flow and humidification at will. The gas lines are equipped with 50-micron 

filters to remove any particulate matter. The mass flow controllers have check 

valves to prevent any gas backflow to the system, which could lead to erroneous 

flow rates. 
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Figure 4.3 - Fuel Cell System Flow Chart 
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4.2 - Computer Programming 

The PEM fuel cell system used in this study is also programmed in-house 

using the LabVIEW® programming language. This section discusses the user-

interface of the program and then block diagram of the program. The hardware 

used for this program includes 1 SC-2345 connector block with 8 SCC-RLY01, 4 

SCC-FT01, 3 SCC-TC02 and 1 SCC-AI07 modules. These components are 

connected via a computer with a Nl PCI-6071E data acquisition card. Power is 

supplied to the system from a Radioshack® 3A, 13.8 VDC power supply and 

controlled through a fuse box designed to cutoff power to the system quickly in 

case of an emergency. 

4.2.1 - LabVIEW® User Interface 

All thermocouples, solenoid valves, mass flow controllers and pressure 

transducers are controlled and monitored with a LabVIEW® program file. The 

front panel (user interface) of the computer program is shown in Figure 4.4. The 

switches in the top left of the interface (section A) turn on and off the three 

heaters in the system. The oxygen and hydrogen switches control the heating 

tape on the humidification bottles, while the fuel cell switch controls the cartridge 

heaters in the aluminum alloy end plates. These switches can be activated 

manually or control through the PID loop (described later) by the computer. 

The switches in the lower left of the interface (Section B in Figure 4.4) 

control the eleven solenoid valves located in the system. The first switch (02/air 

split) controls the solenoid Si, as shown in Figure 4.3. This switch controls 

whether air or oxygen is being fed to the system. When this switch is activated 
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the computer automatically adjusts the gas correction factor in the mass flow 

controller settings based on whether air or O2 is being fed. The second switch 

(H2/N2 safe) controls solenoid S3, as shown in Figure 4.3. This switch defaults 

with nitrogen flowing through the system, but when activated allows H2to pass 

through the system to the cell for PEMFC testing. The third switch (O2/N2 safe) 

controls solenoid S2, as shown in the Figure 4.3. It defaults allowing nitrogen 

through the system but when activated allows either air or O2 (depending on Si, 

as shown in Figure 4.3) to flow through the system to the cell. The fourth switch 

(H2 bypass) controls solenoids S4 and S5, as shown in Figure 4.3. The default 

position allows the H2 to bypass the humidification system, but when energized 

the gas is forced through the humidification system where it is saturated with 

water vapors to the desired degree. 

The final switch controls solenoids S6 and S7 as shown in Figure 4.3. The 

default position allows the oxygen to bypass the humidification system, but when 

energized it forces the gas through the humidifier where it is saturated with water 

vapors at a particular temperature. 

The controls in the top middle section of the user interface (Section C) 

monitor and control both the PID (propagation, integration, derivation) control 

loops. The top three controls (labeled as 1) regulate the temperature set point. 

This helps the PID loop to regulate the temperature as desired for each section. 

Both the thermometers and numeric indicators (labeled as 2) allow the user to 

see the real-time temperature of each component. The section labeled 0 2 is the 

temperature of the oxygen humidification system, H2 is the temperature of the 
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hydrogen humidification system and FC is the temperature of the cell. 

Finally the switch located in the lower left of this section (labeled as 3) controls 

the PID loop. When it is off all temperatures are manually controlled and the set 

point temperatures are not used. When it is activated the computer automatically 

turns the heaters on and off (shown by the switches in Section A) to maintain a 

constant temperature within 2°C. 

The controls shown at the top right section of the user interface (Section 

D) control the mass flow meters and the pressure transducers. The top two 

controls (labeled as 4) allow the user to set the desired mass flow rate. The H2 

mass flow controller is calibrated for hydrogen and thus will automatically set the 

flow rate for the desired output. The O2 mass flow controller is calibrated for 

oxygen, but will automatically adjust for air flow rate if the 02/air switch is 

activated in section B (ST in the schematic). The bottom two numeric indicators 

(labeled as 5) give readings from the pressure transducers in the system. 

Although the backpressure is controlled manually with pressure gauges, the 

program can monitor for any change in case of leaks and can record the 

pressure to the output file for long-term cell evaluation. 

Finally the controls in the bottom right section (Section E) allow us to 

control the PID loop control settings to ensure the system reaches the set point 

quickly on start-up and is able to maintain the temperature for the duration of the 

trial. Each of the three temperature systems can be changed independently as 

necessary, although for these experiments it is not necessary to change the 
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default settings. The graph allows the user to see the temperature of each 

component for the last 3 minutes to quickly diagnose any problems. 

4.2.2 - LabVIEW Block Diagram 

A block diagram of the computer program is provided in Figures 4.5a and 

4.5b. The program is divided into 7 sections labeled A-G. The program consists 

of 3 "while" loops, 3 "conditional" loops, and numerous individual Virtual 

Instruments (Vis), which are discussed in detail below. 

The first section (Section A of Figure 4.5a) of the program is designed to 

reset all of the variables and switches. It is very important to ensure that if the 

program restarts for any reason all the valves will default safe and all of the 

heaters will shut down. 

This can prevent serious damage to the equipment as well as potential 

hazards associated with a reactant leak. This initialization step is very important 

in any computer program and especially so in one that controls a system such as 

this one. 

The next section of the program (Section B of Figure 4.5a) allows the 

computer to determine if the switches are in the on or off position. The computer 

stores this information in an array and then sends that information to the SCC-

2345 block. The SCC-2345 block then activates the solenoid valves or heaters 

as necessary. The third portion of the program (Section C of Figure 4.5a) is 

designed to shut down the program if the stop button is pressed. The program is 

placed inside a "while" loop, which allows it to run continuously until an error 

occurs or the stop button is 
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pressed. Once the stop button is pressed the program will stop and it will prompt 

the user to save their data. 

The fourth portion of the program (Section D of Figure 4.5a) acquires the 

temperature readings from the thermocouples and displays them in the numerical 

indicators on the user-interface (labeled as 2 on section C of Figure 4.4). Each 

of these three signals is then sent into part 5 of the program (Section E of Figure 

4.5b), which is the PID loop. The program will check to see if the PID switch is 

enabled (labeled as 3 on section C of Figure 4.4), and if it is not, the computer 

bypasses the loop, if it is then it proceeds as follows. Each signal is sent to its 

own control loop, along with the desired set point temperatures and the PID 

gains as input by the user (Section E of Figure 4.4). The computer program will 

then automatically operate the heaters as necessary to maintain the desired 

temperatures. This section also manages the graph (Section E of Figure 4.4) 

that shows the temperature of each of the three components over a period of 

approximately 5 minutes (or longer if set by the user). This allows the user to 

see if the components have reached the set point temperatures or to check to be 

sure there have been no spikes in temperature. 

The sixth section of the program (Section F of Figure 4.5b) handles the 

mass flow meters and the pressure transducers. The upper section inputs the 

desired mass flow rate for both hydrogen and oxygen/air. It then adjusts the 

oxygen mass flow meter as necessary in case air is being fed. Then it changes 

the desired input value to the proper corresponding voltage, which is then sent to 

the mass flow controller causing it to allow the desired flow. The signal from the 
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pressure transducers is received just below the mass flow controllers and it 

simply reads the voltage and converts it to the proper pressure in psig and 

displays it to the user-interface. 

The final section of the program (Section G of Figure 4.5b) only activates 

once the stop button has been pressed. The program is constantly sending all of 

the performance variables (pressure, temperature, mass flow rates) to a single 

file every minute during the run. When the stop button is hit, the program allows 

the user to name the file appropriately and then allows the user to examine the 

performance for any problems during a run. This is extremely useful in cases 

where the system is operating without supervision as it allows the user to see if 

there are any discrepancies during the experiment, which could lead to 

erroneous results. 
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CHAPTER V 

RESULTS AND DISCUSSION 

The first objective of this work has been to design, construct, and operate 

a PEM/DM fuel cell system. This apparatus improves on the original PEM 

system that was developed at the University of New Hampshire [40] as it allows 

both hydrogen and methanol feeds. The new apparatus is also fully automated 

such that it is capable of performing lifetime MEA evaluation, which requires long 

hours of continuous, unsupervised operation. 

The work done under this study includes the building and data validation 

for this DMFC apparatus, the optimization of operating cell conditions for 

methanol feed with particular reference to gas diffusion layers (GDLs), the 

development of an anode GDL incorporating a microporous layer (MPL) and the 

study of the effect of ex-situ GDL parameters on DMFC performance. The 

chapter is presented in four sections focusing on the various aspects of this work. 

The work presented under the last two sections has been funded by Ballard 

Material Products (Lowell, MA) to develop a competitive GDL material specifically 

for use in a DMFC. They supplied us with their three best performing PEM GDLs 

(labeled randomly as F through H in Table 5.2), which are studied and then 

modified for DMFC applications. Their performance is compared against 
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well known commercially available GDLs under similar experimental conditions. 

The first section pertains to cell performance using both hydrogen and 

methanol, individually as the fuel to validate our results against published work. 

This work is done to ensure that the apparatus is fully functional and that the 

results are comparable to literature values. The second section discusses the 

effects of various operating parameters, such as cell temperature, methanol 

concentration and flow rate, etc on DMFC performance using various 

commercially available GDLs. The third section deals with the development of a 

modified anode GDL, focusing on the incorporation of a microporous layer on the 

anode, for the specific use in a DMFC. The final section discusses the work 

done for the development of a DMFC MEA using a combination of GDLs. The 

anode consists of the modified GDL (as described in Section 5.3) and the 

cathode includes various unmodified GDLs. It is believed that a combination of 

these varied GDLs will provide improved performance in DMFC applications. 

The optimized MEA is then benchmarked against similar MEAs made with 

various commercial GDLs. 

In this study, the cell potential (V) is plotted on the primary y-axis against 

the current density (A/cm2) on the x-axis. In addition, the power density (W/cm2) 

is plotted on the secondary y-axis against the current density. Catalysts used in 

the experiments are purchased from Alfa Aesar: 20% Pt-C black for the cathode 

electrode and 50:50 Pt-Ru for the anode electrode, unless otherwise specified. A 

15-wt % Nation® solution purchased from Ion Power Inc. is used for the Nation® 

loading on the GDL as described in Section 2.2.3. 

62 



The catalyst is hand-painted onto the GDLs and then sandwiched, with 

Nation® 117 membrane in between, to form an MEA for all experiments through 

section 5.2.4. From section 5.2.5 onward, a commercially available catalyst 

coated membrane (CCM), consisting of 4 mg Pt-Ru on the anode side and 4 mg 

Pt on the cathode side of a Nation® 117 membrane, is used in all experiments. 

This change is necessitated by the inconsistent loadings that are obtained 

through the hand painting method. The methanol is fed to the cell at room 

temperature when entering the heated cell, which may lead to some temperature 

variations within the cell. These variations may slightly affect the cell 

performance. The general operating parameters, as listed in Table 5.1, are used 

for all experiments, unless otherwise specified. 

Table 5.1 - General Experimental Parameters for this Study 

Operating Parameter 
Membrane 

Catalyst Anode 
Catalyst Cathode 
MeOH Flow Rate 
MeOH Concentration 
Air Flow Rate 

Material Used 
Nation® 117 
4 mg/cm2 Pt-Ru/C 
(50:50) 
0.4 mg/cm2 20% Pt/C 
3 mL/min 
4 Molar 
2x Stoich (Appendix C) 

5.1 - Calibration and Validation of PEMFC/DMFC System 

Determining that the PEMFC/DMFC system is operating properly is a 

challenging task. The system is first checked for leaks and all of the instruments 

are calibrated. The performance curves generated for the system are then 

compared against performance curves under similar conditions that are reported 

in literature, to ensure that our system is working properly. Since this is the 
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second PEMFC system assembled at the University of New Hampshire, the 

performance data of the GDL samples tested on the new apparatus are 

compared against data obtained for similar GDLs tested earlier [40] on the first 

apparatus. Multiple polarization curves are obtained, using either hydrogen or 

methanol as fuel, to validate the results generated from this apparatus. Error 

bars have been added to these validation plots to indicate the approximate error 

associated with this testing (-7-11%). During the course of this study, nine 

different commercially available GDLs have been used. They are available 

under well-known trade names; such as Ballard, E-tek, Lydall, SGL, 

Techniweave and Toray, but for proprietary reasons they are randomly labeled A 

through I. Table 5.2 provides the basic characteristics of each of these GDL 

materials including: material type (paper or fabric), typical thickness (u/n) and 

basis weight (g/cm2). 

Table 5.2 - GDLs Evaluated in this Study 

G D L N o m e n c l a t u r e 

G D L A 

G D L B 

G D L C 

G D L D 

G D L E 

G D L F ( B a l l a r d ) 

G D L G (B a l l a r d ) 

G D L H ( B a l l a r d ) 

G D L I 

M a t e r i a l 

P a p e r 

F a b r i c 

P a p e r 

F a b r i c 

F a b r i c 

P a p e r 

P a p e r 

P a p e r 

P a p e r 

T h i c k n e s s ( |xm) / B a s i s 
W e i g h t ( g / m 2 ) 

3 8 5 / 5 5 . 1 

3 9 0 / 2 1 0 

3 3 0 / 12 3 

2 5 0 / 1 2 5 

2 6 0 / 2 0 0 

158 / 62 

2 3 8 / 88 

1 9 6 / 6 0 

3 1 5 / 1 4 0 
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5.1.1 - Performance Validation of PEMFC/DMFC System using Hydrogen 
Fuel 

The first set of experimental data is taken using fabric GDL B with a 1.5-

mg/cm2 Pt loading on both electrodes (Figure 5.1). Experiments are also 

conducted using paper GDL F (supplied by Ballard) with a 1.82-mg/cm2 Pt 

loading hand painted on both electrodes. GDL B is selected, as it is a known 

brand and previously well studied fabric, while GDL F is used to establish a 

comparative baseline for the Ballard material. The power density outputs from 

these two GDLs are compared with results obtained earlier [40] using fabric GDL 

B with 2.0-mg/cm2 catalyst loading (0.4- mg/cm2 Pt loading) as shown in Figure 

5.1. The cell performance using GDL B is found to be about 10% lower than 

reported previously. 

1.2 1 — — — — — — r 0.40 

- 0.35 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Current Density (A/cmA2) 

Figure 5.1 - Cell Performance Curves for Validation of PEMFC/DMFC 
System at High Temperature using Hydrogen as Fuel 

75°C, 3x Air Stoich, 2x H2 Stoich, Ambient Pressure 
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The published data are reported at 60°C, while both tests in this study are 

performed at 75°C. GDL F (paper), with a 1.82-mg/cm2 Pt loading, performs 

30% below the published data for GDL B, 0.4-mg/cm2 Pt loading. These results 

are also 12% below the results from the PEMFC/DMFC apparatus using GDL B, 

1.5-mg/cm2 Pt loading. 

The higher catalyst loading may limit the mass transfer in the high current 

density range and probably causes some reduced performance. This decrease 

in performance may be offset by any increase in performance expected due to 

the increased kinetics at the higher temperature. The higher catalyst loading is 

due to an error in calculation; however, the results are still presented to show that 

the results are similar to what are seen previously. These results show that the 

apparatus built for this study provides reasonable data for both fabric and paper 

GDLs using hydrogen as a fuel, even with a variety of catalyst loadings, 

temperature and GDL materials. 

Continuing our work on the validation of test performance for the new system, 

paper GDLs A and F are each used as both the anode and cathode in separate 

experiments and compared with previously reported results. GDL A is selected 

to compare its results with the previously reported results, while GDL F is used 

for establishing a comparative base for the Ballard supplied GDL. The results 

are compared with published data [40] obtained using GDL A, as shown in Figure 

5.2. The MEA used in the published work has a catalyst loading of 0.4 mg/cm2 

Pt on each electrode and reaches a maximum power output of 0.255 W/cm2. 

Our test MEA, also using GDL A, has a Pt loading of 0.32 mg/cm2 on each 
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electrode and reaches a maximum power output of 0.228 W/cm2, a 10% 

difference. There is also a sharp decline in the performance of our MEA at 0.6 

A/cm2 indicative of mass transport loss. This may be partly due to the 20% lower 

catalyst loading, which limits the ability of the catalyst to break down the oxygen 

and can lead to mass transport losses. 

Current Density (A/cmA2) 

Figure 5.2 - Cell Performance Curves for Validation of PEMFC/DMFC 
System at Low Temperature using Hydrogen as Fuel 

65°C, 3x Air Stoich, 2x H2 Stoich, Ambient Pressure 

GDL F, at a 0.37 mg/cm2 Pt loading, reached a maximum power output of 

0.236 W/cm2, a 7% increase over GDL A (from this study). There is also a 

noticeable decline in performance at 0.7 A/cm2, similar to the drop at 0.6 A/cm2 

seen with GDL A. This performance is much closer to the values reported in the 

literature and supports the belief that the lower catalyst loading is the reason for 

the decreased performance of GDL A. Figure 5.2 also shows that GDL A and 
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GDL F are comparable papers, whose performances are similar for hydrogen as 

a fuel. This also satisfactorily validates the performance of our newly built 

PEMFC/DMFC system. 

5.1.2 - Performance Validation of PEMFC/DMFC System using Methanol 
Fuel 

The validation data for the system are taken at a cell temperature of 70°C, 

40 psi-air backpressure, and at 2 mL/min flow rate of 2M MeOH solution. GDL A 

(paper) is used for both the anode and cathode GDLs with Nation® 115 as an 

electrolyte. The anode has a Pt-Ru loading of 1.63 mg/cm2 and the cathode has 

a Pt loading of 0.4 mg/cm2. The experimental data are compared against 

published results [83] as shown in Figure 5.3. Our results show a maximum 

power density of 0.054 W/cm2 at 0.15 A/cm2. The results from the published 

source, using GDL A, show maximum power densities of 0.065 and 0.044 W/cm2 

at 75°C and 60°C, respectively. Our experiments are conducted at a 

temperature of 70°C. 

It can be seen that our results are within 10% of the published data [83] at 

the interpolated temperature of 70°C. Our results show a decline in performance 

at 0.15 A/cm2, similar to what is seen in the published results at 60 °C, but the 

cell achieves a higher maximum power density. The Pt-Ru loading is most likely 

lower on our anode GDL; typically the anode has a loading of approximately 4 

mg/cm2 Pt-Ru as reported for the commercially available CCMs. This is believed 

to be the reason for the decrease in power output compared to the results of the 

published data at 75°C, as well as the sharp decrease in performance at 0.15 
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A/cm2 that does not occur until 0.25A/cm2 in the published work. These results 

are sufficient to validate the performance of our DMFC system. 
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Figure 5.3 - Cell Performance Curves for Validation of PEMFC/DMFC 
System using Methanol as Fuel 
2 mL/min 2M MeOH, Nation® 117, 0 psig 

5.2 - Effect of Operating Parameters on DFMC Performance 

This investigation is about the development and evaluation of GDLs for a 

methanol operated fuel cell system. All of the subsequent experiments have 

been conducted using the previously described apparatus as a DMFC system. 

This section focuses on the effect of different experimental operating parameters 

on DMFC performance. These data provide us with an optimized set of 

operating parameters, which may be held constant in subsequent work. It is 

important to note that these optimized variables are specific to the type of 

membranes and GDLs used, the catalyst loading, the flow field design, as well as 

other operating parameters and cell characteristics. 
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5.2.1 - Temperature Effects on DMFC performance 

This work is performed using GDL B (fabric) because it is known to 

perform well and is commercially available. Dry air with a backpressure of 40 

psig and a 2-mL/min-flow rate of 4M MeOH solution at ambient temperature is 

fed to the cell. The anode and cathode catalyst loadings are held constant at 

0.33-mg/cm2 Pt-Ru and 0.4-mg/cm2 Pt, respectively. The cell temperature is 

successively increased from 40°C to 85°C, as shown in Figure 5.4. 

The data show that the power output first increases with an increase in 

temperature and eventually reaches a maximum. Any further increase in 

temperature leads to a decrease in performance and power generation. There 

are several reasons for this behavior. The relatively slow anode kinetics increase 

rapidly as temperatures increase, as governed by the Arrhenius equation, and 

thus the performance is improved. The results show that from 40°C to 60°C the 

MeOH reacts very slowly, limiting the power density to 0.038 W/cm2. As the 

temperature further increases from 60°C to 80°C the reaction kinetics increase 

rapidly and performance increases until reaching a maximum power output of 

0.060 W/cm2. 

The electro-osmotic drag is the number of water molecules that pass 

through the membrane along with the protons and has been shown to increase 

with temperature [82, 84]. This leads to an increase in MeOH crossover through 

the membrane, as the water molecules tend to pull methanol with them as they 

pass through the membrane [84]. The results show that beyond 80°C the power 

density drops 33% from 0.060 W/cm2 to 0.040 W/cm2. At temperatures above 
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80°C, it appears that the benefit of increased anode kinetics is offset by the 

increase in methanol crossover due to electro-osmotic drag, resulting in poor 

performance. This is seen from the very similar performance curves of the cell at 

both 70 °C and 85 °C, which almost lie perfectly on top of one another. 

Although the optimum temperature from this study is found to be 80°C, 

concerns about membrane degradation at such a temperature outweigh the 

slight benefit in performance. For this reason all further experiments are carried 

out at 75°C, to maximize the increased anode kinetics without the risk of 

irreversibly damaging the membrane. 

0.08 

0.1 0.2 0.3 0.4 0.5 

Current Density (A/cmA2) 

0.6 

Figure 5.4 - Temperature Effects on DMFC Performance 
GDL B, 40 psi, 2 mL/min 4M MeOH, 0.33mg/cm2 Pt-Ru anode, 0.4mg/cm2 Pt cathode 
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5.2.2 - Effect of Anode Catalyst Loading on Cell Performance using Fabric 
GDLB 

We examine the effect of catalyst loading on fabric GDL B because it is 

commercially available and known to perform well, as explained in Section 

5.2.1. These data are taken at a temperature of 75°C, 40 psi air backpressure, 

using a 4 molar MeOH solution at a feed rate of 2 mL/min. All of the MEAs are 

prepared using the same fabric GDL B, with metal loadings ranging from 0.519-

mg/cm2 to 3.8 mg/cm2 Pt-Ru, hand-painted on the anode electrode. Similarly a 

constant metal loading of 0.4-mg/cm2 Pt is hand-painted onto the cathode 

electrode. The Nation® loading, as described in Section 2.2.1, is held constant 

around 2.5-mg/cm2 for all of the MEAs. The results, presented in Figure 5.5, 

show that the 2.42-mg/cm2 Pt-Ru loading is the optimum, achieving a maximum 

power density of about 0.100 W/cm2. The cell performance with 0.5-mg/cm2 

and 3.8-mg/cm2 catalyst loadings is very similar providing power outputs of 

0.063 and 0.061 mW/cm2, respectively. 

The 1.45-mg/cm2 performance is very poor, reaching only a maximum 

power density of 0.044 mW/cm2, possibly due to a defective MEA. The poor 

results for both the 0.5-mg/cm2 and 3.8-mg/cm2 Pt loadings are as expected for 

several reasons. At lower Pt-Ru loadings, there are less catalyst sites, which 

lower the already slow anode kinetics and give a poor cell performance. At 

higher Pt-Ru loadings there can be GDL pore blockage, which prevents 

adequate liquid/gas diffusion to take place, leading to poor mass transport and 
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thus reducing the cell performance. It can be concluded that the optimum 

catalyst loading on GDL B (fabric), is about 2.5-mg/cm2. 

Current Density (A/cmA2) 

Figure 5.5 - Effect of Anode Metal Catalyst Loading on GDL B (fabric) 
75°C, 40 psi, 2 mUmm 4M MeOH, Cathode: 0.4 mg/cm2 

5.2.3 - Effect of Anode Catalyst Loading on Cell Performance using Paper 
GDLC 

It is important to also examine the effect of catalyst loading on cell 

performance using paper GDLs. GDL C is used for this purpose because it is 

commercially available. All MEAs are prepared using GDL C (paper) with target 

anode catalyst loadings ranging from 0.5 to 2.5-mg/cm2 Pt with cathode catalyst 

loading held constant at 0.4-mg/cm2. The results, presented in Figure 5.6, show 

that this GDL gives poor cell performance with methanol under the catalyst 

loadings tested. There does seem to be a trend, as the catalyst loading 
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increases cell performance increases, with maximum power outputs of 0.022, 

0.029 and 0.039 W/cm2 for loadings of 0.6,1.85 and 2.1-mg/cm2, respectively. 

Comparing these results to the results obtained with GDL B (fabric), it is clear 

that GDL C has excessive losses in both the ohmic and mass transport regions, 

as described in Section 3.2. This indicates that GDL C does not adequately 

manage the water formation in the cell (mass transport) and provides high 

resistance to electrical current (ohmic) to be useful in DMFC applications. 
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0.6 
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Figure 5.6 - Effect of Anode Metal Catalyst Loading on GDL C (paper) 
75°C, 40 psi, 2 mL/min 4M MeOH, Cathode: 0.4 mg/cm2 Pt 

5.2.4 - Effect of Catalyst Loading on Cell Performance using Various GDLs 

There are many different types of GDLs that are currently being used for 

DMFCs. This section compares three commercially available GDLs, two fabrics 

and one paper, under similar catalyst loadings. This evaluation is conducted at a 
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temperature of 75°C, 40-psi air backpressure, using a feed rate of 2 mL/min 4M 

MeOH solution, with Nation® 117 as the membrane. Figure 5.7a compares the 

cell performance curves for GDL B (fabric), GDL C (paper) and GDL D (fabric) 

with anode catalyst loadings of approximately 0.5-mg/cm2 Pt-Ru with cathode 

catalyst loadings held constant at 0.4-mg/cm2 Pt. The results show that GDL D 

(fabric) gives the best performance, yielding a power density of 0.082 W/cm2 at 

0.4 A/cm2. GDL B (fabric) gives a maximum power density of 0.061 W/cm2 at 

0.25 A/cm2, a 25% decrease from GDL D, while GDL C (paper) provides a 

maximum power density of 0.02 W/cm2 at 0.1 A/cm2, one third of the 

performance of GDL B and one fourth that of GDL D. GDL D also shows 

superior performance in the high current density range (>0.3 A/cm2) indicating 

superior mass transport and improved electrical conductivity. 
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Figure 5.7a - Cell Performance Comparison with Various GDLs with Low 
Anode Metal Catalyst Loadings 

75°C, 40 psi, 2 mL/min 4M MeOH, Cathode: 0.4 mg/cm2 Pt 
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Continuing with our evaluation of three different commercial GDLs under 

similar catalyst loadings, Figure 5.7b compares the cell performance curves for 

GDL B (fabric), GDL C (paper) and GDL D (fabric) with anode catalyst loadings 

of approximately 1.5-mg/cm2. The results show that GDL B and GDL D both give 

a maximum power density of about 0.049 W/cm2, while the GDL C gives a 

maximum power density of about half of that at 0.029 W/cm2. Although this is an 

improvement from the 0.5 mg/cm2 Pt-Ru catalyst loadings, GDL C (paper) is still 

far behind both GDLs B and D (fabrics). It is important to note that GDL B, 

although reaching roughly the same maximum power density as GDL D, 

continues to perform well up to current densities of 0.3 A/cm2, while the 

performance of GDL D collapses due to mass transport losses at about 0.2 

A/cm2. From these results we can conclude that GDLs B and D have rather 

comparable DMFC performance at this particular catalyst loading. At lower 

catalyst loadings (0.5 mg/cm2) GDL D seems to outperform GDL B with the 

reverse true at higher catalyst loadings (1.5 mg/cm2). 

Although the optimum catalyst loading is found to be 2.5 mg/cm2 Pt-Ru, as 

shown in Section 5.2.2, limited supply of GDLs and catalyst did not allow for 

comparison between the three GDLs at this loading. At both of these lower 

catalyst loadings, GDLs B and D have approximately the same maximum power 

density and GDL C performs well below that level. We can conclude that this 

performance trend will be similar under the optimum catalyst loading of 2.5 

mg/cm2. Since we are only looking for the comparative base and not optimum 

performance, the additional tests are not essential for this study. 
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Reproducing the same catalyst loading for each sample is very 

challenging task. Although the optimum value is found to be approximately 2.5 

mg/cm2, it is difficult to get loadings within even 15% of this target consistently. 

For this reason, all subsequent experiments use catalyst-coated membranes 

(CCMs), which are commercially available and are expected to carry more 

uniform catalyst loadings. The reported loadings on the anode and cathode 

sides of a Nation® 117 membrane are 4 mg/cm2 Pt-Ru and 4 mg/cm2 Pt, 

respectively. 
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Figure 5.7b - Cell Performance Comparison with Various GDLs with Medium 
Anode Metal Catalyst Loadings 

75°C, 40 psi, 2 mL/min 4M MeOH, Cathode: 0.4 mg/cm2 Pt 

5.2.5 - Effect of Methanol Concentration on DMFC Performance 

A commercially available MEA [88], consisting of the previously mentioned 

CCM and GDL E (fabric) on both the anode and cathode sides, is used in this 
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evaluation. These data are taken at a cell temperature of 75°C, with dry air at 

40-psi backpressure and a feed rate of 2 mL/min of varying molar concentrations 

of MeOH solution. The MEA has a catalyst loading of 4 mg/cm2 Pt-Ru on the 

anode electrode and 4 mg/cm2 Pt on the cathode electrode of the Nation® N117 

membrane. The results, presented in Figure 5.8, show that the optimum 

methanol concentration is between 2- 4 molar (6-12 wt%). At 1 molar (3 wt%) 

the power density reaches a maximum of 0.085 W/cm2. At 2 molar (6 wt%) it 

attains a maximum of 0.119 mW/cm2, a 29% increase in performance. At 4 

molar (12 wt%) the cell reaches a maximum power density of 0.121 W/cm2, which 

is very similar to the 2 molar performance. However, the cell maintains this 

performance up to a current density of 0.4 A/cm2 at 4 molar, whereas for 2 molar 

the maximum power output occurs at 0.3 A/cm2. At 6 molar (20 wt%) and 8 

molar (27.5 wt%) the power densities reach a maximum of 0.079 and 0.059 

W/cm2, respectively, showing a 33% and 50% drop from the maximum of 0.121 

W/cm2 at 4 molar concentration. 

It is generally accepted that the optimum concentration of MeOH is 

somewhere in the range of 1 -2 molar [11,85] because of increased methanol 

crossover with higher concentrations, so these results are somewhat surprising. 

The reason that the optimum methanol concentration obtained in this system is 

higher (nearly double) than the commonly reported values may be due to the 

relatively high cathode pressure of 40 psi used in this study. This high-pressure 

differential between the cathode and anode helps to limit the electro-osmotic 

drag and thus the methanol crossover, as discussed in Section 5.2.1. This 
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Figure 5.8 - Effect of MeOH Solution Concentration on DMFC 
Performance 

75°C, 40 psi, 2 mL/min MeOH, Anode: 4mg/cm2 Pt-Ru, Cathode: 0.4 mg/cm2 Pt, GDL E 

allows us to operate the cell with more concentrated methanol solutions without 

losing much performance due to crossover effects. 

5.2.6 - Effect of Methanol Flow Rate on DMFC Performance 

The flow rate of methanol can also have a large impact on the 

performance of a DMFC. If the flow rate is too high then the methanol crossover 

will increase and if it is too low then there will not be enough methanol present at 

the catalyst sites to produce energy, resulting in poor performance. The optimum 

flow rate has been shown to be related to the methanol concentration being used 

[86], which indicates that this analysis is only relevant to these specific operating 

conditions. 
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The data for this evaluation are taken at a cell temperature of 75°C, using 

40 psi-air backpressure and with varying flow rates of 4M MeOH solution. The 

MEA used in these experiments consists of a commercial Nation® N117 

membrane (CCM) coated with 4 mg/cm2 Pt on the cathode side and 4 mg/cm2 

Pt-Ru on the anode side. GDL A (paper) is used as the GDL on both the anode 

and cathode sides, with the CCM between them. 

The methanol flow rates range from 1.5 mL/min (syringe setting 20) to 7.5 

mL/min (syringe setting 100) at 1.5 mL/min increments. The results, presented in 

Figure 5.9, show that the optimum MeOH flow rate for the DMFC system is about 

3 ml_/min (syringe setting 40). At the 1.5 mL/min flow rate, the cell achieved a 

maximum power density of 0.075 W/cm2. At the 3 mL/min flow rate the cell 

reached a maximum of 0.095 W/cm2, a 21% increase. As the flow rate is 

increased further the maximum power density decreased to 0.091 (-4%), 0.081 (-

14%) and 0.056 (-41%) W/cm2 for flow rates of 4.5, 6 and 7.5 mL/min, 

respectively. From these results it can be concluded that at low flow rates (1.5 

mL/min and lower) there is not enough methanol present at the anode to reach 

the maximum cell performance. On the other hand, above the optimum 

methanol flow rate of 3 mL/min, the cell performance begins to drop possibly due 

to increased methanol crossover or flooding. For all subsequent experiments the 

flow rate is held at 3 mL/min unless otherwise specified. 
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Figure 5.9 - Effect of MeOH Solution Flow Rate on DMFC Performance 
75°C, 40 psi, 4M MeOH, Anode: 4mg/cm2 Pt-Ru, Cathode: 0.4 mg/cm2 Pt, GDL A 

5.3 - Development of an Anode GPL Specifically for DMFCs 

The DMFC shows promise in its use in the portable electronic industry. 

The high energy density of approximately 6000 Wh/kg for methanol compared to 

the approximately 200 Wh/kg for lithium ion batteries make it the ideal choice for 

electricity generation as the power requirements for portable electronics 

increase. Additional benefits include the elimination of down time due to 

recharging, increased run time, and decreased weight. There are also many 

environmental benefits, such as reduced pollutant emissions and wastes. As we 

have seen in Chapter 2, there has been significant progress made in membrane 

and catalyst technology in the last few years, but little work has been done on the 

GDL development. 
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The functions of the cathode GDL, removing excess water and allowing 

oxygen to reach the catalyst sites, are similar as in the PEMFC. These have 

been studied carefully over the past 5 years and much progress has been made. 

The demands on the anode GDL for a DMFC, however, are very different from 

that of the PEMFC. In the DMFC the anode GDL must transport methanol to the 

catalyst sites and water to the membrane. It must also help to remove excess 

water, to prevent flooding, especially with solutions consisting of lower 

concentrations of methanol. It must also be able to remove waste gases, CO 

and C02 that are formed during the breakdown of methanol. 

The focus of this part of the study is an attempt to improve the anode GDL 

performance for the DMFC. As we previously discussed in Chapter 2, a GDL is 

comprised of a base substrate, which is typically either carbon fabric or carbon 

paper. This base paper may be hydrophobic or hydrophilic, depending on the 

application. A mixture of carbon particles and aqueous PTFE (Teflon®) solution, 

known as a microporous layer or MPL, may be coated on this base substrate to 

improve performance. 

The PTFE content in the substrate itself should help with the rejection of 

excess water, due to increased hydrophobicity, which helps to prevent flooding. 

The MPL weight, or loading, changes the thickness and the pore size distribution 

of the GDL, which helps in the removal of CO/C02 gas and prevents flooding. 

The PTFE content in the MPL helps manage the water content near the 

membrane surface in order to keep it fully hydrated. 
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This part of our study is focused towards the modification of a GDL, which 

will improve the DMFC performance. This is done by first determining how each 

of the previously discussed parameters, namely PTFE content and microporous 

layers, impact GDL performance in the DMFC. Once the impact is understood, it 

will be possible to optimize the characteristics of the GDL, thereby improving the 

cell performance. 

5.3.1 - Development of an Anode GDL 

As has been previously discussed, GDLs play an intricate role in cell 

performance by controlling gas and liquid transport through and out of the cell. 

As an obvious extension of our work, the following investigation is in the area of 

development of a new GDL material for the anode. This work has been 

sponsored by Ballard Material Products (Lowell, MA). A test matrix for the 

development of this new GDL has been presented in Table 5.3, which focuses on 

the three main areas of anode GDL improvement previously discussed. A 3X3 

design matrix is developed to analyze the effect of 1) substrate PTFE content, 2) 

microporous sublayer weight and 3) MPL PTFE content. The PTFE contents of 

the substrate and sublayer are examined in low (0-10%), medium (10-25%) and 

high (25-50%) ranges, represented by -, 0, +, respectively in Table 5.3. The 

sublayer weights are also set in a low (0-20g/m2), medium (20-60 g/m2), and high 

range (60-100 g/m2), again represented by the same symbols (Table 5.3). 
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Table 5.3 - Design of Experiments for Anode GDL Development 

Sample # 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Substrate PTFE 

Loading Level 

-

-

-

0 

0 

0 

+ 

+ 

+ 

MPL Weight 

-

0 

+ 

0 

+ 

-

+ 

-

0 

MPL PTFE 

Loading Level 

-

0 

+ 

-

0 

+ 

-

0 

+ 

These samples are prepared using GDL F (paper) as the substrate 

material with the appropriate substrate PTFE content. The various MPLs, which 

are primarily composed of uniform sized graphite particles and PTFE solution, 

are applied to the GDL by hand using a gap adjustable knife-blade. The GDL is 

then dried and sintered at high temperature (~700°F) for approximately 20 

minutes. The modified GDL samples are provided to us by Ballard Material 

Products. Each of the individual samples (1 through 9) is studied under the 

optimized conditions (Section 5.2) of 75°C, 3 mL/min of a 4M MeOH feed, 40 psi 

backpressure. A commercially available CCM, composed of 4 mg/cm2 Pt-Ru on 
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the anode, 4 mg/cm2 Pt black on the cathode side of a Nation® 117 membrane, is 

used for all experiments for consistency reasons. 

5.3.2 - Effect of Microporous Layer Weight on DMFC Performance 

The results are grouped at constant substrate PTFE loadings to study the 

effect of MPL weight and PTFE loading on the cell performance. Figure 5.10a 

shows the performance results for samples 1 through 3, Figure 5.10b for 

samples 4 through 6 and Figure 5.10c for samples 7 through 9 (Table 5.3). 

Figure 5.10a shows that sample 3 (high sublayer MPL weight) performs 

the best, providing a power output of 0.058 W/cm2. This is followed by sample 2 

(medium sublayer weight) giving a power output of 0.043 W/cm2 and then 

sample 1 (low sublayer weight) with a power output of 0.032 W/cm2. This shows 

that the MPL weight should be high for good performance with low substrate 

PTFE loadings. 

Figure 5.10b shows that sample 5 (high sublayer weight) performs the 

best with a maximum power output of 0.068 W/cm2. This is followed by sample 4 

(medium sublayer weight) with a power output of 0.058 W/cm2 and sample 6 (low 

sublayer weight) with a power output of 0.017 W/cm2. Again the high sublayer 

MPL weight gives the maximum power of the three samples evaluated. Also 

sample 5 performs adequately with a current density of 0.35 A/cm2, while all 

other samples, 1 through 4 and 6, have shown that performance starts to decline 

at 0.15 A/cm2. This increase in sample 5 performance indicates a reduction in 

mass transport losses, possibly due to improved water management. 
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Figure 5.10c shows that sample 7 (high sublayer weight) performs the 

best with a power density of 0.078 W/cm2. This is followed by sample 8 (low 

sublayer weight) with a power output of 0.039 W/cm2 and sample 9 (medium 

sublayer weight) with a power output of 0.032 W/cm2. Also sample 7, like sample 

5, performs at a much higher current density (0.4 A/cm2) than the other two 

samples. 

It is clear from the three data sets that high sublayer MPL weight samples 

perform the best regardless of PTFE content. It is also seen that samples with 

high MPL weights do not have the sharp drop in performance associated with 

mass transport losses. This may be due to improvements in water management, 

a decrease in methanol crossover, better management of CO/CO2, or some 

combination of these effects. 
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Current Density (A/cmA2) 
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Figure 5.10a - Cell Performance Evaluation of GDLs with Low Substrate 
PTFE Content 

75°C, 40 psi, 3 mL/min 4M MeOH, CCM 
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Figure 5.10b - Cell Performance Evaluation of GDLs with Medium 
Substrate PTFE Content 

75°C, 40 psi, 3 mL/min 4M MeOH, CCM 
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Figure 5.10c - Cell Performance Evaluation of GDLs with High Substrate 
PTFE Content 

75°C, 40 psi, 3 mL/min 4M MeOH, CCM 
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5.3.3 - Effect of GPL Substrate PTFE Content on DMFC Performance 

The effect of PTFE loading in the GDL substrate is examined by 

regrouping the results of our previous experiments at constant MPL weights. 

Figure 5.11a shows the performance results for samples 1, 6 and 8 (low sublayer 

weight), while Figure 5.11b shows performance for samples 2, 4 and 9 (medium 

sublayer weight) and Figure 5.11c shows performance for samples 3, 5 and 7 

(high sublayer weight), as presented in Table 5.3. 

It is seen from Figure 5.11 a that sample 8 (high PTFE in the substrate) 

provides the highest power output of 0.041 W/cm2. Sample 1 (low PTFE in the 

substrate) has the second best power output with 0.035 W/cm2 and finally 

sample 6 (medium PTFE in the substrate) with a power output of 0.030 W/cm2. 

Since there is no discernible pattern to the results, the effect of PTFE content in 

the GDL substrate on DMFC performance is inconclusive for low sublayer 

weights. 

Figure 5.11 b shows that sample 4 (medium PTFE in the substrate) has 

the highest power output of 0.058 W/cm2. Sample 2 (low PTFE in the substrate) 

is next with a power output of 0.043 W/cm2 and sample 9 (high PTFE in the 

substrate) achieves a power output of 0.032 W/cm2. Since there is no clear 

pattern to these results, the effect of PTFE content in the substrate on DMFC 

performance is inconclusive for medium MPL loadings. 

It is seen in Figure 5.11c that sample 7 (high PTFE in the substrate) 

achieves the maximum power output, 0.078 W/cm2, followed by sample 5 

(medium PTFE in the substrate) with a power output of 0.068 W/cm2 and then 
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sample 3 (low PTFE in the substrate) with a power output of 0.058 W/cm2. 

These results show that higher PTFE loadings in the substrate of a GDL improve 

performance for high MPL loadings. This may be due to an improvement in the 

GDL's ability to remove excess water from the anode and thus prevent flooding. 

It may be assumed that this influence is present for all samples, but is hidden by 

the effect of the sublayer weight and sublayer PTFE content. 

0.05 

0.1 0.15 

Current Density (A/cmA2) 

Figure 5.11a - Cell Performance Evaluation of GDLs at Constant Low 
Sublayer Loadings 

75°C, 40 psi, 3 mL/min 4M MeOH, CCM 

5.3.4 - Effect of PTFE Content in the MPL on DMFC Performance 

We examine the effect of PTFE content in the MPL on cell performance by 

grouping the samples by MPL weight. From Figure 5.11a, it is clear that sample 

8 (medium sublayer PTFE) performs the best reaching a maximum power output 

of 0.041 W/cm2, followed by sample 1 (low sublayer PTFE) with a power output 
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Figure 5.11c - Cell Performance Evaluation of GDLs at Constant High 
Sublayer Loadings 

75°C, 40 psi, 3 mL/min 4M MeOH, CCM 
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of 0.035 W/cm2 and finally sample 6 (high sublayer PTFE) with a power output of 

0.030 W/cm2. There is no clear pattern to these results and thus the effect of 

PTFE content in the MPL for GDLs with low MPL loadings is inconclusive. 

Figure 5.11b, shows that the maximum power output, 0.058 W/cm2 is 

achieved with sample 4 (low sublayer PTFE), followed by sample 2 (medium 

sublayer PTFE) with a power output of 0.043 W/cm2 and then sample 9 (high 

sublayer PTFE) with a power output of 0.032 W/cm2. These results show that 

cell performance increases as the PTFE content in the MPL decreases for GDLs 

with medium MPL loadings. 

Figure 5.11c shows that the maximum power output of 0.078 W/cm2 is 

achieved with sample 7 (low sublayer PTFE), followed by sample 5 (medium 

sublayer PTFE) with a power output of 0.068 W/cm2 and then sample 3 (high 

sublayer PTFE) with a power output of 0.058 W/cm2. These results indicate that 

lower PTFE loadings in the MPL improve performance of GDLs with high MPL 

loadings. This may be due to an improvement in the water management near 

the membrane surface, allowing the membrane to remain fully hydrated. When 

the membrane is fully hydrated, proton conductivity is improved resulting in better 

cell performance. 

From the experimental results from sections 5.3.2 through 5.3.4 some 

important conclusions can be made. First, an increase in MPL weight (Section 

5.3.2) and decrease in MPL PTFE content (Section 5.3.4) improves cell 

performance. In addition, for GDLs with high MPL loadings, an increase in PTFE 

content (Section 5.3.3) in the substrate will improve performance. For these 
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reasons the best anode GDL is found to be sample 7, which is modified 

GDL F, with high MPL weight, low MPL PTFE loading, and high substrate 

PTFE loading. 

The following are the several reasons to expect the results that we have 

observed. The increase in MPL weight increases the thickness of the GDL. This 

increased thickness may retard the flow of methanol, which leads to 

improvements in methanol utilization and reduced methanol crossover. The MPL 

also changes the pore size distribution [87], which helps remove the excess 

water and allows the methanol to reach the catalyst sites. This change in pore 

size distribution may also improve the ability of the GDL to effectively remove 

CO/C02from the cell, reducing catalyst poisoning and improving mass transport 

of methanol. 

The total increase in GDL thickness may be the key reason for the decline 

in performance as the MPL PTFE content is increased. As the GDL becomes 

thicker, there is more electrical resistance. Since PTFE is a poor electrical 

conductor, there may be high electrical resistivity, leading to a drop in 

performance. Another possible reason for this behavior may be related to 

membrane hydration. Since the MPL is close to the membrane, a high level of 

hydrophobicity would drive water away, which may dry out the membrane. This 

would lower proton conductivity and thus decrease performance. It is believed 

that a combination of these two factors leads to the improvement with lower MPL 

PTFE loadings in the GDLs. 
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The improvement in DMFC performance with an increase in substrate 

PTFE loading may be related to the ability of the GDL to reject excess water. 

This effect is consistent for the samples with high MPL loadings, but obscured for 

the low and medium MPL loadings in GDLs. The MPL weight and PTFE content 

effects are difficult to separate from the substrate PTFE effects in this study, due 

to the matrix design (Table 5.3). 

Samples of this modified GDL G combination were sent to independent 

outside lab facilities to verify the results of this work. The data confirmed lowered 

water transport through the membrane and increased methanol utilization, which 

strongly supports reduced methanol crossover effects. This supports the 

concept that methanol crossover can be reduced by the GDL itself. This 

finding should prove very useful in developing high performance DMFCs that 

allow high concentrations of methanol to be fed directly to the cell. This will help 

to increase the methanol throughput and thus reduce the overall size of the fuel 

storage system and simplify the stack design. 

5.3.5 - Effect of Cathode GDL Properties on DMFC Performance 

Further work has been done in an attempt to improve cell performance by 

investigating the cathode GDL material. The anode GDL for this study is held 

constant as GDL F (Table 5.2) modified with the sample 7 configuration (Table 

5.3 and Section 5.3.4). Three different paper GDL samples (F, G and H) are 

used on the cathode side without any modification with MPL. Ballard Material 

Products provided these samples for our investigation. Detailed ex-situ 
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properties of these unmodified GDLs are provided in Table 5.4 and the results of 

the experiments are presented in Figure 5.13. 

Table 5.4 - Detailed Properties of Unmodified GDLs F through H 

Properties 

Thickness (urn) 

Basis Weight (g/m2) 

Air Permeability (Gurley) 

Taber Stiffness (Taber units) 

Tensile Strength (lbf) 

Electrical Resistivity 
fmfl*cm21 

GDLF 

169 

62 

47 

8.8 

15.2 

11.7 

GDLG 

254 

88 

7 

23.5 

20 

13.4 

GDLH 

198 

49 

30.6 

9.8 

14.5 

12.8 

It is seen that the cell performs the best with the GDL combination of 

cathode GDL G and anode with modified GDL F, under our test conditions, 

providing a maximum power output of 0.167 W/cm2. GDL F and GDL H both 

performed well below cathode GDL G, reaching maximum power outputs of only 

0.083 and 0.062 W/cm2, respectively. In addition to this increased maximum 

power output, GDL G also provides significant performance up to 0.6 A/cm2, 

while the performance for GDLs F and H drop quickly around 0.3 A/cm2. 

There appears to be a correlation between basis weight and cell 

performance. GDL G has a basis weight of 88 g/m2, which is 33% higher than 

GDL F and 45% higher than GDL H. It provides a maximum power output that is 

50% greater than GDL F and 
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63% greater than GDL H. This increase in basis weight may be caused by an 

increase in the fiber density and therefore, a smaller pore size distribution. This 

would help to remove excess water more efficiently by preventing water build-up 

in the pores, leading to an improvement in cell performance. 
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Figure 5.12 - Ceil Performance Evaluation using Cathode GDLs F, G, H 
and Modified GDL F on the Anode 
75°C, 40 psi, 3 mL/min 4M MeOH, CCM 

5.3.6 - Effect of Anode GDL Characteristics on DMFC Performance 

The effects of ex-situ properties of the anode GDL on DMFC performance 

are also studied. The anode GDLs evaluated are modified paper GDLs F, G and 

H. These are modified to have the optimum anode conditions (sample 7) as 

described in Table 5.3 and Section 5.3.4. For these experiments the cathode 

GDL is held constant as unmodified GDL G, which is found to perform the best in 

Section 5.3.5. 
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The results, presented in Figure 5.13, show that the MEA comprised of the 

modified GDL G as the anode and unmodified GDL G as the cathode performs 

the best, providing a maximum power output of 0.179 W/cm2. The MEA with 

modified GDL F on the anode and unmodified GDL G on the cathode produces a 

maximum power output of 0.167 W/cm2, a 6% decrease. The MEA with modified 

GDL H on the anode and unmodified GDL G on the cathode reaches a maximum 

power output of only 0.121 W/cm2, a 32% decrease. 

There does not appear to be any noticeable correlation between the 

measured ex-situ anode GDL properties and the cell performance. Increasing 

the basis weight of the anode substrate does appear to improve cell 

performance, as was seen for the cathode (Section 5.3.5). The cell performance 

increase between modified GDLs G and F is not large enough, however, to be 

related to the 33% reduction in basis weight. In addition, the large disparity 

between the cell performance with modified GDLs F and H, does not correlate to 

the relatively small change in basis weight. The MEA with modified GDL G as 

the anode and unmodified GDL G on the cathode does provide the best DMFC 

performance, however. 

The results of the MEA fitted with modified GDL G as the anode and 

unmodified GDL G on the cathode are more closely examined against the results 

of the MEA fitted with commercially available GDL I as both the anode and 

cathode electrodes. These experiments are conducted under two different sets 

of conditions. The first set of conditions is the optimized conditions previously 

explored focusing only on these GDL combinations. The second set of 
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Figure 5.13 - Cell Performance Evaluation using Modified Anode GDLs 
F, G, H and Unmodified GDL G on the Cathode 

75°C, 40 psi, 3 mL/min 4M MeOH, CCM 

conditions are ambient temperature and pressure and more closely mimics 

actual operating conditions for DMFC products. The flow rate of methanol and 

air are increased to help drive the reactions under these conditions because such 

low temperature and pressure tends to give poor performance. The results of 

this investigation are presented in Figures 5.14 and 5.15. 

Figure 5.14 shows that the MEA with modified GDL G combination 

produces a maximum power output of 0.180 W/cm2 at 0.6 A/cm2, while the GDL I 

combination provides a maximum power output of 0.162 W/cm2 at 0.65 A/cm2. 

The MEA fitted with modified GDL G combination provides improved 

performance in both the ohmic loss range (0.4-0.6 A/cm2) and the mass transport 

loss range (>0.6 A/cm2) compared to the MEA made with GDL I. 
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Figure 5.15 gives the performance of both the MEA fitted with modified 

GDL G combination and the MEA with the GDL I combination under ambient 

conditions. The modified GDL G combination achieves a maximum power output 

of 0.046 W/cm2 at 0.175 A/cm2, while the MEA with GDL I achieves a maximum 

power output of only 0.033 W/cm2 at 0.175 A/cm2. The improved performance of 

the GDL G combination can be seen as early as 0.05 A/cm2 and lasts for the rest 

of the curve, showing improved design characteristics compared to the GDL I 

combination. 

Under both sets of conditions the modified GDL G combination 

outperforms the MEA fitted with GDL I. The 20% increase in performance in the 

ohmic loss portion of the curve (0.05-0.15 A/cm2) is believed to be due to 

improved electrical conductivity in the MPL leading to lower internal electrical 

resistance. The 25% improvement in the mass transport range (0.15-0.2 A/cm2) 

are believed to be due to improved methanol / water management, which helps 

to decrease methanol crossover effects. 

This modified GDL G combination has shown improved electrical 

properties, as well as the ability to reduce water transport through the membrane, 

which helps to reduce methanol crossover effects. This combination has been 

shown to outperform numerous commercially available GDLs under the 

optimized conditions found in this study. In addition it has shown improved 

performance under ambient conditions compared to the highest performing 

commercially available GDL. Several independent laboratories have also 

verified the improved performance of MEAs made with the modified GDL G 
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combination. Ballard Material Products is planning to manufacture the 

modified GDL G on a commercial scale using a continuous process. 



CHAPTER VI 

CONCLUSIONS 

The following conclusions can be drawn from this investigation: 

6.1 - Validation of the Apparatus for Accuracy and Reproducible 
Results 

1) An experimental fuel cell apparatus has been designed, 

fabricated, and operated satisfactorily with both hydrogen 

and methanol fuels. 

2) The accuracy of the apparatus has been validated against 

the results of previous work done at the University of New 

Hampshire using hydrogen as the fuel. 

3) The apparatus is further validated against published data 

and the results show that the apparatus provides 

comparable results when hydrogen or methanol is used as 

the fuel. 
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6.2 - Optimization of Experimental Variables in a DMFC 

4) The cell temperature is optimized for best performance in a 

DMFC by varying it in the range of 40°C-80°C. The optimum 

temperature is found to be 80°C providing a maximum power 

output of 0.060 W/cm2. Due to concerns about membrane 

degradation, the cell is operated at 75°C for all experiments 

in this study. 

5) The effect of catalyst loading on fabric GDLs is investigated 

and the optimum is found to be 2.5 mg/cm2 generating a 

maximum power output of 0.100 W/cm2. 

6) The effect of catalyst loading on paper GDLs has been 

investigated and the best performance is found with 

approximately 2 mg/cm2, giving a maximum power output of 

0.039 W/cm2. 

7) The performance of two fabric GDLs and one paper GDL are 

compared under catalyst loadings of about 0.5 mg/cm2 and 1 

mg/cm2. The fabric GDLs performance is similar under both 

loadings, giving a maximum power output of approximately 

0.049 W/cm2 with the 1 mg/cm2 catalyst loading. The paper 

GDL provides maximum power outputs of 0.039 W/cm2, well 

below that of the two fabric GDLs at the same loading. 

8) The methanol feed solution concentration is optimized for 

the DMFC by varying it from 1 molar (3%) through 8 molar 
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(27%). The optimum is found to be between 2 and 4 molar 

(6-12%). The high concentration for this fuel cell system, as 

opposed to the literature reported values, is believed to be 

due to reduced electro-osmotic drag. This reduction helps to 

lower methanol crossover and improve cell performance at 

higher methanol concentrations. 

9) The methanol flow rate is optimized by varying it from 1.5 

mL/min to 7.5 mL/min and the optimum for the system is 

found to be 3 mL/min. This optimum is greatly influenced by 

operating parameters, such as temperature, pressure, air 

flow rate, and cell characteristics. 

6.3 - Microporous Sublayer Study with DMFC 

10) A study into the effect of microporous sublayers (MPLs) on 

anode GDL performance is conducted. It is found that 

performance is improved with high substrate PTFE content 

(30%), high MPL loading (80 g/m2) and low MPL PTFE 

content (5%). 

11) A study into the effect of ex-situ properties of both cathode 

GDL (with no MPL) and anode GDL (with MPL) on cell 

performance is conducted. The results show that increases 

in basis weight, for both the anode and cathode GDLs, 

improve cell performance. 
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12) The DMFC performance using an MEA made with the 

modified (with MPL) GDL G and unmodified (without MPL) 

GDL G as the anode and cathode, respectively, is compared 

with DMFC MEAs comprised of various commercially 

available GDLs. Under the optimized conditions from this 

study (Section 5.3.3) the MEAs made with the modified 

combination show improvements in the ohmic and mass 

transport loss regions of the performance curve as 

compared with the data obtained using commercially 

available GDLs. 

13) The performance of an MEA made with commercially 

available GDL I, which is shown to give the best 

performance of the commercially available GDLs (5.4.6), is 

compared with the performance of an MEA comprised of the 

modified GDL G combination under ambient temperature 

and pressure conditions. The modified GDL G combination 

provides a maximum power output of 0.046 W/cm2 

compared to 0.033 W/cm2 for GDL I. 

14) The modified GDL G combination, developed in this study, 

is evaluated at several outside laboratories. Performance 

data reported by these labs confirm our results, giving us 

great confidence in our DMFC system and evaluation 

methodology. The anode GDL developed in this study 
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allows commercially available membranes, such as Nation , 

to be used with high (>2M) methanol concentrations with no 

performance loss due to methanol crossover. In addition, 

this GDL may be manufactured continuously, at a low cost, 

to help with the commercialization of DMFCs in the future. 
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CHAPTER VII 

RECOMMENDATIONS 

The following recommendations are made for the improvement of DMFC 

performance with particular reference to research and development for gas 

diffusion layers (GDLs). 

7.1 - GPL and MPL Modifications 

1) Since this study has shown that increasing the sublayer loading leads 

to improved cell performance, it would be helpful to explore increasing 

the loading further. At some point the increased thickness and 

reduced conductivity will lead to a drop in performance and allow us to 

determine an optimum loading. 

2) In this investigation we are unable to determine the effect of PTFE 

loading in the substrate because the effects of sublayer loading and 

sublayer PTFE loading have a dominant influence. Additional samples 

should be made specifically to study the effect of PTFE content in the 

GDL in order to understand how to further improve performance. 
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3) All of the microporous layers applied to the anode GDL consisted of 

graphite particles of just one size. Changing the size of the particle 

could influence GDL parameters, such as pore size distribution or 

permeability, which may lead to improved cell performance. Different 

particle sizes should be used in the MPL so that this effect can be 

understood. 

4) This investigation is limited to only the effect of a microporous layer on 

the anode GDL. A similar study should be performed focusing on the 

effect of a microporous layer on the cathode GDL. It would be helpful 

to understand the effect of PTFE content in both the sublayer and the 

substrate and the effect of sublayer loadings on the cathode GDL. 

This may lead to improved water management and improved 

performance. 

5) The microporous layers applied to the anode GDLs in this study 

consisted of only one layer. Applying multiple layers of varying particle 

sizes and PTFE contents may lead to improved performance. The 

number of additional layers should be determined by balancing the 

benefit of the performance improvement against the added difficulty 

and cost in manufacturing to find an optimum number of MPLs. 

6) All of the experiments conducted in this investigation were run for only 

a short period of time. These materials should be studied more in-

depth in order to understand the degradation effects of methanol on 
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the MPL/GDL. It is important to ascertain that these materials can be 

run for a significant amount of time without decreased performance, 

such that they are useful in commercial applications. 

7.2 - Apparatus Modifications 

7) All of the experiments performed in this investigation were done using 

serpentine flow channels. Serpentine channels are known to have 

high pressure drop, which may lead to an increase in parasitic losses 

due to increased pumping costs. In addition C02 generated at the 

anode tends to block flow as the gas tries to rise until the liquid 

pressure is high enough to force it out of the cell. The use of parallel 

flow channels at the anode side could decrease the pressure drop and 

prevent the flow from being blocked. 

8) In these experiments the compression of the cell was not measured for 

each trial. It was assumed that the torque applied was similar for all 

experiments and that the compression was similar. The 

compressibility of the GDL can impact the cell performance and should 

be studied in greater detail to understand the effect of compression on 

the cell and how it impacts methanol and CO2 flow through the 

channels. 

9) From our performance data and from feedback received from 

independent labs we can postulate that the modified DMFC GDL 

combination developed in this study may be helping reduce methanol 
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crossover. In order to more accurately investigate this effect the 

methanol crossover for different GDL designs should be measured. 

This will lead to a better understanding of the effect of GDL parameters 

on methanol permeation and methanol crossover. 

7.3 - Membrane and Catalyst Improvements 

10) For this investigation only Nation® membranes were used in all 

experiments. Nation® membranes, although known to have very high 

proton conductivities, have high methanol crossover effects. GDLs 

should be investigated with other membranes (Gore®, PolyFuel®, etc.) 

to help further limit methanol crossover and improve cell performance. 

11) All of the experiments in this investigation were done with Pt-Ru 

catalyst in a 50:50 ratio. This ratio might not be ideal if the mechanism 

for breaking down the methanol to hydrogen requires more Pt than Ru 

or vice-versa. The effect of different ratios of Pt:Ru on DMFC cell 

performance should be investigated to determine if there is an 

optimum. 

12) The commercial CCMs used in most of this study all reported the 

same amount of catalyst on the anode (4mg/cm2 Pt-Ru) and the 

cathode (4mg/cm2 Pt). Different catalyst loadings on the membrane 

may enhance performance and lower the cost, leading to an improved 

product that is more cost efficient. 
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APPENDIX A 

EXPERIMENTAL PROCEDURE FOR MAKING 

MEMBRANE ELECTRODE ASSEMBLIES (MEAs) 

The membrane electrode assemblies (MEAs) used in this experimental 

work are prepared in house. Unless otherwise noted, the MEAs are composed 

of two catalyst- coated GDLs, with a Nation® membrane in the middle, which are 

hot pressed at 175°F at 1500 psi for 90 seconds. The catalyst is hand-painted 

onto the GDL, layer by layer, using a very fine brush. The details of these 

procedures are included in the following sections. 

A.1 - Membrane Preparation 

The Nation® membranes are carefully treated to remove any 

contaminates. They are next sulphonated for improved proton conductivity. The 

procedure is given below: 

1) Cut squares of untreated Nation® membrane 3" x 4" to be used in the 

fuel cell system. 

2) Fill a beaker with 450 ml_ of 3% hydrogen peroxide and place it on the 

hot plate until it reaches a slow boil. 
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3) Submerge the membrane(s) completely in the hydrogen peroxide 

solution. Carefully place two magnetic stirrers on either side of the 

membrane(s). 

4) Allow boiling for 1 hour, refilling the hydrogen peroxide as necessary to 

keep the membrane(s) submerged. 

5) Fill another beaker with 450 ml_ of Dl water, place it on a hot plate and 

allow it to come to a slow boil. 

6) Carefully remove the membrane(s) from the hydrogen peroxide 

solution and submerge them completely in the boiling Dl water. 

7) Allow boiling for 1 hour, replenishing the Dl water as necessary to keep 

the membrane(s) completely submerged. 

8) Carefully measure out 25 mL of highly concentrated sulfuric acid and 

slowly add it to 475 mL of Dl water to make 500 mL of 5% (vol.) 

sulfuric acid solution. Note: Be sure to add the acid to the water 

solution for safety. 

9) Place the dilute sulfuric acid solution on a hot plate and allow it to 

come to a slow boil. Note: Be sure to have the fume hood on before 

boiling the acid. 

10) Carefully transfer the membrane(s) from the Dl water to the boiling 

sulfuric acid solution. 
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11) Keep the membrane(s) submerged in the sulfuric acid solution for 1 

hour. Do not add any Dl water to the solution unless the level is too 

low to keep the membrane submerged. 

12) Fill a container with 450 mL of Dl water, place it on a hot plate and 

allow the water to come to a slow boil. 

13) Carefully transfer the membrane(s) from the sulfuric acid solution to 

the boiling Dl water and keep them submerged, replenishing the Dl 

water as necessary, for 1 hour. 

14) Clean and rinse a jar with Dl water then fill the jar % full with Dl water. 

Affix a label with the name, date and type of membrane to the front of 

the jar. 

15) Carefully remove the membrane(s) from the boiling Dl water, remove 

the magnetic stirrers and place the membrane(s) in the above-

mentioned labeled jar and seal it. The membrane(s) are now cleaned 

and ready for use and should be kept submerged to avoid exposure to 

any contaminants. 

A.2 - Catalyst Ink and GPL Preparation 

The catalyst, purchased from Ion power, is mixed with n-propanol, Dl 

water and 15% Nation® solution to form an ink, which is painted onto the GDL. 

The catalysts may be different for anode and cathode electrodes. The 

preparation of the ink is as follows: 

1) Carefully tare out a small plastic dish 
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2) Slowly add catalyst powder to the dish until the proper amount is 

transferred for the correct Pt loading on the GDL. (e.g. for a 0.4 

mg/cm2 Pt loading, using 20% Pt carbon catalyst, the proper 

catalyst amount is 10 mg of catalyst.) 

3) Carefully crush the catalyst particles using the flat end of a feeding 

spoon to prevent the large particles from settling out of the solution. 

4) Transfer the catalyst to a jar and place it on the scale. 

5) Carefully add 250 mg of Dl water to the catalyst-containing jar. 

6) Now carefully add 250 mg of n-propanol to the solution. Note it is 

important to add the n-propanol after the Dl water to prevent 

possible ignition between the carbon particles and the n-propanol 

vapors. 

7) Quickly add 100 mg of 15% Nation® solution to the mixture and 

place a small magnetic stirrer into jar, cap the jar and place it on a 

stir plate inside a large bowl full of ice, to prevent n-propanol 

evaporation. 

8) Repeat steps 1 -7 for the cathode ink preparations if the catalyst 

used is different from the one used for the anode electrode. If both 

are the same then just use double the amounts of all components. 

9) Place the jar with the catalyst solution on the stir plate and turn it on 

to setting 7. Allow the stirrer to mix the solution for an hour. Note: 

if after one hour the solution is not well mixed, allow the stir plate to 
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run longer checking every 20 minutes until the solution is well 

mixed. 

10) Cut the appropriate number of GDL samples (2.5"x2.5") for 5 cm2 

samples. Weigh the uncoated GDL piece(s) and place them on a 

glass plate. Carefully coat the GDL(s) uniformly in one direction. 

Note: be very careful to make the first two layers very thin to 

prevent the solution from seeping through, as this leads to a non­

uniform catalyst layer and poor cell performance. 

11) Place the coated GDL into a vacuum dryer (60°C, -15 in.) for 15 

minutes. 

12) Repeat steps 10-11 until the entire solution is consumed. Note: be 

sure to alternate the direction, vertical and horizontal, while coating 

the GDL to ensure uniform catalyst distribution. 

13) Completely dry the GDL piece(s) and re-weigh them to determine 

the catalyst loading. 

14) Fill a new jar with 50 mg of 15% Nation® solution and 100 mg of Dl 

water and carefully apply one coat to the surface of the GDLs. 

15) Dry the GDLs completely and re-weigh to determine the total 

Nation® loading. 
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A.3 - MEA Preparation 

1) Place Teflon paper over a flat metal base and carefully lay the catalyst-

coated anode GDL (with the catalyst layer facing up) on top of the 

paper. 

2) Carefully transfer a piece of treated Nation® membrane (see Section 

4.3.1) from the Dl water and lay it over the anode GDL (catalyst coated 

surface facing up), making sure that the GDL is in the center of the 

membrane. 

3) Very carefully place the catalyst-coated cathode GDL (with the catalyst 

layer facing down) on top of the membrane such that it completely 

lines up with the anode GDL. 

4) Place another piece of Teflon paper over the MEA and place a metal 

sheet on top of the Teflon paper, being sure not to allow the 

GDLs/membrane to slide out of place. 

5) Carefully lift the two metal pieces, holding them together to prevent the 

GDL/membrane from sliding and place them into the heated (250°F) 

mechanical press. 

6) Raise the pressure to 1500 psi and allow the MEA to be pressed for 90 

seconds. 

7) Carefully remove the plates from the press (be careful as the plates will 

be hot) and allow them to slowly cool to room temperature. 
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8) Very carefully peel back the top layer of Teflon paper. Note: If not 

done properly it can remove part of the GDL paper and render the 

MEA useless. 

9) Carefully pull the membrane/GDL away from the bottom layer of Teflon 

paper, again being careful not to damage the system. 

10) If using a methanol MEA place a dot in the upper left hand corner of 

the MEA (when the anode side is under the membrane) so that the 

user can identify the anode/cathode side. 
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APPENDIX B 

LIST OF VENDORS 

Table B.1 - List of Vendors 
List of Purchases 
Thermocouples 

Thermocouple connectors 
Thermocouple wires 

Solid-state relays 
Heat sinks 

Pressure transducers 
Power supply 

Twist lock connector 
Pressure snubber 

Heat tapes 
Mass flow controllers 

Mass flow controller cables 
Teflon tape 

Wiring 
Fan/fan screen 

Piping 
Tubing 
Unions 
Fittings 

Humidification cylinders 
Cylinder rings 

Tees 
Pressure gauges 

Filters 
Check valves 

Regulators 
Solenoids 

Backpressure gauge 
PCI GPIB 

Shielded cabling 
Shielded connector block 

PCI-6071 DAQCard 
LabVIEW 

Vendors 
Omega 

McMaster-Carr 

Swagelok (Maine Valve and Fitting) 

Harris Calorific 
Washburn-Garfield 

National Instruments 

Contact Telephone No. 
203-359-1660 

330-342-330 

207-947-3353 

513-754-2000 
508-753-7225 

800-531-5066 
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List of Purchases 
Electronic load 

Mainframe 
Power Supply 

NFBDC Power Supply 
Fuse box 

Grommets 
Electrical supplies 

Gases 
Nafion membrane 

15 %wt Nafion solution 
CCM 

GDL samples 
60%PTFE 
Methanol 

Pt catalyst- 20% Pt/C 
Pt catalyst- 40% Pt/C 
R-Ru catalyst: 50-50 
Pt-Ru catalyst: 30-15 
R-Ru catalyst: 20-10 

Syringe Pump 
Fuel cell hardware 

Vendors 
Agilent Technologies 

Radio Shack 
Epsco Incorporated 

Home Depot 

Airgas Incorporated 
Ion Power 

Fuel Cell Store 

Aldrich Chemical Company 

AlfaAesar 

Sage Instruments 
Fuel Cell Technologies 

Contact Telephone No. 
800-452-4844 

800-843-7422 
800-294-8585 
800-553-3199 

610-687-5253 
302-832-9550 

303-237-3834 

800-521-8956 

800-343-0660 

831-786-3304 
505-8214672 
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APPENDIX C 

STOICHIOMETRIC VALUES 

Table C.1 - Stoichiometric Values for Anode/Cathode Feeds 

Total 
Current (A) 

0.5 
1 

1.5 
2 

2.5 
3 

3.5 
4 

4.5 
5 

5.5 
6 

Current 
Density 

(A/cm2) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

1.1 
1.2 

H2FIow 
(1x Stoich) 

cm3/min 

3.5 
7 

10.5 
14 

17.5 
21 

24.5 
28 

31.5 
35 

38.5 
42 

Air Row 
(1x Stoich) 

cm3/min 

8.3 
16.7 
24.7 
33.0 
41.3 
49.7 
57.7 
66.0 
74.3 
82.7 
91.0 
99.3 

MeOHFlow 
(3M,1x Stoich) 

luLymin 

17.3 
34.5 
51.8 
69.1 
86.4 
103.7 
121 

138.3 
155.6 
172.9 
190.2 
207.5 

133 



APPENDIX D 

Performance Comparison of Modified GDL G and 
Commercial References 

No product development is complete unless the performance of the 

product is satisfactorily compared against the performance of other similar 

products that are commercially available. For this part of the study an MEA is 

prepared with modified GDL G as the anode and unmodified GDL G as the 

cathode. The performance of this MEA is compared against the performance of 

six similar MEAs consisting of GDLs A, B, C, D, E and I as both the anode and 

cathode sides of a commercially available CCM. In addition two MEAs fitted with 

modified GDLs F and H on the anode and unmodified GDL G on the cathode are 

also evaluated. The results are presented in Appendix D Figures D.1 (Potential 

vs. Current Density) and D.2 (Power Density vs. Current Density). 

Figure D.1 presents the V-l performance curves of each of the MEAs 

studied under the optimized operating conditions found in Section 5.2. From 

these results it is clear that the GDL combination (modified GDL G as the anode 

and unmodified GDL G as the cathode) developed in this study performs the 

best, giving a voltage of approximately 0.2V at 0.7 A/cm2. The only other MEA 

that compares well is made with commercially available GDL I, which achieves 

0.17V at 0.65 A/cm2. GDLs A and E start off very strongly, but their performance 
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0.8 0.9 

Current Density (A/cm2) 

Figure D.1 - Voltage Comparison of GDL Combination with Commercially 
Available GDLs (Potential vs. Current Density) 

75°C, 40 psi, 3 mL/min 4M MeOH, CCM 

Current Density (A/cm2) 

Figure D.2 - Power Density Comparison of GDL Combination with 
Commercially Available GDLs (Power Density vs. Current Density) 

75°C, 40 psi, 3 mL/min 4M MeOH, CCM 
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quickly declines due to mass transport limitations, indicating that they cannot 

effectively remove the water from the cell. Modified GDLs F and H perform well 

compared with most of the other commercially available GDLs (A through D) 

producing 0.2V at 0.35 A/cm2 and 0.5 A/cm2, respectively. In order to better 

understand the differences in these GDL performances, we evaluated the power 

densities, as shown in Figure 5.15. 

Figure D.2 shows the power densities for each of the MEAs studied under 

the optimized operating conditions. It is clear that the GDL combination 

developed in this study performs the best, achieving a maximum power output of 

0.18 W/cm2. The MEA with GDL I on both the anode and cathode sides 

produces the closest results with a maximum power output of 0.151 W/cm2, 16% 

less. These are the only two MEAs that produce significant power above the 

current density of 0.4 A/cm2. 

The MEA with GDL E on both sides and the MEA with the combination of 

modified GDL H and unmodified GDL G perform similarly, reaching maximum 

power densities of approximately 0.12 W/cm2. The MEA with a combination of 

modified GDL H and unmodified GDL G performs at a higher current density (0.4 

A/cm2) than the MEA with GDL E (0.3 A/cm2). The MEAs made with GDLs A and 

B on both sides and the MEA combination with modified GDL F and unmodified 

GDL G provides the third best performance group, each reaching maximum 

power densities of approximately 0.1 W/cm2. The MEA with GDL B (0.3 A/cm2) 

reaches higher current densities than the MEA with GDL A (0.2 A/cm2) or the 
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MEA with modified GDL F (0.25 A/cm2). Finally the MEAs composed of GDLs C 

and D perform very poorly compared to the others and may be considered 

unsuitable for DMFC use under the specific experimental conditions. 

137 


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2008

	Study of Gas Diffusion Layers in direct methanol fuel cells (DMFC)
	Jason Morgan
	Recommended Citation


	ProQuest Dissertations

