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ABSTRACT

STATISTICAL AND CARTOGRAPHIC MODELING OF VERNAL POOL 

LOCATIONS: INCORPORATING THE SPATIAL COMPONENT INTO

ECOLOGICAL MODELING 

By

Tina A. Cormier 

University of New Hampshire, December, 2007 

Vernal pools are small, isolated, depressions that experience cyclical 

periods of inundation and drying. Many species have evolved strategies to utilize 

the unique characteristics of vernal pools; however, their small size, seasonal 

nature, and isolation from other, larger water bodies, suggest increased risk of 

damage/loss by development. The goals of this research were to statistically 

determine physical predictors of vernal pool presence and, subsequently, to 

represent the output cartographically for use as a conservation tool. Logistic 

regression and Classification and Regression Tree (CART) routines were used to 

define important variables (slope, aspect, land use, soils, and reflectance) of 405 

known vernal pools across northeastern Massachusetts. The CART models 

performed most favorably, achieving cartographic accuracies as high as 97% 

and providing a set of rules for vernal pool prediction. This combined statistical 

and spatial approach represents an efficient and accurate method of identifying 

vernal pools in Massachusetts and other, similar landscapes.

XI
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INTRODUCTION

In the Northeast, seasonal forest pools, often referred to as “vernal pools,” 

are ephemeral wetlands that are biologically active (mainly) during the spring and 

summer months. They provide essential breeding habitat for amphibians and 

invertebrate species that are adapted to ephemeral and fish-free environments. 

For this reason, vernal pools are generally defined by the wildlife found within 

them, rather than by their physical features, as is characteristic of other habitat 

definitions. Most pools, however, have some basic physical attributes in 

common: they are small depressional basins, they are geographically isolated 

from other wetlands (no permanent inlet and/or outlet of surface water), and they 

exhibit cyclical/seasonal periods of inundation and drying. As a result of this 

particular set of characteristics, vernal pools are often left unprotected under 

wetland legislation and are therefore easily overlooked by developers.

In response to the vulnerability of seasonal forest ponds to filling and 

fragmentation of adjacent uplands, Massachusetts has developed legislation to 

help protect them. Massachusetts has been a pioneer in accepting the difficult 

issues surrounding vernal pool protection; it was one of the first states in the 

nation to pass regulations that specifically protect vernal pool habitat (Burne and 

Griffin 2005). Many other states have used Massachusetts regulations as a 

model for developing their own vernal pool protection regulations.

1
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While legislation is a necessary step in the process of safeguarding vernal 

pools, a complete inventory of vernal pool locations across the landscape is 

necessary to begin effective enforcement of these regulations. Until recently, 

vernal pool identification in Massachusetts relied almost exclusively upon vernal 

pool certification though citizen participation, resulting in patchy distributions of 

known pools. These distributions were merely a reflection of areas where groups 

of interested individuals worked to identify pools rather than their actual 

distribution throughout the landscape. Until 2001, this “certification” method was 

the primary technique for inventorying vernal pools. In fact, prior to 2001, there 

had never been an attempt to comprehensively map vernal pools in the state of 

Massachusetts (Burne 2001). In the spring of 2001, an intensive effort was made 

to more completely identify potential vernal pools on a statewide scale by photo 

interpreting aerial photographs (Burne 2001). While this method was considered 

to be relatively fast and effective for pool detection across the landscape, there 

are other, newly evolving methods that may prove to be more time and cost 

effective than aerial surveys.

Ecological modeling may provide a less labor-intensive solution for 

identifying vernal pool locations over large geographic areas. Predictive 

ecological models endeavor to correlate the presence of a feature in the 

landscape (in this case, a seasonal forest pool) with other significant “predictor” 

variables at the same location (Guisan and Zimmermann 2000). From the model, 

rules can be generated for predicting the feature of interest in other, similar

2
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areas. Inherently, this particular problem is a spatial one, which lends itself to the 

use of Geographic Information Systems (GIS) and remote sensing.

Objectives

The overall goals of this study were to statistically determine physical 

predictors of vernal pool presence in central and northeastern Massachusetts 

and, subsequently, to represent the output cartographically (as a map) for use as 

a conservation tool. Specifically, the goals were to:

• Explore the use of logistic regression as a modeling technique for the 

prediction of vernal pool locations.

• Explore the use of Classification And Regression Tree (CART) analysis as 

a modeling technique for the prediction of vernal pool locations.

• Implement and assess each model using Geographic Information 

Systems.

• Choose the model that most comprehensively identifies vernal pools (the 

model with the fewest omission errors).

• Facilitate and focus the efforts of those individuals and/or groups who are 

interested in identifying vernal pools over a large geographic area.

Assumptions

• There is a correlation between where vernal pools occur in the landscape 

and the physical features at those locations.

• This correlation can be determined with GIS and remotely sensed data, 

and predictive (statistical) modeling.

3
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• The physical characteristics of vernal pool locations do not vary 

significantly over the geographic range of the study area (Central -  

Northeastern Massachusetts).

4
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CHAPTER I

LITERATURE REVIEW 

Seasonal Forest Pools

Definitions

Vernal pools, found throughout the United States, have been described in 

various ways. Generally, they are defined as “seasonal wetlands that form in 

shallow basins and alternate on an annual basis between a stage of standing 

water and . . . drying conditions” (Keeley and Zedler 1998). Those found in the 

northeast were generally formed by retreating glaciers at the end of the last ice 

age (-10,000 years ago) (Colburn 2004). As the large mountains of ice melted, 

they left depressions in the landscape; many of these depressions remain 

evident today as vernal pools and other wetlands (Colburn 2004; Preisser et al. 

2000). Other vernal pools formed where suitable geology, slope, and land use 

allowed for proper water retention and drainage.

The term “vernal pool” has become very popular in the literature to 

describe many types of ephemeral wetlands; however, pools in the northeastern 

United States are often not vernal per se. Though they are typically most full 

during the early spring, the hydrological cycle of most vernal pools is 

characteristically autumnal in origin; therefore, they are more appropriately 

termed “seasonal forest ponds,” (Brooks et al. 1998; Brooks 2004). Both “vernal 

pool,” “seasonal forest pond,” “seasonal forest pool,” and “seasonal woodland

5
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pond” will be used interchangeably in this study, since the National Heritage and

Endangered Species Program is still officially using the term “vernal pool.”

In the northeastern U.S. specifically, seasonal forest ponds are generally

described/defined/valued, at least in part, by the species which use them (i.e.

obligate or facultative species), which, for most purposes, is an acceptable and

appropriate way of discussing them. For example, the state of Massachusetts,

through the Wetland Protection Act (310 CMR 10.04), defines vernal pools as:

"confined basin depressions which, at least in most years, hold water for a

minimum of two continuous months in the spring and/or summer, and which are

free of adult fish populations . . . [and] are essential breeding habitat . . .  for a

variety of amphibian species and other wildlife" (as cited in Burne and Griffin

2005). Colburn (2004) describes vernal pools similarly:

a shallow, isolated, non-flowing woodland water body that attains 
its maximum depth and volume in spring, remains flooded for a 
minimum of two months, and periodically loses all or most of its 
water volume and surface area, and in which the biological 
community lacks fish and includes species requiring the absence of 
fish predation and adapted to seasonal drying, (p.292)

For modeling purposes, however, a species-centric definition is not 

appropriate; instead a definition based upon physical characteristics is more 

acceptable. Seasonal forest ponds are technically classified as “seasonally to 

semi-permanently flooded, scrub-shrub or forested palustrine wetlands 

(Cowardin et al. 1979) and are characterized as occurring in isolated, confined 

basins with no permanent hydrological connection to a stream or other 

permanent water body” (Brooks et al. 1998).

6
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Physical Characteristics

Hvdroperiod. There are a number of important physical characteristics 

that vernal pools, to some degree, tend to have in common. Hydroperiod, the 

duration of inundation, is a critical element to the survival of vernal pool species; 

in fact, it is one of the most important factors in determining the habitat suitability 

for specific amphibian species (Babbitt 2005; Babbitt et al. 2003; Brooks 2004; 

Skidds and Golet 2005). Hydroperiod is largely determined by site, morphology, 

and weather-related factors (Brooks 2004). Climate plays a substantial role in 

vernal pool hydrology; since there is no permanent inflow or outflow of surface 

water, the water balance of these systems is generally controlled by precipitation 

(snow melt and rain), evapotranspiration, and groundwater exchange (Brooks 

and Hayashi 2002). Vernal pool water sources may include: rainfall, surface run

off, intermittent stream flow, groundwater, and/or flooding from adjacent water 

bodies (Colburn 2004). Seasonal forest pond water levels have a strong positive 

correlation to precipitation and a negative relationship with Potential 

Evapotranspiration (PET) (Brooks 2004). Simply stated, the periodic drying most 

vernal pools experience is a result of pool morphology and the fact that pools 

tend to have negative water balances between June and August (i.e. 

evapotranspiration is greater than precipitation) (Brooks 2004).

Little is understood about the surface water-groundwater connection in 

vernal pools and how it may affect their hydrology; however, many agree that the 

connection exists. A study of prairie pothole wetlands in North Dakota revealed 

that, at intermediate elevations, the wetlands were receiving groundwater

7
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discharge for much of the year (Winter and Rosenberry 1995). Further, pools at 

higher elevations were found to recharge groundwater during precipitation 

events. In the Northeast, many vernal pool depressions intersect and fluctuate 

with the groundwater table (Colburn 2004). During summer drawdown, however, 

the water table of most vernal pools remains above that of the underlying 

groundwater table because they are hydrologically isolated by an extensive layer 

of organic material (Colburn 2004). Similarly, Brooks and Hayashi (2002) assert 

that almost all pools have some degree of interaction with groundwater; pools 

that have no groundwater connection are more ephemeral than those that do, 

because their water balance is strictly determined by the difference between 

precipitation and evapotranspiration.

Pool Morphology. While vernal pools exhibit variable size and depth 

(Colburn 2004), they are generally characterized as small, shallow depressions 

throughout the landscape. Most pools described in the literature are less than 0.1 

ha in surface area, though they can be larger (Brooks et al. 1998; Colburn 2004). 

In 34 Massachusetts vernal pools, Brooks and Hayashi (2002) found that the 

maximum depth ranged from 0.11 m to 0.94 m (measurements acquired at 

maximum storage in early spring). They found maximum surface area to range 

from 68 m2 to 2,941 m2, and maximum volume ranged from six to 506 m3. Pool 

perimeter ranged from 30 m to 388 m. Pool morphology has also been weakly 

correlated to hydroperiod: Brooks and Hayashi (2002) found that pools with a 

surface area greater than 1,000 m2 or a volume greater than 100 m3 and a depth 

greater than 0.5 m were inundated more than 80% of the times they were visited

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(visits occurred between March and August). Other, smaller pools had much 

more variable hydroperiods, which indicated that pool morphology was not the 

only factor controlling hydroperiod in these pools.

Soils. There has not been much published work regarding soil types in 

vernal pools in the Northeast. Generally, many pools are found on poorly 

drained, moderately drained, and somewhat to excessively well drained soils 

(Colburn 2004). Surprisingly, few pools are considered to be truly perched, as 

there is evidence of groundwater-vernal pool interactions. Perched pools depend 

solely upon precipitation and run-off for their water supply; therefore, depressions 

on bedrock and very poorly drained soils typically support very few seasonal 

woodland ponds (Colburn 2004).

As part of a larger study in Rhode Island, Skidds and Golet (2005) 

observed the soil characteristics at 65 vernal pools. They recorded the properties 

of the O (organic) horizon, the A horizon, and parent material textures. They 

found that the mean thickness of the O horizon was variable and ranged from 0 

cm -  255 cm. The mean depth of the organic layer was 33.92 cm, and 75% of 

pools had less than 40 cm of organic material. In the A horizon, they observed 

that the most common texture was silt-silt loam, followed by sandy loam-fine 

sand. Finally, parent material textures were largely loamy sand-sand and sandy 

loam-fine sands. They analyzed the relationship between soil texture and 

hydroperiod, and found that A horizon coarseness was positively correlated with 

mean hydroperiod, and parent material texture had no relationship with 

hydroperiod.

9
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Land Cover/Land Use. Despite the widespread global distribution of 

vernal pools, California vernal pools appear to be the only ones that have 

evolved extensive endemic floral species (Keeley and Zedler 1998). In the 

glaciated northeast, vernal pool flora consists of typical wetland species found 

locally in other habitats (Colburn 2004), illustrating how landscape setting is a 

primary determinant of wetland structure (Godwin et al. 2002). Vernal pools can 

occur in "isolation" (i.e. surrounded by uplands), or within larger wetland systems. 

Those that occur in uplands tend to have typical local wetland species on the 

outer edges of the basin. Within the basin, ferns, mosses, herbaceous annuals 

and perennials, shrubs, and trees are common (Colburn 2004). Pools that are 

within larger wetland systems are generally found in red maple swamps, spruce 

fir swamps, Atlantic and northern white cedar swamps, shrub swamps, fens and 

bogs (Colburn 2004).

Wildlife

Obligate vs. Facultative Species. Vernal pools provide essential habitat 

for many species of wildlife. Some species, referred to as "obligate species," 

have developed life history strategies that take advantage of and require fishless 

habitat and relatively short hydroperiods. Massachusetts has compiled a list of 

these species to aid in their certification program, and many are state listed as 

threatened, endangered, or of special concern (Table 1). Several other faunal 

species use vernal pool habitat for a portion of their life cycle; however, they are 

also able to survive in other types of wetlands: these are called "facultative 

species" (Table 2).

10
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Table 1: Obligate vernal pool species. Table adapted  
from  Com m onwealth of M assachusetts Division of
Fisheries and W ildlife (2001).________________________
MA Breeding Obligate Species___________________
Wood frog (Rana sy lva tica )

Spotted Salamander (Am bystom a m acu la tum )

Blue-spotted salamander (Am bystom a laterale ) * *

Jefferson salamander (Am bystom a je ffersonianum )**
Marbled salamander (Am bystom a opacum  )**
Eastern spadefoot toad (Scaphiopus holbrooki)**
Fairy shrimp (Eubranchipus s p p . )

**State Listed Species

Table 2: Facultative vernal pool species. Table adapted from  
Com m onwealth of Massachusetts Division of Fisheries and W ildlife
2001).  ___________
MA Facultative Species_______________________________________
Am phibians_______________________________________________________
Breeding Spring peeper (Pseudacris crucifer)
Breeding Gray tree frog (Hyla versicolor)
Breeding American toad (Bufo am ericanus)
Breeding Fowler's toad (Bufo woodhousii)
Breeding Green frog (Rana clam itans m e iano ta )
Breeding Pickerel frog (Rana pa lus tris )
Breeding Leopard frog (Rana p ip ie n s )

Breeding Four-toed salamander (Hemidactylium  scutatum  )**
Adult or Breeding Red-spotted newt (Notophthalmus v. v iridescens )

Reptiles___________________________________________________________
Spotted turtle (Clemmys guttata ) * *

Blanding’s turtle (Emydoidea b landingii)**
Wood turtle (Clemmys insculpta ) * *

Painted turtle (Chrysemys p. p ic ta ta )

Snapping turtle (Chelydra serpentina)_________ ______________________
Invertebrates______________________________________________________
Predaceous diving beetle larvae (D ytisc idae )

W ater scorpion (N ep idae )
Dragonfly larvae (Odonata : A n isop te ra )

Damselfly larvae (Odonata : Z ygoptera )

Dobsonfly larvae (C oryda lidae )

Whirligig beetle larvae (G yrin idae )

Caddisfly larvae ( Trichoptera )
Leeches (H irund inea )

Freshwater (fingernail) clams (P is id iidae )
Amphibious, air-breathing snails (Basom m atophora )
**State Listed Species

Evolutionary Strategies. The temporary, seasonal hydrology that is 

characteristic of vernal pools precludes species that require permanent 

inundation (Leibowitz 2003), while favoring those that have evolved an ability to

11
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respond rapidly to flooding conditions, quickly reach reproductive size, and 

survive in or near the pools during drought conditions (Colburn 2004; Zedler 

2003). As stated above, hydroperiod is one of the most important factors in 

determining species composition. In wetlands where fish are excluded because 

of short hydroperiods, wildlife species (specifically amphibians and some 

arthropods) have not evolved strong "antipredator defenses," such as 

unpalatability, large body size, behavioral changes, etc. (as cited in Babbitt et al.

2003). While some species can breed in permanent wetlands that contain fish,

their offspring (eggs and larvae) are extremely vulnerable to predation, as they

have only weak defenses for this type of threat (Burne and Griffin 2005). Instead,

vernal pool species have:

life history strategies that provide for successful completion of an 
aquatic developmental phase when water is present, for survival 
during the dry period, and f o r . . . [persisting even when] successful 
reproduction may be impossible in some years when weather 
results in unfavorable hydrologic conditions in pools (Colburn 2004,
71).

Even within vernal pools themselves, hydroperiod can vary based on a 

number of physical factors (i.e. basin morphology, weather, groundwater 

interaction etc.). Variable hydroperiods result in different assemblages of 

amphibians (and likely other wildlife). For example, Degraaf and Yamasaki 

(2001) reported that wood frogs (Rana sylvatica) require between 52 and 135 

days of inundation for hatching and metamorphosis; Spotted salamanders 

(Ambystoma maculatum) need between 92 and 164 days (as cited in Brooks

2004). Babbitt et al. (2003) determined that intermediate hydroperiods (more
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than four months, but not permanent) were important for the survival and 

breeding success of spotted salamanders, wood frogs, and blue spotted 

salamanders (Ambystoma laterale). In anuran species specifically, and 

presumably for other amphibian species, differences in life history traits (i.e. 

ability to coexist/breed successfully in habitats with fish predators and the length 

of larval development) restrict the range of wetlands in which a species can 

successfully breed (Babbitt et al. 2003; Babbitt and Tanner 2000).

Upland Importance. Many species (both vertebrates and invertebrates) 

that use vernal pools for breeding spend the majority of their time in the 

surrounding uplands feeding, hibernating, nesting, and estivating (Gibbons 2003; 

Semlitsch 1998; Semlitsch and Bodie 2003). For example, many amphibian 

species have stage-specific habitat requirements: they require aquatic habitat for 

breeding and larval development and terrestrial habitat for foraging and 

hibernation (Leibowitz 2003). Herrmann et al. (2005) found that, in order to 

maintain amphibian species richness, ponds should be surrounded by greater 

than 60% forest cover within 1,000 m buffer. Ponds with less than 40% forest 

cover within a 1,000 m buffer experienced diminished larval assemblages. 

Similarly, Gibbs (1998) found that wood frogs and spotted salamanders were 

absent from areas with less than 30% forest cover. Semlitsch and Bodie (2003) 

gathered information from the literature regarding buffer widths for amphibians 

and reptiles, and reported that the necessary range of core habitat surrounding a 

wetland is 159 m - 290 m for amphibians, and 127 m - 289 m for reptiles.
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Not only is the area immediately surrounding the pools important, but, for 

some species, viable corridors between pools are also important in maintaining 

populations and genetic diversity. Marsh and Trenham (2001) assert that 

amphibians act as metapopulations and that ponds are patch habitats where 

local extinctions and recolonizations can be common. Smith and Green (2005) 

are more wary of assuming amphibians act as “metapopulations,” especially 

when the dispersal of amphibians is often (though not always) too little or too 

frequent to support metapopulation structure. In this case, whether a specific 

population is part of a metapopulation mainly depends upon whether or not the 

population is truly isolated. If the dispersal distance is such that a high rate of 

dispersal occurs between ponds, “disjunct” populations are essentially united into 

a single unit, which excludes it from being a metapopulation (Smith and Green

2005).

Regardless of whether a particular amphibian population qualifies as a 

metapopulation, upland connectivity between pools within dispersal distance (up 

to 10 km for some species (Smith and Green 2005)) is invaluable. Even though 

many vernal pool amphibians have shown high site fidelity to their natal and/or 

breeding ponds (Vasconcelos and Calhoun 2004), members of new, successful 

generations (there are many failure years) disperse to other breeding habitats. 

Unless there is reproductive failure in a certain year, the dispersal of juveniles 

may help to ensure survival if the original pond is lost, to ensure gene flow 

between populations or ponds, and to colonize new breeding sites (Colburn

2004). Maintaining the integrity and connectedness of wetland/vernal pool
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mosaics is important because of inter-pool dispersal of individuals, which may 

result in larger, patchy populations (Smith and Green 2005) or in 

metapopulations (Gibbons 2003; Gibbs 2000; Lichko and Calhoun 2003; 

Semlitsch 1998). So, while vernal pools are isolated in the landscape, they are 

connected on many levels, including biologically (Zedler 2003).

Ecosystem Services

Seasonal woodland ponds serve important ecological, biological, and 

hydrologic functions in the landscapes in which they occur (Lichko and Calhoun 

2003). First, they are important for energy exchange between aquatic and 

terrestrial ecosystems. Energy, in the form of biomass, is exchanged when 

amphibians and invertebrates complete their aquatic stages and disperse to the 

surrounding uplands, thus "extending the trophic interactions of the pool into the 

surrounding habitat" (Burne and Griffin 2005). The high perimeter-to-area ratio 

characteristic of small pools may magnify this effect (Palik et al. 2001).

In addition to energy exchange, vernal pools contribute disproportionately 

to the biodiversity of landscape. While they are generally small in size, their 

significance in maintaining the diversity of the landscape is large (Leibowitz 2003; 

Semlitsch and Bodie 1998). Vernal pools often have even higher biodiversity 

than other, larger and more permanent wetlands. Their small, shallow 

morphology and seasonal hydrology means that they typically have gentle slopes 

and varying moisture conditions that encourage.specialization in the species that 

inhabit them (Leibowitz 2003). "Loss of these wetlands may have a
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disproportionate effect on regional biodiversity relative to other wetlands" 

(Leibowitz 2003).

Vernal pools are also habitats for non-breeding wetland-dependent 

species. Many species of amphibians, reptiles, birds, and mammals use vernal 

pools as stepping stone habitat between wetlands. Typically, they are used as 

refugia, feeding/foraging areas, and watering stops. Many species of turtles, such 

as spotted turtles (Clemmys guttata), Blandings turtles (Emydoidea blandingii), 

painted turtles (Chrysemys picta), and snapping turtles (Chelydra serpentina), 

use vernal pools as food sources, feeding on amphibian eggs and young 

(Colburn 2004). These pools may be especially important feeding areas for 

female turtles that are developing their eggs (Colburn 2004). Garter snakes 

(Thamnophis sirtalis), ribbon snakes (Thamnophis sauritus), and water snakes 

(Nerodia sipedon) feed on tadpoles, metamorphs, and adult frogs and 

salamanders (Colburn 2004). A number of other taxa, including avian and 

mammalian species, also utilize vernal pools for non-breeding activity, such as 

feeding and watering (Colburn 2004).

In addition to important functions within the landscape, there are also 

values, from a human standpoint, that are fulfilled by vernal pools. For instance, 

vernal pools can promote flood control by reducing flood peaks associated with 

run-off (Leibowitz 2003). Flooding waters entering the depressions through run

off and precipitation can likely be dampened in two ways: 1. The basin itself can 

store water, 2. Groundwater exchange - during flood events, the groundwater 

can be recharged through vernal pools (Leibowitz 2003). Also, they improve

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



water quality by intercepting run-off, trapping sediments and nutrients, and 

stabilizing soils (Wolfson et al. 2002).

Threats to Vernal Pool Systems

Despite their ecological functions and values, wetlands, in general, were 

lost at an alarming rate over the past two centuries; Dahl (1990) reported that 

since the 1980s, 44 million hectares (109 million acres) of wetlands have been 

destroyed in the United States, which is a 50% reduction from the original 87 

million ha (215 million acres) (as cited in Wolfson et al. 2002). Woodland vernal 

pools are especially susceptible to loss because of their small size and seasonal 

hydroperiod. Often times, vernal pools are either regarded as unimportant 

because of their size or are completely overlooked due to seasonal drying. Even 

in federal legislation, small wetlands are excluded from protection. Semlitsch and 

Bodie (1998) caution that if the goal of current legislation is to maintain/protect 

biodiversity, small, isolated wetlands are not expendable. The bias against small 

wetlands is unfounded in current literature. Wolfson et al. (2002) conducted a 

study analyzing wetland size and its ability to perform a given function and found 

that there was no significant difference between a large and a small wetland's 

functional capability. Further, they found that no specific wetland type (i.e. 

forested, scrub-shrub, emergent, etc.) had a greater probability of performing any 

of the functions they tested than another wetland type.

As small wetlands, vernal pools are capable of performing important 

ecological functions; however there are a number of significant threats to vernal 

pools that hinder or terminate their ability to carry out those functions. Most of
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them are related to human alteration of the land: physical destruction of vernal 

pools; disturbance/fragmentation of adjacent uplands; changes to vernal pool 

hydrology, including changes in water source, depth, volume, and timing of 

filling/drying; watershed alterations, including changes in water quality and 

energy flow; pollution; invasive species, etc. (Colburn 2004).

Outright destruction occurs when pools are filled and built upon. 

Permanent dwellers in the pools are immediately lost, while individuals that 

inhabit the surrounding terrestrial areas may either experience direct morality 

and/or local extinctions due to loss of breeding areas (figure 1). Adjacent upland 

habitat must also be a consideration in vernal pool loss. When changes are 

made to the landscape that introduce gaps into an organism's core habitat 

(fragmentation), often times the organism cannot cope. For example, all 

amphibians that use vernal pools spend the majority of the year in the 

surrounding uplands, which, if destroyed, eliminates crucial core habitat. Also, 

disturbed upland habitat may mean that individuals can no longer reach their 

breeding pools or that juvenile dispersers cannot migrate to other, nearby pools 

(figure 1). Many, though not all, vernal pools occur in the landscape in clusters 

(Brooks 1998), and source-sink dynamics often occurs between pools within 

dispersal distance (figure 1) (Semlitsch and Bodie 1998). Source-sink dynamics 

means that local extinctions are common in small communities, such as vernal 

pools (Marsh and Trenham 2001); however, recolonization by individuals from 

surrounding populations is also common and aids in assuring the continued 

existence of the metapopulation (rescue effect). Loss of "stepping stone" pools or
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corridors between them reduces the connectivity among remaining populations 

and dampens the possibility that isolated subpopulations can be rescued from 

neighboring pools, resulting in more local extinctions and an overall decline in 

amphibian populations (due to less available breeding area and greater 

distances to travel between wetlands) (Semlitsch and Bodie 1998). Many studies 

have shown the adverse effects of fragmentation on amphibian species (a few 

studies include: Rittenhouse and Semlitsch 2006; Rothermel and Semlitsch 

2002; Rothermel and Semlitsch 2006; Semlitsch et al. 2007).
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Figure 1: Scenario 1 shows an undisturbed cluster of vernal pools. In this exam ple, all 
m igratory populations can theoretically exchange genetic information through dispersal 
(arrows). For example, pool E can share material with pool D through m igrations between  
pools A, B, and/or C. In scenario 2, a road has been built through the m iddle o f the patch, 
fragm enting the uplands surrounding the pools and directly destroying pool E (direct 
mortality). D isruption of the adjacent uplands near pools B and C has indirectly elim inated  
those as well. Consequently, pools A  and D have been isolated from  one another and 
individuals can no longer migrate between them . The loss of pools E, B, and C increases  
the risk of local extinctions at the remaining pools, and there is no (or extrem ely little) 
chance of rescue/recolonization from  a nearby pool. In scenario 3, a factory has been built, 
destroying pools B and C. Again, there is upland fragm entation that acts as a barrier to 
genetic exchange with pool D. W hile dispersal between A and E is still possible, the  
overall genetic variability of the original cluster (i.e. metapopulation) is dim inished. (Figure 
and explanation adapted from  Colburn 2004).
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Policy

Federal Legislation. Vernal pools, more than other wetlands, are 

vulnerable to loss due to their small size and ephemeral hydrology. Federal laws 

regarding wetland protection perpetuate this problem. The Clean Water Act 

(CWA) (1972) regards only navigable waters under federal jurisdiction. 

Responsibility for interpretation and enforcement of the CWA lies with the Army 

Corps of Engineers and the Environmental Protection Agency (EPA) (Downing, 

et al. 2003; United States Army Corps of Engineers 1987). While the CWA itself 

does not protect small, isolated wetlands, the EPA and Army Corps used the 

"Migratory Bird Rule" for protecting isolated waters, which themselves were not 

navigable (Downing et al. 2003). The "Migratory Bird Rule" was not applicable to 

birds only, however. It included waters that were or would be used "(1) as habitat 

by birds protected by Migratory Bird Treaties or that cross state lines, (2) as 

habitat for endangered species, or (3) to irrigate crops sold in commerce" 

(Downing et al. 2003). The conglomeration of these three cases collectively 

became the Migratory Bird Rule and provided the necessary nexus between 

important (ecological or agricultural) isolated waters and navigable ones (waters 

of the United States).

The Supreme Court decision in the Solid Waste Agency o f Northern Cook 

County v. United States Army Corps o f Engineers case in 2001, hereon referred 

to as "SWANCC," represented a significant weakening of Corps jurisdiction over 

isolated wetlands. The Court found that the use of the "Migratory Bird Rule" 

exceeded the authority of the Corps under the Clean Water Act. They asserted
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that "the presence of migratory birds is by itself not a sufficient basis for asserting 

jurisdiction over 'isolated,' intrastate, non-navigable water bodies" (as cited in 

Downing et al. 2003). Presently, then, the status of non-navigable, "isolated" 

waters calls for a case-by-case investigation of whether there is a "significant 

nexus" with navigable waters, or if they are truly isolated (Downing et al. 2003). 

Isolation is defined here by whether degradation or destruction of such water 

bodies would significantly affect navigable waters (Downing et al. 2003). The 

SWANCC decision has caused much concern for the future of U.S. wetlands, 

specifically small, isolated ones. "The SWANCC decision, based more on 

commercial interests than on ecological resources and functions per se, has 

severely jeopardized the number, area, integrity, and value of national wetlands" 

(Gibbons 2003).

Massachusetts State Legislation. Massachusetts was among the first 

states in the nation to generate legislation that specifically protects vernal pools 

by adding amendments to its Wetlands Protection Act (WPA) in 1987 (Burne and 

Griffin 2005). Many local governments and conservation commissions have 

created even more stringent regulations under local wetland laws (Burne and 

Griffin 2005). The state has implemented a vernal pool certification program 

through the National Heritage and Endangered Species Program (NHESP). To 

be certified, vernal pools must have certain characteristics: (1) Evidence of a 

confined basin depression with no permanently flowing outlet and (a) a breeding 

obligate amphibian (Table 1), or (b) an adult obligate invertebrate (i.e. fairy 

shrimp), or (2) Evidence of a confined basin depression with no permanently
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flowing outlet and photographs of two or more facultative species (Table 2), or (3)

Evidence of a confined basin depression containing no standing water (during

dry phase) and evidence of specific invertebrate presence (Commonwealth of

Massachusetts Division of Fisheries and Wildlife 2001). Certification does not

necessarily guarantee state protection; vernal pools are protected by the WPA

only if  they fall within a jurisdictional wetland. The upland areas surrounding

CVPs are also protected, up to 30.5 m, but only if the buffer area also falls within

the jurisdictional wetland (Burne and Griffin 2005; Commonwealth of

Massachusetts Division of Fisheries and Wildlife 2001). The Wetland Protection

Act itself protects eight wetland functions: "protection of public and private water

supply, protection of groundwater supply, flood control, storm damage

prevention, prevention of pollution, protection of land containing shellfish,

protection of fisheries, and protection of wildlife habitat" (Burne and Griffin 2005).

The WPA defines vernal pools as confined depressions that are inundated for at

least two continuous months in the spring/summer, are essential breeding habitat

for certain indicator species, and are free of adult fish populations (Burne 2001;

Burne and Griffin 2005). Within the act, the wildlife habitat value of certified

vernal pools (within jurisdiction) is addressed:

Any project that would alter a certified vernal pool must 
demonstrate that there would be no substantial reduction in the 
pool's capacity to provide food, shelter, migratory and breeding 
areas, and overwintering areas for amphibians, or food for other 
wildlife. No changes to the topography, soil structure, plant 
community composition and structure, or hydrologic regime are 
permissible if, after 2 growing seasons, the habitat functions listed 
above would be substantially reduced (Burne 2001; Burne and 
Griffin 2005).
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The WPA does not specifically provide protection for uncertified vernal pools, 

which is a limitation of the WPA's protection of vernal pools (Burne 2001; Burne 

and Griffin 2005).

Massachusetts has other regulations that offer vernal pools legal 

protection under specific circumstances. First, some pools that are not under 

jurisdiction by falling within another wetland may be protected as "Isolated Land 

Subject to Flooding" (ILSF) resource areas (under the WPA) (Commonwealth of 

Massachusetts Division of Fisheries and Wildlife 2001). ILSFs are inland 

wetlands that have no connections to other wetlands (Burne 2001; Burne and 

Griffin 2005). These habitats are not presumed to be significant to wildlife, 

unless, on a case by case basis, they are proven to be so (Burne 2001; Burne 

and Griffin 2005). The establishment of a vernal pool as an ILSF with important 

wildlife functions is accomplished though vernal pool certification (Burne 2001; 

Burne and Griffin 2005). The limitation with this legislation is that ILSF protection 

has no provision for the surrounding upland habitat; therefore, it does not 

effectively protect the wildlife functions (Burne and Griffin 2005).

The Rivers Protection Act, an amendment to the WPA, provides protection 

for vernal pools (both certified and uncertified) that are within 61 m (200 ft) of the 

banks of a perennial stream (Burne 2001; Burne and Griffin 2005). Jurisdiction 

under this act includes both wetland and upland areas within the resource area 

(Burne 2001; Burne and Griffin 2005). It is the only legislation that considers 

uncertified vernal pools. The act protects all vernal pools from any project that
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would have "adverse effects" on the wildlife habitat value of vernal pools or their 

adjacent terrestrial, non-breeding habitat (Burne 2001; Burne and Griffin 2005).

There are other, non-WPA regulations that provide additional protection to 

vernal pools. The Surface Water Quality Standards, for which the Massachusetts 

Department of Environmental Protection is responsible, certifies that wetland 

filling projects comply with the federal Clean Water Act (Burne 2001; Burne and 

Griffin 2005; Commonwealth of Massachusetts Division of Fisheries and Wildlife

2001). Certified vernal pools that meet federal criteria for "Waters of the United 

States," which means that they must be navigable waters or adjacent to 

navigable waters (Burne 2001; Burne and Griffin 2005). Under this act, vernal 

pools are designated as "Class B Outstanding Resource Waters," which means 

that any new or increased discharge of pollutants or fill material is prohibited 

(Burne 2001; Buren and Griffin 2005). It also prohibits discharges of solid or 

liquid fill into Certified Vernal Pools. Run-off from roads or roof-tops is also not 

permissible (Commonwealth of Massachusetts Division of Fisheries and Wildlife

2001). For this legislation to be activated, the wetland must warrant federal 

jurisdiction. This legislation does not provide protection to surrounding upland 

habitats, rendering it less effective in protecting vernal pool species than 

legislation that does protect the adjacent uplands.

There are two other notable laws protecting vernal pools in 

Massachusetts. The first, "subsurface sewage disposal regulations," more 

commonly referred to as "Title 5," establishes minimum setbacks from certified 

vernal pool boundaries for septic systems and leach fields. In most cases, septic
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tanks must be at least 15 m (50 ft) from vernal pool boundaries, while leach fields 

(and their reserves) must be a minimum of 30 m (100 ft) from pool boundaries 

(Burne 2001; Burne and Griffin 2005; Commonwealth of Massachusetts Division 

of Fisheries and Wildlife 2001).

Finally, the "Forest Cutting Practices Act" is designed to protect vernal 

pools from harvesting impacts. It provides both certified and uncertified vernal 

pools protection within 15 m (50 ft) of the pool boundary (Burne 2001; Burne and 

Griffin 2005). It limits harvesting, within the designated 15 m (50 ft) radius, to 

50% of the basal area of the surrounding trees (Commonwealth of 

Massachusetts Division of Fisheries and Wildlife 2001). It also prohibits vernal 

pools from being used as staging areas or skidder trails and trees or tree tops 

from being felled into vernal pools (Burne 2001; Burne and Griffin 2005; 

Commonwealth of Massachusetts Division of Fisheries and Wildlife 2001).

Further, in 2007, the National Fleritage and Endangered Species Program 

released a document of forestry Conservation Management Practices (CMP) for 

Massachusetts state-listed mole salamander species (National Fleritage and 

Endangered Species Program 2007b). This document requires that additional 

precautions are taken during forestry activities that occur within delineated mole 

salamander habitat (cool, shaded, and moist forested conditions surrounding 

vernal pools/breeding sites) (National Heritage and Endangered Species 

Program 2007b). Based upon mole salamander life history requirements, these 

CMPs attempt to reduce direct mortality of individuals from motorized vehicles 

and soil compaction during harvests and to avoid habitat alteration that would
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make forested land inhospitable for mole salamanders (National Heritage and 

Endangered Species Program 2007b). Some of these regulations include: a 50 

foot buffer must be maintained around specified vernal pools/breeding sites, 75% 

canopy cover must be maintained within 70% of a 450 foot buffer from breeding 

sites, and no motorized equipment can be used within 450 feet of Blue-spotted 

and Jefferson’s salamander breeding sites between March 1st and May 15th (the 

time of year when these species are most mobile) (National Heritage and 

Endangered Species Program 2007b). Similarly, no motorized equipment can be 

used within 450 feet of a Marbled salamander breeding site between August 15th 

and October 15th (the time of year when these species are most active) (National 

Heritage and Endangered Species Program 2007b). To minimize forest floor 

disturbance, soil compaction, and direct mortality, NHESP recommends forest 

harvesting happen during the winter months.

Mitigation. Vernal pool mitigation has not been well-studied in the 

northeastern United States. One specific study, though, has attempted to 

evaluate the success of mitigation projects in New England. Lichko and Calhoun 

(2003) studied documentation of 15 vernal pool creation projects in New England 

to determine whether they replaced key vernal pool functions. They found that 

most vernal pool creation projects likely failed to reproduce the functions lost 

when the original pool was damaged because of poor planning; however, poor 

record keeping and inconsistent monitoring made success difficult to determine. 

They reported poor pool design as a major flaw; in fact, the pool design criteria 

were not well documented, and those projects that did document their plans had
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no rationale for the specific design choices they made. Creation attempts were 

rarely based on successfully functioning reference wetlands, but rather on 

speculation. The majority of the projects considered vegetation, depth, soil, and 

adjacent upland habitat in their project design; however, many did not consider 

the water regime, egg mass attachment sites, woody debris surrounding the 

pool, or the transfer of amphibian eggs or adults (Lichko and Calhoun 2003). 

Further, none of the projects proposed to monitor water regime or pool surface 

area (Lichko and Calhoun 2003), even though it is well documented that pool 

hydrology is often the cause for the success or failure of a vernal pool (Brooks 

2004; Skidds and Golet 2005). While some of the projects claimed to monitor 

amphibians at the pools, most were not targeting specific species (i.e. wood 

frogs, spotted salamanders, etc.) (Lichko and Calhoun 2005). Most projects did 

not even have the goal of replacing lost vernal pool functions; therefore, they 

generally failed to do so. This study illustrates the importance of understanding 

seasonal woodland ponds and their functions, especially for mitigation purposes. 

Conservation strategies should reflect the current knowledge of the life history 

requirements of vernal pool dependent species and also the landscape functions 

of small wetlands (Lichko and Calhoun 2003).

The Role of GIS and Remote Sensing in Identifying Vernal Pools

Within the last decade, there have been dramatic improvements in the 

spatial technology available to environmental scientists. With these 

improvements, there has been an increase in the number of ecological studies 

attempting to better incorporate a spatial component. These studies have ranged
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in extent from global to local. For example, Tiner (2003) completed a nationwide 

study on the extent of isolated wetlands. He used National Wetland Inventory 

(NWI) layers, hydrology layers, and Digital Raster Graphics (DRGs) to estimate 

isolated wetlands in the U.S. In the Northeast, he found that isolated pools 

occupy about 5 - 28% of the landscape.

Many more studies have been done at the state level. For instance, in 

California, Smith and Verrill (1998) used GIS to create a hierarchical framework 

for identifying present and extant vernal pools. Their hierarchy, derived from GIS 

data layers, included landform, geologic formation, soil great groups, soil series, 

and phase of soil series. Because of the availability of statewide spatial 

information, they were able to identify California vernal pools, not only in the 

present, but also historical pools, which serve as possible mitigation sites for 

disturbed or destroyed pools.

Northeast vernal pools have been identified using GIS and photo 

interpretation in many studies. Lathrop et al. (2005) used on-screen visual 

interpretation of 1 meter resolution color infrared Digital Ortho Quarter 

Quadrangles (DOQQs) to map vernal pool occurrence in New Jersey. They 

identified more than 13,000 pools with 88% accuracy. They reported 12% 

commission error and 15% omission error using this method. They observed that 

the ability to discern vernal pools on aerial photography is related to pool size, 

pool shape, and surrounding land cover. Additionally, they did not find a 

consistent minimum detectable pool size, though their ability to identify pools 

decreased at an area of 120 m2.
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In Maine, Calhoun et al. (2003) experimented with different types of aerial 

photography to see how scale affected their ability to identify vernal pools. 

Specifically, 1:12,000 and 1:4800 scales were evaluated to decipher the efficacy 

with which vernal pools could be identified. On the 1:4,800 scale imagery, 516 

pools were identified, approximately 93% of which were correct. Only 170 pools 

were identified on the 1:12,000 scale imagery; an estimated 90% of those pools 

were correctly identified. Eight percent of the pools mapped on the 1:4,800 

imagery were also identified by the 1:12,000 imagery; whereas 83% of pools 

were delineated on the 1:12,000 photos were also mapped by the 1:4,800 scale 

images. The importance of scale when trying to identify isolated wetlands by 

photo interpretation was demonstrated.

There have been other, similar studies done specifically in Massachusetts. 

For example, Brooks et al. (1998) used 1:12,000 spring, leaf-off, color infrared 

imagery to identify vernal pools in the Quabbin Reservoir watershed. With the 

quality of the imagery, pools greater than 0.025 ha in size could be consistently 

identified. They observed that vernal pools were generally clustered in the 

watershed, and that overall, they occur at a density of about 1.1 ponds/km2, with 

inter-pool distances ranging from 19 m to 2.4 km. Errors of omission were not 

computed. In a similar, but much larger project, Burne (2001) used 1:12,000 

color infrared imagery to identify potential vernal pools on a statewide level, 

resulting in the National Heritage and Endangered Species Program Potential 

Vernal Pool (NHESP PVP) layer (National Heritage and Endangered Species 

Program 2000). He reported that pools under 15 m -  18 m (50 ft - 60 ft) in
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diameter could not be accurately detected. He also observed that pools occurring 

beneath coniferous canopies are obscured, except where they are large enough 

to cause a gap in the canopy, illustrating both the strengths and limitations to 

photo interpretation.

Finally, in a recent study, Grant (2005) combined GIS and statistical 

modeling to predict vernal pools in Massachusetts. Logistic regression was used 

to identify specific physical predictors of vernal pool presence. The independent 

variables, which began as a large suite of possible predictors, were derived from 

GIS data layers. The best model used slope, surficial geology, percentage of 

cropland, urban/commercial development, and residential development as 

predictors of vernal pool presence. Sand/gravel, fine grained, and floodplain 

alluvium surficial geology types were positive correlates of vernal pool presence. 

Slope, percentage of cropland, urban/commercial development, and high density 

residential development were negatively associated with vernal pool presence. 

Statistically, 64% of his validation set of pools were correctly predicted; however, 

the results were not displayed or analyzed cartographically.

Ecological Modeling 

Many ecologists are using ecological modeling to acquire important 

information about environmental processes, species distributions, habitat 

distributions, etc. Models are simplifications of reality used to explain, in this 

case, ecological processes (Vogiatzakis 2003). Ecological data sets are 

generally multivariate (contain more than one variable and often times many 

variables) and location specific in nature (Vogiatzakis 2003). Ecological
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problems, therefore, lend themselves well to the use of GIS; however, most GIS 

lack the predictive and analytical capabilities necessary to examine complex 

modeling problems, while statistics-oriented problems lack important spatial 

components (Vogiatzakis 2003). With this problem in mind, there are two 

common solutions presently available. First, ecologists can use a single interface 

to integrate spatial and statistical models (Vogiatzakis 2003). Currently, there are 

few viable software options that are capable of this integration. New editions of 

the Idrisi software (designed by Clark University) are capable of implementing 

complex machine learning statistical procedures, like Artificial Neural Networks 

(ANNs). It can also perform simple linear regression, multiple linear regression, 

and logistic regression between images or attribute files (Clark Labs 2007). Also, 

Insightful’s S+ software has the “SpatialStats” module which is capable of 

parametric and nonparametric trend surface analysis, Kriging, spatial regression 

models, nearest neighbor searches, spatial randomness tests, etc. (“S+ 

SpatialStats Product Features” 2007). There are relatively few other software 

packages that are appropriate for both statistical and spatial modeling. When 

such an option is not available, modelers are forced to run their models in 

statistical software outside of the GIS, and then interpret the model spatially in 

the GIS (Vogiatzakis 2003). This task is often difficult because GIS and statistics 

lack common data structures and have different interfaces (Vogiatzakis 2003).

While difficult, many studies have managed to integrate GIS and 

ecological modeling. The modeling process starts with a conceptual model, 

derived either from field knowledge of the subject, laboratory experiments, or
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gathered from the literature (Guisan and Zimmermann 2000). At this step, it is 

important to define the goals of the study. If the purpose is to identify locations, 

with certainty, where an organism or habitat definitely exists, then choosing a 

technique and variables that minimize errors of commission (false positives) is of 

utmost importance. If, however, the goal is to conserve an organism or habitat, 

then errors of omission (false negatives) must be minimized (Munoz and 

Felicisimo 2004). The next step is to choose a statistical technique; often 

statistical literature and/or other models are the basis for this choice. The model 

is then formulated and calibrated on a test set of data, which is often an iterative 

process. In another iterative process, the model is then tested on an independent 

(ideally) set of data and evaluated.

Ecological Modeling Techniques

Generalized Linear Models. Regression has long been used in ecology to 

determine relationships between the biological and the physical environment 

(Vogiatzakis 2003). In general, regression attempts to correlate a response 

variable to one or more environmental predictors (Guisan and Zimmermann 

2000). Generalized Linear Models (GLM) are mathematical extensions of simple 

linear models that allow for non-linearity and non-constant variances in the data 

(Guisan et al. 2002). They are based on an assumed relationship, called a link 

function, between the mean of the dependent variable and a linear combination 

of predictor variables. In GLM, the independent variables are combined to 

produce a “linear predictor” (LP), which is related to the expected value of the 

response variable through a link function (Guisan et al 2002). The link function
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used depends upon the GLM technique chosen. GLM are more flexible than 

simple linear models because they are appropriate for data from any of the 

exponential family distributions: Gaussian, Poisson, binomial, negative binomial, 

or Gamma, some of which may be better suited for analyzing ecological 

relationships than methods assuming a classical Gaussian distribution (Guisan et 

al. 2002; Guisan and Zimmermann 2000; Lehmann 1998). Further, they allow the 

use of continuous and/or categorical data (Lehmann 1998).

Logistic regression is a specific type of GLM. With this routine, the 

dependent variable (response variable) must be binomial (yes/no, 

present/absent, etc.) (Guisan et al. 2002; Lehmann 1998). It uses a logistic link 

(logit/logit transformation) that can fit polynomial equations to a higher degree 

than linear (supports non-linear data) (Hirzel et al. 2001). It allows the user to 

predict a discrete outcome (i.e. presence/absence) from a set of categorical or 

continuous predictors, though it has a difficult time modeling complex interactions 

between variables and general rule exceptions.

Logistic regression outputs a number of statistical results for determining 

overall model fit and the contribution of each independent variable in predicting 

the response variable. There are several statistics that indicate model fit. The 

most commonly recognized statistic is the pseudo R2 value, which summarizes 

the overall strength of the model. Akaike’s Information Criterion is another model 

fit statistic often utilized to identify the most efficient and simple model: a lower 

value means better model fit (Akaike 1979). Additionally, a non-significant
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Hosmer and Lemeshow “Goodness of Fit Test” means that the model has 

adequately fit the data (“Logistic Regression” 2007).

In addition to the model fit, logistic regression is capable of determining 

the strength of each predictor variable. For instance, the Wald Statistic tests the 

significance of the logistic regression coefficients for each independent variable 

(“Logistic Regression” 2007). The logistic regression coefficients, often used to 

generate probability of prediction equations, explain the strength and sign of 

each variable’s contribution in predicting the response variable. Significant 

negative values indicate avoidance or an inverse correlation to the presence of 

the response variable, where significant positive values indicate a positive 

relationship between the predictor and the presence of the response (Mace et al. 

1999). Finally, the most common way of interpreting a logistic regression is by 

the “odds ratio.” An odds ratio above one indicates positive odds that the 

response variable is “present” (“Logistic Regression” 2007) while odds ratios 

below one indicate negative odds or an inverse relationship between the 

predictor and the response (“Logistic Regression” 2007). Odds ratios close to 

one mean that the independent variable does not explain the presence of the 

dependent variable.

Of course, with multiple predictor variables included in the model, there is 

the opportunity to create multiple models. Caution should be used when 

choosing independent variables for the logistic regression; many variables should 

not be carelessly added into the model because it is well-documented that as the 

number of parameters increase, the accuracy with which they can be estimated
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decreases (Bonney 1987). Specifically, more predictor variables mean increased 

multicollinearity (Munoz and Felicisimo 2004). “Multicollinearity occurs when one 

or more variables are exact or near exact linear functions of other variables in the 

data set” (Munoz and Felicisimo 2004). When this happens, it becomes very 

difficult to determine the effects of any one variable. More variables also equates 

to more noise specific to the training data set. There are methods for choosing 

the best model fit that penalize for complexity. One of the most common methods 

of determining the appropriate model from a large number of models is Akaike’s 

Information Criteria (AIC) (Akaike 1979). AIC penalizes the model fit measure for 

unnecessarily increasing model complexity (i.e. number of variables). The 

minimum AIC denotes the best model.

The ability to model presence and absence of particular phenomenon 

inherently involves relating spatial data to ecologic data. To do so, landscape 

variables must be correlated to species/habitat presence. For this reason, most 

studies in this field utilize GIS in some way. Typically GIS data layers are utilized 

as independent (predictor) variables (i.e. elevation, slope, land use, soil type, 

geology, precipitation, etc). Information about the physical attributes related to 

species/habitat presence is collected on a site-specific basis. Once the model is 

created, calibrated, and evaluated, it can be transferred back into the GIS to 

produce a probability map depicting the likelihood that the phenomenon of 

interest is present in a given area. To create this layer, the inverse logistic 

transformation can be used, which yields a raster with each cell having a value
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between 0 and 1 (0 meaning no chance of presence, 1 meaning 100% chance of 

presence).

A number of studies have used logistic regression to predict species 

and/or habitat presence and absence. For instance, Mladenoff et al. (1995) used 

a stepwise logistic regression to correlate landscape variables derived from GIS 

data layers to essential wolf (Canis lupus lycaon) habitat to assess the feasibility 

of recolonizing the Great Lakes area. Mace et al. (1999) used GIS and logistic 

regression models to describe grizzly bear (Ursus arctos) habitat in Montana. 

Gibson et al. (2004) modeled rufous bristlebird (Dasyornis broadbenti) habitat by 

coupling GIS with logistic regression. Compton et al. (2002) used a paired logistic 

regression to determine habitat preferences for the wood turtle (Clemmys 

insculpta). Carroll et al. (1999) used a multiple logistic regression to model fisher 

(Martes pennanti) distribution. Finally, Bian and West (1997) used logistic 

regression and GIS to predict elk (Cervus Canadensis) calving habitat 

preferences in Kansas. These are just a few of the examples of how logistic 

regression can be applied in ecology.

Generalized Additive Models. While not utilized in this study, and not to 

be discussed in full detail, Generalized Additive Models (GAM) represent an 

alternative to GLM. GAM is described as non-parametric or semi-parametric 

extensions of Generalized Linear Models (Guisan et al. 2002; Lehmann 1998). 

They build models by using smoothed functions taken from the predictor 

variables instead of pre-establishing a parametric model (Lehmann 1998). When 

predictors do not fit the traditional linear model, polynomials and transformations
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are often used; however, they are tedious and often imprecise (Guisan et al.

2002). Generalized Additive Models facilitate this process. Like GLM, they use a 

link function to establish a relationship between the mean of the response 

variable and the “smoothed” function of the independent variable(s) (Guisan et al.

2002). GAM assesses each variable separately and can automatically identify 

the appropriate transform or polynomial (smoother) for each one and additively 

calculates the response (Guisan and Zimmermann 2000); some variables can be 

modeled normally while others must be modeled as transforms or polynomials 

(Guisan et al. 2002). This type of technique is advantageous because it can 

handle highly non-linear relationships, often enabling it to better represent the 

underlying data (Guisan et al. 2002). Since it is a nonparametric approach, 

however, there is one main disadvantage: when performing ecological modeling 

with a spatial component, interpretation of the results into a GIS is difficult 

because GAM do not produce a conventional mathematical function or equation 

(Lehmann 1998).

Classification and Regression Tree Analysis (CART). Classification and 

Regression Tree analysis (CART) is a technique that has recently been receiving 

increased attention in ecological studies. It is a routine that recursively splits 

predictor variables into a hierarchical sequence of groups based upon the 

independent variables’ ability to predict the response (Andersen et al. 2000). The 

undivided data resides at the top of the tree and is called the “root node” (De’ath 

and Fabricius 2000). The routine initially splits the data into two groups, based 

upon the variable that most minimizes the deviance in the dependent variable
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(Iverson and Prasad 1998; Lawrence and Wright 2001). At each subsequent 

split, the data are again divided into two (branches), mutually exclusive groups 

which are as pure/homogenous as possible (De’ath and Fabricius 2000). Each 

split is based on only a single variable, and variables may be used once, multiple 

times, or not at all (Munoz and Feliclsimo 2004). For categorical variables, splits 

divide the categories into two groups. For continuous variables, splits are defined 

by less than or greater than some chosen value (De’ath and Fabricius 2000). The 

result of the analysis is a dichotomous decision tree. Each path through the tree 

defines “the conditions that lead to the most probable class” (Lawrence and 

Wright 2001). The final decision points are called “leaves” or “terminal nodes.” 

Variables that work on regional scales tend to be captured early in the model 

near the top of the tree (i.e. climate), while variables working on a more local 

scale are captured toward the terminal nodes (i.e. soil, elevation, etc.) (Iverson 

and Prasad 1998).

Trees will grow until completely homogenous groups are obtained or until 

some stopping criterion is met. For instance, in the S+ statistical package, the 

stopping criterion is when a node explains less than 1% of the total tree deviance 

(Lawrence and Wright 2001). Most of the time, CART analyses over fit the 

model, meaning that they begin to explain idiosyncrasies inherent in the training 

data only; they begin to explain noise. In these cases, the trees often become 

exceedingly large and difficult to interpret, so pruning methods have been 

developed with the goal of explaining the same, or similar, amount of variance, 

but with fewer terminal nodes.
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There are several advantages to using CART. First, both categorical and 

continuous independent variables can be used together (Iverson and Prasad 

1998). Further, the response variable can either be categorical (classification 

tree) or numeric (regression tree) (De’ath and Fabricius 2000). Prediction rules 

can be directly induced (Guisan and Zimmerann 2000) and hierarchical 

relationships between independent variables are explicitly illustrated from the 

tree structure (North et al. 1999). Implementation of these rules in decision

making is generally very easy (Andersen et al. 2000). For this reason, realization 

of tree-based models into a GIS to create predictive maps is facilitated. 

Statistically, CART makes no assumptions about the distribution of the response 

or predictor variables (Andersen et al. 2000): CART can handle complex data, 

non-normal data, missing values, and non-linear and high order interactions 

between variables (Andersen et al. 2000; De’ath and Fabricius 2000). Finally, the 

biggest advantage to using a CART analysis is its ability to capture non additive 

behavior. In other words, sometimes relationships between the response variable 

and some of its predictors are conditional, based upon the values of other 

predictors; CART can detect exceptions to general rules (Iversen and Prasad

1998). The main disadvantage to CART analyses is that, when more than a few 

predictor variables or cases are used to classify a data set, trees can become 

extremely complex and almost impossible to interpret.

There is less ecological application-centered research on CART than 

there is for GLM, including logistic regression. North et al. (1999) used CART to 

model spotted owl habitat (Strix occidentalis). Skidmore et al. (1996) compared
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CART, BIOCLIM, and supervised classification to see how each could classify 

multiple species of kangaroo’s habitat. They found that CART performed the best 

out of the three models tested. Andersen et al. (2000) compared multiple 

regression to a CART analysis to model desert tortoise (Gopherus agassizii) 

density. They determined that the CART results were much more revealing than 

the multiple regression results were. Interestingly, they began the analysis with 

73 independent (predictor) variables, but the model only utilized eight predictors. 

Finally, Iverson and Prasad (1998) used a regression tree analysis (RTA) to map 

the current distribution of tree species in the eastern U.S. They were also able to 

map future distributions based upon climate change models. Overall, CART is 

beginning to receive more attention due to its applicability to ecological and 

spatial problems.

Other Advanced Modeling Techniques. There are myriad other 

techniques to choose from when creating an ecological model. There are a few 

relatively new, progressive routines that have recently entered into the ecological 

modeling literature. Multivariate Adaptive Regression Splines (MARS) is one of 

those techniques. It is a combination of classical linear regression, the 

mathematical construction of splines, and the binary recursive partitioning of 

CART, to model linear or non-linear response-predictor relationships (Munoz and 

Felicisimo 2004). It creates a regression line; however, at points on the 

regression line where the trend (i.e. the slope) changes, it is allowed to bend at a 

point termed the “knot,” which denotes the beginning of a new region of data with 

different behavior (Munoz and Felicisimo 2004). These models always over fit
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the data at first, but in the subsequent steps, the “knots” that contribute the least 

to the effectiveness of the model are removed by backwards pruning (Munoz and 

Felicisimo 2004). This method has not yet been used extensively in ecological 

modeling; however, it shows tremendous promise to be an effective method in 

future studies.

Another interesting choice for ecological modeling is Artificial Neural 

Network (ANN) analysis. Often overlooked because of their obscure statistical 

routines, ANNs have only rarely been used in ecology (Lek and Guegan 1999). 

ANNs are non-linear structures that are designed to emulate the human brain. 

They rapidly learn from experiences to solve computational problems (Lek and 

Guegan 1999). Though there are multiple algorithms, back propagation (also 

known as multi-layer feed-forward neural network) is used most often (Lek and 

Guegan 1999). It is a supervised routine (user provides training data) in which 

information flows from the input layers, through a hidden layer that assigns 

weightings to the input layers, and finally to the output layer/response (Figure 2). 

Guisan and Zimmermann (2000) described them as more powerful than multiple 

regression models for describing non-linear relationships. They are 

advantageous because they accommodate non-parametric variables (Zhou

1999), learn adaptively from existing examples (Thurston 2002), handle noisy 

and missing data, adapt to patterns not observed in the training data and find the 

best fit (Thurston 2002), and continually learn and adjust weights with more 

training data (Thurston 2002). Their main pitfall is that they are still “black box” in 

terms of what happens within the hidden layers. Researchers are therefore
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hesitant to use them for some applications in which it is important to gain insight 

into the characteristics of the data set. With more research, however, they may 

have exceptional potential in ecological and GIS modeling.

Input
Layer

Hidden Layer

Spectral Reflectance

Texture
-  Output

Elevation Ex. WATER

Figure 2: Sim plification of Artificial Neural Network processes.
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CHAPTER II

METHODS 

Study Area Description

The area examined for vernal pools was in Massachusetts, USA (north 

and west coordinates: 42° 44' 45.0", 73° 15' 52.9"). Massachusetts occupies 

about 20,958 km (8,092 mi2), or 1/8 of New England's total land area (MassGIS 

2002a). It is also the most populous state in New England, with 6.4 million 

residents and an overall population density of 312 people/km2 (810 people/mi2) 

(United States Census Bureau 2006). Of the 6.4 million people residing in the 

state, about 3 million are within an 80 km (50 mi) radius of Boston (United States 

Census Bureau 2006).

The climate in Massachusetts is temperate with mild, humid summers and 

cold, snowy winters. Weather can change very quickly, and there are large 

ranges in temperature on a daily and annual basis (NOAA National Climatic Data 

Center 2005). Average summer temperatures range from 70°-75°F in the central 

part of the state, but can be greater than 90° (NOAA National Climatic Data 

Center 2005). Average winter temperatures are generally 23° to 27° in central 

Massachusetts. The growing season usually lasts between 140 - 160 days 

(NOAA National Climatic Data Center 2005). There are no defined wet and dry 

seasons; the state receives precipitation uniformly throughout the year. Total
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precipitation averages 102 cm -  127 cm (40 in -  50 in) per year (NOAA National 

Climatic Data Center 2005).

Presently, about 12,002 km2 (57.3 %) of Massachusetts is forested; 

approximately 466 km2 (2.2%) of the land surface is characterized as wetlands; 

approximately 2,147 km2 (10.2%) is developed (includes urban, industrial, and 

residential areas); and about 1,269 km2 (6.1%) is farmland (MassGIS 2002b). 

The soil in the state is generally rocky. The vegetation is characterized by 

temperate species of trees, shrubs, and herbaceous plants. Forests in 

Massachusetts are described as “Deciduous Forest Land” and/or “Mixed Forest 

land” (Anderson et al. 1976). Deciduous areas in Massachusetts are often 

composed of the following tree species: red maple (Acer rubrum), oak (Quercus 

spp.), birch (Betula, spp.), and American beech (Fagus grandifolia). Mixed areas 

contain both deciduous (listed above) and evergreen species. The most common 

evergreens in Massachusetts are eastern hemlock (Tsuga canadensis) and white 

pine (Pinus strobus). Prevalent shrub species in Massachusetts include: 

dogwood (Cornus amomum), high and lowbush blueberry (Vaccinium spp.), 

buckthorn (Rhamnus spp.), speckled alder (Alnus incana), staghorn sumac 

(Rhus typhina), witch-hazel (Hamamelis virginiana), and many others. 

Additionally, Massachusetts has many herbaceous species, some of which 

include: meadowsweet (Spirea latifolia), steeplebush (Spirea tomentosa), 

Canada mayflower (Maianthemum canadense), indian cucumber (Medeola 

virginiana), sensitive fern (Onoclea sensibilis), royal fern (Osmunda regalis), 

cinnamon fern (Osmunda cinnamomea), and many others.
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Training And Validation Study Sites

Training and validation sites were chosen by analyzing the Certified 

Vernal Pool (CVP) layer across Massachusetts (National Heritage and 

Endangered Species Program 2002) (Figure 3). The statewide layer was 

searched for assemblages of pools with similar geography and vernal pool 

density to represent training and validation sites. Once desirable clusters of 

Certified Vernal Pool points were identified, a convex hull (the smallest polygon 

containing all of the points) was generated around each cluster using the custom 

convex hull extension for ArcView 3.3 (Jenness 2004). The resultant polygons 

were then buffered by 100 m to account for the error associated with the CVP 

layer. Four training sites and four validation sites were used in the models 

(Figure 4; Table 3). The training sites totaled 9,145 ha, and the validation sites 

totaled 8,911 ha.

Training and validation study sites were used in model generation, 

calibration, and evaluation. Training sites were used to gather information about 

the predictor variables used in the various statistical models examined in this 

study; validation sites were used to test the success and robustness of the 

models (Guisan and Zimmermann 2000).
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Figure 3: The Massachusetts Certified Vernal Pools layer, which was examined  
of com plem entary assem blages of pools for model training and validation.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



......
Figure 4: Model training and validation areas used for model creation, calibration, and 
evaluation. Inset maps depict field validation areas.
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able 3: Training and validation areas: location, total area, and density of pools.
ID Town # CVPs Area (Acres)

Density
(pools/acre)

Description

Train 1 Boxford 59 4662.9182 0.0127 Northeast Massachusetts, 
Essex County.Validation 1 N. Andover 63 3563.9139 0.0177

Train 2 Georgetown 71 4878.9553 0.0146 Northeast Massachusetts, 
Middlesex & EssexValidation 2 Reading 69 5526.9445 0.0125

Train 3 S. Westford 44 7578.2786 0.0058 Northern Massachusetts, 
Middlesex County.Validation 3 N. Westford 44 5951.2665 0.0074

Train 4 Sterling 40 5477.9293 0.0073 Central Massachusetts, 
Worcester CountyValidation 4 Bolton 39 6977.8449 0.0056

Field validation of model outputs was difficult due to the vastness and 

discontinuity of the total validation area. To make fieldwork more manageable, 

the validation polygons were subset, resulting in four field validation subsets per 

polygon (totaling 16 subsets). The subsets totaled 10% of the total validation 

area (891.12 ha) (Figure 4) and made field checking more achievable.

Modeling Framework 

In this project, statistics, GIS, and remote sensing were combined to 

create predictive models of vernal pool locations. Guisan and Zimmermann’s 

(2000) modeling framework was chosen for this study, whereby a conceptual 

model is formulated based upon potential model inputs. These inputs are chosen 

from information gathered during extensive literature review and from field 

experience (Figure 5). Appropriate statistical models are then identified, tested, 

and eventually calibrated on a set of training data. This process is iterative, and 

once an acceptable model is formulated with the training data, it is then 

evaluated on a separate set of validation data. The processes of training and 

testing the models are inherently coupled, and are, again, iterative. Model
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production continues until some stopping criterion is met or until an acceptable 

model is produced.

Data

With a conceptual model in mind (Figure 5), a number of GIS data layers were 

gathered to reflect the necessary inputs into the model and to generate 

information about known vernal pool points. All layers acquired were projected to 

Massachusetts State Plane, NAD83 meters. Of utmost importance was the 

National Heritage and Endangered Species Program (NHESP) Certified Vernal 

Pool (CVP) point layer. It was chosen to represent known vernal pools that have 

been documented and certified by the NHESP as of December 2002 (National 

Heritage and Endangered Species Program 2002). Certification of 

Massachusetts vernal pools involves documentation of obligate or facultative 

vernal pool species and of pool location (Commonwealth of Massachusetts 

Division of Fisheries and Wildlife 2001). These data were converted into a GIS 

data layer by mapping the points on 1:24,000 or 1:25,000 USGS topographic 

quadrangle maps and using the coordinates from the topographic maps to create 

an Arc/Info coverage. The accuracy of this layer is 100 meters (Szczebak, 

personal communication, June 5, 2006). These vernal pool points were used as 

the response variable in all models in this study. Since they are known points on 

the ground, collection of both spectral and ancillary data was facilitated. Since 

information about CVPs within the study area (soils, slope, aspect, land cover, 

spectral data, etc.) was used to train the various models created in this study, it 

was important that vernal pool points be accurately represented. With permission
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from the National Heritage and Endangered Species Program, inaccurately 

mapped certified vernal pool points that were within study area boundaries 

(training and validation study sites) were corrected. The determination of which 

CVP points were to be edited was done by photo interpretation of 1:5,000 color 

Digital Orthophoto Quadrangles (DOQs) provided by MassGIS, the 

Massachusetts Geographic Information System repository. Using ArcGIS 9.1, 

points that were within 100 m of a photo-interpreted vernal pool on the imagery 

were manually corrected using on-screen digitizing. By overlaying the CVP points 

onto the imagery, it was possible to determine if each point was spatially 

accurate. When a vernal pool was not apparent (on the imagery) in the location 

of the CVP point, a 100 m radius around the point was analyzed to determine if 

there was an obvious pool within the boundary of error (Figure 6). If there was 

more than one potential pool within a 100 m radius of the point, the closest one 

was chosen. If the presence or absence of a vernal pool could not be determined 

within 100 m of a given CVP point, that point was removed from the analysis. 

Removal of points was prevalent in areas of dense coniferous canopy cover. The 

National Wetlands Inventory (NWI) and slope layers were used in conjunction 

with the imagery to determine whether an area on the imagery could be a vernal 

pool. Overall, there were 198 CVP points used as training data and 205 CVP 

points used as validation data.

In addition to the CVP layer, the NHESP Potential Vernal Pool (PVP) layer 

was also utilized. This layer represents unverified vernal pools identified by photo 

interpretation of 1:12,000 color-infrared, spring, leaf-off aerial photography.
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Figure 5: Initial brainstorm ing regarding predictors of vernal pools 
in the landscape.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



These data have not been field verified, and should not be confused with the 

Certified Vernal Pools. The layer is comprised of more than 29,000 potential 

pools (National Heritage and Endangered Species Program 2000), and was used 

to help validate model output results.

For model building and validation, vernal pool absence was as important 

as vernal pool presence. The specific modeling techniques chosen for this 

project required knowledge of the conditions under which vernal pools do and do 

not exist. For this reason, a point layer containing “absent” points was created. 

The new layer was created using ArcCatalog and edited using ArcMap. It was 

created with the Massachusetts State Plane NAD83 projection. Fifty points were 

chosen in each of the 4 training and validation sites totaling 400 validation points 

to match the 198 training pool points and 205 validation pool points. Points were 

selected based upon photo interpretation of MassGIS 1:5000 (0.5 m) color ortho 

photos. Slope, NWI, and land use were used as supplemental layers in decision

making for choosing absent points. Points were designated as “absent” if there 

was certainty that a vernal pool was not present: such places included areas of 

significant development, like buildings, roads, and parking lots; areas of extreme 

slope where water would not pool; and obviously dry areas in forested and open 

areas (typified by high red, green, and blue DN values on the imagery). Places 

that had similar physical characteristics as vernal pools (mainly other wetlands) 

were avoided so as not to confuse the models.
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Figure 6: Illustration of CVP spatial correction method. In this example, the original point 
clearly does not overlay a vernal pool, as evidenced by high reflectance in all three  
bands (visually bright). The corrected point lies within the boundary of error and has the  
characteristic tone, texture, shape, and land association (site) as other, known vernal 
pools.
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Besides the vernal pool layers, there were a number of other layers used 

in the analyses. The 1:5,000 color ortho photo imagery was integral to this 

project. Not only was it used for visual assessment of vernal pool locations and 

model output, but the RGB (Red, Green, Blue) values were also used as model 

inputs. The imagery was flown for the entire state in April of 2001, when the 

deciduous trees were still bare and there was little or no snow left on the ground. 

The spatial resolution of the imagery is 0.5 m (MassGIS 2001), and the 

radiometric resolution is 8-bits. Each tile covers 16 km2 on the ground. There 

were multiple images covering the study area, so in order to facilitate the 

analysis, the individual tiles were mosaicked using Leica Image Analysis 

Extension for ArcGIS (Leica Geosystems 2006).

One of the other important data layers used in the project was the Digital 

Elevation Model (DEM). It is a raster layer with a scale of 1:5,000. The cell size is 

5 m (MassGIS 2005a). It was created from Digital Terrain Models (DTMs). DTM 

points were collected at a density sufficient to support 3 m contours while 

conforming to National Map Accuracy Standards (+/- 1.5 m). Variable density 

(dependent on topography and ground features) mass points were collected 

along parallel lines 75 m apart, with spot elevations collected at significant 

features, summits, and depressions (MassGIS 2003). From these points, a 

Triangulated Irregular Network (TIN) was created and then converted to a lattice. 

The final product was an integer raster (rounded from floating point) (MassGIS 

2003).
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Slope and aspect surface layers were derived from the DEM layer using 

the Spatial Analyst extension in ArcGIS. Both had a resolution of 1:5,000 and a 

cell size of 5 m (identical to the DEM). These layers were used as inputs 

(independent variables/predictor variables) into the models for predicting vernal 

pool presence. Slope was calculated in degrees and ranged in value between 0 

and 78. Aspect, or the direction of the slope, was also calculated, and ranged 

from -1 (flat) to 360. For modeling and querying purposes, the aspect surface 

layer was recoded (Table 4).

Table 4: Aspect reclassification rules. Reclassification  
of the original, continuous values into categorical 
values, which aided in the description of the conditions

Original Aspect Values Re-coded Aspect Definitions
-1 Flat

0 - 23; 339 - 360 North
24-68 Northeast
63-113 East
114-158 Southeast
159-203 South
204 - 248 Southwest
249 - 293 West
294 - 338 Northwest

The land use layer was also used as an input in the analysis. The layer 

was created by photo interpretation and automated techniques by the Resource 

Mapping Project at the University of Massachusetts, Amherst (MassGIS 2002b). 

It contains land use inform ation stored in polygon form at fo r 1971, 1985, and 

1999. The most detailed (37 categories) and the most recent (1999) land use 

data available were utilized. The scale of the layer is 1:25,000 (MassGIS 2002b), 

and the minimum mapping unit was 1 acre (large enough that it would not
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sufficiently map most vernal pools). As a model input, there were too few points 

in each of the 37 categories for it to be statistically meaningful. For model 

building, it was important that there was a representative number of CVPs in 

each land use category (Ducey, M. J., personal communication, June 7, 2006). In 

other words, the ability of the models to predict vernal pool locations depended 

upon their ability to determine patterns within the data. With 37 categories and 

few vernal pools in each one, the models were not statistically sound and were 

unable to determine meaningful trends. To rectify this problem, the land use layer 

was reclassified into two different schemes. One contained four categories 

(forest, wetland, field/open, developed), and the other contained five categories 

(forest, wetland, field/open, urban development [high density], and residential 

development [low density]). The five-category reclassification identified an 

important difference between high and low density development. Commercial 

and industrial lands were split from residential areas, with the idea that a vernal 

pool would more likely occur in a low density residential area than a 

commercial/industrial one. These reclassifications ensured that there were 

enough pools in each category to perform the necessary statistical analyses.

Additionally, the United States Department of Agriculture (USDA) Natural 

Resources Conservation Service (NRCS) soils layer was used as a predictor 

during the vernal pool analysis. This layer was obtained from MassGIS, but is 

maintained by the Massachusetts Department of Agricultural Resources (DAR) 

(MassGIS 2005b). This polygon layer was digitized from 1:25,000 published soil 

surveys, and it had a minimum mapping unit of 1.21 ha (three acres). This layer
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was very complex, with many different categories and methods of classification. 

Similar to the land use layer, it was imperative that a representative number of 

CVPs be in each soil category to enable the models to statistically determine 

patterns in the data (Ducey, M. J., personal communication, June 7, 2006). Since 

the soils layer is very complex, it was reclassified to a number of simpler 

classification schemes. One re-classification was based upon soil type and 

contained the following classes: fine sandy loam, loamy, loamy sand, sandy, 

muck, urban land, and rock outcrop. The other method of reclassifying the soils 

layer was by drainage capability, and the classes included: excessively drained, 

well drained, poorly drained, and very poorly drained. For both schemes, 

reclassification decisions were based on information gathered from soil surveys.

Finally, the National Wetlands Inventory (NWI) layer was used for visual 

assessment of vernal pool locations; it was not an input into either of the 

statistical models. Like many of the other layers in this analysis, in order to gain 

meaningful information from this layer, it was necessary to reclassify it into 

simpler categories. In this case, the specific wetland categories were scaled up 

to a more general level on the Cowardin Wetlands and Deepwater Habitats 

Classification hierarchy (Cowardin et al 1979). For example, the category 

"PF01E," which translates to "Palustrine Forested, Broad-leaved Deciduous, 

Seasonally Flooded/Saturated," would be scaled by two levels to "Palustrine 

Forested Wetland." The System and Class hierarchy levels were used to 

reclassify the layer.
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Once all of the layers were acquired and preprocessed, the data had to be 

properly arranged for analysis. To input information about the present and absent 

vernal pool points into the models, ancillary information about those points had to 

be compiled into a single table. To create this table, the training present and 

absent layers were first merged using ArcMap, resulting in a shapefile/table with 

398 total points (198 present, 200 absent). Next, this combined table was 

overlayed with the layers selected for modeling, effectively "drilling down" under 

each point and extracting information about each of the ancillary layers. The 

overlay was performed using the "point intersect tool" in Hawths Analysis Tools 

for ArcGIS (an external extension for ArcGIS). The selected layers included: land 

use; soils; slope; aspect; and bands 1, 2, and 3 (BGR) from the color aerial 

photography. The resulting shapefile contained a table with the information from 

each of the abovementioned layers appended to each present and absent point. 

The same process was completed for the validation set of present and absent 

points.

Descriptive statistics for the CVPs used as training data were calculated in 

an attempt to preliminarily describe the conditions of vernal pool presence. For 

continuous variables (slope, and the three bands of imagery), the minimum, 

maximum, mean, median, mode, and standard deviation were reported. For 

categorical variables (land use, soils, and aspect), a count of the number of 

points in each category was presented, as well as the percent of the total 

represented in each category.
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Analysis

This study was performed on two levels. First, strictly statistical models 

were created to explain the conditions in which vernal pools are typically found in 

the landscape. Those models were each statistically evaluated on an 

independent data set. Once these models performed acceptably, they were 

translated into cartographic models. The cartographic models were spatial 

representations of the output from the statistical models. While they should 

perform similarly in both the statistical and spatial realms, both analyses were 

completed to test that assumption.

Statistical Modeling

Logistic Regression. The logistic regression modeling technique was 

utilized in an attempt to reproduce and/or build upon the work of Grant (2005). In 

order to determine which combination of the 7 independent variables would 

provide the best model, Akaike's Information Criterion (AIC) was employed 

(smaller values indicated worse fit) (Akaike 1979; Bonney, 1987). The choice not 

to automatically include all variables into the model was made to ensure that both 

the simplest and the most effective model was selected from the numerous 

possible models. A stepwise logistic regression was performed on the training 

data set (of present and absent points) using SAS 9.1. Parameters for entry into 

the model (SLENTRY) were very relaxed (significance level of .99). This liberal 

value was to ensure that all independent variables could enter the model and the 

AIC could be assessed at each level. The significance levels for variables 

remaining in the model (SLSTAY) were varied to determine if model differences
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were observed (SLSTAY .05 - .99). These liberal SLENTRY and SLSTAY values 

were used for data exploration only; more stringent values would be used if it had 

been the final model (see Hosmer and Lemeshow 2000 for examples). In all 

cases, the smallest AIC value indicated that the best fit model would include 

band 2 from the aerial imagery (green band), land use (four categories), and 

slope.

Based upon these preliminary findings from the stepwise logistic 

regression, the three independent variables indicated to produce the best model 

were entered into the SAS PROC LOGISTIC routine. From the test statistics 

provided in the logistic regression routine, SAS also provided a prediction table, 

which was generated for the independent validation set of CVPs. The table 

contained a column that calculated the probability that each point was a vernal 

pool; essentially, each validation point was statistically classified as a present or 

an absent point using the results of the logistic regression. This table was 

analyzed in two ways: first, a liberal cut-off value for success was applied. 

Second, a more conservative cut-off value was used. The liberal cut-off value 

was 50%, meaning that if the probability of a validation point being correctly 

predicted was greater than or equal to 50%, then the model was considered 

successful for that point (Grant [2005] used 53% as the threshold). The second 

approach used a 75% cut-off value for success. Using these two approaches, 

classification errors were calculated as percentages.

Classification and Regression Tree. CART was chosen as a modeling 

technique because of its ability to handle nonparametric data and both
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continuous and categorical variables. Also, it provides a list of rules for predicting 

the dependent variable that can be more easily incorporated into a GIS than 

many other statistical modeling techniques. Further, since CART examines all 

explanatory variables at each step, it was unnecessary to predetermine which 

independent variables should be considered in the model; CART will not use 

predictor variables that do not enhance the accuracy of the model. For this 

reason, all variables were added to the models: slope, aspect, raw imagery 

(three bands, natural color), land use, soil type and soil drainage.

In this study, the CART analyses were completed in S+. Two versions of 

the CART analysis were performed. The single difference between them was that 

one analysis used the reclassified land use layer with four categories (forest, 

field/open, developed, water), while the other analysis used the five-category 

land use layer which split the "developed" class into low density residential land 

("residential") and high density urbanized areas ("urban") (forest, field/open, 

water, residential, urban). The models were named “CART4” and “CART5,” 

respectively. The defaults of the S+ CART modeling routine were maintained, 

meaning that splits occurred only if there were more than five observations in a 

node before a split and terminal nodes were achieved when either the total 

number of observations for a particular node was less than ten, or when the 

deviance of the node was less than 1% of the total tree deviance (as cited in 

Lawrence and Wright 2001). Since an unrestricted CART analysis will generally 

over-fit the model to even the slightest variations specific to the training data set 

(noise), cost complexity and cross validation pruning methods were tested in an
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attempt to make the models more robust. Both yielded similar results; however, 

with these data, the two classification and regression trees were relatively simple 

(in some cases, they can be very complex and therefore, difficult to interpret). 

Further, there was no scenario in which the deviance remained similar to the 

original tree, yet the number of end nodes significantly decreased, meaning that 

pruning some of the end nodes would have reduced the explanatory power of the 

analysis. After exploring multiple pruning scenarios and testing each output on 

the independent validation set, the trees with the fewest misclassification errors 

on the validation set were chosen; in both cases, the trees remained unpruned 

and contained 20 terminal nodes.

Like the logistic regression, a prediction table was output based upon the 

statistical results of the analysis. This table was generally composed of ones and 

zeros, indicating the failure or the success of the model in classifying the 

independent validation set of points. In a few cases, where the characteristics of 

a particular validation point did not perfectly fit into the decision tree, the output 

was presented as a decimal/probability. These types of predictions were 

expected, since models are generalizations of reality and do not account for 

every anomalous occurrence. Probabilities that were less than one indicated 

doubt or confusion in the model. In such cases, model success was determined 

by a 50% or higher probability of a correct prediction.

Cartographic Modeling

In landscape scale environmental modeling, reliance on only statistical 

analyses is not sufficient. For management purposes especially, the process of
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integrating the statistical analyses into a spatial context is very important. 

Understanding if/how certain statistics translate onto the landscape is the crux of 

environmental modeling, and it is often overlooked. In this study, both the logistic 

regression models and the CART models were used to create predictive maps of 

vernal pools across the validation study sites. The cartographic outputs were 

compared to the statistical ones, and differences in accuracies were recorded if 

present.

Logistic Regression. Using the results from the PROC LOGISTIC model, 

three cartographic representations of the model were created, two equal- 

weighted scenarios and one weighted scenario (Sperduto and Congalton 1996), 

based on the strength of the independent variables in predicting vernal pools. 

The first representation was a conservative, equal weighted interpretation of the 

model. In this version, the statistics from the continuous variables (slope and 

band 2 reflectance) were queried within a range of one standard deviation of the 

mean using the Raster Calculator in Spatial Analyst. The categorical variables 

(land use categories) considered important in predicting vernal pool locations 

were queried based upon both the results of the initial descriptions of pool count 

and percent in each category, and the logistic regression odds ratios. The 

classes with the most vernal pools were considered to be important positive 

predictors. These same classes were also identified as strong positive predictors 

by the odds ratios in the logistic regression. Conversely, the classes with the 

least vernal pools were considered strong negative predictors; similarly, odds 

ratios that were less than one indicated a negative association with the
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dependent variable and aided in determining which classes were inversely 

related to vernal pool presence.

The second interpretation of the model, which was more liberal but still 

equal weighted, allowed a range of two standard deviations from the mean for 

the continuous variables. The categorical variables did not change in this 

interpretation. The queries were executed using conditional statements written in 

the Raster Calculator (Spatial Analyst). A separate statement was written for 

each of the variables: slope, band 2 reflectance, and land use. The results of 

each query were then overlayed (intersection), yielding an output that illustrated 

where all of the criteria for vernal pool presence converged. The results of these 

model interpretations/queries were two predictive maps that strictly portrayed 

vernal pool presence or absence.

The third interpretation of the model was one that weighted the 

independent variables based on their maximum likelihood coefficients in the 

logistic regression output. The inverse logistic transformation was used to create 

an equation that resulted in each raster (cell) being assigned a value between 0 - 

1. The equation is as follows:

P V F 0 =
(1 + exp (LP))

where PVPO is the Probability of Vernal Pool Occurrence, and LP is the linear 

predictor fitted by the logistic regression (Guisan and Zimmermann 2000). This 

transformation is necessary to generate values between 0 and 1. The equation 

was computed in the Raster Calculator in Spatial Analyst. The resulting map 

represented the probability of vernal pool occurrence across the validation study
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areas, rather than only presence or absence. Probabilities were classified as: (1) 

Low (0 - 25%), (2) Moderately Low (25 - 50%), (3) Moderately High (50 - 75%), 

and (4) High (75- 100%).

The resolution of all three of the predictive maps was 5 m. There is little 

literature regarding the appropriate raster resolution when converting vectors to 

rasters for modeling. The most conservative method would be to consider the 

Minimum Mapping Unit (MMU) of the coarsest layer as the output resolution. In 

this case, the soils layer had a MMU of 3 acres (1.21 ha), which is approximately 

110 m by 110 m. For the purposes of mapping vernal pools, 110 m was 

unacceptable, as it would miss many of the smaller pools. Instead, it was decided 

that an intermediate cell size between the highest (0.5 m - three bands of 

imagery) and the lowest (110 m - soils) input resolutions would be acceptable. Of 

the layers used in this study, the DEM, slope, and aspect layers were all 5 m, so 

this value was chosen as the output resolution for the predictive maps. Other 

resolutions were tested; however, the 5 m resolution seemed to preserve a 

satisfactory amount of model detail without absorbing the smaller pools into the 

rest of the landscape.

CART. Similar to the logistic regression outputs, predictive maps were 

created for both of the CART analyses. The CART maps were much more 

complex, as they required a query for each node on the tree that lead to a 

"present" prediction. Each node effectively represented a rule for determining the 

presence or absence of a vernal pool. Queries were written from the initial split 

(root node), through a series of non-terminal nodes, to each terminal node
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(Figure 7). Each series of queries leading to a "present" end node were merged. 

Once there was a collection of queries for all "present" end node paths, those 

products were also merged together using the raster calculator to generate one 

map predicting vernal pool presence. The resolution for the output models, like 

the logistic regression, was 5 m. This resolution was chosen to be consistent with 

the logistic regression model for comparison purposes.

$(ope < 5%

Aspect = North, 
Northeast, or 

East

: igure 7: Exam ple of CART model output. In this
scenario, the dependent variable is "presence of 
water." A t the top o f the tree is the root node, which  
represents the predictor variable that most 
minim izes the deviance in the response variable. To 
create a map output of the CART analysis, the tree  
must be interpreted and converted into queries. If 
the condition at each node is true, then the 
statem ent proceeds to the left; if it is false, the 
sta tem en t contin u es  to  th e  right. In th is  case, the  
query for w ater presence would be: Slope is less 
than 5%; Aspect is north, northeast, or east, and 
soils are hydric.
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Cartographic Model Validation. Error analysis of spatial data means 

calculating overall map accuracy as well as individual class accuracies. In this 

study, however, the vernal pool presence “class” was most important; therefore 

overall accuracy was not used as a measure of success. The two measures of 

individual class accuracy used in this research were producer’s and user’s 

accuracy (Congalton and Green 1999). Producer’s accuracy, the complement to 

omission error, describes how well an individual class on the map matches the 

reference data for that class (Figure 8). User’s accuracy, the complement to 

commission error, describes how well a mapped class represents what is actually 

on the ground (Figure 8). In other words, if someone wanted to use the map for 

navigation, user’s accuracy illustrates how well he/she would be able to find a 

specific class.

Model validation for both the logistic regression and the CART models 

was done identically. It was performed in two main steps. The first step was to 

determine how many of the validation pools (original 205 validation points) were 

correctly predicted by the models (Producer’s accuracy). The second step was to 

evaluate the locations in which the models predicted vernal pools, but a 

validation pool was not present (User’s accuracy). In other words, it was the goal 

of the modeling activities to predict not only the validation set (where vernal pools 

are known to exist), but also to predict new pools in the landscape; both 

accuracies needed to be calculated. This second step was especially important 

because the National Heritage and Endangered Species Program CVP layer, 

which is larger than and encompasses the validation set, is not a total
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enumeration of vernal pools on the ground. For this reason, predicting additional 

pools beyond the CVP layer was expected and, in fact, desirable.

The first step of the validation process began with converting the model 

outputs from raster to vector format, which facilitated record-keeping. The 

conversion was done using ArcToolbox Conversion Tools, and, in order to 

preserve the original integrity of the data, the edges were not smoothed/splined. 

Next, each point in the validation layer (both present and absent points) was 

examined (Figure 9). Records were kept regarding whether or not each model 

correctly predicted each point. From those data, percent accuracy and percent 

error were calculated, indicating how well the models performed in trying to 

predict the validation set only.

The second step of model validation was much more complex. Since 

model output was not restricted to predicting only occurrences of Certified Vernal 

Pools, it was important to have some way of evaluating the models as a whole, 

rather than solely where they predicted the validation set of pools. Overall, the 

models predicted much more area than just the validation set, which meant there 

also had to be some method of measuring of how well they did at predicting other 

pools. Each output polygon (representing where vernal pools were predicted to 

be present) was examined and overlayed with other layers, such as CVP, PVP, 

NWI and high resolution imagery, to determine success or failure of the model. 

Each polygon was assigned a code: 1. a National Heritage and Endangered 

Species Program CVP, 2. a National Heritage and Endangered Species Program 

PVP, 3. an NWI-determined wet area, 4. an otherwise wet area, termed here as
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Evaluating Class Accuracy using User's and Producer's Accuracy

FIELD REFERENCE FIELD REFERENCE FIELD REFERENCE

E xam p le  A Bare Soil Aqriculture Open W ater Tota l E xam ple  B Bare Soil Aqriculture Open W ater Tota l

Bare Soil 3 4 5 12
*

Bare Soil S i P i i i 0 0 0

Aqricultu re 0 0 0 Aqriculture 2 0 6

Open W ater 0 0 L 0 Open W ater 0 5 6

Total 3 4 5 12 Total 3 4 5 12

Bare Soil 
P roducer's 
A ccuracy: 

3/3 =  100%

Bare Soil 
User's 

A ccura cy: 
3 /1 2 = 2 5 %

Bare Soil 
P roducer’s 
Accuracy: 
0 /3 = 0 %

Bare Soil 
User's 

Accuracy: 
0 /0 *=  100%

E xam ple  C Bare Soil Agriculture Open W ater Tota l

Bare Soil 3 0 0 3

Agriculture 0 : o 4

Open W ater 0 5

Tota l 3 4 | 5 12
Bare Soil Bare Soil 

P roducer's User's 
Accuracy: Accuracy:

3/3 = 100% 3 /3 =  100%
"W hile 0 £  s techn ica lly no t a num ber, it still rep re sen t 100% user's accu racy for th e  class

In example 'A.1 the analyst mapped the  entire area as "Bane 
soil." Everywhere tha t there is Pare soil on the  ground 
(reference data), the analyst mapped bare soil, yielding 100% 
producer's accuracy for that class. o r0%  omission error.
On the ground, however, there are three classes represented: 
open water, agriculture, and bare soil. S ince the analyst 
dassified everything as bare soil, he/she "committed" a lot of 
area to the wrong classification, o r had high commission error.
This type cf error mi eans tha t the user's accuracy is very low; a 
person attempting to use the  map would go to the ground and 
expectto see nothing but bare soil, which is not representative 
of what is actually there.

Bare Soil 
■  (MAP)

In example 'B,' the ana lyst did not map any o f the area as "Bare 
Soil," though dare soil clearly exists on the ground (reference 
data). The analyst "om itted" bare soil from the  correct class by 
calling it something e lse - water or agriculture, resulting in a low 
producer's accuracy or high omission error. Corwersely, since 
no areas were mapped as bare soil, the commission error is 0%. 
The user's accuracy fo rth is  class is 100%, because nowhere 
on the  map would one expectto  find bare soil and find some 
other category on the ground.

L eg en d

Agriculture
(MAP)

Open Water 
(MAP)

Bare Soil Agriculture 
(Greunrl) ®  (Ground)

in this example, both producer's and user's accuracies were 
100%. Every place where the reference data was bare soil, 
the analyst classified bare soil (high producer's accuracy, 
low omission error). A lso, there  were no areas th a tw e re  
mapped as bare soil tha tw e re  actuallysome other class on 
the ground (high user's accuracy, low com mission error). In 
otherwords, there were no ground reference points in bare 
soil tha tw ere  over-looked on the  map.

Open VtAitef 
(Ground)
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Figure 9: Picture representation of how CART models were evaluated using validation  
points. Point A  (top) was successfully predicted by the cartographic model output, 
while point B (bottom ) was erroneously excluded by the cartographic model.
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"Possible Vernal Pool" (PoVP). These were defined as areas of interest for field 

investigation as determined by photo interpretation of 1:5,000 color DOQs (not a 

PVP, CVP, or NWI area), 5. Other (definitely NOT a vernal pool). Polygons that 

overlayed CPVs or PVPs were considered successful predictions; those that 

overlayed "other," non-pool areas were considered errors. Those polygons in 

NWI areas not consistent with vernal pool presence represented a "gray area" in 

the classification of errors. While they did not technically predict only vernal 

pools, they were successful at predicting water in the landscape. For this class, 

two representations of error were reported: one which considered these polygons 

erroneous, and another, "fuzzy" report, which considered these polygons to be 

partially successful predictions. In other words, misclassification of vernal pools 

as an NWI wetland was considered less severe than misclassifying them as dry 

upland. Since some of the larger vernal pools are classified as wetlands by the 

NWI, considering all of them correct or incorrect was not appropriate. Finally, 

those polygons coded as "otherwise wet" required field investigation to determine 

success or failure of the models.

Field investigation was, initially, an unrealistic task for this project. The 

entire validation study area covered 8,911.20 hectares and consisted of four, 

discontinuous polygons (four separate geographic areas throughout northern and 

eastern M assachusetts) (Figure 4). W ith this large tract o f land to validate across 

such a wide geographic range, it was necessary to subset the study area and 

field sample a representative area within the original boundaries. A 10% sub

sample (891.12 ha) of the total area was extracted for field verification. Using
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Hawths Tools, four subsets were randomly generated per validation study 

location (Essex county, eastern Middlesex county, northern Middlesex county, 

and eastern Worcester county); a total of 16 field validation subsets were 

created. Each subset was 746 m by 746 m, an area totaling 556,516 m2 (55.65 

ha). Within these subsets, model output polygons designated for field verification 

were visited on the ground for confirmation of vernal pool presence.

Field visits were completed in August of 2006. Generally, most pools have 

dried by this time of the year, making it undesirable for vernal pool field work; 

however, the summer of 2006 was a very wet season and most of the pools were 

still full. At that time, however, it was impossible to identify pools based upon 

certification criteria, as obligate and facultative species had already emigrated 

from the pools. Field verified Possible Vernal Pools were identified based upon 

common physical features observed at most vernal pools (discussed in Literature 

Review). There were some verification sites that were questionable as to whether 

they had been wet earlier in the season. At these places, comprehensive 

observations were made of the potential basin's morphology, soil moisture, litter 

cover etc. and a judgment was made as to whether or not it was likely a vernal 

pool. This scenario was not frequently encountered and does not represent a 

large percentage of the field validation results; in most cases, vernal pool 

presence or absence was still very obvious, even at that late time during the 

season. There was an equally small percentage of points that were inaccessible 

for various reasons. To definitively decide whether these pools function as vernal
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pools, field visits would have to be conducted at the identified sites when they are 

biologically active.
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CHAPTER III

RESULTS 

Vernal Pool Descriptive Statistics

Preliminary analyses of vernal pool locations yielded descriptive statistics 

describing the physical attributes that are characteristic of the vernal pool 

locations in this study. First, the land use characteristics of vernal pools were 

explored. Of the 198 training pools examined, 157 were found in forested 

environments. Only about 30% of the study area was found to be forested, 

though almost 80% of vernal pools were found in forested landscapes (Figure 

10). Low density development, which occupied about 40% of the study area, 

accounted for less than 10% of vernal pools.

The soil characteristics of the training set were very variable. They were 

categorized in two ways: by soil type and by drainage class (Figure 11, Figure 

12, respectively). Categorization of pools by soils type revealed inconsistent 

information as well. Most pools were described as occurring atop fine sandy loam 

(88 pools), rock outcrops (54 pools), or on mucky soils (29 pools), which were 

also the most abundant types in the study area (Figure 11). Further, the majority 

of the vernal pools were reported in well-drained soils (122 pools), which was 

also the most abundant class over the entire study area. Very poorly drained 

soils (36 pools) and excessively drained soils (29 pools) comprised 33% of the 

pools and of the study area.
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Figure 10: Distribution of Certified Vernal Pools by land use vs. Distribution of land use 
over the training study area.______________________ _______________________________________
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Figure 11: Distribution of Certified Vernal Pools by soil type vs. Distribution of soil type  
over the training study area.
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Figure 12: Distribution of Certified Vernal Pools by soil drainage class vs. Distribution of 
soil drainage class over the training study area.

While NWI was not used in the modeling portion of this study, it was used 

in multiple steps of the pre-processing methods, and it was used for observation 

of the types of locations in which vernal pools exist. The majority of the training 

CVPs were located in either an upland area (29%) or in a Forested Wetland 

(27%) (Figure 13). Interestingly, forested wetlands comprised less than 10% of 

the area, though contained many vernal pools.

The final categorical variable examined was aspect. Not surprisingly, the 

majority of vernal pools were found in flat areas, meaning that there was no 

aspect (104 of 198 pools). Flat areas also represented the majority of the training 

study area. The fewest pools were found on south facing slopes (7 pools). All 

other categories were fairly evenly distributed (Figure 14).
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Figure 13: Distribution of Certified Vernal Pools by National W etland Inventory class vs. 
Distribution of National W etland Inventory class over the training study area.___________
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Figure 14: Distribution of Certified Vernal Pools by Aspect vs. Distribution of Aspect over 
the training study area.
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The continuous variables were summarized in a different way than the 

categorical variables were, since only a frequency distribution was possible for 

the latter. With slope and the blue, green, and red bands of the imagery, basic 

statistics were generated (Table 5). The minimum, maximum, mean, median, 

mode and standard deviation of each were calculated. The slope upon which the 

certified vernal pools were located ranged between 0 - 12.6 degrees. The mean 

was 2.4 degrees, with a standard deviation of 3 degrees. Training pools showed 

similar ranges, means and standard deviations for reflectance values in all three 

bands of imagery. CVPs showed reflectance values between 0 - 154 in the blue 

wavelength of light. The mean blue light reflectance was 16.0, and the standard 

deviation was 28.4. In the green wavelength, the range of light reflected at vernal 

pool locations was 0 - 143. The mean green light reflectance was 14.8, and the 

standard deviation was 27.7. Finally, red light reflectance ranged between 0 - 

118. The mean was 18.8, and the standard deviation was 24.9.

Table 5: Certified vernal pools continuous variables: basic statistics.
Certified Vernal Pools: Statistics for Continuous Variables

Slope
Band 1 
(blue)

Band 2 
(Green)

Band 3 
(red)

Minimum 0.00 0.00 0.00 0.00

Maximum 12.60 154.00 143.00 118.00

Mean 2.42 15.98 14.78 18.81

Median 2.02 4.00 3.00 9.50

Mode 0.00 0.00 0.00 0.00

Standard Deviation 3.01 28.43 27.73 24.94
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Statistical Modeling 

Logistic Regression Model - Model Fit and Predictor Strength Statistics

The logistic regression modeling technique, which used the input variables 

slope, land use, and the green band of imagery, produced a maximum rescaled 

R2 value of .8535. The Akaike's Information Criterion and the -2 Log Likelihood 

both decreased significantly with the addition of the three variables to the model 

intercept, indicating that the predictor variables improved the model (Table 6). 

The difference in the -2 Log Likelihood with the intercept only and with the 

covariates added was 405.698, and was calculated by the "Likelihood Ratio Test" 

(a Chi Square statistic). The Chi Square value was significant (p < 0.0001), again 

indicating that the addition of the chosen covariates to the model significantly 

improved the overall model fit. Finally, the Hosmer-Lemeshow Goodness of Fit 

Test was not significant (.7980), indicating that the model adequately fit the data.

Table 6: Logistic regression model fit statistics.
Model Fit Statistics - Best Model

Criterion Intercept Only Intercept and Covariates
AIC 552.356 156.658

-2 Log Likelihood 550.356 144.658

Further, the "Analysis of Effects" indicated that all three variables were 

significant in predicting the presence of vernal pools (p < .05) (Table 7). The odds 

ratios provided a method of describing the strength of the relationship between 

each predictor variable and the presence of vernal pools. The odds ratios for 

slope and band 2 of the imagery were less than one (0.789 and 0.959, 

respectively), indicating that there was an inverse relationship between these two 

individual variables and vernal pool presence (Table 8). In other words, if slope 

increased one degree, the odds of finding a vernal pool would increase by 0.789
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times. This negative relationship between the dependent variable (vernal pool 

presence) and slope and/or band 2 of the imagery was further solidified by the 

sign of the maximum likelihood estimate: both are negative (Table 9).

Table 7: Logistic regression analysis of effects.
Type 3 Analysis of Effects

Effect
Degrees of 

Freedom
W ald Chi- 

Square Value
Significance

Slope 1 13.3 0.0003
Green Light Reflectance 1 86.0 <0.0001

Land Use 3 23.0 <0.0001

Table 8: Logistic regression odds ratio estimates.
Odds Ratio Estimates

Effect
Point

Estimate
95% W ald Confidence Limits 

(Low er - Upper)
Slope 0.789 0.694 0.896

Band 2 0.959 0.950 0.967
Developed vs. Wetland 0.505 0.049 5.185
Forested vs. Wetland 8.078 0.819 79.638

Open Land vs. Wetland 2.163 0.187 24.991

Table 9: Logistic regression m axim um  likelihood coefficients.
Maximum Likelihood Estimates

Variable
Strength

Coefficient (Max  
Likelihood Estmiate)

Odds Ratio 
Estimate

Significance

Intercept 3.1211 N/A <0.0001

Slope -0.2372 0.789 0.0003

Green Light 
Reflectance

-0.0423 0.959 <0.0001

Land use - 
Development

-1.2268 0.505 0.0087

Land use - 
Forest

1.5446 8.078 0.0003

Land use - 
Field/Open

0.2268 2.163 0.6650

Land use - 
Wetland

1* 1* N/A

‘Reference variable to which all other categorical variables are 
compared.

The odds ratios of the land use categories were interpreted a bit differently. In 

logistic regression, categorical variables are divided into dummy variables, with
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one class acting as the reference class to which all other classes are compared. 

In this regression, the "wetland" class was the reference category. The most 

dramatic instance of vernal pool presence occurred between forested land and 

wetlands (reference). A vernal pool was 8.1 times more likely to occur in a 

forested area than in a wetland area (Table 8). Further, a vernal pool was 2.2 

times more likely to occur in open lands than in wetlands, and 0.505 times more 

likely to occur in developed areas than in wetland areas. The odds ratio of 0.505, 

since it was less than 1, indicated that vernal pools were negatively associated 

with developed areas (as compared to wetland areas).

From the logistic regression statistics, SAS generated a prediction table 

for the points in the validation set (both present and absent). Classification errors 

were calculated using both a 50% and a 75% threshold for success. The 50% 

threshold yielded an overall accuracy (including present and absent points) of 

90.6%, meaning that 367 of the 405 validation points were correctly predicted by 

the statistical model. Of the certified vernal pools, 85.9%, or 176 of 205 pools, 

were correctly predicted. Absent points analyzed at the 50% threshold were 

correctly predicted in 95.5% of cases (191 out of 200 cases).

When using a 75% threshold for success, an overall accuracy of 77.8% 

(315 of 405) was achieved. Validation pools were correctly predicted in 64.9%, or 

133 of 205 cases. Absent points were correctly predicted in 91% of the validation 

points (182 of 200).
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Classification and Regression Tree Model

Two CART models were produced (Appendix A). Both had 20 terminal 

nodes. Similarly, both models had nine terminal nodes that defined situations 

where vernal pools would be present. The rules for arriving at those final 

"present" designations were, however, different. Their differences did not 

manifest until the fourth level of the trees; the root nodes and the subsequent 2 

levels of the hierarchy were identical. Finally, both analyses utilized all inputs 

except for soil drainage class.

Like the logistic regression routine, the CART analysis was also able to 

evaluate the models' performances on an independent validation set. CART4 

correctly classified (statistically) 93.3% of all points (present and absent), or 378 

of 405 points. Of the vernal pools, it identified 94.6% of the pools, or 194 of 205 

points. Absent points were correctly predicted in 92.0%, or in 184 of 200 of the 

cases. CART5 had an overall statistical accuracy of 91.9% (372 of 405 points). It 

correctly predicted 92.7% (190 of 205), validation pools, and 91.0 % (182 of 200) 

of absent pools.

Cartographic Modeling 

Logistic Regression Mapping

Three cartographic interpretations of the logistic regression model were 

created. The first one, termed the "conservative model," included values within 

one standard deviation of the mean for continuous variables and specific classes 

for categorical variables, as determined from the logistic regression odds ratios.
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The rule set for identifying vernal pools that was associated with this model was 

as follows:

1. Slope must be between 0 and 5.4 degrees, and;

2. Green band reflectance must be between 0 and 43, and;

3. Land use must be forest or open/field.

For mapping purposes, these rules were translated into conditional statements 

using Spatial Analyst.

The second model, called the "liberal model," included values within two 

standard deviations of the mean for continuous variables; the queries for 

categorical variables Were the same in this model as in the conservative one. 

The rule set for determining vernal pool locations in this model was as follows:

1. Slope must be between 0 and 8.4 degrees, and;

2. Green band reflectance must be between 0 and 70, and;

3. Land use must be forest or open/field.

Conditional statements were written to achieve the model output of vernal pool 

locations.

The third model, the probability model, the following equation was 

computed:

PVPO  =  e x P ^ / J )

(1 + exp (LP))

where LP =

3.211 - 0.2372*(Slope) - 0.0423*(Band 2) - 1.2268*(Developed Land) + 
1.5446*(Forested Land) + 0.2266*(Field/Open Land) + 1*(Wetland).
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The logistic regression coefficients were used to weight each variable (Table 9). 

Weighting was based upon the sign and intensity of the coefficients. Output 

maps were generated for each of four validation study areas (Figures 15 - 18).
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Figure 15: Logistic regression weighted cartographic model: Bolton study site.
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Figure 16: Logistic regression weighted cartographic model: South W estford study site.
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Figure 17: Logistic regression weighted cartographic model: Reading study site.
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Figure 18: Logistic regression weighted cartographic model: North Andover study site.
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Classification and Regression Tree Mapping

The full CART models output predictions for both vernal pool presence 

and absence (Appendix A). Mapping of the CART results required writing 

queries/conditional statements only for those nodes on the tree that lead to a 

"present" classification. Each set of rules leading to a present classification 

predicted a subset of the model; the model, as a whole, was a combination of 

each of the subsets. The rule sets for CART4 were as follows (the number of 

points statistically predicted by each rule set and the percentage of those points 

that represented correct predictions are found in parentheses):

1. (6, 100%) Green band reflectance is less than 88.5; Red band 

reflectance is less than 37.5; Aspect is north, northeast, or south; and 

slope is less than 3.7 degrees, or;

2. (16, 81.25%) Green band reflectance is less than 88.5; Red band 

reflectance is less than 37.5; Aspect is north, northeast, or south; 

Slope is greater than or equal to 3.7 degrees; Red band reflectance is 

greater than one, or;

3. (10, 100%) Green band reflectance is less than 88.5; Red band 

reflectance is less than 37.5; Aspect is flat, east, southeast, southwest, 

west, or northwest; Land use is developed or field/open; Soil is loamy, 

muck, or rock outcrop, or;

4. (6, 83%) Green band reflectance is less than 88.5; Red band 

reflectance is less than 37.5; Aspect is flat, east, southeast, southwest,
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west, or northwest; Land use is developed or field/open; Slope is less 

than 5.1 degrees; Blue band reflectance is less than 4, or;

5. (7, 100%) Green band reflectance is less than 88.5; Red band 

reflectance is less than 37.5; Aspect is flat, east, southeast, southwest, 

west, or northwest; Land use is developed or field/open; Soil type is 

fine sandy loam, loamy sand, or urban land, Slope is greater than or 

equal to 5.1 degrees, or;

6. (119, 99.16%) Green band reflectance is less than 88.5; Red band 

reflectance is less than 37.5; Aspect is flat, east, southeast, southwest, 

west, or northwest; Land use is forest or wetland, or;

7. (14, 100%) Green band reflectance is less than 88.5; Red band 

reflectance is greater than or equal to 37.5; Aspect is flat, south, 

southwest, or northwest; Green band reflectance is less than 43, or;

8. (6, 100%) Green band reflectance is less than 88.5; Red band 

reflectance is greater than or equal to 37.5; Aspect is flat, south, 

southwest, or northwest; Green band reflectance is greater than or 

equal to 43; Soil is loamy sand or rock outcrop, or;

9. (6, 83.33%) Green band reflectance is greater than or equal to 88.5; 

Red band reflectance is less than 118.5; Land use is forest; Slope is 

less than 7.3 degrees; Aspect is east, southeast, or northwest.

When compiled as a Boolean algebra OR statement, these nine statements 

predict vernal pool presence within each validation study area (Figures 19 - 22).
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Figure 19: CART4 Cartographic Model: Bolton Study Site.
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Figure 20: CART4 cartographic model: South W estford study site.
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Figure 21: CART4 cartographic model: Reading study site.
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Figure 22: CART4 cartographic model: North Andover study site.
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A similarly structured set of rules was generated for the CART5 model. 

The rules were as follows (the number of points statistically predicted by each 

rule set and the percentage of those points that represented correct predictions 

are found in parentheses):

1. (6, 100%) Green band reflectance is less than 88.5; Red band

reflectance is less than 37.5; Aspect is north, northeast, or south; slope

is less than 3.7 degrees, or;

2. (16, 81.25) Green band reflectance is less than 88.5; Red band 

reflectance is less than 37.5; Aspect is north, northeast, or south; slope 

is greater than or equal to 3.7 degrees; Red band reflectance is greater 

than or equal to one; Land use is urban, forest, residential, or wetland, 

or;

3. (62, 100%) Green band reflectance is less than 88.5; Red band

reflectance is less than 37.5; Aspect is flat, east, southeast, southwest, 

west, or northwest; Blue band reflectance is less than 1.5, or;

4. (17, 100%) Green band reflectance is less than 88.5; Red band

reflectance is less than 37.5; Aspect is flat, east, southeast, southwest, 

west, or northwest; Blue band reflectance is greater than or equal to 

1.5; Green band reflectance is less than 4.5; Red band reflectance is 

less than 5.0, or;

5. (21, 90.48%) Green band reflectance is less than 88.5; Red band 

reflectance is less than 37.5; Aspect is flat, east, southeast, southwest, 

west, or northwest; Blue band reflectance is greater than or equal to

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.5; Green band reflectance is less than 4.5; Red band reflectance is 

greater than or equal to 5.0; Blue band reflectance is less than 8.5; Soil 

is fine sandy loam, loamy sand, muck, or rock outcrop, or;

6. (43, 100%) Green band reflectance is less than 88.5; Red band 

reflectance is less than 37.5; Aspect is flat, east, southeast, southwest, 

west, or northwest; Blue band reflectance is greater than or equal to 

1.5; Green band reflectance is greater than or equal to 4.5, or;

7. (14, 100%) Green band reflectance is less than 88.5; Red band

reflectance is greater than or equal to 37.5; Aspect is flat, south,

southwest, or northwest; Green band reflectance is less than 42.5, or;

8. (6, 100%) Green band reflectance is less than 88.5; Red band

reflectance is greater than or equal to 37.5; Aspect is flat, south,

southwest, or northwest; Green band reflectance is greater than or 

equal to 42.5; soil is loamy sand or rock outcrop, or;

9. (6, 83.33%) Green band reflectance is greater than or equal to 88.5; 

Red band reflectance is less than 118.5; Land use is forest; Aspect is 

northeast, east, southeast, or northwest.

Again, merging the resulting grids produced a "vernal pool presence" model 

prediction layer for each validation study area (Figures 23 - 26).
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Figure 23: CART5 cartographic model: Bolton study site.
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Figure 24: CART5 cartographic model: South W estford study site.
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Figure 25: CART5 cartographic model: Reading study site.
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Figure 26: CART5 cartographic model: North Andover study site.
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Cartographic Model Accuracies -  Producer’s Accuracy

Analysis of the cartographic models first involved examining each 

validation point and recording which of the models, if any, predicted it correctly 

(Figure 9). This exercise was equivalent to determining how well the vernal pool 

class was mapped when compared to the validation set (Congalton and Green 

1999). Producer’s accuracy helps to determine errors of omission. At this point in 

the project, the conservative logistic regression cartographic model was removed 

from the analysis; visual observation of its performance indicated that it was an 

extremely inferior model and did not warrant further analysis. The four remaining 

models (liberal logistic regression, weighted logistic regression, CART4, and 

CART5) were first evaluated by how well they were able to predict the validation 

set of Certified Vernal Pools (Table 10). The liberal logistic regression model 

correctly predicted 68/205 validation pools (33.2%) and 199/200 absent points 

(99.5%). The weighted (probability) logistic regression model correctly predicted 

111/205 vernal pool points (54.2%) and 190/200 absent points (95%). For this 

model, "moderately high" and "high" probabilities were considered correct 

predictions (>50% probability). The CART4 analysis correctly predicted 179/205 

validation pools (87.3%) and 197/200 of absent pools (98.5%). Finally, CART5 

was able to correctly predict 199/205 CVP validation pools (97.1%) and 188/200 

absent points (94%).
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Table 10: Cartographic accuracies: A 
com parison of how each model performed  
when predicting validation points.________

c
o
re 3  re 5?
'e  r 
o  2
re  lu  
o

"3-
CD
T~
Is -’

CO
p CO

idco CN

<!2
.c
0  
Q. 
e: 
.o

32
1  
4*1
crere
■Q

re
<£)
£
Q.
C
0  
&

rere
OQ

1

C
.oG
32
I

■§
o

>o
2
3
O
O<
(0

co
to
LO
05

CO
csi
05

COp
LO
CO

CN
CO

Is-

o
o
k -
i -
oo

CD
n
E
3

o
“O
o

o
o
CO

o
LO

col
05
<N|

op
05

N .o
l<
05

o
LO
CO
05

C\|
co
K
CO

CO
CO

05O)

{2cc
2

CO
CN

Is-05

05
Is-

2
o:
2

o
LO
o

o
LO
d05

co
co

r*-co

O)O)

co
co

CD
uj
o:
CD
o

C15•Q

o
o
LO

CO co LO
LO 00 00
CN CO LO
■*- CO N -

o
o
to
05

LO

CO

'sf-
05

o
05

CDUj
a:
CD
O
-J

a■c
«9>

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cartographic Model -  User’s Accuracy

The next step in evaluating model performance was much more involved 

than the first. In this part of the analysis, each polygon in the model output layers 

(within the 10% subset -  891 ha) was evaluated, rather than each validation 

point. This process helped to determine if the predicted areas on the map were 

representative of what was on the ground (User’s accuracy) (Congalton and 

Green 1999). Since both of the remaining logistic regression models (equal- 

weighted liberal model, and the probability model) were not favorable (33% and 

54% accuracy in predicting vernal pools, respectively), only the CART models 

were evaluated in this part of the analysis and considered for intensive field 

validation.

Understanding what a polygon means in this analysis is crucial. For 

instance, five separate polygons could predict a single vernal pool and all five 

would be considered correct; in other words, the number of correct polygons is 

not a proxy for the number of vernal pools detected in the landscape by the 

models. The same is true of area: the areas reported represent model output and 

not, for instance, total area of vernal pools within the study area. For example, a 

vernal pool measuring 1 ha on the ground might be predicted by a total model 

output of .05 ha and would still be correct in identifying that the pool exists within 

the landscape. Also, a 1 ha pool could be predicted by a 2 ha polygon, where a 

portion of the polygon is incorrect, and it would still be considered correct for 

identifying the vernal pool.
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The total number of polygons outputted by the CART4 model within the 

10% subset was 9,496 (Table 11). These polygons ranged in area from 0.0006 

ha to 7.79 ha, and the total acreage was nearly 82 hectares (Table 12). The 

model produced 279 polygons that predicted CVPs or PVPs, and an additional 

97 "Possible Vernal Pool" polygons were validated in the field (Table 11). The 

total area of model output over CVPs, PVPs, and field verified Possible Vernal 

Pools was approximately 3.2 ha. Of the total, 3,013 polygons (about 35 hectares 

of model output) were identified as NWI wetlands. Finally, 6,063 polygons were 

incorrectly modeled, as they were actually upland/dry areas. These areas 

accounted for roughly 43 hectares.

Table 11: CART4 model output polygon counts.
CART4 Model Output Polygons - Model-predicted vernal pool presence. Grey indicates agreement.

Photo Interpretation/Field Validation (# polygons)

M
od

el
P

re
di

ct
io

ns
(#

po
ly

go
ns

) Vernal Pool Other Wetlands Dry Inaccessible Total

Vernal Pool 376 3013 6063 44 9496

Table 12: CART4 model output area sum mary.
CART4 Model Output Area - Model-predicted vernal pool presence. Grey indicates agreement.

Photo Interpretation/Field Validation (hectares)

M
od

el
P

re
di

ct
io

ns
(a

cr
es

) Vernal Pool Other Wetlands Dry Inaccessible Total

Vernal Pool 3.216 35.132 43.024 0.277 81.649

With these data, it was possible to estimate commission error. About 4% 

of the polygons (also 4% of the area) were correctly identified as some form of 

vernal pool (CVP, PVP, or field verified possible vernal pool). Additionally, 32% of 

the polygons and 43% of the model output area was identified as NWI wetlands 

and considered to be partially successful predictions, as they distinguished water 

presence in the landscape. Combining these two classes into one "fuzzy" correct 

class revealed that about 36% of polygons and 47% of the output area correctly
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predicted water in the landscape. Conversely, about 64% of the polygons and 

53% of the output area predicted vernal pool presence were actually some other 

land cover type. A fractional percentage of the polygons were inaccessible in the 

field and were not included in the calculations. These statistics mean that 64% of 

the polygons (Table 13) and 53% of the area (Table 14) were committed to the 

wrong category, which provides a rough estimate of commission error for the 

overall model. Visual observation of incorrect predictions of vernal pools revealed 

that shadows were most often confused with water and accounted for the 

majority of the errors.

Table 13: CART4 polygon commission  
error estimate.

CART4 - ‘ commission error (polygons)
% Correct 3.96

% Correct ( fu z z y ) 35.69
% Incorrect* 63.85

Table 14: CART4 area com mission  
error estimate.

CART4 - ‘ commission error (area)
% Correct 3.94

% Correct (fuzzy) 46.97
% Incorrect* 52.69

The CART5 model, within the 10% subset area, produced a total of 

12,286 polygons (Table 15). The polygons ranged in size from 0.0006 hectares 

to 8.97 hectares and totaled 168.83 hectares (Table 16). Of the total, 358 were 

identified as CVPs or PVPs, and an additional 230 were found in the field (9.08 

ha). Additionally, 2,284 polygons were identified as NWI wetlands, which 

represented about 45 ha. There were 9,393 polygons that were incorrectly 

identified as vernal pools; these areas covered a total of 115 hectares.
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Table 15: CART5 model output polygon counts.
CART5 Model Error Estimation - Model-predicted vernal pool presence. Grey indicates agreement.

Photo Interpretation/Field Validation (# polygons)

C  (A 

£  §
Vernal Pool Other Wetlands Dry Inaccessible Total

o *  &  5
fl> o
4  *

Vernal Pool 588 2284 9393 21 12286

Table 16: CART5 model output area sum mary.
CART5 Model Error Estimation - Model-predicted vernal pool presence. Grey indicates agreement.

Photo Interpretation/Field Validation (hectares)

M
od

el
P

re
di

ct
io

ns
(a

cr
es

) Vernal Pool Other Wetlands Dry Inaccessible Total

Vernal Pool 9,075 44.649 114.928 0.178 168.829

Commission error was estimated from the above statistics. About 5% of

the model output polygons (also 5% of the area) represented vernal pools, and 

an additional 19% were identified as NWI wetlands (26% of the output area). 

These two classes, when merged together, mean that 23% of the polygons and 

32% of the area were correctly identified as water in the landscape. The "fuzzy" 

error report indicated that the remaining 76% of the polygons (Table 17) and 68% 

of the area (Table 18) that were described as vernal pools were, in reality, a 

different land cover and had been committed to the incorrect category. Visual 

assessment of the incorrect polygons again revealed a high percentage of them 

to be shadows.

Table 17: CART5 polygon  
com m ission error estimate.

CART5 - ‘ commission error (polygons)

% Correct 4.79
% Correct (fuzzy) 23.38

% Incorrect* 76.45

Table 18: CART5 area com mission  
error estim ate.

CART5 - ‘ commission error (area)

% Correct 5.38
% Correct (fuzzy) 31.82

% Incorrect* 68.07
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CHAPTER IV

DISCUSSION 

Overview

The work presented here has attempted to create a spatial-statistical 

model that can predict vernal pool locations in the landscape. The goal was to 

create a cost and time efficient method of inventorying vernal pools by focusing 

photo interpretation and field efforts in certain areas where vernal pools are likely 

to exist. The methods chosen to model vernal pool locations were logistic 

regression and classification and regression tree analysis. These statistical 

methods were employed and their results were translated into a map output. 

Both logistic regression and CART had favorable statistical results; however, 

logistic regression’s cartographic results were far inferior to CART’s. The CART 

models showed very low omission error, but tended to have high commission 

error due to the spectral confusion between water and shadow.

Interpretation Considerations 

Interpretation of the descriptive statistics and model-generated rules must 

be done with special consideration for the fact that the scale and minimum 

mapping units of the individual GIS layers affect the results. For example, in the 

description of soil types underlying the training set of vernal pools, it is reported 

that a significant number of the pools are found atop rock outcrops (27%). In 

reality, it is unlikely that vernal pools are actually forming over rocks, but the soils
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layer is highly limited by its 3 acre minimum mapping unit. A more likely situation 

is that the vernal pools are occurring on soil units covering less than 1.21 ha (3 

acres) within these areas of large rock outcrops.

Similar types of observations can be made within the rule-based CART 

classifications; at times, the rules may seem counterintuitive for vernal pool 

prediction, and the scale of the inputs may be what is responsible. In addition to 

scale and minimum mapping unit considerations, however, recognition that 

CART is able to reveal/predict exceptions to the most common sets of predictive 

characteristics is necessary. In some cases, the coarseness of the data may be 

the reason for counterintuitive results, and in others, the model may be 

identifying special cases where pools exist that were not previously known. 

Neither of these types of results is necessarily bad. They may or may not 

produce a set of characteristics that are accurate when ground verified (i.e. the 

soil may not actually be rock outcrop); however, they serve their intended 

purpose for predicting vernal pools in the landscape based on the data available. 

In other words, the interest in modeling vernal pools was to find new pools in the 

landscape, not to accurately define ground-verified physical characteristics at 

pools. The models are able to sort through the GIS data, accurate or not, and 

find patterns that distinguish where vernal pools exist from where they do not. In 

some of the rule-based scenarios, field investigation of the defining physical 

characteristics is the only way to determine if the rule sets are accurate in 

identifying the physical parameters at the pools.
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Correlates of Vernal Pool Presence

Model creation provides the opportunity for describing the conditions 

under which the response variable is present. In this study, both the logistic 

regression and the CART models were in agreement that the green band of 

imagery, slope, and land use were important variables. Not surprisingly, the 

logistic regression determined that vernal pools are negatively correlated with 

green light reflectance and slope. Since water does not reflect green 

wavelengths of light, woodland seasonal ponds are more likely to be found on 

the imagery where there is little reflectance. Also, in order for water to pool, there 

must be little or no slope. So, as slope increases, the likelihood of finding a 

vernal pool decreases. Finally, vernal pools were positively associated with 

forested land and open land or fields. As expected, they were negatively 

correlated with development.

Unlike the logistic regression, the CART models were much more difficult 

to generalize, as there were no model fit or predictor strength statistics to help 

summarize the results of the model. The results of the CART analyses were the 

actual rules generated as trees. In a very general way, however, the variables 

near the top of the tree tend to be those that work over large geographic areas 

(i.e. climate). The top two levels of the classification trees in this study were 

green and red light reflectance variables, which were the biggest differentiators 

between vernal pool presence and absence. At intermediate levels in the CART 

analyses, aspect* appeared as a variable. Moving down through the tree 

structure, more site specific/local variables started to be incorporated, such as
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land use and soil variables. These local variables were able to more finely depict 

vernal pool presence from absence and defined the final splits in the tree.

Overall, CART is somewhat difficult to generalize; however, the detail it 

provides makes it more useful to land managers and others who wish to know 

where vernal pools are likely to be found. Its ability to uncover conditional rules 

(rules that depend upon the outcome of other variables) and intricacies in the 

data make CART models more accurate and detailed; therefore, they are able to 

identify vernal pools under a variety of conditions. As evidenced from the CART 

analysis, all vernal pools do not occur under the same conditions. Models like 

logistic regression identify the overall trends in the data and predict a single 

scenario under which the response variable occurs. In this study, for instance, 

logistic regression detected three important variables that coalesced into a single 

statement to predict all vernal pools. In reality, this type of generalization is not 

possible. The strength and utility of the CART model, unlike logistic regression, is 

its ability to predict multiple scenarios under which the response variable occurs.

Model Performances and Utility 

Logistic Regression Performance and Utility

The logistic regression performed much better statistically than it did 

cartographically. The overall model had a high R2 value of 0.85. It was also 

successful at statistically predicting the validation data set. When using the 0.50 

threshold, an accuracy of over 90% was attained; even when using a more 

stringent threshold for success (0.75), the overall accuracy in predicting the 

validation set was about 78%, which is adequate in most remote sensing
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projects. This model was a significant improvement upon the foundation laid by 

Grant (2005). Higher accuracies in this study could be attributable to the use of 

high resolution bands of imagery and the use of other medium to large scale data 

layers (1:25,000 or larger) as model inputs.

Cartographically, the model did not perform as well. Presumably, the 

unsatisfactory performance of the equal-weighted models (conservative and 

liberal interpretations) was due to the difficulty in creating rules by subjective 

interpretation of the statistical results. Defining concrete rules based upon the 

odds ratios was not a straightforward process. The subjectivity in defining rules 

based on logistic regression results makes it difficult to use and to implement 

consistently and accurately. Explicitly defined rules, especially ones that account 

for the strength of the predictors, would be much more useful for a landscape 

scale predictive model of vernal pool locations.

Even with explicit rules, generated from the inverse logistic transformation, 

the model still did not perform as expected from the statistical results. At the 50% 

threshold, the model statistically predicted 90% of the vernal pools in the 

validation set. When mapped and evaluated, also at the 50% threshold, the map 

was able to predict only 54% of the validation pools, and overall, it performed so 

poorly that it was removed from the remainder of the analysis.

CART Performance and Utility

Statistically, CART4 and CART5 were able to predict an extremely high 

percentage of validation pools (95% and 93%, respectively). They also had high 

overall accuracies in predicting both vernal pools and absent points, 93% and
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92%, respectively. These statistical results are similar to the logistic regression 

model results at the 0.5 threshold.

While statistically, the CART and logistic regression models performed 

similarly, overall, the CART routines were far superior to the logistic regression 

models in the later stages of analysis. Cartographically CART achieved high 

accuracies when predicting the validation set, with CART5 reaching 97%. These 

high validation accuracies, which exhibited few errors of omission (in this study, 

omission must be considered by how many validation pools were misclassified, 

rather than how many pools in the landscape were not identified by the model, as 

these data were not available), can likely be attributed to the clearly defined rules 

resulting from the Classification and Regression Tree. At each node, there was a 

rule that was directly queried in the GIS. This 1:1 correlation between the 

statistical output and the cartographic output eliminated the subjectivity involved 

in generating queries based upon logistic regression results. The direct, explicit 

rule set produced by the CART routine makes it much more understandable and 

much more easily incorporated into a GIS model.

The CART models, while extremely successful at predicting vernal pool 

locations, were not without limitations. Both CART4 and CART5 had very high 

commission error (low user’s accuracy), meaning that non-vernal pools were 

falsely identified by the model. The vast majority of the confusion was between 

water and shadows, which, spectrally, appear similar. The fact that these errors 

were occurring in predictable ways makes them of lesser concern than if they 

were occurring at random. While high commission error is not desirable, in the
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interest of conserving vernal pools, it is better to have high commission and low 

omission error, than to have lower commission error and overlook potentially 

critical vernal pools (Munoz and Felicisimo 2004). With this type of conservation 

model, the goal is to err on the side of caution, rather than misidentify vernal 

pools.

Further, when viewed within the context of the purpose of modeling vernal 

pools, the commission error becomes even less problematic. These models 

should be regarded as tools for preliminary identification of vernal pools in order 

to facilitate and focus field or other investigations. With this goal in mind, a 

deeper examination of the severity of making commission errors is possible. 

Assuming that the results obtained.from the validation subset areas (10% of total 

validation area, 891 ha) are applicable to the entire validation area 

(approximately 8,911 ha), the model output within the whole validation area can 

be evaluated. In the CART4 model, the total land area representing predicted 

vernal pools was 961 ha, which represented 10.8% of the total validation area. 

The land area eligible for vernal pool presence, according to this model, was 

reduced by 89.2%. Further, in keeping with the definition of vernal pools as 

isolated from other surface water, and for most conservation purposes, it is 

unnecessary/redundant to search places already identified by the National 

Wetlands Inventory, so removal of those areas from the analysis resulted in a 

drastic, 93.6% reduction in land area to search (574 ha). Based upon the 

estimated commission error, much of this land area is likely erroneously 

predicted to be vernal pools; however, the drastic reduction in searchable land
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area is a valuable tool for those wishing to efficiently locate vernal pools. Within 

the 93.6% of the area dismissed as non-vernal pools, there are undoubtedly a 

few pools that have been omitted by the model (at least 12.7%, as determined by 

the omission of validation CVPs). Determination of the true omission error of this 

CART model would require a total enumeration of vernal pools within the study 

area, which was not possible to complete during this project.

CART5, which had higher commission error and lower omission error than 

CART4, also results in a dramatic decrease in the total searchable land area. In 

other words, it had higher accuracy when predicting the validation set of vernal 

pools, but it also called a higher percentage of areas "vernal pools" that were 

really other cover types. In this model, the total land area representing predicted 

vernal pools was 1535 ha, or about 17% of the total validation area. With areas 

classified as NWI wetlands removed from the analysis, the model area was 

reduced to 1,106 ha, or 12% of the total validation area. In this scenario, the land 

area was reduced by a total of 88%. Like the CART4 model, omission of pools 

within the 88% of the validation area predicted to be non-vernal pools was 

unavoidable (at least 2.9%, as determined by the omission of validation CVPs in 

this model); however, determining the exact percentage of omission error was 

unrealistic.

Again, while a large percentage of the total model output in both CART 

representations was likely incorrectly committed to the wrong category, the 

model output itself was only a small fraction of the total validation area. Since the 

vast majority of the commission errors in this project are attributable to shadows,
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simple photo interpretation can eliminate obviously erroneous polygons to further 

reduce searchable land area.

Sources of Error

There are a number of errors associated with most GIS models. First, it is 

well known, but not well quantified, that there is a certain degree of error 

associated with every GIS layer. When several layers are combined, the error 

from each propagates through the analysis. In this study, seven data layers were 

used in the overlay analyses resulting from the CART models, including three 

layers of imagery, slope, aspect, land use, and soils. The logistic regression only 

used three variables: Band 2 of the imagery, land use, and slope.

There is also error associated with some of the other GIS layers utilized in 

this study. For example, the CVP layer, which was used as training and 

validation data, originally had an accuracy of +/-100 meters (Szczebak, personal 

communication, June 5, 2006), due to the way that the layers were created. To 

improve this accuracy so that accurate information about these points could be 

collected, the points were manually corrected using photo interpretation an on

screen digitizing. Even though this was done very methodically and with rules 

governing when, how, and where to move the points, there is error inherently 

associated with this method. Without visiting the ground for each of those points 

(405), it is impossible to know with certainty if the points are representative of 

actual vernal pool locations. Even if they are, they may not be the pool intended 

by the person who certified it. Since the completion of this project, the 

methodology for spatially locating Certified Vernal Pools has changed; they are
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now photo interpreted from high resolution imagery and digitized at 

approximately a 1:25,000 scale (National Heritage and Endangered Species 

Program 2007a).

Finally, the analysis was not divided based upon geographic location. One 

of the assumptions regarding this modeling effort was that vernal characteristics 

do not vary significantly over the geographic range of the study area. Since all 

four sets of training and validation data were in different locations throughout the 

northeastern part of the state, there may have been important characteristics 

related to each specific location that would have helped determine vernal pool 

location. To determine if this is true, “study site” would have to become a variable 

in each of the models. Geographic differences in vernal pool locations would be 

an interesting topic for further investigation.

Overall Model Improvements 

The most important improvement to the CART models would be to 

establish a method of reducing errors of commission caused by shadows. An 

attempt was made to decrease shadow-water confusion by using remote sensing 

and statistics. Using the natural color 0.5 m ortho photos (RGB), the raw bands 

and all possible ratios between them, a spectral pattern analyses were created to 

try to distinguish water from shadow (Figure 27). Spectrally, with these bands 

and ratios, it was virtually impossible to tell the two apart; better spectral 

resolution may have helped with this problem. With little or no assistance from 

the imagery, a second attempt was made to differentiate shadows from water by 

including the ancillary data layers. In this trial, CART was employed with three
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categories instead of only two: vernal pool, dry, and shadow. It, too, was unable 

to find any distinguishing characteristics between the two groups. At this point in 

the study, the problems with shadows were irresolvable with the available data 

and tools.

Spectral Pattern Analysis: Vernal Pools vs. Shadows
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Figure 27: Spectral pattern analysis showing confusion between shadows and water.

Analyzing a time series of images that have different sun angles may be 

able to reduce shadow interference by changing the locations of shadows within 

the landscape, while the pools would remain constant. Also, greater spectral or 

radiometric resolution may provide new information or greater detail by which to 

tell the two categories apart. For instance, hyperspectral information (greater 

spectral resolution) may offer some separation between water and shadows by 

offering additional wavelengths for study. Further, increased radiometric
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resolution (i.e. 11 bit imagery), which is able to detect more detailed reflectance 

information, may supply necessary distinction between the two spectrally similar 

objects. Another way of reducing the effect caused by shadows is to decrease 

the spatial resolution. The 0.5 m imagery helps to identify small objects in the 

landscape; however, such detail naturally makes shadows a problem. By slightly 

decreasing the spatial resolution to 1 m, 4 m, or even 10 m, the effects of 

shadows would be minimized. With decreasing resolution, however, more of the 

smaller vernal pools are at risk for omission, so this method would need 

extensive analysis to determine success or failure. This alternative deserves 

attention, as Sperduto and Congalton (1996) were able to successfully predict a 

rare orchid’s habitat using 30 m Landsat imagery, illustrating that small patches 

of habitat can be predicted using models with coarse resolution.

In addition to improving commission error, a deeper investigation into 

omission error could be conducted to more fully evaluate the efficacy of using 

models such as the ones presented here. In this study, omission was defined by 

the number of validation CVP sites that were not identified by the models. True 

omission error is calculated by completing a total enumeration of vernal pools in 

the field, and then determining how many were missed by the model. As part of a 

study evaluating vernal pool identification using photography of different scales, 

Calhoun et al. (2003) estimated at least 27% omission error in mixed/deciduous 

forests (white pine, hemlock, red maple, red oak), much like the forests of 

northern Massachusetts. They determined that scale and forest cover type were 

two main limitations to identifying vernal pools using aerial photography. In this
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study, the scale was fairly large (1:5,000), so the main limitation was likely forest 

cover type.

Since the study areas chosen in Massachusetts can be generally 

characterized as mixed/deciduous forest, one of the most unfortunate limitations 

to this model is that it does not have the ability to identify pools that are beneath 

a thick tree canopy. For this reason, spring-leaf off imagery is the most effective 

in this type of analysis. Of course, even with the optimal imagery, those pools 

beneath dense coniferous canopies are still undetectable, and, as previously 

asserted, are a significant source of omission errors. Synthetic Aperture RADAR 

(SAR) may be a plausible solution to this problem (Hess et al. 1990; MacDonald 

et al. 1981). Resulting from double-bounce reflections between surface water 

and tree trunks, flooded forest floors appear very bright on RADAR images. 

Forest structure (specifically basal area and height to the bottom of the canopy) 

has been shown to affect the accuracy of mapping below-canopy inundation with 

some types of RADAR, and would have to be considered in this project 

(Townsend 2002). Also, the output resolution would have to be a consideration, 

since vernal pools tend to be small water bodies. Overall, RADAR is a viable, 

explorable option for improved detection of vernal pools below the forest canopy.

Other improvements or adjustments could be made to the models that 

may decrease classification errors. For instance, in Grant (2005), the underlying 

geology was an important variable for predicting vernal pool locations. Underlying 

geology was not utilized in the present study because the scale (1:250,000) 

would have greatly limited the output resolution; however, at a finer scale, it could
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have be an important predictor. Hydrologic parameters were also not considered 

as variable in this project. Seasonal or yearly average precipitation is one of the 

principal factors in determining the water balance and hydroperiod of vernal 

pools and may have had important predictive qualities useful for finding pools in 

the landscape, especially if reported at a local scale (Brooks 2004, Brooks and 

Hayashi 2002). Some other possible predictors could be proximity to perennial 

streams and depth to groundwater. While vernal pools, by definition, do not have 

permanent surface water connections, their interaction with groundwater 

accepted but not well-understood. Groundwater-surface water connections exist 

in some pools, and modeling that relationship may provide insight into where 

they occur (Brooks 2004, Brooks and Hayashi 2002, Hayashi and Rosenberry 

2002).

Finally, while these models predicted seasonal forest pond locations, there 

was no provision for estimating the functional value of the pools. Evaluation of 

most wetland functions relies on field visits to assess such characteristics as 

water quality (temperature, dissolved oxygen, pH, etc.), hydroperiod, connectivity 

to other wetlands/pools, soil suitability, refugia, food sources, level of 

disturbance, canopy cover, vegetation abundance/richness, vegetation structure, 

condition of adjacent terrestrial habitat, presence and abundance of breeding 

amphibians, macroinvertebrate richness, etc. GIS is limited in its capability to 

remotely derive most of these data (Wolfson et al. 2002; Calhoun et al. 2003). 

Traits such as pool size (surface area, perimeter), connectivity (distance to other 

pools or wetlands), and density can be extracted from remote sources; however,
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at the present time, there are no suitable data to serve as surrogates for the 

other, abovementioned, wetland/seasonal forest pond qualities related to function 

and value. When possible, many studies use GIS, though field visits are 

inevitable for identification of some key functional traits (Wolfson et al. 2002; 

Calhoun et al. 2003). Perhaps, with advances in the resolution of remote sensing 

products and in GIS data quality, the possibility of remotely determining wetland 

functions will be more fully realized in the future.

Overall, with more time, resources, and advanced technology, additional 

variables could be added to the models and potentially enhance the accuracy 

with which they identify vernal pools. The goal of the models (identification) could 

also be expanded to include evaluation of pool function, both on an individual 

basis and within a greater network of pools. The specific goal of this study, which 

was to identify vernal pools using statistics, GIS, and remote sensing with pool 

conservation in mind (limiting omission errors), was achieved with better-than- 

expected results.

Conclusion

The results of this study indicate that there is a correlation between vernal 

pools and the physical characteristics that are present at vernal pool locations: 

slope, aspect, land use, soil type, and spectral reflectance were investigated. The 

relationship between these variables and the presence of vernal pools was 

determined by the use of statistics, Geographic Information Systems, and remote 

sensing. By combining the power of statistical modeling with the utility of
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cartographic modeling, a highly accurate representation of vernal pool locations 

was produced.

Many environmental studies are utilizing ecological modeling to predict 

spatial phenomenon; however, some do not make the leap from statistical 

predictions to spatial ones. To terminate a spatial project at the point where only 

statistical results have been achieved is to leave the project unfinished. The 

importance of following through and determining if/how the statistical 

results/accuracies translate into spatial ones should not be overlooked. For 

instance, in this study, the logistic regression routine produced a strictly statistical 

accuracy of about 86% (correct predictions of validation pools). Had the modeling 

process ended at this step, the model would have been considered extremely 

successful; however, the cartographic model was only about 33% accurate in 

predicting the validation pools. Had this vital second step been excluded from the 

study, valuable time and resources may have been spent trying to implement this 

model in a real world application. In the end, the model was discarded because it 

did not perform as well as initially expected considering the statistical results.

With the highlighted importance of translating statistics into some usable 

product (i.e. cartographic representation), choosing a modeling technique that 

has an output that is easily converted into a spatial model is critical. In this study, 

two modeling techniques were tested. As already discussed, the logistic 

regression performed well statistically, but did not produce an intuitive set of rules 

that could be easily converted into GIS queries; therefore, its spatial model 

accuracy was much lower than expected. Likely, this low accuracy was a result
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of the subjective interpretation and creation of GIS queries from inexplicit results. 

The CART models, however, were much more conducive to cartographic 

modeling. By their very nature, they produced a specific rule set that was directly 

queried in a GIS; therefore, there was no subjective interpretation of the results 

for the spatial model because the statistical model specifically defined the rules 

for the spatial one. The high accuracies of the CART models reflect their ease of 

translation. Overall, the cartographic outputs of the CART models had the 

highest accuracies both statistically and cartographically, and have the potential 

to be used in similar geographic areas for the detection of vernal pools. CART5 

had the lowest omission error and is therefore most appropriate for conservation 

purposes.
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Figure A -1 :  Representation of CART4 model. The tree is read by beginning at the root
node and extending through each decision point until a term inal node is reached. If the  
condition presented at an individual node is correct for a given point, the tree proceeds to  
the left. Conversely, if the condition at a node is incorrect, the tree proceeds to the right. 
At each term inal node, the num ber in parenthesis represents the num ber of points 
predicted by that particular rule set.
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Figure A - 2: Representation of CART5 model. The tree is read by beginning at the root
node and extending through each decision point until a terminal node is reached. If the 
condition presented at an individual node is correct for a given point, the tree proceeds to 
the left. Conversely, if the condition at a node is incorrect, the tree proceeds to the right. 
At each term inal node, the num ber in parenthesis represents the num ber of points  
predicted by that particular rule set.
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