University of New Hampshire

University of New Hampshire Scholars’ Repository

Master's Theses and Capstones Student Scholarship

Winter 2007

Blending techniques for underwater photomosaics

Fan Gu
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation

Gu, Fan, "Blending techniques for underwater photomosaics” (2007). Master's Theses and Capstones. 329.
https://scholars.unh.edu/thesis/329

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For

more information, please contact nicole.hentz@unh.edu.


https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/329?utm_source=scholars.unh.edu%2Fthesis%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

BLENDING TECHNIQUES FOR UNDERWATER
PHOTOMOSAICS

BY

FANGU
BS, Harbin Institute of Technology, P. R. China, 2005

THESIS

Submitted to the University of New Hampshire
In Partial Fulfillment of
The Requirements for the Degree of

Master of Science
In

Electrical Engineering

December, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 1449586

Copyright 2007 by
Gu, Fan

All rights reserved.

[GH]

UMI

UMI Microform 1449586

Copyright 2008 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.0O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ALL RIGHTS RESERVED
©2007

Fan Gu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This thesis has been examined and approved.

Thesis Director, Christian P. de Moustier,
Professor of Electrical and Computer Engineering and

Ocean Enginnering

Yuri Rzhanov,
Research Associate Professor of Ocean Engineering

Colin Ware,
Professor of Computer Science and Ocean Engineering

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FOREWORD

Two years study in the Center for Coastal Ocean Mapping (CCOM) was a
precious period for me. This thesis is almost about all the Wofk that I have done during
my stay here.

1 owe my greatest thanks to Yuri who has directed and encouraged me for my
research. I am also very thankful to Christian and Colin who gave me suggestions and
encouragement during my study and helped me with the structure and content of this
thesis.

Thanks to my professors: Larry, Lloyd, Jim, Andy, Tianhang, Barbara, Karen, etc.
and my labmates: Shachak, Daniel, Lorraine, Val, Mashkoor, Michelle, Briana, Stephen,
Luis, Ed, etc., who shared their experiences and knowledge with me. It was really fun to
have worked with them.

Of course, I do appreciate the support from my dear parents and my friends in at

the UNH: Xin, Yong, Bing, Jing, Mingju, Min, etc..

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

FOREWORD ...ttt ettt et a et sttt e st rat st v
TABLE OF CONTENTS ...ttt ettt st \%
LIST OF TABLES ...ttt ettt ettt st a et sttt ix
LIST OF FIGURES ...ttt ettt ettt et ene e s aetemees e meeee X
ABSTRACT ...ttt ettt s a bbbttt naasnenees Xiii
CHAPTER PAGE
I INTRODUCTION ..ottt sees ettt ettt esens 1
1.1 Challenges.......ccccccouvvvrnnncnnn. bbbttt 1
1.2 Applications of Underwater PhOtOmOSaiCS.....ccceeveeiieeiieririenieiceceeiesereene 2
1.3 LAMEEATIONS ..ottt ettt ettt 3
L4 Previous WOrK ...ttt ettt sttt et e 4
1.4.1 Existing Blending Techniques for Underwater Photomosaics ................... 4

1.4.2 Potential Blending Techniques for Underwater Photomosaics .................. 6

143 Exposure Compensation ... .c..ccoeri e et e 7

1.5  Contributions from This TheSiS .........cccooiiriiiiiiiiieiicceeeccceneeceees 9

2 BACKGROUND TECHNIQUES .....c.ooieeietececeeeieetrete et et 11
2.1  Hlumination-Reflection Model .......c.ccooeiiiiiiiiniiniirceecececcee s 11
2.2 Detrending......coivvrineiiiiiinipiniieeeir st a e sre s s a s ane 12
2.3 Perspective MappPing.......ccccoeveveeieienieienieeiteieteere s rete et et eeseeseesaeesesasessesnns 14
2.3.1 Perspective Transformation .............coooveevieieiiieciieecceieeecceeeiee e 14

A%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24  Levenberg-Marquardt Algorithm.............oocooiiiiiiiiccce 16

2.5  Thin-plate SPUNE.........ooieieriee ettt 17
2.6 Scale Invariant Feature Transform (SIFT)......cccoviiveniieeeeeeeeeeeeee 18
2.7 Graph-Cut Method .....ooeveereeeeeeeeeeee et e et e 20
2.7.1 Graph-cut Method vs. Dynamic Programming...........c.ccecceceneveneeennncenens 21
2.8  Poisson EQUation.........c.cocooeeeniiiicerinencincieerecncccnenen ettt sttt tsnse s siase 22
2.8.1 Image Gradients ........ceoeeeeeiemiriiecieecee et 22
282 Solution to the Poisson EqUation...........ccceocverieriieniesieceeeneeceeeeeeeeee 24
2.8.3 Boundary Conditions ...........ccooeeeeiriieieenenreieesiere e et 24
2.9  Wavelet Transformations .........occecevueeuermeieeercrenenerereeinecteese s s ess e snenne 25
2.9.1 Discrete Wavelet Transformation (DWT) ....ccoeeieiieeiecrerrienreiecnieceens 25
2.10  Objective EvalUation........ccouvveeiirreriniieieirceeeteiereestet ettt st sas e sassaeens 26
2.10.1  Peak Signalto-Noise Ratio ........cooorieiiiniiriniieceecet e 26
2.10.2  Universal Image Quality IndeX.............covveeemvivieniirieeeeeeeeteseeeeee e 26
2.10.3  Edge Based Objective Evaluation............cccceeevvevieeieececeesieeie et 28

3 PROPOSED BLENDING METHODOLOGY ......ccoereieeeiririeereeeecrere e 31
3.1  Median Mosaic Based Illumination COrrection...........eceervereeceniesveneernenenencens 32
3.1.1 Methodology .....ccccvevveiiaeceennecn. N R 33
3.2  Perspective Warping ........cc.ceceeeeeeeseeeeennrecnnrenns e 35
3.2.1 MeEthOOIOZY .....oveuruiiiriiiietic ettt 36
33 Thin-plate SPHNe WaIPING.........ovveeveeerreesseoseeesseereeseseessseseessssssssssomsossenns 37
3.3.1 MeEthOdOLOZY ..ottt ettt et s ba s b 38
34 Graph-cut in Gradient Domain ...........ooooiiiiiiiiieeeeeee e 40

Vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34.1 A Digcussion 0f Cost FUNCHON ..o 41

34.2 MeEthOAOLOZY .....veeeeeeeteei ettt et 43

3.5  Graph-cut in Wavelet DOMain.........ccceeoeveeeeeeeeereeeieeesieeseeee e enes 46
3.5.1 MEthOAOIOZY ....ooveeeeiieierceieie e ereseste s st e sasse s e sssane e e s sesbesaesanenes 46

4  EXPERIMENTAL RESULTS ...ttt et e 49
4.1 Median Mosaic Based [llumination Correction.......c..ceeeeveerernuereecrenieennercennens 50
4.2  Perspective Warping and Thin-plate Spline Warping ........c..ccccceeievcecenicnnnnnee 55
4.3 Graph-cut in Gradient Domain and Graph-cut in Wavelet Domain................. 57

5  EVALUATION. ..ottt sttt tsest st sa e s 60
5.1 Subjective Evaluation ..........cccocveeioiiicricneeencmieniinecnee e 60
5.1.1 Perspective Warping and Thin-plate Spline Warping ...........cccoceevennenene 60
5.1.2 Graph-cut in Gradient Domain and Graph-cut in Wavelet Domain......... 62

5.2 Objective EValUation........cccoeeuiieiiecieeieeeeceteseciee et e enae e e vne e e s 63
5.2.1 Graph-cut in Gradient Domain and Graph-cut in Wavelet Domain......... 64

6  DISCUSSION AND CONCLUSIONS .......oooiriiiriemiieentereenieeesecsesreseeanesnenees 67
REFERENCES ... .ottt ettt st ses et see et et s e b s sses 71
APPENDICES ...ttt ettt ettt sttt st e s e e e s e saeeen 77
A DATA RESULTS ...ttt ettt et st eeaenes 78
A.1  Data Results for Median Mosaics Based Illumination Correction................... 78
A2 Data Results for Perspective Warping and Thin-plate Spline Warping ........... 83

A3 Data Results for Graph-cut in Gradient Domain and Graphb-cut in Wavelet

DIOMIAII.....ooiiiiiieeeeeeeeeeeee ettt e e eteeeeeessessssss e s assssssssasesssastaaaaasosseesssanteseesasasse 89

vil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.1 Pscudocode for Median Mosaics Based Illumination Correction..................... 99

B.2  Pseudocode for Perspective Warping .......cc.ccocceereeeeeeeeereeneensnmresenseessresoneens 101

B.3  Pseudocode for Thin-plate Spline Warping.................... Creteseesraneaeneaeearnasas 103

B.4  Pseudocode for Graph-cut in Gradient Domain..............ccecovvevcurnciercrecerrcnne. 105

B.5  Pseudocode for Graplrcut in Wavelet Domain ..........c.ceeeeeiiiieniiiiieneees 107

C PUBLICATION ...ttt e e sass e et s e sa s s s esnnns 109
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Table 4-1 Comparison of blending methods. The “X” in the table means that the methods
are proposed in this thesis, and the rest are shown for comparison. ......................... 57

Table 5-1 Components of the test set for perspective warping and thin-plate spline

WAIPINZ. «.e.vovoveireieieascisssessae et cs s streatee e st e s et ta s e bt et et e esasessesasnteasesesnsenasas 60

Table 5-2 Components of the test set for graph-cut in gradient domain and graph-cut in

WAVELET AOMAIN. ...cooiveiiiiineiieeeeeeeeeee e e e s e eeeeeeees s eessesaeeesssesesassssnnsesssanes 62

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure 21 Maxima and minima of the difference-of-Gaussian images are detected by
comparing a pixel (marked with “X”) to its 26 neighbors in 3x3 regions at the
current and adjacent Scales (marked with circles) [LO4]. ..o 19

Figure 2-2 The process of min-cost cut finding. (a) is an overview of the result and (b) is
the details of the process. The blocks of pg, r, x, y, z, u, v, w stands for the
overlapping nodes of patch 4 and B. The edges are assigned values (costs) by
Equation (2-33), where the edges that connect the terminal nodes and non-terminal
nodes are assigned infinite cost “8 . The min-cost cut is found by connecting the
lowest cost edges throughout the overlapping area. ..........ccooeeeeeeveeeieeecreeeeeeeceen. 21

Figure 3-1 Framework for Median Mosaicing based illumination correction. The steps are
identified 1N the tEXE. ..ottt 34

Figure 3-2 Framework for Perspective Warping. The steps are identified in the text. ..... 37

Figure 3-3 Framework for Thin-plate spline warping. The steps are identified in the text.
The red and green points represent the features extracted from each frame, and
matching points are circled by ellipses represent in the mosaic coordinates. The blue
points with in the yellow ellipses are the average of the matching points, and they
are identified as the target coordinates for the warping. .......ccoeeevvvveeieirneennnnn.e...i. 40

Figure 3-4 Representation of an overlap situation. The symbols in the figure are given in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3-5 Framework for Graph-cut in Gradient Domain. The steps are identified in the

Figure 4-1 Normalized histograms of single image before and after illumination
correction. (a) are the original image and its histogram. (b) are the illumination
corrected image and its histogram. The horizontal axis of the histogram is the pixel
value which rages from 0 to 255. Each image contains 268x472 pixels. ................. 50

Figure 4-2 Mosaics of 120 frames using methods of averaging (a)-(b), median (c)-(d),
closest patch (e)-(f), and graph-cut (g)-(h), without (left column) and with (right
column) illuMInation COITECION ........ccevveuierieiiieereeee et ettt e s e 53

Figure 43 Back-projected images (frame 5) from the mosaics using different blending
methods. Images without (left column) and with (right column) illumination
correction, (a) and (b) are original images content and used as the reference images.
(c) and (d) are back-projected images from the averaging mosaics. (¢) and (f) are
back—prqjected images from the median mosaics. (g) and (h) are back-projected
images from closest patch mosaics. (i) and (j) are back-projected images from
Eraph-CUt MOSAICS. .......ooeereieeiict ettt 55

Figure 4-4 Comparisons of warping results on one pair of sequential frames (frame 5 and
frame 6) with illumination correction. (a) and (b) are from the images without any
warping, (c) and (d) are from perspective warping, and () and (f) are from thin-plate
spline warping. Mosaics in the left column use the feathering method to blend and

mosaics in the right column use the graph-cut method to blend.............................. 56

Xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4-5 Results of mosaics composed of two sequential frames. (a), (¢), (e) are
blended using feathering in the spatial domain, the gradient domain, and the wavelet
domain; and (b), (d), (f) are blended using the graph-cut method in the spatial
domain, the gradient domain, and the wavelet domain. ............cccceeeevereveverevennane. 58

Figure 5-1 Subjective result of perspective warping and thin-plate spline warping. ........ 61

Figure 52 Subjective result of feathering, graph-cut in spatial, gradient, and wavelet

OMIAINS. ...ttt ettt e et e e ve e ae s st e ss e saesssasaa st eessansnenns 63
Figure 5-3 Average PSNR values of the blending methods. ............coeceeveereerereveiennee, 64
Figure 5-4 Average UIGI values of the blending methods. ..........c.cocoeeveveeeecieeerenenen, 65
Figure 5-5 Edge based objective evaluation results...........cccceeeuvueevrciccenerseenreesiceieenans 66

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

BLENDING TECHNIQUES FOR UNDERWATER PHOTOMOSAICS
by
Fan Gu
University of New Hampshire, December, 2007

The creation of consistent underwater photomosaics is typically hampered by
local misalignments and inhomogeneous illumination of the image frames, which
introduce visible seams that complicate post-processing of the mosaics for object
recognition and shape extraction. In this thesis, methods are proposed to improve
blending techniques for underwater photomosaics and the results are compared with
traditional methods. Five specific techniques drawn from various areas of image
processing, computer vision, and computer graphics have been tested: illumination
correction based on the median mosaic, thin-plate spline warping, perspective warping,
graph-cut applied in the gradient domain and in the wavelet domain. A combination of
the first two methods yields globally homogeneous underwater photomosaics with
preserved continuous features. Further improvements are obtained with the graph-cut

technique applied in the spatial domain.

Xiii
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CHAPTER 1

INTRODUCTION

The goals of this thesis are to analyze and compare existing blending methods for
underwater photomosaics and to propose several optimal blending methods that are able
to compensate for the artifacts existing in the previous methods. The methods are
evaluated subjectively and objectively, and the validity of quantitative measures is

discussed for underwater photomosaics.

1.1 Challenges

The purpose of underwater photomosaicing is to obtain a visually plausible
mosaic with two desirable properties:

1) The mosaics should be homogeneous in the appearance of illumination, and
without seams.

2) The mosaic should retain the features of input images.

While these requirements are widely acceptable for visual examination of a
mosaic, their definition as quality criteria was either limited or implicit in previous
approaches, thus other statistical measurements are desired.

The objectives of this thesis are to explore the automatic blending methods to
alleviate the effects of inhomogeneous illumination, which are always present in the case

of artificial lighting, as well as to suppress the visibility of the seams introduced during
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the mosaicing to construct an optimal mosaic. Note that the performance of blending
techniques may have different meanings depending on the intended user, e.g. scientist
trying to deduce large-scale intemrelationships; computer program extracting shapes
according to some specific rule; or a high-school student learning about the deep-sea
environment. It is expected that the mosaics obtained with blending techniques are
homogeneous in illumination, continuous, and their features are preserved.

Another challenge of blending is to consider all participating images at once,
which is signiﬁcantly more difficult than dealing with only two overlapping images.
Previously, existing blending techniques have been applied to a mosaic of limited size to
create composite images and to edit image (for example, removal or insertion of objects
in the background). In the case of underwater imagery, mosaic dimensions can rapidly
grow in size so that a typical desktop computer cannot handle it. The goal is to get a
mosaic of high quality, and thebcomputational complexities and costs of the methods are

the secondary consideration.

1.2 Applications of Underwater Photomosaics

In recent years, mosaics created from individual images acquired underwater have
been attracting increasing attention from marine geologists, biologists and archaeologists.
Optical imaging of the seafloor with submillimeter resolution offers scientists a higher
level of detail and ease of interpretation. A variety of oceanographic applications require
large area site surveys to study hydrothermal vents and spreading ridges in geology
[YBCRWO00], benthic ecosystems and species in biology [SERPACTO04], and ancient

shipwrecks and settlements in archaeology, forensic studies of modern shipwrecks and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



airplane accidents [BSMYMWSPO02]. These applications can be clearly divided into three
categories: First, targeting extraction of quantitative information (for example, geologists
need to extract seafloor texture information, the biologists need to extract the shape of the
zoolite, and the archeologists need to extract the dimensions of the wreckages); Second,
attempting to create a consistent continuous map image, possibly at the expense of minor
local distortions, which would provide both the overview and detailed views. The third
category that is considered as a special case is recovery of three-dimensional information
about the seafloor. This reconstruction method extracts the quantitative information and
creates a consistent 3D elevation model. The problem with the third method is that it uses
a different approach than the two previous methods and is of substantially higher level of

complexity.

1.3 Limitations

A major difficulty to process underwater images is due to the special transmission
properties of light in the underwater medium. Light suffers from two processes
underwater: 1) absorption, where light intensity reduces, and 2) scattering, a change of
direction of the individual photons which is mainly due to the particles of different sizes
in the water. In addition, artificial light often used underwater suffers from the difficulties
described above, and tends to illuminate the scene in a nonuniform fashion, producing a
bright spot in the center of the image with a poorly illuminated area surrounding it.

Due to attenuation and backscatter, light underwater limits the practical coverage
of a single image to a few square meters. To obtain larger areas of the scene and

compensate for the rapid attenuation of the visible spectrum in water, hundreds or
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thousands of images are required and the composite view can only be obtained by
exploiting the redundant multiple overlapping images distributed over the scene.
However, the non-planar seafloor and the short distance between the seafloor and the
camera introduce parallax issues.

Summarizing: Most underwater images are difficult to combine in a consistent
mosaic due to limited visibility underwater, use of artificial and spatially inhomogeneous
illumination, and parallax issues. In addition, although algorithms for object recognition
and shape extraction are typically tolerant of scaling and small distortions, they can be
easily confused by feature doubling and rapid changes in illumination. So for the purpose
of this thesis, small distortion is allowed, but the seams and ghosting artifacts should be

reduced.

1.4 Previous Work

1.4.1 Existing Blending Techniques for Underwater Photomosaics

There are two main types of blending methods for underwater imagery
implemented according to their goals: 1) combining the overlapping images to help
correct exposure, and 2) only one image is used to preserve the sharpness of features.

The first type attempts to even the exposure to achieve the appearance of
homogeneous illuminatidn The simplest method involves averaging values of all
coincident pixels. Feathering (weighted averaging) [PD84] of overlapping pixels is
another version of the same approach It can be used to overcome border effects [SS00].
Another method that executes in the frequency domain is a multi-resolution spline

blending [BA83], which has been widely used in different blending applications, since its
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publication. The median value method retains the median value of the stack, yielding a
smoother mosaic image. In addition, it can be used to get rid of (fast) moving objects
[OFT02]. The main deficiencies of the approaches mentioned above are blurring due to
mis-registration, or “ghosting™ due to parallax effects and moving objects. In case of
misalignments between the images, these methods tend to create artifacts in the mosaic
image such as doubk edges.

The other type of blending methods focuses more on the sharpness of features in
the mosaics, and it is assumed that by using the patches from only one frame in the
mosaic, the features remain more distinctive. The closest patch method [GZBV03]
consists of splitting the overlapping images and stitching the geometrically closest
patches. The main deficiency of these approaches is that the seams remain visible due to
the exposure difference and features that are crossing the boundaries. Another method is
to search for a 2D curve in the overlap region along which the differences between two
overlapping images are minimal [V99] [BVZ01] [KSE03] [QY05] [GGNMO06]. Then
each image is copied to the corresponding side of the seam. A variety of approximate
optimization techniques have appeared over the years, including simulated annealing
[GG84], graph cuts [BVZ01], and loopy belief propagation [TF03]. The graph-cut
method combined with the watershed method has already been proposed for this purpose
[GGNMO6]. The graph-cut technique cycles through a set of simpler alpha-expansion
relabeling [BVZ01], each of which can be solved with a max-flow/min-cut polynomial-

time algorithm.
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14.2 Potential Blending Techniques for Underwater Photomosaics

Other potential methods for underwater image blending have also been proposed
in image fusion research, such as:

1) The technique named gradient domain stitching [FLWO02] [PGBO03]
[BCVBS01] [LZPW04] [FC88] [ADADCCSC04]. Computation in the gradient domain
was recently used for dynamic range compression [FLWO02], image editing [PGB03],
image mpainting [BSBC00] and separation of images to layers [WO01]. In [LZPW04], two
approaches were proposed for image stitching in the gradient domain. The closest work 1s
image editing [PGB03], which suggested editing images by manipulating their gradients.
One of the editing applications is object insertion, where an object is cut manually from
an image, and inserted into a new background image. The insertion is done by solving the
Poisson Equation on the gradient field of the inserted object, with boundary conditions
defined by the background image. Also, it is similar to photomontage [ADADCCSC04]
(the process and result of making a composite photograph by cutting and joining a
number of other photographs), which chose different patches from different frame stacks
using the graph-cut technique, and then stitching them in the gradient domain.

2) A mosaic blending method by wavelet multi-resolution analysis and variational
calculus [SHCO1], in which wavelet transformed sub-images at each wavelet space are
blended. Variational calculus techniques are applied to balance the image quality between
the smoothness around the seam line and the fidelity of the combined image relative to
the original images in image blending. A mosaic image is finally obtained by summing

the blended images in the wavelet spaces.
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3) Warping has also been reported as a method to help correct misalignments due
to tilting of the camera and the parallax issues. Perspective mapping as applied in
[KJHO2] uses point correspondences and rectangle-to-quadrilateral mapping. A thin-plate
spline technique [B89] has been used for image warping. Almansa and Cohen proposed
the thin-plate spline as a model for the geometric transformations in fingerprint images
that is more accurate than the linear transformation [ACO00].

1.4.3 Exposure Compensation

Due to the lighting problem underwater, it is necessary to compensate for the
brightness difference of every single frame before mosaicing. One existing approach is to
estimate a single high dynamic range radiance map from the differently exposed images
[MPIS][DMI7]{MNO99]. It is assumed in the literature that the input images were taken
with a fixed camera whose pixel values are the result of applying a parameterized
radioﬁletﬁc transfer function to scaled radiance values. The exposure values are either
known or are computed as part of the fitting process. However, this approach has many
restrictions for the acquired underwater images whose position information is not
accurate and may not work when the camera is simultaneously undergoing large panning
motions and exposure changes.

The second approach is to adjust the exposure and contrast of the images by
warping their histogram of pixel values [CRH95] [GDC04]. This approach works
reasonably well for two frames only, where it is easy to get the average or joint
histogram, however, as the number of frames increase and the histograms vary, it
becomes difficult to automatically find a template histogram for warping. The average or

the joint histogram either lacks contrast or is too noisy to work well. Local histogram
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equalization has also been used in the literature [ESHO0], and this strategy consists in
defining an » by n neighborhood, computing the histogram of this area, and applying an
equalization function. However, it is very time consuming and although various
algorithms have been devised to make it more efficient, it is still inadequate for reak-time
applications. Moreover, it has a tendency to amplify noise in areas with poor contrast.

The third approach is detrending, which consists of removing of the trend from
images on a heliographic coordinate system. It is based on the assumption that for the
imaging model, the image can be decomposed into a reflectance image and an
illumination image [HB97). The low frequency values of the image frame characterize
the illumination component which is formed by a slowly varying light field over a
smooth surface. The high frequency values of the image frame represent the local
contrast. The goal of detrending is to remove the low frequency trend and to preserve the
high frequency contrasts.

Techniques that compensate for exposure problems in underwater images
[GNCO02], include:

1) Correcting the acquired image according to a smoothed image estimated
through a set of consecutive frames and by disregarding the shade component in the
illumination-reflectance model [GW92];

2) Local histogram equalization [SHY W98] [ESHO00];
3) Homomorphic filtering [OSS98] (assuming that the illumination factor varies
sﬁaoothly through the field of view, this method suppresses the low frequencies while

keeping the high frequencies);
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4) Subtraction of the illumination field by polynomial adjustment [RLF00] (a

low-order 2D polynomial spline is subtracted from the acquired image).

1.5 Contributions from This Thesis

In this thesis, more recent blending methods are explored and modified or
combined for usage with underwater images. Results are compared with previous
methods objectively and subjectively. Three statistical evaluation methods are explored
to test their validity for underwater photomosaics. In order to obtain homogeneity of
illumination, a pre-processing detrending is applied, and gradient and wavelet domain
techniques are explored. In order to decrease the visibility of seams and obtain a more
continuous mosaic, the graph-cut method is used in the gradient domain and the wavelet
domain, respectively.

Experiments catried out for this thesis have shown that for underwater images
which are often misaligned, graph-cut techniques alone can cause loss of features,
especially when features are relatively small. In this case, warping is needed to preserve
the features in the mosaics. Geometrical warping of the original images has also been
tried here to compensate for the misalignment before using blending techniques. For a
start, the perspective mapping method is used as a warping algorithm, where the eight
input parameters of this warping method are the coordinates of the four comers of the
target image. In order to give more flexibility in the choice of the control points, a thin-
plate spline warping method is proposed. The control points are selected by a Scale

Invariant Feature Transform algorithm [L.04]. Besides obtaining a more distinctive
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mosaic, this method will also help to localize features (interest points), which may appear

in different locations of the mosaics due to the parallax issue or motion

10
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CHAPTER 2

BACKGROUND TECHNIQUES

In this chapter, the techniques used in this thesis are reviewed in more detail.
They include: 1) the general illumination-reflection model, 2) detrending principles, 3)
the perspective mapping used to compensate for perspective distortions, 4) an
optimization algorithm which is used in perspective mapping, 5) thin-plate spline theories
and formulations, 6) a feature detection algorithm which is invariant to image scale and
rotation, 7) the graph-cut method and its formulations as an advanced optimal seam
selection method, 8) the Poisson Equation, its construction in the digital image gradient
and its solution, 9) wavelets transformations, 10) some objective evaluation methods:
Peak Signal to Noise Ratio (PSNR), a Universal Image Quality Index (UIGI), and a

feature preservation evaluation method based on the edges.

2.1 IMumination-Reflection Model

The digital image is a 2D matrix of pixels with Cartesian coordinates (x, y), which
can be considered as the product of the illumination and reflectance properties of a given
scene:

F(x,y)=1I(x,y) * R(x, y) -1
where F(x,y) is the image luminosity, /(x,y) represents the illumination multiplicative

factor, and R(x, y) is the reflectance function or ideal image without shading. The

11
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parameters represent one color channel (red, green or blue). The camera characteristics
may also contribute gain G(x, y) and offset O(x, y) terms, so the complete equation can be
written as:
Fx, y) = Gx, y) * I(x, y) X R(x, y) + Ox, ) 22
Or, it can be expressed as a reflectance function adjusted by a multiplicative
cm(x, y) and an additive c,(x, y) shading component:
F(x,y) = cn(x, ) * R(x, y) + ca (x, y) 2-3)
The illumination factor varies smoothly through the field of view and contributes
the low frequency components of the image, whereas reflectance is associated with the
high frequency components of the image. In our situation, the c,(x,y) component is small
enough and can be neglected with respect to the multiplicative shading component
cmix,y). By taking the log of the image, the multiplicative effect is converted into an
additive one, allowing the separation of both components:
InF(x,y)=Incu(x,y) +InR(x, y) (2-4)
Because the logarithm of the image intensity is the sum of the logarithms of the
illumination and reflectance components, a low pass filter or detrending of the log of the

image intensity can be applied to reconstruct the illumination component.

2.2 Detrending

Trend in a time series is a gradual change in some property of the series over the
whole interval under investigation. It can sometimes be defined as a long term change in
the mean, and can also refer to the changes in other statistical properties.

The major methods to estimate the trend are [TFTMMO02]:

12
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1. First differencing
2. Digital filtering

3. Piecewise polynomials

In [TFTMMO02], the authors compared the methods of linear and quadratic
detrending, cubic detrending, wavelet detrending, and spline detrending.

Detrending is the statistical or mathematical operation of removing a trend from
the series. It 1s often applied to remove a feature thought to be distorting or obscuring the
relationships of interest.

For a particular frame, let Fi(x, y) = In F(x, y) denote the logarithm of the input
image, where F'(x,y) is the image luminosity. The parametric surface fitting equation for

the illumination image can be formulated as:

F, (0,0) 0 0 0 0 0 1Yp
F,(0,1) 0 0 0 0 1 1fp,
- : : | p -
F, = = =SP 2-5)
Tl Fuey) x* xy ¥y ox y 1|p,
: : 2| ps
F(N,M)| (N> NM M?> N M 1]p,

In the formula above, the estimation order is two, S denotes the surface fitting
parameters for each pixel, P is the parameter vector, and (N, M) are the dimension of the
image.

The least squares estimate for the parameter vector is

P=(57S)"'S"F, (2-6)

It is noted that the (S7S)7'S” ferm only depends on the order of the trend, and

only needs to be computed once.

13
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2.3 Perspective Mapping

Perspective Mapping is realized by using the four corners of two images as the
control points (eight degrees of freedom), and obtaining the least square of intensity
differences over the overlapping areas using the Levenberg-Marquardt algorithm [SK99].
A simple formation of this warping is to find the perspective transformation between the
overlapping region by the normalized correlation and rectangle-to-quadrilateral mapping.

2.3.1 Perspective Transformation

Perspective transformation is a spatial transformation which relates the coordinate
= T o T .
system x = [x1,x2] , with = [u;, u2] by:

a,u, +a,u, +a
xl__: 1171 1272 13 (2_7)

ayuy tanu, +ag,

and
X, = Aoyyldy T Anl, tay (2-8)
a3lul +a32u2 +a33
This expression can be written in a compact way as:
y T’l T
% =l A 2-9)
As[u” 1]
and
A" 1)
x, = 2ol AL (2-10)
A;[u ]
where
4 4, 4 G
A=| 4, |=la, a, a,; (2-11)
4, a; 4y 4y
14
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For the 4 corresponding point pairs [(x/’, x,), (u1i, u;")], i=1...4, each pair should
p gP P p

hold:
.
. Afut 3
i - ][u'Ti ] (2_12)
Al 11"
and
T
. A1)
x,' =_2_["_’T’_]_ (2-13)
A3 [u, aI]T
Manipulate the equations to get:
il g7 i il 1 |
A[u” 1] x; — 4w 1] =0 (2-14)
AL 1 %, — A, Y =0 (@2-15)
Thus, each pair (', #') creates a pair of homogenous equation.
Form a vector a from elements of the matrix A:
a=[4,,4,,4,1=[a,,,05,,a5,0,5,,05,,053, 0y, 05,05, ] (2-16)

Using all known correspondences, the solution can be found from the solution of

the over-constrained system of linear equations:

-1

1 4 1

U, 0 u, 0 X,
1 4 1

u, 0 u, 0 x,
2

1 0 1 0 X
2 4 2

0 u 0 u x

— 1 1 2

A= ) . , (2-17)

0 u, 0 u, X,
3

0 1 0 1 x

2
1.1 11 4. 4 4 4 4

—X U X U e XU X, Uy b
11 11 4 4 4 a4 4

\mxw, —xu o —xu, =X X,

8
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2.4 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm (LMA) provides a numerical solution to the
mathematical problem of minimizing a function, generally nonlinear, over a space of
parameters of the function. It interpolates between the Gauss-Newton algorithm (GNA)
[MYF03] and the method of gradient descent [S05].

Its main application is in the least squares curve fitting problem: given a set of
empirical data pairs (t, 3;), optimize the parameters p of the model curve f{t|p) to

minimize the sum of the squares of the deviations:

S()= 31y, - £, | p) (2-18)

Like other numerical minimization algorithms, the LMA is an iterative procedure.
To start a minimization, the user has to provide an initial guess for the parameter vector
p- In each iteration step, the parameter vector p is replaced by a new estimate p + q. To
determine ¢, the functions fi(p + q) are approximated by their linearizations:

fp+a) ~ fip) +Jg 2-19)

where J is the Jacobian of fat p.

At a minimum of the sum of squares S, we have V¢S = 0. Differentiating the
square of the right hand side of the equation above and setting it to zero leads to:

g =-Jf (2-20)
from which ¢ can be obtained by inverting J°J. The key to the LMA is to replace this
equation by a 'damped version":

ST+ ADg=-JY. (2-21)
The (non-negative) damping factor A is adjusted at each iteration. If reduction of

S is rapid, a smaller A value can be used, bringing the algorithm closer to the GNA. If an
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iteration gives insufficient reduction in the residual, A can be increased giving a step
closer to the gradient descent direction. If the iteration number or the reduction of sum of
squares for the latest parameter vector p falls short of predefined limits, the iteration is

aborted and the last parameter vector p is considered to be the solution.

2.5 Thin-plate Spline

A Thin-plate Spline (TPS) is an interpolation method that finds a “minimum
energy” smooth surface that passes through all given points. TPS of 3 control points is a
plane, more than 3 is generally a curved surface and less than 3 is undefined.

Given set C of p 3D control points:

c. =% ST ST

o , _ X, Yo Iy
¢a=y b iellpl=Cpy=| " ¥ (2:22)
Ci3 = Z;

Xp Vo Zp
solve for unknown TPS weights w and mean of distances between the control points’ xy-

projection a with a linear equation:

K Pllw v -p -
[PT Ojl[gjl ) {Y.:! = L(p+3)><(p+3) X (3t = b(paapa (2-23)
(4]

where K, P and O are submatrices and w, a, v and o are column vectors, given by:

K, =Uleacal=lepe . )p+1,xa? x4, i jefl..plarz0 (2-24)
r’ xlogr, r>0

Ur) = 225

) { A @29)

o =_1_zzp:il[cilci2]—[cjlcj2” (2-26)
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1 ¢, ¢
Po=|, . 7 (2-27)
I ¢, ¢,
000
O0,,={0 0 0 (2-28)
0 00
Py =P, ie[l.plaje[l.3] (2-29)
Cy3 0 Wis a,
- C. —- — W. —
Vpa = :23 , Opxl = 0 A prxl——— :23 > O3 =14, (2-30)
‘ 0 ' a,
Cps W3
Then interpolate z for arbitrary points(x, y) from:
P
zZ(x,y)=a, +a,x +a,y + z w,.Uq[c,.l »Cin -1, y]]) (2-31)
i=1
The bending energy (scalar) of a TPS is given by:
e
I, =w Kw (2-32)

The locality which refers to the size and shapé covering the place of features in

Equation 2-25 can be formulated differently for different applications.

2.6 Scale Invariant Feature Transform (SIFT)

The Scale-Invariant feature transformation (SIFT) [L04] is a computer vision

algorithm for extracting distinctive features from images. It has been used in algorithms
for feature matching and object recognition. The features are invariant to image scale,

rotation, and partially invariant to changing viewpoints and illumination.
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The major steps in the computation of the image features are [L04]:
1. Scale-space detection:
Search over all scales and image locations. It is implemented efficiently by using

a difference-of-Gaussian function [L04] to identify potential interest points that are
invariant to scale and orientation. It is a specific type of blob detection where each pixel
in the images is compared to its eight neighbors and the nine pixels each of the other

pictures in the scales (Figure 2.1).

Figure 221 Maxima and minima of the difference-of-Gaussian images are detected by
comparing a pixel (marked with “X”) to its 26 neighbors in 3x3 regions at the current and
adjacent scales (marked with circles) [L04].

2. Keypoint localization:

At each candidate location, a detailed model is fit to determine location and scale.
Keypoints are chosen from the extrema in the scale space and selected based on measures
of their stability.

3. Orientation assignment:

For each keypoint, in a 16 x 16 window, histograms or gradient directions are

computed. All future operations are performed on image data that has been transformed
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relative to the assigned orientation, scale, and location for cach feature, thereby providing
invariance to these transformations.

4. Keypoint descriptor:

The local image gradients are measured at the selected scale in the region around
each keypoint. The keypoints are represented in a 128-dimensional vector which allows

for significant levels of local shape distortion and change in illumination.

2.7 Graph-cut Method

The graph-cut method [BVZ01] has been applied to find an optimal seam between
two images so that the seam is the least noticeable. This search is formulated in terms of
finding the minimum of a certain energy function. The graph-cut algorithm is based on
the principles of combinatorial optimization, and has attracted a lot of attention recently
due to its extremely effective ability to solve problems of this type.

Specifically, let x and y be two adjacent pixel positions in the overlap region
between two images. Let A(x) and B(y) be the pixel values in the same color channel
coming from the original and new images, respectively. The matching quality cost E
between the two adjacent pixels x and y that are copied from patches 4 and B can be
defined as:

Etx, y, 4, B) = [|A(x) - Be)|| + [1A0) — BO)| - @33
where ||*|| denotes the selected norm. If an edge between a terminal node (4 or B) and a
non-terminal node is assigned an infinite cost “8 , the non-terminal node will be forced
to assume the label from the patch represented by the terminal node. In this case, terminal

node refers to the nodes that do not have overlapping correspondences. For example, in
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Figure 2-2, both edges e, and ep; have ‘8  costs, which imply that node p retains its old
patch label and node z is assigned to the new patch B. The minimum error path in Figure
2-2 (a) is equivalent to the minimum cost cut of the graph shown in Figure 2-2(b), which

can be solved using standard max flow/min cut techniques [BVZ01].

P 9 I
min-cost cut SN
X Y ¥4
, by
-mmunumfmar‘?afh N e v w }

(@ ®)

Figure 2-2 The process of min-cost cut finding. (a) is an overview of the result and (b) is
the details of the process. The blocks of p,q, , x, y, z, u, v, w stands for the overlapping

nodes of patch 4 and B. The edges are assigned values (costs) by Equation (2-33), where
the edges that connect the terminal nodes and non-terminal nodes are assigned infinite
cost “8 . The min-cost cut is found by connecting the lowest cost edges throughout the

overlapping area.

2.7.1 Graph-cut Method vs. Dynamic Programming

Similar to the graph-cut technique, the dynamic programming method was first
proposed in [EFO1], which also makes use of a seam finding process. However, the
specifics of implementation impose restrictions on the path that the seam is allowed to
follow, which may lead to missing potentially good seams. In addition, when used in the
case where images are added one by one, dynamic programming is “memoryless” and
cannot explicitly improve existing seams [KSEOQ3]. This causes limitations when

appending new images to the existing ones. The gaph-cut technique overcomes these
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disadvantages by treating cach pixel uniformly and is also able to place patches over the

existing images in the mosaic.

2.8 Poisson Equation

2.8.1 Image Gradients

Mathematically, the image intensity function is a two-variable function I(x, y)
whose gradient at each point (x, y) is given by the derivative of the components with
respect to x and y: VI =(dI/0dx,d1/dy). At each image point, the gradient vector points
in the direction of largest possible intensity increase, and the length of the gradient vector
corresponds to the rate of change in that direction Since the intensity function of a digital
image is only known at discrete points, derivatives of these functions cannot be defined
unless we assume that there is an underlying continuous intensity function which has
been sampled at the pixel locations. With some additional assumptions, the derivative of
the continuous intensity function can be computed as a function on the sampled intensity
function, i.e. the digital image. For example, gradient for digital images can be
implemented as forward differences:

VI(x,y)= U (x+1L,y)=1(x,9),I1(x,y + D ~1(x, y)) (2-34)

In order to reconstruct the image, gradient values need to be integrated. In fact, to
be integrable, the gradient of a potential function must be a conservative field that
satisfies:

U I

ar (2-35)
axdy dyox

which is rarely the case in our situation.
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One possible solution to this problcrﬁ is to orthogonally project the gradient values
onto a finite set of orthonormal basis functions spanning the set of integrable vector
fields, such as the Fourier basis functions [FC88]. An alternative approach is to search the
space of all 2D potential functions for a function I” whose gradient is the closest in the

least-squares semnse. In other words, I’ should minimize the integral:
j j F(VI',G)dxdy (2-36)

where G is the gradient of original image I,

F(VI',G) =|VI-G = (%—GI)2 +(%§— G,y (2-37)

and G, and G, are gradients in the x and y directions.
According to the Variational Principle [W96], a function I’ that minimizes the
integral in Equation 2-36 must satisfy the Euler-Lagrange equation:

OF d oF d oF o
oI dxol', dyol',

(2-38)

which is a partial differential equation in I’, and I’y and I’, are the gradiénts in the x and y

directions. Substituting F' (Equation 2-37) leads to the following equation:

’I 9G ’r dG
2 LL 2%y 9@ L Ty (2-39)

ox ox dy dy

2 2 aG
Let V?I =a—2£+—a——§ and disza—G"—+ 2, then the Poisson Equation is
ox*  dy ox
obtained:
V?I = divG (2-40)
23
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2.8.2 Solution to the Poisson Equation

Since both the Laplacian V? and div are linear operators, approximating them
using the central finite differences yields a linear system of equations:
VI =I(x+Ly)+ 1(x~1,p)+ I(x, y+ 1)+ I(x,y —1) = 41(x, y) (2-41)
and
divG=G _(x,y)—-G, (x’— Ly)+G,(x,»)-G (x,y-1) (2-42)
There are three methods used to solve the Poisson Equation [PTVWF92]:
1. Direct Method

2. FFT
3. Multigrid Algorithm

2.8.3 Boundary Conditions

In order to solve a differential equation, one must first specify the boundary
conditions. One may consider three cases: Dirichlet boundary conditions, Neumann
boundary conditions and mixed boundary conditions.

In [ADADCCSC04], Agarwala et al. have created a Photomontage obtained from
different photos taken from the same point of view. They enhanced the overall quality of
the results using the Dirichlet and Neumann boundary conditions. When using the
Neumann boundary conditions, they set a reference pixel which they call a “pin point” as
the level for integration. Then they have used the conjugate gradient. In [LZPWO04],
Levin et al. solve their problem with an FFT method and Neumann boundary conditions.
In [FLWO02], Fattal et al. have used a full multi grid algorithm with Neumann boundary
conditions to solve the Poisson Equation. Perez et al [PGB03] used Dirichlet boundary

conditions and a multi grid method to solve the Poisson Equation
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2.9 Wavelet Transformations

Wavelets are a set of non-linear bases. When projecting (or approximating) a
function in terms of wavelets, the wavelet basis functions are chosen according to the
function being approximated. Hence, unlike families of linear bases where the same,
static set of basis functions are used for every input function, wavelets employ a dynamic
set of basis functions that represents the input function in the most efficient way.

2.9.1 Discrete Wavelet Transformation (DWT)

The DWT of a signal x is calculated by passing it through a series of filters. First

the samples are passed through a low pass filter with impulse response g resulting n a

convolution of the two:

yin] = (x *@ln] = 3 x{klgn - K] (2-43)

P
The signal is also decomposed simultaneously using a high-pass filter 4. The
outputs give the detailed coefficients (from the high-pass filter) and approximation
coefficients (from the low-pass). It is important that the two filters be related to each
other and they are known as a quadrature mirror filter [SA90].
However, since half the sequential frequencies of the signal have now been
removed, half the samples can be discarded according to Nyquist’s rule. The filter

outputs are then downsampled by 2:

yolnl= Saiklgl2n-k] (2-44)
k=—co

ol = S Ak {2~ k] (2-45)
Pr
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2.10 Objective Evaluation

2.10.1 Peak Signal-to-Noise Ratio

Signal-to-Noise Ratio (SNR) measures estimate of the quality of a reconstructed
image compared to an original image. In fact, traditional SNR measures do not equate to
human subjective perception. The actual metric that has a better performance is peak
signal-to-noise ratio (PSNR). It is the ratio between the maximum possible power of a
signal and the power of corrupting noise that affects the fidelity of its representation.

Because many signals have a very wide dynamic range, PSNR is usually
expressed in terms of the logarithmic decibel scale. First, the mean square error (MSE) of

the reconstructed image is calculated follows:

N1, 3G, )= I G, D
NZ

MSE = (2-46)

where Ir(7, j) is the reconstructed image pixel and I,(i, j) is the original image pixel
(image contains N x N pixels). The summation is done over all pixels in the image. The
root mean square error (RMSE) is the square root of MSE. Error metrics are computed on
the luminance signal only, so the pixel values I,(i, j) range between black(0) and white
(255). PSNR in decibels (dB) is computed by:

255
PSNR = 20log ,, (—>"— 947
& “’(RMSE ) (2-47)

2.10.2 Universal Image Quality Index

As an outperforming substitute of the standard MSE objective quality measure, the
Universal Image Quality Index (UIQI) was proposed in [WBO02]. It is designed by

modeling any image distortion as a combination of three factors: loss of correlation,
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luminance distortion, and contrast distortion. Let x(i, /) and y(i, j) be the original and the

test image signals which have N pixels, respectively. The proposed quality index is

defined as:
40 ;c;
= e 2-48
Q(m”%ﬂ@%@ﬁ (2-48)
Where
x= %Zx(i, ) (2-49)
y =%Zy(i,j) (2-50)
0. =S [xti )~ 2-51)
2 1 S T2 ]

0, = 2N~y (2-52)
0 == Y xti, )~ FIr(6, ) -] 2.53)

The dynamic range of Q is [-1, 1]. The best value “1” is achieved if and only if

x(i, j) = y(i, /). In a more understandable format, Q can be written as:

0-_%> 2xy 20,0

= N 2-54
60, @ +0) 0. +0) @29

The first component is the correlation coefficient between x(i, j) and y(i, j) and its

dynamic range is [-1, 1]. The second component with a value range of [0, 1] measures
how close the mean luminance is between two images. The third component measures

how similar the contrasts of the images are, and the dynamic range is [0, 1].
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2.10.3 Edge Based Objective Evaluation

Feature is not an exact or universally defined term, and an exact definition ofien
depends on the problem or the application. Usually, a feature is considered to be an
“interesting” part of an image, and features are used as a starting point for many
computer vision algorithms.

Feature Detection

Typically, features are divided into the following groups:

e Edges: Sets of points in the image which have a strong gradient magnitude.

» Corners (Interest points): Point-like features in an image which have a local two
dimensional structure.

» Blobs (Regions of interest or interest points): Blobs provide a complementary
description of image structures in terms of regions, but they may also be regarded
as interest point operators because they often contain a preferred point.

e Ridges: A ridge detector compute from a gray-level image can be seen as a
generalization of the medial axis. However, it is harder to extract ridge features
from general classes of gray-level images than edge, corner or blob features.

In image processing and computer vision, the concept of feature detection refers
to methods that aim at computing abstractions of image information and making local
decisions at every image point whether there is an image feature or a given type at that

point or not. The resulting features will be subsets of the image domain, often in the form

of isolated points, continuous curves or connected regions.
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Framework of Edge Based Objective Evaluation

The theoretical goal of image blending can be defined [PX05] as: to represent the
visual information present in any number of input images, in a single fused image
without distortion or loss of information. In practice, the more practical goal of faithful
representation of the most important input information in the fused image is usually
adopted.

The human visual system (HVS) is more sensitive to sharp edges and details than
it is to changes in illumination Edge information extraction provides a framework for
comparison of visual information between the input and blended images.

In this work, the authors used Sobel operator to initially measure the x and y edge
components (S* and S”) in the input images A, B and the blended image F. Edge
parameters are g, =(S,” +5,”°)* and orientation a, =arctan(S,” /S,%),
Ie {4,B,F}. It is assumed that an input edge is perfectly représented if and only if both

its strength and its orientation are unchanged in the fused image. When a loss of contrast
from A into F exists (an edge in F is weaker than in A4), the change in strength, A gAF is
defined as the ratio of the fused to the input strength,

gp—(n’—m—), g,(n,m)>g (n,m)

= 2200 @59
VRN gA(n’m)<gF(n:m)
gr(n,m)

_lde,(nm)—~ap(n,m)|-n/2))|

A
/2

F (n,m) (2-56)

[24

The quantities A gAF and AaAF describe linear changes in visual information

parameters induced by fusion In order to model the perceived information loss, the
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overwhelmingly nonlinear nature of the HVS has to be taken into account. The perceptual
loss of edge strength and orientation information with respect to the observed changes in

these parameters is modeled as:

T
p _ 1 2-57
O S R A om0, 1) o

where i€ {g,a}, and parameters Kg» Ky» O, O, are set according to their effects on
the edge information preservation [PXO05], T, and T, are set to insure QgAF =] and

0. =1 when A gAF and A" are equal to 1.
The combined preservation measurement can be expressed as:
0 (mm) =10, (n,m)Q," (n,m)]'"? (2-58)
Edge preservation images that represent local success of information fusion are

formed between each of the inputs and the fused output, Q* and 0% . The overall

success of fusion of images A and B into F, Q**’is then obtained as a normalized sum

of local edge preservation Q% and Q™ weighted by their respective perceptual

importance w, and wp :

DY 0% (nmyw, (G, )+ 07wy, )
Q*#'F — =imal (2-59)

N M

3w, 7)+ws G, )

i=1 j=1
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CHAPTER 3

PROPOSED BLENDING METHODOLOGY

In this chapter, five blending methodologies for underwater photomosaicing are
proposed. The goal is to produce a mosaic satisfying the requirements: 1) preservation of
images with maximum sharpening for recognition, 2) seamless mosaics with
homogeneous illumination Most traditional methods can only reach one of these goals,
for example, the median mosaicing, feathering, or multiresolution spline can give a
seamless mosaic with homogeneous illumination, however, most of the features are
blurred or have “ghosting” artifacts. The optimal seam methods can preserve the
sharpness of the features, however, due to the illumination difference, the seams are
unavoidable. Methods, such as the optimal seam in the gradient domain try to take care of
both problems, but are not appropriate in underwater applications because of the irregular
distribution of underwater photomosaics.

In the previous chapters, artificial lighting was mentioned as one of the major
problems that cause inhomogeneous illumination. To solve this problem, a trend
correction of the input frames is proposed in the first section of this chapter. I found that
due to the misalignment of the images, no matter what blending method is used, artifacts
always exist due to the differences in the overlapping region. For the optimal seam
methods, these misalignments affect the seéms. In other words, the results depend on the

order in which the frames are added. In the second section, geometric warping techniques
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are used: perspective warping and thin-plate spline warping to correct the errors caused
by misalignment. In the third part, the methods of graph-cut in gradient and wavelet
domain are proposed to achieve simultaneous homogeneous illumination and feature
preservation in mosaics.

It should be noted that, the methods proposed in this thesis assume that the
registration for mosaicing have been achieved, with the Fourier-based featureless
procedure, or the feature-based one. In the latter case, the tolerance value used in robust
matching is much smaller than the threshold in the former method. The misalignment

mentioned in this thesis refers to the artifacts caused mainly by parallax.

3.1 Median Mosaic Based Hlumination Correction

In order to get a continuous mosaicing with unnoticeable seams, many blending
methods utilize fusion with various weighting functions, in the spatial or the frequency
domains [BAS83). An alternative solution is to change the exposure of images before
blending, using the radiometric correction, histogram warping, and detrending. Different
assumptions and applications may require different approaches. For underwater images,
which do not hold the assumption that the camera parameters are easy to estimate, and
which are complex in the histogram estimation, the radiometric correction and histogram
warping methods are difficult to apply.

Practically, the image can be decomposed into illumination and reflection
components, so the illumination component can be corrected éeparately. In this section,

the detrending technique is implemented for underwater photomosaicing, and median
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mosaicing is used as the trending reference. This method takes advantage of the quadratic
detrending method which has moderate complexity but is efficient.

Median mosaicing has been widely used for underwater photomosaicing. It takes
the median value from the image stack that is composed of overlapping pixels. Unlike
simple averaging, it is not affected by outliers. Although the median mosaic is blurred
due to its low pass filter characteristics, the overall illumination of median mosaicing is
more homogenous. Hence the illumination trend of the median mosaic can be used to

correct the illumination inhomogeneity of the original frames.

Here, calculations are based on the logarithm of the input image which converts
the multiplicative operators to additive. By fitting a parametric surface to estimate the
illumination image, the reflectance image can be constructed. This method is similar to
the homomorphic filtering [OSS98], but the advantage here is that it is less sensitive to
local intensity variations such as shadows and backscatter.

3.1.1 Methodology

In [RLFO00], the authors proposed to use detrending to process single frames
before blending. The method proposed here is to use the trend obtained from the median
mosaic, and a second-order fitting polynomial. The median mosaics yield global
consistency for the illumination. The method proposed here is illustrated in Figure 3-1

with the following steps:

1) Perform median mosaicing on original video frames.
2) Back-project the corresponding images of the frames from the median mosaic.
3) Obtain the trend of back-projected frames and original frames based on the

surface fitting parameters in log space (Equation 2-5).
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4) Warp the trend of the original frame to match the trend of the corresponding

back-projected frame.

3) Use the trend-corrected image for mosaicing.

Figure 3-1 Framework for Median Mosaicing based illumination correction The steps are
identified in the text.
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3.2 Perspective Warping

Underwater images have to be acquired at a short range a few meters, so that the
assumption of planarity is almost never satisfied. This explains the choice of a rigid
affine modelin this thesis, which is substantially simpler than the perspective model

The seams caused by the illumination inhomogeneities can be diminished by
illumination correction, but due to misalignment of frames, blurring artifacts remain in
results produced by previous methods. In addition, local misalignments make the result of
the graph-cut method used in this thesis dependent on the order in which individual
frames are added to the mosaic. The comparison of the original frame and back-projected
image shows that relative small features are easily “cut off” in the mosaicing by the
graph-cut techniques. Consequently, further improve ments are needed to help solve this
problem.

Image warping is a branch of image processing that deals with geometric
transformation techniques and it has benefited greatly from several fields, ranging from
early work in remote sensing to recent developments in computer graphics. Warping in
mosaicing consists of choosing of a set of control points and corresponding shift vectors
determining final locations of these control points.

Perspective warping consists of choosing image corners as the control points and
attempting to shift them around [KJHO02]. Thus this becomes an optimizational problem
by finding shift vectors that minimize some objective function describing differences
between overlapping images (in this thesis, this function is defined as a normalized sum
of squared differences between pixel values contributing to the same location in a mosaic

coordinate). This approach is identical to choosing the perspective model for describing
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camera motion. The negative side of perspective warping is that its brightness constancy

constraint, which rarely holds for underwater images.

3.2.1 Methodology

The perspective warping steps taken are similar to the work done in [KJHO02],
and are illustrated in Figure 3-2 for two overlapping images Iz and Ip:
1) From the registration records, find the world homography of the two images in
the mosaic.
2) Fix the coordinates of four corners of Iz, and perspectively warp Ip (Equation
2-7 and Equation 2-8) until the sum of the square of the differences between
the two images in the overlapping area comes to the minimum, obtaining I’p.

3) Mosaic the warped image I ’p and the fixed images Ip.
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Figure 3-2 Framework for Perspective Warping. The steps are identified in the text.

3.3 Thin-plate Spline Warping

Blurring of features has the most impact on mosaic quality the most and suggests
choosing the most prominent features of the frames as control points. The mmber of
these features is typically much larger than four per image [B89]. On the other hand,
feature-based warping allows for formulation of the problem in terms different from
optimization and does not rely on the brightness constraint for images.

Thin-plate Spline (TPS) is an interpolation method that finds a “minimally
bended” smooth surface that passes through all given (“control”) points. When used for

image warping, it moves the control points to the target positions. In the perspective
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warping discussed above, the control points are four comers, and it only deals with the
perspective distortion.

The thin-plate spline warping method proposes to select more control points
locally, and move them to the position where they will coincide in the mosaic. At the
same time, the neighborhood of the control points is interpolated according to the
locality. In the control point selection, this thesis employs the Scale Invariant Feature
Transform (SIFT) algorithm. This algorithm extracts distinctive features from images and
has been widely used in feature matching and recognition. The features are considered to
be invariant to image scale, rotation and partially invariant to changing viewpoints and
illumination.

3.3.1 Methodology

The proposed algorithm is illustrated in Figure 2-3 with the following steps:

1) Points of interest are extracted from two overlapping frames using the SIFT
algorithm.
2) Two sets of points are matched using local invariant point descriptions with the

additibnal constraint that matching points must not be separated in the mosaic by a
distance larger thanpre-determined threshold. Note that the matching stage does
not require use of any robust procedure like RANSAC (RANdom SAmple
Consensus) [FB81].

3) For all matched pairs, a new location of control points (features) is placed at a
mid-distance between the original locations in the mosaic-based coordinates, these
new locations are found in the space of the original images, thus determining shift

vectors for all control points.
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4) Thin-plate spline warping is applied to participating images. The size of images
is left unchanged, so some data may disappear, and some pixels may be marked as
having no data.

5) Warped images are mosaiced again, with the same transformation as before.

Features chosen as control points are mapped onto the same mosaic location.
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Figure 3-3 Framework for Thin-plate spline warping. The steps are identified in the text.
The red and green points represent the features extracted from each frame, and matching
points are circled by ellipses represent in the mosaic coordinates. The blue points with in
the yellow ellipses are the average of the matching points, and they are identified as the

target coordinates for the warping.

3.4 Graph-cut in Gradient Domain

Blending methods that combine all the pixels from a stack of images in a region

of overlap usually suffer from “blurring” effects. An efficient method to suppress
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blurring and preserve the sharpness of features is to find some optimal curve or seam in
the overlap region and copy only the pixels of each patch into the corresponding side.
However, it is difficult in practice to achieve a pleasing balance between homogeneous
illumination and preservation of sharp transitions to prevent blurring.

Gradient domain techniques [FLWO02] [PGBO03] [BCVBS01] [LZPW04] [FC88]
[ADADCCSCO04] have been reported as an efficient method to avoid both artifacts. In
image editing [PGBO3], the insertion boundary is expected from a single background
image, whereas in this case, two images are added together and the boundary from both
images should be considered. In addition, unlike what is done in Photomontage
[ADADCCSCO04], the boundary in our case is not rectangular and there is no single “pin
pixel” (the fixed pixel that determined the color level of the final mosaic) in solving the
Poisson Equation (Equation 2-40).

3.4.1 A Discussion of Cost Function

In the graph-cut in gradient domain method, the blending quality in the seam
region is measured in the gradient domain. The mosaic image should contain a minimal
amount of seam artifacts, ie. a seam should not introduce a new edge that does not
appear in individual images. For image dissimilarity, the gradients of the mosaic image
are compared with the gradients of overlap images. This reduces the effects caused by
global inconsistencies between the blended images. Specifically, the blended image is
computed by minimizing a cost function E,, where E,, is a dissimilarity measure between
the derivatives of the blended image and the derivatives of the input images. Let /; and L

be two aligned input images; 7, and 7, be the region viewed exclusively in image 7; and

L, respectively; and @ be the overlap region, as shown in Figure 3-4,
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witht, N7, =7, N® =7, "®@=0. Let W be a mask image. The blending result 7 is
defined as the minimum of E, with respect tol

E (311, W) =d,(V LV, 0, W)+d,(VI,VI,,0,,U-W)

(3-1)
+d,(VI,VI,0,W)+d,(VI,VI, 0,U-W)
Here, U is a uniform image, and
d,(J1, 72,0, W) = 2 W (@, () - T2 (a)], (3-2)

qe¢

with{ as the ,~norm.

t2

L

Figure 3-4 Representation of an overlap situation. The symbols in the figure are given in
the text.

The first two terms in the right-hand side of Equation 3-1 express the dissimilarity
of the mosaic image to the input images in the respective regions. Dissimilarity in the
gradient domain is invariant to the mean intensity of the image. In addition, it is less
sensitive to smooth global differences between the input images, e.g. due to non-
uniformness in the camera photometric response and due to scene shading variations. The
last two terms in Equation 3-1 contain the gradients in the overlap region, penalizing the

derivatives that are inconsistent with any of the input images. In image locations where
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both /; and I, have low gradients, these terms penalize high gradient values in the mosaic
image. This property is useful in eliminating false blending edges.

The choice of norm has implications on both the optimization algorithm and the
mosaic image. It has been proven [LZPWO04] that the /;-norm and the optimal seam
method give the same result when there is a consistent seam between the input images;
results under h-norm are equivalent to feathering of the gradient images followed by a
solution of the Poisson Equation (Equation 2-40). |
3.4.2 Methodology

The method proposed in this section is designed to overcome the defects of: 1) the
single graph-cut technique, which result in apparent seams when two images have
inconsistent inhomogeneous illumination, and 2) the simple gradient domain stitching,
which can still cause blurring in a misaligned case. As mentioned in the previous
sections, the proposed method executes the graph-cut in the gradient domain. Regarding
boundary conditions, it is straightforward to modify the frame being added according to
the existing mosaics [FY06].

The procedure is illustrated in Figure 3-5. Assuming that the two images have
already been aligned and taking only one color channel for illustration, the steps are:
1) From the registration records, find the world homography of the two images in the
mosaic.
2) According to the overlapping area (which in general is an irregular polygon),
identify two rectangle patches that haveb the minimum coverage of overlapping
areas.

3) Calculate the difference of overlapping areas.
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4) Perform graph-cut on the difference.

3) Calculate the gradient field of two rectangle patches.

6) Combine the two gradient fields according to the mask.

7) The spatial values are reconstructed by solving the Poisson Equation with Dirichlet
boundary conditions.

8) The corresponding reconstructed values are put back in the final mosaic.
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Figure 3-5 Framework for Graphb-cut in Gradient Domain. The steps are identified in the
text.
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3.5 Graph-cut in Wavelet Domain

Since wavelets were first introduced in the graphics community, they have come a
long way and are now an important tool in many graphics and image processing
applicatiors. Performing operations in the wavelet domain has the following advantages
[DLO1}:

e Multi-resolution

¢ Progressive computation

e Space-frequency locality

e Compatibility with emerging standards

The blending technique realized in the wavelet domain has also shown its
effectiveness. Iddo and Dani [DLO1] gave a demonstration of this application. However,
their algorithim of combining coefficients of sub-bands to compensate for illumination
differences is only applicable when multiple images are well matched. Blurring effects
could occur if images do not match. In underwater photomosaicing, even the most
effective registration algorithm cannot guarantee that exact matching could be achieved.
3.5.1 Methodology

The wavelet transform (WT) is a mathematical tool that can be used to describe
1D or 2D signals in multiple resolutions. A wavelet transform is obtained through a
sequence of low-pass and high-pass filters, alternated with down-samplings. The result of
the wavelet transform is a down-sampled smoothed signal and several detail coefficients
obtained at each down-sampling. In other words, the wavelet transform produces a signal

that encodes both information on the original signal values and its multi-scale edges. The
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algorithms used here are based on the space-frequency locality and multtresolution
properties of the wavelet.

The idea of these algorithms come from the basic principle of multi-resolution
spline blending [BAS83]; that is, performing multiple operations on different frequency
sub-bands to smooth the transition zones. It is consistent to the rules of Human Visual
System that human eyes are more sensitive to the sudden changes in the image. The
difference here is that my models are wavelet based, while [BA83] is using the Laplacian
pyramid. When the process comes to the transition zone, the technique described in
[BA83] used the method of feathering on the overlap region in different sub-bands, which
is not practical in our case because of the occurrence of blurring,

The procedure is illustrated in Figure 3-6. Assuming that the two images have
already been aligned and taking only one color channel for illustration, the steps are:

1) From the registration records, find the world homography of the two images in the
mosaic.

2) Referring to the overlapping area (which in general is an irregular polygon),
identify two rectangle patches which have the minimum coverage of overlapping
areas.

3) Perform wavelet trarsformation on two rectangle patches.

4) Obtain the difference wavelet values of the two patches.

5) Perform the graph-cut technique in the wavelet sub-bands respectively and obtain
the graph-cut masks.

6) Multiply the masks and the corresponding wavelet sub-bands, and obtain the final

wavelet coefficients.
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7)  Transform back into the spatial domain and put it back into the mosaic.

LT Ty
NS

Figure 3-6 Framework for Graph-cut in Wavelet Domain. The steps are identified in the
text.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, experiments are described that evaluate the methods proposed in
the Chapter 3. The data wed in this thesis is from Monterey Bay Aquarium Research
Institute (MBARI), collected in Monterey Bay using Remotely Operated Vehicle (ROV)
Tiburon The imaged region covers an area about 7x11m’ and contains 120 frames, each
frame is approximately 2x3nf extracted from a video sequence.

The purpose of median mosaic based illumination correction is to obtain a mosaic
that appears to have homogeneous illumination with reduced seams. The histogram of the
original frame and the corrected frames are compared. The effectiveness of this
illumination correction is evaluated by comparing mosaics of 120 frames obtained using
four methods: (1) averaging, (2) median, (3) closest patch, and (4) graph-cut.

The purpose of perspective warping and thin-plate warping is to preserve the
features. The performance of these warping techniques is evaluated on two sequential
frames which are corrected using median mosaic based illumination correction. The
mésaics are obtained using: (1) feathering (weighted averaging), and (2) graph-cut.

The purpose of the graph-cut in the gradient domain and graph-cut in the wavelet
domain methods is to obtain homogeneous mosaics with preserved features. Results are
presented from two sequential frames. In order to compare the property of feature
preservation, feathering (weighted averaging) in gradient domain [LZPW04] and wavelet

domain is performed.
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4.1 Median Mosaic Based Hlumination Correction

The median mosaic based illumination correction method proposed in Chapter 3
intends to reduce the illumination inhomogeneity due to the artificial lighting underwater.
The normalized histograms of the original image and illumination corrected image are
shown in Figure 4-1. The pseudocode used to implement this illumination corrrction is

given in APPENDIX B.1.

Im (b) 7

)

Figure 4-1 Normalized histograms of single image before and after illumination
correction. (a) are the original image and its histogram. (b) are the illumination corrected
image and its histogram. The horizontal axis of the histogram is the pixel value which
rages from 0 to 255. Each image contains 268%472 pixels.
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The normalized histograms show that the range of pixel values is shorter after
illumination correction It means that the values are more concentrated and thus more
homogeneous in illumination.

The comparison in this section is based on four existing blending methods: (1)
averaging, (2) median, (3) closest patch, and (4) graph-cut. In Figure 4-2, the mosaics of
120 frames are given. In Figure 4-3, the single back-projected images (according to the
footprint of frame 5 in the mosaic) from Figure 42 are extracted and compared. In
APPENDIX A.1, an additional four back-projected images are given. Back-projected
image are referring to the image obtained from final mosaic according to its world

transformation record.
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Figure 4-2 Mosaics of 120 frames using methods of averaging (a)-(b), median (c)-(d),

closest patch (e)-(f), and graph-cut (g)-(h), without (left column) and with (right column)
illumination correction.
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Figure 4-3 Back-projected images (frame 5) from the mosaics using different blending
methods. Images without (left column) and with (right column) illumination correction,
(a) and (b) are original images content and used as the reference images. (c) and (d) are
back-projected images from the averaging mosaics. (e) and (f) are back-projected images
from the median mosaics. (g) and (h) are back-projected images from closest patch
mosaics. (i) and (j) are back-projected images from graph-cut mosaics.

Comparing the mosaics withand without illumination correction per method, it
can be seen that the after the mosaics with illumination correction are more homogeneous
and the seams are reduced dramatically. In addition, features in the back-projected

images are closer to the original images.

4.2 Perspective Warping and Thin-plate Spline Warping

The perspective warping and thin-plate warping techniques are applied to the
illumination ﬁorrected images. Feathering (weighted averaging), and graph-cut methods
are used as blending methods, and each mosaic is composed of two sequential frames.
The pseudocode used to implement thesis thechniques given in APPENDIX B.2 for
perspective warping, and APPENDIX B.3 for thin-plate spline warping. One group of
sample results is shown in Figure 4-4. Another four groups of sample results are givenIn
APPENDIX A2,
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Figure 4-4 Comparisons of warping results on one pair of sequential frames (frame 5 and
frame 6) with illumination correction. (a) and (b) are from the images without any
warping, (c) and (d) are from perspective warping, and (e) and (f) are from thin-plate
spline warping. Mosaics in the left column use the feathering method to blend and
mosaics in the right column use the graph-cut method to blend.
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The left column of Figure 4-4 shows that blending with the feathering method,
after warping, yields clearer features. In addition, the result of thin-plate spline warping is
better than perspective warping, which means that the nosaic is improved by having
more preserved features in the overlapping region of the mosaic. In the right of
Figure 4-4 column, which represents the results for the graph-cut mehtod, a closer
observation of the mosaic shows that some features which are lost in the mosaics without

warping are kept in the warped ones.

4.3 Graph-cut in Gradient Domain and Graph-cut in Wavelet Domain

The methods proposed are trying to achieve both apparent homogeneity of the
illumination and feature preservation. The graph-cut in gradient domain method takes
advantage of the graph-cut method which helps preserve features, and the gradient
domain technique which helps to improve the homogenecity. A further step of wavelet
domain filtering is tried to use the multi-resolution property of the wavelet methods. The
pseudocode implemented for these operations is given in APPENDIX B.4 and
APPENDIX B.5. One group of sample results is shown in Figure 4-5. Results of eight

groups are given in APPENDIX A.3.

Feathering | Graph-cut

Spatial domain
Gradient domain X
Wavelet domain X

Table 4-1 Comparison of blending methods. The “X” in the table means that the methods
are proposed in this thesis, and the rest are shown for comparison.
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Figure 4-5 Results of mosaics composed of two sequential frames. (a), (c), (e) are
blended using feathering in the spatial domain, the gradient domain, and the wavelet
domain; and (b), (d), (f) are blended using the graph-cut method in the spatial domain, the
gradient domain, and the wavelet domain. '
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Figure 4-5 shows that the feathering methods are causing blurring and doubling
whereas the graph-cut methods do not suffer from these problems. But when the
illumination of the frames is different, the mosaic usually has an undesired seam (in
spatial graph-cut), which may be mistakenly detected as a feature. The seams can be less
pronounced when graph-cut is done in the gradient domain, while in this case, the

wavelet domain graph-cut changed the shape of the seam but did not reduce it.
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CHAPTER 5

EVALUATION

5.1 Subjective Evaluation

Subjective Evaluation has been widely used to test the quality of visualization
methods. In this thesis, subjective evaluation is used to evaluate two groups of methods:

1) perspective warping and thin-plate spline warping, and 2) graph-cut in the gradient

domain and graph-cut in the wavelet domain.

5.1.1 Perspective Warping and Thin-plate Spline Warping

Procedure

Five pairs of representative frames and their next sequential frames are selected
for the test (APPENDIX A.2). Three different warping methods (non-warping,
perspective warping and thin-plate spline warping) are executed on each pair, and for

each warping method, both feathering and graph-cut blending methods are applied. This

yields the six conditions in Table 5-1.

Group 1 Group 2
Feathering | Graph-cut
Non-warping 5 5
Perspective Warping 5 5
Thin-plate Spline warping 5 5

Table 5-1 Components of the test set for perspective warping and thin-plate spline

warping.
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Subjects

Five subjects (all graduate students) with various levels of expertise about

mosaicing techniques are selected.
Method

The subjects are 'given 10 trials for the test. On each trial, subjects are shown a
single group of 3 images according to the conditions (from either Group 1 or Group 2).

They are asked to select the best one (in terms of the clearness of features) in each trial

= 20 —|® Feathering ® Graph-cut 19

o 18

2

o 16

s

o 14

5 12

§ 10

3 8

“ 6

3 4

E 2

Z 0

Non-warping - Perspective Thin-plate Spline

Warping Warping
Methods

Figure 5-1 Subjective result of perspective warping and thin-plate spline warping.

Figure 5-1 shows the total number of images in each condition selected as best. It
suggests that the thin-plate warping is usually deemed better than the perspective warping
and non-warping. For example, thin-plate spline warping combined with feathering was
chosen as best a total of 19 times, and non-warping combined with feathering was chosen

only once.
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5.1.2 Graph-cut in Gradient Domain and Graph-cut in Wavelet Domain

Procedure
Eight pairs of representative frames are selected (APPENDIX A.3). For each pair,
different blending methods are executed as shown in Table 5-2. In all, there are 6

conditions.

Feathering | Graph-cut
Spatial domain 8 8
Gradient domain 8 8
Wavelet domain 8 8

Table 5-2 Components of the test set for graph-cut in gradient domain and graph-cut in
wavelet domain.

Subiects

Ten subjects (all graduate students) with various levels of expertise with
mosaicing techniques are selected.

Method

The subjects are required to choose the overall best mosaic (in terms of

homogeneity and clearness of the features) in each subgroup.
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Figure 5-2 Subjective result of feathering, graph-cut in spatial, gradient, and wavelet
domains.

The evaluation in Figure 5-2 suggests that the graph-cut method is usually
deemed better than the feathering method for the set of images chosen in these three
domains. The graph-cut in gradient domain method is usually deemed the best in the

overall performance.

5.2 Objective Evaluation

Criteria of objective evaluation for mosaicing are seldom considered in the
literature. Mostly, researchers subjectively comment on the mosaics’ appearance. In this
section, objective methods for the purpose of quality or feature evaluations are tested
including the standard image quality evaluation method of Peak Signal to Noise Ratio
(PSNR), the Universal Image Quality Index (UIGI) [WBO02], and the edge based

objective evaluation method [PXO05]. In this thesis, subjective evaluation is considered to
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be reliable [PX05], and the objective evaluation is compared to the subjective evaluation
in order to test its validity.

5.2.1 Graph-cut in Gradient Domain and Graph-cut in Wavelet Domain

Objective evaluation in this thesis is used for methods including: graph-cut in the
_gradient domain and graph-cut in the wavelet domain, both of which can be formulated
using existing evaluation methods.

The PSNR and UIGI formulas are Equation 2-47 and 2-54, respectively, and the
inputs of the equations are the original image and back-projected image from the
mosaics. Because the test mosaic is composed of two sequential images, the PSNR or
UIGI is obtained from each of the two images respectively and the average value is
calculated as the final PSNR or UIGI of that test mosaic. The same set of data from the
corresponding subjective evaluation is used in these objective evaluation methods. For

each method, the average value of PSNR or UIGI is calculated from the eight mosaics.

2% '[ Feathering @ Graph-cut !—

PSNR (dB)

Spatial Domain Gradient Domain Wavelet Domain
Methods

Figure 5-3 Average PSNR values of the blending methods.
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UIGI

Spatial Domain Gradient Domain Wavelet Domain
Methods

Figure 5-4 Average UIGI values of the blending methods.

According to both the PSNR test (Figure 5-3) and UIGI test (Figure 5-4), the
graph-cut in gradient domain method is one of the least effective.

However, this result is not consistent with the subjective evaluation (Figure 5-2)
which showed that graph-cut in the gradient domain is deemed to be the best. This
discrepancy may be due to the fact that the graph-cut in the gradient domain method
produces larger changes in the absolute gray level values.

Edge based objective evaluation (Equation 2-59) is also tested on the same data

set, and similarly, the average value of O"?¥ is calculated from the eight mosaics.
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Figure 5-5 Edge based objective evaluation results.

In the edge based objective evaluations (Figure 5-5), the graph-cut method results
are higher than the feathering results, which suggests that graph-cut methods have a
statistically better performance in feature preservation. This is consistent with the

subjective evaluation (Figure 5-2), so the edge based objective evaluation is helpful in

measuring feature preservation.
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

In this thesis, several methods to improve blending techniques for underwater
mosaics are proposed, implemented, evaluated, and the results are compared. These
methods help to obtain an image having the appearance of homogeneous illumination as
well as preserving features. They take advantage of techniques used in image processing,
computer vision, and computer graphics, and combine them for mosaicing underwater
1mages.

The purposes of blending are: First, to obtain a consistent homogeneous mo saic
which is seamless. In achieving this goal, the thesis explored the techniques of
detrending, the gradient domain techniques, and wavelet domain techniques. Second is to
preserve the features, which means to avoid doubling and blurring problems, and the
graph-cut and warping were evaluated.

The median mosaic based illumination correction method is proposed to relight
the original frame according to-the back-projected images from median mosaics. The
histograms show that the pixel ranges are shortened after correction, which means that
the images are more homogeneous. The seams are diminished after illumination
correction in the mosaics of 120 frames and the single back-projected images shown in

the results.
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In order to preserve the features, perspective warping and thin-plate warping are
tested. It is known that the perspective distortion is caused by the uncontrolled camera
motion. Perspective warping is proposed to reduce this distortion. The experiments show
that although this “perspective” approach can lead to some improvement for two of these
overlapping frames (gray value differences are reduced, and the mosaic appears more
consistent visually), the examples with many (over 5) overlapping frames almost always
converged to a state with insignificantly reduced gray value differences and most
importantly, the method fails to match features in overlapping images. This result can be
interpreted as indirect evidence that for scenes with 3D content the use of perspective
model as an alternative to rigid affine models does not improve the mosaicing result.

Another technique for warping used in this thesis is the thin-plate spline warping,
which chooses control points according to the content of the images. The control points
are the interest points extracted by feature detection algorithms. The advantage of thin-
plate pline warping over perspective warping is that warping occurs locally which
reduces distortions in the regions which do not need to warp. This type of warping is
tested on pairs of frames, and the results show that doubling and blurring are significantly
reduced. The subjective results also show that thin-plate spline warping has a better
performance than perspective warping.

Two other methods for obtaining homogeneous mosaics with preserved features
were proposed, implemented and evaluated, namely graph-cut in the gradient domain and
graph-cut in the wavelet domain. From the results, it can be observed that the graph-cut
in the gradient domain method helps achieve homogeneity of the mosaic, and preserve

the features. However, these methods are not practical to use for more than two images
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because of error accumulations. An unsolved problem in the experiment is that in some
cases, the reconstructions are not stable. This may be due to misalignment of the images
in the gradient domain recovery calculations. In the experiments of graph-cut in the
wavelet domain, Haar wavelet, which is simple to implement, is used, and the graph-cut
is performed on the first order wavelet coefficients. Observations of the results show that
this method only changed the seam shape and made the seams somewhat blurred.
Overall, this method was less effective than graph-cut in the gradient domain.

Subjective evaluation of the results shows that the graph-cut in the gradient
domain method is better at achieving the appearance of homogeneous illumination and
preservation of features. Objective quality measurement methods are also used and the
results are compared to the subjective evaluation. The PSNR and UIGI methods show
that the image quality is lower using the method of graph-cut in the gradient domain. This
conflicts with the subjective results, therefore these two objective evaluation methods are
not informative in evaluating the blending methods proposed in this thesis.

Edge based objective evaluation which measures the feature preservation property
of the blending methods is also tested against subjective evaluations. The objective
results show that the graph-cut methods have a better performance than the feathering
methods, which is consistent with the subjective evaluation, therefore the edge based
objective evaluation is informative in measuring the feature preservation in this thesis.

In summary, from the experimental results and analysis presented in this thesis,
the combination of median mosaic based illumination correction and thin-plate spline
warping have more potential in achieving apparent homogeneity of illumination and

feature preservation in mosaics. The graph-cut method is recommended for image
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mosaicing. The future work lies in the application of these methods to large mosaics and
accelerating the computation speed. In the method of thin-plate spline warping, more

robust methods for finding interest point to be used as control point are also needed.
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APPENDIX A

DATA RESULTS

A.1 Data Results for Median Mosaics Based Hlumination Correction

The followings are results for comparison of median mosaics based illumination
correction. Left column contains the back-projected images from the mosaic without
illumination correction, and the right column contains the back-projected images with
illumination correction. (a) and (b) are back-projected images from the averaging
mosaics. (c) and (d) are back-projected images from the median mosaics. (¢) and (f) are
back-projected images fom closest patch mosaics. (g) and (h) are back-projected images
from graph-cut mosaics. The contents are referring to section 3.1 and section 4.1 in the

thesis.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Frame 9

(@) (b)

(© (d)

(2) (h)

Im

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Frame 10

(@ (b)

© : @

(2 (h)

1m

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Frame 11

@ (b)

() | (@

(® ()

Im

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Frame 12

(@ (b)

(c) (d)

4] (h)

Im

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.2 Data Results for Perspective Warping and Thin-plate Spline Warping

Mosaics composed of two sequential frames after illumination correction. (a) and
(b) are from the images without any warping, (c) and (d) are from perspective warping,
and (e) and (f) are from thin-plate spline warping. Mosaics in the left column are mosaics
using the feathering method and in the right column are using graph-cut methods. The

contents are referring to section 3.2, section 3.3 and section 4.2 in the thesis.
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A.3 Data Results for Graph-cut in Gradient Domain and Graph-cut in Wavelet

Domain

Mosaics composed of two sequential frames. (a), (c), (¢) are blended using
feathering in the spatial domain, the gradient domain, and the wavelet domain
respectively; and (b), (d), (f) are blended using graph-cut method in spatial domain, the
gradient domain, and the wavelet domain. The contents are referring to section 3.4,

section 3.5 and section 4.3 in the thesis.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pair 1 (Frame 3 and Frame 4)

() (d)

© ®

Im

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pair 2 (Frame 5 and Frame 6)

(a) (b)

(©) d

(e) ®

Im

91

Reproduced with permission of the copyright owner. Further reproduction prohibited withrdut permission.



Pair 3 (Frame 7 and Frame 8)

© (d)

© ®

Im

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pair 4 (IFrame 9 and Frame 10)

(@ (b)

(© (d)

© ®

Im

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pair 5 (Frame 11 and Frame 12)

(©) (d)

() ®

1m

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pair 6 (Frame 13 and Frame 14)

(@ (b)

(©) (d)

(© ®

Im

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pair 7 (Frame 15 and Frame 16)

© (d)

© ®

1m

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pair 8 (Frame 17 and Frame 18)

©

Im

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



@

®

1Im

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

PSEUDOCODE

B.1 Pseudocode for Median Mosaics Based Hlumination Correction

This part is identified in Section 3.1 and Section 4.1.
/Muput file: a.) transformation record: TransformFile, and b) underwater video: Video
//Output file: a) CorrectedVideo, and b) CorrectedMosaic
//Functions: a) medianmosaic — mosaic imges using median method,
b) getframenum — read the video file and count the number of frames,
c) getframesize — extract the demensions of the frame,
d) getframe — extract the frame from the video file according to the frame
number,
e) getprojected — extract the back-projected image from the mosaic according
to the transformation record file,
f) gettrend — calculate the trend of the image,
g) outputvideo — compose the frames into video file,
h) mosaic — mosaic the frames aééording to the transformation record file.
//Pseudocode:
Image MedianMosaic = medianmosaic (TransformFile, Video);
Int FrameNum = getframenum (Video);

(Int W, Int H) = getframesize (Video);
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Detrend Detrend = detrend (detrendOrder=2, W, H);

For (1=0; ‘i < FrameNum; i++)

{
Image Frame = getframe (Video, i);
Image Back = getprojected (MedianMosaic, i, TransformFile);
Vector FrameTrend = gettrend (Drend, Frame);
Vector BackTrend = gettrend (Drend, Back);
Image CorrectedFrame = Frame — FrameTrend + BackTrend;
outputvideo(CorrectedVideo, CorrectedFrame, i);

}

Image CorrectedMosaic = mosaic (TransformFile, CorrectedVideo);
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B.2 Pseudocode for Perspective Warping

This part is identified in Section 3.2 and Section 4.2.
//Input file: a.) transformation record: TransformFile, b) illumination corrected
underwater video: Video, and ¢) sequential frame number for warping: B and D
//Output file: WarpedFrameD, WarpedMosaic
//Functions: a) getframes — extract certain frames from Video files according to the frame
number,
b) getframesize — extract the demensions of the frame,
¢) perspectivetrans — perspectively transform the coordinates,
d) getoverlap — extract the overlapping vectors according to transformation
record file and frame number,
€) perspectivewarp — warp image according to their original and target
coordinates,
f) mosaic — mosaic the frames according to the transformation record file.
//Pseudocode:
(Image FrameB, Image FrameD) = getframes (Video, B, D);
(Int W, Int H) = getframesize (Video);
ParaB[4] = {(0, 0), (0, H), (W, 0), (W, H)};
ParaD[4] = {(0, 0), (0, H), (W, 0), (W, H)};
Inti=0;
While (i < iteration)
{

WarpedParaD = perspectivetrans (ParaD);
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Image WarpedD = perspectivewarp (FrameD, WarpedDParaD);
(Vector OverlapB, Vector OverlapD) = getoverlap (TransformFile, Video, B, D);
Double Cost = sqrt (OverlapB - OverlapD);
ParaD = WarpedParaD;
If Cost < Threshhold

Break;

Image WarpedD = perspectivewarp (FrameD, WarpedParaD);

Image WarpedMosaic = mosaic (FrameB, WarpedD, TransB, TransD),
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B.3 Pseudocode for Thin-plate Spline Warping

This part is identified in Section 3.3 and Section 4.2.
//Input file: a.) transformation record: TransformFile, b) illumination corrected
underwater video: Video, and c¢) sequential frame number for warping: B and D
//Output file: WarpedFrameD, WarpedFrameB, WarpedMosaic
//Functions: a) getframes — extract certain frames from Video files according to the frame
number,
b) gettrans — extract the transformation records for single frames from the
file,
c) featuredetector — extract the feature coordinates from the images,
d) projecttoworld — transform the feature coordinates from the local image
coordinate to the mosaic coordinate,
€) inverstrans — transform the feature coordinates from the mosaic
coordinate to the local image coordinate,
f) thinplatesplinewarp — warp the images according to the original
coordinates and the target coordinates,
g) mosaic — mosaic the frames according to the transformation record file.
//Pseudocode:
(Image FrameB, Image FrameD) = getframes (TransformFile, Video, B, D);
(Trans TransB, Trans TransD) = gettrans (TransformFile, B, D);
Features LocalFeatureB = featuredetector (FrameB);
Features LocalFeatureD = featuredetector (F raineD);

Features WorldFeatureB = projecttoworld (LocalFeatureB, TransB);
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Features WorldFeatureD = projecttoworld (LocalFeatureD, TransD);
Features WorldFeature = (WorldFeatureB + WorldFeatureD) / 2;
Features WarpedLocalFeatureB = inverstrans (WorldFeatureB, TransB);
Features WarpedLocalFeatureD = inverstrans (WorldFeatureD, TransD);
Image WarpedFrameB = thinplatesplinewarp (FrameB, LocalFeatureB,
WarpedLocalFeatureB);
Image WarpedFrameD = thinplatesplinewarp (FrameD, LocalFeatureD,
WarpedLocalFeatureD);
Image WarpedMosaic = mosaic (WarpedFrameB, WarpedFrameD,

TransB, TransD);
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B.4 Pseudocode for Graph-cut in Gradient Domain

This part is identified in Section 3.4 and Section 4.3.
//Input file: a.) transformation record: TransformFile, b) illumination corrected
underwater video: Video, and c) sequential frame number for warping: B and D
//Output file: Mosaic
//Functions: a) getframes — extract certain frames from Video files according to the frame
number,

b) gettrans — extract the transformation records for single frames from the

file,

c) getoverlaprectangle — extract the minimum overlapping rectangles from
the two frames according to the transformation
record file,

d) gradient — transform the overlapping rectangle patches into gradient

domain,

e) graphcut — perform graph-cut on the vector,

f) inversegradient — inverse transform the gradient vector into special

domain,

g) mosaic — mosaic the frames according to the transformation record file

//Pseudocode:
(Image FrameB, Image FrameD) = getframes (TransformFile, Video, B, D);
(Trans TransB, Trans TransD) = gettrans (TransformFile, B, D);
(Image OverlapB, Image OverlapD) = getoverlaprectangle (TransformFile,

Video, B, D);
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(Vector GradientB, Vector GradientD) = gradient (OverlapB, OverlapD);
Vector Dif = GradientB — GradientD;

Vector Mask = graphcut (Dif);

Vector Gradient = Mask * GradientB + Mask * GradientD;
Image Overlap = inversegradient (Gradient);

Image Mosaic = mosaic (FrameB, FrameD, Overlap, TransB, TransD);
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B.5 Pseudocode for Graph-cut in Wavelet Domain

This part is identified in Section 3.5 and Section 4.3.
//Input file: a.) transformation record:. TransformFile, b) illumination corrected
underwater video: Video, and c¢) sequential frame number for warping: B and D
//Output file: Mosaic
/[Functions: a) getframes — extract certain frames from Video files according to the frame
number,

b) gettrans — extract the transformation records for single frames from the

file,

c) getoverlaprectangle — extract the minimum overlapping rectangles from
the two frames according to the transformation
record file,

d) wavelettransform — transform the overlapping rectangle patches into the

wavelet domain,

e) graphcutforsubband — separately perform graph-cut on the subbands of

waveletvectors,

f) inversewavelettransform — inverse transform the wavelet vector into

special domain,

g) mosaic — mosaic the frames according to the transformation record file.

//Pseudocode:
(Umage FrameB, Image FrameD) = getframes (TransformFile, Video, B, D);
(Trans TransB, Trans TransD) = gettrans (TransformFile, B, D);

(Image OverlapB, Image OverlapD) = getoverlaprectangle (TransformFile,
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Video, B, D);
(Vector WavletB, Vector WaveletD) = wavelettransform (OverlapB, OverlapD);
Vector Dif = WavletB — WaveletD;
Vector Mask = graphcut forsubbands (Dif);
Vector Wavelet = Mask * WaveletB + Mask * WaveletD;
Image Overlap = inversewavelettransform (Wavelet);

Image Mosaic = mosaic (FrameB, FrameD, Overlap, TransB, TransD);
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APPENDIX C

PUBLICATION

This paper coauthored by Yuri, is accomplished during my research for this
Masters’ thesis, and it appears in OCEANS’06 MTS/IEEE Boston. The permission letter

is enclosed after the paper.
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