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ABSTRACT 

THE EXPERIMENTAL EVOLUTION OF HOST ADAPTATION OF THE 

EMERGING PATHOGEN Burkholderia cenocepacia 

By 

Crystal Nicole Ellis 

University of New Hampshire. May, 2008 

I investigated the ability of Burkholderia cenocepacia, an opportunistic bacterial 

pathogen, to adapt to a host. Studies have identified trade-offs associated with 

environmental adaptation, but few have investigated host adaptation. Consequently, I 

studied effects of adaptation by B. cenocepacia to onions (Allium cepa) on the ability to 

kill Caenorhabditis elegans. I hypothesized that adaptation to onions would reduce 

virulence in C. elegans. I evolved twelve populations of bacteria in onion tissue medium 

for 500 generations. Then, I quantified fitness differences between evolved and ancestral 

populations by direct competition, having developed molecular marking techniques to 

discriminate among competitors. Competitions revealed fitness increases in nine 

populations. Next, I measured virulence against C. elegans of each population and 

observed a reduced worm killing ability. I also quantified pleiotropic effects of 

adaptation related to virulence. In conclusion, I supported that adaptation of B. 

cenocepacia to one host resulted in decreased virulence in another host. 
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CHAPTER I 

INTRODUCTION 

Sudden expansion of host range has been the cause of numerous bacterial 

outbreaks and epidemics and continues to threaten both the immunocompromised and 

healthy human populations (Woolhouse et al, 2001). For this reason, pathogenic 

microbes that are capable of persisting in multiple hosts and environments are under 

continued investigation (D'Argenio et al, 2001; Kuiken et al, 2006; Woolhouse et al, 

2001). By identifying factors, genetic or phenotypic, that allow for the expansion of host 

range, investigators can begin to understand what allows for adaptation to new hosts 

(Rahme et al, 1995). One common approach is experimental evolution, which has been 

useful for evaluating general models of adaptation and for quantitative evaluation of 

evolutionary theories (Elena and Lenski, 2003). Here, I describe the use of experimental 

evolution to examine the effects of adaptation to a specific host by the emerging human 

pathogen Burkholderia cenocepacia, a member of the Burkholderia cepacia complex. 

The Burkholderia cepacia Complex 

The Burkholderia cepacia complex (Bcc) consists of at least 10 non-spore 

forming, Gram-negative, bacterial species that are not only ubiquitous in the environment 

but are able to use a wide variety of carbon sources (Coenye and Vandamme, 2003; Levy 
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et al, 2008). These species are found in numerous environments including soils, 

freshwater, seawater, plant rhizospheres, human hosts, and animal hosts (Parke and 

Gurian-Sherman, 2001) (Figure 1.1). Coupled with an ability to occupy many 

environmental niches, they also have a wide catabolic potential (Coenye and Vandamme, 

2003). The metabolic diversity of members of the Bcc has encouraged their use as 

bioremedial agents (Coenye and Vandamme, 2003). They can break down and utilize 

many environmental pollutants such as herbicides, gasoline additives, and polycyclic 

aromatic hydrocarbon compounds, which are common constituents of crude oil (Coenye 

and Vandamme, 2003). Their metabolic diversity may be an artifact of their large 

genomes, which contains 2-3 chromosomes of 6-9 Mbp (Lessie et al, 1996). Bcc 

genomes are also peppered with insertion sequences, which have been linked 

disproportionally to microevolutionary adaptation in bacteria (Schneider et al, 2000). 

Because Bcc bacteria are ecologically and metabolically diverse, they are useful 

for biocontrol and bioremediation purposes (Coenye et al., 2001; Parke et al, 1991). Bcc 

species have been isolated as plant symbionts due to their nodulation and nitrogen 

fixation capabilities, making them a good candidate for increasing commercial crop 

yields (Parke et al, 1991). Bcc bacteria also prevent root infections caused by the fungi 

Pythium aphanidermatum and Aphanomyces euteiches and have been used in place of 

chemical pesticides to control seedling and root diseases by colonizing the rhizospheres 

of agricultural crops of corn, maize, rice and pea plants (Parke et al, 1991). Lastly, they 

are useful as bioremedial agents due to their ability to break down gasoline additives and 

crude oil constituents, which are often two sources of environmental pollution 

(Mahenthiralingam et al., 2005). Unfortunately, due to the disease-causing capabilities 
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Prevents "damping off 
in seedlings 

Promotes crop production 

Causes sour skin tissue 
rot in onions 

Degrades crude oil 
constituents 

Causes "cepacia 
syndrome" in cystic 

fibrosis patients 

Figure 1.1: Summary of the broad host range and niche characteristics of species in the 
Burkholderia cepacia complex. The top three arrows indicate beneficial interactions of 
Bcc species with the host/ environment, whereas bottom two arrows indicate detrimental 
interactions of species with known natural hosts. 
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of some members of the Bcc and their close relatives, they are no longer used as 

biocontrol or bioremedial agents on a large scale (Coenye et al, 2001; Parke and Gurian 

Sherman, 2001). However, a better understanding of their capabilities and limits might 

allow for the future use of certain members as bioremedial or biocontrol agents. 

Despite the numerous benefits that could come from using Bcc members 

commercially, Bcc have raised concerns for the agricultural industry and also the medical 

field. One indirect concern is their close relatedness to Burkholderia mallei and 

Burkholderia pseudomallei, two highly infectious pathogens classified as CDC category 

B agents of biological warfare (Holden et al, 2004; Nierman et al, 2004; O'Quinn et al, 

2001). These two agents cause the diseases glanders and melioidosis, respectively, and 

are highly resistant to treatment, not to mention extremely contagious when aerosolized 

(O'Quinn et al, 2001). Both glanders and melioidosis lead to septicemia and without 

treatment, they can be fatal (O'Quinn et al, 2001). Because Bcc members are closely 

related to these two pathogens, the use of Bcc members on a large-scale was discouraged. 

In addition to relatedness to dangerous pathogens, Bcc members have raised increasing 

concern due to their capabilities as plant and human pathogens coupled with the presence 

of a wide variety of virulence phenotypes (Baldwin et al, 2004; Conway et al, 2002; 

Corbett et al, 2003; Engledow et al, 2004; Gonzalez et al, 1997; Kothe et al, 2003; 

Nzula et al, 2002; Tomich et al, 2003; Tomich and Mohr, 2003; Urban et al, 2004; 

Visser et al, 2004) (Table 1.1). 
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Table 1.1: Summary of probable virulence phenotypes expressed in Burkholderia 
cepacia complex species (adapted from Mahenthiralingham et al, 2005). 

Virulence Factor Notes on phenotype characteristics 

Biofilm production 

Resistance to antibiotics 

Most members form biofilms, but B. 
cenocepacia and B. multivorans in particular 
form thick biofilms; induced by high cell 
density and provides protection from host 
immune responses (Conway et al, 2002). 

Resistance to multiple antibiotics results in 
difficult treatment of infections. 

Secretion systems 

Cable pili and adhesin 

Quorum sensing 

Siderophore production 

Cenocepacia pathogenicity island 

Flagella 

B. cenocepacia and B. cepacia harbor Type 
III and Type IV secretion systems. Type III 
systems are required for toxin-mediated 
sepsis in a mouse model of infection. Type 
IV systems are required for plant tissue 
water-soaking phenotype (Engledow et al., 
2004; Tomich et al, 2003). 

B. cenocepacia requires these for host cell 
adherence (Tomich et al, 2003). 

All Bcc species encode CepIR systems; 
facilitates cell-to-cell communication and 
has been implicated in B. cenocepacia as an 
inducer of virulence phenotypes (Venturi et 
al, 2004). 

All species express siderophore; required for 
iron acquisition and infection persistence in 
mouse models. 

Found only in B. cenocepacia; expresses 
many virulence genes as well as metabolism 
genes. 

Found in all Bcc species; motility is often 
required for cellular invasion (Urban et al., 
2004). 
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The first identified species of the Bcc, B. cepacia, was isolated as a pathogen of 

onion bulb and leaf tissue (Burkholder, 1950; Cother and Dowling, 1985). It was 

classified as the cause of a tissue rot in onions called sour skin disease, which is 

characterized by a yellow or brown discoloration coupled with severe tissue maceration 

and odor (Burkholder, 1950). The specific onion pathogenic isolate, B. cepacia 

ATCC25416, has been responsible for the destruction of large commercial onion crops 

and accomplishes this using a plasmid-encoded pectate hydrolase (Cother and Dowling, 

1985; Gonzalez et ah, 1997). This enzyme degrades pectin molecules located in the cell 

walls of plant tissue, subsequently compromising the structure of the plant cell (Ulrich, 

1975). Removal of the gene encoding for pectate hydrolase, pehA, halted tissue 

maceration in B. cepacia ATCC25416, yet the bacteria still exhibited a plant tissue 

watersoaking (PTW) phenotype, a phenotype characteristic of onion plant disease 

(Gonzalez et al, 1997). PTW appears as softening of onion tissue and secretion of liquid 

by the infected onion bulb (Gonzalez et al., 1997). The PTW phenotype is attributed to 

plant-cell cytotoxic effector molecules delivered by a type IV secretion system; the 

effector molecules themselves remain uncharacterized (Engledow et al, 2004). In 

addition to B. cepacia ATCC25416, other Bcc environmental and clinical species exhibit 

the PTW phenotype, including the species used in this study, B. cenocepacia. This raises 

concerns addressing the host range capacity and pathogenic potential of the Bcc 

(Engledow etal, 2004). 

In addition to causing disease in plants, Bcc bacteria have been isolated as 

pathogens from the lungs of immunocompromised individuals, especially cystic fibrosis 

(CF) patients. Cystic fibrosis, characterized by an overproduction of thick, sticky mucus 

6 



in the lungs, is a genetically inherited condition that affects the lungs and digestive tracts 

of thousands of children and adults (Cystic Fibrosis Foundation, www.cff.org). This 

disorder is caused by a mutation in the human CFTR gene, which encodes an apically 

localized epithelial chloride ion channel (Davidson and Rolfe, 2001). Other symptoms 

include salty sweat, insufficient pancreatic function, intestinal blockages, male infertility, 

and chronic inflammation of the lungs caused by bacterial infection (Davidson and Rolfe, 

2001). Life expectancy for CF patients has increased to a median age of 37 years due to 

more efficient treatments, which include inhaled anti-inflammatory medications, intense 

antibiotic therapy, and lung transplant surgery (Cystic Fibrosis Foundation, 

www.cff.org). Because treatment has increased life span, however, a new ecological 

niche has been created in CF patients for invasion by Bcc members and other 

opportunistic bacteria such as Pseudomonas aeruginosa and Stenotrophomonas 

maltophilia. 

Today, CF patients most often acquire Bcc infections from the environment, but 

in the past they have been acquired in hospitals (Holmes et ah, 1999). This can occur 

through patient-to-patient contact and sometimes by contaminated medical devices 

(Holmes et al, 1999). Infections can be acquired through patient-to-patient contact 

outside of a hospital setting as well, mainly through aerosol droplets and exchange of 

infected secretions (Govan et al, 1993; Saiman and Siegal, 2004). Due to the high 

genetic diversity of Bcc members, infectious strains can be difficult to diagnose and are 

often confused with another CF pathogen, Pseudomonas aeruginosa (Baldwin et al., 

2005). Bcc infections can range from mild to severe, and can seriously compromise the 

life of a CF patient (Huber et al, 2004). 
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Infections caused by Bcc members can result in a condition known as 'cepacia 

syndrome,' which affects CF patients both physically and socially (Huber et al, 2004; 

Saiman and Siegal, 2004). 'Cepacia syndrome' is characterized by high fever, rapid 

pulmonary deterioration, sepsis and often fatal pneumonia (Huber et al, 2004; Isles et al, 

1984; LiPuma, 1998). Because Bcc bacteria not only inhabit the lungs of CF patients, but 

also the blood and the sinuses, infected patients are permanently removed from lung 

transplant lists, which is a major therapeutic technique used to treat CF (Saiman and 

Siegal, 2004). Also, because Bcc infections spread rapidly and are so difficult to treat 

due to a high antibiotic resistance, the most often employed methods of Bcc disease 

control involve rigorous prevention strategies that often remove infected patients from 

the CF community (Aaron et al, 2000; Saiman and Siegal, 2004). These measures 

include disbanding of CF summer camps for children, limited contact of infected patients 

with outpatient CF clinics, and their exclusion from CF conferences (Saiman and Siegal, 

2004). 

Laboratory Models for the Study of the Bcc 

Several laboratory models exist for the study of Bcc pathology and virulence in 

both animal and plant hosts. Mouse models include burned mouse tissue models and 

models that simulate chronic infections, such as the mouse agar bead model (Chu et al, 

2002; Stover et al, 1983; Tomich and Mohr, 2003). In one study, strains of B. cepacia 

were shown to adhere to and invade murine respiratory epithelial cells, with adherence 

being an important phenotype for establishment of infection (Chiu et al, 2001). Some 

murine models involve mice that have been genetically altered by disrupting the homolog 
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of the same gene that is mutated in CF patients, the CFTR gene (Davidson and Rolfe, 

2001). Unfortunately, these models do not completely represent all of the symptoms of 

the human disease (Davidson and Rolfe, 2001). Also, mice are not as genetically 

tractable as some invertebrate models, and there are numerous ethical and cost constraints 

that prevent many researchers from using this model. 

Tissue culture models have been developed for the study of cell invasion by Bcc 

members. Some studies use pulmonary macrophage cells and alveolar epithelial cells, 

both derived from human cell lines, to show invasion and intracellular survivability of B. 

cepacia (Carterson et al., 2005; Martin and Mohr, 2000). Tissue culture models can be 

used to detect virulence factors required for invasion and persistence without using live 

animals, which allows more laboratories to ethically and cost-effectively study the effects 

of Bcc infections. Unfortunately, most tissue cultures are derived from tumorigenic lung 

epithelia and monogenic cell lines, which cannot fully represent important temporal and 

structural cell changes that may occur in the actual host in response to invasion 

(Carterson et al., 2005). These changes include factors such as differentially regulated 

protein expression and cell signaling (Carterson et al., 2005). For these reasons, live 

animal models remain more informative for investigating in vitro interactions between a 

pathogen and an infected host. 

Caenorhabditis elegans, a natural soil invertebrate, is a bacteria-feeding nematode 

and a laboratory model organism that has been used in many studies to examine virulence 

of bacterial pathogens (Joshua et al, 2003; Maadani et al, 2007; Wareham et al, 2005). 

The maintenance of these organisms is easy and inexpensive compared to murine models 

for many reasons (Tan and Ausubel, 2000). Firstly, C. elegans requires more simple 
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growth conditions than mice (Tan and Ausubel, 2000). Also, they can be raised 

aseptically and they have a rapid generation time (Hope, 1999). Furthermore, they are 

genetically tractable due to their hermaphroditic nature (Hope, 1999; Tan and Ausubel, 

2000). Both acute and chronic infections can be simulated in the C. elegans host model, 

which allows for the study of phenotypes necessary for Bcc bacterial invasion and 

infection (Huber et al, 2004; Kothe et al, 2003). Lastly, many existing genetic tools can 

be used in this system, in particular the use of fluorescent bacterial markers for 

determining the localization of a bacterial infection (Huber et al, 2004). 

Because members of the Bcc associate with plants, examining pathology or 

symbiosis in plant models is also possible. Varying levels of virulence exist among 

strains of B. cepacia in an alfalfa infection model (Bernier et al., 2003). Both tissue 

maceration and PTW phenotypes were observed in this model, making it useful for 

studying plant-specific virulence phenotypes (Bernier et al., 2003). Alternatively, an 

onion-rot model has also been used to examine virulence factors required specifically for 

onion infection (Aguilar and Venturi, 2003). For example, Aguilar and Venturi (2003) 

examined the contribution of quorum sensing (QS) to virulence by infecting onion bulbs 

with QS" mutants of B. cepacia ATCC25416. The onion-rot model is useful for studying 

plant pathogens responsible for destruction of large agricultural onion crops, as it 

replicates tissue maceration and PTW phenotypes in a natural host, Allium cepa. 

Host Adaptation: Theories and Supporting Experiments 

Ecologists have long been interested in the adaptation of organisms to specific 

environmental niches and hosts (Futuyma and Moreno, 1988). In studies that 
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investigated either host adaptation or niche adaptation, trade-offs associated with either 

type of adaptation have been identified (Caley and Munday, 2003; Cooper and Lenski, 

2000; Crill et ah, 2000; Duffy et al, 2006; Lenski et ah, 1991). For this reason, the study 

of niche adaptation is comparable to the study of host adaptation and both types of 

studies provide background for the current research. 

Natural populations of organisms adapting to a specific environment have been 

used to study whether this adaptation is accompanied by changed function in other 

environments. Caley and Munday (2003) tested this trade-off model by studying diet 

breadth of goby fishes. They hypothesized that adaptation to one particular niche should 

result in a trade-off when introduced to an alternative niche. Caley and Munday (2003) 

observed and manipulated natural goby populations, one that was adapted for growth in a 

particular niche within a coral reef and another that displayed a wider niche range. 

Fitness, defined as reproductive success of a natural population, is the outcome of natural 

selection in evolving populations and Caley and Munday (2003) used growth rate as an 

indicator of fitness. They observed that adaptation to one habitat strongly correlated with 

a decrease in the ability to grow in a broader range of habitats. This study was 

instrumental in demonstrating trade-offs associated with niche adaptation in a natural 

population; however, some limitations remained which included a lack of investigator 

control of these populations and the fact that the genetic identities of the populations 

could not be determined. In order to obtain more conclusive results regarding fitness 

trade-offs, experiments must be done in controlled laboratory settings using easily 

manipulated organisms, such as microbes. 
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t = 0 

ft fltflt f> ft 

t = n 

Figure 1.2: Experimental design of a serial passage evolution experiment (only a single 
replicate population is shown). Inoculation of a population occurs using a single clone 
(represented at t = 0) and subsequent daily passage proceeds until a chosen number of 
generations is reached (t = n). Periodically, samples are frozen to create a fossil record of 
the evolving population, which is essential for tracking genetic and phenotypic changes 
over time. 

The design of the long-term evolution experiment conducted by Lenski et al. 

(1991) required daily passage of bacterial populations, allowing them to reach stationary 

phase of growth once every 24 hours (Crozat et al, 2005; Lenski et al, 1991). After 

quantifying fitness at 2,000,10,000 and 20,000 generations, all 12 E. coli populations 

showed a significant increase in fitness when compared to the ancestral clone, indicating 

adaptation to this environment had occurred (Cooper and Lenski, 2000). Because 

frequent changes in growth phase have been shown to influence DNA supercoiling and 

topology, specific genes associated with these phenotypes were examined in all twelve 

populations (Crozat et al, 2005). It was also found that DNA supercoiling changed 

significantly compared to the ancestor in 10 of 12 populations, and that this change 

occurred early in the adaptive process (Crozat et al., 2005). Two common mutations 

were identified in two genes that control DNA supercoiling, top A zxAfis (Crozat et al, 
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Due to their ease of propagation and genetic tractability, microbes have been 

essential for the study of host adaptation and characterization of genetic changes that 

occur during the process of evolution (Cooper et ah, 2001a; Crill et ah, 2000; Crozat et 

ah, 2005). Experimental evolution, the process of culturing populations in a controlled 

laboratory environment for an extended period of time, is a common practice utilized by 

evolutionary microbiologists for studying the patterns of genetic changes associated with 

niche adaptation (Cooper et al, 2001a; Cooper et al, 2001b; Korona, 1996; Lenski et ah, 

1991) (Figure 1.2). Because phenotypic changes directly related to the adaptive process 

can be characterized using these types of experiments, two central questions can be 

addressed: 1) what are the phenotypes responsible for adaptation and 2) are there trade­

offs associated with adaptation? 

Some experiments involving the experimental evolution of microbes have been 

conducted in order to seek more definitive answers to these questions. One such set of 

experiments involved long-term laboratory adaptation of 12 populations of E. coli to a 

single carbon source, glucose (Lenski et ah, 1991). These populations were serially 

passaged through this environment for 20,000 generations (Cooper and Lenski, 2000). 

The ongoing study of these populations has not only led to the identification of many of 

the specific genetic changes directly associated with adaptation to the glucose 

environment, but they also identified the presence of trade-offs associated with specific 

adaptation (Cooper and Lenski, 2000; Cooper et ah, 2001b; Crozat et ah, 2005; Lenski et 

ah, 1991). 
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2005). These two mutations were identified as those directly responsible for an increase 

in fitness in the glucose minimal environment. 

In part to identify other mutations responsible for adaptation in the Lenski system, 

two of the 12 evolved E. coli populations were analyzed using expression arrays by 

Cooper et al. (2003). Many of the changes in gene expression occurred in parallel 

between the two examined populations; furthermore, most of the genes that showed a 

difference in expression were known to be regulated by the metabolite guanosine 3',5'-

bispyrophosphate (ppGpp) (Cooper et al., 2003). This led Cooper et al. (2003) to target 

specific genes known to regulate ppGpp, in particular, spoT which was shown previously 

to degrade ppGpp in the cell (Cooper et al, 2003). After examining the sequences of the 

spoT genes in the two evolved populations, a point mutation was identified (Cooper et 

al., 2003). To assess the effect of this mutation on fitness in the glucose environment, the 

mutated spoT gene was introduced into the ancestor clone; this resulted in an increase in 

ancestor fitness when it was allowed to grow in the glucose environment; this confirmed 

that the identified spo T mutation was a beneficial mutation acquired as the result of 

specific adaptation to the glucose environment (Cooper et al., 2003). The studies 

conducted by Crozat et al. (2005) and Cooper et al. (2003) not only demonstrate that 

experimental evolution of microbial laboratory populations leads to adaptation, but that 

experimental evolution also allows for the identification of some specific genetic changes 

responsible for that adaptation. 

In addition to identifying the genetic changes associated with adaptation, the 

population genetic mechanisms underlying trade-offs associated with adaptation were 

also studied. The diet breadth of all 12 evolved populations was assessed after 20,000 
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generations of laboratory adaptation to glucose (Cooper and Lenski, 2000). The 12 

populations were grown on 64 carbon sources not represented in the selective 

environment (Cooper and Lenski, 2000). Most change was the result of parallel growth 

reductions on a common subset of resources, which strongly supports a mechanism of 

antagonistic pleiotropy, and not random accumulation of mutations, in reducing diet 

breadth (Cooper and Lenski, 2000). 

The previously mentioned studies are important for the support of niche 

adaptation, but what of host adaptation specifically? The study of host adaptation is 

important for many reasons including understanding the evolution of host range and 

virulence in pathogens. Past studies of parasites have shown that the ability of a 

pathogen to cause disease is dependent on its host range, in that multi-host parasites tend 

to exhibit intermediate virulence whereas single-host parasites exhibit higher virulence 

(Combes, 1997; Garamszegi, 2006; Regoes et ah, 2000). A mathematical model 

developed by Regoes et ah (2000) supported this interaction between a parasite 

population and a heterogeneous host population. This model was then tested empirically 

using populations of Plasmodium falciparum, the causative agent of malaria 

(Garamszegi, 2006). When a population of Plasmodium exhibited a narrow host range, 

virulence of that parasite was high in that host, whereas when a population of 

Plasmodium exhibited a wide host range, virulence decreased significantly in all hosts 

(Garamszegi, 2006). This suggests that there is a trade-off associated with adaptation to a 

single host that limits virulence in alternative hosts. 

Another reason for studying host adaptation involves the use of attenuated, 

avirulent pathogens as vaccine candidates. Often, when designing vaccines, virulent viral 
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populations are forced to undergo evolutionary adaptation in a specific animal host, 

which may result in decreased virulence in a human host (Ebert, 1998). Once attenuated, 

a viral population could be introduced to a human population, allowing for antibody 

production and subsequent immunity without causing disease (Crill et ah, 2000; Ebert, 

1998). Unfortunately, some studies have shown that viruses can undergo rapid reversal 

in attenuated virulence, sparking further interest in the study of viral host adaptation 

(Crill et ah, 2000; Ebert, 1998). In addition, phylogenetic studies have shown that while 

a single viral species may infect a single host type, other closely related viruses infect a 

large range of hosts (Crill et ah, 2000; Gibbs et ah, 1995). This raised the question of 

what barriers keep viruses restricted from infecting a wider range of hosts. In addition to 

these findings, other studies investigating viral host range have shown that viruses are 

capable of shifting their host range rapidly and this has historically been the cause of 

many human and animal epidemics (Crill et ah, 2000; Gao et ah, 1999; Kuiken et ah, 

2006). 

Many studies that investigate trade-offs associated with host adaptation have been 

conducted using viral populations (Crill et ah, 2000; Duffy et ah, 2006; Ebert, 1998). 

Crill et ah (2000) investigated the effects of host adaptation of the bacteriophage (|)X174. 

In this study, replicate populations of <|)X174 were allowed to adapt alternately to a 

Salmonella bacterial host and an Escherichia bacterial host (Crill et ah, 2000). Using 

individual growth rates to represent fitness, they found that adaptation to the Salmonella 

host resulted in a decreased ability to grow in the Escherichia host, indicating a trade-off 

associated with host adaptation. They subsequently identified that mutations in the major 

capsid protein responsible for recognition and attachment to host cells resulted in the 
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observed decrease in growth rate in Escherichia (Crill et al, 2000). These mutations 

were also responsible for the fitness increase in the selective host (Crill et al., 2000). 

Surprisingly, adaptation to the Escherichia host did not significantly affect growth of 

(|)X174 in the Salmonella host (Crill et al, 2000). This asymmetry is puzzling and 

demonstrates the importance of investigating viral host barriers and its implications in 

viral attenuation. 

Duffy et al. (2006) explored the consequences of host adaptation in the 

bacteriophage §6. Thirty mutants of <|>6 with expanded host range were isolated from 

populations of virus growing on lawns of the original host, Pseudomonas syringae pv. 

phaseolicola (Duffy et al, 2006). These mutants were able to infect 15 other 

Pseudomonas strains but showed a significant growth defect in the original host when 

compared to the ancestral clone (Duffy et al, 2006). Conversely, the ancestral clone 

showed a poor ability to infect the 15 other Pseudomonas strains but was more fit than 

any of the mutants in the original host (Duffy et al, 2006). Therefore, there is a trade-off 

associated with specific host adaptation: a narrow host range. 

Trade-offs associated with host adaptation are well studied in viral populations, 

but do these same patterns exist when bacterial populations become adapted to a specific 

host? Studies have shown that there are trade-offs associated with niche adaptation, but 

are there similar patterns associated with host adaptation? These questions and others 

were addressed during this study. 
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Research Goals and Objectives 

My research focused on examining the effects of host adaptation on growth in an 

alternative host. Specifically, I used experimental evolution to adapt B. cenocepacia 

HI2424 to an Allium cepa onion model and characterized subsequent decreases in 

virulence in a C. elegans infection model. I used experimental evolution because it 

remains an effective approach for studying phenotypes associated with adaptation to a 

specific host, as opposed to other methods that involve heavy interference by the 

researcher such as a candidate gene approach (Cooper, 2007). By allowing the onion 

environment to exert selective pressures on bacterial populations, any changes occurring 

during the experiment are the direct result of adaptation in that environment (Cooper, 

2007). Bacteria are ideal candidates for experimental evolution mostly due to the easy 

construction of a frozen fossil record. The fossil record allows the investigator to 

examine changes in adaptation and genetic profiles over time, a benefit that is lacking 

when examining higher organisms' fossil records (Cooper, 2007; Lenski et al, 1991). 

Our chosen strain, B. cenocepacia HI2424, was recovered in upstate New York 

from agricultural soil as a normal member of the soil microbial community. 

Macrorestriction digestion with pulsed-field gel electrophoresis and multilocus sequence 

typing classified this isolate as belonging to the PHDC strain lineage within the species 

B. cenocepacia (LiPuma et al., 2002). This strain, named for its initial identification as 

the cause of an outbreak in the Philadelphia-DC area of the United States, is widely 

distributed as a human CF pathogen in 24 US states and parts of Europe (LiPuma et al, 

2002). In addition to its relevant strain characterization, the species B. cenocepacia is the 
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Bcc species most often recovered from the lungs of CF patients (Coenye and LiPuma, 

2002). 

In addition to its clinical relevance, B. cenocepacia HI2424 displays an ability to 

initially infect both animal and plant hosts. In preliminary experiments, this strain 

macerated plant tissue in an onion half model and kill nematodes in a liquid C. elegans 

chronic model of infection (both models are described fully in Chapter 3). These 

characteristics make this strain a good candidate for further investigation. 

Using experimental evolution modeled after Lenski et al (1991), I hypothesized 

that adaptation of B. cenocepacia to a specific host environment would compromise 

virulence in an alternative host environment (Figure 1.3). During this thesis, I addressed 

the following objectives: 

1. Design of neutral broad host range genetic markers for use in 

experimental evolution projects and other experiments that require 

stable genetic markers. 

2. Experimental evolution of B. cenocepacia HI2424 populations in a 

liquid onion model and quantification of adaptation to this host-

related environment. 

3. Examination of side effects associated with adaptation to the onion 

model, in particular, those related to virulence in the C. elegans 

liquid model of infection. 
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Figure 1.3: Diagram summarizing the stated hypothesis. As adaptation to the novel 
host, onions, increases, virulence in the alternative host, C. elegans, decreases. 
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CHAPTER II 

BROAD HOST RANGE MINI-TN7-BASED MARKING SYSTEMS FOR USE 
WITH BVRKHOLDERIA SPECIES AND EXPERIMENTAL EVOLUTION 

Introduction 

When marking bacteria that are to be grown for multiple generations, genetic 

tools that produce chromosomal insertions are preferred over methods that introduce 

plasmids. Some plasmids can be lost in the absence of antibiotic selection, whereas 

chromosomal insertions are stably maintained through many rounds of vertical 

transmission (Lambertson et al, 2004). In addition, high copy number plasmids can 

inhibit bacterial growth (Valenzula et al, 1996). Also, markers that avoid antibiotic 

resistance are highly preferred; many types of bacteria including Pseudomonas and 

Burkholderia species are already highly resistant to commonly-used antibiotics and it is 

necessary to avoid introducing extra resistance that could compromise future genetic 

studies (Choi et al, 2005; Hoang et al, 1998). Furthermore, studies have shown that 

during experimental evolution, the introduction of antibiotic resistance markers may 

interfere with the experiment throughout passaging procedures (Riley et al, 2001). 

Because head-to-head competitions are the preferred means of measuring performance of 

one population relative to another during experimental evolution, systems that introduce 

neutral mutations are especially preferred (Cooper, 2007). Lastly, a good marking 

system should result in phenotypes that allow for easy screening and detection (Lenski et 

al, 1991; Cooper, 2007). 
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Transposons have been instrumental for genetic manipulation of Gram negative 

bacteria and especially Tn7 transposable elements whose biology is well understood 

(Choi et al., 2005). Tn7 transposons are used to modify bacterial genomes and using 

Tn7s has provided researchers with many benefits (Choi et al, 2005). One benefit is that 

Tn7 transposons are effective in a wide range of bacteria including members of the 

genera Agrobacterium, Vibrio, Pseudomonas, Rhizobium, and Caulobacter (McKown et 

al, 1988). Another benefit to using Tn7 elements is that they can be delivered in target 

cells using suicide vectors, one containing the Tn7 element itself and the other containing 

the necessary transposase protein complex (Figure 2.1) (Choi et al, 2005). Suicide 

vectors are used to improve positive selection of transconjugants, due to the inability of 

these vectors to replicate in target organisms; after selecting for cells containing the Tn7 

element using antibiotic resistance, colonies that grow are ones that harbor a 

chromosomal insertion, and not a vector containing the Tn7 element (Choi et al, 2005). 

Lastly, a benefit to using Tn7 elements is that they are site-specific transposons and their 

mechanisms of insertion are well understood. 

Tn7 genetic elements insert site-specifically with high frequency at an attachment 

site termed the attTnl site (Figure 2.2) (Choi et al, 2005). This site is located 

downstream of a highly conserved gene encoding the essential glucosamine-6-phosphate 

synthase iglmS) (Choi et al, 2005). Tn7 transposons require portions of the 3' region of 

the glmS gene to insert, but do so without interrupting any open reading frames (Choi et 

al., 2005). In order for insertion to occur, Tn7 requires the Tn7 left and right ends, which 

are transposase binding sites measuring 150 base pairs (bp) and 90 bp, respectively 

(Hauer and Shapiro, 1984) (Figure 2.1). Tn7L and Tn7R sequences ensure that 
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Figure 2.1: Components required for Tn7 transposition. A) The Tn7 vector, pTn7-FRT, 
contains the following: required Tn7R and Tn7L recognition sites for chromosomal 
insertion, terminators To and Ti to prevent readthrough of upstream genes, FRT 
recognition sites required for Flp recombinase-mediated excision of the dhfr 
trimethoprim resistance cassette, a multiple cloning site (MCS) for insertion of the target 
gene into the vector, a bla gene conferring resistance to ampicillin, a A,-pir dependent 
R6K origin of replication, and an oriT to facilitate transfer during conjugation. B) The 
vector pTNS2 contains the following: four transposase genes required for transposition to 
occur (tnsA, tnsB, tnsC, and tnsD), a A,-pir dependant R6K origin of replication, and an 
oriT to facilitate transfer during conjugation. C) The Flp recombinase vector pSP-FlpTS 

contains the following: Fl ori(+) bacteriophage origin of replication, the cat gene which 
grants chloramphenicol resistance, a temperature sensitive origin of replication repTS that 
allows curing of the plasmid by incubation at 42°C, a flp gene encoding Flp recombinase, 
and an oriT origin of transfer to facilitate transfer during conjugation. 
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Figure 2.2: A model of Tn7 insertion into chromosomal DNA. Insertion of genes 
flanked by Tn7L and Tn7R transposase recognition sites occurs downstream of the highly 
conserved glmS gene at atflnl attachment sites. Addition of pSP-FlpTS results in 
expression of Flp and subsequent recognition of FRT sites flanking the dhfr cassette. Flp 
then removes the cassette and re-ligates the target chromosome. 

24 



transposons insert site-specifically and in a consistent orientation (Hauer and Shapiro, 

1984). One drawback to using Tn7 elements is that it is sensitive to target immunity; that 

is, if the target organism contains regions of the Tn7 left or right sequences at the attTn7 

attachment site as the result of previous insertion by another Tn7 element, the frequency 

of transposition is reduced 100-1000 fold (Stellwagen and Craig, 1997). 

There are two possible transposase complexes that can be used to mobilize Tn7 

elements. One complex, TnsABC+D encourages a high frequency of insertion at the 

attTn7 site specifically, while the other complex, TnsABC+E encourages a low frequency 

of insertion non-specifically throughout the genome and in conjugative plasmids 

(Stellwagen and Craig, 1997). The proteins TnsA and TnsB encode for transposases that 

recognize the Tn7 end sequences (Samovsky et ah, 1996). TnsAB together remove the 

Tn7 from the donor vector using double-stranded DNA breaks and join the exposed 

transposon ends to the chromosomal DNA within the target genome (Samovsky et ah, 

1996). TnsA acts like a type II restriction enzyme and requires interaction with TnsB, a 

member of the retroviral integrase superfamily, in order to facilitate DNA recognition 

and excision from the donor vector (Peters and Craig, 2001). TnsAB forms a complex 

with TnsC, an ATP-hydrolyzing protein that binds non-specifically to target DNA (Peters 

and Craig, 2001). In the presence of ATP and target site selecting proteins TnsD or 

TnsE, TnsC activates the transposase activity of TnsAB to allow insertion of Tn7 

elements (Bainton et ah, 1993). TnsD or TnsE is also responsible for recruitment of the 

TnsABC machinery to the target DNA (Bainton et ah, 1993). 

In this study, we modified mini-Tn7 vectors previously engineered by Choi et ah 

(2005) for use in experiments requiring a broad-host range genetic marker that avoids 
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antibiotic selection (Figure 2.1). Different Tn7 vectors were modified to include a (3-

galactosidase-encoding lacZ gene, a red fluorescent protein (RFP)-encoding mCherry 

gene, or a yellow fluorescent protein (YFP)-encoding Venus gene. The vector containing 

lacZ allows for easy screening of marked populations on 5-bromo-4-chloro-3-indolyl-(3-

D-galactopyranoside (X-gal). A lacZ marker is especially useful for experimental 

evolution projects because visualization of mixed evolved and ancestral populations can 

be achieved on a single agar surface. 

The vectors containing fluorescent proteins are useful for marking populations 

that can then be visualized using standard fluorescence readings, confocal scanning, or 

flow cytometry (Tomlin et ah, 2004). Since the excitation and emission wavelengths of 

PvFPs and YFPs are sufficiently different, detection of both proteins is achieved 

independently, making this system especially useful for study of mixed populations 

(Shaner et al., 2005). The mCherry RFP is the best general purpose red monomer owing 

to its high photostability and low toxicity (Shaner et al., 2005). The Venus YFP is a weak 

dimer, rendering it less toxic than other dimers or tetramers and is also UV excitable 

(Shaner et al., 2005). Both have been modified to fold tightly at 37°C, a common optimal 

temperature among human pathogens (Shaner et al., 2005). Fluorescing bacteria are 

useful for studying the structures of biofilms in mixed or single species populations and 

for studying infections of model host organisms (Kothe et ah, 2003; Tomlin et al., 2004). 

Also, marking with fluorescence holds an advantage over marking with lacZ because the 

methods used to detect fluorescence of individual cells are more sensitive. 

We also included the use of FRT excision sites flanking the antibiotic cassettes 

that were specifically engineered by Hoang et al. (1997) to allow for use of the yeast Flp 
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recombinase excision system (Figure 2.1). This allows for insertion of Tn7 elements 

driven by antibiotic selection and subsequent removal of the antibiotic cassette by a sacB 

curable vector containing Flp recombinase. Flp recombinase is a site-specific 

recombinase that recognizes a 13 bp site in a 65 nucleotide region termed an FRT site 

(Hoang et al., 1997). Because sucrose curing cannot be used in any bacterial background 

that contains an endogenous sacB gene, the Flp recombinase vector was modified so that 

curing could be accomplished using temperature sensitivity (S. R. Poltak, unpublished 

data) (Figure 2.1). 

Methods 

Bacterial Strains, Media and Growth Conditions 

Strains and plasmids are listed in Table 2.1. Burkholderia species were grown in 

Luria-Bertani broth (LB: 1% tryptone, 0.5% yeast extract, 1% NaCl) at 32°C with orbital 

shaking at 130 rpm. E. coli was grown similarly at 37°C with orbital shaking. Antibiotic 

concentrations for B. cenocepacia were 100 ug/ml trimethoprim (Tp), and 30 ug/ml 

polymyxin B sulfate (PMB) in LB. Antibiotic concentrations for E. coli were 50 ug/ml 

Tp, 50 |ig/ml kanamycin (Km), and 50 |ng/ml ampicillin (Ap) in LB. For P-galactosidase 

screening, 0.04% 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-gal) was added 

to appropriate media. For red fluorescent protein (RFP) screening, fluorescence was read 

on a Tecan Infinite 200 multimode scanning plate reader with an excitation wavelength 

of 587 nm and an emission wavelength of 610 nm (Shaner et al, 2005). For yellow 

fluorescent protein (YFP) screening, fluorescence was read with an excitation wavelength 

of 515 nm and an emission wavelength of 528 nm (Shaner et al., 2005). 
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Table 2.1. 

Bacterial strains used and plasmid vectors derived in this study 
Strain Description Source 

E. coli strains: 

DH5a 

DH5aA,pir 

F- RecAl endAl hsdRi7 supE44 thi-1 gyrA96 relAl 
A(argF-lacZYA) U169 ^801acZA Ml 5 X-. 

F- RecAl endAl hsdRi7 supE44 thi-1 gyrA96 relAl 
A(argF-lacZYA) U169 ^801acZA M15 X- with ^pir. 

E. cloni 10G F 'mcrA A(mrr-hsdRMS-mcrBC) endAl recAl 
q>80dlacZAMl5MacX74araDl39A(ara,leu)7697 

galU galK rpsL nupGX ton A . 

K12 MG1655 F- lambda- ilvG- rJb-50 rph-l; derived 
from W1485. 

B. cenocepacia Natural soil isolate recovered from agricultural soil 
HI2424 

Plasmids: 

pFTPl 

pUC18 
R6KT-
mini-Tn7T 

pTn7-FTP 

pcrSMART 

pcrSMART 
lacZ 

pCELacZ 

pHC02 

in upstate NY, USA; PMB*. 

Source of Tp antibiotic resistance cassette flanked 
by FRT recognition sites. 

ApR; R6K replicon; oriT origin of transfer; contains 
Tn7 mini transposable element. 

ApR; TpR; derived from pUC18R6KT-mini-Tn7T 

KmR; pUC origin of replication; contains blunt 
cloning site 

KmR; derived from pcrSMART; contains lacZ gene 
with pLac promoter amplified from E. coli K12. 

ApR; TpR; contains lacZ gene f 
lacZ; derived from pTn7-FTP. 

KmR; ApR; pUC origin of repli 
promoterless mCherry RFP; source of pmHC02. 

ApR; TpR; contains lacZ gene from pcrSMART 

KmR; ApR; pUC origin of replication; contains 

Gibco-BRL, Inc. 

Gibco-BRL, Inc. 

Lucigen 

Laboratory 
stock 

Laboratory 
stock 

Choi etal, 2005 

Choi et ah, 2005 

This study 

Lucigen 

This study 

This study 

Shaner et al., 
2005 
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Table 2.1. continued 

pHC04 KmR; ApR; pUC origin of replication; contains 
promoterless Venus YFP; source of pmHC04. 

pmHC02 KmR; ApR; derived from pHC02; contains a modified 
RBS that matches the RBS oiarecA gene from 
B. cenocepacia HI2424. 

pmHC04 KmR; ApR; derived from pHC04; contains a modified 
RBS that matches the RBS ofarecA gene from 
B. cenocepacia HI2424. 

pcrmLRFP KmR; derived from pcrSMART; contains modified 
RBS and mCherry RFP expressed off a pLac promoter. 

pcrmLYFP KmR; derived from pcrSMART; contains modified 
RBS and Venus YFP expressed off a pLac promoter. 

pCERFP ApR; TpR; derived from pTn7-FTP; contains 
modified RBS, and mCherry RFP expressed off a pLac 
promoter. 

pCEYFP ApR; TpR; derived from pTn7-FTP; contains 
modified RBS, and Venus YFP expressed off a pLac 
promoter. 

pTNS2 ApR; R6K replicon; encodes the TnsABC+D 
transposition pathway. 

pEVS 104 KmR; F+ conjugal helper plasmid. 

Shaner et al., 
2005 

This study 

This study 

This study 

This study 

This study 

This study 

Choi et al, 2005 

Stabb et al, 
2002 
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Plasmid and Transposon Constructions 

Standard molecular methods were used throughout (Lund et al, 1996; Sambrook 

et al., 1989). Cloning using polymerase chain reaction (PCR) was done using Tag DNA 

polymerase (5 Prime) according to manufacturer's protocols. The oligonucleotide 

primers (Integrated DNA Technologies) used for cloning are listed in Table 2.2. All 

plasmids were isolated from bacterial cells using the Qiaprep Spin Miniprep kit (Qiagen) 

according to manufacturer's protocols. All restriction enzymes were from New England 

Biolabs (NEB) and restriction digest protocols were followed according to 

manufacturer's instructions (NEB). 

To confer Tp resistance to bacteria harboring a Tn7 vector, I derived pTn7-FTP 

from pFTPl and pUC18 R6KT-mini-Tn7T (Figure 2.1). The Tp cassette with flanking 

FRT recognition sites (860 bp) was removed from pFTPl using theXmal sites on either 

side of the desired region and cloned into the Xmal site of pUC18 R6KT-mini-Tn7T 

using T4 DNA ligase (NEB) (Figure 2.1). Details, including the source, for pFTPl are 

listed in Table 2.1. The resulting ligation mix was transformed into chemically 

competent E. coli DH5cc A, pir and TpR clones were cultured. Post culturing, the plasmids 

were isolated and the insertion was verified by cutting with Xmal; the DNA fragments 

were separated on a 1.2% agarose gel and the presence of a 860 bp band was detected. 

To clone lacZ from E. coli, I derived pcrSMART lacZ. The lacZ gene with the 

pLac promoter (3.0 kb) was PCR-amplified from E. coli K12 (genome sequence available 

online at the DOE Joint Genome Institute: http://www.jgi.doe.gov) using the gene-

specific primers EcolilacZ F and EcolilacZ R. Then, I cloned lacZ into pcrSMART® 

(Lucigen) to produce pcrSMART lacZ according to manufacturer's protocols. 
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.2. 

Specific gene primers used in this study 
Primer Name Sequence 

EcolilacZ F 

EcolilacZ R 

FP mutation F 

FP mutation R 

HCplacF 

HCplacR 

HCplacF Seq 

5' ATTTCGAAATGCTTCCGGCTCGTATGTTGTGT 

5' ATTGTACAACATGGCCTGCCCGGTTATTATTA 

5' ACCTCTAGAAGGGAAGGACCCCGAATGGTG 

5' CACCATTCGGGGTCCTTCCCTTCTAGAGGT 

5' CAGGTTTCCCGACTG 

5' GCCAGTGTGATGGAT 

5' GCAGCGAGTCAGTGAGCG 



Confirmation of the lacZ insertion was accomplished by cutting pcrSMART lacZ with 

BamHl and separating fragments on a 1.2% agarose gel; the presence of a 3.0 kb band 

was detected. 

To construct a Tn7 vector that would allow insertion of lacZ, I cloned the lacZ 

gene from pcrSMART lacZ into pTn7-FTP to produce pCElacZ by the following 

methods (Figure 2.3). The lacZ gene (3.0 kb) was cut from pcrSMART lacZ using EcoRI 

sites that flanked the desired region and cloned into the EcoKL site of pTn7-FTP using T4 

DNA ligase (NEB). Confirmation of the lacZ insertion was done by cutting pCElacZ 

with EcoRI and separating fragments on a 1.2% agarose gel; the presence of a 3.0 kb 

band was detected. 

In order to improve binding efficiency by Burkholderia ribosomes, I generated 

pmHC02 and pmHC04 by mutating the RBS upstream of each fluorescent protein-

encoding gene on pHC02 and pHC04. The RBSs were mutated using the Qiagen 

QuikChange® Mutagenesis kit and mutagenic primers FPmutation F and FPmutation R 

according to manufacturer's protocols. Details, including the sources, for pHC02 and 

pHC04 are listed in Table 2.1. The pHC02 and pHC04 RBSs were mutated to match the 

RBS found upstream of the recA gene in B. cenocepacia HI2424 (genome sequence 

available online at the DOE Joint Genome Institute: http://www.jgi.doe.gov). 

Confirmation of the mutation was accomplished at the Hubbard Genome Center 

Sequencing Core Facility (Durham NH) according to their standard sequencing protocols 

(available online: http://dnacore.unh.edu) using the primer HCplacF Seq. 

To drive expression of the mCherry and Venus genes from a pLac promoter, I 

cloned the lac promoter with the mutated RBS and fluorescent protein-encoding gene 
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Figure 2.3: Vector map of pCElacZ, which contains a lacZ gene under control of its 
native promoter. Additionally, this vector contains required Tn7R and Tn7L recognition 
sites for proper chromosomal insertion, terminators To and Ti to prevent readthrough of 
upstream genes into the TpR dhfr gene, FRT recognition sites required for Flp 
recombinase-mediated excision of the dhfr trimethoprim resistance cassette, a bla gene 
conferring resistance to ampicillin, a A,-pir dependent R6K origin of replication, and an 
oriT to facilitate transfer during conjugation. 
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from pmHC02 and pmHC04 into pcrSMART vectors using the following methods. The 

lac promoter with the mutated RBS and fluorescent protein encoding gene was PCR-

amplified (0.8 kb) using the gene-specific primers HCplacF and HCplac R. The 

amplicons were cloned into pcrSMART® according to manufacturer's protocols to 

generate pcrmLRFP and pcrmLYFP (Figure 2.4). Confirmation of RFP and YFP 

insertions was accomplished by measuring fluorescence of bacterial cultures harboring 

the vectors in a 96-well plate using a Tecan Infinite 200 multimode scanning plate reader 

(Shaner*tfa/.,2005). 

To improve efficiency of further cloning procedures, I removed the restriction 

digest sites (Hindlll-Kpnl-SacI-BamHl-Spel) between the pLac promoter and the open 

reading frames encoding a fluorescent protein on the plasmids pcrmLRFP and 

pcrmLYFP. The plasmids pcrmLRFP and pcrmLYFP were cut with Hindlll and Spel to 

linearize the vectors. The 3' DNA overhangs were removed using DNA polymerase I, 

large (Klenow) fragment according to manufacturer's protocols (NEB) and the resulting 

blunt-ended vectors were self-ligated using T4 DNA ligase (NEB). The resulting ligation 

mixes were transformed into chemically competent E. coli DH5a X pir and KmR clones 

were cultured. Post culturing, the plasmids were isolated and analyzed by restriction 

digest to verify the removal of the Hindlll, Kpnl, Sacl, BamRl, and Spel sites. 

In order to construct a Tn7 vector that would allow insertion of mCherry and 

Venus, I derived pCERFP and pCEYFP (Figure 2.5). pcrmLRFP, and pcrmLYFP were 

cut with EcoRV to remove the desired region (pLac promoter, AGGA RBS and 

fluorescent protein coding gene) and the 0.8 kb segment was blunt cloned into the EcoRY 

site on pTn7-FTP using T4 DNA ligase (NEB). The resulting ligation mix was 

34 



A) B) 

Figure 2.4: Vector maps of pcrmLRFP and pcrmLYFP. A) pcrmLRFP contains an 
mCherry RFP-expressing gene driven by a pLac promoter and a B. cenocepacia recA 
RBS. This vector also contains a KmR gene. B) pcrmLYFP contains a Venus YFP-
expressing gene driven by a pLac promoter and a B. cenocepacia recA RBS. This vector 
also contains a KmR gene. 
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Figure 2.5: Vector maps of pCERFP and pCEYFP. These vectors contain required Tn7R 
and Tn7L recognition sites for proper chromosomal insertion, terminators To and Ti to 
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prevent readthrough of upstream genes into the Tp dhfr gene, FRT recognition sites 
required for Flp recombinase-mediated excision of the dhfr trimethoprim resistance 
cassette, a bla gene conferring resistance to ampicillin, a X-pir dependent R6K origin of 
replication, and an oriT to facilitate transfer during conjugation. A) pCERFP contains an 
mCherry RFP gene under the control of a pLac promoter. B) pCEYFP contains a Venus 
YFP gene under the control of a pLac promoter. 

transformed into chemically competent E. coli DH5a X pir and TpR clones were cultured. 

Post culturing, the plasmids were isolated and analyzed by restriction digest to verify the 

insertion. Plasmids were cut with EcoRY and fragments were separated on a 1.2% 

agarose gel; a 0.8 kb fragment was detected. The plasmids were also analyzed using 

fluorescence readings (Shaner et al, 2005). The Tn7 L and Tn7 R sites on the pCERFP 

and pCEYFP, which are necessary for transposition to occur were sequenced using the 

Tn7 Forward and Reverse Sequencing primers. Sequencing of the completed vectors was 

performed at the Hubbard Genome Center Sequencing Core Facility (Durham NH) 

according to their standard sequencing protocols. 

Delivery and Confirmation of Transposition 

To mark B. cenocepacia \i\2A2A, the Tn7-FTP derived vectors pCElacZ, 

pCERFP, and pCEYFP were individually delivered into B. cenocepacia HI2424 by four-

parental conjugation as previously described (Choi et al, 2006). Each conjugation 

procedure required a Tn7 vector (pCElacZ, pCERFP, or pCEYFP), the transposase donor 

pTNS2, the F pilus-expressing helper vector pEVS104 and the B. cenocepacia HI2424 

recipient. The bacterial helper and donors and were cultured overnight in LB 

supplemented with the appropriate antibiotic (E. coli DH5a X,pir/ pTNS2 in Ap; E. coli 

DH5a Apir/ pEVS104 in Km; E. coli DH5a Xpir/ Tn7-FTP derived vectors in Tp). B. 
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cenocepacia HI2424 was also cultured overnight but in the absence of antibiotics. Equal 

amounts of each culture were combined and washed twice in 10 mM MgSC>4. The 

mixture was spotted onto a 0.45 urn nitrocellulose filter on an LB agar plate (2% 

tryptone, 1% yeast extract, 2% NaCI, 1.6% agar) supplemented with 10 mM MgS04. 

Post incubation, the mixture was plated on LB agar plates containing 100 |-ig/ml Tp and 

15 ug/ml PMB. After 48 hours of incubation, TpR colonies were picked and 

subsequently screened for the Tn7 insertion by using blue/white screening on X-gal to 

detect a lacZ insertion or by using fluorescence to detect a RFP or YFP insertion. 

To mark E. coli DH5oc, the Tn7-FTP derived vectors were delivered into 

chemically competent E. coli DH5oc X pir using standard procedures (Sambrook et ah, 

1989). Briefly, equal concentrations (50 ng) of pTNS2 and the Tn7-FTP derived vector 

(pCElacZ, pCERFP, or pCEYFP) were heat shock transformed into E. coli DH5a X,pir 

and cell mixtures were plated on LB agar containing Tp. TpR colonies were picked and 

subsequently screened for the Tn7 insertion by using blue/white screening on X-gal to 

detect a lacZ insertion) or by using fluorescence to detect a RFP or YFP insertion. 

Verification of Neutrality 

To test if insertions by Tn7 transposons derived in this study were neutral, fitness 

of B. cenocepacia Lac+ relative to their Lac" counterparts was estimated as outlined 

previously (Lenski et ah, 1991). Briefly, a Lac+ single derivative and a Lac" single 

derivative were recovered from a frozen state and individually acclimated to LB broth. 

Each Lac+ clone was combined with its oppositely-marked Lac" clone in a 1:1 ratio and 

allowed to grow in LB broth for 24 hours. Initial and final densities (colony-forming 
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units/ml or CFU/ml) of the two competitors were calculated by plating diluted samples 

on tryptic soy (T-Soy: 1.5% tryptic soy, 0.75% agar) containing 0.04%> X-gal, which 

distinguished them by their (3-galactosidase encoding gene marker lacZ. The net growth 

of each competitor was determined colony counts and the relative fitness (Wy) of the 

Lac+ clones was expressed as the log-ratio of their realized growth over one day using the 

following equation: 

Wij = ln[Ni(l)/Ni(0)] 

ln[Nj(l)/Nj(0) 

A relative fitness ratio close to one (±1%) was considered neutral. 

Results 

Vector Construction 

In this study, I constructed three suicide mini-Tn7 transposon vectors from the 

source vector pTn7-FTP that contain the X-pir dependent R6K origin of replication. The 

three vectors pCElacZ, pCERFP, and pCEYFP require the pir protein for maintenance as 

a replicating plasmid in an E. coli background (Figures 2.3 and 2.5). Movement of the 

vectors into host backgrounds that do not contain the pir gene results in loss of the vector 

through subsequent cell doublings. Therefore, clones exhibiting the phenotypes granted 

by the Tn7 vectors are the result of chromosomal insertions of the plasmid and not a 

maintained vector. 

The vectors pCElacZ, pCERFP, and pCEYFP also contain oriT origins of 

transfer, which allow for movement of these vectors by conjugative mating procedures, 

rather than by electroporation, which is limiting due to its mutagenic properties (Figures 
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2.3 and 2.5) (Myers and Tisa, 2003). Also, electroporation of pathogens in particular is 

discouraged due to the aerosolization of cells during this procedure (Choi et al, 2006). 

The first vector derived from pTn7-FTP was pCElacZ (Figure 2.3). This vector 

contains a repressible P-galactosidase encoding gene, lacZ that was originally amplified 

from the E. coli K12 genome using specific primers (Table 2.2). Expression of this gene 

is driven by the native E. coli pLac promoter. P-galactosidase is commonly used in 

molecular biological techniques due to its ease of quantification and phenotypic 

screening. When P-galactosidase cleaves the molecule X-gal, a blue color is seen in 

colonies harboring the lacZ gene. Bacteria harboring the inserted pCElacZ vector contain 

the lacZ gene as well as the dhfr trimethoprim-resistance cassette flanked by FRT 

recognition sites. Subsequent removal of antibiotic resistance can be accomplished using 

the pSP-FlpTS vector, which encodes Flp recombinase. Flp recombinase recognizes the 

FRT sites, excises the dhfr cassette, and rejoins the chromosomal DNA. Following 

recombination, pSP-FlpTS can be cured using temperature sensitivity (S. R. Poltak, 

unpublished data). 

Two additional vectors were derived from pTn7-FTP to contain genes expressing 

fluorescent proteins. The vector pCERFP contains a mCherry red fluorescent protein 

(RFP) and pCEYFP contains a Venus yellow fluorescent protein (YFP) and both are 

under control of a repressible pLac promoter and a B. cenocepacia recA ribosomal 

binding site (RBS) to improve expression in our strain. Once inserted into the target 

bacterial chromosome, the fluorescent proteins can be detected using wavelengths 

previously described (Shaner et al, 2005). Since the excitation and emission ranges of 

the RFP and YFP used in this study are sufficiently separated, oppositely marked 
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bacterial populations can be detected in a mixed culture, a requirement for many 

experimental evolution procedures and other competition experiments. 

Delivery of mini-Tn7 Vectors 

Delivery of vectors derived from pUC18 R6KT mini-Tn7T into a broad range of 

Gram (-) bacteria by conjugal mating procedures and chemical transformation was 

documented previously (Choi et at, 2006; Choi et at, 2005). In this study, the mini-Tn7 

vector pCElacZ (Figure 2.3) and the transposase helper vector pTNS2 (Figure 2.1) were 

co-delivered into E. coli DH5cc by chemical transformation. Delivery by this method 

yielded an average efficiency of ~300-400 putative transformants per 106 cells and 

verification of insertion was easily accomplished by plating transformants on LB agar 

containing trimethoprim and X-gal. The novelty of these derived mini-Tn7 vectors lies in 

their ability to insert genes in a large range of Gram (-) bacteria. With this in mind, I 

tested the Tn7 insertion ability of pCElacZ in B. cenocepacia. Traditional methods for 

chemical and electrical competence cannot be used on this bacterial species, making it 

notoriously difficult to manipulate (Choi et ah, 2005). Instead, four-parental conjugal 

mating of B. cenocepacia HI2424 was used by mixing this target species in an equal ratio 

(1:1:1:1) with E. coli harboring the transposase helper pTNS2, E. coli harboring the mini-

Tn7 vector pCElacZ, and E.coli harboring a conjugative helper plasmid pEVS104 that 

expresses pilus formation genes. This mating procedure yielded ~50 putative 

transformants per 106 cells. The delivery of pCERFP and pCEYFP into a host bacterium 

was not conducted during this study. 

41 



Verification of Neutral Insertions 

Many researchers not only require their marking systems to be versatile, but may 

also require them to mark genomes without disrupting endogenous genes (Cooper, 2007). 

The lacZ-dhfr insertion delivered by CElacZ into B. cenocepacia HI2424 was examined 

for neutrality by allowing a head-to-head competition between this genotype and the 

wildtype. Realized growth of the competing bacterial populations was assessed by 

analyzing colony counts on LB agar plates containing X-gal at 0 hours and at 24 hours. 

To represent fitness, the colony counts were log transformed and represented as a ratio of 

marked to unmarked (Lenski et ah, 1991). A ratio of 1.0 represents equal fitness of the 

two competitors (Lenski et ah, 1991). Results of this analysis showed a neutral fitness 

ratio of lacZ-dhfr marked B. cenocepacia to unmarked B. cenocepacia in LB, yielding an 

average fitness of 1.008 (± 0.053 standard deviation). 

Discussion 

The Tn7 system designed in this study is useful for marking bacterial genomes for 

many reasons. Because the vectors derived in this study mark by Tn7 insertion, they not 

only insert site-specifically downstream of an evolutionarily conserved gene, but results 

of competition assays between marked and unmarked bacteria also show that the 

insertions do not affect fitness. Additionally, detection of P-galactosidase, RFP, and YFP 

proteins were rapid and easy. Therefore, this particular system provides a useful method 

for marking bacterial backgrounds without disrupting endogenous genes. Because the 

three Tn7-derived vectors cannot be replicated outside a X pir background due to the R6K 

origin of replication, easier screening of bacteria harboring a Tn7 insertion can occur, 
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resulting in a higher recovery of desired clones. The oriT origin of transfer on each 

vector facilitates easy delivery of all mini-Tn7 and transposase helper vectors. Though 

not performed in this study, other researchers have shown that Flp-mediated excision by 

pSP-FlpTS resulted in marked genomes lacking the presence of the dhfr antibiotic 

resistance cassette (S. R. Poltak, unpublished data). Lastly, insertion of these vectors has 

been documented as stable, and insertion by pCElacZ in particular was shown to be 

stable for up to 500 generations of bacterial passages (see Chapter 3 of this thesis). These 

general features make this system ideal for use in experimental evolution procedures. 

While pCElacZ insertions allow for useful detection of marked bacteria using 

traditional plating methods, a more sensitive detection method may be necessary 

depending on the demands of the experiment being conducted. The use of fluorescent 

proteins for marking bacterial genomes has been widely used in molecular biology and 

microbiology (Shaner et ah, 2005; Tomlin et al., 2004). By marking bacteria with the 

two Tn7-dervied vectors that contain two fluorescent proteins with non-overlapping 

spectral ranges, pCERFP and pCEYFP, we can conduct mixed population competition 

experiments, experimental evolution studies, in vivo biofilm analysis, or in vivo co-

infection studies. 

The Tn7 insertion system described in this study exhibits many useful qualities 

for genetically-marking bacterial populations. However, it should be noted that there are 

a few caveats when using Tn7-based marking systems. First, target immunity caused by 

previous acquisition of Tn7 transposons can prevent further insertion by the system 

described in this study. Presence of Tn7R and L recognition sites in this region have 

been shown to prevent further insertion of Tn7 elements (Stellwagen and Craig, 1997). It 
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is advisable to examine the genomic content downstream of the glmS gene in the desired 

target genome before using the system described in this study (Stellwagen and Craig, 

1997). Second, the presence of multiple glmS genes in a bacterial genome can lead to 

multiple Tn7 insertions rather than a single insertion when using this system; therefore, it 

is advisable to check target bacterial genomes for the presence of multiple glmS genes 

(Choi et ah, 2005). If multiple glmS genes are present, this system can still be used as 

long as a single insertion can be verified by sequencing downstream of each glmS gene in 

the positively-marked bacterial genome. The location of the lacZ gene that was inserted 

into B. cenocepacia HI2424 during this study was not confirmed because it did not affect 

the fitness of bacteria. Yet, because B. cenocepacia HI2424 contains multiple glmS sites, 

future work will include identification of the lacZ insertion in this bacteria. 

Despite a few minor limitations, this Tn7-based marking system offers new and 

improved methods for inserting genetic material into a genome. This Tn7 system will 

serve as a valuable set of tools for researchers working with difficult-to-manipulate 

bacteria. 
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CHAPTER III 

EXPERIMENTAL EVOLUTION OF BURKHOLDERIA CENOCEPACIA TO A 
NOVEL HOST, ALLIUM CEPA, AND ITS EFFECTS ON VIRULENCE IN AN 

ALTERNATIVE HOST. 

Introduction 

The study of how parasites adapt to hosts is a topic of increasing interest among 

epidemiologists, agricultural biologists, ecologists, and evolutionary biologists. Some 

microbial species, such as Pseudomonas and Burkholderia species, show the ability to 

infect a wide variety of hosts, whereas others, such as Mycobacterium leprae, have a far 

more specific host range (Coenye and Vandamme, 2003; Cole et al, 2001; Rahme et al, 

1995; Tan et al, 1999). Studies of evolving viral populations have demonstrated 

substantial increases in host adaptation, yet trade-offs associated with adaptation of a 

viral population to a specific host have also been identified, including a decreased ability 

to infect a wide range of hosts (Crill et al., 2000; Duffy et al, 2006). Unfortunately, 

studies of how bacteria adapt to hosts and the consequences of adaptation are limited. 

Identifying the mechanisms by which bacterial pathogens adapt to new host 

environments would serve as a general model for understanding adaptation of various 

bacterial species, but would also increase understanding of how pathogens emerge. Some 

emergent pathogens persist in a wide range of plant and animal hosts, which suggests that 

the virulence factors needed to infect plants and animals are similar (Rahme et al., 1995). 

What allows some bacterial populations to infect a wide host range, while others infect 
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such a narrow one? Are there trade-offs associated with bacteria becoming adapted to a 

specific host? 

Members of the Burkholderia cepacia complex (Bcc), which are ubiquitous in the 

environment, were once used as biocontrol and bioremedial agents, yet due to the 

potentially pathogenic nature of some members, they are no longer eligible to serve this 

purpose on a large scale (Parke and Gurian-Sherman, 2001). In particular, B. 

cenocepacia, a species frequently recovered from environmental soil samples as a normal 

soil bacterium, is of interest due to its ability to cause infection in both plant hosts and 

human hosts (Carvalho et ah, 2007; Coenye et ah, 2001; Isles et ah, 1984). B. 

cenocepacia causes infection in the common yellow onion, Allium cepa, and closely 

related Burkholderia species were the cause of large commercial onion crop destruction 

(Gonzalez et al, 1997). B. cenocepacia onion infection is classified as a tissue rot 

characterized by yellow or brown discoloration, severe tissue maceration and odor 

(Burkholder, 1950). B. cepacia ATCC25416, which is the classified Bcc onion pathogen, 

breaks down onion tissue by secreting a pectate hydrolase enzyme (Cother and Dowling, 

1985; Gonzalez et al, 1997). This enzyme degrades pectin molecules located in the cell 

walls of plant tissue, subsequently compromising the structure of the plant cell (Ulrich, 

1975). B. cenocepacia does not produce pectate hydrolase, yet the bacteria still exhibits a 

plant tissue watersoaking (PTW) phenotype responsible for onion tissue maceration 

(Gonzalez et al, 1997). PTW appears as softening of tissue and secretion of liquid by the 

infected onion bulb (Gonzalez et ah, 1997). The PTW phenotype is attributed to plant-

cell cytotoxic effector molecules delivered by a type IV secretion system; the effector 

molecules themselves remain uncharacterized (Engledow et al, 2004). 
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B. cenocepacia can also cause serious infection in the lungs of cystic fibrosis (CF) 

patients (Coenye et ah, 2001; Isles et ah, 1984). B. cenocepacia infections called 

'cepacia syndrome' are highly contagious among CF patients and infections result in 

many negative impacts on an already poor quality of life, including longer hospital stays, 

removal from lung transplant lists, blood poisoning, and eventual death (Huang et ah, 

2001). Some putative virulence factors were identified as contributing to lung infection, 

which include phenotypes such as biofilm formation, adherence to tissue, motility, and 

extracellular toxin production delivered by type III secretion systems (Carvalho et ah, 

2007; Kothe et ah, 2003; Mahenthiralingam et ah, 2005). B. cenocepacia has been a 

threat to the CF community since its discovery and treatments for cepacia syndrome are 

limited due to an inherent high antibiotic resistance of the pathogen (Mahenthiralingam et 

ah, 2005). 

The mechanisms by which B. cenocepacia cause disease or adapt to human and 

plant hosts are unclear, despite the presence of many virulence genes that were identified 

by transposon mutagenesis or candidate gene knockout experiments (Carvalho et ah, 

2007; Mahenthiralingam et ah, 2005). These candidate gene approaches relied heavily 

on preconceptions that the chosen phenotypes under examination were required for 

virulence in human beings; yet, these were a priori assumptions based on the function of 

these same virulence factors in other plant and human respiratory pathogens (Huber et 

ah, 2004; Sokol et ah, 2003). It is unknown whether changes in these particular 

phenotypes were what allowed B. cenocepacia to infect plant and human hosts. In 

contrast to gene knockout experiments, the knowledge learned from experimental 

evolution offers a complementary alternative to finding the means by which pathogens 
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adapt to new hosts (Cooper, 2007). Experimental evolution involves growth and passage 

of a population through a controlled setting, allowing the environment to select for traits 

that are necessary to improve fitness in that setting (Cooper, 2007). Fitness, the key 

measurement of adaptation, is determined as the ratio of the growth rates of evolved 

versus ancestral populations in head-to-head competition experiments (Lenski et ah, 

1991). Because populations can be frozen throughout the experiment, characterization of 

differences occurring over time is possible, and the process, rather than the endpoint, of 

adaptation can be more thoroughly studied (Lenski et ah, 1991). Therefore, experimental 

evolution is an ideal method for characterizing mechanisms responsible for host 

adaptation in a laboratory setting. 

Using the soil isolate B. cenocepacia HI2424, a member of the clinically relevant 

PHDC strain lineage, we studied the extent to which host adaptation to the common 

yellow onion Allium cepa affected subsequent virulence in the alternative host 

Caenorhabditis elegans using experimental evolution. If adaptation to a specific host 

does not affect the host range of B. cenocepacia, as virulence in the onion increases, 

virulence in the worm should also increase. Yet, we predicted that adaptation of B. 

cenocepacia to an onion model would reduce virulence in the C. elegans worm host 

model due to trade-offs associated with becoming adapted to the onion. We also 

characterized several phenotypes associated with adaptation to the onion and changes in 

the nematode model to determine if there were common virulence factors for 

pathogenicity of onions and nematodes. 
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Methods 

Experimental Evolution 

Adaptation of B. cenocepacia to the onion host proceeded by serial transfer of 

bacterial populations, which has been outlined previously (Lenski et al, 1991). Briefly, 

six populations of B. cenocepacia HI2424 Lac and six populations of B. cenocepacia 

HI2424 Lac" were founded from a single clone and propagated daily by 1:100 dilution 

into 2% onion media (2% macerated sterile Allium cepa tissue, 40 mM Na2HP04, 20 mM 

KH2P04, 9 mM NaCl, 20 mM NH4C1,1 mM MgS04,1 mM CaCl2) at 32°C. The 

populations were maintained in this manner for 500 generations (75 days), with Iog2l00 

= -6.6 generations occurring per 24 hours; every 100 generations, 750 ul samples from 

each whole population were stored at -80°C. 

Fitness Assays 

Fitness of evolved strains relative to their ancestors was determined as outlined 

previously (Lenski et al, 1991). Briefly, 50 ul mixed samples of the evolved populations 

and the ancestral clones were recovered from a frozen state and allowed to grow in Luria-

Bertani broth (LB: 1% tryptone, 0.5% yeast extract, 1% NaCl) at 32°C with orbital 

shaking at 130 rpm. Following incubation, each population was diluted 1:100 into 2% 

onion media and grown for 24 hours at 32°C with orbital shaking at 130 rpm. This 

allowed the individual populations to acclimate to the host environment. Following 

incubation, each evolved population was combined with its oppositely-marked ancestor 

in a 1:1 ratio and allowed to grow in the conditions experienced by the evolving 

population during the evolution experiment. Initial and final densities (colony-forming 
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units/ml or CFU/ml) of the two competitors were calculated by plating diluted samples 

on tryptic soy (T-Soy) containing 0.04% X-gal that allowed them to be distinguished by 

their p-galactosidase encoding gene marker lacZ. The net growth of each competitor was 

determined from colony counts and the relative fitness (Wy) of the evolved populations 

(Nj) and the ancestral populations (Nj) was expressed as the log-ratio of their realized 

growth over one day: 

Wij = ln[Ni(l)/Ni(0)] 

ln[Nj(l)/Nj(0) 

Each experiment was performed with five replicates. A relative fitness ratio close to one 

(±1%) is considered neutral. 

Growth Curves 

Estimation of single population growth rates was determined by performing 

standard growth curves. Bacterial populations were recovered from a frozen state by 

growing 50 ul samples of each population in LB for 24 hours at 32°C with orbital 

shaking at 130 rpm. Following incubation, each population was diluted 1:100 into 2% 

onion media and grown for 24 hours at 32°C with orbital shaking at 130 rpm. Overnight 

cultures were then diluted 1 .TOO in fresh 2% onion media in five replicates in a 96-well 

plate. The plate was incubated at 32°C without shaking for 24 hours and optical density 

readings were taken at 600 nm (OD60o) every 15 minutes by a Tecan Infinite M200 plate 

reader. Maximum growth rate during log phase was calculated as the change in optical 

density over the change in time between hours 12 and 13 of exponential growth. 
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C. elegans Virulence Assays 

Estimation of bacterial virulence to C. elegans was performed using a liquid 

model of C. elegans infection. C. elegans strain N2 was recovered from a frozen state 

and propagated on nematode growth medium (NGM: 0.3% NaCl, 0.25% peptone, 1 mM 

MgS04,1 mM CaCl2, 5 ug/ml cholesterol, 25 mM KH2P04,1.5% agar, 12.5 ug/ml 

nystatin) seeded with E. coli OP50 as a food source. The worms were washed and lysed 

to harvest their eggs; the eggs were allowed to hatch and grow aseptically in C. elegans 

habitation and reproduction medium (CeHR: Clegg, E. D., LaPenotiere, H. F., French, D. 

Y. and Szilagyi, M., Abstr. East Coast Worm Meeting, abstr. 91,2002). Bacterial 

populations were recovered from a frozen state by growing 50 ul samples of each 

population in LB for 24 hours at 32°C with orbital shaking at 130 rpm. Following 

incubation, each population was diluted 1:100 into filtered 2% onion media and grown 

for 24 hours at 32°C with orbital shaking at 130 rpm. To begin the virulence assay, 

samples of approximately 100 synchronized worms were each placed in 3 wells of a 6-

well plate with 5 ml S medium (0.1 M NaCl, 5.7 mM K2HP04,44 mM KH2P04, 5 ug/ml 

cholesterol, 10 mM K3C6H5O7, 3 mM CaCl2, 3 mM MgS04, 1% trace metals solution 

(5.5 mM disodium EDTA, 4.5 mM FeS04, 1.6 mM MnCl2, 1.8 mM ZnS04, 0.1 mM 

CuS04)). Following a wash in IX phosphate-buffered saline (PBS: 0.8% NaCl, 0.14% 

Na2HP04; 0.02% KH2P04), 500 ul samples of each bacterial population previously 

grown in filtered 2% onion media and standardized to an OD6oo of 1.0 was added to the 

worms in S medium. The mixtures were incubated at 24°C for nine days. Percent worm 

death was monitored by counting the number of dead worms per 50 total worms. The 

OD600 of each mixture was monitored using a Tecan Infinite M200 plate reader. 
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Allium cepa Virulence Assays 

Whole onions were washed with 95% ethanol and cut in half with a sterile knife. 

Halves were dipped in an onion wash solution (40 mM Na2HPC<4,20 mM KH2PO4, 9 

mM NaCl, 20 mM NH4C1, 1 mM MgS04, 1 mM CaCl2,2 ng/ml nystatin, 2.5 (xg/ml 

gentamycin, 50 |a.g/ml tetracycline) and inoculated with 200 jul bacterial culture that was 

previously grown overnight in 2% onion media. The overnight cultures were diluted and 

plated on T-Soy containing 0.04% X-gal to determine CFU/ml of the initial inoculums. 

The halves were incubated at 32°C for 72 hours. Post incubation, the halves were diluted 

in onion wash, blended aseptically and plated on T-Soy containing 0.04% X-gal to 

determine the final CFU/ml. Virulence was calculated as a ratio of final CFU/ml to 

initial CFU/ml. 

Biofilm Assays 

Detection of biofilm formation was performed as outline previously (O'Toole et 

al, 1999). Bacterial populations were recovered from a frozen state by growing 50 ul 

samples of each population in LB for 24 hours at 32°C with orbital shaking at 130 rpm. 

Following incubation, each population was diluted 1:100 into filtered 2% onion media 

and grown for 24 hours at 32°C with orbital shaking at 130 rpm. Overnight cultures were 

then diluted 1:100 in fresh 2% onion media in five replicates in a 96-well plate and 

incubated for 24 hours at 32°C with orbital shaking at 130 rpm. OD600 readings were 

taken with a Tecan Infinite M200 plate reader before the planktonic cells were removed 

by inversion. The remaining biofilm was stained with 0.01% crystal violet and 

52 



subsequently destained in 95% ethanol. The optical density at 595 nm was recorded usng 

a Tecan Infinite M200 plate reader. 

Motility Assays 

Bacterial populations were recovered from a frozen state by growing 50 (j,l 

samples of each population in LB for 24 hours at 32°C with orbital shaking at 130 rpm. 

Following incubation, each population was diluted 1:100 into filtered 2% onion media 

and grown for 24 hours at 32°C with orbital shaking at 130 rpm. Bacterial swimming 

was detected by inoculating T-swim plates (0.3% agar, 1% tryptone, 0.5% NaCl) with 2 

ul of overnight bacterial cultures. The plates were incubated at 32°C for 18 hours before 

the radius of each swimming pattern was determined in millimeters. 

Vectorette PCR 

All primer sequences are found in Table 2.2. Vectorette PCR analysis was 

performed as previously outlined (Zhong et ah, 2004). Briefly, 25 \ig of genomic DNA 

was digested overnight with 10 units of Rsal in IX New England Biolabs (NEB) buffer 

#1 at 37°C. Digested fragments were ligated to 2 ul of vectorette bubble units in a 

reaction containing IX T4 DNA ligase reaction buffer (NEB) and 800 units T4 DNA 

ligase (NEB). The reaction was incubated for five cycles: 20°C for 1 hour, followed by 

incubation at 37°C for 30 minutes. PCR was then performed in 25 ul reactions 

containing 0.2 uM IS605 forward primer or 0.2 uM IS605 reverse primer, 0.2 uM 224 

vectorette primer, 2 ng DNA from ligation reaction, 1 mM dNTP mix, IX PCR enhancer 

(5 Prime), IX Taq buffer containing 15 mM Mg (5 Prime), and 2.5 units Tag DNA 
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polymerase (5 Prime). The PCR profile consisted of three cycles: l(x), 95°C for 15 

minutes; 35(x), 94°C for 30 seconds, 57°C for 1 minute and 30 seconds, 72°C for 2 

minutes; l(x), 72°C for 10 minutes. Products were separated in a 1.5% agarose gel at 60 

volts/cm for 120 minutes. 

Determination of Diet Breadth 

The total catabolic diet breadth of the Lac+ evolved populations and the Lac+ 

ancestor clone was determined as described previously (Cooper and Lenski, 2000). 

Briefly, bacterial populations were recovered from a frozen state by growing 50 JJ,1 

samples of each population in LB for 24 hours at 32°C with orbital shaking at 130 rpm. 

Following incubation, each population was diluted 1:100 into fresh LB and grown for 24 

hours at 32°C with orbital shaking at 130 rpm. Overnight cultures washed in IX PBS and 

standardized to an ODgoo of 1.0. Assays were run in three replicates for each population 

in Biolog (Hayward, California) ES plates by taking OD600 readings at 0,2,4, 6, 8, 10, 

12,24, and 48 hours using a Tecan Infinite M200 plate reader. The nine measurements 

for each well were integrated into one value that arithmetically approximates the area-

under-the-curve of catabolic function. The values for the three replicates were averaged 

to represent one value for each carbon source tested. These values were averaged across 

all Lac+ evolved populations to represent one value for each carbon source tested. These 

averages were summed to represent the total catabolic usage for the Lac+ evolved 

populations as one value. The same procedure was done for the Lac+ ancestor to 

represent the total catabolic usage as one value. 
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Phase Contrast Microscopy 

Stationary phase bacterial cultures were grown in Luria-Bertani (LB) broth and 3 

ul samples were smeared onto microscope slides containing an agar solution (2% agar, 

0.1 M NaCl, 10 mM Na2HPC>4, 1 mM KH2PO4). Mounts were visualized using standard 

light microscopy at 400x and lOOOx. 

Confocal Microscopy 

A single clone isolated from a Lac+ evolved population (D6) and a Lac+ ancestral 

clone were marked with pBBRl-RFP, a stably maintained plasmid expressing a DsRed 

fluorescent protein from a Lac promoter (Poltak, S. P., unpublished data). This marking 

proceeded by mating procedures previously described (Choi et al, 2006). Briefly, the 

recipient Burkholderia clones were each grown in LB broth for 24 hours at 32°C with 

orbital shaking at 130 rpm. Escherichia coli harboring the mating helper vector 

pEVS104, a plasmid expressing genes for pilus formation, was grown in LB broth 

supplemented with 50 |ig/ml kanamycin for 24 hours at 37°C with orbital shaking at 130 

rpm. E. coli harboring the donor vector pBBRl-RFP was grown in LB broth 

supplemented with 50 |ag/ml chloremphenicol (Cm) for 24 hours at 37°C with orbital 

shaking at 130 rpm. Equal amounts of each culture were combined and washed twice in 

10 mM MgSC«4. The mixture was spotted onto a 0.45 urn nitrocellulose filter on an LB 

agar plate (2% tryptone, 1% yeast extract, 2% NaCl, 1.6% agar) supplemented with 10 

mM MgSC<4. Post incubation, the mixture was plated on LB agar plates containing 100 

jag/ml Tp and 15 ug/ml PMB. After 48 hours of incubation, CmR colonies were picked 

and subsequently screened for pBBRl-RFP by detecting fluorescence at an excitation 
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wavelength of 515 nm and an emission wavelength of 528 nm using a Tecan Infinite 

M200 plate reader. Bacterial cultures positive for RFP expression were grown overnight 

in LB medium and were subsequently washed with IX PBS. The washed cultures were 

combined with C. elegans nematodes as described previously. After three days of 

incubation, sample nematodes were mounted on a glass slide containing agar medium. 

Mounts were visualized using confocal laser scanning microscopy at 200X magnification 

and 543 nm emission with a BP 560-615 nm filter. 

Results 

Direct Effects of Experimental Evolution 

In order to quantify the fitness changes experienced by the B. cenocepacia 

HI2424 evolved populations after 500 generations of serial passage in an onion host, 

head-to-head competition assays were performed. Mean fitness was represented as a 

logarithmic ratio of the evolved Malthusian parameter versus the ancestral Malthusian 

parameter. Deviations from a ratio of 1.0 indicated a change in fitness, with values less 

than 1.0 indicating reduced fitness and values greater than 1.0 showing in increase in 

fitness (Lenski et ah, 1991). The individual fitness ratios were plotted (Figure 3.1). 
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Figure 3.1: Competitive fitness data of evolved genotypes relative to their oppositely 
marked ancestor in 2% liquid onion medium. Error bars are ± 95% confidence intervals 
with d.f. = 4. A) Six B. cenocepacia YH2A24 Lac+ populations (labeled "D") evolved for 
500 generations in 2% liquid onion media were competed against their oppositely marked 
(Lac") ancestor in a 1:1 ratio. The genotype designated "wt" is the fitness of the 
oppositely marked ancestors competed against each other in a 1:1 ratio. All six evolved 
populations had significantly increased fitness in the selective environment when 
compared to wild-type (p < 0.05). B) Six B. cenocepacia HI2424 Lac" populations 
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(labeled "L") evolved for 500 generations in 2% liquid onion media were competed 
against their oppositely marked (Lac+) ancestor in a 1:1 ratio. Three of the six evolved 
populations had significantly increased fitness in the selective environment when 
compared to wild-type (p < 0.05). 

Mean fitness of nine populations significantly increased compared to the ancestral clone 

in the selective environment (Table 3.1 A). The average mean fitness for all 12 

populations was 1.551. A one-way analysis of variance (ANOVA) showed significant 

variation in fitness between populations (Table 3.1 B). 

Individual growth curve experiments were conducted on the evolved and ancestor 

populations in 2% liquid onion medium to determine any difference in maximum growth 

rate (Vmax) during logarithmic phase. Maximum growth rates of evolved and ancestor 

populations were plotted (Figure 3.2). Mean Vmax of 10 of 12 populations was 

significantly greater than the ancestor (Table 3.2 A). The average mean Vmax value for all 

12 populations was 0.0135 units/hour (AOptical density/ A hours). A one-way ANOVA 

was performed that supports an overall significant variation in Vmax across all 12 

populations (Table 3.2 B). 
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Table 3.1: Summary of statistical analysis performed on evolved and ancestral mean 
fitness values obtained from head-to-head competition assays. A) Mean fitness of 12 
evolved populations and the ancestral clone (WT), including 95% confidence intervals. 
B) One-way ANOVA with the dependent variable as fitness and the independent variable 
as population. 

A. 

Population 

Dl 
D2 
D3 
D4 
D5 
D6 
LI 
L2 
L3 
L4 
L5 
L6 
WT 

Mean Fitness 

1.7363 
1.8375 
2.0738 
1.8601 
1.6821 
1.6618 
1.2743 
1.2165 
1.3490 
1.2536 
1.2633 
1.2633 
1.0557 

95% Confidence Interval 

± 0.3458 
± 0.5373 
± 0.7232 
± 0.7091 
±0.3514 
±0.2819 
±0.1221 
±0.1259 
±0.1011 
±0.1513 
± 0.2050 
± 0.2050 
± 0.0685 

B. 

Source 

Population 

Replicate 

Total 

Sum of Squares 

6.791 

4.679 

11.470 

df 

12 

57 

69 

Mean Square 

0.566 

0.082 

Jig,. 

6.893 0.000 
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Table 3.2: Summary of statistical analysis performed on evolved and ancestral mean 
maximum growth rates obtained from individual growth curves. A) Mean growth rate 
during logarithmic phase of all 12 evolved populations and the ancestral clone (WT), 
including 95% confidence intervals. B) One-way ANOVA with the dependent variable 
as growth rate and the independent variable as population. 

Population 

LI 
L2 
L3 
L4 
L5 
L6 
Dl 
D2 
D3 
D4 
D5 
D6 
WT 

Mean VmaY 

0.0138 
0.0130 
0.0153 
0.0134 
0.0148 
0.0095 
0.0117 
0.0138 
0.0147 
0.0144 
0.0126 
0.0147 
0.0078 

95% Coi 

± 0.0023 
± 0.0024 
± 0.0059 
± 0.0019 
± 0.0043 
±0.0019 
±0.0031 
±0.0010 
± 0.0030 
±0.0013 
± 0.0023 
±0.0018 
±0.0018 

B. 

Source 

Population 

Replicate 

Total 

Sum of Sauares 

0.000 

0.000 

0.001 

df 

12 

57 

69 

Mean Sauare 

0.000 

0.000 

.Sis,. 

6.124 0.000 
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Virulence on intact onion halves was assessed to determine if an increase in 

fitness in 2% liquid onion medium correlated to an increase in growth yield on onion 

halves. Growth yield was represented as a ratio of final CFU/ml to initial CFU/ml as 

determined by traditional plate counting on agar surfaces. In one experiment, there was 

no significant difference in growth on onion halves between Lac+ evolved populations 

and ancestral populations (Figure 3.3). Yet, when this experiment was repeated, 

significant decreases in growth on the onion half were noted for all Lac+ evolved 

populations compared to the ancestor. Because repeated experimentation yielded 

inconsistent results between assays, virulence in onion halves as measured by growth rate 

could not be reliably determined (Figure 3.3). Tissue maceration and severe odor was 

observed for all evolved populations and also the ancestor clones; however, there was no 

qualitative difference detected in either tissue maceration or odor between evolved 

populations and the ancestor clones. 
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Figure 3.3: Two separate onion virulence assays of six Lac+ populations. Genotype 
designations refer to the bacterial population being tested, with wt (+) representing the 
Lac+ ancestral clone. Growth yield was measured as a ratio of Final CFU/ml to initial 
CFU/ml. A) Growth yield of all six populations did not differ significantly from wt. E) 
Growth yield of these same six populations showed a significant decrease compared to 
wt. Inconsistency between experiments prevented a reliable estimate of virulence on 
onion halves. 
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Correlated Effects of Experimental Evolution 

Four separate phenotypes involved with virulence in plant and animal models 

were examined to determine whether the evolved populations diverged from the ancestor. 

These were: (1) virulence in liquid C. elegans killing assays, (2) motility, (3) biofilm 

production, and (4) autoagglutination ability. Virulence in liquid C. elegans killing 

assays was quantified for all evolved and ancestor populations to determine if adaptation 

to the onion host model correlated to a decrease in virulence in the worm host model. 

Percent of worm death was standardized to log-transformed ODgoo readings and plotted 

against time (Figure 3.4 and Table 3.3). All evolved populations showed a significant 

decrease in worm killing ability when compared to the ability of the ancestral clone. A 

one-way ANOVA was performed that showed a significant amount of variation between 

populations in worm killing ability (Table 3.3). 

In order to detect any changes in bacterial motility, swimming ability through 

0.3% agar was tested individually for all twelve evolved populations, the Lac+ and Lac" 

ancestral clones, and a non-motile E. coli mutant. The radius of movement from a central 

point on the plates was measured in millimeters and plotted versus population (Figure 

3.5). All evolved populations significantly increased in motility compared to its clonal 

ancestor based on 95% confidence intervals. 
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Figure 3.4: Nematode killing in monoxenic liquid culture. Nematode virulence index 
was expressed as % worms killed divided by the exponent of the optical density. Error 
bars are ±95% confidence intervals (df = 2). A) Six B. cenocepacia HI2424 Lac+ 

populations evolved for 500 generations in 2% liquid onion medium were introduced to 
axenically-raised nematodes for 7 days. B) Six B. cenocepacia HI2424 Lac" populations 
evolved for 500 generations in 2% liquid onion medium were introduced to axenically-
raised nematodes for 7 days. All 12 evolved populations were less virulent than the 
HI2424 ancestor and supported worm reproduction. 
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Table 3.3: A) Mean nematode virulence index at 120 hours of all 12 evolved 
populations and the ancestral clone, (WT) including ± 95% confidence intervals (df = 2). 
The mean nematode virulence index was calculated as the percent of worm death divided 
by log-transformed OD600 readings. B) One-way ANOVA, with the dependent variable 
as nematode virulence index and the independent variable as population. 

A. 

Population Mean Virulence Index (120 hours) 95% Confidence Interval 

Dl 
D2 
D3 
D4 
D5 
D6 
LI 
L2 
L3 
L4 
L5 
L6 
WT 

B. 

25.7582 
26.1926 
13.8030 
10.0439 
10.4445 
9.7272 
15.8176 
13.0389 
10.9657 
34.4949 
22.1475 
12.4950 
46.5591 

± 15.5519 
± 4.4565 
± 6.0790 
± 3.7921 
± 4.7497 
± 6.8953 
± 2.1841 
± 10.1006 
± 2.1920 
± 8.7174 
± 4.1858 
± 6.8107 
± 7.7883 

Source Sum of Squares df Mean Square F Sig. 

Population 6635.952 12 552.996 33.335 0.000 

Replicate 481.081 29 16.589 

Total 7117.033 41 
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Figure 3.5: Radii of B. cenocepacia \{12<\24 and 12 onion-evolved populations motility 
through 0.3% swim agar. Genotype designations: L = Lac" evolved populations, D = 
Lac+ evolved populations, wt (+) = Lac+ ancestor clone, wt (-) = Lac" ancestor clone. All 
12 evolved populations showed a significant increase in motility compared to the 
ancestral clones. Error bars are ± 95% confidence intervals (df = 2). 



In order to detect any differences in biofilm forming ability, biofilm production 

for all evolved populations and the ancestral clones was assessed using the crystal violet 

assay. The amount of biofilm, measured as intensity of crystal violet, was plotted versus 

population designation (Figure 3.6). Six of the twelve evolved populations showed a 

significant increase in biofilm production when compared to the ancestral clones. 

In order to detect any change in autoagglutination ability of evolved populations 

compared to the ancestral clones, cellular clumping was qualitatively assessed using 

phase microscopy at 400X and 1000X magnifications. The representative images were 

taken of the D6 evolved population, a Lac+ population that showed a significant decrease 

in worm killing ability in liquid C. elegans killing assays (Figure 3.4 and Figure 3.7). All 

evolved populations showed a significant decrease in autoagglutination. To complement 

this finding, C. elegans nematodes were individually infected with an RFP-marked clone 

from the Lac+ evolved D6 population and an RFP-marked Lac+ ancestral clone for three 

days. Confocal laser scanning imagery was taken of sample worms from each of these 

populations using a (Figure 3.8 and Figure 3.9). The wild-type population ingested by 

the C. elegans worm was highly concentrated behind the pharynx in the grinder region of 

the worm (Figure 3.8). However, the D6 evolved clone ingested by the nematode 

showed a uniform distribution throughout the body of the nematode, which is suggestive 

of normal digestion (Figure 3.9). 
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Figure 3.6: Summary of results obtained from a crystal violet biofilm assay of all 12 
evolved populations and the ancestral clones. Error bars are ± 95% confidence intervals 
(df = 4). Populations marked with (*) are significant from the ancestor (wt). Six (LI, L2, 
L5, L6, Dl, D6) evolved populations show a significant increase in biofilm production 
compared to wild-type HI2424. 
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Figure 3.7: Phase constrast microscopy images of evolved and ancestral populations. 
A/B) B. cenocepacia HI2424 Lac+ ancestral sample at 400X (A) and 1000X (B) 
magnification. Frequent clumping of cells is present in these wild-type populations. 
C/D) B. cenocepacia HI2424 Lac" D6 sample evolved for 500 generations in 2% liquid 
onion medium at 400X ( Q and 1000X (D) magnification; this population was selected 
for microscopy because it showed a dramatic decrease in C. elegans worm virulence. 
Clumping of bacterial cells is absent in this evolved population. 
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Figure 3.8: Image of a B. cenocepacia HI2424 Lac+ ancestral sample at 200X 
magnification. Confocal fluorescent image overlaid with a light microscopic image of 
RFP-marked bacteria in C. elegans. Localization of ingested bacteria, indicated by the 
white arrow, is highly concentrated behind the grinder region of the worm, indicated by 
the white box. 

Figure 3.9: Image of a B. cenocepacia HI2424 Lac+ evolved sample (D6) at 200X 
magnification. Confocal fluorescent image overlaid with a light microscopy image of 
RFP-marked bacteria in C. elegans. Localization of ingested bacteria is non-specific 
throughout the intestine of the nematode. 
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Identification of Insertion Sequence Movement 

Random movement of insertion sequences (IS) in the genome has been described 

as one mechanism behind rapid ecological specialization (Zhong et al., 2004). In order to 

track the movement of IS605 within the genomes of the evolved populations, the PCR-

based technique called vectorette PCR (vPCR) was used. Amplicons resulting from this 

analysis were visualized using agarose gel electrophoresis (Figure 3.10). Ancestral 

clones were treated in the same manner as the evolved populations. IS movement was 

seen in populations LI, L2, and L3 when compared to its ancestor and were each missing 

the 300 bp band that was present in the lane occupied by the ancestral clone. Also, IS 

movement was seen in population D3 when compared to its ancestral clone. This 

population experienced the addition of a 300 bp band that was not seen in the ancestral 

clone. The differences in the evolved populations' banding patterns compared to the 

ancestor banding patterns suggest IS movement within the evolved populations; however, 

the ancestor clones have different banding patterns than each other. This suggests 

inconsistency with the vPCR experiments performed and further optimization of this 

technique is needed before any conclusions can be drawn about IS movement in these 

populations. 

Determination of Diet Breadth 

In order to detect a difference in total diet breadth as a consequence of adaptation 

to the onion host model, the evolved and ancestor Lac+ populations were inoculated in 95 

different carbon sources found on Biolog GN plates and function was represented as 

area-under-the-curve (AUC) calculations over 48 hours of incubation. The Lac+ evolved 
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1 

Figure 3.10: An image summarizing the results of a gel electrophoresis procedure that 
was performed to visualize the amplicons produced by vPCR of evolved populations and 
the ancestral clones. Lanes LI, L2, L3, L4, L5 and L6 were compared to lane WT(-). 
Some lanes contain bands that are dark in the center due to overexposure of the image. 
Lanes Dl, D2, D3, D4, D5. and D6 were compared to lane WT(+). The 300 bp band 
present in WT(-) was not visualized in lanes LI, L2, and L3. Also, lane D3 contained a 
300 bp band not seen in lane WT(+). 
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populations were selected for this assay because of their higher increase in fitness than 

the Lac" populations (Figure 3.1). AUC values across the six Lac+ populations were 

averaged and grouped by carbon source. T-tests were performed to determine significant 

differences of evolved Lac+ populations from the ancestor Lac+ populations. At ap 

criterion of < 0.05, the evolved populations showed a significant decrease in catabolic 

usage of 14 carbon sources when compared to the ancestor clone; similarly, when 

examining the sum of the mean AUC values for all 95 carbon source, the evolved 

populations experienced an overall significant decrease in diet breadth when compared to 

the ancestor clone (Table 3.4). Therefore, the diet breadth of the Lac+ evolved 

populations experienced a narrowing of diet breadth as a consequence of passage through 

the onion host model. 
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Table 3.4: Summary of mean area-under-the-curve (AUC) calculations obtained from 
analyzing the diet breadth of the B. cenocepacia HI2424 Lac+ evolved populations and 
the Lac+ ancestor clone on 95 carbon sources. AUC units are in (Time x OD6oo)2- A t-
test was performed to determine differences in carbon source catabolism from the 
ancestor mean. Only carbon sources that met a criterion of p < 0.05 in comparing 
evolved catabolic usage with ancestor catabolic usage are shown. Also shown is the sum 
of the mean AUCs for evolved and ancestor populations of all 95 carbon sources tested. 

Carbon Source 

a-D-Lactose 

Formic 

D-Gluconic 

a-Keto Glutaric 

D, L-Lactic 

Malonic 

Propionic 

L-Alanine 

L-Alanylglycine 

L-Glutamic 

a-Amino Butyric 

Urocanic Acid 

D,L-a-Glycerol-6-phosphate 

D-Glucose-6 phosphate 

Mean 
Evolved AUC 

17.443 

7.258 

17.833 

18.483 

15.656 

10.177 

11.461 

18.156 

18.133 

18.756 

21.368 

17.721 

12.406 

12.860 

Mean 
Ancestor AUC 

20.474 

10.686 

20.993 

24.554 

19.428 

15.178 

15.900 

20.443 

25.708 

21.026 

23.222 

11.883 

18.771 

16.520 

t-Test 

0.022 

0.000 

0.010 

0.025 

0.000 

0.001 

0.019 

0.005 

0.004 

0.028 

0.007 

0.004 

0.007 

0.034 

Sum of AUC for all 95 
Carbon Sources Tested 1057.052 1134.885 0.024 
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Discussion 

Direct Effects of Onion Selection 

Twelve populations of B. cenocepacia HI2424 underwent 500 generations of 

serial passage through 2% liquid onion medium and two direct effects were observed as a 

consequence. First, mean fitness of nine evolved populations increased compared to the 

ancestor. On average, the evolved populations experienced an increase in reproductive 

success that was 1.55 times greater than the ancestral clone in direct competition assays. 

Second, the mean maximum growth rate of eleven evolved populations was significantly 

faster than the ancestor. Therefore, it can be concluded that significant adaptation to the 

selective environment occurred as a result of serial passage for 500 generations. 

Because the evolved populations that showed no significant difference in fitness 

and maximum growth rate compared to the ancestor were all Lac" populations, it suggests 

an effect of the Lac marker. Evolved populations harboring a lacZ insertion due to the 

marking procedure experienced higher increases in fitness when compared to the evolved 

populations lacking a lacZ insertion. The lacZ gene encodes for [3-galactosidase, which 

breaks down lactose and other glycoproteins (Skudlarek et at, 1992). A chemical 

component of onion includes alliinase, a glycoprotein comprising 6% of the soluble 

proteins in onion bulbs (Lancaster et at, 2000). Addition of the lacZ gene during the 

marking procedure may have provided six populations with a mechanism to increase 

fitness in the onion host model; lacZ may have increased their ability to break down 

alliinase in the medium. Therefore, it was assumed that the fitness bias experienced by 

the Lac+ populations was a result of the lacZ gene influencing subsequent evolutionary 

paths (Riley et at, 2001). Also, when the diet breadth of the Lac+ evolved populations 
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was determined, they became significantly worse at lactose catabolism, which suggests 

that the P-galactosidase being expressed by the Lac+ populations was not increasing their 

ability to break down lactose (Table 3.4). Because of this bias towards Lac+ populations, 

it cannot be determined if the fitness of these populations increased as a result of natural 

selection alone, or as a compounding result of history and natural selection (Riley et al, 

2001). 

Interpretation of Correlated Effects 

Correlated effects are phenotypes observed that are indirect consequences of 

adaptation in the selective environment (Cooper et al, 2001b). Correlated effects can 

also be trade-offs associated with specific adaptation. Parallelism of correlated effects 

can point to similar mutational paths taken by adapting populations (Cooper and Lenski, 

2000; Crozat et al, 2005). 

A correlated effect was seen in this study that involved virulence in the C. elegans 

model of infection. Mean nematode killing ability decreased across all twelve evolved 

populations (Figure 3.4). Since a decrease in worm virulence at 500 generations was 

correlated with an increase in fitness at 500 generations in the onion environment, we 

concluded that adaptation to the onion host model resulted in a decrease in virulence in 

the C. elegans host model. This conclusion supports the pattern seen in evolving virus 

populations, that is, adaptation to one host compromises growth in an alternative host 

(Crill et al., 2000). We also supported another trend seen in adapting viral populations: 

narrowing of host range as a consequence of specific adaptation to the onion host model 

resulted in decreased ability to infect an alternative host model (Duffy et al., 2006). 
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Another correlated effect was seen in this study after examining the total diet 

breadth of the Lac+ evolved populations. Catabolic decay was seen in experimentally 

evolving populations of E. coli that were adapting to a mass-action glucose environment 

in the laboratory (Cooper and Lenski, 2000). As a consequence of this decay, the E. coli 

populations were unable to grow on certain carbon sources not represented in the 

selective environment (Cooper and Lenski, 2000). Since our experiment involved serial 

passage of bacteria in a mass-action environment, we suspected that catabolic decay 

would occur as a consequence. After quantifying growth on 95 carbon sources, we 

observed an overall decrease in diet breadth in the Lac+ evolved populations when 

compared to the Lac+ ancestor clone (Table 3.4). This catabolic decay may have 

accounted for the evolved populations' growth decrease observed in the worm killing 

assays, since they were unable to use as wide a variety of carbon sources as the ancestor. 

If their diet breadth is limited as a result of adaptation to the onion host model, they may 

have become unable to break down the carbon sources available to them in the worm host 

model. 

Correlated effects relating to specific virulence phenotypes were analyzed during 

this study to get a better understanding of which factors are required for killing 

nematodes or macerating onion tissue and if there are similar virulence factors for killing 

both. Onion half virulence assays were conducted to determine if an increase in growth 

on an onion half corresponded to adaptation in the liquid onion host model. 

Unfortunately, growth yield measurements of evolved populations and ancestral 

populations varied widely between experiments (Figure 3.3). This inconsistency can be 

attributed to variable recovery efficiency of the bacteria contained within infected onions. 
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Also, indigenous bacterial and fungal contamination within the onion halves compounded 

recovery efforts. It is possible that a decrease in onion half virulence was a result of 

adaptation to a liquid environment. The mass-action environment created here did not 

require invasion properties for growth, whereas persistence in plant or animal host tissue 

requires some mode of tissue invasion in order to establish an infection (Engledow et ah, 

2004; Tomich and Mohr, 2003). Detection of increased levels of tissue maceration or 

odor could not be effectively quantified using the assay presented in this study; therefore, 

a new measurement of onion virulence must be used, such as the previously described 

onion scale model (Gonzalez et ah, 1997), before any firm conclusion can be reached; 

this remains an area of future study. 

Swimming ability was required for virulence of pathogenic bacteria in both 

animal and plant models in past studies (Eaves-Pyles et ah, 2001; Feldman et ah, 1998; 

Felix et ah, 1999; Urban et ah, 2004). In a study examining B. cenocepacia infectivity in 

a murine model, researchers performed gene knockout experiments of JliCII, a gene 

encoding flagellin production, and showed a decrease in C57/BL6 mouse killing ability 

(Urban et ah, 2004). Other studies have shown that motility is an important virulence 

factor required for establishment of infection specifically in C. elegans models by related 

Burkholderia species (O'Quinn et ah, 2001). In the present study, all 12 populations 

showed a significant increase in motility as a result of adaptation to the onion host model, 

but a decrease in worm killing ability was noted in the C. elegans host model. This 

suggests that motility was a factor associated with increased fitness in the onion host 

model, but not in the nematode model. Increases in motility, as is the case with 

hyperswimming bacterial mutants, may actually be antagonistic when establishing an 
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association with an animal host (Millikan and Ruby, 2002). This is consistent with our 

findings: increased motility is associated with a virulence trade-off in the nematode 

model as the result of specific adaptation to the onion host model. 

Biofilm production is another phenotype required for establishment of bacterial 

infections in plants and animals (Ramey et ah, 2004; Van Alst et ah, 2007). Biofilm 

production has also been speculated as a virulence factor necessary for chronic B. 

cenocepacia infections (Huber et ah, 2004; Mahenthiralingam et ah, 2005). Mean biofilm 

production, as measured by a crystal violet biofilm assay, increased for six (LI, L2, L5, 

L6, Dl, and D6) of the twelve evolved populations when compared to the ancestral 

clones (Figure 3.6). Our study used the liquid C. elegans model, which tests the ability of 

bacterial populations to establish a chronic infection. In acute infections, onset of 

virulence is rapid and the host often dies quickly, whereas in chronic infections, onset of 

virulence is gradual and the host dies slowly (Gilleland et ah, 1988; Hughes and 

Gilleland, 1995). In our model, onset of virulence in the nematode host is slow when 

compared to fast killing assays used in other studies (Tan et ah, 1999). During this study, 

we saw a decrease in virulence in our C. elegans liquid worm model for all twelve 

populations, but this decrease in virulence did not directly correspond to a decrease in 

biofilm formation (Figure 3.4; Figure 3.6). We would expect that decreases in virulence 

in this chronic infection model would correspond to decreases in biofilm production since 

biofilm production is necessary for establishment of a chronic infection, yet some 

increases in biofilm production were observed. It should be noted that biofilm production 

of respiratory pathogens increases once an infection has been established and increased 
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biofilm production before infection is established may hinder invasion ability (V. S. 

Cooper and S. R. Poltak, unpublished data). 

Autoagglutination, which is also known as bacterial clumping, is a phenotype 

often required for establishing a bacterial infection in plant and animal models and has 

been specifically implicated in the virulence of B. cenocepacia in animal models (Whitby 

et al, 2006). In related Burkholderia species, this phenotype is mediated by pilin 

production, expressed by the pilA gene, and a type IV secretion system (Essex-Lopresti et 

al, 2005). Knockout deletion experiments were conducted on these gene targets and 

studies showed that a deletion mutant of pilA reduced virulence in the C. elegans model 

(Essex-Lopresti et al., 2005). During this study, autoagglutination of all 12 evolved 

populations decreased when compared to the ancestral populations as a result of 

adaptation in the onion host model. This decrease in autoagglutination also correlated to 

the decrease in virulence observed in the worm killing assays. Further confocal imagery 

of C. elegans worms infected with a clone from the D6 evolved population, a population 

which showed a significant decrease in worm virulence, revealed a change in localization 

within the worms when compared to the ancestral clone (Figure 3.8 and Figure 3.9). 

Because a decrease in autoagglutination ability correlates with decreased virulence in the 

worm model, it suggests that bacterial clumping is needed for infection in the nematode 

model, but selected against in the onion model. 

Movement of IS elements within a bacterial genome has been implicated as a 

mechanism of rapid adaptation in some experiments (Schneider et al., 2000; Zhong et al., 

2004). IS elements are short 1-2 kb segments of DNA that can transpose within a 

genome and also across bacterial species (Zhong et al., 2004). They are facilitators of 
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chromosomal rearrangements, duplications, and deletions driven by recombination events 

occurring between homologous regions. In this study, movement of IS605 was detected 

in four of the twelve evolving populations; therefore, IS movement could have 

contributed to the phenotypic changes observed in these populations (Figure 3.10). 

However, due to a difference in banding patterns detected between the two ancestral 

clones, the results obtained from this experiment are probably due to inconsistency with 

the vPCR method used in this study. Further optimization of this technique for use in this 

system is needed before any conclusions can be drawn about IS movement in the evolved 

populations. 

During this study, we observed patterns of phenotypic evolution as a consequence 

of specific adaptation to a liquid onion host: (1) trade-offs common to all of the evolved 

populations (worm killing ability; motility; autoagglutination); (2) changes specific to the 

selective environment (increased fitness and maximum growth rate); (3) changes that 

appeared to be random (biofilm production); and (4) changes that depended on the 

genetic marker (effects of the lacZ insertion). We also observed phenotypes that were 

correlated with a fitness increase in the onion host model and a decrease in the nematode 

host model. This suggests that different virulence factors are required for destruction of 

onion tissue than for destruction of nematode tissue, which is contrary to past studies 

(RahmeetaL, 1995). 

Because this study is examining the level of adaptation occurring over 500 

generations, a very short amount of time, only 1-2 selective mutations were expected to 

occur (Lenski et al., 1991). Yet, many phenotypic differences were observed across the 

12 populations. In past studies, numerous phenotypic changes occurring in a short span 
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of time have been attributed to mutations in regulatory regions (Velicer et al, 2006). 

Also, gene knockout experiments have shown that deletion of global regulators results in 

changes in expression of multiple virulence phenotypes and also phenotypes required for 

interaction with a host (Rahme et al, 1995; Whistler et al, 2007; Willis et al, 2001). 

Because global regulators have been shown to mediate the expression of multiple 

virulence phenotypes in plant and animal bacterial pathogens, disruption of a global 

regulator may have been the cause of the phenotypic differences observed in these 

evolving populations (Rahme et al, 1995; Willis et al, 2001). Future studies will 

include identification of the mutations that lead to phenotypic differences observed in the 

onion model and the nematode model, and these studies will specifically target major 

regulatory pathways. 
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