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ABSTRACT

GacA REGULATION OF LUMINESCENCE IN THE SYMBIOTIC BACTERIUM
Vibrio fischeri

By

Alicia Eve Ballok 

University of New Hampshire, December, 2007

The symbiosis of Euprymna scolopes and Vibrio fischeri depends on the 
ability of the bacterium to colonize the squid and produce light. GacA is an 
activator of symbiosis phenotypes including luminescence though it is not 
understood how GacA functions. My hypothesis, based on other bacterial 
models, is that GacA activates expression of CsrBs, functional RNAs, which 
sequester and repress a translational repressor, CsrA. I approached this 
question with mutagenesis and complementation techniques. We found mutation 
of CsrA or addition of a CsrB in trans could complement the GacA mutant for 
symbiosis and luminescence phenotypes. The inability of other luminescence 
regulators including a constitutively expressed lux operon to complement GacAA 
indicated that luminescence was regulated post-transcriptionally. A putative 
CsrA binding site found in the sequence of the lux mRNA increased light 
production when deleted. These data demonstrate that GacA regulates 
luminescence post -transcriptionally via CsrB/CsrA antagonism, supporting my 
hypothesis.
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CHAPTER 1

INTRODUCTION

Symbiosis, when two organisms benefit from an association with the other 

(Lederberg, 2000), is a survival strategy employed by organisms in every domain 

and at every level of complexity. The most studied symbiotic associations occur 

between eukaryotes and microbes. Plants commonly benefit from an association 

with microbes in their root systems such as in the association of soybeans with 

Bradyrhizobium japonicum where bacteria fix nitrogen for the plant and the plant 

provides environmental protection and nutrients to the bacteria (Hennecke,

1990). Most animals, including humans, would be malnourished if they did not 

have symbiotic gut microorganisms to aid in digestion. These bacteria can also 

contribute to immunity and normal gut development (Hooper and Gordon, 2001; 

Hooper, 2004). Mice raised without gut bacteria have to eat 30% more to 

maintain normal weight (Sears, 2005). My research revolves around the highly 

specific symbiosis between the Hawaiian bobtail squid Euprymna scolopes and 

the luminescent bacterium Vibrio fischeri.

The E.scolopeslV. fischeri symbiosis is beneficial for both organisms 

(reviewed in (Ruby and McFall-Ngai, 1992; Nyholm and McFall-Ngai, 2004;

Visick and Ruby, 2006)). The nocturnal squid is believed to benefit from the

1
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luminescence produced by its bacterial symbionts that are cultured and housed 

in a specialized organ. At night, when the squid hunts on the reef, it uses its 

series of lenses and reflectors to manipulate the bacterially-produced light to 

mimic the moonlight. This light may protect the squid from predatory fish, 

swimming along the sea floor, looking up for a shadow to pass across the moon 

(McFall-Ngai, 1990), a type of camouflage called counterillumination. The 

bacteria, though capable of existing in a free-living state, associate with the squid 

which provides nutrients and an environment for rapid population growth (McFall- 

Ngai, 1990). Each day at dawn, the squid vents (expels) 95% of the bacteria 

from its light organ and facilitates growth of a new culture during the day (Lee 

and Ruby, 1994). This daily culturing and purging results in a high number of V. 

fischeri in the Hawaiian reefs where squid live, whereas the surrounding tropical 

pacific waters have low V. fischeri populations (Lee and Ruby, 1994).

Establishing the Symbiosis

The squid hatches without its symbiont and therefore must collect it from 

the environment (Ruby and Lee, 1998). Recruiting one specific type of bacterium 

in the ocean is seemingly difficult given the large numbers of diverse microbes in 

the sea (about a million per ml) (Dolan, 2006). E. scolopes has developed a 

system that weeds out the undesirable bacteria and allows only the symbiotic 

strains of V. fischeri to enter the light organ (reviewed in Nyholm and McFall- 

Ngai, 2004). Concurrently, symbiotic V. fischeri coordinate gene expression in a 

way that permits entry into the light organ (Reviewed in Visick and Ruby, 2006).

2
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The earliest discernable stage of bacterial association is the aggregation 

of bacterial cells in squid-derived mucus (Nyholm and McFall-Ngai, 2003). The 

squid hatches with ciliated appendages in a region of cilliation located near the 

pores that lead to the light organ (McFall-Ngai, 1998). Shortly after the squid 

hatches, the cilia on these appendages begin to beat and this motion collects 

many different kinds of bacteria from the surrounding seawater. Contact with 

these bacteria, in particular their peptidogylcan, initiates secretion of mucus from 

the ciliated appendages of the squid (Nyholm et al., 2002). It is important to point 

out that this mucus shedding is indiscriminate and occurs in response to all 

bacterial membranes. Although Gram-positive bacteria trigger mucus shedding, 

they do not aggregate in the mucus (Nyholm and McFall-Ngai, 2003). In 

contrast, all Gram-negative bacteria are capable of aggregating in the mucus. 

However, V. fischeri tend to dominate in these aggregates (Nyholm and McFall- 

Ngai, 2003). This hierarchy of association exemplifies the first step in specifying 

the type of bacteria that enter the light organ.

Once in the mucus, the bacteria must move toward the light organ. It is 

believed that the V. fischeri move into the pores and then into the ducts of the 

light organ in response to a chemoattractant, N-acetylneuraminic acid, a 

component of squid light organ mucus (DeLoney-Marino et al., 2003). Flagellar 

motility is very important in initiating the symbiosis. In fact, non-motile mutants 

are incapable of establishing the symbiosis and mutants in FlaA (a gene 

important in flagellin synthesis) are severely impaired in colonization (Graf et al.,

3
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1994; Millikan and Ruby, 2004) and mutants of either FlrA or a54 are incapable of 

initiating the symbiosis (Millikan and Ruby, 2004; Millikan and Ruby, 2003).

In the ducts leading to the light organ, symbiotic V. fischeri encounter and 

must overcome host imposed challenges often referred to as the gauntlet. First, 

the ducts are lined with cilia that beat away from the light organ and the bacteria 

must swim against this opposing current (McFall-Ngai, 1998). Second, the squid 

contains patrolling macrophage-like hemocytes (Nyholm and McFall-Ngai, 1998) 

which presumably phagocytose invading microbes. Third, there are toxic levels 

of an oxidative species, NO, generated by the squid enzyme nitric oxide 

synthase (Davidson et al., 2004). V. fischeri is apparently able to overcome 

these defenses and enter the light organ. Even inside the light organ the 

bacteria face continued host-imposed stress. Within the deep crypt space cells of 

the light organ, there are transcripts encoding halide peroxidase which creates 

another deadly oxidative species, hypohalous acid (Small and McFall-Ngai,

1999). The oxidative species created in the light organ are detrimental and 

oxidative stress mutants of V. fischeri like those defective in catalase production 

are less competitive at colonization than the wild type (Visick and Ruby, 1998).

After overcoming the challenges of getting into the light organ, the bacteria 

must grow on host-provided nutrients (McFall-Ngai, 1990) and induce changes in 

the host. V. fischeri membrane components Lipid A as well as a subunit of 

peptidoglycan trachial cytotoxin (TCT) play important roles in these changes. 

TCT, a molecule found in other organisms, is required for virulence in pathogens 

like Bordetella pertussis. TCT appears to induce hemocyte movement within the

4
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appendage tissue of the ciliated field of the light organ (Koropatnick et al., 2004). 

Lipid A, a component of the LPS is responsible for inducing apoptosis and 

combinded with TCT triggers regression of the ciliated field. Many other changes 

occur during symbiotic association: (1) The production of NO is irreversibly 

diminished in the ducts (Davidson et al., 2004). (2)The ducts to the light organ 

constrict (Kimbell and McFall-Ngai, 2004). (3) The cells in the crypt spaces of 

the light organ change shape(Doino, 1998). (4) The density of the microvilli 

surface of the crypts increases possibly to either supply nutrients (Montgomery 

and McFall-Ngai, 1994) or to change the intimacy of the interaction by 

suspending the bacterial cells away from the underlying tissue (Lamarcq and 

McFall-Ngai, 1998) (5) Mucus secretion from the appendages outside the light 

organ is stopped while at the same time, mucus secretion within the light organ 

tissue increases (Nyholm and McFall-Ngai, 2004). Other than LPS and TCT, 

signals for these changes are still unknown; however, they play an important role 

in halting the permissiveness of the light organ to other bacterial symbionts 

(Whistler etal., 2007).

Initiation of symbiosis is clearly tightly controlled by the host and symbiont, 

but the specificity does not end upon colonization. To maintain the symbiosis, 

the bacteria must produce light. Bacteria that do not make light, such as those 

defective in luciferase (LuxA) or activation of light production (Luxl), can establish 

the symbiosis but can not persist in the light organ (Visick et al., 2000). Although 

the mechanisms by which the squid can discriminate light from dark symbionts is 

still unknown, Whistler and McFall-Ngai propose that the squid could use

5
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photoreceptors to distinguish between light and impose sanctions upon dark 

bacteria perhaps selectively eliminating these cheaters (Stabb, 2005). Whether 

or not this hypothesis is true, it is clear that luminescence is a requirement 

imposed on the bacteria by the squid. Is there any benefit of luminescence for 

the bacteria directly? A number of theories have been proposed, two of which 

revolve around oxygen consumption by the luciferase reaction and sensitivity to 

reactive oxygen species. If the symbiotic V. fischeri utilize all available oxygen in 

the crypt spaces they can starve the squid cells of oxygen, thereby preventing 

production of reactive oxygen species. Alternatively, utilizing the oxygen will 

lower the intracellular oxygen levels and protect the oxygen sensitive enzymes 

(Ruby et al., 2005). Another hypothesis is that within the constraints of the light 

organ where growth is limited, the luciferase reaction can serve as an alternative 

electron sink (Stabb, 2005). Finally, the light production may aid in DNA repair 

because it stimulates light-dependent photolyase-mediated DNA repair (Czyz et 

al., 2003) however, photolyase has no significant effect on squid colonization, 

suggesting stimulation of DNA repair is not the role of bioluminescence in this 

symbiosis (Walker et al., 2006).

Luminescence and its Regulation

In Vibrio fischeri, luminescence is a product of a number of enzymes 

linked in an operon. The light is produced by the luciferase enzyme, made up of 

two protein subunits encoded by luxA and 8 (Meighen and Dunlap, 1993). 

Luciferase requires substrates that must be manufactured by the bacterium.

6
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Genes also located on the same operon, luxCDE, encode proteins for synthesis 

of the substrates of the luciferase reaction (Meighen and Dunlap, 1993). There 

are other regulatory factors involved, such as activators and repressors that 

mediate light production at varying cell densities.

Luminescence is an important yet energy-expensive function and 

therefore must be tightly controlled (Stabb, 2005). V. fischeri has an elaborate 

system in place for regulating luminescence. Luminescence regulation involves 

three hierarchical quorum sensing circuits; Luxl/R, AinS/AinR, andLuxS/P/Q, as 

well as additional known activators and repressors that modulate these quorum 

sensing pathways (Engbrecht and Silverman, 1984; Lupp et al., 2003).

At low cell density, as would be observed in free-living bacterial 

populations in the ocean, luminescence is repressed. In the current model of 

light regulation described by Lupp and colleagues,(Lupp et al., 2003), at low cell 

densities there are no quorum sensing molecules for the transcriptional activator 

LuxR to bind, so it does not activate luminescence (Fig. 1) (Reviewed in Milton, 

2006). When bound to the quorum sensing molecule, acyl homoserine lactone 

(AHL), LuxR dimerizes and activates transcription of the lux operon (Engebrecht 

et al., 1983). luxR transcription is self-induced as well as induced by a 

transcriptional activator LitR (Fidopiastis et al., 2002). At this low cell density LitR 

expression is repressed indirectly by a protein called LuxO (Miyamoto etal., 

2000).
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alleviated by the LuxS/PQ and AinS/R quorum sensing systems (Lupp and 

Ruby, 2004). The LuxS/PQ system is made up of three proteins; LuxS is the 

signal synthase which makes the AI2, LuxP located in the periplasm, receives 

the AI2 signal and transmits it to LuxQ which is the signal receptor kinase (Lupp 

and Ruby, 2004). AinS is a signal synthase that produces a C8-autoinducer 

homoserine lactone (AHL) that is sensed by the AinR signal receptor (Gilson, 

1995). These systems act together to dephosphorylate LuxO thereby 

inactivating it. AinS serves a second purpose at this cell density, in that it is the 

dominant quorum sensing molecule in culture and is capable of binding to LuxR 

and activating lux transcription to a low level (Lupp et al., 2003).

At very high cell densities as is seen within the squid host, luminescence 

is activated to a very high level by 3-oxo-C-6-HSL (Lupp et al., 2003; Visick et al.,

2000). LuxO is still repressed by AinS/R and LuxS/PQ but the AinS product is no 

longer the dominant AHL (Schaefer, unpublished), luxl, the first gene in the lux 

operon, is responsible for the 3-oxo-C6-HSL production and thus activates its 

own expression. The response to varying levels of quorum sensing molecules 

seen in V. fischeri is reminiscent of the multiphasic Vibrio harveyi quorum 

sensing response (Waters and Bassler, 2006).

GacA/CsrA/CsrB

Another protein involved in luminescence regulation is GacA (Global 

activator A) (Reviewed in Heeb and Haas, 2001). This is a response regulator 

protein found in proteobacteria that along with its partner signal receptor protein

9
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GacS. The GacS homolog was first identified in Pseudomonas syringae as 

required for pathogenicity on beans (Hrabak and Willis, 1992). GacA was first 

identified as an activator of antibiotic and cyanide production in P. fluorescens 

(Laville et al., 1992). Since then, this two-component system has been found in 

a number of different bacteria and appears to have pleiotropic effects (Heeb and 

Haas, 2001). In V. fischeri mutants in GacA are deficient in light production in 

culture and this defect can not be complemented with either 3-oxo-C6 or C8 AHL 

(Whistler and Ruby, 2003). GacA also has little effect on abundance of AHL 

(Whistler and Ruby, 2003) which means that GacA does not act primarily through 

AHL regulation. This contrasts to GacA regulation of quorum sensing in 

Pseudomonas species (Bertani and Venturi, 2004; Chancey et al., 1999). Since 

GacA does not regulate quorum sensing by a mechanism analogous to that 

previously described in Pseudomonas, just how GacA regulates luminescence in 

V. fischeri is still not known.

GacA not only regulates light production, but it also influences a suite of 

other important symbiotic traits. A GacA mutant is also deficient in; normal LPS, 

siderophore, normal motility, growth on simple sugars and a high growth yield 

(Whistler and Ruby, 2003). In terms of squid phenotypes, this mutant is a poor 

colonizer and once in the light organ, reaches a low density (about 2% of wild- 

type). It also fails to trigger normal host morphogenesis, leaving the light organ 

open to other symbionts (Whistler et al., 2007).

GacA is important in host colonization and similar effects have been seen 

in other organisms. In V. cholerae VarA mutants (a GacA homolog) are

10
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attenuated in virulence and colonization of the mouse model (Wong et al., 1998). 

The GacA homolog, UvrY, is required for colonization of urinary tracts of monkies 

by E.coli. P. fluorescens requires GacA for proper biocontrol and ecological 

fitness (Heeb and Haas, 2001). In these organisms, GacA activates expression 

of small non-coding RNAs called CsrBs (Carbon storage regulator) in most 

organisms or RsmBs (Regulator of secondary metabolism) in pseudomonads 

(Lenz etal., 2005; Liu etal., 1997; Johansson and Cossart, 2003).

Work in E. coli identified CsrB function as a repressor of a repressor 

(Romeo, 1998). CsrBs are a class of small RNAs with a secondary structure 

containing several stem-loops with specific GGA motifs. These motifs interact 

with a protein called CsrA (RsmA in Pseudomonads), first discovered in E. coli as 

a regulator of gluconeogenesis (Romeo, 1998; Romeo et al., 1993). One CsrB 

RNA is capable of binding to several CsrA proteins (Reviewed in Romeo, 1998; 

Babitzke and Romeo, 2007). CsrA is a small protein (60-65aa) that is made up 

of a series of five beta sheets followed by an alpha helix (Gutierrez et al., 2005). 

This protein functions as a homodimer to bind mRNA transcripts, prevent their 

translation and sometimes signal their degredation (Gutierrez etal., 2005;

Romeo, 1998). There are two particular domains of significance in this protein, 

the regions formed by aminoacids 2-7 and 40-47 (Mercante et al., 2006). In the 

homodimeric form, region 2-7 of one subunit is located next to region 40-47 of 

the other subunit, forming the RNA binding site (Mercante et al., 2006). CsrA 

binds mRNA with multiple GGA motifs, usually in stem-loops, in the 5’ UTR and 

including the ribosomal binding site (Dubey et al., 2005). By binding at the

11
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ribosomal binding site, CsrA blocks the ribosome from binding and translating the 

mRNA into protein. If CsrBs are present, CsrA will preferentially bind the CsrBs, 

thereby sequestering the protein and allowing translation to occur (Romeo,

1998). CsrBs have many stem-loops therefore a single CsrB sRNA can bind 

many CsrA molecules.

The regulatory relationships of CsrA/CsrB and GacA known in other 

bacteria may be relevant to V. fischeri GacA regulation. Recently, an 

autoregulatory loop between UvrY and CsrA/CsrB has been identified in E. coli 

where CsrA upregulates expression of CsrB via activation of UvrY (Reviewed in 

Romeo and Babitzke, 2007). CsrA/CsrB regulate a number of phenotypes in 

other bacteria including growth, biofilm formation, virulence, carbon storage, 

motility and EPS (Romeo, 1998; Lenz etal., 2003). Naturally these phenotypes 

are related to the phenotypes associated with GacA mutants because in these 

organisms, GacA activates expression of CsrBs. This relationship has not been 

shown in V. fischeri but we have evidence to support its existence. Sequences 

for CsrBs were recently identified by a bioinformatic approach in V. fischeri and 

tested for functionality in E. coli (Kulkarni et al., 2006). These CsrBs are 

approximately 400 bases in length and contain 21 CsrA binding motifs, many of 

which are in stem loops showing great similarity to the other identified CsrA- 

sequestering RNAs (Kulkarni etal., 2006). In species like Leigionella 

pneumophilla, GacA seems to function solely through CsrBs as an antagonist of 

CsrA; however, in E. coli GacA regulates biofilms independently of CsrBs 

(Molofsky and Swanson, 2003; Suzuki etal., 2002).

13
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Research Objectives

My research focuses on elucidating the mechanism of GacA regulation of 

luminescence as well as other symbiotic phenotypes of V. fischeri. Using a 

genetic approach, I will address questions about how GacA exerts its positive 

influence on luminescence. AHL complementation and quantification data 

suggest that it is not through quorum sensing signal (AHL) production (Whistler 

and Ruby, 2003) but it could still affect sensing of these quorum signals.

Previous studies raise the question of whether GacA even regulates 

luminescence by a transcriptional means since the AHLs have a direct effect on 

transcription, or alternatively whether it regulates light by a post-transcriptional 

mechanism. Based on the seemingly conserved regulatory relationship between 

GacA and CsrBs in other organisms, it is likely that GacA regulates the identified 

CsrBs. I specifically addressed the influence of GacA on the CsrBs and whether 

this explains regulation of luminescence and the other GacA-associated 

phenotypes. I hypothesized that GacA activates symbiotic phenotypes of 

Vibrio fischeri via CsrB repression of CsrA. Through mutagenesis and 

complementation I show that luminescence and other phenotypes of the GacA 

mutant can be complemented by CsrB1 or CsrB2, and that CsrA exerts a 

negative effect on luminescence post-transcriptionally, most likely by binding 

directly to the lux transcript.
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CHAPTER 2

GacA REGULATION OF lux INDICATES A UNIQUE CIRCUITRY OF CsrA 
AND QUORUM SENSING PATHWAYS IN THE SYMBIONT Vibrio fischeri

Alicia E. Ballok, Alecia N. Septer, Eric V. Stabb, Cheryl A. Whistler 

Introduction

During host association, bacteria use a number of regulators arranged in 

complex networks making for rapid, sensitive, and appropriate control during 

infection. Whether the outcome of the infection is beneficial or pathogenic, the 

regulators are often the same. For example, many bacterial species use multiple 

quorum sensing circuits that interface with central metabolic, motility, and 

virulence regulators (Reviewed in Miller and Bassler, 2001; Lazazzera, 2000). 

Similarly, GacA (Global Activator A) is a global activator of gene expression 

found in the y proteobacteria that regulates host-association and quorum sensing 

in a number of organisms (Reviewed in (Heeb and Haas, 2001)).

For the bioluminescent light organ symbiont Vibrio fischeri, the regulator 

GacA coordinates expression of traits that mediate colonization of its host, the 

squid Euprymna scolopes (Whistler and Ruby, 2003). The squid hatches without 

the bacteria, and thus symbiotic V. fischeri have developed devices to surmount 

the gauntlet of host defenses. Once inside the light organ, V. fischeri use

15
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quorum-sensing regulated luminescence to maintain the association (Nyholm 

and McFall-Ngai, 2004; Visick and Ruby, 2006). In culture, GacA regulates 

known colonization traits including motility, siderophore production, carbon 

utilization and normal LPS synthesis (Whistler and Ruby, 2003). GacA is also 

necessary for light production in culture. Interestingly, GacA has little effect on 

AHL-quorum sensing signal production, and the addition of exogenous AHL does 

not restore luminescence to the mutant (Whistler and Ruby, 2003). During squid 

colonization, GacA coordinates functions that allow the bacteria to aggregate in 

mucus secreted by the squid, move toward the light organ and bypass host 

defenses (Whistler et al., 2007). Once bacteria reach the light organ, GacA 

allows growth to a high density and induction of host-morphological changes that 

limit entry of additional symbiotically competent bacteria (Whistler et al., 2007). 

However, GacA is not necessary for light production in vivo suggesting additional 

unidentified players regulate light within the host.

In other organisms, GacA has much the same effect on host association 

and has been thoroughly studied in a number of species including Pseudomonas 

spp., Legionellia pneumophila, Erwinia carotovora as well as several Vibrios 

(Heeb and Haas, 2001; Whistler etal., 1998; Hammer etal., 2002; Eriksson et 

al., 1998; Lenz etal., 2005; Wong etal., 1998). In the model organism 

Escherichia coli as in other organisms, GacA indirectly regulates mRNA 

translation via the antagonistic partners CsrA and CsrB (Romeo, 1998). CsrBs 

are small untranslated RNAs (sRNAs) with a secondary structure of stem-loops 

containing (AR)GGA motifs (Liu etal., 1997). These same motifs appear in the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5’ UTR of certain mRNAs, often overlapping with the ribosomal binding site 

(RBS). The CsrA protein recognizes and binds the stem-loop of regulated 

transcripts, preventing translation of the mRNA, or affecting stability of the 

transcript (Baker etal., 2002). When present, each CsrB sRNA binds multiple 

CsrAs, sequestering them, and allowing translation to occur. GacA is a known 

activator of CsrBs in the above organisms thus functions primarily to relieve 

translational blockage by CsrA.

Recent work by Bassler and colleagues has defined the interaction of 

CsrA/CsrB with quorum sensing in Vibrio cholerae using the V. harveyi lux 

operon as an output for quorum sensing regulation (Fig.3) (Lenz, Miller, Zhu, 

Kulkarni, and Bassler, 2005). In V. cholerae, a relative of V. fischeri, the GacA 

homolog VarA activates expression of three sRNAs, CsrB, C, and D, which 

inhibit CsrA. CsrA has an indirect and positive effect on the AI-2 quorum-sensing 

regulated LuxO. At low cell density, LuxO is activated by LuxU, which is 

phosphorylated by the CqsA/S and AI-2 quorum sensing systems. LuxO along 

with a54 activates two qrr RNAs and these along with the RNA chaperone Hfq 

destabilize HapR, a homolog of the LitR in V. fischeri and LuxR in V. harveyi, 

which activate luminescence (Lenz etal., 2004; Lenz et al., 2005). In V. fischeri 

some of the regulators are conserved including LuxO, LuxS, LuxPQ and the 

HapR homolog LitR (Milton, 2006; Lupp etal., 2004; Fidopiastis etal., 2002). 

However, there are additional regulators not present in V. cholerae, such as two 

AHL quorum sensing pathways, AinS/R and Luxl/R which act to sequentially 

induce luminescence (Lupp and Ruby, 2005). In the absence of quorum sensing
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Fig. 3. Vibrio fiscfieri luminescence regulation (a.) based on the Vibrio cholerae model (b.). If 
luminescence is regulated in the same way that the Vibrio harveyi lux operon is regulated in Vibrio 
cholerae, then GacA would activate CsiB1 and CsrB2, repressing CsrA, which would lead to an indirect 
repression of LuxO (adapted from (Lenz et al. 2004; Lenz et al. 2005)



molecules produced by AinS or LuxS, LuxO represses LitR (Lupp and Ruby,

2004). LitR is a transcriptional activator of LuxR which, when bound to the C8- 

HSL from the AinS quorum sensing system or 3-oxo-C6HSL from Luxl, activates 

transcription of the luxICDABEG operon (Fidopiastis etal., 2002; Lupp and Ruby, 

2004; Lupp and Ruby, 2005). Recently, Kulkarni etal. designed a bioinformatic 

search program to find potential CsrBs designated CSRNA_FIND (Kulkarni etal., 

2006). This program searched for intergenic regions with A(R)GGA motifs that 

had a secondary structure of stem loops as identified by MFOLD. Their research 

indicates that there are GacA binding domains upstream of two CsrB-like genes 

in the V. fischeri genome (CsrB1 and CsrB2), both of which produce functional 

RNAs (Kulkarni et al., 2006). It seems likely that in V. fischeri GacA also works 

through the CsrA/CsrB system, but we do not know if GacA exerts its influence 

on luminescece at LuxO as it does in V. cholerae.

Using luminescence as an indicator of GacA/CsrB1/CsrB2/CsrA 

regulation, we have elucidated the roles and circuitry of these proteins in V. 

fischeri. We confirmed that GacA regulates both CsrB1 and CsrB2, and these 

genes fully complemented all known defects in culture of the GacA mutation. 

Consistent with these findings, spontaneous CsrA mutations suppress GacA 

defects. Squid colonization studies supported the in vitro complementation data. 

Interestingly, the GacA/CsrA double mutants had a defect in initiating 

colonization that indicates the presence of CsrA and its proper regulation by 

GacA is important for efficient squid colonization. We further investigated how 

GacA, the CsrBs and CsrA interface with other luminescence regulators. The
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inability of HtR, luxR or even luxICDABE under the control of a GacA-independent 

promoter to complement the GacA-luminescence defect suggests 

GacA/CsrB/CsrA regulate light production not through quorum sensing activation, 

but through a post-transcriptional mechanism. We predict a novel binding site 

within the coding region of the lux mRNA that when delected increases 

luminescence more than 70-fold. Thus, V. fischeri exhibits novel regulatory 

circuitry among the Vibrios studied so far.

Materials and Methods

Bacterial Strains, plasmids, media and growth conditions

Strains and plasmids are listed in table 1. All strains of V. fischeri used 

were derivatives of the sequenced squid symbiont strain ES114. V. fischeri was 

grown either in SWT (5g Tryptone, 3g Yeast Extract, 3 g glycerol per L in 70% 

instant ocean) (Boettcher and Ruby, 1990), LBS (10g Tryptone, 5g Yeast Extract, 

20g NaCI, 50 ml 1 M Tris base pH 7.5 per L) (Graf etal., 1994) or minimal media 

derived from CAS solid agar (0.58% K2HP04 ,4 % NH4CI, and 50ml 1M Tris pH 

7.5 supplemented with either 3 % glycerol, or 3% glycerol and 0.5% caseamino 

acids in artificial seawater (Graf and Ruby, 1998) at 28°C. Antibiotic 

concentrations for V.fischeri were erythromycin (Erm) 5pg/ml, chloramphenicol 

(Chi) 2.5pg/ml and kanamycin (Kan) 50pg/ml. All E.coli were grown in Luria- 

Bertani (LB) broth (Sambrook, Fritsch, and Maaniatis, 1989) or brain heart 

infusion (BHI) broth (Difco) at 37°C. Antibiotics used for E.coli were 150pg/ml 

Erm in BHI, 50pg/ml Kan in LB and 25pg/ml Chi in LB. For solid
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Table 1. Bacterial strains and plasmids used in this study

Strain or plasmid Description
Source or 
Reference

E. co//strains 

DH5a

DH5aAp/r

CC118Ap/r

One Shot® 
ToplO

V. fischeri strains 

ES114

VCW2F5

VCW2H7

AN S3

ANS8

LKS5

VCW2D2

AEB3H8

Plasmids
pV08

pEVS79

pCR®2.1TOPO®

PEVS104

pVSV209

pVCW3C3

pCL147

pAEB1A1

pAEB2H8

pAEB3F9

pAEB1B4

pAEB1F3

pAEB1 F4

pAEB1E3

PAEB1E4

PAEB1A3

pAEB3A6

pJCM24

pAEB3C6

pAEB1D5

PAEB1A2

F- RecA1 endA1 hsdRi7 supE44 thi-1 gyrA96 relA1 A{argF-lacZYA) U169 080/acZA M15 A-

F- RecA1 endA1 hsdRi7 supE44 thi-1 gyrA96 relA1 A{argF-lacZYA) U169 080/acZA M15 A- 
with Apir

A(arg-leu) araD AlacX74 galE galK phoA20 thi-1 rpsE rpoB argE{Am) recA1, lysogenized with 
Apir dam dcm

F- mcrA A(mrr-hsdRMS-mcrBC) tp80lacZAM15 AlacX74 recA1 araD139 A(araleu)
7697 galU galK rpsL (StrR) endA1 nupG

Wild-type E. scolopes light organ isolate

ES114 derivative with an internal in-frame deletion; AgacA

ES114 derivative with an frameshift mutation in luxl; C6-HSL-

ES114 derivitive with a complete deletion of luxl; Aluxl

A luxl derivative with the putative CsrA binding domain of luxl added; C6-HSL-

ES114 derivative with a luxA mutation

derivative of gacA mutant VCW2A1 (Whistler, 2003) with a frameshift; csrAAAl 61 (GacAsupS1)

derivative of gacA mutant VCW2A1 (Whistler, 2003) with base change; csrAT196G 
(GacAsupKm12)

pACYC, stable multicopy plasmid, Chi', Ermr, 

pBCSK derivative, Mob*, Chi'

plasmid for cloning PCR products with adenine overhangs; Km', Ampr

R6Ky derivative of pRK2013; AColEI, oriT tra trb ATn903 Km'

pES213 derivative, low copy number (7 per cell) promoterless Chi' and gfp, rfp, Kmr

pV 08  derivative with a 4kb fragment containing wild type gacA, Chi'

pV 08  derivative containing luxICDABE coding sequence in Piacpromoter orientation, Chlr

pCR®2.1 TO PO ® derivative containing csrB1 gene

pV 08 derivative containing csrB1 from pAEB1A1

pCR®2.1 TO PO ® derivative containing csrB2 gene

pV08 derivative containing csrB2 from pAEB3F9

pCR®2.1 TO PO ® derivative containing HtR gene

pV08 derivative containing HtR from pAEB1F3

pCR®2.1 TO PO ® derivative containing luxR gene

pV 08  derivative containing luxR from pAEB1 E3

pEVS79 derivative containing csrA deletion with 1.2kb upstream and 0.3kb downstream 

pEVS79 derivative containing csrA from pAEB1A3 with a Kan'gene inserted in upstream region 

pEVS79 derivative with a 1.5 kb region containing CsrA with a EZ::TN<Kan-2> insertion 

pVSV209 derivative containing the promoter region of csrB1 

pCR®2.1 TO PO ® derivative containing promoter region of csrB2 

pVSV209 derivative containing the promoter region of csrB2 from pAEB1 D5

Gibco-BRL,
Inc.

Herrero, 199 0 

Invitrogen

Bottecher
1990
Whistler
2003
LUPP, 2003 

This study 

This study

This study 

This study

Visick, 1997 

Stabb, 2002 

Invitrogen 

Stabb, 2002

Dunn, 2005
Whistler
2003
C. Lupp 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

This study
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media, 15g/L agar was added. For screening purposes, we added 40pg/ml 5- 

bromo-4-chloro-3-indolyl- (3-D-galactopyranoside (X-gal).

Molecular Techniques and Complementation

Standard molecular methods were used throughout(Ausubel et al) (, 

1990;Sambrook, Fritsch, and Maaniatis, 1989). Cloning by polymerase chain 

reaction (PCR) was performed using either Fast Start Hifi (Roche) or Platinum 

Taq Hifi (Invitrogen) DNA polymerases using manufacturers protocols. The 

oligonucleotide primers (Integrated DNA Technologies) used for cloning are 

listed in Table 1. Primers were designed from the available genome sequence 

(Ruby, Urbanowski, Campbell, Dunn, Faini, Gunsalus, Lostroh, Lupp, McCann, 

Millikan, Schaefer, Stabb, Stevens, Visick, Whistler, and Greenberg, 2005) to 

regions flanking genes of interest.

For complementation studies with csrB1 and csrB2, each gene was 

amplified using gene-specific primers. For luxR and HtR, the genes were PCR- 

amplified using primers that had Sph\ and Sacl or Pst\ and Sacl sites 

respectively engineered into the 5’ end of gene-specific primers. The PCR 

products were then cloned into pCR®2.1 TOPO® using the TOPO TA Cloning® 

Kit (Invitrogen) and transformed into chemically competent One Shot® Top10 £. 

coli using the manufacturers’ protocols. Following plating on LB Kan containing 

X-gal, putative clones were identified among the white colonies and screened by 

PCR using the same gene-specific primers used for cloning. Positive clones 

containing csrB1 (pAEB3F9) or csrB2 (pAEB1B4) luxR (pAEB1E3) or HtR
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Table 2.

Primers designed for this study

Primers Sequence and description
CsrB1 
primers 
CsrB1 F1

CsrB1 R2

CsrBIAvrll

CsrBISal

CsrB2
primers

CsrB2 F1 

CsrB2 R2 

CsrB2 FSal

CsrB2RStu

LitR primers 

LitR F1 

LitF R2

LuxR
prim ers

LuxR F1

LuxR R2

CsrA
primers

CsrA F3 

CsrA R7 

CsrA F8 

CsrA R9

5' AGTCAAAAGCGTAGTCTTATTGG3' forward primer for amplification and screening of csrB 1

5'CACTGAGGAGAAATGTAACCG3' reverse primer for amplification and screening of csrB1

5'ATGGACCCTAGGCAAGCGAAGAGCAAGCAGA3' for promoter region, contains Avrll restriction 
site

5'TTCCAAGTCGACGAATGCTCCTTGAGTTATCTC3' for promoter region, contains Sail restriction 
site

5'CTTACAAGCGAGTGAGATTTAGCG3' forward primer for amplification and screening of csrB2

5'AGAGGAGGAACTATTGTGAGC3' reverse primer for amplification and screening of csrB2

5' GTCGACTAGACAAACAGGAAACCGCT3' for amplification of promoter region, contains Sail 
restriction site

5'AGGCCTCCGACACCAATAAGATTACGC3' for amplification of promoter region, contains Stu1 
restriction site

5'CTGCAGTTGGCAAGGATATAAATATAATGG3'forward primer with Pst1 restriction site 

5'GAGCTCTCCACGCTCACCCAACTCTA3' reverse primer with Sacl restriction site

5'GCATGCTAGGTGAACAAATGGAACATTA3' forward primer with Sph1 restriction site 

5'GAGCTCATTTAGAGCAACTTATTCGC3' reverse primer with S a d  restriction site

5'ATCACTAACCGCTGACCAG3' forward primer for amplification of csrA 

5TCACCGTCTTCAGGAGGC3' reverse primer for amplification of csrA 

5TGTCGGTTATCGTAAATCAAGC3' forward primer for sequencing csrA 

5'AACCGTCTATGAAACGACCA3' reverse primer for sequencing csrA
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(pAEB1F3) exhibited the correct size PCR product by gel electrophoresis (0.7% 

agarose in 1X TAE). The csrB1 and csrB2 genes were then subcloned into the 

shuttle vector pV08 that is stably maintained in V. fischeri (Visick and Ruby,

1997) by digesting (pAEB3F9 and pAEB1B4) with EcoRV and Sacl and digesting 

pV08 with Smal and Sacl, followed by heat inactivation the enzymes. The luxR 

and HtR genes were subcloned into pV08 using the restriction enzyme whose 

sites engineered into the primers. Ligations were performed using T4 DNA 

ligase (Invitrogen) by temperature cycling (Lund et al., 1996). The ligation 

products were then transformed into chemically competent E. coli DH5a and 

plated onto LB Chi supplemented with X-gal. Plasmids containing the correct 

cloned products were identified among the white colonies by PCR screening with 

Master Taq® Kit (Eppendorf) using the same gene-specific primers used for 

cloning.

The plasmids were mobilized into wild-type ES114 and its derivatives by 

conjugation via triparental mating using a DH5a helper strain containing the 

plasmid pEVS104 (Stabb and Ruby, 2002). Briefly, equal volumes of stationary 

phase cultures of the helper strain, E. coli donor and the recipient strain of V. 

fischeri were centrifuged individually, washed with LBS, resuspended together in 

LBS and spotted on LBS solid agar. This was incubated at 28°C overnight and 

the bacterial mixture was collected, diluted in sterile artificial seawater and plated 

onto LBS media containing antibiotic to select for the transconjugants. The 

plates were incubated at room temperature until visible transconjugant colonies
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appeared, which were re-streaked for isolation on antibiotic containing media 

prior to use.

For in trans complementation with csrB1, csrB2, gacA, HtR, luxR, and 

luxICDABE (in pCL147), cultures were grown at 28°C, shaking in SWT Chi media 

at 200rpm. Phenotypic complementation was tested as described in the 

phenotypic analysis of strains section.

Promoter-gfp fusions

Regions upstream of csrB1 (~500bp) and csrB2{~250bp), predicted to 

contain the promoters (Kulkarni etal., 2006), were amplified with a Platinum Taq 

Hifi (Invitrogen) using primers that contained restriction sites, Sa/I and Stu\ for 

csrB2 and Avr\\ and Sa/I for csrB1. csrB2 was cloned into pCR®2.1 TOPO® 

using the TOPO TA Cloning® Kit generating plasmid pAEB1D5 and then 

subcloned using the restriction enzymes Sa/I and Stu\. The csrB1 PCR product 

was digested directly with Awl I and Sa/I and each promoter was cloned into an 

available promoter fusion vector, pVSV209 a low copy number (n=7) plasmid 

(Dunn et al., 2006) derived from a V. fischeri plasmid pES213 (Dunn et al.,

2006). The plasmid pVSV209 contains restriction sites allowing cloning of 

promoters upstream of promoterless chlR and gfp which creates a transcriptional 

fusion that drives expression of the gfp reporter. The plasmid also contains 

constitutively expressed kanR and rfp genes. Following ligation of promoters to 

the vector, plasmids were transformed into DH5aAp/r. Transconjugants were 

selected on LB Kan, and the presence of the plasmid further confirmed by visual
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inspection of RFP. Presence of the promoter within the plasmid was confirmed 

by PCR screening for the correct size product following electrophoresis. These 

promoter fusion plasmids along with the empty vector pVSV209 were mobilized 

by conjugation (Stabb and Ruby, 2002) into V. fischeri ES114 and the gacAA 

mutant. Putative transconjugants were selected on LBS Kan and the presence of 

RFP expression visualized.

To quantify promoter activity, strains were grown in 2ml SWT Kan with 

shaking for 9 h. Fluorescence was measured on 0.1 mL culture with 0.1 mL 

media, as a control for background autofluorescence, using a plate reader 

(Tecan). RFP was measured using a 570nm excitation wavelength and read at 

620nm emission wavelength. GFP was assessed using 480nm excitation 

wavelength and read at 515nm emission wavelength. Optical density was 

measured using a spectrophotometer (Eppendorf). Relative fluorescence was 

calculated as fluorescence intensity per unit of OD6oo-

Phenotypic analysis of strains

All phenotypic analyses were based on those outlined previously (Whistler 

and Ruby, 2003). Briefly, luminescence and growth was determined from 

cultures grown at 28°C with shaking (200 RPM) in SWT or SWT Chi for strains 

with pV08 and its derivatives. Luminescence and density (ODeoo) were 

measured from 1ml of culture at various points using a luminometer (Turner 

Designs) and a spectrophotometer (Eppendorf). LPS (Lipopolysacchride) was 

observed as difference in colony opacity on LBS plates. Growth on simple sugars
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was assessed as cell density in minimal medium supplemented with glycerol or 

with glycerol and caseamino acids as a control. Growth yield OD6oowas 

measured from cultures grown in SWT (with antibiotics if necessary) overnight 

(18hrs) at 28°C. Motility was assessed using motility media (1% Tryptone 70% 

Natural Seawater) with Bacto (Difco) agar at concentrations of 0.3 and 0.6%. For 

0.3% agar, 3pl of mid-log cultures (0.4 OD6oo) were spotted onto the plates and 

migration in mm was measured hourly for 9hrs to determine rate (mm/h). For 

0.6% agar, individual colonies were picked using a toothpick and stabbed into the 

agar. The distance in mm of migration was measured after 24 hours. The 

experiments contained 3 replicates and were repeated at least 2 times. Data 

shown is from a representative experiment and error is expresses as SE.

Siderophore production was measured using a modified liquid chrome 

azurol S (CAS) liquid assay (Payne, 1994). Briefly, cultures were grown in 

minimal medium based on that used for CAS agar plates (Graf et al., 1994) 

buffered with Tris (pH 7.4), and grown for eight hours with shaking. The density 

(O D 6oo) was measured and cells removed by pelleting. Equal volumes of the 

culture supernatant and a CAS assay solution were mixed along with 1% of 

shuttle solution (0.2M 5-Sulfosalicylic acid). After 20min the absorbance of these 

mixtures was measured using a plate reader (Tecan) at 630nm. Siderophore is 

reported percent siderophore (compared to the blank control) per OD60o-
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Squid Colonization

Squid colonization was performed exactly as outlined previously (Whistler and 

Ruby, 2003). Briefly, exponentially growing bacteria (0.2-0.4 O D 6oo) were 

suspended in 50mL of filtered sea water (FSW) to an approximate final density of 

3000 CFU/ml. Exact CFUs were determined by plating on LBS. Squid were 

added collectively to the sea water and after 3 hours, transferred to individual 

vials containing 4ml FSW. Each day the squid were transferred to new vials 

containing 4mls FSW. For strains containing plasmids, 1.25pg/ml Chi was added 

to the FSW.

Luminescence and colonization were assessed 12, 24 and 48 hours after 

hatching. To quantify the light organ bacterial populations, the squid were 

individually frozen at -80°C, which kills bacteria superficially associated with the 

squid, but does not kill bacteria within the light organ. Squid were then 

homogenized in FSW, the homogenate serially diluted and plated on LBS media. 

The plates were counted to determine the CFU per light organ.

CsrA mutant generation

Directed mutatgenesis of csrA was attempted through homologous 

recombination as described previously (Stabb and Ruby, 2002). First, we 

generated a deletion construct suitable for mutatgenesis by fusing 1.2kb of the 

upstream sequence to 0.3kb of the downstream sequence of csrA with PCR 

SOEing (Horton etal., 1993). Although having only 300 bp of DNA flanking a 

mutation likely reduces efficiency of recombination, other mutants have been
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successfully generated with less than 200 bp of flanking DNA (Whistler and 

Ruby, 2003). This strategy was necessary due to the presence of multiple tRNA 

genes immediately downstream of csrA. The presence of these sequences in an 

earlier construct facilitated recombination of the plasmid at a number of incorrect 

sites in the V. fischeri genome. Following successful deletion of csrA in the 

amplicon, the PCR product was cloned into a suicide vector, pEVS79 (Stabb and 

Ruby, 2002) generating plasmid pAEB1A3. To aid in selection of mutants an 

additional construct was also made with KanR from pMKm (Murillo et al., 1994) 

inserted in a single EcoRI site upstream of csrA in pAEB1 A3 generating plasmid 

pAEB3A6. The mutations were introduced into the genomes of wild-type V. 

fischeri and the gacA mutant by conjugation and derivatives with single 

crossovers were isolated by plating on LBS Chi grown for 24 h at room 

temperature, which enriches for V. fischeri. Individual colonies identified as V. 

fischeri based on morphology were streak purified onto LBS Chi for plasmid 

pAEB1A3, or LBS Kan for plasmid pAEB3A6, and the location of the crossover 

event on either side of the csrA gene determined by PCR. Derivatives with 

crossovers within the 300 bp (downstream) flanking DNA were then grown 

without selection. Derivatives of pAEB1A3 plated on LBS, and derivatives of 

pAEB3A6 plated on LBS Kan, were then screened for loss of ChlR by replica 

plating indicating a second crossover event. Putative mutants were then 

screened by PCR. In over 5000 (3200 putative deletion mutants and 2000 

putative Kan resistant mutants) colonies for each construct screened, no 

derivative harboring the deletion was ever identified. An additional attempt at
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directed mutagenesis was made by introducing a transposon in the C-terminal 

region of csrA at nucleotide 148 as confirmed by sequencing using the EZ::TN™ 

<Kan-2> Insertion Kit following the manufacturers protocols (Epicentre) 

generating plasmid pJCM24. This mutation occured 5 amino acids downstream 

of the mutation in E. coli (Romeo et al., 1993) Conjugation and isolation of single 

and putative double crossover derivatives was done as described above. PCR 

screening of over 5000 putative mutants revealed no csrA::KanR mutants.

Spontaneous GacA suppressor mutants that mapped to csrA were 

isolated from cultures of the gacA:.KanR mutant that were plated onto LBS or 

CAS agar and allowed to incubate for approximately 72 hours. Large opaque 

colonies were streak purified from the background of the translucent GacA 

mutants. The extent of gacA mutant suppression for these derivatives was 

determined. For five derivatives restored in LPS, luminescence, siderophore, 

growth yield, and growth on glycerol, the genomic DNA was extracted(Ausubel et 

al) (, 1990) and the csrA gene was amplified using HiFi polymerase using csrA- 

specific primers and the PCR product directly sequenced by the Hubbard Center 

for Genome Studies at the University of New Hampshire. The sequenced csrA 

genes from these gacA mutant suppressors was compared that of csrA from the 

published genome of V. fischeri (Ruby et al., 2005) in order to identify the 

location of the mutation. Amplification and sequencing was performed multiple 

times to confirm that identified mutations were not the result of polymerase error.
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Sequence analysis and comparison

The putative binding site for CsrA within luxl was found on observation of a 

series of adenines followed by a GGA motif, followed by five thymines. This was 

similar to some of the consensus data of other CsrA binding sites (Dubey et al.,

2005). This sequence was aligned with other luxl sequences in GenBank (Vibrio 

salmonicida, AF452135; Vibrio fischeri MJ1, AF170104; Vibrio fischeri ATCC 

49387, AY261992; Shewanella hanedai, AB261992; Vibrio anguillarum, 

VAU69677; Aeromonas salmonicida, ASU65741; Aeromonas hydrophila, 

AY987586; Pseudomonas aeruginosa PA01, AE004091; Pseudomonas 

fluorescens, L48616; Burkholderia vietnamiensis G4, EF212890; Burkholderia 

cepacia, AJ422183). Sequence alignment was performed with the BLAST 

software package (Altschu I etal., 1990).

Results

Complementation of in vitro GacA mutant phenotypes with CsrB1 and 

CsrB2

Consistent with our working model whereby GacA represses CsrA via 

activation of the two sRNAs, we expected that either CsrB1 or CsrB2 would 

complement the GacA mutant. Using plasmids expressing csrB1 or csrB2 under 

the control of their own promoters, we examined their affect on known GacA 

defects including luminescence, siderophore production, motility, growth yield, 

growth on simple sugars and LPS (Table 3). Either construct restored all GacA- 

mutant phenotypes to wild-type.
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Table 3. Complementation of in vitro GacA mutant phenotypes. Shown here are GacA mutants 
suppressed by a secondary mutation in csrA or complemented with gacA, csrB1 or csrB2 in Irons with 
Wild type and the vector as controls. Each assay was replicated three times.

V. fischeri strain
Growth Yield 

OD

Relative 
j Luminescence 

Lum/OD

Value fix Phenotype (SE)

Motility 0.3%  Motility 0.6%  
mm/Hdur mm/Hour

Siderophore
%siderophore

units/CO

Growth in 
Simple 
Sugars LPS

Wild type 7.63 + 0.14 3.18 ± 0 .2 0 3.81 ± 0 06 0.20 ± 0  01 18.92 ± 0 .8 7 + OP

GacAA 2.11 ± 0 .0 2 0 ± 0 .0 0 4.19 ± 0 .0 6 0.13 ±  0.01 0 ± 0 .0 0 - 7R

csrA AA161 7.61 ± 0.57 2.67 ±  0.47 3.75 ±  0.14 0.20 ±  0.01 15.97 ± 0 .8 7 + OP

csrA T196G 7.92 ± 0 .1 8 4.01 ± 0 .3 7 2.88± 0.07 0.23 ±  0.00 14.85± 0.98 + OP

W ild type + vector 7.53 ±  0.20 2.61 ±  0.08 3.31± 0.16 0.19 ±  0.00 16.32± 0.77 + OP

GacAA + vector 2.79 ±  0 08 0 ± 0 .0 0 3.94± 0.12 0.13 ±  0.01 0  ±  0.00 - TR

GacAA + GacA 5 .1 0 +  0.33 5.80 ± 0  40 3.44± 0.06 0.19 ±  0.01 17.33 ± 0 .4 2 + OP

GacAA + CsrB1 6.24 ±  0.21 4.40 ±  0.59 2.94 ±  0.18 0.20 ±  0.02 16 33+ 0.92 + OP

GacAA -i- CsrB2 6.42 ±  0.05 3.47 ± 0  51 2.75 ±  0.10 0.18± 0.02 13 .12 ±  1.25 + OP

CO
ro



GacA suppressor mutations map to CsrA

We attempted to generate a csrA mutant and a gacA-csrA double mutant, 

a mutation in CsrA to test the model of CsrA regulation and would restore wild 

type phenotypes to the GacA mutant. Using homologous recombination, we 

attempted to replace the wild-type csrA with one of several mutations, including a 

complete csrA deletion and replacement of csrA with an erythromycin cassette, 

but these attempts were unsuccessful. Among the published csrA mutants, 

many have insertions near the C-terminus of the protein (Romeo etal., 1993; 

Lenz et al., 2005). We therefore attempted to replace the gene with several 

different extreme C-terminus insertion mutations, but again were unsuccessful. 

These data indicate that csrA may be an essential gene, or that the mutation is 

highly detrimental in V. fischeri.

Although our attempts to generate directed csrA mutants were 

unsuccessful, in culture the GacA mutant is very unstable and suppresses, 

meaning it acquires a second-site mutation that restores wild type phenotypes, 

quite readily. There are several classes of GacA mutant suppressors restored in 

phenotypes as would be expected for a csrA/gacA double mutant. We 

sequenced the csrA gene in five of these suppressors and found that two indeed 

carried mutations in the gene (Fig. 4). The first suppressor, csrAAA161 

(GacAsupS1), has a deletion of an adenine at base 161 resulting in a frameshift 

and a change in the last 17% of the protein. The second, csrAT196G 

(GacAsupKm12), has a thymine to guanine transversion at position 196, that
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changes the stop to a glutamine and adds 20 amino acids on to the C-terminus 

of this 65 amino acid protein. We predict based on the difficulty in obtaining a 

null mutant, that neither of these suppressor mutations are null and probably 

maintain some functionality. We successfully replaced the gacA::Kar\R mutation 

with a wild-type gacA gene in the csrAAA161 (GacAsupS1) mutant, but the csrA 

mutation reverted, further thwarting our attempts to characterize a csrA mutation 

in an otherwise wild-type background. Still, these two suppressor mutants did 

allow us to determine the affect of a csrA mutation in a gacA mutant background 

(Table 3). All in vitro phenotypes of csrAAA161 and csrAT 196G were the same 

as wild type with only one exception; csrAT196G had unusual motility in that it 

was more motile than the wild type on high percentage agar and less motile than 

the wild type on the lower percentage agar, a phenotype which is opposite of the 

effect of the GacA mutation.

Complementation of squid colonization phenotypes

Although addition of either csrB1 or csrB2 in trans as well as secondary 

mutations in csrA complemented GacA mutant phenotypes in vitro, some GacA 

defects differ from culture to the squid (i.e. luminescence). Therefore it is not 

clear whether squid-specific or in vivo traits would also be restored. GacA 

mutants have a severe initiation defect and once in the light organ, and achieve 

populations on average <2% that of wild type (Whistler and Ruby, 2003). As a 

result, they generally are not detectibly luminous. We examined the colonization 

attributes of our complemented and suppressor mutant strains at 12, 24 and 48
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Table 4. Complementation of squid phenotypes. The ability for a bacterium to colonize a squid was measured as abifity to colonize 
the squid (cfu/ light organ) and produce luminescence (specific luminescence). Percent luminous corresponds to the percentage of 
squid that are luminous (n=5) at 12,24 and 48hrs. Specific luminescence is expressed as the mean of individual squid 
(luminescence/cfu xIO4), (n=5).

V ftscttaisirain Wild tvw GacAA csrAAA161 csrAT196G VWd1vDe+ 1*108 GacAA+veckr GacAA + GacA GacAA+CsrB1 GaeAA+Csr82
ParcsrtLuninous

12fts 0 0 0 0 0 0 0 0 0

24t*s 90 0 60 90 50 0 50 90 80

48X5 100 0 90 100 80 0 80 100 100
CFUTUght Organ

121*5 {2.3±041)X1(P (0.6 ±0.66X10* (2.4+0.9)* 10* (1.2+0.5)* W (1.88 ±187X10* (8.05 ±0.42X10* (2.34 ±1.31X10* (2.28± 1.72X10* 2.2*10*

241*5 <1.39+06^*10' (2.70 ±0.31X10* (5.53± 1.37X10* (1.«±0.39)*10' (8.68 ±6.25X10* (3.72±1.52X10* (189±084X10* (2.38 ±0.54X10' (6.57 ±2.22X10*

48tvs <217±0.63)*10' (113+016X10» <2 05±0.11X10' (3.47 + 0.43)x10* (1.08 ±0.07X10* (2.56 ±0.63X10* (4.58±1.76X10* (1.02± 0.24X10' (561 ±1.40X10*
Specific Luminescence

24hre 1.16 ±0.25 0 0.56 + 0.27 134 + 0.24 0.51 ±0.15 0 1.4 ±0.70 1.3±0.31 0 96±0.20

48hre 1.15+0.04 0 1+050 1.18 ±0.11 154±0.19 0 1.86±0.30 109±0.30 1.25±0.29

COO)



hours for squid exposed to a standard inoculum (approximately 3000 CFU per ml 

seawater) for only three hours. We found that each of the CsrBs in trans fully 

complemented the GacA mutant and were indistinguishable from wild-type 

harboring the empty vector as a control (Table 4). For csrAAA161, the density of 

bacteria was low at 12 hours and at 24 hours its population density was still lower 

than wild-type. By 48 hours its population density was similar to that of wild type, 

indicating that csrA mutation impaired initiation, but did not substantially affect 

final growth yield.

Regulation of csrB1 and csrB2 by GacA

Although phenotypic complementation data supports our working model, 

we wished to examine the effect of GacA on csrB1 and csrB2 expression. To 

resolve whether or not GacA activates the expression of the csrBs, we made 

fusions of each of the csrB promoters to GFP and quantified expression in wild 

type and the gacAA mutant (Fig. 5). Compared to wild type, GFP was reduced 

by 31-fold for csrB1-gfp and 16- fold for csrB2-gfp in the gacAA background.

Examination of the mechanism of luminescence regulation

It is well established that GacA interfaces with quorum sensing in a 

number of bacterial species. For example, in several Pseudomonas spp. GacA 

influences AHL synthesis. GacA also regulates quorum sensing in V.cholerae 

and V. harveyi. Prior work on luminescence regulation by GacA in V. fischeri 

shows it has little effect on AHL production and that addition of exogenous AHL
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Fig. 5. csrB1 and csrB2 expression in w iki type and GacAA. Gfp expression of promoter fusions 
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does not restore luminescence suggesting differences in circuitry (Whistler and 

Ruby, 2003). If GacA/CsrB/CsrA regulation in V. fischeri and V. cholerae were 

conserved, GacA regulation would be tunneled into the quorum sensing system 

via LuxO (Lenz et al., 2005) and adding either HtR or luxR in trans to the GacA 

mutant would bypass LuxO thus restore luminescence. However, neither litR nor 

luxR restored luminescence to the gacAA mutant (data not shown) indicating that 

GacA influences luminescence downstream of quorum-sensing activation.

Although GacA does not act through the known quorum sensing circuitry 

to activate lux transcription, this does not rule out an effect on transcription. To 

further elucidate whether GacA mutants are dark due to inhibition of transcription, 

we added luxICDABE expressed constitutively off of the P/ac promoter to the 

gacAA mutant, and as a control, to a luxA mutant and observed their 

luminescence over time (Fig.6). By eliminating the native P|UX promoter, we 

remove the requirement for activation. Although luxICDABE restored 

luminescence to a luxA mutant, it only had a small, positive effect on 

luminescence of the gacAA mutant. Similar luminescence levels in the gacA and 

luxA mutants harboring this construct would have indicated that GacA is required 

for transcription from the native P/ox promoter, whereas a lower level of 

luminescence would have indicated a post-transcriptional mechanism. These 

data strongly suggests that GacA regulates luminescence post-transcriptionally.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright ow
ner. 

Further reproduction 
prohibited 

w
ithout perm

ission.

14

12 -

Q
O

10

©o
rzs(0o
_c
E
_ i
©>
jo 
0) 
a:

1.4 1.90.4 0.9

O.D. eoo

Fig. 6. Complementation of luminescence with lux expressed from promoter. Luminescence curve of 
GacAA complemented with /t/xoperon in trans ( A )  and the vector ( • )  and the LuxA mutant with lux (♦) and 
the vector (■) as a control. Note that GacAA is defective in growth yield.



Identification of a putative CsrA binding site within the lux coding 

sequence

CsrA represses translation of mRNAs by binding to stem-loops with 

(AR)GGA motifs located in the 5’UTR near the ribosomal binding site (Romeo,

1998). Several of these are often found in tandem, and facilitate cooperative and 

sequential binding by CsrA (Baker et al., 2002). Upon observation of the 

deduced luxl mRNA sequence of Vibrio fischeri we noticed a possible stem-loop 

forming region containing a GGA motif (Fig. 7) similar to those previously 

reported as binding sites of CsrA. A second GGA that did not appear within a 

stem-loop forming region was also identified 16 bases downstream of this 

sequence. Alignments of the other sequenced V. fischeri luxl sequences, 

showed that this putative binding site, as well as the second GGA are conserved 

(Fig.7) but is absent in ainS,the other quorum sensing synthase. In all currently 

reported instances, the CsrA binding sites are located in the 5’ UTR of regulated 

transcript; in contrast, this motif appears within the coding sequence of luxl. A 

survey of the Luxl homologs in related and unrelated species (including Vibrio, 

Aeromonas, Pseudomonas, Shewanella and Burkholderia) showed that the 

stem-loop is not conserved across species. However, a weak stem loop 

containing a GGA motif partially in the stem, believed not to be a significant 

impairment to binding (Dubey, Baker, Romeo, and Babitzke, 2005) was found in 

the coding sequence of several Aeromonas species luxl sequences. If the luxl 

region is truly a CsrA binding site then this is a novel location for CsrA-mRNA 

interaction.
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a G Ga C A
U C 
AU
AU AG = -4.48 
AU

putative RBS s ta rt A U
5’AAGAGAGGUUGCAUGGCUGAAUGAUAA A U GGGCAU UCCAUCAGAGG A3’

b.

ES114 ATGGCTGTAATGATAAAAAAATCGGACTTTTTGGGCATTCCATCAGAGGAGTATAGAGGT 
MJ1 ATGACTATAATGATAAAAAAATCGGATTTTTTGGCAATTCCATCGGAGGAGTATAAAGGT 

ATCC 49387 ATGACTATAATFATAAAAAAATCGGATTTTTTGGCAATTCCATCGGAGGAGTATAAAGGT

Fig. 7. Putative CsrA binding motif within the luxl transcript a. A depiction of the putative CsrA 
binding stem-loop with the ribosomal binding site (gray), start codon (underlined), and GGA motifs 
(bold), b. Alignment of ES114 luxl partial sequence With the luxl of the other sequenced strain of 
Vibrio fischeri (MJ1) as well as an environmental isolate (ATCC 49387). Underlined bases indicate 
where the RNA transcript would anneal to itself and GGA motifs are in bold.
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To determine whether there is regulation at this potential CsrA target, we deleted 

the entire luxl gene, including both putative binding sites. We replaced the 

deletion with a short segment only containing the two GGA motifs. We observed 

the luminescence of these mutants (fig.8). Quite surprisingly, unlike the 

published luxl frame-shift mutant which is dim in culture (Lupp etal., 2003) the 

luxl deletion mutant (which is unable to make one of the two AHL signals that 

activates lux transcription) was more luminous that wild type. Adding back the 

putative CsrA binding site resulted in a 71-fold reduction in luminescence. These 

data not only supported our hypothesis that this region is a CsrA binding site but 

it also suggested that under some conditions, post-transcriptional regulation of 

luminescence has a more significant effect than quorum-sensing.

Discussion

The GacA regulator has long been associated with both beneficial and 

pathogenic colonization. In recent years, several mechanistic studies have 

defined its interaction with other host-association regulons that include multiple 

classes of non-coding RNAs, the translational repressor CsrA/RsmA, as well as 

multiple quorum sensing pathways. Much significant work has been completed 

with only a few pathogenic species and these studies reveal some conservation 

of role and circuitry. But these studies by necessity have been largely removed 

from the host context. In this study, we begin to define the roles and interaction 

of the GacA, CsrB and CsrA regulators with quorum sensing in a bacterium that 

allows their study in a natural animal model. In keeping with the circuitry in other
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bacterial species, in this study we demonstrate that, in V. fischeri GacA regulates 

both of the csrBs and GacA functions primarily to antagonize the repressor CsrA. 

We also determined that there are some striking differences in the regulatory 

circuitry. Specifically, the GacA/CsrB/CsrA regulators exert their control of 

luminescence predominantly by a post-transcriptional mechanism (Fig. 9), not by 

modulation of quorum sensing as has been found in other bacteria (Lenz et al.,

2004). We furthermore have identified a putative CsrA binding site located 

within the luxl coding sequence. Finally, animal colonization studies indicate that 

CsrA plays an important role in initiation of host colonization.

Regulation of luminescence and other factors important for host 

association by GacA, CsrA, CsrB1 and CsrB2

Though the relationship between GacA/CsrB/CsrA for V. cholerae and V. 

fischeri are the same, this study revealed curious differences in the placement of 

these regulators within their larger colonization cascades, perhaps as a reflection 

of the different lifestyles of these related bacteria. The VarA/CsrA interaction is 

important for virulence and quorum-sensing regulation in V. cholerae and further 

influences expression of the V. harveyi lux genes in this organism (Wong etal., 

1998; Lenz et al., 2005). Similarly, the homologs in V. fischeri (GacA/CsrA) are 

important for symbiotic phenotypes and luminescence (Table 2) (Whistler and 

Ruby, 2003). Both VarA and GacA exert their influence by activating sRNAs 

(CsrB, C and D and CsrB1 and 2 respectively) which likely sequester the RNA 

binding protein CsrA. However it appears that this is where the similarity ends.
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In V. cholerae, this regulatory system functions in parallel with the quorum 

sensing systems to act on LuxO. In V. fischeri, GacA/CsrA mainly do not act 

upstream of LitR, but instead regulate luminescence and potentially other 

phenotypes post-transcriptionally. Relating to this theory that GacA/CsrA act on 

luminescence after transcription, the luminescence data showed that complete 

deletion of luxl has a positive effect on luminescence in culture. This seems 

contradictory to published data on a luxl mutant with a point mutation that 

inactivates the Luxl protein, dramatically diminishing luminescence (Visick etal.,

2000). The point mutation however, did not eliminate the putative CsrA binding 

site and therefore the transcript was likely under CsrA repression. By completely 

removing luxl, the putative CsrA binding site was also removed, eliminating 

repression. This putative binding domain has an even more dramatic effect than 

quorum sensing on luminescence in vitro, which demonstrates the importance of 

CsrA regulation. Having CsrA as a direct control mechanism may allow 

V. fischeri to further fine tune its luminescence expression by altering levels of 

CsrA and CsrB. Perhaps simultaneous quorum sensing activation of all virulence 

genes in V. cholerae is more useful in their host and so V. cholerae is better 

served by CsrA aiding in quorum sensing repression. However, it is also 

possible that important direct regulation of virulence transcripts by V. cholerae 

has been inadvertently overlooked due to the focused use of a heterologously 

expressed foreign transcript (lux from V. harveyi) as a measure of regulation, 

highlighting the usefulness of complimentary studies such as this for exploring 

the interface of translational and quorum sensing regulation.
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The role of translational regulation during colonization

Although much work has been done to elucidate regulatory mechanisms 

of infection, with few notable exceptions, most conclusions about the relevance 

of transcriptional and translational hierarchies are inferred from in vitro data. For 

example, in V. cholerae CsrA regulation was elucidated using luminescence as a 

surrogate for virulence (Lenz et al., 2005). In E. coli infectivity was inferred from 

motility, adherence and mucoidy (Romeo etal., 1993). Pseudomonas virulence 

was assessed by production of extracellular products such as protease, HCN 

and pyocyanin (Pessi and Haas, 2001). Using a natural macrophage model, 

Swanson and colleagues have examined the roles of LetA (GacA homologue) 

and CsrA in the bacterial pathogen Legionella pneumophilla during macrophage 

infection (Molofsky and Swanson, 2003). In this system, CsrA mutants are highly 

infectious and those that overexpress CsrA are not. Analogous to CsrA over 

expression, the V. fischeri GacA mutant has a defect in colonization initiation.

This shows that these to bacteria have a common need to repress CsrA in order 

to activate genes required for infectivity. However, once they are in the 

macrophage, CsrA mutants (LetA active) of L. pneumophilla are unable to 

multiply to a high density, which contrasts to the squid system where GacA 

mutants (CsrA active) are incapable of growing to a high density (Whistler and 

Ruby, 2003). Consistent with the LetA/CsrA regulation model, the infection 

defects of the L. pneumophilla CsrA mutant can be eliminated by additionally 

mutating LetA. In contrast, the GacA/CsrA suppressor mutants of V. fischeri 

were defective in initial colonization. This illustrates that in the L  pneumophilla
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system CsrA/LetA are additional regulators of infection because without both 

them, infection occurs normally. However, in V. fischeri, the GacA/CsrA double 

mutants are defective at initiating infection, which means these regulators are 

important for normal colonization of the squid. Indeed, even though these 

regulatory relationships previously have been well characterized in a number of 

systems, we have laid the foundation with this work for elucidating their role in a 

natural animal system that compliments the findings from studying these 

regulators in other bacterial species.

CsrA binding within luxl coding sequence

In this study we discovered a putative CsrA binding site within the lux 

transcript in the coding region of luxl gene. When luxl was deleted from the lux 

operon, the mutant became brighter in culture (Fig. 8). This seems 

counterintuitive as this is a deletion of one of the quorum sensing synthases that 

induce luminescence. However, this highlights the significance of CsrA 

repression of luminescence in culture. When the putative CsrA binding domain 

was added back, the luminescence fell below that of wild type as a result of CsrA 

repression and loss of Luxl quorum sensing. It appears that quorum sensing and 

repression of CsrA are both important in luminescence induction. It also alludes 

to the fact that CsrA mutants may have an effect on 3-oxo-C6-HSL production. 

This is consistent with previous published data where the GacA mutant produced 

the same level of C8-HSL, but only produced half the amount of 3-oxo-C6-HSL 

compared to wild type- a difference that was not believed to be significant
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enough to explain the luminescence defect, but which could be explained by 

CsrA repression of lux.

The placement of the putative CsrA binding site differs from those found in 

other organisms and raises many questions about CsrA regulation in V. fischeri.

In the model organism E. coli the CsrA binding sites found were in the leader 

sequence and all had one site that overlapped the ribosomal binding site (Dubey 

et al., 2005). The putative luxl binding site does not include the RBS and is 

within the coding sequence. The 5’UTR of the lux mRNA is very short, about 19 

bases, and it may have been easier from an evolutionary standpoint to have a 

CsrA binding site within the coding sequence (Egland and Greenberg, 1999). 

CsrA is believed act by preventing the ribosome from binding thus destabilizing 

the mRNA (Romeo, 1998). Since the putative CsrA binding site located within 

the lux transcript of V. fischeri is downstream of the putative RBS, this may mean 

that when CsrA is bound, it does not block ribosome binding. Even if this is true 

CsrA would likely prevent translocation of the transcript through the ribosome. 

With the exception of the GGA motif, the luxl site does not fit with the consensus 

sequence for CsrA binding sites. It may be that V. fischerfs CsrA recognizes a 

different consensus or that this operon is not as tightly regulated as others in the 

genome. Our findings suggest that future attempts to predict CsrA-regulated 

transcripts should include regions within the coding sequence of mRNAs.

Why would V. fischeri regulate luminescence post-transcriptionally 

whereas its relatives, V. harveyi and V. cholerae regulate luminescence at the 

transcriptional level (Lenz et al., 2004)? An answer may be that V. fischeri needs
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tighter control of luminescence because of the important biological role of 

luminescence for the success of its symbiosis with its natural hosts. Whereas 

luminescence is not required by V. harveyi during infections of marine life and the 

exact purpose of luminescence is still unknown, luminescence is a requirement 

of symbiosis by V. fischeri with its squid host (Visick et al., 2000), and is also the 

basis of its symbioses with certain fishes. Post-transcriptional regulation allows 

bacteria to make rapid changes in expression (Romeo, 1998; Gottesman, 2002) 

and such rapid expression changes may be required of V. fischeri when it is 

associated with its host. Future work on the role of CsrA in this symbiosis may 

identify other CsrA-regulated symbiosis genes. This may allow us to further 

elucidate which genes are helpful or detrimental at key transitions in colonization. 

The colonization phenotypes of the GacA and GacA/CsrA mutants show that 

timing of expression is key in this symbiosis. It will be important to find the cues 

that mediate GacA/CsrA regulation to develop a better understanding of initiation 

of host infection by microbes.
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CHAPTER 3

CONCLUSION

The significance of luminescence for V. fischeri’s symbiotic lifestyle is 

highlited by its many points of control. At the transcriptional level, luminescence 

is derepressed by AinS/R and Lux S/PQ systems and induced by Luxl/AinS/LuxR 

(Lupp and Ruby, 2004). As we have discovered in V. fischeri, GacA, CsrA,

CsrB1 and CsrB2 regulate luminescence post-transcriptionally. While in V. 

cholerae GacA and the quorum sensing systems work together regulate lux via 

HapR derepression, V. fischeri does not coordinate these two systems in the 

same way. Instead, GacA derepresses lux translation and the C8 and AI-2 

quorum sensing-systems derepress HtR, thereby influencing lux transcription. 

Why does this difference exist since these different regulatory approaches seem 

to be means to the same end? I would speculate that this difference in regulation 

has to do with the importance of HapR/LitR as an activator as well as the 

requirements imposed by the different lifestyles of the bacteria. In V. cholerae 

HapR is believed to regulate virulence, biofilm formation, protease as well as 

other genes, making it a very important regulator for this bacterium (Lenz et al., 

2005). LitR only has a small effect in V. fischeri. LitR activates LuxR, which 

already positively regulates itself, and has a slight positive effect on other 

symbiosis phenotypes (Lupp and Ruby, 2005). HapR is very important for the
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pathogenic lifestyle of V. cholerae and so it would follow that this is the point of 

tightest control, whereas luminescence is very important for the symbiotic nature 

of V. fischeri and could be why GacA exerts its control at the post-transcriptional 

level.

CsrB1 and CsrB2 mutations

Although the main focus of this research was to elucidate the mechanism 

of GacA regulation of luminescence, as we found via CsrB1 and CsrB2 

activation, GacA also regulates other symbiotic phenotypes through the same 

regulators. GacA mutants are defective in normal initiation and colonization of the 

squid (Whistler and Ruby, 2003). Both of these phenotypes as well as the in 

vitro phenotypes were all complemented by addition of csrB1 or csrB2 in trans. 

Although untested, it would follow that knocking out these genes would mimic the 

GacA mutant phenotypically. Based on my promoter fusions and 

complementation which relied on the natural GacA-controlled promoters for 

csrB1 and csrB2, there is some csrB1 and csrB2 expression in the absence of 

GacA which may mean that a CsrB1/CsrB2 double mutant may have a slightly 

more severe phenotype than a GacA mutant in that it may have greater growth 

yield and motility issues. I have generated a CsrB2 mutant by replacement of the 

gene with an erythromycin resistance cassette but this mutation has no 

discernable phenotype. It is likely CsrB1 and CsrB2 have redundant function as 

they can both complement GacA and similar redundancy of function has been 

found in V. cholerae with CsrB, C, and D (Lenz et al., 2005). One could
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speculate that this redundancy exists because of the importance of repressing 

CsrA which can be inferred from the deficiencies of the GacA mutant where CsrA 

is largely unchecked. However, it should be noted that CsrB1 in trans had a 

greater complementation effect than CsrB2 which fit with the differences in 

expression (Fig. 5) as the CsrBs in trans were expressed off their native 

promoters. This means that they are not fully redundant.

GacS Signal Identification

Since the discovery of GacS/GacA researchers have wondered what the 

signal is for this two-component pathway (Hrabak and Willis, 1992). GacA is 

important for the transition into stationary phase and this means that the GacS 

signal is likely to build up at this point in time (Reviewed in Heeb and Haas,

2001). The signal could be an internal metabolite that when it reaches a high 

enough concentration, it induces GacS autophosphorylation. In Pseudomonas 

fluorescens GacS appears to respond to “a solvent-extractable extracellular 

signal” (Kobayashi et al., 2003) which does not narrow the possibilities much. In 

L  pneumophila, LetA/LetS (GacA/GacS) appear to respond to high levels of 

ppGpp (Hammer, Tateda, and Swanson, 2002). Work done by Craig Altiers 

group suggests that SirA(GacA homolog) and/or BarA (GacS homolog) respond 

to both unknown environmental signals as well as acetate (Lawhon et al., 2002). 

From these attempts at isolating the ligand for GacS it is clear that there are a 

number of ideas that vary from species to species. While the majority of the 

GacS protein is fairly conserved between species, the periplasmic domain (the
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region thought to bind the substrate) is highly divergent (Reviewed in Heeb and 

Haas, 2001). Based on this divergence as well at probable GacS regulators in 

different species I would venture that the signals for these proteins differs 

between groups or even species. While this belief is logical, it makes the 

discovery of the signal for GacS in V. fischeri and other species more difficult. To 

find it one may have to systematically add any number of potential extracellular 

products and internal metabolites to a culture of V. fischeri. A GacS mutant 

would serve as a good negative control and my csrB1 and csrB2 promoter 

fusions could serve as an indicator of GacA activity.

CsrA/CsrB regulation of GacA Mutant Phenotypes

My thesis work clearly shows that luminescence is regulated by GacA 

activation of CsrB1 and CsrB2, to repress CsrA, but how do they regulate the 

other GacA mutant phenotypes? In E. Coli CsrA has a direct positive effect on 

motility via FlhDC (a DNA binding protein that recognizes flagellar promoters) 

(Wei et al., 2001). It is possible that motility in V. fischeri is modulated in the 

same way and that is why we see hyperflagellation and hypermotility of the GacA 

mutant on low concentration agars (Whistler and Ruby, 2003). The GacA 

mutant’s lack of motility on high percentage agar (0.7%) cannot be explained by 

these means and may have to do with available energy. Microarray data 

indicates that GacA regulates siderophore transcriptionally. Sequences that 

matched the Fur box consensus were also located upstream of this operon as 

well as a number of other GacA-regulated genes indicating a likely role of Fur
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repression (Boisvert, 2007). As for the other phenotypes including LPS and 

simple sugars utilization, there is no evidence of direct regulation of transcripts 

related to these phenotypes by CsrA in other bacteria. Therefore, it is not 

apparent whether or not CsrA directly binds these transcripts for these 

phenotypes. CsrA was originally named so because it regulated glycogen 

biosynthesis in E.co//via glgCAP repression (Romeo et al., 1993). It follows that 

these GacA mutant phenotypes could arise secondarily from the disrupted 

metabolic state of the GacA mutant. It may be prudent to look for CsrA 

repression of the homologs of CsrA-regulated carbon storage genes of E. coli in 

V. fischeri, such as glgCAP and cstA (involved in nutrient scavenging under 

carbon starvation conditions) (Dubey et al., 2003). CsrA has also been shown to 

regulate Hfq expression (a chaperone like protein involved in non-coding RNA 

stability), another global regulator (Baker et al., 2007). Study of these genes will 

allow us to either include or eliminate them as CsrA targets and to identify if they 

are responsible for the indirect effects on LPS, and sugar utilization.

Identification of the CsrA targets related to known phenotypes will give us a 

better understanding of CsrA regulation in V. fischeri as well as help to identify as 

yet unknown targets.

Identification of Other CsrA Binding Sites in V. fischeri

A significant outcome of this study is my identification of a novel location 

and structure for the putative binding of CsrA to a transcript. It will be interesting 

to see what other CsrA binding sites exist in V. fischeri because they may have a
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different consensus from E. coli, changing the search approach in this, and 

possibly other organisms. By identifying the type and location of each binding 

site we may be able to determine what kind of influence CsrA exerts on the 

transcripts it regulates. In E. coli we have already seen a great diversity in CsrA 

binding regions; some with and without stem-loops and anywhere from one to six 

binding domains (Reviewed in Babitzke and Romeo, 2007). The luxl binding site 

is unusual in that the stem-loop is A-T rich and is beyond the ribosomal binding 

site (Dubey et al., 2005). It may be that all the stem loops of CsrA binding sites 

in V. fischeri are A-T rich because of the nature of the genome (Ruby et al.,

2005). I would tend to believe that most CsrA binding sites in V. fischeri do 

overlap with the ribosomal binding site. However, the possibility of other sites in 

this location cannot be eliminated so it will still be important to search within 

coding sequences for CsrA binding sites. Researchers have found that CsrA can 

exert a positive influence by binding to the extreme 5' end of the transcript 

thereby preventing mRNA degradation (Babitzke, 2007). In addition to the 

possibility of this kind of regulation in V. fischeri it also raises questions of 

whether or not a binding site after the RBS also changes regulation by CsrA. 

Perhaps this gives the ribosome a chance to bind before CsrA, limiting the effect 

of CsrA. As other CsrA-regulated transcripts are found in V. fischeri, these 

questions will be answered.

Potential CsrA Mutation Techniques

Although my directed attempts at generating a mutant were unsuccessful,
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a CsrA mutant of V. fischeri would be an excellent means of further elucidating 

CsrA regulation. A mutant would help to support data I have already found and 

aid in identifying additional, unknown, points of control by aiding in identifying 

changes in their expression in the mutant background. In addition, a CsrA 

mutant would be useful in identifying transcripts targeted by this protein by 

techniques like real-time PCR or for microarray experiments since, as we have 

shown with the luxl binding site, the targets do not always fit the mold, making 

bioinformatic techniques less useful. My previous attempts have failed because I 

had tried to completely inactivate the protein but this does not mean that future 

attempts using less severe mutations will. I believe that there are a few 

mutagenesis strategies that may be successful. Since the gene is highly 

pleiotropic and a complete deletion mutation seems to be lethal or to have a very 

significant impact on growth, complete inactivation in the wild type background 

may not be possible. However, spontaneous mutations that occurred in the C 

terminal region of the GacA/CsrA mutants were beyond the domains of 

significance and perhaps directed mutations in this end portion could be 

tolerated. By adding mutations specifically to that region, it may be possible to 

study targets of CsrA more effectively. This mutagenesis strategy would likely be 

successful for making a GacA/CsrA double mutant; however, we have never 

isolated a spontaneous CsrA mutant in the wild type background so this mutant 

may be less likely to occur. Other groups have made mutants that have an 

inducible CsrA so that the mutant is able to grow to a usable density for further 

experimentation (Molofsky and Swanson, 2003).
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A Natural System for CsrA Study

Although the role of CsrA/CsrB in gene regulation has been studied and 

dissected in a number of pathogenic, and even some beneficial bacteria, due to 

the limitations of available host models, interpretations of the role of CsrA/CsrB in 

animal infection is highly speculative at this point. Work done in E. coli has been 

largely mechanistic and has clarified the structure and function of these 

antagonistic regulators (Romeo, 1998; Gutierrez etal., 2006; Babitzke, 2007). 

Others have identified the binding capabilities with RNA (Baker et al., 2002). 

Using plant models, groups have identified the importance of CsrA in more 

environmental conditions such as beneficial and pathogenic plant association of 

Pseudomonas fluorescens and Erwinia carotovora (Heeb etal., 2002; Mukherjee 

et al., 1996). These studies indicate a specific role of CsrA and CsrB in host- 

association but due to dramatic differences between plant and animal hosts (e.g. 

the nature of immunity) as well as the superficial nature of host-association of 

these bacterial species, there are again limitations as to how the data can be 

extrapolated to animal infections. Some work has been done studying the effect 

of CsrA on animal cells, for example L. pneumophila on macrophages and 

Pseudomonas aeruginosa on human lung cells, but these models are contrived 

and do not relate well with an intact host (Molofsky and Swanson, 2003; Mulcahy 

et al., 2006). The natural infection model used to study V. fischeri is a clear 

advantage over these other systems and work on the role of CsrA and CsrB in 

infection should continue in this system.
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