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ABSTRACT 

THE EVALUATION OF THE INSTRUMENTATION OF AN ACOUSTIC 

MEASUREMENT BUOY DESIGNED TO MONITOR THE UNDERWATER 

ACOUSTIC ENVIRONMENT DURING PILE DRIVING ACTIVITY 

by 

David P. Moceri 

University of New Hampshire, May, 2008 

Driving large support piles in brackish estuaries results in permanent damage, and 

possibly death to marine mammals and fragile infant fish spawned in these areas. The 

damage is a result of excessive acoustic intensities produced by the pile driving activity. 

To monitor this 'noise', students in the Undergraduate Ocean Research Projects: TECH 

797 2005-2006 (Risso et al. 2006), working with Dr. Ken Baldwin as their advisor, 

proposed the concept of using an 'Acoustic Measurement Buoy'. Their project was 

funded by the National Sea Grant College Program, NOAA, and Department of 

Commerce. 

Their problem statement was "To develop a portable, robust, and inexpensive 

system for measurement of waterborne noise associated with construction in coastal and 

estuarine regions" (Risso et al. 2006). Based upon extensive testing and experimentation, 

this thesis evaluates the feasibility of their design, the problems encountered, some 

solutions and recommendations for improvements in putting the 'Acoustic Measurement 

xix 



Buoy' to practical use. The individual components were analyzed to compare their 

requirements, specifications and performance. 

Evaluations were performed on a test bench, in the tank in the Jere Chase Ocean 

Engineering Lab, on the R/V Gulf Challenger and at a floating dock in a coastal marine 

environment. The data were collected using National Instruments Lab VIEW™ software, 

data acquisition hardware, and post processed using Matlab™ software. Standard 

techniques in failure and root cause analysis, such as cause and effect diagrams, fishbone 

diagrams, flow diagrams and process maps will be used in the data and component 

analysis. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Noise in the ocean is caused by many sources. A major source of underwater 

noise is construction, in and around near coastal areas, such as when driving piles for 

bridges. Based upon previous pile driving studies, estimates indicate source levels (SL) 

up to 265 dB re 1/xPa at lm at a depth of 10m (Nedwell et al. 2003). During the activity 

of pile driving, mechanical energy is transferred into acoustic energy and ultimately 

propagates throughout the water column. The underwater acoustic sound pressures, and 

particle motion emanating from a pile during the 'hammering' process have produced 

adverse affects to fish and marine life in the adjacent environment. Acoustic sound 

pressure levels (SPL) greater than 180 dB re 1/iPa are known to cause cell damage and 

can affect marine fish and their natural processes, such as spawning and habitation. 

(http://mapping.orr.noaa.gov/website/portal/pies/Pile_Driving_Refs.pdf) 

An initial project was focused on designing an acoustic measurement system to 

record the SPL during pile driving activity. The design criteria were based upon acoustic 

pressures greater than 240 dB re ljtiPa. Expected frequencies are from 200Hz to 4kHz, 

depending on the length of the pile with a drive pulse duration of 50 to 100 ms (Risso et 

al. 2006). The major concerns in the recording system were the source levels and 

frequencies generated. The design and fabrication of a prototype acoustic measurement 

system to enable in-situ sound collection was undertaken by Risso et al. (2006). Source 
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levels and local sound pressure levels could then be measured and calculated. The 

existing reports on this situation were available in the 'gray literature' of consultant 

reports. It became apparent that there was a need to develop a measurement system 

capable of recording these acoustic events at multiple depths and locations. 

It was anticipated that monitoring of the 'noise' or sound pressure levels and data 

collection would take place at three locations and three depths (Risso et al. 2006). 

Location one was an area where the SPL would be greater than 220 dB dB re lpiPa. 

Location two was where the expected SPL would be greater then 180 dB re 1/iPa but less 

than 220 dB re luPa. Location three was where the expected SPL would be less than 180 

dB re luPa. The three locations are shown schematically in Figure 1. The buoy and 

mooring were designed to be readily monitored and moved to the required locations in 

order to calculate the SPL at range. The mooring-buoy description and analysis were 

performed in Risso et al. (2006). 

Locat ion Three Locat ion Two 

Ffe6<180dB 180dB<Flle<220d:B 

Locat ion One 

nx>220 dB 

Bubbles 
roving with 

Current 

Energy 
t „ = 50 - 100 ns 

SL > £40clB re LuPa 
f^> 

Figure 1: Three physical locations and expected SPLs of concern. The air bubbles 
that are shown in the diagram will be explained. 

The hydrophones on each mooring were to be deployed at three different depths. 

One of the hydrophones near the water surface, one in the mid-water column and one 
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near the sea floor, as shown in Figure 2. Each hydrophone would have a temperature 

sensor co-located. 

Distance "to be Determined 

.^^"MoorinQ with I ns t rumen ta t i on 

•SeJL^lvrFo 

-Pile Being Driven 

Depth! 
0 t o LOO f t 

MoorHiQ Anchor 

A t t e n u a t i o n *-; - ̂ re'ssJre/' 
< SL < 

""Hveirophc^w/Ter'sD. 
Sea Bo t to r i 

\ Sound S 

;>Pres'sureT* 

Figure 2: Concept schematic of mooring, hydrophone and buoy layout. 

Methods have been proposed and used to attenuate pile driving source levels in 

water using air as an attenuation medium in the form of 'bubble curtains'. These are 

typically composed of concentric cylinders (Laughlin 2006) or closed rectangles made 

from neoprene or similar materials placed vertically around the pile. Air is pumped from 

compressors into a perforated 'ring' creating a 'shell' of bubbly water around the 

construction zone. This can be considered the insertion loss (InL), due to the impedance 

mismatch between the two mediums (seawater and air). Any transmission loss (TL) from 

the source to the hydrophones must be taken into account. 

1.2 Data Acquisition System Description 

The prototype monitoring system was designed to have multiple (three) 

hydrophone elements and a data acquisition system (DAQ). The mooring-buoy was 

designed to be self-contained with the 'instrument package' inserted inside a watertight 
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cylinder (Risso et al. 2006). The DAQ was necessary to acquire and store the raw data 

and was controlled with a PC running under the Microsoft Windows M operating system. 

An integral component was a National Instruments 4 channel, 16 bit analog to digital 

converter (A/D) capable of a sampling rate of 100,000 samples per second per channel. 

The A/D is connected via a USB port to the host PC. The Lab VIEW™ graphical 

language was used to record and display the real-time data. The raw data files, formatted 

to be post-processed and analyzed using Matlab™, were stored on the hard drive for 

retrieval through a USB port. As designed, a wireless connection would be used for 

DAQ control and data retrieval, using a remote PC. 

Wired connections run from the DAQ system to the three omni-directional 

hydrophone assemblies. Inside the individual hydrophone assemblies are a hydrophone 

and a preamplifier. Analog filtering circuits were not specified or purchased in the 

original proposal between the A/D and the hydrophone assemblies. The system was 

implicitly designed for signals at frequencies less than 10kHz. Analog high pass filtering 

circuits were found to be required on each channel. They were designed as a DC block, 

as the output signals from the hydrophones sit at a DC level. The DC level has the 

potential of reducing the dynamic range of the hydrophones. The AC input signal from 

the hydrophones ride on this DC level, {Vi Vsuppiy). This initial prototype design was 

presented in Risso et al. (2006), but it was not subjected to a rigorous engineering 

evaluation. The overall goal of this thesis was to provide an engineering evaluation of 

the 'Acoustic Measurement Buoy', using an approach shown graphically in Figure 3. 

This approach was designed to evaluate each system component, the interaction of the 

components, and the compatibility of the components. 
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Lab View 
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Figure 3: Fishbone diagram of the components of the Acoustic Measurement Buoy. 

1.3 Goals and Objectives 

The specific goals of this research were intended to perform a rigorous evaluation 

of the existing prototype system and make recommendations for improvements. The 

specific goals were: 

1) Complete the build, as generally designed, making changes as necessary. 

2) Perform an in-depth electrical, acoustical and mechanical evaluation of the 

individual components and system performance. 

3) Based upon this evaluation, perform redesigns and modifications, as required to 

the original components. 

4) Analyze the reliability of this acoustic measuring system for acquiring local sound 

pressure data from the activity of pile driving in an accurate and consistent 

manner at the locations prescribed. 
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The feasibility study began by completing the build of the DAQ package and hydrophone 

assemblies. The operation of the hydrophones, data acquisition module and computer 

were verified. A calibration of the hydrophones was performed using the substitution 

method, along with a calibrated source, separate measuring system and independent 

Reson hydrophones. Tank testing was accomplished at higher frequencies, and finally 

field data were obtained at a floating dock on the Annisquam River in Gloucester 

Massachusetts, to test low frequencies that are impractical in a tank. 

The original data acquisition system and hydrophone design went through many 

changes and iterations. The experiments, data analysis, problems incurred, solutions, and 

recommendations are presented in subsequent chapters. Many problems were 

encountered and some solutions were implemented, while others were proposed to make 

the system more robust and reliable. As the testing and data collection proceeded, 

ongoing analysis was performed and redesigns were implemented. With the collected 

data, a careful failure analysis was performed on the system using such tools as root 

cause analysis, and cause-effect diagrams (fishbone diagrams). Figure 4 describes the 

process map of the analysis approach taken to evaluate the feasibility of the Acoustic 

Measurement Buoy as designed and built. This thesis focuses on the evaluation of the 

canister instrumentation and hydrophones. 
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Figure 4: Process map of total design, build and evaluation of the Acoustic 
Measurement Buoy. The buoy-mooring build and evaluation were 
completed by Risso et al. (2006). 
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CHAPTER 2 

MEASUREMENT SYSTEM DESIGN 

2.1 Introduction 

The objective of the initial student project was "to provide a portable and robust 

tool for measurement of underwater sound profiles at multiple locations near marine 

construction sites" (Risso et al. 2006). The preferred means of deployment of the 

Acoustics Measurement Buoy was to use vessels of opportunity. The project design was 

meant to be compact, easily transported, easily deployed, and waterproof. This chapter 

describes their original design, with exceptions noted. The evaluation was begun with 

furnished components from the TECH 797 class of 2005/2006. 

The design approach was comprised of three categories, acoustics, data 

acquisition, and instrument buoy. These three topics were addressed in Risso et al. 

(2006). At the end of that project, hardware and some software were available for all 

three aspects of the project. The goal of this thesis was to test and evaluate the prototype 

acoustic and data acquisition issues and set criteria for future system fabrication. The 

instrument buoy components consisted of the buoy float, which contained the instrument 

canister, and mooring lines. Self-contained Onset H080 temperature loggers with 

programmable sampling frequency and internal data storage were purchased for each of 

the hydrophones to measure effects of temperature on sound propagation and are 

described in Risso et al. 2006. However, in this thesis, temperature effects were not 

considered and the temperature sensors not used. Disregarding the temperature loggers, 
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the basic initial system configuration is schematically shown as a block diagram in Figure 

5. 

System Block Diagran 

AnpUFIer 
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lMta - 4kHz 
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Acoustics 

Instrument Buoy 

Canister 

A/D '16 bit" 
Fs < 100 kHz 

CPU U Do, to 

I/a 

Wireless Data 
Storage 

I 100 & 

)ata Acquisition 

Total Systen 

Figure 5: Block diagram of the components of the acoustic measurement buoy 
with the categories of the project specified. 

The acoustics components were the hydrophones with preamplifiers, and signal 

wiring. The data acquisition components were the motherboard with CPU, memory, hard 

drive for data storage, wireless network card, power supply card, analog to digital 

converter, and rechargeable battery. Microsoft Windows™ XP was selected as the 

operating system using National Instruments Lab VIEW™ and DAQmx™ software to 

control the data acquisition hardware and software. The hardware was assembled and 

contained in a sealed pressure vessel housed within the main buoy. The Acoustic 

Measurement Buoy components are summarized below: 
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• VIA EPIA Mill 0000, 512M RAM, and 100 GB Hard Drive, running under the 

Windows™ XP Operating System. An external CD-ROM drive was required. 

a National Instruments NI-USB-9125A Data Acquisition Module 4 Channel A/D 

controlled by Lab VIEW™ Version 7.1 and DAQmx™ software with data sampling 

up to 100,000 samples per second per channel, 

a Linksys™ WPC54G wireless networking card with PCMCIA compatibility with the 

mainboard and 802.1 lb/g for wireless connection capability. 

a Benthos AQ-2000 onmi-directional hydrophones (x3), AQ-201 single ended 

preamplifiers (x3). 

a Onset H080 Self contained Temperature Loggers (x3) (Max depth =100 ft). 

• Concorde PVX-1234T AGM Lead Acid 34 amp-hour 12V rechargeable battery. 

An alternative graphical representation of the system and the relationship between 

components are shown in Figure 6. This presentation was the road map for the system 

analysis and evaluation documented in this thesis. 

EPIA Mil 10000 100GB HD / 512M RAM 

Hydrophone 
Benthos AQ-2000 

x: 

inksys VPC54G Wireless 

Ml-ATX PS Card 

Amplifier 
Ben-thos AQ-201 

X 

NI-91S5 A/D 

Hydrophone 
Assembly 

Computer 
Assembly 

Wiring 

Acous t i c 
Measurement 
Buoy 

F i l te r ing 

Figure 6: Fishbone diagram of the components of the Acoustic Measurement Buoy. 
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2.2 DAQ Package 

The DAQ was designed and built around an EPIA Mil-Series Mini-ITX 

Mainboard, with a Nehemiah 1GHz core microprocessor. The mainboard had 512 MB of 

RAM installed and I/O ports for a monitor, keyboard, mouse, and USB-compatible 

accessories. The DAQ was self-contained and ran under the Microsoft Windows XP 

operating system. A 100GB Hitachi Travelstar™ 5K100 laptop hard drive was selected 

for data storage. The hard drive was plugged into the IDE connector via an 8" ribbon 

cable. A portable flash memory device was used to transfer data from the measurement 

computer via USB port. A Linksys™ WPC54G wireless networking card with PCMCIA 

compatibility with the mainboard and 802.1 lb/g for wireless connection capability was 

also installed. 

The NI-USB-9215A A/D module was selected for data acquisition and provides 

plug-and-play connectivity via a USB port for faster setup and measurements. This 

module was capable of accepting up to four data input channels simultaneously, 

providing sampling with 16-bit accuracy, and a sampling frequency up to 100,000 

samples/sec/channel. The module provides 250 VRMS channel-to-earth ground isolation 

for safety, noise immunity and high common-mode voltage range. The operating range 

of the A/D input channels are from -10.5 to +10.5 volts. The signals from the three 

channels of hydrophone data were hard wired to the input channels of the A/D as 

presented in Figure 7. Anti-aliasing filtering was not provided because of the low 

expected frequencies. The hardware was assembled in a compact configuration, using a 

custom-built frame of aluminum L-section bar stock, stainless and nylon hardware. 

Figure 8 shows the motherboard computer and peripheral devices after assembly. 
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Figure 7: Schematic diagram of hydrophone and A/D electrical configuration. 

Figure 8: Layout of DAQ computer and peripheral devices. (Risso et al. 2006) 

The total power consumption for the CPU, ADC, HD, RAM, and wireless adapter 

was estimated at 100W and required a 12VDC voltage source. The original source was a 

borrowed battery with a 34 amp-hour capacity. This battery was ultimately replaced with 

an inexpensive, lawn motor battery because of failure to hold a charge. The system 
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power was distributed and controlled by a model Ml-ATX power supply card, with a 

90W output power capacity, 12VDC compatibility, and soft-shutdown feature. Appendix 

A of this thesis contains a complete description, and manufacturer specifications for the 

components of the DAQ system. 

2.3 Software Description 

Applications used to record and display the data real time from the A/D were 

designed with the Lab VIEW™ Version 7.1 graphical interface software. Specific 

operations can easily be programmed. Virtual instruments (VI), capable of data capture 

and storage were written, acquiring data at selectable sampling frequencies from 20,000 

to 40,000 samples/second/channel. The functionality and complexity of the virtual 

instruments were kept as simple as possible. As the graphical script or VI becomes more 

complicated, the speed at which they 'ran' conflicted with the amount of computing 

power available to the user. The more tasks performed, the slower the host computer ran. 

The NI-USB-9125A module was run under the NI DAQmx™ high-performance 

multithreaded driver software. Appendix B describes the Lab VIEW™ virtual 

instruments used during the evaluation. 

The data was displayed and stored onto the hard drive as ASCII text files with an 

LVM or TXT extension as Lab VIEW™ Version 7.1 does not allow writing binary files. 

Saving data files as ASCII was cumbersome due to the file size. This problem was 

overcome by converting the acquired data to binary files using Matlab™. A 

representation of the Matlab™ code is contained in Appendix C of this thesis. 
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2.4 Hydrophone Assemblies 

The SPL of concern was greater than 180 dB re luPa. Most construction-related 

waterborne noise occurs at frequencies less than 4kHz (Rizzo et al. 2006). The task was 

to specify low-frequency hydrophones capable of recording SPLs between 180 dB re 

luPa and 260 dB re luPa. Risso et al. (2006) selected Benthos AQ-2000 hydrophones 

with AQ-201 preamplifiers. These hydrophones were typically used in low frequency 

towed arrays. It was their low frequency operation, which lead to their selection. 

Manufacturer specifications and an analysis of the hydrophone components are presented 

in Appendix D of this thesis. Construction of the hydrophone assemblies had problems 

of its own. A non-corrosive container was required to protect the electronics from water 

intrusion but still allow the hydrophones to be sensitive enough for low level signal 

capture. The original hydrophone assembly was made up of reinforced braided vinyl 

tubing with an inner diameter of %", and the data cable exiting one end for connection to 

the data acquisition system as shown in Figure 9. This was selected for the housing 

material due to low cost, abrasion resistance, and ease of construction. Housing ends 

were fabricated out of PVC. The %" diameter, 1 V2" long barbed PVC plugs were filled 

with marine epoxy putty, inserted into each end of the vinyl housing and secured with 

stainless steel pipe clamps. A fluid was required to fill the container for transmission of 

the acoustic signal from the container wall to the element that was non-electrically 

conductive. Mineral oil was selected as a suitable filler fluid for hydrophone 

construction, based on it being nearly incompressible, environmentally-benign, and its 

acoustic impedance matching properties. Brass bleed tubes with stainless steel screws, 

rubber seals, and brass washers were incorporated into each hydrophone end to allow 
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filling with mineral oil. The bleed tubes also allowed the evacuation of air from the 

hydrophone assembly. Initial testing proved the original design to be inadequate, as the 

vinyl tubing attenuated the incoming signals, assumed to be due to mechanical loading of 

the elements and the stiffness of the tubing. 

Figure 9: Pictorial original hydrophone design showing piezo-element and amplifier 
inserted into vinyl tubing filled with mineral oil. 

2.5 Instrument Canister Description 

The instrument canister was made from PVC pipe, approximately 10" in diameter 

and 22" in length. The bottom, made of PVC was rigidly sealed, while the cover was 

removable, and made watertight using neoprene rings and Neilsen clamps. A 14" 

diameter PVC flange was attached to the top end of the canister. This allowed the 

canister to rest in-place within the buoy. The hydrophone wiring was fed through the 

cover using watertight compression fittings. Internal connectors and a wiring harness 

were installed to provide easy removal of individual components. 
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CHAPTER 3 

ACOUSTICAL CONSIDERATIONS 

3.1 Introduction 

To better understand the concept and limitations of the Acoustic Measurement 

Buoy some theoretical considerations of underwater acoustics, were needed. Basic 

definitions of pertinent sonar parameters were required to evaluate transducer 

performance and propagation issues. These were coupled with fundamental data 

acquisition concepts to complete the measurement system parameterization. A basic 

SONAR model was used to evaluate the problem. 

3.2 The SONAR Equation 

The SONAR equation defines the relationship between source level, sound 

pressure level, transmission loss and other physical attributes. There are different forms 

of the SONAR equation, which depend on whether the sonar is passive or active. In the 

passive case, hydrophones are used to detect independent acoustic signals. This is 

characterized by equation 3.1. 

SL-TL=NL-DI + DT units ofdB re 1 uPa (Urick 1983) (3.1) 

Where SL is the source level of the signal, TL is the transmission loss, DI is the receiver 

directivity index, NL is the noise level and DT is the detection threshold. For this 

application and analysis, a more specific form of the equation was used. From a SONAR 

perspective, 
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SPL =SL-TL- InL units ofdB re 1 fiPa (3.2) 

The insertion loss (InL) is calculated as the algebraic difference in the calculated value of 

the sound pressure level, taking the source level and transmission loss into account. In 

this context, the insertion loss is signal loss due to any attenuating materials or physical 

properties such as air bubbles. The SPL is measured directly in a hardware perspective 

from the hydrophones using equation 3.3. 

SPL = - OCVR - Gain + 20log10(VRCvD) units ofdB re I fiPa (3.3) 

OCVR is the open circuit response of the hydrophone. This is also referred to as the 

FFVS (free field voltage sensitivity) or the sensitivity (Mx). Gain is any amplification 

applied to the signal from the hydrophone and VRCVD is the output voltage of the 

hydrophone. Figure 10 is a representation of the components of the SONAR equation 

and dependencies as related to the passive model. 

Passive Sonar Equation Model 

Hydrophones 

Receive 
System 

T DAQ Computer 
DAQ Hardware CA/D) 
F i l te r Circui ts 
DAQ Sof tware CLabVIEV) 

Analysis Focus —^4 

Figure 10: Block diagram of the passive sonar model. The analysis focussed on the data 
acquisition system and hydrophones. 

3.3 Sound Intensity and Sound Pressure Relationship 

Acoustic intensity is the fundamental measure of sound and is a measure of power 

per unit area. It is not always useful in a practical sense. The standard measurable 
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parameter is the acoustic or sound pressure (Kinsler et al. 2000). In a small amplitude 

plane wave, instantaneous intensity is related to the instantaneous acoustic pressure 

(Urick 1983). The SI units for pressure are the Pascal or Pa (Newtons/meter2). The 

relationship between the acoustic intensity (I), sound pressure (P) and sound speed (c) are 

related through the expression: 

I = P2 / p0c units of watts/meter2 (Urick 1983) (3.4) 

Where, po is the specific density of the medium. The term p0c is the acoustic impedance 

(z), measured in Rayles. (1 Rayle = 1 kgm'V1). For seawater this term can be 

approximated as: 

z = pc = 1027x1500 = 1.54xl06Rayles (3.5) 

(po = 1027 kg/meter2, c = 1500 meter/second) (Kinsler et al. 2000) 

The acoustic impedance is an important parameter as it controls the magnitude 

and nature of reflection from an interface between two different z's. The acoustic 

intensity (J) of a sound wave is the average rate of flow of energy through a unit area 

normal to the direction of wave propagation. Normally the pressure (P) is taken to 

represent the average of the squared pressure over an interval of time in order to give an 

average intensity (I) for that interval. 

E = j l d-t =j5c-j Polt (Urick 1983; (3.6) 

This equation is valid for transient signals, where signal distortion is prevalent. It 

is described as the energy flux density (Urick 1983). Acoustic intensity and pressure can 

vary over a wide range. The traditional method to describe these quantities has been to 

use the decibel (dB). This has many advantages as we are often only interested in ratios 
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of pressure (or intensity) and not absolute values. Large changes in pressures can be 

easily represented. The intensity level (IL) with intensity (7), is defined as: 

IL-10log(Iim/Io) units of dB re luPa (3.7) 

Iim is the measured acoustic intensity (watts/meter2) defined at 1 meter and Io is the 

reference acoustic intensity of 0.667 x 10"18 watts/meter2. 

IL = 10 log(I/I0) andIL/10 = log(I/10) (3.8) 

Taking the inverse log is equivalent to raising 10 to the power of both sides of the 

equation: 

l(fl/10 = (I/I0) (3.9) 

I = Io10IL/1° (3.10) 

Because a hydrophone is a transducer that converts sound pressure to voltage, sound 

pressure changes are easily detected and recorded. The sound pressure level (SPL) is 

defined as: 

SPL = 20 logl0(P/Pref) units of dB re Pref (3.11) 

For seawater, the reference acoustic pressure Pref= 1 jU-Pa. The SPL at any location is a 

ratio of the local sound pressure to Pref. 

3.4 Transmission Loss 

Transmission loss (TL) is defined as the "weakening" of an acoustic signal 

between any point lm from the source to a receiver at some distance or range. Given two 

Intensities {Io lm from the source and // the intensity at range), the TL can be calculated 

as: 

TL = 10log(I0/Ij) = 20log(P0/Pi) (3.12) 
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Where Io is the reference intensity (at 1 meter), Po is the reference pressure (1 /xPa), I\ is 

the intensity and Pi is the pressure at some range. The TL is the loss of acoustic energy 

per unit area and is composed of two components, spreading (Geometry) and absorption 

(Losses). 

TL = TL (Geometry) + TL (Losses) (3.13) 

Spreading refers to the "weakening" of sound as it travels away from a source. The 

sound energy expands as it moves outward from the source, as it does, the total energy is 

spread over a greater area. The spreading of the sound can be either spherical or 

cylindrical. How the signal spreads is based on the boundaries of the environment. In an 

unbounded medium, the acoustic energy radiates from a source in all directions as a 

sphere. This occurs in deep water (within surface / bottom boundaries) and is known as 

spherical spreading. By definition, power equals intensity times area: 

P = 4wi2Ii = 4w2
2L2) (Urick 1983J (3.14) 

If ri equals lm, the TL at range r2 becomes: 

TLsphencai = 10log(I0/Ii) = 10log(r/') = 20log(r2) (3.15) 

Applying the geometrical and loss terms, the complete solution becomes: 

TL = 20 log (r2) + otR units ofdB re lm (3.16) 

The absorption (a) depends on temperature, salinity, pressure, and pH of the water 

and are losses due to the "conversion of acoustic energy into heat". (Au 1993) 

Absorption is expressed as dB per kilometer. For our analysis, where the receiver was 

typically 1 meter from the source, this term is not significant, as absorption is irrelevant 

when dealing with the frequencies and ranges we are analyzing. The maximum range of 

data collection was 10 meters. 
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In a bounded medium such as in shallow water, the surface and bottom 

boundaries affect the acoustic energy. At this point cylindrical spreading occurs. 

P = 2-KLnh = 2ir(Lr2I2) (3.17) 

If n equals lm, and the Length (L) remains constant, the TL at range r2 becomes: 

TLcyiindncai = 10 log (r2) + 01R units ofdB re lm (3.18) 

Figure 11 displays the transmission loss (dB re 1 \iPa) for spherical and 

cylindrical spreading versus the range in meters. 
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Figure 11: Representation of TL for spherical and cylindrical spreading. 

3.5 Frequency and Wavelength Spatial and Temporal Relationships 

The wavelength (X) of a propagating acoustic signal is dependant on the frequency 

(/) and the sound speed (c). The wavelengths versus the frequencies of interest for our 

analysis are plotted in Figure 12. Lower frequencies have longer wavelengths which 

compromise high fidelity data collection in an enclosed volume of water because of 

interactions between the sound and the boundaries. 
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Figure 12: Plot of wavelength plotted versus frequencies of interest. 
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Table 1: Frequency and wavelength relationship. 
Assuming c = 1500 meter per second. 

\=c/f (3.19; 

Table 1 compares how the frequency of a signal affects the wavelength and the period 

length (in time). The wavelength is the major constraint in analyzing a transmitted 

signal, especially in an enclosed volume. Spatially, you must have enough distance in the 

water for the transmit signal to fit without interacting with the boundaries. Accurate data 

collection becomes impractical in test tanks at low frequencies. The limiting factor is the 

size of the tank and physical properties of the transmit frequencies. In the Jere Chase 
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Ocean Engineering Laboratory, the tank dimensions are 18.3 meters (60 feet) long, 12.2 

meters (40 feet) wide and 6.1 meters (20 feet) deep. Using an omni-directional source, 

signals in the tank propagate in all directions, bounce off the walls and set up interference 

patterns and reverberation which will corrupt the received signal. Because of size 

limitations of the Jere Chase Ocean Engineering Laboratory tank, evaluation of 

frequencies below 10kHz in that tank tend to be imprecise. 
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CHAPTER 4 

EVALUATION, TESTING AND RESULTS 

4.1 Introduction 

The initial prototype design of the Acoustic Measurement Buoy was not subjected 

to rigorous engineering evaluation as presented in Risso et al. (2006). This chapter 

presents the evaluation, testing and results of the feasibility study of the measurement 

instrumentation of the Acoustics Measurement Buoy prototype and subsequent 

modifications. The evaluation was systematically performed in a series of steps 

beginning with preliminary testing and calibration of the individual components and 

conducted using various experimental methods. From the onset of the project, the 

evaluation and testing of the prototype and the relationship between the hardware and the 

software was tenuous. 

During the summer of 2006, the DAQ system was assembled, and tested to 

optimize the robustness of the system. This included adding DC wiring and a circuit 

breaker with bracket to the DAQ computer. Hydrophone wiring to the A/D through the 

canister cover was completed, requiring terminal strips and internal connectors to be 

designed and constructed. Shielding was provided from the hydrophones to the input 

terminal block. Control of the measurement system is based upon the software. 

Lab VIEW™ 7.1 and required DAQmx™ drivers for the A/D were installed onto the 

DAQ computer. This allowed the acoustic data from the hydrophones to be converted 

into digital data through the NI-USB-9125A A/D. Multiple virtual instruments were 
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written and evaluated. Some of the designs included filtering in software while others 

simply acquired and saved data. Ultimately a very simple, but functional, virtual 

instrument was selected. The hydrophones were redesigned, repackaged and repaired 

during the summer. 

Into the fall of 2006, initial testing began in the tanks of the Jere Chase Ocean 

Engineering Laboratory. The hydrophones required an analog filtering interface to be 

designed. A DC block (high pass filter) and wiring interface was built and implemented. 

Matlab™ algorithms were written and verified for data analysis. 

The main focus of the evaluation began in the spring term of 2007. The 

hydrophones and DAQ system were calibrated using the substitution method and more 

in-depth experimentation and tank testing was performed. An attenuating wrap placed 

around the source to evaluate the dynamic range of the system, and possible usage in 

recording low-level acoustic signals. Results included analysis comparison using an 

independent acoustic measurement system with Reson hydrophones. 

In the Fall of 2007, in situ data collection was performed at a floating dock, using 

a Lubell source, (reference Appendix E) with an SL >180 dB re ljuPa at frequencies from 

500Hz to 8000Hz. These frequencies were too low to have been accurately analyzed in 

the tank in the Jere Chase Ocean Engineering Laboratory. The stability of the Benthos 

hydrophone assemblies were evaluated. The packaging and design of the filter networks 

were replaced by a modular design and the original DAQ computer was replaced with a 

more powerful Innovation Station mini-computer, requiring a packaging re-design. This 

self contained computer was borrowed from the TECH 797 class of 2006/2007 and was 

able to be operated from the 12 VDC power system installed into the instrument canister. 
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4.2 Hydrophones 

The hydrophones were the most fundamental component of the measurement 

system. Early analysis of the prototype hydrophones revealed design flaws. They lacked 

repeatable sensitivity, were susceptible to noise, and did not meet manufacturer's OCVR 

(Open Circuit Voltage Response), also known as the FFVS, (Free Field Voltage 

Sensitivy) or sensitivity (Mx) specifications, due to packaging. Figure 13 displays a 

fishbone diagram of the aforementioned problems. The major topics are blocked titles 

with the dependencies shown on each 'bone'. The categories are co-dependant and affect 

each other. The hydrophones were assembled from the Benthos AQ-2000 piezo elements 

and AQ-201 preamplifiers. 
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Figure 13: Fishbone diagram of error components of Benthos hydrophones. 

The hydrophone and preamplifier packaging was the first problem addressed, as 

greater sensitivity was required for signal recording. Repackaging of the hydrophone 

assembly was performed, allowing the piezo-element to be in direct contact with the 

water. The heat shrink tubing placed around the element reduced the sensitivity of the 

hydrophone by modifying the axial response. A pictorial of the final design is shown in 

Figure 14. 
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Figure 14: Final design of Benthos hydrophones. 

The hydrophone evaluation began with the premise that acoustic signals could be 

acquired and recorded at the expected sound pressure levels and frequencies. The Lubell 

source and hydrophone assemblies were submerged into the deep tank in the Jere Chase 

Ocean Engineering Laboratory. The analysis was primarily a qualitative analysis where 

signals of expected frequencies and different acoustic source levels were transmitted into 

the water. The acoustic signals were received using the Benthos hydrophones, 

preamplifiers and DAQ system. To accurately measure sound pressure levels, the OCVR 

or sensitivity of the hydrophones must be known. A more precise data collection process 

began with the calibration of the Benthos AQ-2000 hydrophones and AQ-201 

preamplifiers with reference hydrophones, Reson TC4014 (designated as #1 and #2). 

The specifications of the Reson hydrophones are contained in Appendix F of this thesis. 

The substitution method was used to evaluate the magnitude of the sensitivity of the 

Benthos hydrophones. This was accomplished by transmitting a known source level with 

a calibrated source, ITC-1042 serial number: 1337, at 10kHz into the water and receiving 
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the signal with multiple hydrophones. The specifications of the source are contained in 

Appendix G of this thesis. Using Matlab™ scripts, the data was analyzed and the 

sensitivity was established. Knowing the SL and the TL at range, the SPL is calculated 

using equation 4.1. 

SPL =SL-TL units ofdB re lfxPa (4.1) 

The SL was calculated and validated using the independent Reson reference hydrophones, 

knowing the calibrated TVR (Transmit Voltage Response in dB re 1/xPa /V) and the input 

voltage (VRMS) of the source. The TVR is a function of frequency and is so noted. The 

SL is calculated using the following relationship. 

SL = TVR(f) + 20loglO(VRMS) units ofdB re l\xPa (4.2) 

(Kuntsel et al. 1992) 

The SPL at range is found using equation 3.3. Rearrange terms and solving for the 

OCVR: 

OCVR =-SPL- Gain + 20log(Vin) units ofdB re l\iPa (4.3) 

All measurements were made in the far field which begins at a range described by 

equation 4.4. 

far field distance ^ Area of transducerfk (4.4) 

Measurements made in the near field can be very difficult to interpret. Accurate 

measurements must be made in the far field as diagrammed in Figure 15. 
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Figure 15: Near field / Far field representation. (Adapted from Lurton, 2002) 
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A calibration, using a gated pulse, with a known SL at 10kHz was performed as 

follows. The Benthos and Reson hydrophones were secured in a custom designed rigid 

frame. The frame formed an arc at a range of 1.5 meters from the source as depicted in 

Figure 16. The separation and physical layout are shown in Figure 17. The ITC-1042 

source, along with the Benthos and Reson hydrophones were installed in the tank at a 

depth of 10 feet (3.3 meters) with a separation distance of 1.5 meters. Foam and 

neoprene rubber were used to isolate any vibrations between the hydrophones and the 

frame. 

4014 4014 
-10 HI H2 

t i f f 

4014 401 

HO HI HE 

t 
—w~ in I—?f 

,- 1/ Foam 

\..jf 

TTTTT "V 
^ r l v w o o 

N e o p i" e in e 

Figure 16: Geometric layout of hydrophones installed in frame for calibration. 
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Hydrophones 

Figure 17: Schematic of hydrophone calibration setup. 
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Three different drive voltages were used to check linearity. The SPL at the Reson 

hydrophones were calculated and the OCVR of the Benthos hydrophones were adjusted 

accordingly as to bring all the values to a common intersection. Multiple measurements 

were conducted, varying the number of cycles for each data file. This procedure allowed 

the SPL and OCVR calculations to be validated multiple times. To keep the data 

collection uncoupled, the Reson hydrophone data were captured using an independent 

system made up of the OE Sony notebook PC with National Instruments Virtual Scope 

V2.0 and NI-5102 USB data acquisition module. The setup of the calibration is 

schematically shown in Figure 18. 
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Figure 18: Schematic diagram of electrical test equipment used in the 
hydrophone calibration. 

The vendor specification for the OCVR/FFVS of the Benthos AQ-2000 

hydrophones were stated as -201 dB re lVrms / uPa ±1.5 dB. The hydrophone 

calibration produced values less than specified, which was attributed to the packaging of 
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the hydrophones. The calibrated OCVR for each hydrophone from Feb 2007 is presented 

in Table 2. The center column values are for the hydrophone without the preamplifier. 

The OCVR of the hydrophones, at the terminal ends, with internal AQ-201 preamplifiers 

with a fixed gain of 26 dB are shown in the far right column. As the magnitude of the 

OCVR increases, the sensitivity decreases. 

Hydrophone 

Hydrophone 0 
Hydrophone 1 
Hydrophone 2 

OCVR (dB re 1 Vrms / uPa ± 1.5 dB) 
Hydrophone Only 

-209 
-209 
-203 

OCVR (dB re lVrms / uPa ± 1.5 dB) 
Hydrophone with Internal Amp 

-183 
-183 
-179 

Table 2: Calibrated OCVR - Feb 2007. 

4.3 Filtering 

The initial design, as proposed by Risso et al. (2006), included 'signal filtering' as 

a generalization. Data collection and analysis was begun with this original configuration. 

The output signals from the three channels of hydrophone data were hard wired to the 

input channels of the A/D, as seen in Figure 7. During the evaluation, analog high pass 

filters were designed and implemented. The frequency response is plotted in Figure 19 

and a complete analysis of this high pass filter is contained in Appendix D of this thesis. 
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Figure 19: Preamplifier de-coupling circuit frequency response. 
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A DC offset equal to Vi the supply voltage was present on the input signals as can 

be seen in Figure 20. During preliminary analysis, this DC offset corrupted calculations 

and needed to be eliminated to perform accurate data analysis and to increase the 

dynamic range of the measurements. A solution was to design and build single pole high 

pass filtering networks, which acted as a DC blocking circuit. Each channel requires its 

own network. 

Hydrophone Receive Vfaltage 
6. 1 1 , , 

T i re from TO (Sec) 

Figure 20: Plotted data from Benthos hydrophones showing DC offsets and 
system noise. The three channels sit at different DC levels. 

The high pass filters were inserted between the wiring from the hydrophones to 

the input channels of the A/D as shown schematically in Figure 21. Different values of 

the electrical components values were analyzed, while effectively removing the DC 

component of the signals. These component values of these single pole filters were 

chosen to optimize capture of low frequency signals. Figure 22 schematically diagrams 

the original filter component assembly and wiring. This design was improved upon and 

packaged as a modular unit as shown in Figures 23 and 24. The final design package was 

configured for use in future experiments. Electrically, the wiring is equivalent between 

the high pass filter packages, with the addition of an added DC power connector, On/Off 

switch and 1 amp fuse in the modular package. 
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Figure 21: Schematic diagram of high pass filter for hydrophone signals. 
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Figure 22: Assembly diagram of the components of the high pass filter. 
For simplicity, hydrophone 0 is denoted as HO, hydrophone 1 is 
denoted as HI, hydrophone 2 is denoted as H2. 
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Statu/' tt'/toa 

Figure 23: Overhead view of single pole high pass filtering circuits. The packaging of 
the components are put together in a modular fashion. 
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Figure 24: End view of modular filter package and NI-USB-9125A A/D. 

4.4 DAQ Computer Assembly 

The DAQ computer was meant to be low cost, and compact. The design 

included a wireless card potentially allowing a remote wireless connection. During this 

evaluation the wireless card and original computer proved to be unreliable. The use of 

the wireless card were abandoned. The components are shown as a fishbone diagram in 

Figure 25. 

ADC Hardware LabVlew 7,1 

NI-9125A ADC-

DAQmx-

PS Card-
Wireless Card-

Hard Drive-
Menory-

No Execut ib les 

VI Editing 

DAQ Computer 

Windows 2000 

Windows XP 

System Hardware Operat ing System 

Figure 25: Fishbone diagram of the DAQ computer. 

The original schematic diagrams are displayed in Figures 26 and 27. Changes 

were required to the DAQ computer design and wiring. A system return was required 
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from the hydrophone supply voltage return to the A/D return. A simple Lab VIEW™ 

virtual instrument, capable of data capture and data storage was written and used to test 

the functionality of the data acquisition system. For evaluation, the functionality and 

complexity were kept as simple as possible. 
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Figure 26: Schematic diagram of original hydrophone assembly and system power. 
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Figure 27: Schematic diagram of the DAQ computer system and A/D electrical 
configuration. 

The wiring from the hydrophone assemblies to the A/D were modified to incorporate the 

analog high pass filters as shown schematically in Figure 28 and is depicted in Figure 29. 
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Figure 28: Schematic diagram of redesigned hydrophone assembly and system power. 
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Figure 29: Block diagram of the components of the acoustic measurement buoy with 
the high pass filters added. 

During the evaluation, the DAQ computer encountered system problems, such as 

not booting, locking up, inability to run or edit Lab VIEW™, and an unreliable wireless 

connection. After making many changes, the DAQ computer would still encounter 

numerous blue screens (system hardware errors). This rendered the system unusable and 
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unreliable for data collection. The operating system of the prototype DAQ computer was 

Windows™ XP, was replaced with Windows™ 2000 in an effort to improve system 

reliability. Problems encountered are summarized in Table 3. 

Would not start up - only error code beeps. 
Blue Screen: IRQL_NOT_LESS_OR_EQUAL. 
Blue Screen on Computer. Would not start up - Error Codes. 
Blue screen. Video error. 
Computer would not start up. Could not establish wireless connection. 
The wireless connection dropped in and out. 
Blue Screen. Could not establish wireless connection. 
Could not find wireless card drivers. 
Locked up after 5 minutes. Could not establish wireless connection. 
Locked up (Labview™ not responding). No response from hydrophones 
Cannot edit in LabVIEW™. System locks up. 
Computer ran REAL SLOW. LabVIEW™ locked up. 
Cannot edit in LabVIEW™. Would lockup. Takes 4 starts to run LabVIEW™. 
Tried running system in deep tank. Too much noise on the signal to acquire any data. 

Table 3: Summary of DAQ Computer problems. 

The NI-USB-9125A A/D worked satisfactorily, with the DAQmx™ hardware 

drivers. These drivers limited the complexity of the virtual instruments that could be 

written. A source of the problem may have been the amount of random access memory 

installed, 512MB. The hard drive became greatly fragmented. The motherboard, by not 

having a true Pentium™ class CPU, lacked computing power to run the operating system 

and the LabVIEW™ data collection software. 

4.5 LabVIEW™ Operation and Matlab™ Analysis Software 

The analog data from the hydrophones was captured using the NI-USB-9125A 

A/D. The rate at which an analog signal is sampled (Fs) has a profound effect on 

accurately reproducing the signal in the digital world. To preserve the frequency of an 

analog signal, the signal must be sampled at least 2 times the highest signal frequency. 
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This is known as the Nyquist Criteria. 

Fs >2*Fhighest (4.5) 

The higher the sampling rate or frequency, the more accurate the waveform or signal can 

be represented. Aliasing will occur when the analog signal is not sampled at a frequency 

equal to or higher than the Nyquist criteria. 

For analysis of the data file, the header was removed and saved for reference. 

The header contains the pertinent metadata such as the date, time and sample frequency. 

A sample header is contained in Table 4. The data were saved in three columns as shown 

in the sample data in Table 5. Each column contains the raw data for the separate 

hydrophones. 

Lab VIEW Measurement 
WriterVersion 
ReaderVersion 
Separator 
MultiHeadings 
X_Columns 
Time_Pref 
Operatorunh 

0.92 
1 
Tab 
No 
No 
Absolute 

Date 2007/02/19 
Time 15:11:09.366267 
* * *End_of_Header* * * 
Channels 
Samples 1100 

3 
1100 

Date 2007/02/19 
Time 15:11:09.824999 
Y_Unit_Label 
X Dimension 

Volts 
Time 

X0 0.00000000E+0 
Delta_X2.500000E-5 
* * *End_of_Header* * * 
XValue Hydro 

1100 
2007/02/19 2007/02/19 

15:11:09.824999 15:11:09.824999 
Volts Volts 
Time Time 
0.000000000E+0 0.00000000E+0 
2.500000E-5 2.500000E-5 

0 (Trigger) Hydro 1 (Trigger) Hydro 2 (Trigger) 

Table 4: Sample data file header. 

0.024288 
0.011216 
0.023012 
0.044374 

0.048775 
0.038345 
0.045615 
0.063631 

0.035727 
0.026808 
0.034134 
0.048787 

Table 5: Sample data file. 
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The data files were tagged with the date, start time, and file number in the collection 

interval. The data were saved in discrete time intervals with file names as follows: 

Data_DD_MM_YY_hhmmJf 

where DD is the day, MM is the month, YY is the year, hhmm is the hour and minutes 

and ff is the incremental file number in the acquisition interval. The data were then 

loaded into Matlab™ and converted into a binary file with a ".mat" extension. Raw data 

from a typical file: Data_1556_003.m, were plotted in Figure 30. These data were 

sampled at 40,000 samples/sec/channel and contain plots for the three hydrophone 

channels. 

~-,-r, Da-.a IIC - 1Uk .Ot. :le.= '4QV :Vj# Ts:a Y 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
Sample Number Fs = 40kSamples/Sec Sample Number Fs = 40kSarnples/Sec 
Raw Data H2 - 10K 10Cycles 140V 

i , J 1 . 1 

0 1000 2000 3000 4000 
Sample Number Fs = 40kSamples/Sec 

Figure 30: File: Data_1556_003.m raw data plot of all hydrophones. 

Figure 31 plots an instance where two pulses were detected using the one shot 

triggerred virtual instrument (2-l_Save_Data_40K_lmin.vi). One pulse from the 

hydrophone and a smaller earlier pulse from cross talk in the hydrophone wiring (File: 

Data_07_02_01J528_003). In this application, noise from false triggering became 

prevalent which rendered this particular virtual instrument unstable and was abandoned. 

The constant capture virtual instrument (7 minute Files Save All Data Sept 18.vi), while 

more reliable, increased the size of the data file. 
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Figure 31: Plotted raw data of triggered signal, file: Data_07_02_01J528_003. 

As can be seen from the plotted data in Figure 32 (file: Data_1600_001), low 

frequency noise is present on the received signals. Frequencies around 60Hz dominate. 

The voltage inputs from the hydrophones are not consistent in any steady state level. The 

data were collected with an acoustic frequency of 10kHz and a source level of 151.9 dB 

re ljLtPa at lm. The virtual instrument captured data in one-minute time intervals. 

Twelve (12) pulses are visible in this data collection interval. The physical separation 

between the source and the receivers was 1.5m. 
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TM Figure 32: Raw data plot of Matlab1M file: Data_1600_001. 
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Figure 33 plots the filtered data. Figure 34 plots a 'Zoom' window of an individual pulse, 

allowing calculation of the SPLRMS-

Filtered Data - 10K lOCycles 140V Filtered Data - 1QK10Cycles 140V 
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0 1000 2000 0 1000 2000 
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n ice] 2on 
i;- ? I-. imr.er L -. = 40- 3d- |ile:..'':n. 

Figure 33: Filtered data plot of Matlab™ file: Data_1600J01. The plotted data was 
filtered in Matlab™ using an FIR Chebyshev type 2 bandpass filter, 
centered on 10kHz with a bandwidth of 8kHz. 
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Figure 34: 'Zoom'of one pulse of filtered data plot of Matlab™ file: Data_1600_001, 
allowing analysis and calculation of SPLRMS- The SPL is calculated to 
150.5 +/- 0.5 dB re 1/iPa for the three hydrophones. 
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The sampling frequency was verified using an Excel spreadsheet of the above 

data for channel AO (hydrophone 0). This was done to analyze the data for the possibility 

of aliasing of the signal. The data is displayed in Figure 35. It can be seen there are 40 

(4 points per cycle) data points, while the signal frequency is 10kHz as shown by the FFT 

analysis in Figure 36. The sampling frequency was verified at 40,000 samples/sec. 

Figure 35: Excel plot of'Zoom' of one pulse of filtered data file: Data_1600_001. 
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Figure 36: FFT analysis of one pulse of filtered data file: Data_1600_001. 
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4.6 Deep Tank - Wrap Testing Experiment 

Sound can be absorbed or reflected by different bottom substrates or materials 

such as air bubbles, or air trapped in materials in the water. This can be regarded as 

insertion loss {InL). Insertion loss is similar to transmission loss, in that the source level 

of the signal has a reduction in sound pressure. An experiment was conducted in the Jere 

Chase Ocean Engineering Laboratory to evaluate the effectiveness of the prototype DAQ 

system for use in insertion loss measurements. This is diagrammed in figure 37. 

Insertion Loss is described by equation 3.2. At the measurement of the SPL, the SL is 

decreased by the TL and my InL. 

Source 
easured 

KInL 
Figure 37: Concept of InL (Insertion Loss), TL (Transmission Loss), R (Range), 

and SPL (Sound Pressure Level). 

In SI units the acoustic impedance (pc) of air = 415 Pa s/m @ 20°C and for 

seawater = 1.54 x 106 Pa s/m @ 13°C) (Kinsler et al. 2000). The difference in 

impedance between the two mediums is approximately 1.45 x 106 Pa s/m. When sound 

energy travels from one medium to another and encounters a discontinuity, part of the 

energy is transferred across the boundary and part is reflected or scattered back into the 

original medium. The greater the difference in acoustic impedance, the greater will be 

the percentage of reflected or scattered energy. Consequently, a significant decrease in 

the SPL outside of the "bubble curtain" would occur assuming a free bubble curtain 

surrounded a pile. Other methods of developing an insertion loss fixture for a pile may 
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employ air trapped in materials. This could be an insulating expanding foam, wrapped by 

neoprene rubber or can be as simple as plastic balls of different sizes, filled with air, 

wrapped around the pile. To evaluate the dynamic range of the prototype system, a 

Lubell source was confined by a cylindrical frame. An attenuating wrap composed of 

insulating foam neoprene rubber was placed around source and as shown in Figure 38. 

The source was secured midway in the tank. A SL >170 dB re ljuPa at 10kHz was 

transmitted and the effectiveness of the wrap was evaluated. The Reson hydrophones 

were once again used as an independent measuring system using the OE Sony notebook 

PC with National Instruments Virtual Scope™ V2.0 and NI-5102 USB data acquisition 

module. Signals were acquired with the control Reson hydrophone acoustic system and 

the prototype system with Benthos hydrophones. 

- s s ^ ^ ^ I n s e r t i o n Loss Wrap 

\ Lubell Source 

Figure 38: Concept drawing of the Lubell source installed inside the insertion loss wrap. 

The attenuation wrap reduced the source level by as much as 40 dB as was 

verified by the Reson 4014 hydrophones. The effective source level was less than 140 

dB re 1/xPa. This low-level acoustic signal was unable to be captured by the prototype 

DAQ system as can be seen in Figure 39 from file: Data 1322_001_C Sampled. The 

prototype design was to work within the following range: 180 dB re 1/iPa < SPL < 240 

dB re ljuPa. Any insertion loss evaluation was not included in the original design criteria 

as presented by Risso et al. (2006) 
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Figure 39: Plotted data of file: Data_1322_001_C_Sampled during insertion loss. 

The sensitivities of the hydrophone along with a fixed maximum gain of 26 dB, 

did not allow signal capture with the attenuation wrap. This was a problem, as the SL 

signals were calculated from the Reson data to be 173.9 dB re 1/iPa at 10kHz while the 

SPL was calculated to be 135.6 dB re 1/iPa, using the insertion loss wrap. (File: 

DataJ0kg20nl5filterlhlcl). The Reson 4014 hydrophones have an OCVR of-186 dB 

re lVrms / uPa, with a variable gain up to 50 dB. At a gain of 20 dB this can be thought 

to have an equivalent sensitivity of-166 dB re lVrms / uPa. The Benthos hydrophones 

with a fixed preamplifier gain of 26 dB have sensitivities around -180 dB re lVrms / 

(j.Pa. The difference in sensitivities is approximately 24 dB. 

4.7 Dock Experiment 

At a floating dock on the Annisquam River in Gloucester Massachusetts on 

October 6, 2007, an experiment was setup. The Lubell source was used to transmit signals 

from 500Hz to 8000Hz at > 170 dB re 1/xPa and hydrophone data were collected at a range 

of 10 meters from the transmitter. The stability of the source becomes unstable at 250Hz. 

Since the dimensions of the source in wavelengths was less than 18.75 cm at the highest 
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frequency. It is reasonable to state that the 10 meter separation between the transmitter and 

receiving hydrophones was sufficient for the measurement to be characterized as "far 

field". See Figure 40 for a pictorial of the experiment setup. Table 6 describes the 

environmental parameters during the data collection process. 

Figure 40: View of dock experiment location and equipment setup. 

Date: 
Location: Yankee Fleet Dock 
Air Temp: 
Water Temp at at 5 feet below surface: 
Water Depth: 

Hydrophone Depth: 
Source Depth: 
Data Collection Time: 
Time of High Tide: 

October 6, 2007 
42° 36.82 N 070° 40.90 W 
approximately 70 degrees F 
approximately 59 degrees F 
17 to 20 feet at hydrophones 
11 to 14 feet at source 
9.9 ft (3m)) 
6.6 ft (2m) 
0900 to 1045 EDT 
0827 EDT 

Table 6: Environmental parameters of the dock experiment and subsequent analysis. 

The experiment was conducted in a precise and deliberate manner and was intended 

to prove the feasibility of the DAQ system to collect acoustic baseline SPL data with low 

frequency signals in shallow water. Table 7 references the approximate time of 

transmission for the particular frequencies, allowing data files to be correlated to the 
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frequencies and the water depth, which varied with the tide. The data acquisition system 

was started, a virtual instrument was run, and acoustic data were collected continuously in 

one-minute time intervals at a sampling frequency of 20,000 samples/second/channel. 

Frequency 
500 
1000 
2000 
3000 
4000 
5000 
6000 
7000 
8000 

Random Boat Passing 

Time of Transmission 
0929 to 0936, 1006, and 1008 to 1012 

0940 to 0943 
0944 to 0946 and 1007 

0947 to 0948 
0949 to 0953 
0954 to 0956 
0957 to 1001 
1001 to 1004 

1005 
0913/0927/1000 

Table 7: Approximate time of different frequency transmissions. 

To validate the OCVR of the hydrophones, a known SL, at 500Hz from the Lubell 

source was transmitted. The SPL calculations were performed on the initial data. The 

analysis showed that the OCVR values from the earlier calibration had shifted on 

hydrophones 0 and 1. A field calibration was performed using the substitution method 

with hydrophone 2 as the reference. File Data_07_10_06_0936_48 was used to back 

calculate the OCVR of hydrophones 0 and 1. An independent measurement system and 

reference hydrophones were not available for this analysis. See Table 8 for the calculated 

OCVR values on Oct 7, 2007. The magnitude of the sensitivity of hydrophone 0 had 

increased by 6 dB, while the magnitude of hydrophone 1 had decreased by 14 dB from 

the calibration in Feb 2007. Hydrophone 0 was rebuilt after suffering catastrophic failure 

and a difference was expected. The shift in hydrophone 1 may be attributed to the 

expansion and contraction and water absorption within the 3M-5200™, changing the 

internal position of the piezo-element. In future data collection, this would have a 
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profound affect on the accuracy of calculated SPLs, producing unreliable results. See 

Table 9 for the OCVR differences from Feb 2007 and Oct 2007. 

Hydrophone 

Hydrophone 0 
Hydrophone 1 
Hydrophone 2 

OCVR (dB re lVrms / |^Pa) 
Hydrophone Only 

-203 
-217 
-203 

OCVR (dB re 1 Vrms/uPa) 
Hydrophone with Internal Amp 

-177 
-191 
-177 

Table 8: Hydrophone OCVR values for the dock experiment - Oct 7, 2007. 

Hydrophone 

Hydrophone 0 
Hydrophone 1 
Hydrophone 2 

OCVR (dB re 1 Vrms / uPa) 
Hydrophone with Internal Amp 

October 2007 
-177 
-191 
-177 

OCVR (dB re 1 Vrms / jiPa) 
Hydrophone with Internal Amp 

Feb 2007 
-183 
-183 
-179 

Delta 

+6 
-8 
+2 

Table 9: Calculated delta and hydrophone OCVR values for Oct 2007 and Feb 2007. 

File Data_07_10_06_0936_48 was one of the first data files. The data is plotted in Figure 

41. At the beginning of data collection, usable hydrophone data was possible from all 

three hydrophones. For correlation, an FFT was performed on the data and is plotted in 

Figure 42. 
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Figure 41: File: Data_07J0_06_0936J8 raw data plot at 500 Hz at a range of 10m 
where the TL=20dB. This file contains multiple pulses 
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Figure 42: FFT analysis of a single pulse of file: Data_07_10_06_0936_48 displays the 
transmitted signal frequency of 500Hz. 

For signal verifications, The SL was calculated from the published data of the Lubell 

source and equation 4.2. The TVR at 500Hz = 136.22, Vin = 49.97 and the SL at 500Hz = 

170.2 dB re 1/xPa at lm. The difference from the SPL received from at hydrophones was 

less than 1.2 dB for file Data_07_10_06_0936_48. The calculation was performed using 

spherical spreading TL, equal to 20 dB re 10m. This was deemed valid, as the calculated 

SL was 170.2 dB re ljuPa at lm and the SPL was calculated to be approximately equal to 

151 dB re ljiiPa. The data are summarized in Table 10, with source level equal to 170.2 dB 

re l/xPaat lm. 

Hydrophone 

Hydrophone 0 
Hydrophone 1 
Hydrophone 2 

OCVR 
(dB re lVrms / uPa) 

-177 
-191 
-177 

SPL dB re 
1/iPa 
151.4 
150.9 
151.3 

Calculated SL dB 
re 1/tPa @ lm 

171.4 
170.9 
171.3 

Actual SL dB 
re 1/tPa @ lm 

170.2 
170.2 
170.2 

Delta 
(dB) 
1.2 
0.7 
1.1 

Table 10: OCVR of hydrophones and back calculation of source levels. 

During the time of data collection, the data from hydrophone 2 became unreliable, while 

the low OCVR of hydrophone 1 rendered this SPL data suspect, as can be seen in Figure 
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43 from file: Data_07_10_06_1009_81. During the next data set, hydrophone 2 suffered 

a catastrophic failure as shown in the in Figure 44 from file: Data_07_10_06__1010_82. 

This incurs other implications as this hydrophone was used as the baseline and for the 

field calibration of hydrophones 0 and 1. It is evident from Table 9 and Figure 40, 

hydrophones 0 and 2 worked on the onset of this experiment. From the plotted data it can 

be seen that the hydrophones and wiring are unreliable for accurate repeatable data 

collection, were unstable and changed over time and seasons. Any data collected is 

suspect. Data collection has proved that an alternative package for the hydrophone 

elements is required for consistent and repeatable sensitivity. 
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Figure 43: Plotted data from file: Data_07J0_06_1009_81. 
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Figure 44: Plotted data from file: Data_07J0_06_1010_82. 
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CHAPTER 5 

SUMMARY AND RECOMENDATIONS 

5.1 Introduction 

This closing chapter summarizes the evaluation performed on the measurement 

instrumentation of the prototype Acoustic Measurement Buoy. Recommendations are 

made to improve the performance of the DAQ system. Experiments and data were 

presented in previous chapters of this thesis. The components were evaluated for 

required specifications, actual performance based upon evaluation and future expansion 

possibilities. The components of the data acquisition system, hydrophones, DAQ 

computer, A/D hardware and filtering circuits are discussed separately. 

5.2 Hydrophones 

During the evaluation, the hydrophones incurred many problems and issues. The 

original hydrophones were pre-assembled in a watertight package when the evaluation 

began as was seen in Figure 9. Preliminary experimentation proved the hydrophones 

weren't sensitive to low-level acoustic signals, which was attributed to mechanical 

loading of the elements. The hydrophones were re-packaged during this evaluation to 

allow the piezo elements to be in direct contact with the water. Figure 45 is a pictorial 

with components and stress locations noted. 
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Figure 45: Repackaged hydrophone with stress weakness locations at interfaces noted. 

While increasing the sensitivity, the hydrophones became susceptible to handling and 

environmental damage. The hydrophone packaging, which was not rigid, allowed 

movement between the internal preamplifier and the 3M-5200™ marine sealant. This 

allowed salt water to permeate the shrink tubing and the 3M-5200™ filler and absorb 

moisture within the material, promoting corrosion of the wiring and soldered 

connections. The shrink tubing also applied pressure onto the hydrophone case. This 

affected the operating modes of the hydrophones as the elements were not allowed to 

vibrate freely. This affected the repeatability and reduced the sensitivity of the 

hydrophones. The magnitude of the sensitivities of the hydrophones were not equal or 

consistent over time as seen in Table 9 of this thesis. Although the sensitivities were 

increased, low-level acoustic signals (SPZ<140 dB re lptPa) still could not be captured 

due to noise on the signals with a fixed gain of 26 dB. This would cause data collection 

problems if used for any insertion loss or noise suppression analysis as was described in 

the insertion loss experiment. Having suffered catastrophic failure of signal acquisition, 

two of the hydrophones were rebuilt after initial repackaging. A failure analysis of the 
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components revealed broken wiring inside the hydrophone assembly. The 'new' design 

was not robust enough to allow consistent data collection in the dock experiment. Based 

upon the evaluation performed, it was concluded that the hydrophones need to be 

repackaged in such a way that will allow as much sensitivity as possible but still rugged 

enough to protect the piezo element. The package should be built to allow non­

destructive disassembly of the individual pieces. An easier but more costly solution and 

drastic measure would be to replace the entire hydrophone assemblies with fabricated 

factory calibrated hydrophones specified to optimize the required range of expected SPL. 

This would probably require designing another interface to the A/D. 

Another problem to be addressed is the range of SPL that can be accurately 

recorded. Based upon performance specifications, the hydrophones are limited in their 

ability to capture SPL over a wide dynamic range. After analysis and discussion with the 

supplier (Benthos) the maximum SPL for standard AQ-2000 hydrophones with AQ-201 

preamplifiers is approximately 192 dB re 1/xPa. This value is explained as follows: 

• The AQ-201 preamplifiers use clamping diodes on the input for protection. The 

signal input needs to be below about 0.3 volts to prevent the diodes from clipping the 

signal. This directly relates to the maximum SPL. 

• This is a signal level from the hydrophone of-10 dBV as can be seen in equation 5.1. 

dBV = 20logl0(3) = -10 dBV (5.1) 

• The stated OCVR (sensitivity) of the hydrophone is -201 dB re lv/juPa. The 

maximum sound pressure level needs to be less than the difference, see equation 5.2: 

(dBV- OCVR)- SPLMaximum (5.2) 

(-10 dBV- (-202 dB re lv/yPa)) = 192 dB re lyPa (5.3) 
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The design criteria from Risso et al. (2006) was based upon three areas of concern: (1) 

Where the SPL is greater than 220 dB re 1/iPa. (2) Where the SPL is greater than 180 dB 

re 1/xPa but less than 220 dB re 1/iPa and (3) where the SPL is less than 180 dB re l/iPa. 

Based upon calculations, the AQ-2000 when used in this application with the AQ-201 

preamplifier would not allow SPL measurements above 192 dB. The selected 

hydrophones used with the selected preamplifiers do not meet the design criteria. The 

SPL operating range of the AQ-2000 hydrophone with AQ-201 preamplifiers can be 

characterized as: 

150 dB re 1 /iPa < SPL Measurement Range < 192 dB re 1 /iPa 

While the required SPL range from Risso et al. (2006) was: 

180 dB re 1 /xPa < SPL Measurement Range < 220 dB re 1 /xPa 

Analyzing SPLs less than 150 dB re 1 jitPa was not proposed in Risso et al. (2006), but 

became an experiment in the evaluation of an insertion loss wrap. The useful range of 

measurement is based on amplification, A/D voltage range and system noise. A 16 bit 

A/D has potentially 96 dB of dynamic range assuming the maximum voltage equals the 

maximum A/D voltage and the system noise level is more than 96 dB down from the 

maximum. This calculated from equation 5.4. 

16 bit A/D Dynamic Range = 20log(2A# A/D bits) (5.4) 

Dynamic Range = 20log(2Al6) (5.5) 

Dynamic Range = 20log(65536) = 96 dB (5.6) 

A possibility would be to have three hydrophones, each would have the sensitivity and 

gain set to be usable in a particular location for analysis. The preamplifiers would need 

to be optimized for the chosen locations. For example, one hydrophone could be setup to 
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acquire signals with an SPL > 220 dB re 1 /xPa. Another hydrophone may have its 

sensitivity and gain optimized for 220 dB re 1 juPa < SPL < 180 dB re 1 juPa. The last 

hydrophone would be optimized for 140 dB re 1 /xPa < SPL < 180 dB re 1 /iPa. More 

research would be required to evaluate the operation limits of these and other 

hydrophones. Different hydrophones and preamplifiers would be required. Another 

possibility is to allow programmable variable gain amplifiers to be set up for specific 

areas of concern between the hydrophone assemblies and the A/D. This would require 

the parameters to be set before and during data collection. It would be labor and data 

analysis intensive. Throughout the analysis, when using the Reson control hydrophones, 

external gains of up to 50 dB (Reson VT-2000 module) were available, and could be 

controlled real time during data capture. The packaging of the circuits and hardware 

would be limited by the amount of available real estate in the canister. Because of the 

complexity and cost of using three channels, as well as the wide required dynamic range 

and with a 16 bit A/D, the DAQ system may operate better using only one midwater 

hydrophone. 

Another issue, which may affect the long-term operation of the hydrophones, was 

damage occurred to the hydrophone cabling when it was run over mistakenly by the 

zodiac during an experiment on the R/V Gulf Challenger. The hydrophone cabling was 

repaired. Overtime, if the splices are not secure and waterproof, salt water could seep 

into the splice and cause corrosion. 
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5.3 DAP System 

In an effort to keep the prototype costs down, the original DAQ computer as 

designed lacked the necessary computing power to run Windows™ XP and Lab VIEW 

efficiently. The original DAQ computer design was outfitted with a wireless connection, 

however it proved to be very unreliable and was not used. This would have made issues 

such as controlling the DAQ software easier and retrieving data for analysis as the 

acoustic data must to be retrieved using a USB port for post processing with Matlab™. 

The DAQ computer was replaced with an Innovation Solution mini-computer with a 

1.6GHz Celeron processor, with 1 GB memory. This mini-computer and total DAQ 

system was able to be powered with a 12V lawn mower battery installed into the 

prototype instrument canister. Windows™ 2000 was the O/S, with LabVIEW™ Version 

8.2 was installed, allowing executable files to be created. This increase in computing 

power greatly simplified the acoustic data collection. Fortunately, the virtual instruments 

written for the original DAQ computer were portable to the DAQ computer replacement. 

The original and replacement DAQ computer required 115VAC to run a monitor in order 

to edit any virtual instruments or data retrieval. This could be a problem in the field and 

introduced noise into the system. 

Another possibility for the replacement DAQ computer was a notebook computer 

that would physically fit inside the canister. This would eliminate the need for external 

AC voltage, as a monitor would not be required, and editing of the VI would be possible 

real time. For a wireless connection, the notebook would require Windows™ XP or 

greater as the O/S. This allows ad hoc wireless connections between computers, allowing 

greater flexibility in data acquisition and analysis. However based again on cost 
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consideration it was decided not to go with a notebook computer and accept dealing with 

the external monitor. 

5.4 A/D Module 

The NI-USB-9125A A/D module worked satisfactorily, but low-level signals 

were too noisy to reliability capture data. Throughout the evaluation, noise was a major 

problem. The resolution of the A/D channel can be increased, but the plotted noise 

magnitude also increases. Figure 46 is a view of the DAQ channel setup. The signal 

input range within Lab VIEW™, sets the expected values. The narrower the range, the 

greater the voltage resolution per bit, but the noise issue is more prevalent. If noise could 

be reduced, a VI triggered by a threshold set point could be used. The size of the data 

files would be reduced and data analysis would be more efficient. 
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Figure 46: Lab VIEW™ voltage setup screen. 

The single ended wiring of the Benthos AQ-201 preamplifiers forced the wiring to the 

NI-USB-9125A A/D module to be wired single ended, eliminating the differential inputs 
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and common mode noise rejection. The A/D and hydrophone preamplifiers were not 

selected to work together in an efficient manner. Figure 47 proposes alternate wiring 

using a differential preamplifier such as the Benthos AQ-300 with a differential input 

anti-aliasing low-pass filter. Additional power supply circuitry would be required to 

convert the present DC supply voltage to usable levels. Appendix D of this thesis 

contains the specifications for the Benthos AQ-300 preamplifier. Other designs are 

possible, but the limiting factor is the cost of implementation. 
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Figure 47: Schematic diagram of Benthos AQ-300 differential input preamplifier 
and low-pass anti-aliasing filter. 

5.5 Filtering 

In future design configurations, band-pass filters should be used on the input 

signals to eliminate the possibility of aliasing. Another possibility is using low-pass 

filters along with the present high pass filters. Band pass and low pass filters are 

available from a number suppliers in small form factors and could be packaged and 

installed into the modular filter assembly. If the present high-pass filters are retained, it 

would be desirable to improve the performance as these are single order pole filters. A 

major issue to be addressed is the need for +/- supply voltages for active filters. 
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Reference Appendix H for data sheets of possible filters that could be used. The 

prototype instrument canister has only +12 VDC available. Any other voltages would 

need additional power circuits. Typical operating voltages for external amplifiers are 

from + 5 to +15 VDC. Using the present Benthos AQ-201 preamplifier, an alternate 

schematic is proposed using an anti-aliasing filter in Figure 48 and cost effective 9 volt 

batteries. Another possibility for dual supply voltages is using an integrated circuit that 

would produce +/- voltages from a single voltage input. This would involve more circuit 

design and circuit board fabrication. 
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Figure 48: Alternate schematic diagram using present Benthos AQ-201 
preamplifiers in series with the high-pass filter and the addition of 
low-pass anti-aliasing filters. 

5.6 Conclusion 

The evaluation of the measurement instrumentation of the prototype of the 

Acoustic Measurement Buoy posed some interesting challenges, electrically, 

mechanically and acoustically. The major constraint was the cost. In an effort to keep 

the system as low cost as possible several sources of errors were consequently 

introduced. To answer the question, "Was it possible to design and build a low cost, 
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easily transported 'Acoustic Measurement Buoy' system capable of providing accurate 

and repeatable measurement of sound pressure data due to pile-driving activity in a near-

coastal environment?" The short answer is, the lower the cost the greater the difficulty. 

As with many problems, there were multiple solutions and it is difficult to see how subtle 

problems associated with the low cost would combine to produce larger problems. 

Expanding on any lessons learned from the prototype initial design, the problems 

and difficulties can be broken down into specific areas: (1) Acoustical problems 

(hydrophone performance and reliability), (2) electrical problems (noise in the data, and 

the need for analog filtering), (3) computer hardware (original DAQ computer, its 

replacement and the A/D module) and (4) computer software (LabVIEW™ and 

DAQmx™ A/D drivers). Each component or layer of the system is important. During 

the evaluation, multiple problems occurred. These problems were fixed, only to have 

problems reappear in another form later. The major frustration was the lack of 

repeatability of the individual pieces of the DAQ system. 

For a quick answer to the question posed above, the answer is that the prototype 

as designed is inadequate to fulfill its design criteria. It should be possible with redesigns 

and with hardware changes to the system to make it more versatile. As part of the design 

validation it would take more experimentation and an evolving system analysis 

performed concurrently with the redesign of the data acquisition package. To make an 

acoustic measuring system workable over a wide range of SPL data one must make 

careful component selection, starting with the sensor (hydrophone) the band pass 

filtering, the additional gain stages and the A/D characteristics. 
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APPENDIX A 

DATA ACQUISITION SYSTEM 

A.1 Data Acquisition Package 

The prototype DAQ system was a self-contained PC clone motherboard, (EPIA 

Mil-Series Mini-ITX Mainboard, with VIA C3/ VIA Eden EBGA processor), and 512 

MB of RAM was installed. A 100 GB Hard Drive was plugged into the IDE connector 

via an 8" ribbon cable. Two USB ports are available, one for data retrieval and the other 

for connection to the National Instrument NI-USB-9125A A/D. A Keyboard, mouse and 

monitor are used for initialization of the system. The DAQ computer requires a DC 

power source, supplied by an Ml-ATX Intelligent 90 Watts Automotive ATX Power 

Supply card capable of the required output voltages, and operating with an input voltage 

from 6 to 24VDC. This allowed the use of a borrowed 34 amp-hour 12VDC battery. 

Figure A.l is a detail of the A/D, hard drive, and underside of the motherboard of the data 

acquisition assembly (Risso et al. 2006). The specifications of the DAQ computer 

system are summarized in Table A.l. 

The MI-ATX power supply card supplied the power required for the computer 

and peripheral operation, the suppliers data sheet is displayed in Figure A.2. A potential 

source of system noise is probably the MI-ATX power supply card. The A/D uses plug-

and-play connectivity via a USB port for faster setup and measurements. The A/D 

module was capable of accepting up to four channels of data simultaneously. The data 

can be sampled up to 100,000 samples/sec/channel with 16-bit accuracy. These modules 
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include 250 VRMS channel-to-earth ground isolation for safety, noise immunity and high 

common-mode voltage range. The operating range of the A/D inputs allows signals from 

-10.5 to +10.5 volts. The suppliers data sheet for the NI-USB-9125A is displayed in 

Figure A.3. Figure A.4 is the wiring diagram for the NI-USB-9125A used for differential 

signal inputs. Figure A.5 are the terminal assignments for the NI-USB-9125A. Figure 

A.6 is a pictorial of the NI-USB 9125A. 

Figure A.l: Detail of A/D, hard drive, and underside of motherboard of data 
acquisition assembly. (Risso et al. 2006) 
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Processor 

Chipset 

System Memory 
VGA 
Expansion Slots 
Onboard IDE 
Onboard Floppy 
Onboard LAN 
Onboard Audio 
Onboard TV Out 
Onboard IEEE 1394 
Onboard CardBus / 
CompactFlash 

Back Panel I/O 

Onboard I/O Connectors 

BIOS 

System Monitoring & 
Management 

Operating Temperature 
Operating Humidity 

Form Factor 

• VIA C3™/ VIA Eden™ EBGA processor 
• VIA CLE266 North Bridge 
• VIA VT8235 South Bridge 
• 1 DDR266 DIMM socket - Up to 1GB memory size 
• Integrated VIA Unichrome AGP graphics w/MPEG-2 Accelerator 
• 1PCI 
• 2 X UltraDMA 133/100/66 Connector 
• 1 x FDD Connector 
• VIA VT6103 10/100 Base-T Ethernet PHY 
• VIA VT1616 6 channel AC'97 Codec 
• VIAVT1622ATVOut 
• VIA VT6307S IEEE 1394 (Optional) 
• CardBus Type I & Type II 
• Ricoh R5C476 II / R5C485 CardBus Corntroller 
• 1 CardBus Type I and Type II slot +1 CompactFlash Slot 
• 1 CompactFlash slot 
• 1 RJ-45 LAN port 
• 1 PS2 mouse port 
• 1 PS2 keyboard port 
• 1 Serial port 
• 2 USB 2.0 ports 
• 1 VGA port 
• 1 RCA port (SPDIF or TV-Out) 
• 1 S-Video port 
• 1 1394 port 
• 3 Audio jacks: line-out, line-in and mic-in (Smart 5.1 Support) 
• 1 USB connector for 2 additional USB 2.0 ports 
• 1 Front-panel audio connectors (mic-in and line-out) 
• 1 CD Audio-in connector 
• 1 Buzzer 
• 1 FIR connector 
• 1 CIR connector (Switchable for KB/MS) 
• 1 Wake-on-LAN connector 
• 1 LPT port header 
• CPU/Sys FAN/Fan 3 
• 1 Connector for LVDS module (Optional) 
• 1 Serial port connector for second COM port 
• ATX Power Connector 
• Award BIOS 
• 2/4Mbit flash memory 
• CPU voltage monitoring 
• Wake-on-LAN, Keyboard Power-on, Timer Power-on 
• System power management 
• AC power failure recovery 
• 0~50°C 
• 0% ~ 93% (relative humidity; non-condensing) 
• Mini-ITX (6 layer) 
• 17 cmx 17 cm 

Table A. 1: Summary of DAQ motherboard specifications. 
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Figure A.3: Nl USB-9125A specification sheet. 
(http://www.ni.com/pdf/products/us/niusb9215a.pdf) 
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AI+ 

Voltage f + A 
Source K~J 

Jl' J AI-
-5 USB-9215with 
' ! Screw Terminal 

Resistor J* i 
t <j, 
COM : 

Figure 8. Connecting a Floating Differential Voltage Signal 
(USB-9215 with Screw Terminal Shown) 

Figure A.4: Connection diagram using the NIUSB-9125A as a differential 
signal input. 
(http://www.ni.com/pdf/products/us/niusb9125a.pdf) 

Tablet. Terminal Assignments 

Sij>ti«l 

I 

I " , . • 
1 " , , • • : • • 

•,1 

Figure A.5: Terminal assignments for the NI USB-9125A. 
(http://www.ni.com/pdf/products/us/niusb9215a.pdf) 

. si. 

.**& J^ a 

Figure A.6: National Instruments USB-9125A Data Acquisition Module. 
(http://sine.ni.eom/nips/cds/view/p/lang/en/nid/13881) 
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A/D Specifications 

The following specifications are typical for the range 0 to 60 °C unless otherwise noted. 

Number of channels 
ADC resolution 
Type of ADC 
Max sampling rate USB-9215A (USB 2.0) 
Operating voltage range (AI+ to AI-) 
Maximum working voltage (signal + CM) 
Overvoltage protection 
Conversion time 

Stability 

CMRR (at 60 Hz) 
Input bandwidth (-3 dB) 
Input impedance 

Input bias current 
Input noise 

Crosstalk 
Settling time (to 2 LSBs) 
With screw terminal 
No missing codes 
DNL 
INL 
Power consumption from USB 
Suspend mode 
USB specifications USB-9215A 
Screw terminal wiring 
Torque for screw terminals 
Weight With screw terminal. 
Connect only voltages that are within limits. 
Designed to meet the requirements of the 
following standards of safety for electrical 
equipment for measurement and control. 
Operating humidity (IEC 60068-2-56) 
Calibration interval 

4 analog input channels. 
16 bits Type of ADC 
Successive approximation register (SAR) 
100 kS/s (per channel) 
±10.2 VMin, ±10.4 V Typical, ±10.6 V Max 
Within ±10.2 V of common 
±30 V 
One channel 
Two channels 
Three channels 

Offset drift 

....4.4/is 
...,6/xs 

8 jus 
10 jus 
60 /xV/ °C 
10ppm/°C 

-73 dB min 
420 kHz min 
Resistance With screw terminal. 
Capacitance 

1GQ 
25 pF 

lOnA 
RMS 
Peak-to-peak 

1.2LSBrms 
7LSB 

-80 dB 
10 V step 
20 V step 

10 /is 
15 /us 

15 bits guaranteed 
1.9 to 2 LSB max 
±6 LSB max 
500 mA, max. 
2.5 mA, max 
USB 2.0 full speed 
12 to 24 AWG copper conductor 
0.5 to 0.6 N ^ ( 4 . 4 to 5.3 lb-in 

wire 
•) 

Approx. 250 g (8.8 oz) 
Channel-to-COM ±30 V max 
IEC 61010-1, EN 61010-1 • UL 61010-1 • 
CAN/CSA-C22.2 No. 61010-1 

10 to 90% RH 
1 year 

Table A.2: NI-USB09125A A/D technical performance specifications. 

A.2 Software Description 

The DAQ computer operates under the Windows™ operating system, while the 

NI-USB-9125A A/D module was run under the NI DAQmx™ high-performance 

multithreaded driver software. The data acquisition system was controlled using the 
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Lab VIEW programming environment with a graphical interface to program specific 

tasks. The graphical script files are called 'virtual instruments' with a .VI extension. 

They can be as involved or as simple as the programmer desires. The more complicated, 

the speed at which they operate greatly depends on the amount of computing power 

available to the user. The more tasks performed, the slower the host computer will run. 

The virtual instruments used for our analysis were kept simple but functional with sample 

rates from 20K to 40K samples/second/channel and displayed as separate channels. 

These sample rates were based on the Nyquist Frequency, where the sampling rate for a 

propagating signal must be sampled >2X its greatest frequency in order to reduce 

aliasing. In all cases of data collection, the data was samples greater than 4X the 

transmit pulse frequency. The hydrophone raw signal data was displayed and saved onto 

the hard drive as ASCII text files, (with an LVM or TXT extension). The acquired data 

files were post-processed using Matlab™ scripts. During the evaluation, two versions of 

Lab VIEW™ were used, version 7.1 and 8.2. 
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APPENDIX B 

LabVIEW,M VIRTUAL INSTRUMENTS 

One type of virtual instruments (VI) used during the evaluation would capture raw 

data indefinitely at specific intervals of time. The time duration was set in the block 

diagram. The file was named: 1 minute Files Save All Data Sept 18.vi. The front panel of 

this virtual instrument is shown in Figure B. 1. The block diagram is shown in Figure 

B.2. This virtual instrument was used for the majority of data collection. 

Hydrophone Raw Ddta Chart 

Figure B. 1: Front panel of file: 1 minute Files Save All Data Sept 18.vi. 

The data file name is input in the dialog box in the upper right. The sampling frequency 

(Fs) is displayed and set in the block diagram. The raw hydrophone data is displayed as 

three separate plots. Each hydrophone is specified, with hydrophone 0 being the top plot, 

hydrophone 1, the center plot and hydrophone 2 the bottom plot. This virtual instrument 

was very reliable. The block diagram contains the subroutines that were generated using 

the DAQ Assistant wizard. The DAQ Assistant controls the A/D, including the data 
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chart. The writing of the data files were controlled by the Write Lab VIEW™ 

Measurement File subroutine. An indicator is placed onto the front panel to denote when 

a data file is being created. Originally written in Lab VIEW™ version 7.1, the data files 

were written as ASCII text files and became very large. Lab VIEW™ version 7.1, didn't 

allow binary files to be created. A five minute data file containing data for the three 

hydrophones could be upwards of 150 Mbytes. For this analysis, the collection time was 

set at one minute intervals, allowing smaller data files. As can be seen from the block 

diagram, this virtual instrument was simple and dependable for acquiring the acoustic 

hydrophone data. This virtual instrument was portable for use in Lab VIEW™ version 

8.2. 

Sample rate set with this 
control. 

DAO Assistant 
data • J 

Hydrophone Raw Data Chartl 

H 

I 

( Raw data chart of 
hydrophones. 

Controls n*"0 

writing to file. r 
1 ^OMOJ" 

m 

K, 

File 
Sign-lis 

Write 
Indicator. 

1 bavinq Oatal 

Figure B.2: Block diagram of file: 1 minute Files Save All Data Sept 18.vi. 

Another type of virtual instruments used during the evaluation would capture raw 

data indefinitely, but would be triggered as a one shot, with file name: 

2-l_Save_Data_40K_lmin_10ms_.vi. When triggered, the data would be displayed, and 

saved to an ASCII file, until another signal above the trigger level was received where the 
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process was repeated. The front panel of this virtual instrument is shown in Figure B.3 

and the block diagram is shown in Figure B.4. 

One Cycle Graph 
STOP Control 

STOP C j J * 

Sample Ram » 40Ks/5ec 

Captured signal coupled 
with hydrophone wiring. 

Sample Rite set In i 
block diagram of VI. i IO -

8ea Surface 

SW#4MMI 

J ; 

o i 

j » 
z i l-luur 

Triggered data plot. 

File name input. 

Data Available 

Figure B.3: Front panel of file: 2-l_Save_Data_40K_lmin_10ms_.vi. 

The sampling rate is set 
with this control. 

DAO Assni-ant 
data 

Graphical Display 

m 

[The Rate is set to I 

^ ^ I Contro/s 
~ „ ^ Trigger Level 

A 
Comro/s .4/D 

y Signals i j 
Trigge-ed Signals »^"*J 

Trigger and Gate , 
Signals 

Previous Signals *'• 
O a n f v K 

Controls 
Writing to Fife | n e u ^ f j t 4 

S P ™ Write indicator M 

m 

Figure B.4: Block diagram of file: 2-l_Save_Data_40K_lmin_10ms_.vi. 

This virtual instrument allowed a file name to be specified. The sample rate was set in 

the block diagram using the DAQ Assistant. The Trigger and Gate subroutine set the 

trigger level. This virtual instrument was difficult to run consistently because noise was a 

problem throughout the evaluation. In Figure B.3 signal coupling can be seen, caused by 

cross-talk between the hydrophone wiring and the wiring to the source. 
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APPENDIX C 

SAMPLE OF MATLAB CODE USED IN DATA ANALYSIS 

C.l High Pass Filter Analysis 

This portion of Matlab™ script calculates the response of the high pass filters 

used on the input channels of the NI-USB-9125A A/D. The selected resistor and 

capacitor values were used in the calculations. The gain in voltage ratios and dB re IV 

are calculated and plotted. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Hydro Pre-Amp Frequency Response 
% David Moceri 11-04-06 

clear all; 
close all; 

%% 1st Order High Pass Filter R = 100K and C = 47 uF %%%%%%%%%%%%%%% 

R=100000; % Resistor Value 
C = 47e-6; % Capacitor Value 
f = 1 :1 : 8000; % Frequency Range 
w = 2*pi*f; % Angular Frequency 
n = (w*R*C); % Numerator 
d = sqrt(1+n.A2); % Denominator 
G = n./d; % System Response 
G_db = 20*log 10(G); 
figure(1) 
semilogx(f,G) 
xlabel( ) 
ylabel( . ) 
title( esp- • ; • R=100K') 
grid on 

figure(2) 
semilogx(f,G_db) 
xlabel("Frequency (Hz)') 
ylabel('Gain - dB") 
title('Frequency Response of HPF C=47uF - R=100K') 
grid on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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C.2 Transform ASCII Data to Binary Data 

This Matlab™ transforms the ASCII data into a binary file. This compacts the 

data to allow faster data processing. The script loads the text file and converts it to a 

three column array of binary data. Each column represents the data from a hydrophone 

and given the names A (hydrophone 0), B (hydrophone 1), and C (hydrophone 2). The 

file is saved with the same file name as was written in Lab VIEW™. The file 

'DataJ)7_10_06_0937_49.txt' is an example file name. Before the translation, the file 

header is removed and saved. 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 0 / o 0 / o % % % % % % % 
% File Name: Transform_AII_Data.m 
% David Moceri 8-31-06 
% Translate ascii text file to mat file for data analysis (txt files or Ivm files) 
% The mat file is a binary file. 
% The header must be removed from the data file and saved as its own data file. 
% This file reads all hydrophone data 
% Four (4) mat files are created. 
% 1. MAT (H) file with all columns (qty 3) 
% 2. MAT (A,B.C) Each column of hydrophone data has its own file. 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 0 / o 

clear all; 
close all; 
clc; 

% Load the data text file to the matrix H 
H = load ('Data_07 10 06_0937_49.txt'); 

% Save data H to a .mat file 
save Data 07_10... 06_.0937_49 H; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

A = H ( 
B = H( 
C = H( 

.1): 

.2): 
•3) 

% data column of hydrophone 0 
% data column of hydrophone 1 
% data column of hydrophone 2 

% Save data H channels to a .mat file called 'FILE-NAME.mat': 
save • • • . • ' ' •«'." ' *•; % Hydrophone 1 data 
save - ' ." • •; % Hydrophone 1 data 
save ' •' ; •. ; % Hydrophone 2 data 
% % % % % % % % % % % % % 0 / o % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
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C.3 Process Acoustic Data 

/TM 

With the text data file converted to binary, processing could begin. A sample file, 

}Data_1515_007.m'\s used for the explanation. The analysis begins with loading the data 

and declaring variables. The sensitivity or OCVR/FFVS/Mx of the hydrophones were 

calculated during the hydrophone calibration. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SPL Response of Hydrophones 
% File Name: Data_1515J)07.m 
% Data File: Data_07_02_0 1_1515J)07 
% David Moceri 6-2-07 
%%%%%%%%%% Variables %%%%%%%%%%%%%%%%%%%%%%% 
% Fs = 40000K Samples/Sec - Sample rate set in LabVlEW' 
% Vin = 140Vp-p Voltage input to source 
% Burst Rate = 1 pulse per 2 Seconds 
% Burst Count ~ 20 Cycles 
% Hydrophone Data 
% A - Data column of hydrophone 1 
% Af - Filtered data 
% Arms - RMS value 
% B - Data column of hydrophone 1 
% Bf - Filtered data 
% Brms - RMS value 
% C - Data column of hydrophone 2 
% Cf - Filtered data 
% Crms - RMS value 
% 
clear all; 
close all; 
clc; 
% 
%%%% Load Data %%%%%%%% 
load • .' . • '. * 15 007 
load 
load !:.-.• •* 
t=length(A); 
Gain = 26; 
MxA= 208 
MxB= 208 
MxC= 205 
Fs = 1/2.500000E-5; 
Vpp = 140; 
Vrms = Vpp/sqrt(2) 
R= 1.5 
TL = 20*log10(R) 

% Load HO data 
% Load H1 data 
% Load H2 data 

% length of number of elements in column of matrix H 
% Pre-amp 
% Hydrophone 0 FFVS dB re 1V/uPa 
% Hydrophone 1 FFVS dB re 1V/uPa 
% Hydrophone 2 FFVS dB re 1V/uPa 
% Sample Frequency from LabView Fs = 40KSamples/SEC 
% Voltage input to source 
% Convert P-P to RMS 
% Range from source to hydrophones 
% Calculate Spherical Spreading TL 

SL = 112+20*log 10(Vrms) % Calculate SL from TVR data and V input 
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SPL = SL - TL % Calculated theoretical SPL 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

TM This section of Matlab code plots the acoustic RAW hydrophone data. 

%%%% Plot Raw 
figure(1) 
subplot(2,2,1) 
plot (A); 
xlabel( -•-,*-
ylabel( 
title( "• •. ; « ' 
grid on 

subplot(2,2,2) 
plot (B); 
xlabel('SampIe 
ylabel('Volts In 
title('Raw Data 
grid on 

subplot(2,2,3) 
plot (C); 
xlabel(* . 
ylabel( ", • 
title( 
grid on 

Data %%%%%%%% 

% Raw Hydrophone 0 Data 

er Fs = 40kSampIes/Se:;') 
% t J LJ '; ' \ 

20Cycles 140V_p._p') 

%Raw Hydrophone 1 Data 

40kSamples/Sec') 
) 
5S 140V_p_p') 

% Raw Hydrophone 2 Data 

es/Sec') 
) 

p!) 

This section of Matlab code uses a Chebyschev Type 2 filter centered at 10 kHz, with a 

band width of 12 kHz to filter acoustic hydrophone data. The filtered data is then plotted. 

Hd = BP_4000_16000_CHBYT2; % Filter Characteristics 4000 to 16000 Hz • 
% Chebychev Type 2 

Af = filter(Hd.A); % Filtered Data 
Bf = filter(Hd.B); % Filtered Data 
Cf = filter(Hd,C); % Filtered Data 

%%% Plot Filtered Data %%% 

figure(2) 
subplot(2,2,1) 
plot (Af); 
xlabel( • - (S/Sec') 
ylabel( . ) 
title( • . .«1* • ) 
grid on 
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subplot(2,2,2) 
plot (Bf); 
xlabel(!Sarnp!e Number Fs = 40k. . ) 
ylabel(Volts Input (V_P„P)') 
title('Filtered Data-10K20Cycle-- - »• '') 
grid on 

subplot(2,2,3) 
plot (Cf); 
xlabel('Sample Number Fs = 40kS/Sec*) 
ylabel(Volts Input (V„P j ) 
title('Filtered Data - 10K2-* ' ) 
grid on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

This code plots multiple pulses. Each pulse location is specified in a zoom window. This 

allows the calculation of the SPLRMS- The data points for the RAW and FILTERED data 

are plotted. Each pulse in the data file is analyzed using the same method. 

%%%% Zoom Window %%%%%% Pulse 1 
t 1 _ = 95; % RAW data 
t2_= 185; % RAW data 
t1 = 100; % FILTERED data 
t2 = 185; % FILTERED data 

figure(3) 
subplot(2,2,1) 
AA_=A(t1_:t2_); 
plot(AA_) 
grid on 
hold on 
AA=Af(t1 :t2); 
plot(AA, ) 
xlabel( : u . , 40kS/Sec') 
ylabel( ) 
title( : '• . .• - 140V_p_p") 
grid 

subplot(2,2,2) 
BB_=B(t1_:t2_); 
plot(BB_) 
grid on 
hold on 
BB=Bf(t1 :t2); 
plot(BB,'g') 
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xlabelf? ..:•• N, *ier Fs = 40kS/Sec') 
y labe l f . •• -. " • • ) 
title( -• "• Cycles ) 
grid on 

subplot(2,2,3) 
CC_=C(t1_:t2_); 
plot(CC_) 
grid on 
hold on 
CC=Cf(t1:t2); 
plot(CC'k') 
xlabel( 
ylabel( ' ) 
title( • • ;les 140V_p_p') 
grid 

This code solves for the FFT of the filtered data contained in the zoom window. For 

multiple pulses, each pulse location is specified in a zoom window. The FFT is plotted 

for each hydrophone. The SPLRMS for the filtered data are calculated. Each pulse in the 

data file is analyzed using the same method. 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 0 / o 

% % %%%%%% Calculate FFT of Filtered Zoom Window and Plot %%%%%% 
t3 = length(AA); % Length of filtered zoom window HO 
NFFT = 2A(nextpow2(t3)); % Use next highest power of 2 > or = to length to calculate 

% fft. 
FFTX = fft(AA,NFFT); % Take fft padding with zeros so that length(FFTX) is 

% equal 
NumUniquePts = ceil((NFFT+1)/2); % Calculate the number of unique points 
FFTX = FFTX(1 :NumUniquePts); % FFT is symmetric, throw away second half 
MX = abs(FFTX); % Take the magnitude of fft of x 
MX = MX/t1; % Scale the fft so that it is not a function of the length of 
MX = MX.A2; % Take the square of the magnitude of fft of x which has been 

% scaled properly. 
MX = MX*2; % Multiply by 2 to because you threw out the second half of 

% FFTX above 
MX(1) = MX(1)/2; % DC Component should be unique, 
if ~rem(NFFT,2) % Nyquist component should also be unique. 
MX(end) = MX(end)/2; % Here NFFT is even; therefore, Nyquist point is included, 
end 
fA = (0:NumUniquePts-1)*Fs/NFFT; % This is an evenly spaced frequency vector with 

% NumUniquePts 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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t3 = length(BB); % Length of filtered zoom window H1 
NFFT = 2A(nextpow2(t3)); % Use next highest power of 2 > or = to length to calculate 

% fft. 
FFTX = fft(BB,NFFT); % Take fft padding with zeros so that length(FFTX) is 

% equal 
NumUniquePts = ceil((NFFT+1 )/2); % Calculate the number of unique points 
FFTX = FFTX(1 :NumUniquePts); % FFT is symmetric, throw away second half 
MX = abs(FFTX); % Take the magnitude of fft of x 
MX = MX/t1; % Scale the fft so that it is not a function of the length of 
MX = MX.A2; % Take the square of the magnitude of fft of x which has 

% been scaled properly, 
MX = MX*2; % Multiply by 2 to because you threw out the second half 

% of FFTX above 
MX(1) = MX(1)/2; % DC Component should be unique, 
if ~rem(NFFT,2) % Nyquist component should also be unique, 
MX(end) = MX(end)/2; % Here NFFT is even; therefore, Nyquist point is included, 
end 
fB = (0:NumUniquePts-1)*Fs/NFFT; % This is an evenly spaced frequency vector with 

% NumUniquePts 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 0 / o % % % % % % % % % 

t3 = length(CC); % Length of filtered zoom window H1 
NFFT = 2A(nextpow2(t3)); % Use next highest power of 2 > or = to length to calculate 

% fft. 
FFTX = fft(CC.NFFT); % Take fft padding with zeros so that length(FFTX) is 

% equal 
NumUniquePts = ceil((NFFT+1 )/2); % Calculate the number of unique points 
FFTX = FFTX(1 :NumUniquePts); % FFT is symmetric, throw away second half 
MX = abs(FFTX); % Take the magnitude of fft of x 
MX = MX/t1; % Scale the fft so that it is not a function of the length of 
MX = MX.A2; % Take the square of the magnitude of fft of x which has been 

% scaled properly. 
MX = MX*2; % Multiply by 2 to because you threw out the second half 

% of FFTX above 
MX(1) = MX(1)/2; % DC Component should be unique. 
if ~rem(NFFT,2) % Nyquist component should also be unique. 
MX(end) = MX(end)/2; % Here NFFT is even; therefore, Nyquist point is included, 
end 
fC = (0:NumUniquePts-1)*Fs/NFFT; % This is an evenly spaced frequency vector with 

% NumUniquePts 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

figure(4) 
subplot(2,2,1)%FFTof HO 
plot(fA.MX); 
title('Power Sp • •. K 20 Cycles 140V„p_p<); 
xlabel('Freque'' ); 
ylabel('Power * ); 
grid on 
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subplot(2,2,2)%FFTofH1 
plot(fB.MX); 
tit le('Pc =i ?.»:• K 20 Cycle • ); 
x l a b e l ( ' " . • •••> i ); 
ylabel(' .. -.; ); 
grid on 

subplot(2,2,3) % FFT of H2 
plot(fC,MX); 
title( . • K 20 Cycles 1- ); 
xlabel( ); 
ylabel(, . • < • « ./Hz)'); 
grid on 

%%%%%%%%% Calculate the RMS value of the filtered signals %%%%%%%%% 
Armsl = norm(AA)/(sqrt(t2-t1)) 
Brmsl = norm(BB)/(sqrt(t2-t1)) 
Crmsl = norm(CC)/(sqrt(t2-t1)) 

% Calculate SPL at the hydrophones based upon their sensitivity and RMS voltage 
SPL_A1f= MxA - Gain + 20*log10(Arms1) % Calculate SPL 
SPL_B1f= MxB - Gain + 20*log10(Brms1) % Calculate SPL 
SPL_C1f= MxC - Gain + 20*log10(Crms1) % Calculate SPL 

%%% Calculate the difference in theoretical SPL to the calculated SPL %%% 
Delta_A1 =SPL_A1f-SPL 
Delta_B1 =SPL_B1f-SPL 
Delta_C1 =SPL_C1f-SPL 

Sections of the Matlab code were modified to perform the analyses of acoustic data 

using different ranges and source levels. This source code is a representation of the 

algorithms used. The SPL of data 'zoom' windows were calculated by specifying the data 

points. Knowing the TVR of any potential source and the input voltage to that source, 

the SL was be found, thereby the sensitivity of the hydrophones were established, 

knowing the range and the calculation TL. 
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APPENDIX D 

HYDROPHONE SPECIFICATIONS AND ANALYSIS 

D.l Hydrophone Description 

The AQ-2000 Hydrophone is designed for usage in "shallow or deep water 

exploration with stable operating performance over a wide range of water depths. They 

are manufactured on high volume and combine high performance with low cost." 

(http://www.benthos.com/) The mechanical dimensions and specifications are shown in 

Figures D.l and D.2. 

AQ-2000 HYDROPHONE 

The AQ-2000 hydrophone represents 
the latest innovative acoustic sensor 
technology developed by 8enthos tor 
shallow and deep water exploration. 

The AQ-2000 is well suited tor both 
towed streamer and ocean bottom 
cable (OBC) applications that require 
stable operating performance over a 
wide range ot water depths. 

The AQ-2000 has excellent acceleration 
canceling qualities and exceptionally 
wide trequency bandwidth. 
The AQ-2000 is ready tor installation 
into standard array mounting 
configurations or integration into 
custom molded p 

Figure D.l: Benthos AQ-2000 description. 
(http://www.benthos.com) 

, #28 AWG LEADS 

[ 
MOUNTING WEB 

.150 TYR-
(.38 cm) 

w 

-1.796 i rv-
(4.56 cm) 

-0 .520 in 
(1.32 cm) 

0.850 
(1.65 cm) 

Figure D.2: Benthos AQ-2000 mechanical dimensions. 
(http://www.benthos.com) 
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D.2 AQ-2000 Hydrophone Specifications: 

Teledyne Benthos 
49 Edgerton Drive • North Falmouth, Massachusetts 02556 USA 
Telephone: +1 508 563-1000 • Fax: +1 508 563-6444 http://www.benthos.com/ 

The hydrophone specifications are shown in Table D.l. These values are stated 

for the uninstalled AQ-2000 hydrophone element. Figures D.3 and D.4 display the stated 

frequency performance of the transducer element. A specification to note is that the 

maximum SPL is 190 dB re 1 /iPa. 

Model 
Material 
Weight in Air: 
Size: 
Displacement: 
Operating Temperature: 
Storage Temperature: 
Electrical Leads: 
Connector: 
Polarity: 

Capacitance: 
Resistance 

Dissipation: 
Operating Range: 
Maximum SPL 
Sensitivity® 100 Hz 
Free-field Voltage: 
Sensitivity Change: 
vs. Frequency: 
vs. Depth: 
vs. Temperature: 
Acceleration Sensitivity: 

Mechanical Resonance: 
Max. 
Destruct Depth: 
Cost: 

AQ-2000 
Flouroeleastomer, high strength epoxy, Hytrel® insulated leads 
14 grams 
4.56 cm long X 1.32 cm diameter 
6.24 cc 
-10°C to 50°C 
-40°C to 60°C 
#28AWG (12.7 cm) red and black 
None 
A positive increase in acoustic pressure generates a positive 
voltage on the red conductor 
4.5 nF ± 25% at 20°C and 1 kHz 
500 Mohm minimum across leads or to sea water at 20°C and 
100% relative humidity, 50 VDC 
0.02 typical 
1 to 50000 Hz 
190 dB re 1 n?a 
-201dBre lV/uPa±1 .5dB 

±.25 dB from 1 Hz to 1 kHz (±2.0 dB 1kHz to 10kHz) 
<.5 dB to 1000 meters 
< .03 dB per 1° C change 
Output is < 1.5 mV/g due to acceleration in any of the three 
major axes at 20 Hz 
20 kHz (in water) typical 
Operating Depth 2000 m 
>7,000 meters 
$50.00 

Table D.l: Manufacturer specifications Benthos AQ-2000 hydrophones, 
(http ://www.benthos.com) 
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Figure D.3: Benthos AQ-2000 sensitivity versus depth and sensitivity response plots. 
(http://www.benthos.com) 
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Figure D.4: Benthos AQ-2000 frequency sweep (FFVS). 
(http://www.benthos.com) 
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D.3 Hydrophone Modes of Operation 

Hydrophones operate in two modes, axial and radial. Axial mode operation is 

when the length (longest dimension) of the hydrophone is pointed at the source. Radial 

mode operation is when the longest length is perpendicular to the sound source as 

displayed below in Figure D.5. 

Source Aw^i 
Axial 

t 
Radial 

Figure D.5: Hydrophone mode orientation diagram. 

As long as all physical dimensions of the hydrophone are small compared to the 

wavelength, the hydrophone is essentially omnidirectional. As the wavelength (X) (or 1/2 

X) approaches the length, diameter or wall thickness of a hydrophone, the modes of 

vibration begin to affect directionality. 

(k=c/f) (D.l) 

At 10kHz the wavelength is about 5-3/4 inches and a half wavelength is a bit less 

than 3 inches. This is approaching the length of the hydrophone. The radial pattern is 

omnidirectional as that dimension is still small compared to the length. The radial mode 

vibrates at one wavelength instead of 1/2 wavelength. Working in the 10kHz range it's 

best to orient the hydrophone in the radial direction in relation to the sound source. For a 

true omni-directional response at 10kHz, a better choice would be going to a smaller 
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hydrophone or use one with a spherical element. The directivity patterns are displayed in 

Figures D.6 and D.7. 

III
 

Date: 

Directivity Type: 

Filename: 

Motes: 

Limit: 

AQ-2000 

001 

S0O0 00 Hz 

8/2W6 

Select Measurement Type 

C \POOL SUITBDataW£aOOO\AQ-2000_SN001-a 

Range; 

Temp: 

OfttntaMon: 

Operator: 

_KHz air 

1,00 rn 

18,00 degC 

RADIAL 

gf : 

i i 
i 

160,50 ] # of Degress Below Umit: j 360,00 | % Below Limit: ; 100.00 i 
i 

Figure D.6: Benthos AQ-2000 directionality at 5 kHz - radial mode, 
(http ://www.benthos. com) 
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Model: AQ-2000 

8/N: i 001 

Froq.: j 5000.00 Has 

Date: P ~ ' $i2M~~~™'' 
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18.00 degC 

AXIAL 

OlrtelMty Type; Select Mtawerrsfii Type 
C:\POOL 5UITEimiiWQa30<MQ-2000_SN001-6_KHz_VERTiCAL# 

Filename: 
Notes: 28.6(BPREAMPGAIN 

Limit: | 180.50 j # of Degress Below Umlt: 360 00 j % Below Limit: | 100.00 

Figure D.7: Benthos AQ-2000 directionality at 5 kHz - axial mode. 
(http://www.benthos.com) 

D.4 Calculation of Frequency Response and Calculating the Q of the 

Hydrophones 

The frequency response for hydrophone 1 was experimentally determined and 

plotted in Figure D.8. The bandwidth and Q were calculated. The analysis was 
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performed using an oscilloscope, a function generator and sense resistor. See Table D.2. 

A CW sinusoid with a constant voltage of 1.0 VACp.p was swept from 1Hz to 200kHz. 

The voltage drop and phase shift were monitored across the sense resistor. 

-10 L 

s 

Fnequenc /Response of 

i v 

-tydrcphDne (dB \ f i . Freq) 

\ ̂ —i^fc ! 

\ l \ , !/-y 
\ I! 1 I 

"iL '• '• 
"-,. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 
Frequency (Hertz)) 

1.8 2 

x10fi 

Figure D.8: Hydrophone frequency response from 1 Hz to 200 kHz. 

Instrument Model Serial Number 
Oscilloscope Tektronix 2226 V/E 0972 
Function Generator Wavetek Model 22 Varian 169790E 

Table D.2: Test equipment used for hydrophone frequency analysis. 

To observe the frequency response and calculate resonance, a sense resistor (100 

ohms, 5%, 1/4W, carbon) was placed in series with the hydrophone. The probes from the 

oscilloscope were connected to either side of the resistor. The output from the function 

generator was connected on one side of the sense resistor while the other side of the sense 

resistor was connected to the input of the unknown hydrophone impedance. 

The measured voltage drop across the resistor, divided by the resistance value 

calculates the magnitude of the current. Measuring the phase shift on either side of the 

resistor allows the calculation of the phase angle between the voltage and the current. 

• Knowing the input frequency, the period T (\/f) was calculated directly. 

• The phase difference was observed directly from the oscilloscope. 

• The phase angle was calculated using the following equation: 

©degrees = (dl / T) * 360 in degrees (D-2) 
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The bandwidth is defined as the frequency width of the frequencies -3 dB from 

the peak value. The important resonant frequency is the low value around 22kHz. The 

stated supplier specification was 20kHz in water. The bandwidth and Quality factor for 

hydrophone 1 was calculated, assuming a typical response for the three hydrophones. 

The resonance data is contained in table D.3. From Figure D.8, the bandwidth (W) 

equals 28kHz - 20kHz = 8kHz. The resonant frequency (Fc) equals 22kHz. Solving for 

the Mechanical Quality Factor (Q): 

Q = Fc/W = 22 kHz / 8 kHz = 2.75 (D.3) 

The value of the Q indicates the number of cycles required to excite the hydrophone. 

Using equation Q/f (Stansfield, 1991) and for 70% steady state = 0.875 cycles. Using 

equation Q/2 (Wallace et al, 1961) and for 80% steady state = 1.35 cycles. It would take 

between 1 and 2 cycles of a received signal for the hydrophone to reach steady state. 

Transducer Frequency Transmit Response Data (in air) 

f Vin At AV d(deg) 6 (radians) Vpp 1 (amps) Z 
18000 

19000 
20000 

21000 
22000 

23000 

24000 

25000 
26000 

115000 

116000 

117000 
118000 
119000 
120000 
121000 

122000 

123000 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

-6.00E-06 
-6.00E-06 

-5.00E-06 
-3.00E-06 

-2.00E-06 

-2.00E-06 

-3.00E-06 

-3.00E-06 

-3.00E-06 

-1.00E-06 

-1.00E-06 

-5.00E-07 
-4.00E-07 
-2.00E-07 
-5.00E-07 
-4.00E-07 

-5.00E-07 

-7.00E-07 

1.68 

1.80 

1.88 
2.08 

2.24 

2.12 

2.00 

1.95 

1.96 

4.6 
4.58 

4.54 
4.4 
4.34 

4.24 
4.1 
3.98 
3.9 

-38.88 
-41.04 

-36.00 

-22.68 
-15.84 

-16.56 

-25.92 

-27.00 

-28.08 
-41.4 

-41.76 

-21.06 
-16.992 
-8.568 
-21.6 
-17.424 

-21.96 

-30.996 

-0.68 
-0.72 

-0.63 

-0.40 
-0.28 

-0.29 

-0.45 

-0.47 

-0.49 
-0.72 

-0.73 

-0.37 

-0.30 
-0.15 

-0.38 
-0.30 

-0.38 
-0.54 

3.32 

3.20 
3.12 

2.92 

2.76 

2.88 

3.00 

3.05 

3.04 
0.4 
0.42 

0.46 
0.6 
0.66 
0.76 
0.9 
1.02 

1.1 

0.00084 

0.00090 
0.00094 
0.00104 

0.00112 

0.00106 

0.00100 

0.00097 

0.00098 
0.0023 

0.00229 

0.00227 

0.0022 
0.00217 

0.00212 
0.00205 

0.00199 
0.00195 

3952.381 
3555.556 

3319.149 
2807.692 

2464.286 

2716.981 

3000.000 

3128.205 
3102.041 

173.913 

183.406 

202.643 
272.727 
304.147 

358.491 
439.024 

512.563 
564.103 

Table D.3: Resonance data for typical AQ-2000 transducer. The resonant 
frequency at 22kHz is the resonance of concern. 
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D.5 Hydrophone Preamplifiers 

Benthos AQ-201 Hydrophone Preamplifiers were selected. The complete 

manufacturers technical specifications are contained in Table D.4. As shown in Figure 

D.9, the AQ-201/202 preamplifiers are single ended devices. This affected common 

mode signal rejection during data collection. A better choice, allowing a differential 

input to the A/D would have been either the AQ-300 or AQ-302 preamplifiers. The gain 

of the AQ-202 is 26 dB, while the gain of the AQ-300 and AQ-302 preamplifiers is 20.8 

dB. The gain is not affected by the supply voltage, but is set by the internal op-amp 

feedback resistor ratio. The current draw for the AQ-202 preamplifiers, as supplied by 

Benthos is contained in Table D.5 below. The AQ-202 preamplifier gain and output 

noise curves a contained in Figure D. 10 and D. 11. 

Supply Voltage 
9VDC 
12VDC 
18VDC 

Quiescent Current 
3.1mA 
3.3 mA 
3.6 mA 

Table D.4: Supply voltage and quiescent current. 

Hydrophone Preamplifiers 

These Preamplifiers have been 
specifically descr ies tor small 
diameter' a«ay$ used to extreme &sptn 
fatsngs. High input impedance. !<?w 
cun-$m< and high drive capa&Mity rna^e 
them suitable for k>.**g cable lengths, 

The AO-201 and AQ-202 are single 
ended unMs wstH complimentary direct-
saupled output drivers. The AO-2Q2 
Model has higher current with ?ower 
noise 

Tae A O 4 0 0 and A O - 3 . 0 2 have the 
same toatuim as the AQ-£01 wi ih ?h« 
s*$©i>t<0n of dHi«r«fttis( input and 
output circutts, 
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I H r . 
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Figure D.9: Benthos hydrophone preamplifier specification data sheet. 
(www.benthos.com) 
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Figure D.10: Benthos AQ-201 preamplifier voltage gain curve, 
(http ://www.benthos.com) 
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Figure D. 11: Benthos AQ-202 preamplifier output noise curve, 
(http ://www.benthos.com) 

D.6 Complete Hydrophone Assembly 

The output signals of the hydrophone elements were fed directly into the 

preamplifier inputs, forming the complete hydrophone assembly. The Benthos AQ-201 

preamplifiers are DC coupled. The output signal rides on a DC level that is equal to 

approximately x/i the supply voltage. To overcome this offset, a single pole high pass 
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filter was designed. This high pass filter acts as a DC block eliminating the DC offset. 

The DC blocking circuit (HPF) is discussed in section D.7. A major consideration was 

the packaging of the hydrophone assemblies. The individual pieces were assembled in a 

manner that would allow the hydrophones to be as sensitive as possible, allow the signals 

to amplified and be as robust as possible. During testing in the Jere Chase Ocean 

Engineering Laboratory, the signals were affected by a 60Hz signal. A consequence of 

the A/D inputs being single ended wired possibly the 115VAC monitor connected to the 

mainboard computer. 

D.7 Design of a High Pass Filter (HPF) for the Pre-Amp Assembly 

A single pole (first order) HPF / DC block was installed into the input channels of 

the NI-USB-9125A A/D module, which eliminated any DC offset. The circuit is shown 

schematically in Figure D. 12. The circuit analysis is described in Figure D. 13 and the 

filter frequency response is shown in Figure D.14. 

~r\ 

• 1 

< | 

1 — « 

Pre-Ahp Decoupling Circuit 

Figure D.12: Preamplifier DC de-coupling circuit. 

xnnon 
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F i rs t Order High Pass Fi l ter 

I 

Vin 4? uF 
«>R 
> 1Q0K 
> l/4'w 
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V o u t 

Connor 

Circuit Analysis 
Vin = ZinI =(R + l / j w C ) l 

V o u t = Z o u t I = RI 

T r a n s f e r Function H(w) 
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J. r vV / W c 

H(w) 
V o u t 

~~vin~ 

wRC 

iwRC 

Wi<w 

(C)V 
H(w) = a r c t a n f ^ u 

Figure D.13: Preamplifier high-pass / DC de-coupling circuit analysis. 

The theoretical response has been experimentally calculated and validated. The circuit 

removes the DC offset and the 3dB point is less than 1Hz. Being a single order high pass 

filter, this value of the break point was chosen so gain at the expected low frequencies 

was as close to unity as possible. Table D.5 contains calculations of the 3 dB break 

frequency using other resistor and capacitor values. 

x to"0 Frequency Response of hPF 0=47uF - R=10OK 
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Figure D.14: Preamplifier de-coupling circuit frequency response. 
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R 
100K 
100K 
1M 

100K 

C 
22 uF 
47 uF 
10 uF 
.01 uF 

RC 
2.2 Sec 
4.7 Sec 
10 Sec 
1 mSec 

F-3dB 

0.0723 Hz 
0.0339 Hz 
0.0159 Hz 

159 Hz 

Table D.5: 3 dB point for different component values in HPF. 
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APPENDIX E 

LUBELL ACOUSTIC PROJECTOR / PEAVY AMPLIFIER SPECIFICATIONS 

AND ANALYSIS 

E.l Introduction 

This appendix contains the manufacturer specification and data sheets for the 

amplifier and source. The amplifier frequency response was analyzed on the bench under 

different load conditions to validate output voltages. A relationship between output 

voltage to input voltage using the front panel gain level knob on the amplifier was 

established, see section E.6. Additional improvements and changes to the packaging and 

mounting are described. 

E.2 Lubell LL9162 Underwater Acoustic Transducer 

The Lubell LL9162 Underwater Acoustic Transducer is "designed for general 

purpose military and scientific applications and may also be used as an underwater 

loudspeaker when high power is required". (Lubbell Labs 2006) The LL9162 has a 

useful frequency range of 240Hz-20kHz, a minimum impedance of 10 ohms, and with 50 

VRMS applied a source level of 186 dB re l/*Pa at 900Hz and 190 dB re ljjPa at 10.6kHz. 

This input voltage is supplied by a Peavy IPA300T 300 watt power amplifier. The 

LL9162 and IPA300T amp were delivered as a matched unit. The LL9162 operates at 

depths between & to 50' and is constructed from PVC and stainless steel. For operation, a 

power resistor is used in series with the output of the Peavey amplifier. For electrical 
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safety, the amplifier's AC power cord should connect to a GFCI outlet. (Lubbell Labs 

2006). Table E.l summarizes technical specifications and Figure E.2 is a pictorial of the 

Lubell source. In Figure E.3 the SLMAX if) for the source is plotted. 

Frequency Response: 250Hz - 20kHz 
Output Level: 186dB/uPa/m@ 900Hz, 190dB/uPa/m @ 10.6kHz (50 Vrms applied) 
Maximum Voltage: 50 Vrms (70 Vrms for LL9162T) 
Maximum Current: 3A @ 100% D.C. (5A for LL9162T) 
Impedance: 16 ohms nominal - use only with series resistor per instructions 
Directivity: Omnidirectional up to 2kHz, slight scalloping at higher frequencies 
Minimum/Maximum Depth: 6' (1.83 meters) to 50' (15.24 meters) 
Installed Bulkhead Connector: Impulse IERD2F-BC single pin right angle 
Included Cable: Underwater pluggable IE2M-7/16 on 75' SJOW cable 
Included Power Resistor: Milwaukee 18-136-7.5Rw/brkt 
Weight: 15 lbs (less cable) 
Dimensions: 8.75"D x 10.75"W x 10.75"H 
Certification: CE 
Warranty: 2 year limited 
Price: $1922 
Recommended Amplifier: IPA300T-120V or IPA300T-240V 
Documents: Owners manual, impedance plot, SPL plot 

Table E.l: Lubell LL9162 specification summary. 
(http://www.lubell.com) 

Figure E. 1: Close up of Lubell source. 
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Figure E.2: SL versus frequency of the source and amplifier. 
(http://www.lubell.com) 

To calculate the SL use Equation E.l. The TVR if) was available from the supplier. 

Figure E.3 plots the SL data vs. frequency for the Lubell source and the Peavey amplifier. 

SL = TVR (freq) + 20 log(Vin_RMs) dB re 1 uPa (E.l) 

190 
SLTVR FrecMency Respcnse d A r p M n = S M m s 

180-

170 

ieo-

150 

140 

130 

120 

110 

100 

/ 

102 

- TVR cB re u P M d t 

- SL cB re 1 uPa 

1tf 
Frequency (Hertz)) 

Figure E.3: TVR and SL frequency response plots from supplier specification sheet. 
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Table E.2 summarizes the TVR (dB re 1/iPa / volt) and SPL (dB re 1/iPA) for the Lubell 

source. The data were collected at a depth of 28 ft, distance of 9.8 ft, drive voltage of 

50Vrms nominal and a water temperature of 44.4° F. Reference Figure E.2. 

Frca (Hz) 
150 
200 
250 
300 
400 
500 
600 
700 
800 
900 
1000 

1100 
1200 

1300 

1400 

1500 

1600 

1700 

1800 

1900 

2000 

2500 

2600 

2700 

2800 

2900 

3000 
3500 
4000 

4500 

5000 

6000 

7000 

8000 

9000 

10000 
12000 
14000 

16000 
18000 

Mn (RMS) 
49.75 
49.99 

49.57 

49.42 

49.15 
49.97 

50.55 

50.4 

50.05 
49.96 

49.98 

50.41 
50.41 

50.2 

50.3 

50.25 
50.64 

50.33 

50.15 

49.96 

50.05 

49.75 

49.65 

49.51 

49.37 

49.31 
49.27 

49.63 
49.27 

49.7 

49.68 

49.42 

49.59 

49.7 

49.5 

49.87 

49.75 
49.57 
49.44 
49.17 

T\R dBreluPa/voIr 
110.82 

117.88 

120.71 

123.55 
130.59 

136.22 

140.54 

145.04 

149.57 

151.39 

151.36 

149.9 
148.6 
147.63 

146.59 

146.2 

145.65 

145.34 

145.31 

144.96 

144.78 

145.51 

145.83 

145.98 

146.02 

145.8 

145.3 
144.14 
144.88 

148.85 

151.54 

140.45 
149.14 

149.09 

152.46 

155.41 

150.33 
148.64 

151.75 
145.52 

SPL dli re I luPa 
144.76 

151.85 

154.61 

157.43 

164.42 
170.2 

174.62 

179.09 

183.56 

185.36 

185.34 

185.34 
182.65 
181.64 

180.62 

180.22 
179.74 

179.38 

179.31 

178.93 

178.77 

179.44 

179.75 

179.88 

179.89 

179.66 

179.15 

178.05 
178.73 

182.78 

185.46 

174.32 

183.05 

183.02 

186.35 

189.36 

184.27 
182.54 

185.64 
179.36 

Table E.2: Lubell LL9162 TVR / SL data, (http://www.lubell.com) 
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E.3 Peavev IPA300T 300 Watt Power Amplifier Specifications 

The IPA300T is a high quality commercial grade mono amplifier with screw 

terminal line input and transformer isolated screw terminal outputs. The IPA300T meets 

all safety and power requirements for use with the Lubell Labs LL9162 underwater 

speaker. The LEVEL knob on the front panel sets the output voltage. The internal 

circuitry of the amplifier limits the maximum voltage, indicated by the SPS™ LED being 

lit. The front panel is displayed in Figure E.4 and the specifications are contained in 

Table E.3. 

.«;:.> 

Industrial Power Amp 

t 

* 

2 3 

• • I -

PA" SOOT / H 
/ /**5BMSX 

f -oatss-
Li.wm&m>, %.w#w. •%.B**a.v- zomymi ,;ij i * 

/ 
/ :Q 

/ 

Figure E.4: Peavey IPA300T 300 watt power amplifier front panel. 
(http://aa.peavey.com/poweramps/ipa300t.cfm) 

Frequency Response: 40Hz-20kHz +0/-1 dB 
Input Sensitivity: 100mV/20 k ohms, 1V/20 k Ohms (switchable) 
Power Output: 300 watts RMS @ 0.1% THD 
Output Impedance: 4 ohm direct, 8 ohm/25V/70V transformer isolated 
Patented SPS speaker protection circuitry 
Mounting: Rack mount (3RU) or shelf mount 
Finish: Gray powder coat 
Certifications: UL, CE 
Warranty: 3 yr + 2 yr limited 
Operating Voltages: IPA300T-120V, or IPA300T-240V 
Dimensions: 19"Wx 5.25"Hx 13.125"D 
Shipping Weight: 37 lbs 
List Price: $896 
Documents: Data sheet, manual 

Table E.3: Peavey IPA300T 300 watt power amplifier specifications. 
(http://aa.peavey.com/poweramps/ipa300t.cfm) 
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E.4 Amplifier and Source Wiring 

A setup block was fabricated to accommodate a bracket to hold the manufacturer 

supplied 7.5 ohm resistor, inline fuse and terminal block. A CPC (circular plastic) 

connector was added to the setup block, allowing a quick disconnect for the Lubell 

projector to the amp. The Lubell source was wired to the terminal block. Figure E.5 is a 

pictorial of the setup block. The mechanical design is displayed in Figure E.6. 

Figure E.5: Overhead view of Peavey amplifier. 

U s i i 3 5 9 
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MW 
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L 

Figure E.6: Mechanical Layout. 
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E.5 Frequency Response Calculation 

The amplifier was tested for flatness across the operating frequency band using 

two load impedances, (10 and 15 ohms), and observed for different values of Vin and 

Level knob settings. Data was taken across the frequencies from 1kHz to 22kHz, keeping 

Vin constant (2Vp-p) and the Level knob set to 5. Across the band from 1kHz to 

8000kHz the response was flat. For the frequency band of concern, from 200Hz to 

8000Hz, the maximum deviation was < 0.1 dB. The data is plotted in Figure E.7. 

6.8 

6.6 

6.4 

n 

6.2 
^ 

5.8 

5.6 

5.4 

5.2 

Freq Response of Amp (Vo vs. Freq) Vin=2V- Level=5 

^ 
"U. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
Frequency (Hertz)) 1(-.' 

Figure E.7: Frequency response (Vinp.p = 2 volts vs. frequency). 
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E.6 Amplifier Gain vs. Level Knob Setting 

Keeping the input voltage and frequency constant, the Level knob on the Peavey 

IPA300T amplifier was adjusted from 0 to 10 and the output voltage across a load 

impedance of 15 ohms was recorded. Typical values are plotted in Figure E.8. The 

output is a maximum of 51 Vp-p with a load impedance of 15 ohms. The maximum 

output voltage is load dependant. The data is contained in Table E.4. Using table E.2, 

the presented data concludes that the maximum voltage into the load is achieved with the 

SPS switch enabled, and the SPS LED on front panel of the Peavey IPA300T amplifier 

lights. If the Level knob is set above a set level as shown in E.8, the output voltage is at a 

maximum for all input voltages. 

Vout (15 ohm) vs. Level Knob 

4 5 6 
Level Setting 

Vin=3Vp-p 
Vin=4Vp-p 
Vin=5Vp-p 
Vin=6Vp-p 
Vin=8Vp-p 
Vin=10Vp-p 
Vin=20Vpp 

10 

Figure E.8: Vout across 15 ohm load at 1kHz versus Level knob setting on the 
Peavey amplifier. The maximum Vout depends on the load impedance. 
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Constant Frequency z F = 1kH 
3V <Vin<20V into 15 ohms 
Level from 0-10 

1kHz 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Vout 

1.4 
3 

5.8 
8.6 
11.4 

14.2 
23 
33 

47.2 
51 

Vin 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1kHz 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

Vout 

1.4 
3.9 
7.4 
12 

15.2 
19 
28 

42.6 
51 
51 

Vin 

4 
4 
4 
4 
4 

4 
4 
4 
4 
4 

f/cHz 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

Vout 

2.2 
4.4 
9.8 
14.6 
19.4 

24.2 
36.8 
51 
51 
51 

Vin 

5 
5 
5 
5 
5 

5 
5 
5 
5 
5 

1kHz 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 

Vout 

2.6 
5.4 
11.6 
17.2 

23.2 
27.8 
42.4 
51 
51 

51 

Vin 

6 
6 
6 
6 

6 
6 
6 
6 
6 
6 

1kHz 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 

Vout 

3 
7.2 
14.8 
23.4 

30.8 
37.4 
51 
51 
51 

51 

Vin 

8 
8 
8 
8 

8 
8 
8 
8 
8 

8 

1kHz 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 

Vout 

4.2 
8.6 
19 

29.6 

38.2 
46.8 
51 
51 
51 

51 

Vin 

10 
10 
10 
10 

10 
10 
10 
10 
10 

10 

1kHz 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 

Vout 

11.8 
26 
51 
51 

51 
51 
51 
51 
51 

51 

Vin 

20 
20 
20 
20 

20 
20 
20 
20 
20 

20 

Table E.4: Vout versus Level knob setting. 

E.7: Summary 

a A CPC connector was added to the amplifier output to facilitate quick disconnect. 

• The frequency response of the Peavey amplifier is within 1 dB from 240Hz to 22kHz. 

For output frequencies below 240Hz, the output tends to be unstable, 

a The output voltage of the amplifier is dependant on the load impedance. Per the 

literature, the impedance from the amp to the source are matched in order to obtain 

the most efficient of power to the source. 

a On the Peavey amplifier, with the SPS switch enabled and the SPS LED on, the 

maximum output voltage, typically 51 VP.P would be produced, reference Table E.4 

and Figure E.8. Any Vin > 5Vp-p, and the Level knob set to 8 or above, would 

achieve these results. 
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APPENDIX F 

RESON HYDROPHONE TC 4014 SPECIFICATION DATA 

Wide usable frequency range 

Omnidirectional in all planes 

Built-in low noise preamplifier 

Long terns stability 

Individually calibrated 

*lfc^ ' 

TC4014 
The TG4014 broad band spherical hydrophone otters a very wide usable 
frequency range with excellent omnidirectional characteristics in all planes. 
The overall receiving characteristics makes the TG4014 an Meal transducer 
tor making absolute underwater sound measurements up to 4SDkHz. The 
wide frequency range also makes the TG4014 perfect for calibration purposes, 
particularly in higlier frequencies. 

The TC4014 incorporates a tow-noise 26dB preampiifier providing signal 
conditioning tor transmission over long underwater cables. 

The TC4D14 features an insert calibration facility, which allows for a reliable test of the 
hydrophone The TC4014 is avaSapie with Integrated SUBCON BGH MQP connector.. 
A=kforTC403'! 
The sensoi eieme' i is permanently encapsulated In Special formulated NBR to ensure 
long term reiiab,l"> The ruboer has been specially compounded to ensure acouslc 
impedance close to mat a* *ate ' The hydrophone and connector housing are made oi 
corrosion rpsistant alyminjrr-brortze. 

Usab e "-̂ equenetf' 'a j e 

Linear Fnequenc, rcnge 

Receding Dencitui . 
Horszortat estee^i"-, 
. ertsai drecavi t 

Opca-irg ti&pih 

Sur.iva cfep h 
Ope'siifg Is"*^ier8Hjre ait^e 
Storage temperature 

Weight in psk): 
M«*. output voltage: 

Preampisteer sain: 
Supply wohage:. 
High pass liiiter: 

range; 

Calibration path, soenuatkm: 

Cutmnt consiimpdon 
Max. ouitput effect: 

1SH2 K* 480kH2 
30Hz so XGOktfz ±2d& 25*Hz to 230kHz ±3dB 
J86fJB±3d8re1Vi;!J:Pa 

Omniidiirediorsai +2dB *« 1OStHz 
Z7G' ±2a& at 100kHz 
SODmetsf 
120Ctffi*«*r 

2 C to- +55=C 
-40*0 so *SD°C 
65Qq wtshatit eatee 
2s2.SVrms (at T2VDC3( 

2SdiB 
12to24VOC 
13Hz -3dB 
ai 10kHz H4eJB 
<2SmA at 12VOC <34 rnA at 24VOC 
50mW 

Figure F.l: Reson TC4014 hydrophone technical specifications. 

a 
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Documentation: 

Receiving sensitivity: 
At 5 kHz to 500 kHz 

Horizontal directivity: 
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Individually calibration curves: 
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Figure F.2: Resort TC4014 hydrophone graphical specifications. 
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APPENDIX G 

ITC 1042 TRANSDUCER SPECIFICATIONS 

Model ITC 1042 

The Mo<tel ITC-1042 spherical tcaiviutet n f l m hrrwrJhBinl onnlcflrectlorwi transmit­
ting ,tnrt rtWiYinrj fMpr.nsf with rffic wtic IPS of over W i This transducer «fabrkated of 
Ciannul-tc-5400 Itwd i.rcorale titanatp reramir ano 15 particularly w d : suited for rroiic 
iourtcs us a broadband hyonopl'orws ar<j appl cat ion where m omnidirectional response 
is required I h i unit caT be supp i»d tviti Ownr.e ite-5B00 far Inyh power dpp ic .stiDiu. 

Type t. * i i | , 

en««lop« DtoiuBtcioni {in S ' u 
TVRatf, 
Muibdjul OCV 
SM®§es*^t Item! 
$&&«n: Type 
trej»yt fcawtter 

<«* fc I , U , l l 
i r t i e 1* t*r« 
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Figure G.l: Generic ITC-1042 omni-directional transducer specifications. 
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Figure G.2: ITC - 1042 S/N 1337 TVR specifications. 
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APPENDIX H 

POTENTIAL ANTI-ALISING FILTER DATA SHEET 

FR€OU€NCY 

Devices; INC 

1.0 Hz to 100 kHz 
Fixed Frequency 

D74 & DP74 Series 

16 Pin DIP 
4-Pole Filters 

Description 

The D74 and DP74 Series of low-power, fixed-
frequency, linear active filters are high performance, 
4-pole filters in a compact package. These 
Butterworth and Bessel low-pass and Butterworth 
high-pass filters (D74 only) combine linear active 
filter design with the space savings of a 16-pin dual 
in-line package (DIP). Each model comes factory 
tuned to a user-specified corner frequency between 
1 Hz and 100 kHz (DP74, 1 Hz to 5kHz). These fully 
self-contained units require no external components 
or adjustments and operate with dynamic input 
voltage range from non-critical +5V to +18V power 
supplies. 

Features/Benefits: 

• Low cost solution for low frequency signal 
conditioning 

• Compact DIP design minimizes board space 
requirements 

• Plug-in ready-to-use, reducing engineering design 
and manufacturing time 

• Factory tuned, no external clocks or adjustments 
needed saving time and labor of other discrete 
assembly solutions 

• Low harmonic distortion and wide signal-to-noise 
ratio to 12 bit resolution 

Applications 

• Anti-alias filtering 

• Vibration & shock analysis 

• Automatic test equipment 

• Aerospace, navigation and sonar 

• Communication systems 

• Medical electronics 

• Sound and vibration testing 

• Noise elimination 
• Process control 

Available Low-Paes Models: 
D74L4B 4-pole Butterworth 2 
DP74L4B 4-pole Butterworth (Low Power) 2 
D74L4L 4-pole Bessel 2 
DP74L4L 4-pole Bessel (Low Power) 2 

Available High-Pass Models: 
D74H4B 4-pole Butterworth 2 

General Specifications: 
Pin-out/package data & ordering information . . . .3 

Figure H.l: Data sheet for Frequency Devices D74 and DP74 fixed frequency filter 
modules. 

108 



D74 & DP74 Series 
€VIC€S , INC. 

4-Pole 
Fixed Frequency Low-Pass and High-Pass Filters 
l^odel 

Product Specifications 

Transfer Function 

Size 

Range k 
D74 
DP74 

Theoretical Transfer 
Characteristics 

Passband Ripple 

DC Voltage Gain 

Stopband 
Attenuation Rate 

Cutoff Frequency 
Stability 
Amplitude 
Phase 

Filter Attenuation 
(UitoMfltalt 

Total Harmonic 
Distortion 9 1 kHz 

D74 
DP74 

Wide Band Noise 
(S lh • J Mtti) 

Narrow Bond iNoise 
(is Hi • \m M*2i 

Filter Mounting 
Assembly 

DM48&0P74L4B 

Low-Pass 

4-Poie, Btitferwoith 

0.8S:" x (MS" x 0.375" 

1 Hz to 100 kHz 
1 Hz to & kHz 

Appendix A 
Pag a / 

0.0 dB 

0 t 0,1 dB typ. 

24 dB/octave 

fe * 2% max. 
* 0.03% PC 
•3dB 
-180° 

0J7 dB O.SOfc 
3,01 ttB 1,00 fs 
60.0 dB 5.62 f t 
80.0 dB 10,0 fe 

<-70dB 
<-70 dB 

200p.Vims typ, 

50uiVrms typ. 

FMA-Q1A 

074L4L&OP74UL 

Law-Pass 

4-Pole, Bessel 

0.88" x 0.46" x 0.375" 

1 Hz to 10!) kHz 
I H i t o B k H z 

Appendix A 
Paga2 

0.0 dB 

0 ± 0.1 dB typ. 

24 dB/octave 

fs ± 2% max, 
±o.03%rc 
-3 dB 
-121* 

1.86 dB OSOfc 
3,01 dB 1.00A 
80.0 m 8,48 fc 
mam 15.12 ft 

<-?0dB 
<-70dB 

200 uVrms typ. 

60 p Vims typ. 

FMA-OtA 

Model D74H4B 

High-Pass 

Transfer Function 

Size 

Range fe 

Theoretical Transfer 
Characteristics 

Passband Ripple 
{ilwiretieal) 

Voltage Gain 

Stopband 
Attenuation Rate 

Power Bandwidth 

Smalt Signal Bandwidth 

Cutoff Frequency 
Stability 
Amplitude 
Phase 

Filter Attenuation 

Total Harmonic 
Distortion ® 1 kHz 

D74 

Wide Band Noise 
Blte-ZMIW 

Narrow Band Noise 
COHj • WOklW 

Filter Mounting 
Assembly 

4-Pole, Buttsrworth 

0,88" x 0,46" x 0.375" 

1 Hz to 100 kHz 

Appendix A 
Page 27 

0.0 dB 

O i O . l d B t a l O O k H z 

24 dB/octave 

120 kHz 

(-8 d;B! 1 MHz 

fa ± 2% max, 
* 0,03% /"C 
-3dB 
-180' 

80 dB 0.10f« 
60 dB 0.18 fe 
3,01 d8 1.00 fs 
0.00 dB 4,00 fe 

<-70 dB 

400 fiVrms typ. 

lOOuVrmstyp. 

FMA-01A 

Figure H.2: Data sheet for Frequency Devices D74 and DP74 low-pass and high pass 
filters. 
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F R G Q U G N C Y 

Devices*, INC. 

Specification 
(25°Cand Vs±15Vdc) 

D74 & DP74 Series 

Pin-Out and Package Data 
Ordering Information 

Analog Input Characteristics 

impedance 10k£lmin. 

Voltage Range ± 10 Vpeak 

Max. Safe Voltage ±Vs 

Mi S^emic^s are in inc&&s 

All case fiimensions .i8.0l" 

O-ffc Dimensions 6.1 * * 0.1" 

~T~ 

Analog Output Characteristics 

Impedance 1 il 

Linear Operating Range +10 V 

Maximum Current 

D'74 ±10 mA 

DP74 +5mA 

Offset Voltage 

f c < 1 0 0 H z 

0 - 50°C 
10 mV max. 
3 mV typ. 

f c a 1 0 0 H z 

0 - 70°C 
10 mV max. 
3 mV typ. 

Offset Temp. Coeff. 20 uV / °C 

Power Supply (±V) 

Rated Voltage ± 1 5 V d c 

Operating Range ±5 to±18Vdc 

Maximum Safe Voltage ±18 Vac 

Quiescent Current D74 
5 mA max. 
3 mA typ. 

Quiescent Current DP74 
1.5 mA max. 
600 uA typ. 

Temperature 

Operating 0 to + 70 !C 

Storage - 25 to + 85 °C 
Notes: 

1.Inert and output signal voltage referenced to 
supply common. 

2.0utput is short circuit protected to common. 
DO NGTCQNNECTTO ±Vs. 

BOTTOM VIEW 

r- 0.46 • 

0.375 
|ma&:4 

F0.15 
i| il {mis,) 

—\ 0.30 |— 

FRONT VIEW 

0.09-

-0.88-

I —\ 
—I I— 0.02! 

0.10 
<typ.) 

026 

SIDE VIEW 

Filter Mounting Assembly-See FMA-01A 

Ordering Information 
Filter Type Transfer Function 

L- Low Pass 
H - High Pass 

B - Butterworth 
L - Bessel 

D74L4B-849 Hz 

Power Level 

D - Standard Power 

DP - Low Power 

- 3 dB Corner Frequency 

e.g., 849 Hz 
2.50 kHz 
33.3 kHz 

3.How to Specif/ Comer Frequency: 
Corner frequencies are specified by attaching a three digit frequency designator to me 
basic mode) number. Comer frequencies can range from 1 Hz to 100 kHz. 
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reconmencsacn^ or Ey§geiiicns, ncr rlc we ime^ therr as i rec^r tencstc i vy^se v n ftpUd nf r e an/saen cp n* IN-Q8B74-01 
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Figure H.3: Data sheet for Frequency Devices D74 and DP74 pin out and package data. 
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Appendix A 
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4-Pole 

Bessel 

Theoretical Transfer Characteristics 
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1.Normalized Group Delay: 

The above delay data is normalized to a comer frequency 
of 1 .OHi.The actual delay is the normalized delay divided 
by the acwal corner frequency (fc). 

Normalized Delay 
Actual Delay = 

Actual comer Hequancy tic) tn Hz 

0.1 2 3 4 5 6 7 8 . 3 4 5 6 7 '1.0 d J * SK" 10.0 
Normalized Frequency(fffc) 

1.0 

0.5 

0.0 
c 

Delay (Normalized) 

.1 "-15 2 
•3 A t 7 B J 

I 
I 

I 
I 
I 

i s 
i 
i 

1.0 1-5 

Normalized Time (1/f sec) 

? 
2, 
<*> 
c 
o 
a in 

a 

1.2 
1.0 
f lR 

0.6 

0.4 
0.2 

-0.0 
-0.2 

Step Response 

: I 

j : 
z. 

. 

:z 
1 
[ 

1 2 3 4 
Normalized Time {1/f sec) 

1784 Chessie Lane, Ottawa, IL 61350 • Tel: 800/252-7074, 815/434-7800 * FAX: 815/434-8176 
e-mail: sales@freqdev.com Web Address: http://www.freqdev.com 

Figure H.4: Data sheet for Frequency Devices D74 and DP74 4 pole Bessel low-
pass frequency response. 
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Appendix A 

Theoretical Transfer Charac 
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Figure H.5: Data sheet for Frequency Devices D74 and DP74 4 pole Butterworth 
low-pass frequency response. 
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For Fixed Frequency Filters 

FMA-01S 

Single Channel 
Filter Mounting Assembly 

Description 

The FMA-01S, Filter Mounting Assembly 
eliminates the need to breadboard or hand-wire 
filter modules into individual test set-ups. 
FMA-0'IS's are factory assembled 3" x 5" printed-
circuit boards with socket pins for filter insertion, 
various electronic components, and screw 
terminal connections for power and signal 
input/output. The FMA-01S operates with any of 
the D61, D64, D68, D68, D70, D72, D74, D76 or 
D78 Series filter modules. 

Features/Benefits 

» No more building of breadboards. 
• Utilized as a single channel bench-top test set 

or rack mounted via mounting holes for 
instrumentation applications. 

» Accepts a broad range of filter modules 
allowing for selected cut-off frequencies and 
transfer functions specific to each application. 

• Provide quick and easy connection between 
circuit card and wired electrical circuits. 

• All external connections are easily made with 
a screwdriver, reducing engineering design, 
set-up and test time. 

Applications 

• Aerospace, navigation, sonar applications 

• ATE, research and development 

• Automotive and transportation 

• Communication systems and electronics 

• Data acquisition systems 

• Industrial process control 

• Medical electronics equip, and research 

• Sound and vibration testing 

» Noise elimination 

• Signal reconstruction 

Low-Pass Filters Available 
D61 
D64 
D66 
D68 
D70 
D72 
D74 
D76 
D78 
D100 

4-pole 
4-pole 
6-pole 
8-pole 
4, 6, 8-pole 
2-pole 
4-pole 
6-pole 
8-pole 
4 & 8-pole 

High-Pass Filters Available 
D61 
D84 
D66 
D68 
D70 
D72 
D74 
D76 
D78 
D101 

4-pole 
4-pole 
6-pole 
8-pole 
4,6, 8-pole 
2-pole 
4-pole 
8-pole 
8-pole 
8-pole 

Band-Pass Filters Available 
D64BP 
D68BP 
D100 

2-pole pair 
4-poie pair 
2-poie pair 

Band-Reject (Notch) Filters 
D68BR 4-pole pair 

0.05 Hz to 1.00 Hz 
LOO Hz to 100.0 kHz 
1.00 Hz to 100.0 kHz 
1.00 Hz to 100.0 kHz 
100 Hz to 50.0 kHz 
LOO Hz to 100 kHz 
1.00 Hz to 100 kHz 
LOO Hz to 100 kHz 
I.OOHztolOOkHz 
I00 Hz to 100 kHz 

105 Hz to 1.00 Hz 
1.00 Hz to 100.0 kHz 
I.OO Hz to 100.0 kHz 
I.00 Hz to 100.0 kHz 
100 Hz to 50.0 kHz 
I.OOHztolOOkHz 
I.OOHztolOOkHz 
I.OOHztolOOkHz 
I.OOHztolOOkHz 
1.0 kHz to 500 kHz 

I.OO Hz to 100.0 kHz 
1.00 Hzto 100.0 kHz 
100 Hz to 100.0 kHz 

Available 
1.00 Hzto 100.0 kHz 

Special notes 
» Provision for bypass of I/O buffers. 
« Provision for gain adjustment of I/O buffers 
• Enhanced output current to drive cables. 

1 
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Figure H.6: Data sheet for Frequency Devices FMA-01S single channel filter 
mounting assembly. 
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APPENDIX I 

DATA COLLECTION DATES 

Date 
9-7-06 

9-25-06 

10-5-06 

11-30-06 

1-25-07 Ths 

1-29-07 Mon 

2-1-07 Ths 
2-13-07 Tues 

2-16-07 Friday 

2-19-07 Mon 

2-21-07 Wed 
2-22-07 Ths 

10-6-07 Sat 

Location 
Wave Tank 

Tank 

Gulf 
Challenger 

Tank 

Tank 

Tank 

Tank 
Tank 

Tank 

Tank 

Tank 
Tank 

YF Dock 

Issues 
• No Real Approach 
• Practice Only 
• Analyzed Data 
• DC Offset on H-phones 
• DC offset gone 
• Continuous Capture 
• Large Files 
• Hydrophones Cut 

• Used Lubell Source 
• No scientific approach 
• Other hydrophone in tank 
• Used Lubell Source 
• No scientific approach 
• Other hydrophone in tank 
• Calibration with Reson. 
• DAQ hydrophones didn't work. 
• Spent day with Reson data 
• Finish calibration 
• Source and wrap in water 
• Data taken with OE690 class - no time 

for DAQ data. 
• Only Reson Data 
• Data taken with OE690 class - no time 

for DAQ numbers. 
• Lubell Source 
• 4 meters with wrap 
• no data, too much attenuation for DAQ 
• Original Wrap 
• Only Reson Data 
• Gunderboom wrap 
• Only Reson worked 
• NO DAQ Data 
• S/N ratio too low. 
• Hydrophone response changed 
• Data from 500 Hz to 8000 Hz 

Usable Files 
NO USABLE FILES 

??? 

NONE - Taken too far 
for usable data. TL. 

Data_1555 Data_1605 
Data 1615 Data 1623 
NO USABLE FILES 

NO USABLE FILES 

SOME DATA -
GOOD for calibration 

DATA for Calibration 
NONE - Noise Issues 

NONE - Noise Issues 

NONE - Noise Issues 

NONE - Noise Issues 
NONE - Noise Issues 

PLENTY 

Table 1.1: Data collection dates and metadata. 
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